Merge branch 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jlawall...
[linux-2.6-microblaze.git] / arch / x86 / mm / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
14
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
20
21 #ifndef CONFIG_PARAVIRT
22 static inline
23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24 {
25         tlb_remove_page(tlb, table);
26 }
27 #endif
28
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
30
31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33         return __pte_alloc_one(mm, __userpte_alloc_gfp);
34 }
35
36 static int __init setup_userpte(char *arg)
37 {
38         if (!arg)
39                 return -EINVAL;
40
41         /*
42          * "userpte=nohigh" disables allocation of user pagetables in
43          * high memory.
44          */
45         if (strcmp(arg, "nohigh") == 0)
46                 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47         else
48                 return -EINVAL;
49         return 0;
50 }
51 early_param("userpte", setup_userpte);
52
53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
54 {
55         pgtable_pte_page_dtor(pte);
56         paravirt_release_pte(page_to_pfn(pte));
57         paravirt_tlb_remove_table(tlb, pte);
58 }
59
60 #if CONFIG_PGTABLE_LEVELS > 2
61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
62 {
63         struct page *page = virt_to_page(pmd);
64         paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65         /*
66          * NOTE! For PAE, any changes to the top page-directory-pointer-table
67          * entries need a full cr3 reload to flush.
68          */
69 #ifdef CONFIG_X86_PAE
70         tlb->need_flush_all = 1;
71 #endif
72         pgtable_pmd_page_dtor(page);
73         paravirt_tlb_remove_table(tlb, page);
74 }
75
76 #if CONFIG_PGTABLE_LEVELS > 3
77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
78 {
79         paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
80         paravirt_tlb_remove_table(tlb, virt_to_page(pud));
81 }
82
83 #if CONFIG_PGTABLE_LEVELS > 4
84 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
85 {
86         paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
87         paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
88 }
89 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
90 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
91 #endif  /* CONFIG_PGTABLE_LEVELS > 2 */
92
93 static inline void pgd_list_add(pgd_t *pgd)
94 {
95         struct page *page = virt_to_page(pgd);
96
97         list_add(&page->lru, &pgd_list);
98 }
99
100 static inline void pgd_list_del(pgd_t *pgd)
101 {
102         struct page *page = virt_to_page(pgd);
103
104         list_del(&page->lru);
105 }
106
107 #define UNSHARED_PTRS_PER_PGD                           \
108         (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
109 #define MAX_UNSHARED_PTRS_PER_PGD                       \
110         max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
111
112
113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114 {
115         virt_to_page(pgd)->pt_mm = mm;
116 }
117
118 struct mm_struct *pgd_page_get_mm(struct page *page)
119 {
120         return page->pt_mm;
121 }
122
123 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
124 {
125         /* If the pgd points to a shared pagetable level (either the
126            ptes in non-PAE, or shared PMD in PAE), then just copy the
127            references from swapper_pg_dir. */
128         if (CONFIG_PGTABLE_LEVELS == 2 ||
129             (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
130             CONFIG_PGTABLE_LEVELS >= 4) {
131                 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
132                                 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
133                                 KERNEL_PGD_PTRS);
134         }
135
136         /* list required to sync kernel mapping updates */
137         if (!SHARED_KERNEL_PMD) {
138                 pgd_set_mm(pgd, mm);
139                 pgd_list_add(pgd);
140         }
141 }
142
143 static void pgd_dtor(pgd_t *pgd)
144 {
145         if (SHARED_KERNEL_PMD)
146                 return;
147
148         spin_lock(&pgd_lock);
149         pgd_list_del(pgd);
150         spin_unlock(&pgd_lock);
151 }
152
153 /*
154  * List of all pgd's needed for non-PAE so it can invalidate entries
155  * in both cached and uncached pgd's; not needed for PAE since the
156  * kernel pmd is shared. If PAE were not to share the pmd a similar
157  * tactic would be needed. This is essentially codepath-based locking
158  * against pageattr.c; it is the unique case in which a valid change
159  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
160  * vmalloc faults work because attached pagetables are never freed.
161  * -- nyc
162  */
163
164 #ifdef CONFIG_X86_PAE
165 /*
166  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
167  * updating the top-level pagetable entries to guarantee the
168  * processor notices the update.  Since this is expensive, and
169  * all 4 top-level entries are used almost immediately in a
170  * new process's life, we just pre-populate them here.
171  *
172  * Also, if we're in a paravirt environment where the kernel pmd is
173  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
174  * and initialize the kernel pmds here.
175  */
176 #define PREALLOCATED_PMDS       UNSHARED_PTRS_PER_PGD
177 #define MAX_PREALLOCATED_PMDS   MAX_UNSHARED_PTRS_PER_PGD
178
179 /*
180  * We allocate separate PMDs for the kernel part of the user page-table
181  * when PTI is enabled. We need them to map the per-process LDT into the
182  * user-space page-table.
183  */
184 #define PREALLOCATED_USER_PMDS   (boot_cpu_has(X86_FEATURE_PTI) ? \
185                                         KERNEL_PGD_PTRS : 0)
186 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
187
188 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
189 {
190         paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
191
192         /* Note: almost everything apart from _PAGE_PRESENT is
193            reserved at the pmd (PDPT) level. */
194         set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
195
196         /*
197          * According to Intel App note "TLBs, Paging-Structure Caches,
198          * and Their Invalidation", April 2007, document 317080-001,
199          * section 8.1: in PAE mode we explicitly have to flush the
200          * TLB via cr3 if the top-level pgd is changed...
201          */
202         flush_tlb_mm(mm);
203 }
204 #else  /* !CONFIG_X86_PAE */
205
206 /* No need to prepopulate any pagetable entries in non-PAE modes. */
207 #define PREALLOCATED_PMDS       0
208 #define MAX_PREALLOCATED_PMDS   0
209 #define PREALLOCATED_USER_PMDS   0
210 #define MAX_PREALLOCATED_USER_PMDS 0
211 #endif  /* CONFIG_X86_PAE */
212
213 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
214 {
215         int i;
216
217         for (i = 0; i < count; i++)
218                 if (pmds[i]) {
219                         pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
220                         free_page((unsigned long)pmds[i]);
221                         mm_dec_nr_pmds(mm);
222                 }
223 }
224
225 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
226 {
227         int i;
228         bool failed = false;
229         gfp_t gfp = GFP_PGTABLE_USER;
230
231         if (mm == &init_mm)
232                 gfp &= ~__GFP_ACCOUNT;
233
234         for (i = 0; i < count; i++) {
235                 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
236                 if (!pmd)
237                         failed = true;
238                 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
239                         free_page((unsigned long)pmd);
240                         pmd = NULL;
241                         failed = true;
242                 }
243                 if (pmd)
244                         mm_inc_nr_pmds(mm);
245                 pmds[i] = pmd;
246         }
247
248         if (failed) {
249                 free_pmds(mm, pmds, count);
250                 return -ENOMEM;
251         }
252
253         return 0;
254 }
255
256 /*
257  * Mop up any pmd pages which may still be attached to the pgd.
258  * Normally they will be freed by munmap/exit_mmap, but any pmd we
259  * preallocate which never got a corresponding vma will need to be
260  * freed manually.
261  */
262 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
263 {
264         pgd_t pgd = *pgdp;
265
266         if (pgd_val(pgd) != 0) {
267                 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
268
269                 pgd_clear(pgdp);
270
271                 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
272                 pmd_free(mm, pmd);
273                 mm_dec_nr_pmds(mm);
274         }
275 }
276
277 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
278 {
279         int i;
280
281         for (i = 0; i < PREALLOCATED_PMDS; i++)
282                 mop_up_one_pmd(mm, &pgdp[i]);
283
284 #ifdef CONFIG_PAGE_TABLE_ISOLATION
285
286         if (!boot_cpu_has(X86_FEATURE_PTI))
287                 return;
288
289         pgdp = kernel_to_user_pgdp(pgdp);
290
291         for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
292                 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
293 #endif
294 }
295
296 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
297 {
298         p4d_t *p4d;
299         pud_t *pud;
300         int i;
301
302         if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
303                 return;
304
305         p4d = p4d_offset(pgd, 0);
306         pud = pud_offset(p4d, 0);
307
308         for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
309                 pmd_t *pmd = pmds[i];
310
311                 if (i >= KERNEL_PGD_BOUNDARY)
312                         memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
313                                sizeof(pmd_t) * PTRS_PER_PMD);
314
315                 pud_populate(mm, pud, pmd);
316         }
317 }
318
319 #ifdef CONFIG_PAGE_TABLE_ISOLATION
320 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
321                                      pgd_t *k_pgd, pmd_t *pmds[])
322 {
323         pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
324         pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
325         p4d_t *u_p4d;
326         pud_t *u_pud;
327         int i;
328
329         u_p4d = p4d_offset(u_pgd, 0);
330         u_pud = pud_offset(u_p4d, 0);
331
332         s_pgd += KERNEL_PGD_BOUNDARY;
333         u_pud += KERNEL_PGD_BOUNDARY;
334
335         for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
336                 pmd_t *pmd = pmds[i];
337
338                 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
339                        sizeof(pmd_t) * PTRS_PER_PMD);
340
341                 pud_populate(mm, u_pud, pmd);
342         }
343
344 }
345 #else
346 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
347                                      pgd_t *k_pgd, pmd_t *pmds[])
348 {
349 }
350 #endif
351 /*
352  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
353  * assumes that pgd should be in one page.
354  *
355  * But kernel with PAE paging that is not running as a Xen domain
356  * only needs to allocate 32 bytes for pgd instead of one page.
357  */
358 #ifdef CONFIG_X86_PAE
359
360 #include <linux/slab.h>
361
362 #define PGD_SIZE        (PTRS_PER_PGD * sizeof(pgd_t))
363 #define PGD_ALIGN       32
364
365 static struct kmem_cache *pgd_cache;
366
367 void __init pgtable_cache_init(void)
368 {
369         /*
370          * When PAE kernel is running as a Xen domain, it does not use
371          * shared kernel pmd. And this requires a whole page for pgd.
372          */
373         if (!SHARED_KERNEL_PMD)
374                 return;
375
376         /*
377          * when PAE kernel is not running as a Xen domain, it uses
378          * shared kernel pmd. Shared kernel pmd does not require a whole
379          * page for pgd. We are able to just allocate a 32-byte for pgd.
380          * During boot time, we create a 32-byte slab for pgd table allocation.
381          */
382         pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
383                                       SLAB_PANIC, NULL);
384 }
385
386 static inline pgd_t *_pgd_alloc(void)
387 {
388         /*
389          * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
390          * We allocate one page for pgd.
391          */
392         if (!SHARED_KERNEL_PMD)
393                 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
394                                                  PGD_ALLOCATION_ORDER);
395
396         /*
397          * Now PAE kernel is not running as a Xen domain. We can allocate
398          * a 32-byte slab for pgd to save memory space.
399          */
400         return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
401 }
402
403 static inline void _pgd_free(pgd_t *pgd)
404 {
405         if (!SHARED_KERNEL_PMD)
406                 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
407         else
408                 kmem_cache_free(pgd_cache, pgd);
409 }
410 #else
411
412 static inline pgd_t *_pgd_alloc(void)
413 {
414         return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
415                                          PGD_ALLOCATION_ORDER);
416 }
417
418 static inline void _pgd_free(pgd_t *pgd)
419 {
420         free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
421 }
422 #endif /* CONFIG_X86_PAE */
423
424 pgd_t *pgd_alloc(struct mm_struct *mm)
425 {
426         pgd_t *pgd;
427         pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
428         pmd_t *pmds[MAX_PREALLOCATED_PMDS];
429
430         pgd = _pgd_alloc();
431
432         if (pgd == NULL)
433                 goto out;
434
435         mm->pgd = pgd;
436
437         if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
438                 goto out_free_pgd;
439
440         if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
441                 goto out_free_pmds;
442
443         if (paravirt_pgd_alloc(mm) != 0)
444                 goto out_free_user_pmds;
445
446         /*
447          * Make sure that pre-populating the pmds is atomic with
448          * respect to anything walking the pgd_list, so that they
449          * never see a partially populated pgd.
450          */
451         spin_lock(&pgd_lock);
452
453         pgd_ctor(mm, pgd);
454         pgd_prepopulate_pmd(mm, pgd, pmds);
455         pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
456
457         spin_unlock(&pgd_lock);
458
459         return pgd;
460
461 out_free_user_pmds:
462         free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
463 out_free_pmds:
464         free_pmds(mm, pmds, PREALLOCATED_PMDS);
465 out_free_pgd:
466         _pgd_free(pgd);
467 out:
468         return NULL;
469 }
470
471 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
472 {
473         pgd_mop_up_pmds(mm, pgd);
474         pgd_dtor(pgd);
475         paravirt_pgd_free(mm, pgd);
476         _pgd_free(pgd);
477 }
478
479 /*
480  * Used to set accessed or dirty bits in the page table entries
481  * on other architectures. On x86, the accessed and dirty bits
482  * are tracked by hardware. However, do_wp_page calls this function
483  * to also make the pte writeable at the same time the dirty bit is
484  * set. In that case we do actually need to write the PTE.
485  */
486 int ptep_set_access_flags(struct vm_area_struct *vma,
487                           unsigned long address, pte_t *ptep,
488                           pte_t entry, int dirty)
489 {
490         int changed = !pte_same(*ptep, entry);
491
492         if (changed && dirty)
493                 set_pte(ptep, entry);
494
495         return changed;
496 }
497
498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
499 int pmdp_set_access_flags(struct vm_area_struct *vma,
500                           unsigned long address, pmd_t *pmdp,
501                           pmd_t entry, int dirty)
502 {
503         int changed = !pmd_same(*pmdp, entry);
504
505         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
506
507         if (changed && dirty) {
508                 set_pmd(pmdp, entry);
509                 /*
510                  * We had a write-protection fault here and changed the pmd
511                  * to to more permissive. No need to flush the TLB for that,
512                  * #PF is architecturally guaranteed to do that and in the
513                  * worst-case we'll generate a spurious fault.
514                  */
515         }
516
517         return changed;
518 }
519
520 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
521                           pud_t *pudp, pud_t entry, int dirty)
522 {
523         int changed = !pud_same(*pudp, entry);
524
525         VM_BUG_ON(address & ~HPAGE_PUD_MASK);
526
527         if (changed && dirty) {
528                 set_pud(pudp, entry);
529                 /*
530                  * We had a write-protection fault here and changed the pud
531                  * to to more permissive. No need to flush the TLB for that,
532                  * #PF is architecturally guaranteed to do that and in the
533                  * worst-case we'll generate a spurious fault.
534                  */
535         }
536
537         return changed;
538 }
539 #endif
540
541 int ptep_test_and_clear_young(struct vm_area_struct *vma,
542                               unsigned long addr, pte_t *ptep)
543 {
544         int ret = 0;
545
546         if (pte_young(*ptep))
547                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
548                                          (unsigned long *) &ptep->pte);
549
550         return ret;
551 }
552
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
555                               unsigned long addr, pmd_t *pmdp)
556 {
557         int ret = 0;
558
559         if (pmd_young(*pmdp))
560                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
561                                          (unsigned long *)pmdp);
562
563         return ret;
564 }
565 int pudp_test_and_clear_young(struct vm_area_struct *vma,
566                               unsigned long addr, pud_t *pudp)
567 {
568         int ret = 0;
569
570         if (pud_young(*pudp))
571                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
572                                          (unsigned long *)pudp);
573
574         return ret;
575 }
576 #endif
577
578 int ptep_clear_flush_young(struct vm_area_struct *vma,
579                            unsigned long address, pte_t *ptep)
580 {
581         /*
582          * On x86 CPUs, clearing the accessed bit without a TLB flush
583          * doesn't cause data corruption. [ It could cause incorrect
584          * page aging and the (mistaken) reclaim of hot pages, but the
585          * chance of that should be relatively low. ]
586          *
587          * So as a performance optimization don't flush the TLB when
588          * clearing the accessed bit, it will eventually be flushed by
589          * a context switch or a VM operation anyway. [ In the rare
590          * event of it not getting flushed for a long time the delay
591          * shouldn't really matter because there's no real memory
592          * pressure for swapout to react to. ]
593          */
594         return ptep_test_and_clear_young(vma, address, ptep);
595 }
596
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 int pmdp_clear_flush_young(struct vm_area_struct *vma,
599                            unsigned long address, pmd_t *pmdp)
600 {
601         int young;
602
603         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
604
605         young = pmdp_test_and_clear_young(vma, address, pmdp);
606         if (young)
607                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
608
609         return young;
610 }
611 #endif
612
613 /**
614  * reserve_top_address - reserves a hole in the top of kernel address space
615  * @reserve - size of hole to reserve
616  *
617  * Can be used to relocate the fixmap area and poke a hole in the top
618  * of kernel address space to make room for a hypervisor.
619  */
620 void __init reserve_top_address(unsigned long reserve)
621 {
622 #ifdef CONFIG_X86_32
623         BUG_ON(fixmaps_set > 0);
624         __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
625         printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
626                -reserve, __FIXADDR_TOP + PAGE_SIZE);
627 #endif
628 }
629
630 int fixmaps_set;
631
632 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
633 {
634         unsigned long address = __fix_to_virt(idx);
635
636 #ifdef CONFIG_X86_64
637        /*
638         * Ensure that the static initial page tables are covering the
639         * fixmap completely.
640         */
641         BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
642                      (FIXMAP_PMD_NUM * PTRS_PER_PTE));
643 #endif
644
645         if (idx >= __end_of_fixed_addresses) {
646                 BUG();
647                 return;
648         }
649         set_pte_vaddr(address, pte);
650         fixmaps_set++;
651 }
652
653 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
654                        phys_addr_t phys, pgprot_t flags)
655 {
656         /* Sanitize 'prot' against any unsupported bits: */
657         pgprot_val(flags) &= __default_kernel_pte_mask;
658
659         __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
660 }
661
662 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
663 #ifdef CONFIG_X86_5LEVEL
664 /**
665  * p4d_set_huge - setup kernel P4D mapping
666  *
667  * No 512GB pages yet -- always return 0
668  */
669 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
670 {
671         return 0;
672 }
673
674 /**
675  * p4d_clear_huge - clear kernel P4D mapping when it is set
676  *
677  * No 512GB pages yet -- always return 0
678  */
679 int p4d_clear_huge(p4d_t *p4d)
680 {
681         return 0;
682 }
683 #endif
684
685 /**
686  * pud_set_huge - setup kernel PUD mapping
687  *
688  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
689  * function sets up a huge page only if any of the following conditions are met:
690  *
691  * - MTRRs are disabled, or
692  *
693  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
694  *
695  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
696  *   has no effect on the requested PAT memory type.
697  *
698  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
699  * page mapping attempt fails.
700  *
701  * Returns 1 on success and 0 on failure.
702  */
703 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
704 {
705         u8 mtrr, uniform;
706
707         mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
708         if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
709             (mtrr != MTRR_TYPE_WRBACK))
710                 return 0;
711
712         /* Bail out if we are we on a populated non-leaf entry: */
713         if (pud_present(*pud) && !pud_huge(*pud))
714                 return 0;
715
716         set_pte((pte_t *)pud, pfn_pte(
717                 (u64)addr >> PAGE_SHIFT,
718                 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
719
720         return 1;
721 }
722
723 /**
724  * pmd_set_huge - setup kernel PMD mapping
725  *
726  * See text over pud_set_huge() above.
727  *
728  * Returns 1 on success and 0 on failure.
729  */
730 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
731 {
732         u8 mtrr, uniform;
733
734         mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
735         if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
736             (mtrr != MTRR_TYPE_WRBACK)) {
737                 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
738                              __func__, addr, addr + PMD_SIZE);
739                 return 0;
740         }
741
742         /* Bail out if we are we on a populated non-leaf entry: */
743         if (pmd_present(*pmd) && !pmd_huge(*pmd))
744                 return 0;
745
746         set_pte((pte_t *)pmd, pfn_pte(
747                 (u64)addr >> PAGE_SHIFT,
748                 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
749
750         return 1;
751 }
752
753 /**
754  * pud_clear_huge - clear kernel PUD mapping when it is set
755  *
756  * Returns 1 on success and 0 on failure (no PUD map is found).
757  */
758 int pud_clear_huge(pud_t *pud)
759 {
760         if (pud_large(*pud)) {
761                 pud_clear(pud);
762                 return 1;
763         }
764
765         return 0;
766 }
767
768 /**
769  * pmd_clear_huge - clear kernel PMD mapping when it is set
770  *
771  * Returns 1 on success and 0 on failure (no PMD map is found).
772  */
773 int pmd_clear_huge(pmd_t *pmd)
774 {
775         if (pmd_large(*pmd)) {
776                 pmd_clear(pmd);
777                 return 1;
778         }
779
780         return 0;
781 }
782
783 /*
784  * Until we support 512GB pages, skip them in the vmap area.
785  */
786 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
787 {
788         return 0;
789 }
790
791 #ifdef CONFIG_X86_64
792 /**
793  * pud_free_pmd_page - Clear pud entry and free pmd page.
794  * @pud: Pointer to a PUD.
795  * @addr: Virtual address associated with pud.
796  *
797  * Context: The pud range has been unmapped and TLB purged.
798  * Return: 1 if clearing the entry succeeded. 0 otherwise.
799  *
800  * NOTE: Callers must allow a single page allocation.
801  */
802 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
803 {
804         pmd_t *pmd, *pmd_sv;
805         pte_t *pte;
806         int i;
807
808         pmd = (pmd_t *)pud_page_vaddr(*pud);
809         pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
810         if (!pmd_sv)
811                 return 0;
812
813         for (i = 0; i < PTRS_PER_PMD; i++) {
814                 pmd_sv[i] = pmd[i];
815                 if (!pmd_none(pmd[i]))
816                         pmd_clear(&pmd[i]);
817         }
818
819         pud_clear(pud);
820
821         /* INVLPG to clear all paging-structure caches */
822         flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
823
824         for (i = 0; i < PTRS_PER_PMD; i++) {
825                 if (!pmd_none(pmd_sv[i])) {
826                         pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
827                         free_page((unsigned long)pte);
828                 }
829         }
830
831         free_page((unsigned long)pmd_sv);
832         free_page((unsigned long)pmd);
833
834         return 1;
835 }
836
837 /**
838  * pmd_free_pte_page - Clear pmd entry and free pte page.
839  * @pmd: Pointer to a PMD.
840  * @addr: Virtual address associated with pmd.
841  *
842  * Context: The pmd range has been unmapped and TLB purged.
843  * Return: 1 if clearing the entry succeeded. 0 otherwise.
844  */
845 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
846 {
847         pte_t *pte;
848
849         pte = (pte_t *)pmd_page_vaddr(*pmd);
850         pmd_clear(pmd);
851
852         /* INVLPG to clear all paging-structure caches */
853         flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
854
855         free_page((unsigned long)pte);
856
857         return 1;
858 }
859
860 #else /* !CONFIG_X86_64 */
861
862 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
863 {
864         return pud_none(*pud);
865 }
866
867 /*
868  * Disable free page handling on x86-PAE. This assures that ioremap()
869  * does not update sync'd pmd entries. See vmalloc_sync_one().
870  */
871 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
872 {
873         return pmd_none(*pmd);
874 }
875
876 #endif /* CONFIG_X86_64 */
877 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */