x86/pti: Fix boot warning from Global-bit setting
[linux-2.6-microblaze.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33         unsigned long   *vaddr;
34         pgd_t           *pgd;
35         pgprot_t        mask_set;
36         pgprot_t        mask_clr;
37         unsigned long   numpages;
38         int             flags;
39         unsigned long   pfn;
40         unsigned        force_split : 1;
41         int             curpage;
42         struct page     **pages;
43 };
44
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
60 void update_page_count(int level, unsigned long pages)
61 {
62         /* Protect against CPA */
63         spin_lock(&pgd_lock);
64         direct_pages_count[level] += pages;
65         spin_unlock(&pgd_lock);
66 }
67
68 static void split_page_count(int level)
69 {
70         if (direct_pages_count[level] == 0)
71                 return;
72
73         direct_pages_count[level]--;
74         direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76
77 void arch_report_meminfo(struct seq_file *m)
78 {
79         seq_printf(m, "DirectMap4k:    %8lu kB\n",
80                         direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82         seq_printf(m, "DirectMap2M:    %8lu kB\n",
83                         direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85         seq_printf(m, "DirectMap4M:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88         if (direct_gbpages)
89                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
90                         direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
93 static inline void split_page_count(int level) { }
94 #endif
95
96 static inline int
97 within(unsigned long addr, unsigned long start, unsigned long end)
98 {
99         return addr >= start && addr < end;
100 }
101
102 static inline int
103 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
104 {
105         return addr >= start && addr <= end;
106 }
107
108 #ifdef CONFIG_X86_64
109
110 static inline unsigned long highmap_start_pfn(void)
111 {
112         return __pa_symbol(_text) >> PAGE_SHIFT;
113 }
114
115 static inline unsigned long highmap_end_pfn(void)
116 {
117         /* Do not reference physical address outside the kernel. */
118         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
119 }
120
121 static bool __cpa_pfn_in_highmap(unsigned long pfn)
122 {
123         /*
124          * Kernel text has an alias mapping at a high address, known
125          * here as "highmap".
126          */
127         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
128 }
129
130 #else
131
132 static bool __cpa_pfn_in_highmap(unsigned long pfn)
133 {
134         /* There is no highmap on 32-bit */
135         return false;
136 }
137
138 #endif
139
140 /*
141  * Flushing functions
142  */
143
144 /**
145  * clflush_cache_range - flush a cache range with clflush
146  * @vaddr:      virtual start address
147  * @size:       number of bytes to flush
148  *
149  * clflushopt is an unordered instruction which needs fencing with mfence or
150  * sfence to avoid ordering issues.
151  */
152 void clflush_cache_range(void *vaddr, unsigned int size)
153 {
154         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
155         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
156         void *vend = vaddr + size;
157
158         if (p >= vend)
159                 return;
160
161         mb();
162
163         for (; p < vend; p += clflush_size)
164                 clflushopt(p);
165
166         mb();
167 }
168 EXPORT_SYMBOL_GPL(clflush_cache_range);
169
170 void arch_invalidate_pmem(void *addr, size_t size)
171 {
172         clflush_cache_range(addr, size);
173 }
174 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
175
176 static void __cpa_flush_all(void *arg)
177 {
178         unsigned long cache = (unsigned long)arg;
179
180         /*
181          * Flush all to work around Errata in early athlons regarding
182          * large page flushing.
183          */
184         __flush_tlb_all();
185
186         if (cache && boot_cpu_data.x86 >= 4)
187                 wbinvd();
188 }
189
190 static void cpa_flush_all(unsigned long cache)
191 {
192         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
193
194         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
195 }
196
197 static void __cpa_flush_range(void *arg)
198 {
199         /*
200          * We could optimize that further and do individual per page
201          * tlb invalidates for a low number of pages. Caveat: we must
202          * flush the high aliases on 64bit as well.
203          */
204         __flush_tlb_all();
205 }
206
207 static void cpa_flush_range(unsigned long start, int numpages, int cache)
208 {
209         unsigned int i, level;
210         unsigned long addr;
211
212         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
213         WARN_ON(PAGE_ALIGN(start) != start);
214
215         on_each_cpu(__cpa_flush_range, NULL, 1);
216
217         if (!cache)
218                 return;
219
220         /*
221          * We only need to flush on one CPU,
222          * clflush is a MESI-coherent instruction that
223          * will cause all other CPUs to flush the same
224          * cachelines:
225          */
226         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
227                 pte_t *pte = lookup_address(addr, &level);
228
229                 /*
230                  * Only flush present addresses:
231                  */
232                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
233                         clflush_cache_range((void *) addr, PAGE_SIZE);
234         }
235 }
236
237 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
238                             int in_flags, struct page **pages)
239 {
240         unsigned int i, level;
241 #ifdef CONFIG_PREEMPT
242         /*
243          * Avoid wbinvd() because it causes latencies on all CPUs,
244          * regardless of any CPU isolation that may be in effect.
245          *
246          * This should be extended for CAT enabled systems independent of
247          * PREEMPT because wbinvd() does not respect the CAT partitions and
248          * this is exposed to unpriviledged users through the graphics
249          * subsystem.
250          */
251         unsigned long do_wbinvd = 0;
252 #else
253         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
254 #endif
255
256         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
257
258         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
259
260         if (!cache || do_wbinvd)
261                 return;
262
263         /*
264          * We only need to flush on one CPU,
265          * clflush is a MESI-coherent instruction that
266          * will cause all other CPUs to flush the same
267          * cachelines:
268          */
269         for (i = 0; i < numpages; i++) {
270                 unsigned long addr;
271                 pte_t *pte;
272
273                 if (in_flags & CPA_PAGES_ARRAY)
274                         addr = (unsigned long)page_address(pages[i]);
275                 else
276                         addr = start[i];
277
278                 pte = lookup_address(addr, &level);
279
280                 /*
281                  * Only flush present addresses:
282                  */
283                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
284                         clflush_cache_range((void *)addr, PAGE_SIZE);
285         }
286 }
287
288 /*
289  * Certain areas of memory on x86 require very specific protection flags,
290  * for example the BIOS area or kernel text. Callers don't always get this
291  * right (again, ioremap() on BIOS memory is not uncommon) so this function
292  * checks and fixes these known static required protection bits.
293  */
294 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
295                                    unsigned long pfn)
296 {
297         pgprot_t forbidden = __pgprot(0);
298
299         /*
300          * The BIOS area between 640k and 1Mb needs to be executable for
301          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
302          */
303 #ifdef CONFIG_PCI_BIOS
304         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
305                 pgprot_val(forbidden) |= _PAGE_NX;
306 #endif
307
308         /*
309          * The kernel text needs to be executable for obvious reasons
310          * Does not cover __inittext since that is gone later on. On
311          * 64bit we do not enforce !NX on the low mapping
312          */
313         if (within(address, (unsigned long)_text, (unsigned long)_etext))
314                 pgprot_val(forbidden) |= _PAGE_NX;
315
316         /*
317          * The .rodata section needs to be read-only. Using the pfn
318          * catches all aliases.  This also includes __ro_after_init,
319          * so do not enforce until kernel_set_to_readonly is true.
320          */
321         if (kernel_set_to_readonly &&
322             within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
323                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
324                 pgprot_val(forbidden) |= _PAGE_RW;
325
326 #if defined(CONFIG_X86_64)
327         /*
328          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
329          * kernel text mappings for the large page aligned text, rodata sections
330          * will be always read-only. For the kernel identity mappings covering
331          * the holes caused by this alignment can be anything that user asks.
332          *
333          * This will preserve the large page mappings for kernel text/data
334          * at no extra cost.
335          */
336         if (kernel_set_to_readonly &&
337             within(address, (unsigned long)_text,
338                    (unsigned long)__end_rodata_hpage_align)) {
339                 unsigned int level;
340
341                 /*
342                  * Don't enforce the !RW mapping for the kernel text mapping,
343                  * if the current mapping is already using small page mapping.
344                  * No need to work hard to preserve large page mappings in this
345                  * case.
346                  *
347                  * This also fixes the Linux Xen paravirt guest boot failure
348                  * (because of unexpected read-only mappings for kernel identity
349                  * mappings). In this paravirt guest case, the kernel text
350                  * mapping and the kernel identity mapping share the same
351                  * page-table pages. Thus we can't really use different
352                  * protections for the kernel text and identity mappings. Also,
353                  * these shared mappings are made of small page mappings.
354                  * Thus this don't enforce !RW mapping for small page kernel
355                  * text mapping logic will help Linux Xen parvirt guest boot
356                  * as well.
357                  */
358                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
359                         pgprot_val(forbidden) |= _PAGE_RW;
360         }
361 #endif
362
363         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
364
365         return prot;
366 }
367
368 /*
369  * Lookup the page table entry for a virtual address in a specific pgd.
370  * Return a pointer to the entry and the level of the mapping.
371  */
372 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
373                              unsigned int *level)
374 {
375         p4d_t *p4d;
376         pud_t *pud;
377         pmd_t *pmd;
378
379         *level = PG_LEVEL_NONE;
380
381         if (pgd_none(*pgd))
382                 return NULL;
383
384         p4d = p4d_offset(pgd, address);
385         if (p4d_none(*p4d))
386                 return NULL;
387
388         *level = PG_LEVEL_512G;
389         if (p4d_large(*p4d) || !p4d_present(*p4d))
390                 return (pte_t *)p4d;
391
392         pud = pud_offset(p4d, address);
393         if (pud_none(*pud))
394                 return NULL;
395
396         *level = PG_LEVEL_1G;
397         if (pud_large(*pud) || !pud_present(*pud))
398                 return (pte_t *)pud;
399
400         pmd = pmd_offset(pud, address);
401         if (pmd_none(*pmd))
402                 return NULL;
403
404         *level = PG_LEVEL_2M;
405         if (pmd_large(*pmd) || !pmd_present(*pmd))
406                 return (pte_t *)pmd;
407
408         *level = PG_LEVEL_4K;
409
410         return pte_offset_kernel(pmd, address);
411 }
412
413 /*
414  * Lookup the page table entry for a virtual address. Return a pointer
415  * to the entry and the level of the mapping.
416  *
417  * Note: We return pud and pmd either when the entry is marked large
418  * or when the present bit is not set. Otherwise we would return a
419  * pointer to a nonexisting mapping.
420  */
421 pte_t *lookup_address(unsigned long address, unsigned int *level)
422 {
423         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
424 }
425 EXPORT_SYMBOL_GPL(lookup_address);
426
427 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
428                                   unsigned int *level)
429 {
430         if (cpa->pgd)
431                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
432                                                address, level);
433
434         return lookup_address(address, level);
435 }
436
437 /*
438  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
439  * or NULL if not present.
440  */
441 pmd_t *lookup_pmd_address(unsigned long address)
442 {
443         pgd_t *pgd;
444         p4d_t *p4d;
445         pud_t *pud;
446
447         pgd = pgd_offset_k(address);
448         if (pgd_none(*pgd))
449                 return NULL;
450
451         p4d = p4d_offset(pgd, address);
452         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
453                 return NULL;
454
455         pud = pud_offset(p4d, address);
456         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
457                 return NULL;
458
459         return pmd_offset(pud, address);
460 }
461
462 /*
463  * This is necessary because __pa() does not work on some
464  * kinds of memory, like vmalloc() or the alloc_remap()
465  * areas on 32-bit NUMA systems.  The percpu areas can
466  * end up in this kind of memory, for instance.
467  *
468  * This could be optimized, but it is only intended to be
469  * used at inititalization time, and keeping it
470  * unoptimized should increase the testing coverage for
471  * the more obscure platforms.
472  */
473 phys_addr_t slow_virt_to_phys(void *__virt_addr)
474 {
475         unsigned long virt_addr = (unsigned long)__virt_addr;
476         phys_addr_t phys_addr;
477         unsigned long offset;
478         enum pg_level level;
479         pte_t *pte;
480
481         pte = lookup_address(virt_addr, &level);
482         BUG_ON(!pte);
483
484         /*
485          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
486          * before being left-shifted PAGE_SHIFT bits -- this trick is to
487          * make 32-PAE kernel work correctly.
488          */
489         switch (level) {
490         case PG_LEVEL_1G:
491                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
492                 offset = virt_addr & ~PUD_PAGE_MASK;
493                 break;
494         case PG_LEVEL_2M:
495                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
496                 offset = virt_addr & ~PMD_PAGE_MASK;
497                 break;
498         default:
499                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
500                 offset = virt_addr & ~PAGE_MASK;
501         }
502
503         return (phys_addr_t)(phys_addr | offset);
504 }
505 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
506
507 /*
508  * Set the new pmd in all the pgds we know about:
509  */
510 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
511 {
512         /* change init_mm */
513         set_pte_atomic(kpte, pte);
514 #ifdef CONFIG_X86_32
515         if (!SHARED_KERNEL_PMD) {
516                 struct page *page;
517
518                 list_for_each_entry(page, &pgd_list, lru) {
519                         pgd_t *pgd;
520                         p4d_t *p4d;
521                         pud_t *pud;
522                         pmd_t *pmd;
523
524                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
525                         p4d = p4d_offset(pgd, address);
526                         pud = pud_offset(p4d, address);
527                         pmd = pmd_offset(pud, address);
528                         set_pte_atomic((pte_t *)pmd, pte);
529                 }
530         }
531 #endif
532 }
533
534 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
535 {
536         /*
537          * _PAGE_GLOBAL means "global page" for present PTEs.
538          * But, it is also used to indicate _PAGE_PROTNONE
539          * for non-present PTEs.
540          *
541          * This ensures that a _PAGE_GLOBAL PTE going from
542          * present to non-present is not confused as
543          * _PAGE_PROTNONE.
544          */
545         if (!(pgprot_val(prot) & _PAGE_PRESENT))
546                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
547
548         return prot;
549 }
550
551 static int
552 try_preserve_large_page(pte_t *kpte, unsigned long address,
553                         struct cpa_data *cpa)
554 {
555         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
556         pte_t new_pte, old_pte, *tmp;
557         pgprot_t old_prot, new_prot, req_prot;
558         int i, do_split = 1;
559         enum pg_level level;
560
561         if (cpa->force_split)
562                 return 1;
563
564         spin_lock(&pgd_lock);
565         /*
566          * Check for races, another CPU might have split this page
567          * up already:
568          */
569         tmp = _lookup_address_cpa(cpa, address, &level);
570         if (tmp != kpte)
571                 goto out_unlock;
572
573         switch (level) {
574         case PG_LEVEL_2M:
575                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
576                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
577                 break;
578         case PG_LEVEL_1G:
579                 old_prot = pud_pgprot(*(pud_t *)kpte);
580                 old_pfn = pud_pfn(*(pud_t *)kpte);
581                 break;
582         default:
583                 do_split = -EINVAL;
584                 goto out_unlock;
585         }
586
587         psize = page_level_size(level);
588         pmask = page_level_mask(level);
589
590         /*
591          * Calculate the number of pages, which fit into this large
592          * page starting at address:
593          */
594         nextpage_addr = (address + psize) & pmask;
595         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
596         if (numpages < cpa->numpages)
597                 cpa->numpages = numpages;
598
599         /*
600          * We are safe now. Check whether the new pgprot is the same:
601          * Convert protection attributes to 4k-format, as cpa->mask* are set
602          * up accordingly.
603          */
604         old_pte = *kpte;
605         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
606         req_prot = pgprot_large_2_4k(old_prot);
607
608         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
609         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
610
611         /*
612          * req_prot is in format of 4k pages. It must be converted to large
613          * page format: the caching mode includes the PAT bit located at
614          * different bit positions in the two formats.
615          */
616         req_prot = pgprot_4k_2_large(req_prot);
617         req_prot = pgprot_clear_protnone_bits(req_prot);
618         if (pgprot_val(req_prot) & _PAGE_PRESENT)
619                 pgprot_val(req_prot) |= _PAGE_PSE;
620
621         /*
622          * old_pfn points to the large page base pfn. So we need
623          * to add the offset of the virtual address:
624          */
625         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
626         cpa->pfn = pfn;
627
628         new_prot = static_protections(req_prot, address, pfn);
629
630         /*
631          * We need to check the full range, whether
632          * static_protection() requires a different pgprot for one of
633          * the pages in the range we try to preserve:
634          */
635         addr = address & pmask;
636         pfn = old_pfn;
637         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
638                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
639
640                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
641                         goto out_unlock;
642         }
643
644         /*
645          * If there are no changes, return. maxpages has been updated
646          * above:
647          */
648         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
649                 do_split = 0;
650                 goto out_unlock;
651         }
652
653         /*
654          * We need to change the attributes. Check, whether we can
655          * change the large page in one go. We request a split, when
656          * the address is not aligned and the number of pages is
657          * smaller than the number of pages in the large page. Note
658          * that we limited the number of possible pages already to
659          * the number of pages in the large page.
660          */
661         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
662                 /*
663                  * The address is aligned and the number of pages
664                  * covers the full page.
665                  */
666                 new_pte = pfn_pte(old_pfn, new_prot);
667                 __set_pmd_pte(kpte, address, new_pte);
668                 cpa->flags |= CPA_FLUSHTLB;
669                 do_split = 0;
670         }
671
672 out_unlock:
673         spin_unlock(&pgd_lock);
674
675         return do_split;
676 }
677
678 static int
679 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
680                    struct page *base)
681 {
682         pte_t *pbase = (pte_t *)page_address(base);
683         unsigned long ref_pfn, pfn, pfninc = 1;
684         unsigned int i, level;
685         pte_t *tmp;
686         pgprot_t ref_prot;
687
688         spin_lock(&pgd_lock);
689         /*
690          * Check for races, another CPU might have split this page
691          * up for us already:
692          */
693         tmp = _lookup_address_cpa(cpa, address, &level);
694         if (tmp != kpte) {
695                 spin_unlock(&pgd_lock);
696                 return 1;
697         }
698
699         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
700
701         switch (level) {
702         case PG_LEVEL_2M:
703                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
704                 /*
705                  * Clear PSE (aka _PAGE_PAT) and move
706                  * PAT bit to correct position.
707                  */
708                 ref_prot = pgprot_large_2_4k(ref_prot);
709
710                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
711                 break;
712
713         case PG_LEVEL_1G:
714                 ref_prot = pud_pgprot(*(pud_t *)kpte);
715                 ref_pfn = pud_pfn(*(pud_t *)kpte);
716                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
717
718                 /*
719                  * Clear the PSE flags if the PRESENT flag is not set
720                  * otherwise pmd_present/pmd_huge will return true
721                  * even on a non present pmd.
722                  */
723                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
724                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
725                 break;
726
727         default:
728                 spin_unlock(&pgd_lock);
729                 return 1;
730         }
731
732         ref_prot = pgprot_clear_protnone_bits(ref_prot);
733
734         /*
735          * Get the target pfn from the original entry:
736          */
737         pfn = ref_pfn;
738         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
739                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
740
741         if (virt_addr_valid(address)) {
742                 unsigned long pfn = PFN_DOWN(__pa(address));
743
744                 if (pfn_range_is_mapped(pfn, pfn + 1))
745                         split_page_count(level);
746         }
747
748         /*
749          * Install the new, split up pagetable.
750          *
751          * We use the standard kernel pagetable protections for the new
752          * pagetable protections, the actual ptes set above control the
753          * primary protection behavior:
754          */
755         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
756
757         /*
758          * Intel Atom errata AAH41 workaround.
759          *
760          * The real fix should be in hw or in a microcode update, but
761          * we also probabilistically try to reduce the window of having
762          * a large TLB mixed with 4K TLBs while instruction fetches are
763          * going on.
764          */
765         __flush_tlb_all();
766         spin_unlock(&pgd_lock);
767
768         return 0;
769 }
770
771 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
772                             unsigned long address)
773 {
774         struct page *base;
775
776         if (!debug_pagealloc_enabled())
777                 spin_unlock(&cpa_lock);
778         base = alloc_pages(GFP_KERNEL, 0);
779         if (!debug_pagealloc_enabled())
780                 spin_lock(&cpa_lock);
781         if (!base)
782                 return -ENOMEM;
783
784         if (__split_large_page(cpa, kpte, address, base))
785                 __free_page(base);
786
787         return 0;
788 }
789
790 static bool try_to_free_pte_page(pte_t *pte)
791 {
792         int i;
793
794         for (i = 0; i < PTRS_PER_PTE; i++)
795                 if (!pte_none(pte[i]))
796                         return false;
797
798         free_page((unsigned long)pte);
799         return true;
800 }
801
802 static bool try_to_free_pmd_page(pmd_t *pmd)
803 {
804         int i;
805
806         for (i = 0; i < PTRS_PER_PMD; i++)
807                 if (!pmd_none(pmd[i]))
808                         return false;
809
810         free_page((unsigned long)pmd);
811         return true;
812 }
813
814 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
815 {
816         pte_t *pte = pte_offset_kernel(pmd, start);
817
818         while (start < end) {
819                 set_pte(pte, __pte(0));
820
821                 start += PAGE_SIZE;
822                 pte++;
823         }
824
825         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
826                 pmd_clear(pmd);
827                 return true;
828         }
829         return false;
830 }
831
832 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
833                               unsigned long start, unsigned long end)
834 {
835         if (unmap_pte_range(pmd, start, end))
836                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
837                         pud_clear(pud);
838 }
839
840 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
841 {
842         pmd_t *pmd = pmd_offset(pud, start);
843
844         /*
845          * Not on a 2MB page boundary?
846          */
847         if (start & (PMD_SIZE - 1)) {
848                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
849                 unsigned long pre_end = min_t(unsigned long, end, next_page);
850
851                 __unmap_pmd_range(pud, pmd, start, pre_end);
852
853                 start = pre_end;
854                 pmd++;
855         }
856
857         /*
858          * Try to unmap in 2M chunks.
859          */
860         while (end - start >= PMD_SIZE) {
861                 if (pmd_large(*pmd))
862                         pmd_clear(pmd);
863                 else
864                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
865
866                 start += PMD_SIZE;
867                 pmd++;
868         }
869
870         /*
871          * 4K leftovers?
872          */
873         if (start < end)
874                 return __unmap_pmd_range(pud, pmd, start, end);
875
876         /*
877          * Try again to free the PMD page if haven't succeeded above.
878          */
879         if (!pud_none(*pud))
880                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
881                         pud_clear(pud);
882 }
883
884 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
885 {
886         pud_t *pud = pud_offset(p4d, start);
887
888         /*
889          * Not on a GB page boundary?
890          */
891         if (start & (PUD_SIZE - 1)) {
892                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
893                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
894
895                 unmap_pmd_range(pud, start, pre_end);
896
897                 start = pre_end;
898                 pud++;
899         }
900
901         /*
902          * Try to unmap in 1G chunks?
903          */
904         while (end - start >= PUD_SIZE) {
905
906                 if (pud_large(*pud))
907                         pud_clear(pud);
908                 else
909                         unmap_pmd_range(pud, start, start + PUD_SIZE);
910
911                 start += PUD_SIZE;
912                 pud++;
913         }
914
915         /*
916          * 2M leftovers?
917          */
918         if (start < end)
919                 unmap_pmd_range(pud, start, end);
920
921         /*
922          * No need to try to free the PUD page because we'll free it in
923          * populate_pgd's error path
924          */
925 }
926
927 static int alloc_pte_page(pmd_t *pmd)
928 {
929         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
930         if (!pte)
931                 return -1;
932
933         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
934         return 0;
935 }
936
937 static int alloc_pmd_page(pud_t *pud)
938 {
939         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
940         if (!pmd)
941                 return -1;
942
943         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
944         return 0;
945 }
946
947 static void populate_pte(struct cpa_data *cpa,
948                          unsigned long start, unsigned long end,
949                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
950 {
951         pte_t *pte;
952
953         pte = pte_offset_kernel(pmd, start);
954
955         pgprot = pgprot_clear_protnone_bits(pgprot);
956
957         while (num_pages-- && start < end) {
958                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
959
960                 start    += PAGE_SIZE;
961                 cpa->pfn++;
962                 pte++;
963         }
964 }
965
966 static long populate_pmd(struct cpa_data *cpa,
967                          unsigned long start, unsigned long end,
968                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
969 {
970         long cur_pages = 0;
971         pmd_t *pmd;
972         pgprot_t pmd_pgprot;
973
974         /*
975          * Not on a 2M boundary?
976          */
977         if (start & (PMD_SIZE - 1)) {
978                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
979                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
980
981                 pre_end   = min_t(unsigned long, pre_end, next_page);
982                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
983                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
984
985                 /*
986                  * Need a PTE page?
987                  */
988                 pmd = pmd_offset(pud, start);
989                 if (pmd_none(*pmd))
990                         if (alloc_pte_page(pmd))
991                                 return -1;
992
993                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
994
995                 start = pre_end;
996         }
997
998         /*
999          * We mapped them all?
1000          */
1001         if (num_pages == cur_pages)
1002                 return cur_pages;
1003
1004         pmd_pgprot = pgprot_4k_2_large(pgprot);
1005
1006         while (end - start >= PMD_SIZE) {
1007
1008                 /*
1009                  * We cannot use a 1G page so allocate a PMD page if needed.
1010                  */
1011                 if (pud_none(*pud))
1012                         if (alloc_pmd_page(pud))
1013                                 return -1;
1014
1015                 pmd = pmd_offset(pud, start);
1016
1017                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1018                                    massage_pgprot(pmd_pgprot)));
1019
1020                 start     += PMD_SIZE;
1021                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1022                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1023         }
1024
1025         /*
1026          * Map trailing 4K pages.
1027          */
1028         if (start < end) {
1029                 pmd = pmd_offset(pud, start);
1030                 if (pmd_none(*pmd))
1031                         if (alloc_pte_page(pmd))
1032                                 return -1;
1033
1034                 populate_pte(cpa, start, end, num_pages - cur_pages,
1035                              pmd, pgprot);
1036         }
1037         return num_pages;
1038 }
1039
1040 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1041                         pgprot_t pgprot)
1042 {
1043         pud_t *pud;
1044         unsigned long end;
1045         long cur_pages = 0;
1046         pgprot_t pud_pgprot;
1047
1048         end = start + (cpa->numpages << PAGE_SHIFT);
1049
1050         /*
1051          * Not on a Gb page boundary? => map everything up to it with
1052          * smaller pages.
1053          */
1054         if (start & (PUD_SIZE - 1)) {
1055                 unsigned long pre_end;
1056                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1057
1058                 pre_end   = min_t(unsigned long, end, next_page);
1059                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1060                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1061
1062                 pud = pud_offset(p4d, start);
1063
1064                 /*
1065                  * Need a PMD page?
1066                  */
1067                 if (pud_none(*pud))
1068                         if (alloc_pmd_page(pud))
1069                                 return -1;
1070
1071                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1072                                          pud, pgprot);
1073                 if (cur_pages < 0)
1074                         return cur_pages;
1075
1076                 start = pre_end;
1077         }
1078
1079         /* We mapped them all? */
1080         if (cpa->numpages == cur_pages)
1081                 return cur_pages;
1082
1083         pud = pud_offset(p4d, start);
1084         pud_pgprot = pgprot_4k_2_large(pgprot);
1085
1086         /*
1087          * Map everything starting from the Gb boundary, possibly with 1G pages
1088          */
1089         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1090                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1091                                    massage_pgprot(pud_pgprot)));
1092
1093                 start     += PUD_SIZE;
1094                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1095                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1096                 pud++;
1097         }
1098
1099         /* Map trailing leftover */
1100         if (start < end) {
1101                 long tmp;
1102
1103                 pud = pud_offset(p4d, start);
1104                 if (pud_none(*pud))
1105                         if (alloc_pmd_page(pud))
1106                                 return -1;
1107
1108                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1109                                    pud, pgprot);
1110                 if (tmp < 0)
1111                         return cur_pages;
1112
1113                 cur_pages += tmp;
1114         }
1115         return cur_pages;
1116 }
1117
1118 /*
1119  * Restrictions for kernel page table do not necessarily apply when mapping in
1120  * an alternate PGD.
1121  */
1122 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1123 {
1124         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1125         pud_t *pud = NULL;      /* shut up gcc */
1126         p4d_t *p4d;
1127         pgd_t *pgd_entry;
1128         long ret;
1129
1130         pgd_entry = cpa->pgd + pgd_index(addr);
1131
1132         if (pgd_none(*pgd_entry)) {
1133                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1134                 if (!p4d)
1135                         return -1;
1136
1137                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1138         }
1139
1140         /*
1141          * Allocate a PUD page and hand it down for mapping.
1142          */
1143         p4d = p4d_offset(pgd_entry, addr);
1144         if (p4d_none(*p4d)) {
1145                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1146                 if (!pud)
1147                         return -1;
1148
1149                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1150         }
1151
1152         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1153         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1154
1155         ret = populate_pud(cpa, addr, p4d, pgprot);
1156         if (ret < 0) {
1157                 /*
1158                  * Leave the PUD page in place in case some other CPU or thread
1159                  * already found it, but remove any useless entries we just
1160                  * added to it.
1161                  */
1162                 unmap_pud_range(p4d, addr,
1163                                 addr + (cpa->numpages << PAGE_SHIFT));
1164                 return ret;
1165         }
1166
1167         cpa->numpages = ret;
1168         return 0;
1169 }
1170
1171 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1172                                int primary)
1173 {
1174         if (cpa->pgd) {
1175                 /*
1176                  * Right now, we only execute this code path when mapping
1177                  * the EFI virtual memory map regions, no other users
1178                  * provide a ->pgd value. This may change in the future.
1179                  */
1180                 return populate_pgd(cpa, vaddr);
1181         }
1182
1183         /*
1184          * Ignore all non primary paths.
1185          */
1186         if (!primary) {
1187                 cpa->numpages = 1;
1188                 return 0;
1189         }
1190
1191         /*
1192          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1193          * to have holes.
1194          * Also set numpages to '1' indicating that we processed cpa req for
1195          * one virtual address page and its pfn. TBD: numpages can be set based
1196          * on the initial value and the level returned by lookup_address().
1197          */
1198         if (within(vaddr, PAGE_OFFSET,
1199                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1200                 cpa->numpages = 1;
1201                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1202                 return 0;
1203
1204         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1205                 /* Faults in the highmap are OK, so do not warn: */
1206                 return -EFAULT;
1207         } else {
1208                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1209                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1210                         *cpa->vaddr);
1211
1212                 return -EFAULT;
1213         }
1214 }
1215
1216 static int __change_page_attr(struct cpa_data *cpa, int primary)
1217 {
1218         unsigned long address;
1219         int do_split, err;
1220         unsigned int level;
1221         pte_t *kpte, old_pte;
1222
1223         if (cpa->flags & CPA_PAGES_ARRAY) {
1224                 struct page *page = cpa->pages[cpa->curpage];
1225                 if (unlikely(PageHighMem(page)))
1226                         return 0;
1227                 address = (unsigned long)page_address(page);
1228         } else if (cpa->flags & CPA_ARRAY)
1229                 address = cpa->vaddr[cpa->curpage];
1230         else
1231                 address = *cpa->vaddr;
1232 repeat:
1233         kpte = _lookup_address_cpa(cpa, address, &level);
1234         if (!kpte)
1235                 return __cpa_process_fault(cpa, address, primary);
1236
1237         old_pte = *kpte;
1238         if (pte_none(old_pte))
1239                 return __cpa_process_fault(cpa, address, primary);
1240
1241         if (level == PG_LEVEL_4K) {
1242                 pte_t new_pte;
1243                 pgprot_t new_prot = pte_pgprot(old_pte);
1244                 unsigned long pfn = pte_pfn(old_pte);
1245
1246                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1247                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1248
1249                 new_prot = static_protections(new_prot, address, pfn);
1250
1251                 new_prot = pgprot_clear_protnone_bits(new_prot);
1252
1253                 /*
1254                  * We need to keep the pfn from the existing PTE,
1255                  * after all we're only going to change it's attributes
1256                  * not the memory it points to
1257                  */
1258                 new_pte = pfn_pte(pfn, new_prot);
1259                 cpa->pfn = pfn;
1260                 /*
1261                  * Do we really change anything ?
1262                  */
1263                 if (pte_val(old_pte) != pte_val(new_pte)) {
1264                         set_pte_atomic(kpte, new_pte);
1265                         cpa->flags |= CPA_FLUSHTLB;
1266                 }
1267                 cpa->numpages = 1;
1268                 return 0;
1269         }
1270
1271         /*
1272          * Check, whether we can keep the large page intact
1273          * and just change the pte:
1274          */
1275         do_split = try_preserve_large_page(kpte, address, cpa);
1276         /*
1277          * When the range fits into the existing large page,
1278          * return. cp->numpages and cpa->tlbflush have been updated in
1279          * try_large_page:
1280          */
1281         if (do_split <= 0)
1282                 return do_split;
1283
1284         /*
1285          * We have to split the large page:
1286          */
1287         err = split_large_page(cpa, kpte, address);
1288         if (!err) {
1289                 /*
1290                  * Do a global flush tlb after splitting the large page
1291                  * and before we do the actual change page attribute in the PTE.
1292                  *
1293                  * With out this, we violate the TLB application note, that says
1294                  * "The TLBs may contain both ordinary and large-page
1295                  *  translations for a 4-KByte range of linear addresses. This
1296                  *  may occur if software modifies the paging structures so that
1297                  *  the page size used for the address range changes. If the two
1298                  *  translations differ with respect to page frame or attributes
1299                  *  (e.g., permissions), processor behavior is undefined and may
1300                  *  be implementation-specific."
1301                  *
1302                  * We do this global tlb flush inside the cpa_lock, so that we
1303                  * don't allow any other cpu, with stale tlb entries change the
1304                  * page attribute in parallel, that also falls into the
1305                  * just split large page entry.
1306                  */
1307                 flush_tlb_all();
1308                 goto repeat;
1309         }
1310
1311         return err;
1312 }
1313
1314 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1315
1316 static int cpa_process_alias(struct cpa_data *cpa)
1317 {
1318         struct cpa_data alias_cpa;
1319         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1320         unsigned long vaddr;
1321         int ret;
1322
1323         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1324                 return 0;
1325
1326         /*
1327          * No need to redo, when the primary call touched the direct
1328          * mapping already:
1329          */
1330         if (cpa->flags & CPA_PAGES_ARRAY) {
1331                 struct page *page = cpa->pages[cpa->curpage];
1332                 if (unlikely(PageHighMem(page)))
1333                         return 0;
1334                 vaddr = (unsigned long)page_address(page);
1335         } else if (cpa->flags & CPA_ARRAY)
1336                 vaddr = cpa->vaddr[cpa->curpage];
1337         else
1338                 vaddr = *cpa->vaddr;
1339
1340         if (!(within(vaddr, PAGE_OFFSET,
1341                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1342
1343                 alias_cpa = *cpa;
1344                 alias_cpa.vaddr = &laddr;
1345                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1346
1347                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1348                 if (ret)
1349                         return ret;
1350         }
1351
1352 #ifdef CONFIG_X86_64
1353         /*
1354          * If the primary call didn't touch the high mapping already
1355          * and the physical address is inside the kernel map, we need
1356          * to touch the high mapped kernel as well:
1357          */
1358         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1359             __cpa_pfn_in_highmap(cpa->pfn)) {
1360                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1361                                                __START_KERNEL_map - phys_base;
1362                 alias_cpa = *cpa;
1363                 alias_cpa.vaddr = &temp_cpa_vaddr;
1364                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1365
1366                 /*
1367                  * The high mapping range is imprecise, so ignore the
1368                  * return value.
1369                  */
1370                 __change_page_attr_set_clr(&alias_cpa, 0);
1371         }
1372 #endif
1373
1374         return 0;
1375 }
1376
1377 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1378 {
1379         unsigned long numpages = cpa->numpages;
1380         int ret;
1381
1382         while (numpages) {
1383                 /*
1384                  * Store the remaining nr of pages for the large page
1385                  * preservation check.
1386                  */
1387                 cpa->numpages = numpages;
1388                 /* for array changes, we can't use large page */
1389                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1390                         cpa->numpages = 1;
1391
1392                 if (!debug_pagealloc_enabled())
1393                         spin_lock(&cpa_lock);
1394                 ret = __change_page_attr(cpa, checkalias);
1395                 if (!debug_pagealloc_enabled())
1396                         spin_unlock(&cpa_lock);
1397                 if (ret)
1398                         return ret;
1399
1400                 if (checkalias) {
1401                         ret = cpa_process_alias(cpa);
1402                         if (ret)
1403                                 return ret;
1404                 }
1405
1406                 /*
1407                  * Adjust the number of pages with the result of the
1408                  * CPA operation. Either a large page has been
1409                  * preserved or a single page update happened.
1410                  */
1411                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1412                 numpages -= cpa->numpages;
1413                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1414                         cpa->curpage++;
1415                 else
1416                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1417
1418         }
1419         return 0;
1420 }
1421
1422 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1423                                     pgprot_t mask_set, pgprot_t mask_clr,
1424                                     int force_split, int in_flag,
1425                                     struct page **pages)
1426 {
1427         struct cpa_data cpa;
1428         int ret, cache, checkalias;
1429         unsigned long baddr = 0;
1430
1431         memset(&cpa, 0, sizeof(cpa));
1432
1433         /*
1434          * Check, if we are requested to set a not supported
1435          * feature.  Clearing non-supported features is OK.
1436          */
1437         mask_set = canon_pgprot(mask_set);
1438
1439         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1440                 return 0;
1441
1442         /* Ensure we are PAGE_SIZE aligned */
1443         if (in_flag & CPA_ARRAY) {
1444                 int i;
1445                 for (i = 0; i < numpages; i++) {
1446                         if (addr[i] & ~PAGE_MASK) {
1447                                 addr[i] &= PAGE_MASK;
1448                                 WARN_ON_ONCE(1);
1449                         }
1450                 }
1451         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1452                 /*
1453                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1454                  * No need to cehck in that case
1455                  */
1456                 if (*addr & ~PAGE_MASK) {
1457                         *addr &= PAGE_MASK;
1458                         /*
1459                          * People should not be passing in unaligned addresses:
1460                          */
1461                         WARN_ON_ONCE(1);
1462                 }
1463                 /*
1464                  * Save address for cache flush. *addr is modified in the call
1465                  * to __change_page_attr_set_clr() below.
1466                  */
1467                 baddr = *addr;
1468         }
1469
1470         /* Must avoid aliasing mappings in the highmem code */
1471         kmap_flush_unused();
1472
1473         vm_unmap_aliases();
1474
1475         cpa.vaddr = addr;
1476         cpa.pages = pages;
1477         cpa.numpages = numpages;
1478         cpa.mask_set = mask_set;
1479         cpa.mask_clr = mask_clr;
1480         cpa.flags = 0;
1481         cpa.curpage = 0;
1482         cpa.force_split = force_split;
1483
1484         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1485                 cpa.flags |= in_flag;
1486
1487         /* No alias checking for _NX bit modifications */
1488         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1489
1490         ret = __change_page_attr_set_clr(&cpa, checkalias);
1491
1492         /*
1493          * Check whether we really changed something:
1494          */
1495         if (!(cpa.flags & CPA_FLUSHTLB))
1496                 goto out;
1497
1498         /*
1499          * No need to flush, when we did not set any of the caching
1500          * attributes:
1501          */
1502         cache = !!pgprot2cachemode(mask_set);
1503
1504         /*
1505          * On success we use CLFLUSH, when the CPU supports it to
1506          * avoid the WBINVD. If the CPU does not support it and in the
1507          * error case we fall back to cpa_flush_all (which uses
1508          * WBINVD):
1509          */
1510         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1511                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1512                         cpa_flush_array(addr, numpages, cache,
1513                                         cpa.flags, pages);
1514                 } else
1515                         cpa_flush_range(baddr, numpages, cache);
1516         } else
1517                 cpa_flush_all(cache);
1518
1519 out:
1520         return ret;
1521 }
1522
1523 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1524                                        pgprot_t mask, int array)
1525 {
1526         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1527                 (array ? CPA_ARRAY : 0), NULL);
1528 }
1529
1530 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1531                                          pgprot_t mask, int array)
1532 {
1533         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1534                 (array ? CPA_ARRAY : 0), NULL);
1535 }
1536
1537 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1538                                        pgprot_t mask)
1539 {
1540         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1541                 CPA_PAGES_ARRAY, pages);
1542 }
1543
1544 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1545                                          pgprot_t mask)
1546 {
1547         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1548                 CPA_PAGES_ARRAY, pages);
1549 }
1550
1551 int _set_memory_uc(unsigned long addr, int numpages)
1552 {
1553         /*
1554          * for now UC MINUS. see comments in ioremap_nocache()
1555          * If you really need strong UC use ioremap_uc(), but note
1556          * that you cannot override IO areas with set_memory_*() as
1557          * these helpers cannot work with IO memory.
1558          */
1559         return change_page_attr_set(&addr, numpages,
1560                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1561                                     0);
1562 }
1563
1564 int set_memory_uc(unsigned long addr, int numpages)
1565 {
1566         int ret;
1567
1568         /*
1569          * for now UC MINUS. see comments in ioremap_nocache()
1570          */
1571         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1572                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1573         if (ret)
1574                 goto out_err;
1575
1576         ret = _set_memory_uc(addr, numpages);
1577         if (ret)
1578                 goto out_free;
1579
1580         return 0;
1581
1582 out_free:
1583         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1584 out_err:
1585         return ret;
1586 }
1587 EXPORT_SYMBOL(set_memory_uc);
1588
1589 static int _set_memory_array(unsigned long *addr, int addrinarray,
1590                 enum page_cache_mode new_type)
1591 {
1592         enum page_cache_mode set_type;
1593         int i, j;
1594         int ret;
1595
1596         for (i = 0; i < addrinarray; i++) {
1597                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1598                                         new_type, NULL);
1599                 if (ret)
1600                         goto out_free;
1601         }
1602
1603         /* If WC, set to UC- first and then WC */
1604         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1605                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1606
1607         ret = change_page_attr_set(addr, addrinarray,
1608                                    cachemode2pgprot(set_type), 1);
1609
1610         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1611                 ret = change_page_attr_set_clr(addr, addrinarray,
1612                                                cachemode2pgprot(
1613                                                 _PAGE_CACHE_MODE_WC),
1614                                                __pgprot(_PAGE_CACHE_MASK),
1615                                                0, CPA_ARRAY, NULL);
1616         if (ret)
1617                 goto out_free;
1618
1619         return 0;
1620
1621 out_free:
1622         for (j = 0; j < i; j++)
1623                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1624
1625         return ret;
1626 }
1627
1628 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1629 {
1630         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1631 }
1632 EXPORT_SYMBOL(set_memory_array_uc);
1633
1634 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1635 {
1636         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1637 }
1638 EXPORT_SYMBOL(set_memory_array_wc);
1639
1640 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1641 {
1642         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1643 }
1644 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1645
1646 int _set_memory_wc(unsigned long addr, int numpages)
1647 {
1648         int ret;
1649         unsigned long addr_copy = addr;
1650
1651         ret = change_page_attr_set(&addr, numpages,
1652                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1653                                    0);
1654         if (!ret) {
1655                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1656                                                cachemode2pgprot(
1657                                                 _PAGE_CACHE_MODE_WC),
1658                                                __pgprot(_PAGE_CACHE_MASK),
1659                                                0, 0, NULL);
1660         }
1661         return ret;
1662 }
1663
1664 int set_memory_wc(unsigned long addr, int numpages)
1665 {
1666         int ret;
1667
1668         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1669                 _PAGE_CACHE_MODE_WC, NULL);
1670         if (ret)
1671                 return ret;
1672
1673         ret = _set_memory_wc(addr, numpages);
1674         if (ret)
1675                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1676
1677         return ret;
1678 }
1679 EXPORT_SYMBOL(set_memory_wc);
1680
1681 int _set_memory_wt(unsigned long addr, int numpages)
1682 {
1683         return change_page_attr_set(&addr, numpages,
1684                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1685 }
1686
1687 int set_memory_wt(unsigned long addr, int numpages)
1688 {
1689         int ret;
1690
1691         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1692                               _PAGE_CACHE_MODE_WT, NULL);
1693         if (ret)
1694                 return ret;
1695
1696         ret = _set_memory_wt(addr, numpages);
1697         if (ret)
1698                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1699
1700         return ret;
1701 }
1702 EXPORT_SYMBOL_GPL(set_memory_wt);
1703
1704 int _set_memory_wb(unsigned long addr, int numpages)
1705 {
1706         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1707         return change_page_attr_clear(&addr, numpages,
1708                                       __pgprot(_PAGE_CACHE_MASK), 0);
1709 }
1710
1711 int set_memory_wb(unsigned long addr, int numpages)
1712 {
1713         int ret;
1714
1715         ret = _set_memory_wb(addr, numpages);
1716         if (ret)
1717                 return ret;
1718
1719         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1720         return 0;
1721 }
1722 EXPORT_SYMBOL(set_memory_wb);
1723
1724 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1725 {
1726         int i;
1727         int ret;
1728
1729         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1730         ret = change_page_attr_clear(addr, addrinarray,
1731                                       __pgprot(_PAGE_CACHE_MASK), 1);
1732         if (ret)
1733                 return ret;
1734
1735         for (i = 0; i < addrinarray; i++)
1736                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1737
1738         return 0;
1739 }
1740 EXPORT_SYMBOL(set_memory_array_wb);
1741
1742 int set_memory_x(unsigned long addr, int numpages)
1743 {
1744         if (!(__supported_pte_mask & _PAGE_NX))
1745                 return 0;
1746
1747         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1748 }
1749 EXPORT_SYMBOL(set_memory_x);
1750
1751 int set_memory_nx(unsigned long addr, int numpages)
1752 {
1753         if (!(__supported_pte_mask & _PAGE_NX))
1754                 return 0;
1755
1756         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1757 }
1758 EXPORT_SYMBOL(set_memory_nx);
1759
1760 int set_memory_ro(unsigned long addr, int numpages)
1761 {
1762         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1763 }
1764
1765 int set_memory_rw(unsigned long addr, int numpages)
1766 {
1767         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1768 }
1769
1770 int set_memory_np(unsigned long addr, int numpages)
1771 {
1772         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1773 }
1774
1775 int set_memory_4k(unsigned long addr, int numpages)
1776 {
1777         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1778                                         __pgprot(0), 1, 0, NULL);
1779 }
1780
1781 int set_memory_nonglobal(unsigned long addr, int numpages)
1782 {
1783         return change_page_attr_clear(&addr, numpages,
1784                                       __pgprot(_PAGE_GLOBAL), 0);
1785 }
1786
1787 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1788 {
1789         struct cpa_data cpa;
1790         unsigned long start;
1791         int ret;
1792
1793         /* Nothing to do if memory encryption is not active */
1794         if (!mem_encrypt_active())
1795                 return 0;
1796
1797         /* Should not be working on unaligned addresses */
1798         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1799                 addr &= PAGE_MASK;
1800
1801         start = addr;
1802
1803         memset(&cpa, 0, sizeof(cpa));
1804         cpa.vaddr = &addr;
1805         cpa.numpages = numpages;
1806         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1807         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1808         cpa.pgd = init_mm.pgd;
1809
1810         /* Must avoid aliasing mappings in the highmem code */
1811         kmap_flush_unused();
1812         vm_unmap_aliases();
1813
1814         /*
1815          * Before changing the encryption attribute, we need to flush caches.
1816          */
1817         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1818                 cpa_flush_range(start, numpages, 1);
1819         else
1820                 cpa_flush_all(1);
1821
1822         ret = __change_page_attr_set_clr(&cpa, 1);
1823
1824         /*
1825          * After changing the encryption attribute, we need to flush TLBs
1826          * again in case any speculative TLB caching occurred (but no need
1827          * to flush caches again).  We could just use cpa_flush_all(), but
1828          * in case TLB flushing gets optimized in the cpa_flush_range()
1829          * path use the same logic as above.
1830          */
1831         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1832                 cpa_flush_range(start, numpages, 0);
1833         else
1834                 cpa_flush_all(0);
1835
1836         return ret;
1837 }
1838
1839 int set_memory_encrypted(unsigned long addr, int numpages)
1840 {
1841         return __set_memory_enc_dec(addr, numpages, true);
1842 }
1843 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1844
1845 int set_memory_decrypted(unsigned long addr, int numpages)
1846 {
1847         return __set_memory_enc_dec(addr, numpages, false);
1848 }
1849 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1850
1851 int set_pages_uc(struct page *page, int numpages)
1852 {
1853         unsigned long addr = (unsigned long)page_address(page);
1854
1855         return set_memory_uc(addr, numpages);
1856 }
1857 EXPORT_SYMBOL(set_pages_uc);
1858
1859 static int _set_pages_array(struct page **pages, int addrinarray,
1860                 enum page_cache_mode new_type)
1861 {
1862         unsigned long start;
1863         unsigned long end;
1864         enum page_cache_mode set_type;
1865         int i;
1866         int free_idx;
1867         int ret;
1868
1869         for (i = 0; i < addrinarray; i++) {
1870                 if (PageHighMem(pages[i]))
1871                         continue;
1872                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1873                 end = start + PAGE_SIZE;
1874                 if (reserve_memtype(start, end, new_type, NULL))
1875                         goto err_out;
1876         }
1877
1878         /* If WC, set to UC- first and then WC */
1879         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1880                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1881
1882         ret = cpa_set_pages_array(pages, addrinarray,
1883                                   cachemode2pgprot(set_type));
1884         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1885                 ret = change_page_attr_set_clr(NULL, addrinarray,
1886                                                cachemode2pgprot(
1887                                                 _PAGE_CACHE_MODE_WC),
1888                                                __pgprot(_PAGE_CACHE_MASK),
1889                                                0, CPA_PAGES_ARRAY, pages);
1890         if (ret)
1891                 goto err_out;
1892         return 0; /* Success */
1893 err_out:
1894         free_idx = i;
1895         for (i = 0; i < free_idx; i++) {
1896                 if (PageHighMem(pages[i]))
1897                         continue;
1898                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1899                 end = start + PAGE_SIZE;
1900                 free_memtype(start, end);
1901         }
1902         return -EINVAL;
1903 }
1904
1905 int set_pages_array_uc(struct page **pages, int addrinarray)
1906 {
1907         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1908 }
1909 EXPORT_SYMBOL(set_pages_array_uc);
1910
1911 int set_pages_array_wc(struct page **pages, int addrinarray)
1912 {
1913         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1914 }
1915 EXPORT_SYMBOL(set_pages_array_wc);
1916
1917 int set_pages_array_wt(struct page **pages, int addrinarray)
1918 {
1919         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1920 }
1921 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1922
1923 int set_pages_wb(struct page *page, int numpages)
1924 {
1925         unsigned long addr = (unsigned long)page_address(page);
1926
1927         return set_memory_wb(addr, numpages);
1928 }
1929 EXPORT_SYMBOL(set_pages_wb);
1930
1931 int set_pages_array_wb(struct page **pages, int addrinarray)
1932 {
1933         int retval;
1934         unsigned long start;
1935         unsigned long end;
1936         int i;
1937
1938         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1939         retval = cpa_clear_pages_array(pages, addrinarray,
1940                         __pgprot(_PAGE_CACHE_MASK));
1941         if (retval)
1942                 return retval;
1943
1944         for (i = 0; i < addrinarray; i++) {
1945                 if (PageHighMem(pages[i]))
1946                         continue;
1947                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1948                 end = start + PAGE_SIZE;
1949                 free_memtype(start, end);
1950         }
1951
1952         return 0;
1953 }
1954 EXPORT_SYMBOL(set_pages_array_wb);
1955
1956 int set_pages_x(struct page *page, int numpages)
1957 {
1958         unsigned long addr = (unsigned long)page_address(page);
1959
1960         return set_memory_x(addr, numpages);
1961 }
1962 EXPORT_SYMBOL(set_pages_x);
1963
1964 int set_pages_nx(struct page *page, int numpages)
1965 {
1966         unsigned long addr = (unsigned long)page_address(page);
1967
1968         return set_memory_nx(addr, numpages);
1969 }
1970 EXPORT_SYMBOL(set_pages_nx);
1971
1972 int set_pages_ro(struct page *page, int numpages)
1973 {
1974         unsigned long addr = (unsigned long)page_address(page);
1975
1976         return set_memory_ro(addr, numpages);
1977 }
1978
1979 int set_pages_rw(struct page *page, int numpages)
1980 {
1981         unsigned long addr = (unsigned long)page_address(page);
1982
1983         return set_memory_rw(addr, numpages);
1984 }
1985
1986 #ifdef CONFIG_DEBUG_PAGEALLOC
1987
1988 static int __set_pages_p(struct page *page, int numpages)
1989 {
1990         unsigned long tempaddr = (unsigned long) page_address(page);
1991         struct cpa_data cpa = { .vaddr = &tempaddr,
1992                                 .pgd = NULL,
1993                                 .numpages = numpages,
1994                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1995                                 .mask_clr = __pgprot(0),
1996                                 .flags = 0};
1997
1998         /*
1999          * No alias checking needed for setting present flag. otherwise,
2000          * we may need to break large pages for 64-bit kernel text
2001          * mappings (this adds to complexity if we want to do this from
2002          * atomic context especially). Let's keep it simple!
2003          */
2004         return __change_page_attr_set_clr(&cpa, 0);
2005 }
2006
2007 static int __set_pages_np(struct page *page, int numpages)
2008 {
2009         unsigned long tempaddr = (unsigned long) page_address(page);
2010         struct cpa_data cpa = { .vaddr = &tempaddr,
2011                                 .pgd = NULL,
2012                                 .numpages = numpages,
2013                                 .mask_set = __pgprot(0),
2014                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2015                                 .flags = 0};
2016
2017         /*
2018          * No alias checking needed for setting not present flag. otherwise,
2019          * we may need to break large pages for 64-bit kernel text
2020          * mappings (this adds to complexity if we want to do this from
2021          * atomic context especially). Let's keep it simple!
2022          */
2023         return __change_page_attr_set_clr(&cpa, 0);
2024 }
2025
2026 void __kernel_map_pages(struct page *page, int numpages, int enable)
2027 {
2028         if (PageHighMem(page))
2029                 return;
2030         if (!enable) {
2031                 debug_check_no_locks_freed(page_address(page),
2032                                            numpages * PAGE_SIZE);
2033         }
2034
2035         /*
2036          * The return value is ignored as the calls cannot fail.
2037          * Large pages for identity mappings are not used at boot time
2038          * and hence no memory allocations during large page split.
2039          */
2040         if (enable)
2041                 __set_pages_p(page, numpages);
2042         else
2043                 __set_pages_np(page, numpages);
2044
2045         /*
2046          * We should perform an IPI and flush all tlbs,
2047          * but that can deadlock->flush only current cpu:
2048          */
2049         __flush_tlb_all();
2050
2051         arch_flush_lazy_mmu_mode();
2052 }
2053
2054 #ifdef CONFIG_HIBERNATION
2055
2056 bool kernel_page_present(struct page *page)
2057 {
2058         unsigned int level;
2059         pte_t *pte;
2060
2061         if (PageHighMem(page))
2062                 return false;
2063
2064         pte = lookup_address((unsigned long)page_address(page), &level);
2065         return (pte_val(*pte) & _PAGE_PRESENT);
2066 }
2067
2068 #endif /* CONFIG_HIBERNATION */
2069
2070 #endif /* CONFIG_DEBUG_PAGEALLOC */
2071
2072 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2073                             unsigned numpages, unsigned long page_flags)
2074 {
2075         int retval = -EINVAL;
2076
2077         struct cpa_data cpa = {
2078                 .vaddr = &address,
2079                 .pfn = pfn,
2080                 .pgd = pgd,
2081                 .numpages = numpages,
2082                 .mask_set = __pgprot(0),
2083                 .mask_clr = __pgprot(0),
2084                 .flags = 0,
2085         };
2086
2087         if (!(__supported_pte_mask & _PAGE_NX))
2088                 goto out;
2089
2090         if (!(page_flags & _PAGE_NX))
2091                 cpa.mask_clr = __pgprot(_PAGE_NX);
2092
2093         if (!(page_flags & _PAGE_RW))
2094                 cpa.mask_clr = __pgprot(_PAGE_RW);
2095
2096         if (!(page_flags & _PAGE_ENC))
2097                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2098
2099         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2100
2101         retval = __change_page_attr_set_clr(&cpa, 0);
2102         __flush_tlb_all();
2103
2104 out:
2105         return retval;
2106 }
2107
2108 /*
2109  * The testcases use internal knowledge of the implementation that shouldn't
2110  * be exposed to the rest of the kernel. Include these directly here.
2111  */
2112 #ifdef CONFIG_CPA_DEBUG
2113 #include "pageattr-test.c"
2114 #endif