Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux
[linux-2.6-microblaze.git] / arch / x86 / mm / numa.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/init.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
19
20 #include "numa_internal.h"
21
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
24
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
27
28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
30
31 static int numa_distance_cnt;
32 static u8 *numa_distance;
33
34 static __init int numa_setup(char *opt)
35 {
36         if (!opt)
37                 return -EINVAL;
38         if (!strncmp(opt, "off", 3))
39                 numa_off = 1;
40         if (!strncmp(opt, "fake=", 5))
41                 return numa_emu_cmdline(opt + 5);
42         if (!strncmp(opt, "noacpi", 6))
43                 disable_srat();
44         if (!strncmp(opt, "nohmat", 6))
45                 disable_hmat();
46         return 0;
47 }
48 early_param("numa", numa_setup);
49
50 /*
51  * apicid, cpu, node mappings
52  */
53 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
54         [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
55 };
56
57 int numa_cpu_node(int cpu)
58 {
59         int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
60
61         if (apicid != BAD_APICID)
62                 return __apicid_to_node[apicid];
63         return NUMA_NO_NODE;
64 }
65
66 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
67 EXPORT_SYMBOL(node_to_cpumask_map);
68
69 /*
70  * Map cpu index to node index
71  */
72 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
73 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
74
75 void numa_set_node(int cpu, int node)
76 {
77         int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
78
79         /* early setting, no percpu area yet */
80         if (cpu_to_node_map) {
81                 cpu_to_node_map[cpu] = node;
82                 return;
83         }
84
85 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
86         if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
87                 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
88                 dump_stack();
89                 return;
90         }
91 #endif
92         per_cpu(x86_cpu_to_node_map, cpu) = node;
93
94         set_cpu_numa_node(cpu, node);
95 }
96
97 void numa_clear_node(int cpu)
98 {
99         numa_set_node(cpu, NUMA_NO_NODE);
100 }
101
102 /*
103  * Allocate node_to_cpumask_map based on number of available nodes
104  * Requires node_possible_map to be valid.
105  *
106  * Note: cpumask_of_node() is not valid until after this is done.
107  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
108  */
109 void __init setup_node_to_cpumask_map(void)
110 {
111         unsigned int node;
112
113         /* setup nr_node_ids if not done yet */
114         if (nr_node_ids == MAX_NUMNODES)
115                 setup_nr_node_ids();
116
117         /* allocate the map */
118         for (node = 0; node < nr_node_ids; node++)
119                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
120
121         /* cpumask_of_node() will now work */
122         pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
123 }
124
125 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
126                                      struct numa_meminfo *mi)
127 {
128         /* ignore zero length blks */
129         if (start == end)
130                 return 0;
131
132         /* whine about and ignore invalid blks */
133         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
134                 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
135                         nid, start, end - 1);
136                 return 0;
137         }
138
139         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
140                 pr_err("too many memblk ranges\n");
141                 return -EINVAL;
142         }
143
144         mi->blk[mi->nr_blks].start = start;
145         mi->blk[mi->nr_blks].end = end;
146         mi->blk[mi->nr_blks].nid = nid;
147         mi->nr_blks++;
148         return 0;
149 }
150
151 /**
152  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
153  * @idx: Index of memblk to remove
154  * @mi: numa_meminfo to remove memblk from
155  *
156  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
157  * decrementing @mi->nr_blks.
158  */
159 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
160 {
161         mi->nr_blks--;
162         memmove(&mi->blk[idx], &mi->blk[idx + 1],
163                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
164 }
165
166 /**
167  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
168  * @dst: numa_meminfo to append block to
169  * @idx: Index of memblk to remove
170  * @src: numa_meminfo to remove memblk from
171  */
172 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
173                                          struct numa_meminfo *src)
174 {
175         dst->blk[dst->nr_blks++] = src->blk[idx];
176         numa_remove_memblk_from(idx, src);
177 }
178
179 /**
180  * numa_add_memblk - Add one numa_memblk to numa_meminfo
181  * @nid: NUMA node ID of the new memblk
182  * @start: Start address of the new memblk
183  * @end: End address of the new memblk
184  *
185  * Add a new memblk to the default numa_meminfo.
186  *
187  * RETURNS:
188  * 0 on success, -errno on failure.
189  */
190 int __init numa_add_memblk(int nid, u64 start, u64 end)
191 {
192         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
193 }
194
195 /* Allocate NODE_DATA for a node on the local memory */
196 static void __init alloc_node_data(int nid)
197 {
198         const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
199         u64 nd_pa;
200         void *nd;
201         int tnid;
202
203         /*
204          * Allocate node data.  Try node-local memory and then any node.
205          * Never allocate in DMA zone.
206          */
207         nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
208         if (!nd_pa) {
209                 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
210                        nd_size, nid);
211                 return;
212         }
213         nd = __va(nd_pa);
214
215         /* report and initialize */
216         printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
217                nd_pa, nd_pa + nd_size - 1);
218         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
219         if (tnid != nid)
220                 printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
221
222         node_data[nid] = nd;
223         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
224
225         node_set_online(nid);
226 }
227
228 /**
229  * numa_cleanup_meminfo - Cleanup a numa_meminfo
230  * @mi: numa_meminfo to clean up
231  *
232  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
233  * conflicts and clear unused memblks.
234  *
235  * RETURNS:
236  * 0 on success, -errno on failure.
237  */
238 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
239 {
240         const u64 low = 0;
241         const u64 high = PFN_PHYS(max_pfn);
242         int i, j, k;
243
244         /* first, trim all entries */
245         for (i = 0; i < mi->nr_blks; i++) {
246                 struct numa_memblk *bi = &mi->blk[i];
247
248                 /* move / save reserved memory ranges */
249                 if (!memblock_overlaps_region(&memblock.memory,
250                                         bi->start, bi->end - bi->start)) {
251                         numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
252                         continue;
253                 }
254
255                 /* make sure all non-reserved blocks are inside the limits */
256                 bi->start = max(bi->start, low);
257                 bi->end = min(bi->end, high);
258
259                 /* and there's no empty block */
260                 if (bi->start >= bi->end)
261                         numa_remove_memblk_from(i--, mi);
262         }
263
264         /* merge neighboring / overlapping entries */
265         for (i = 0; i < mi->nr_blks; i++) {
266                 struct numa_memblk *bi = &mi->blk[i];
267
268                 for (j = i + 1; j < mi->nr_blks; j++) {
269                         struct numa_memblk *bj = &mi->blk[j];
270                         u64 start, end;
271
272                         /*
273                          * See whether there are overlapping blocks.  Whine
274                          * about but allow overlaps of the same nid.  They
275                          * will be merged below.
276                          */
277                         if (bi->end > bj->start && bi->start < bj->end) {
278                                 if (bi->nid != bj->nid) {
279                                         pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
280                                                bi->nid, bi->start, bi->end - 1,
281                                                bj->nid, bj->start, bj->end - 1);
282                                         return -EINVAL;
283                                 }
284                                 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
285                                         bi->nid, bi->start, bi->end - 1,
286                                         bj->start, bj->end - 1);
287                         }
288
289                         /*
290                          * Join together blocks on the same node, holes
291                          * between which don't overlap with memory on other
292                          * nodes.
293                          */
294                         if (bi->nid != bj->nid)
295                                 continue;
296                         start = min(bi->start, bj->start);
297                         end = max(bi->end, bj->end);
298                         for (k = 0; k < mi->nr_blks; k++) {
299                                 struct numa_memblk *bk = &mi->blk[k];
300
301                                 if (bi->nid == bk->nid)
302                                         continue;
303                                 if (start < bk->end && end > bk->start)
304                                         break;
305                         }
306                         if (k < mi->nr_blks)
307                                 continue;
308                         printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
309                                bi->nid, bi->start, bi->end - 1, bj->start,
310                                bj->end - 1, start, end - 1);
311                         bi->start = start;
312                         bi->end = end;
313                         numa_remove_memblk_from(j--, mi);
314                 }
315         }
316
317         /* clear unused ones */
318         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
319                 mi->blk[i].start = mi->blk[i].end = 0;
320                 mi->blk[i].nid = NUMA_NO_NODE;
321         }
322
323         return 0;
324 }
325
326 /*
327  * Set nodes, which have memory in @mi, in *@nodemask.
328  */
329 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
330                                               const struct numa_meminfo *mi)
331 {
332         int i;
333
334         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
335                 if (mi->blk[i].start != mi->blk[i].end &&
336                     mi->blk[i].nid != NUMA_NO_NODE)
337                         node_set(mi->blk[i].nid, *nodemask);
338 }
339
340 /**
341  * numa_reset_distance - Reset NUMA distance table
342  *
343  * The current table is freed.  The next numa_set_distance() call will
344  * create a new one.
345  */
346 void __init numa_reset_distance(void)
347 {
348         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
349
350         /* numa_distance could be 1LU marking allocation failure, test cnt */
351         if (numa_distance_cnt)
352                 memblock_free(__pa(numa_distance), size);
353         numa_distance_cnt = 0;
354         numa_distance = NULL;   /* enable table creation */
355 }
356
357 static int __init numa_alloc_distance(void)
358 {
359         nodemask_t nodes_parsed;
360         size_t size;
361         int i, j, cnt = 0;
362         u64 phys;
363
364         /* size the new table and allocate it */
365         nodes_parsed = numa_nodes_parsed;
366         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
367
368         for_each_node_mask(i, nodes_parsed)
369                 cnt = i;
370         cnt++;
371         size = cnt * cnt * sizeof(numa_distance[0]);
372
373         phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
374                                       size, PAGE_SIZE);
375         if (!phys) {
376                 pr_warn("Warning: can't allocate distance table!\n");
377                 /* don't retry until explicitly reset */
378                 numa_distance = (void *)1LU;
379                 return -ENOMEM;
380         }
381         memblock_reserve(phys, size);
382
383         numa_distance = __va(phys);
384         numa_distance_cnt = cnt;
385
386         /* fill with the default distances */
387         for (i = 0; i < cnt; i++)
388                 for (j = 0; j < cnt; j++)
389                         numa_distance[i * cnt + j] = i == j ?
390                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
391         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
392
393         return 0;
394 }
395
396 /**
397  * numa_set_distance - Set NUMA distance from one NUMA to another
398  * @from: the 'from' node to set distance
399  * @to: the 'to'  node to set distance
400  * @distance: NUMA distance
401  *
402  * Set the distance from node @from to @to to @distance.  If distance table
403  * doesn't exist, one which is large enough to accommodate all the currently
404  * known nodes will be created.
405  *
406  * If such table cannot be allocated, a warning is printed and further
407  * calls are ignored until the distance table is reset with
408  * numa_reset_distance().
409  *
410  * If @from or @to is higher than the highest known node or lower than zero
411  * at the time of table creation or @distance doesn't make sense, the call
412  * is ignored.
413  * This is to allow simplification of specific NUMA config implementations.
414  */
415 void __init numa_set_distance(int from, int to, int distance)
416 {
417         if (!numa_distance && numa_alloc_distance() < 0)
418                 return;
419
420         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
421                         from < 0 || to < 0) {
422                 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
423                              from, to, distance);
424                 return;
425         }
426
427         if ((u8)distance != distance ||
428             (from == to && distance != LOCAL_DISTANCE)) {
429                 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
430                              from, to, distance);
431                 return;
432         }
433
434         numa_distance[from * numa_distance_cnt + to] = distance;
435 }
436
437 int __node_distance(int from, int to)
438 {
439         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
440                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
441         return numa_distance[from * numa_distance_cnt + to];
442 }
443 EXPORT_SYMBOL(__node_distance);
444
445 /*
446  * Sanity check to catch more bad NUMA configurations (they are amazingly
447  * common).  Make sure the nodes cover all memory.
448  */
449 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
450 {
451         u64 numaram, e820ram;
452         int i;
453
454         numaram = 0;
455         for (i = 0; i < mi->nr_blks; i++) {
456                 u64 s = mi->blk[i].start >> PAGE_SHIFT;
457                 u64 e = mi->blk[i].end >> PAGE_SHIFT;
458                 numaram += e - s;
459                 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
460                 if ((s64)numaram < 0)
461                         numaram = 0;
462         }
463
464         e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
465
466         /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
467         if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
468                 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
469                        (numaram << PAGE_SHIFT) >> 20,
470                        (e820ram << PAGE_SHIFT) >> 20);
471                 return false;
472         }
473         return true;
474 }
475
476 /*
477  * Mark all currently memblock-reserved physical memory (which covers the
478  * kernel's own memory ranges) as hot-unswappable.
479  */
480 static void __init numa_clear_kernel_node_hotplug(void)
481 {
482         nodemask_t reserved_nodemask = NODE_MASK_NONE;
483         struct memblock_region *mb_region;
484         int i;
485
486         /*
487          * We have to do some preprocessing of memblock regions, to
488          * make them suitable for reservation.
489          *
490          * At this time, all memory regions reserved by memblock are
491          * used by the kernel, but those regions are not split up
492          * along node boundaries yet, and don't necessarily have their
493          * node ID set yet either.
494          *
495          * So iterate over all memory known to the x86 architecture,
496          * and use those ranges to set the nid in memblock.reserved.
497          * This will split up the memblock regions along node
498          * boundaries and will set the node IDs as well.
499          */
500         for (i = 0; i < numa_meminfo.nr_blks; i++) {
501                 struct numa_memblk *mb = numa_meminfo.blk + i;
502                 int ret;
503
504                 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
505                 WARN_ON_ONCE(ret);
506         }
507
508         /*
509          * Now go over all reserved memblock regions, to construct a
510          * node mask of all kernel reserved memory areas.
511          *
512          * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
513          *   numa_meminfo might not include all memblock.reserved
514          *   memory ranges, because quirks such as trim_snb_memory()
515          *   reserve specific pages for Sandy Bridge graphics. ]
516          */
517         for_each_reserved_mem_region(mb_region) {
518                 int nid = memblock_get_region_node(mb_region);
519
520                 if (nid != MAX_NUMNODES)
521                         node_set(nid, reserved_nodemask);
522         }
523
524         /*
525          * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
526          * belonging to the reserved node mask.
527          *
528          * Note that this will include memory regions that reside
529          * on nodes that contain kernel memory - entire nodes
530          * become hot-unpluggable:
531          */
532         for (i = 0; i < numa_meminfo.nr_blks; i++) {
533                 struct numa_memblk *mb = numa_meminfo.blk + i;
534
535                 if (!node_isset(mb->nid, reserved_nodemask))
536                         continue;
537
538                 memblock_clear_hotplug(mb->start, mb->end - mb->start);
539         }
540 }
541
542 static int __init numa_register_memblks(struct numa_meminfo *mi)
543 {
544         int i, nid;
545
546         /* Account for nodes with cpus and no memory */
547         node_possible_map = numa_nodes_parsed;
548         numa_nodemask_from_meminfo(&node_possible_map, mi);
549         if (WARN_ON(nodes_empty(node_possible_map)))
550                 return -EINVAL;
551
552         for (i = 0; i < mi->nr_blks; i++) {
553                 struct numa_memblk *mb = &mi->blk[i];
554                 memblock_set_node(mb->start, mb->end - mb->start,
555                                   &memblock.memory, mb->nid);
556         }
557
558         /*
559          * At very early time, the kernel have to use some memory such as
560          * loading the kernel image. We cannot prevent this anyway. So any
561          * node the kernel resides in should be un-hotpluggable.
562          *
563          * And when we come here, alloc node data won't fail.
564          */
565         numa_clear_kernel_node_hotplug();
566
567         /*
568          * If sections array is gonna be used for pfn -> nid mapping, check
569          * whether its granularity is fine enough.
570          */
571         if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
572                 unsigned long pfn_align = node_map_pfn_alignment();
573
574                 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
575                         pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
576                                 PFN_PHYS(pfn_align) >> 20,
577                                 PFN_PHYS(PAGES_PER_SECTION) >> 20);
578                         return -EINVAL;
579                 }
580         }
581         if (!numa_meminfo_cover_memory(mi))
582                 return -EINVAL;
583
584         /* Finally register nodes. */
585         for_each_node_mask(nid, node_possible_map) {
586                 u64 start = PFN_PHYS(max_pfn);
587                 u64 end = 0;
588
589                 for (i = 0; i < mi->nr_blks; i++) {
590                         if (nid != mi->blk[i].nid)
591                                 continue;
592                         start = min(mi->blk[i].start, start);
593                         end = max(mi->blk[i].end, end);
594                 }
595
596                 if (start >= end)
597                         continue;
598
599                 /*
600                  * Don't confuse VM with a node that doesn't have the
601                  * minimum amount of memory:
602                  */
603                 if (end && (end - start) < NODE_MIN_SIZE)
604                         continue;
605
606                 alloc_node_data(nid);
607         }
608
609         /* Dump memblock with node info and return. */
610         memblock_dump_all();
611         return 0;
612 }
613
614 /*
615  * There are unfortunately some poorly designed mainboards around that
616  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
617  * mapping. To avoid this fill in the mapping for all possible CPUs,
618  * as the number of CPUs is not known yet. We round robin the existing
619  * nodes.
620  */
621 static void __init numa_init_array(void)
622 {
623         int rr, i;
624
625         rr = first_node(node_online_map);
626         for (i = 0; i < nr_cpu_ids; i++) {
627                 if (early_cpu_to_node(i) != NUMA_NO_NODE)
628                         continue;
629                 numa_set_node(i, rr);
630                 rr = next_node_in(rr, node_online_map);
631         }
632 }
633
634 static int __init numa_init(int (*init_func)(void))
635 {
636         int i;
637         int ret;
638
639         for (i = 0; i < MAX_LOCAL_APIC; i++)
640                 set_apicid_to_node(i, NUMA_NO_NODE);
641
642         nodes_clear(numa_nodes_parsed);
643         nodes_clear(node_possible_map);
644         nodes_clear(node_online_map);
645         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
646         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
647                                   MAX_NUMNODES));
648         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
649                                   MAX_NUMNODES));
650         /* In case that parsing SRAT failed. */
651         WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
652         numa_reset_distance();
653
654         ret = init_func();
655         if (ret < 0)
656                 return ret;
657
658         /*
659          * We reset memblock back to the top-down direction
660          * here because if we configured ACPI_NUMA, we have
661          * parsed SRAT in init_func(). It is ok to have the
662          * reset here even if we did't configure ACPI_NUMA
663          * or acpi numa init fails and fallbacks to dummy
664          * numa init.
665          */
666         memblock_set_bottom_up(false);
667
668         ret = numa_cleanup_meminfo(&numa_meminfo);
669         if (ret < 0)
670                 return ret;
671
672         numa_emulation(&numa_meminfo, numa_distance_cnt);
673
674         ret = numa_register_memblks(&numa_meminfo);
675         if (ret < 0)
676                 return ret;
677
678         for (i = 0; i < nr_cpu_ids; i++) {
679                 int nid = early_cpu_to_node(i);
680
681                 if (nid == NUMA_NO_NODE)
682                         continue;
683                 if (!node_online(nid))
684                         numa_clear_node(i);
685         }
686         numa_init_array();
687
688         return 0;
689 }
690
691 /**
692  * dummy_numa_init - Fallback dummy NUMA init
693  *
694  * Used if there's no underlying NUMA architecture, NUMA initialization
695  * fails, or NUMA is disabled on the command line.
696  *
697  * Must online at least one node and add memory blocks that cover all
698  * allowed memory.  This function must not fail.
699  */
700 static int __init dummy_numa_init(void)
701 {
702         printk(KERN_INFO "%s\n",
703                numa_off ? "NUMA turned off" : "No NUMA configuration found");
704         printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
705                0LLU, PFN_PHYS(max_pfn) - 1);
706
707         node_set(0, numa_nodes_parsed);
708         numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
709
710         return 0;
711 }
712
713 /**
714  * x86_numa_init - Initialize NUMA
715  *
716  * Try each configured NUMA initialization method until one succeeds.  The
717  * last fallback is dummy single node config encompassing whole memory and
718  * never fails.
719  */
720 void __init x86_numa_init(void)
721 {
722         if (!numa_off) {
723 #ifdef CONFIG_ACPI_NUMA
724                 if (!numa_init(x86_acpi_numa_init))
725                         return;
726 #endif
727 #ifdef CONFIG_AMD_NUMA
728                 if (!numa_init(amd_numa_init))
729                         return;
730 #endif
731         }
732
733         numa_init(dummy_numa_init);
734 }
735
736 static void __init init_memory_less_node(int nid)
737 {
738         /* Allocate and initialize node data. Memory-less node is now online.*/
739         alloc_node_data(nid);
740         free_area_init_memoryless_node(nid);
741
742         /*
743          * All zonelists will be built later in start_kernel() after per cpu
744          * areas are initialized.
745          */
746 }
747
748 /*
749  * A node may exist which has one or more Generic Initiators but no CPUs and no
750  * memory.
751  *
752  * This function must be called after init_cpu_to_node(), to ensure that any
753  * memoryless CPU nodes have already been brought online, and before the
754  * node_data[nid] is needed for zone list setup in build_all_zonelists().
755  *
756  * When this function is called, any nodes containing either memory and/or CPUs
757  * will already be online and there is no need to do anything extra, even if
758  * they also contain one or more Generic Initiators.
759  */
760 void __init init_gi_nodes(void)
761 {
762         int nid;
763
764         for_each_node_state(nid, N_GENERIC_INITIATOR)
765                 if (!node_online(nid))
766                         init_memory_less_node(nid);
767 }
768
769 /*
770  * Setup early cpu_to_node.
771  *
772  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
773  * and apicid_to_node[] tables have valid entries for a CPU.
774  * This means we skip cpu_to_node[] initialisation for NUMA
775  * emulation and faking node case (when running a kernel compiled
776  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
777  * is already initialized in a round robin manner at numa_init_array,
778  * prior to this call, and this initialization is good enough
779  * for the fake NUMA cases.
780  *
781  * Called before the per_cpu areas are setup.
782  */
783 void __init init_cpu_to_node(void)
784 {
785         int cpu;
786         u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
787
788         BUG_ON(cpu_to_apicid == NULL);
789
790         for_each_possible_cpu(cpu) {
791                 int node = numa_cpu_node(cpu);
792
793                 if (node == NUMA_NO_NODE)
794                         continue;
795
796                 if (!node_online(node))
797                         init_memory_less_node(node);
798
799                 numa_set_node(cpu, node);
800         }
801 }
802
803 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
804
805 # ifndef CONFIG_NUMA_EMU
806 void numa_add_cpu(int cpu)
807 {
808         cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
809 }
810
811 void numa_remove_cpu(int cpu)
812 {
813         cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
814 }
815 # endif /* !CONFIG_NUMA_EMU */
816
817 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
818
819 int __cpu_to_node(int cpu)
820 {
821         if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
822                 printk(KERN_WARNING
823                         "cpu_to_node(%d): usage too early!\n", cpu);
824                 dump_stack();
825                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
826         }
827         return per_cpu(x86_cpu_to_node_map, cpu);
828 }
829 EXPORT_SYMBOL(__cpu_to_node);
830
831 /*
832  * Same function as cpu_to_node() but used if called before the
833  * per_cpu areas are setup.
834  */
835 int early_cpu_to_node(int cpu)
836 {
837         if (early_per_cpu_ptr(x86_cpu_to_node_map))
838                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
839
840         if (!cpu_possible(cpu)) {
841                 printk(KERN_WARNING
842                         "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
843                 dump_stack();
844                 return NUMA_NO_NODE;
845         }
846         return per_cpu(x86_cpu_to_node_map, cpu);
847 }
848
849 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
850 {
851         struct cpumask *mask;
852
853         if (node == NUMA_NO_NODE) {
854                 /* early_cpu_to_node() already emits a warning and trace */
855                 return;
856         }
857         mask = node_to_cpumask_map[node];
858         if (!mask) {
859                 pr_err("node_to_cpumask_map[%i] NULL\n", node);
860                 dump_stack();
861                 return;
862         }
863
864         if (enable)
865                 cpumask_set_cpu(cpu, mask);
866         else
867                 cpumask_clear_cpu(cpu, mask);
868
869         printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
870                 enable ? "numa_add_cpu" : "numa_remove_cpu",
871                 cpu, node, cpumask_pr_args(mask));
872         return;
873 }
874
875 # ifndef CONFIG_NUMA_EMU
876 static void numa_set_cpumask(int cpu, bool enable)
877 {
878         debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
879 }
880
881 void numa_add_cpu(int cpu)
882 {
883         numa_set_cpumask(cpu, true);
884 }
885
886 void numa_remove_cpu(int cpu)
887 {
888         numa_set_cpumask(cpu, false);
889 }
890 # endif /* !CONFIG_NUMA_EMU */
891
892 /*
893  * Returns a pointer to the bitmask of CPUs on Node 'node'.
894  */
895 const struct cpumask *cpumask_of_node(int node)
896 {
897         if ((unsigned)node >= nr_node_ids) {
898                 printk(KERN_WARNING
899                         "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
900                         node, nr_node_ids);
901                 dump_stack();
902                 return cpu_none_mask;
903         }
904         if (node_to_cpumask_map[node] == NULL) {
905                 printk(KERN_WARNING
906                         "cpumask_of_node(%d): no node_to_cpumask_map!\n",
907                         node);
908                 dump_stack();
909                 return cpu_online_mask;
910         }
911         return node_to_cpumask_map[node];
912 }
913 EXPORT_SYMBOL(cpumask_of_node);
914
915 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
916
917 #ifdef CONFIG_NUMA_KEEP_MEMINFO
918 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
919 {
920         int i;
921
922         for (i = 0; i < mi->nr_blks; i++)
923                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
924                         return mi->blk[i].nid;
925         return NUMA_NO_NODE;
926 }
927
928 int phys_to_target_node(phys_addr_t start)
929 {
930         int nid = meminfo_to_nid(&numa_meminfo, start);
931
932         /*
933          * Prefer online nodes, but if reserved memory might be
934          * hot-added continue the search with reserved ranges.
935          */
936         if (nid != NUMA_NO_NODE)
937                 return nid;
938
939         return meminfo_to_nid(&numa_reserved_meminfo, start);
940 }
941 EXPORT_SYMBOL_GPL(phys_to_target_node);
942
943 int memory_add_physaddr_to_nid(u64 start)
944 {
945         int nid = meminfo_to_nid(&numa_meminfo, start);
946
947         if (nid == NUMA_NO_NODE)
948                 nid = numa_meminfo.blk[0].nid;
949         return nid;
950 }
951 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
952 #endif