Merge branch 'for-5.0' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-microblaze.git] / arch / x86 / mm / kasan_init_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/pgtable.h>
21 #include <asm/cpu_entry_area.h>
22
23 extern struct range pfn_mapped[E820_MAX_ENTRIES];
24
25 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
26
27 static __init void *early_alloc(size_t size, int nid, bool panic)
28 {
29         if (panic)
30                 return memblock_alloc_try_nid(size, size,
31                         __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
32         else
33                 return memblock_alloc_try_nid_nopanic(size, size,
34                         __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
35 }
36
37 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
38                                       unsigned long end, int nid)
39 {
40         pte_t *pte;
41
42         if (pmd_none(*pmd)) {
43                 void *p;
44
45                 if (boot_cpu_has(X86_FEATURE_PSE) &&
46                     ((end - addr) == PMD_SIZE) &&
47                     IS_ALIGNED(addr, PMD_SIZE)) {
48                         p = early_alloc(PMD_SIZE, nid, false);
49                         if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
50                                 return;
51                         else if (p)
52                                 memblock_free(__pa(p), PMD_SIZE);
53                 }
54
55                 p = early_alloc(PAGE_SIZE, nid, true);
56                 pmd_populate_kernel(&init_mm, pmd, p);
57         }
58
59         pte = pte_offset_kernel(pmd, addr);
60         do {
61                 pte_t entry;
62                 void *p;
63
64                 if (!pte_none(*pte))
65                         continue;
66
67                 p = early_alloc(PAGE_SIZE, nid, true);
68                 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69                 set_pte_at(&init_mm, addr, pte, entry);
70         } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74                                       unsigned long end, int nid)
75 {
76         pmd_t *pmd;
77         unsigned long next;
78
79         if (pud_none(*pud)) {
80                 void *p;
81
82                 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83                     ((end - addr) == PUD_SIZE) &&
84                     IS_ALIGNED(addr, PUD_SIZE)) {
85                         p = early_alloc(PUD_SIZE, nid, false);
86                         if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87                                 return;
88                         else if (p)
89                                 memblock_free(__pa(p), PUD_SIZE);
90                 }
91
92                 p = early_alloc(PAGE_SIZE, nid, true);
93                 pud_populate(&init_mm, pud, p);
94         }
95
96         pmd = pmd_offset(pud, addr);
97         do {
98                 next = pmd_addr_end(addr, end);
99                 if (!pmd_large(*pmd))
100                         kasan_populate_pmd(pmd, addr, next, nid);
101         } while (pmd++, addr = next, addr != end);
102 }
103
104 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
105                                       unsigned long end, int nid)
106 {
107         pud_t *pud;
108         unsigned long next;
109
110         if (p4d_none(*p4d)) {
111                 void *p = early_alloc(PAGE_SIZE, nid, true);
112
113                 p4d_populate(&init_mm, p4d, p);
114         }
115
116         pud = pud_offset(p4d, addr);
117         do {
118                 next = pud_addr_end(addr, end);
119                 if (!pud_large(*pud))
120                         kasan_populate_pud(pud, addr, next, nid);
121         } while (pud++, addr = next, addr != end);
122 }
123
124 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
125                                       unsigned long end, int nid)
126 {
127         void *p;
128         p4d_t *p4d;
129         unsigned long next;
130
131         if (pgd_none(*pgd)) {
132                 p = early_alloc(PAGE_SIZE, nid, true);
133                 pgd_populate(&init_mm, pgd, p);
134         }
135
136         p4d = p4d_offset(pgd, addr);
137         do {
138                 next = p4d_addr_end(addr, end);
139                 kasan_populate_p4d(p4d, addr, next, nid);
140         } while (p4d++, addr = next, addr != end);
141 }
142
143 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
144                                          int nid)
145 {
146         pgd_t *pgd;
147         unsigned long next;
148
149         addr = addr & PAGE_MASK;
150         end = round_up(end, PAGE_SIZE);
151         pgd = pgd_offset_k(addr);
152         do {
153                 next = pgd_addr_end(addr, end);
154                 kasan_populate_pgd(pgd, addr, next, nid);
155         } while (pgd++, addr = next, addr != end);
156 }
157
158 static void __init map_range(struct range *range)
159 {
160         unsigned long start;
161         unsigned long end;
162
163         start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
164         end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
165
166         kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
167 }
168
169 static void __init clear_pgds(unsigned long start,
170                         unsigned long end)
171 {
172         pgd_t *pgd;
173         /* See comment in kasan_init() */
174         unsigned long pgd_end = end & PGDIR_MASK;
175
176         for (; start < pgd_end; start += PGDIR_SIZE) {
177                 pgd = pgd_offset_k(start);
178                 /*
179                  * With folded p4d, pgd_clear() is nop, use p4d_clear()
180                  * instead.
181                  */
182                 if (pgtable_l5_enabled())
183                         pgd_clear(pgd);
184                 else
185                         p4d_clear(p4d_offset(pgd, start));
186         }
187
188         pgd = pgd_offset_k(start);
189         for (; start < end; start += P4D_SIZE)
190                 p4d_clear(p4d_offset(pgd, start));
191 }
192
193 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
194 {
195         unsigned long p4d;
196
197         if (!pgtable_l5_enabled())
198                 return (p4d_t *)pgd;
199
200         p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
201         p4d += __START_KERNEL_map - phys_base;
202         return (p4d_t *)p4d + p4d_index(addr);
203 }
204
205 static void __init kasan_early_p4d_populate(pgd_t *pgd,
206                 unsigned long addr,
207                 unsigned long end)
208 {
209         pgd_t pgd_entry;
210         p4d_t *p4d, p4d_entry;
211         unsigned long next;
212
213         if (pgd_none(*pgd)) {
214                 pgd_entry = __pgd(_KERNPG_TABLE |
215                                         __pa_nodebug(kasan_early_shadow_p4d));
216                 set_pgd(pgd, pgd_entry);
217         }
218
219         p4d = early_p4d_offset(pgd, addr);
220         do {
221                 next = p4d_addr_end(addr, end);
222
223                 if (!p4d_none(*p4d))
224                         continue;
225
226                 p4d_entry = __p4d(_KERNPG_TABLE |
227                                         __pa_nodebug(kasan_early_shadow_pud));
228                 set_p4d(p4d, p4d_entry);
229         } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
230 }
231
232 static void __init kasan_map_early_shadow(pgd_t *pgd)
233 {
234         /* See comment in kasan_init() */
235         unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
236         unsigned long end = KASAN_SHADOW_END;
237         unsigned long next;
238
239         pgd += pgd_index(addr);
240         do {
241                 next = pgd_addr_end(addr, end);
242                 kasan_early_p4d_populate(pgd, addr, next);
243         } while (pgd++, addr = next, addr != end);
244 }
245
246 #ifdef CONFIG_KASAN_INLINE
247 static int kasan_die_handler(struct notifier_block *self,
248                              unsigned long val,
249                              void *data)
250 {
251         if (val == DIE_GPF) {
252                 pr_emerg("CONFIG_KASAN_INLINE enabled\n");
253                 pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
254         }
255         return NOTIFY_OK;
256 }
257
258 static struct notifier_block kasan_die_notifier = {
259         .notifier_call = kasan_die_handler,
260 };
261 #endif
262
263 void __init kasan_early_init(void)
264 {
265         int i;
266         pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
267                                 __PAGE_KERNEL | _PAGE_ENC;
268         pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
269         pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
270         p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
271
272         /* Mask out unsupported __PAGE_KERNEL bits: */
273         pte_val &= __default_kernel_pte_mask;
274         pmd_val &= __default_kernel_pte_mask;
275         pud_val &= __default_kernel_pte_mask;
276         p4d_val &= __default_kernel_pte_mask;
277
278         for (i = 0; i < PTRS_PER_PTE; i++)
279                 kasan_early_shadow_pte[i] = __pte(pte_val);
280
281         for (i = 0; i < PTRS_PER_PMD; i++)
282                 kasan_early_shadow_pmd[i] = __pmd(pmd_val);
283
284         for (i = 0; i < PTRS_PER_PUD; i++)
285                 kasan_early_shadow_pud[i] = __pud(pud_val);
286
287         for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
288                 kasan_early_shadow_p4d[i] = __p4d(p4d_val);
289
290         kasan_map_early_shadow(early_top_pgt);
291         kasan_map_early_shadow(init_top_pgt);
292 }
293
294 void __init kasan_init(void)
295 {
296         int i;
297         void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
298
299 #ifdef CONFIG_KASAN_INLINE
300         register_die_notifier(&kasan_die_notifier);
301 #endif
302
303         memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
304
305         /*
306          * We use the same shadow offset for 4- and 5-level paging to
307          * facilitate boot-time switching between paging modes.
308          * As result in 5-level paging mode KASAN_SHADOW_START and
309          * KASAN_SHADOW_END are not aligned to PGD boundary.
310          *
311          * KASAN_SHADOW_START doesn't share PGD with anything else.
312          * We claim whole PGD entry to make things easier.
313          *
314          * KASAN_SHADOW_END lands in the last PGD entry and it collides with
315          * bunch of things like kernel code, modules, EFI mapping, etc.
316          * We need to take extra steps to not overwrite them.
317          */
318         if (pgtable_l5_enabled()) {
319                 void *ptr;
320
321                 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
322                 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
323                 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
324                                 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
325         }
326
327         load_cr3(early_top_pgt);
328         __flush_tlb_all();
329
330         clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
331
332         kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
333                         kasan_mem_to_shadow((void *)PAGE_OFFSET));
334
335         for (i = 0; i < E820_MAX_ENTRIES; i++) {
336                 if (pfn_mapped[i].end == 0)
337                         break;
338
339                 map_range(&pfn_mapped[i]);
340         }
341
342         shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
343         shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
344         shadow_cpu_entry_begin = (void *)round_down(
345                         (unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
346
347         shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
348                                         CPU_ENTRY_AREA_MAP_SIZE);
349         shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
350         shadow_cpu_entry_end = (void *)round_up(
351                         (unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
352
353         kasan_populate_early_shadow(
354                 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
355                 shadow_cpu_entry_begin);
356
357         kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
358                               (unsigned long)shadow_cpu_entry_end, 0);
359
360         kasan_populate_early_shadow(shadow_cpu_entry_end,
361                         kasan_mem_to_shadow((void *)__START_KERNEL_map));
362
363         kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
364                               (unsigned long)kasan_mem_to_shadow(_end),
365                               early_pfn_to_nid(__pa(_stext)));
366
367         kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
368                                         (void *)KASAN_SHADOW_END);
369
370         load_cr3(init_top_pgt);
371         __flush_tlb_all();
372
373         /*
374          * kasan_early_shadow_page has been used as early shadow memory, thus
375          * it may contain some garbage. Now we can clear and write protect it,
376          * since after the TLB flush no one should write to it.
377          */
378         memset(kasan_early_shadow_page, 0, PAGE_SIZE);
379         for (i = 0; i < PTRS_PER_PTE; i++) {
380                 pte_t pte;
381                 pgprot_t prot;
382
383                 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
384                 pgprot_val(prot) &= __default_kernel_pte_mask;
385
386                 pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
387                 set_pte(&kasan_early_shadow_pte[i], pte);
388         }
389         /* Flush TLBs again to be sure that write protection applied. */
390         __flush_tlb_all();
391
392         init_task.kasan_depth = 0;
393         pr_info("KernelAddressSanitizer initialized\n");
394 }