Merge tag 'drm-next-2020-10-23' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / arch / x86 / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820/api.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/set_memory.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56 #include <asm/ftrace.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 #define DEFINE_POPULATE(fname, type1, type2, init)              \
63 static inline void fname##_init(struct mm_struct *mm,           \
64                 type1##_t *arg1, type2##_t *arg2, bool init)    \
65 {                                                               \
66         if (init)                                               \
67                 fname##_safe(mm, arg1, arg2);                   \
68         else                                                    \
69                 fname(mm, arg1, arg2);                          \
70 }
71
72 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
73 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
74 DEFINE_POPULATE(pud_populate, pud, pmd, init)
75 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
76
77 #define DEFINE_ENTRY(type1, type2, init)                        \
78 static inline void set_##type1##_init(type1##_t *arg1,          \
79                         type2##_t arg2, bool init)              \
80 {                                                               \
81         if (init)                                               \
82                 set_##type1##_safe(arg1, arg2);                 \
83         else                                                    \
84                 set_##type1(arg1, arg2);                        \
85 }
86
87 DEFINE_ENTRY(p4d, p4d, init)
88 DEFINE_ENTRY(pud, pud, init)
89 DEFINE_ENTRY(pmd, pmd, init)
90 DEFINE_ENTRY(pte, pte, init)
91
92
93 /*
94  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95  * physical space so we can cache the place of the first one and move
96  * around without checking the pgd every time.
97  */
98
99 /* Bits supported by the hardware: */
100 pteval_t __supported_pte_mask __read_mostly = ~0;
101 /* Bits allowed in normal kernel mappings: */
102 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
103 EXPORT_SYMBOL_GPL(__supported_pte_mask);
104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105 EXPORT_SYMBOL(__default_kernel_pte_mask);
106
107 int force_personality32;
108
109 /*
110  * noexec32=on|off
111  * Control non executable heap for 32bit processes.
112  * To control the stack too use noexec=off
113  *
114  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115  * off  PROT_READ implies PROT_EXEC
116  */
117 static int __init nonx32_setup(char *str)
118 {
119         if (!strcmp(str, "on"))
120                 force_personality32 &= ~READ_IMPLIES_EXEC;
121         else if (!strcmp(str, "off"))
122                 force_personality32 |= READ_IMPLIES_EXEC;
123         return 1;
124 }
125 __setup("noexec32=", nonx32_setup);
126
127 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
128 {
129         unsigned long addr;
130
131         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132                 const pgd_t *pgd_ref = pgd_offset_k(addr);
133                 struct page *page;
134
135                 /* Check for overflow */
136                 if (addr < start)
137                         break;
138
139                 if (pgd_none(*pgd_ref))
140                         continue;
141
142                 spin_lock(&pgd_lock);
143                 list_for_each_entry(page, &pgd_list, lru) {
144                         pgd_t *pgd;
145                         spinlock_t *pgt_lock;
146
147                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148                         /* the pgt_lock only for Xen */
149                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150                         spin_lock(pgt_lock);
151
152                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
154
155                         if (pgd_none(*pgd))
156                                 set_pgd(pgd, *pgd_ref);
157
158                         spin_unlock(pgt_lock);
159                 }
160                 spin_unlock(&pgd_lock);
161         }
162 }
163
164 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
165 {
166         unsigned long addr;
167
168         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169                 pgd_t *pgd_ref = pgd_offset_k(addr);
170                 const p4d_t *p4d_ref;
171                 struct page *page;
172
173                 /*
174                  * With folded p4d, pgd_none() is always false, we need to
175                  * handle synchonization on p4d level.
176                  */
177                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178                 p4d_ref = p4d_offset(pgd_ref, addr);
179
180                 if (p4d_none(*p4d_ref))
181                         continue;
182
183                 spin_lock(&pgd_lock);
184                 list_for_each_entry(page, &pgd_list, lru) {
185                         pgd_t *pgd;
186                         p4d_t *p4d;
187                         spinlock_t *pgt_lock;
188
189                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190                         p4d = p4d_offset(pgd, addr);
191                         /* the pgt_lock only for Xen */
192                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193                         spin_lock(pgt_lock);
194
195                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196                                 BUG_ON(p4d_page_vaddr(*p4d)
197                                        != p4d_page_vaddr(*p4d_ref));
198
199                         if (p4d_none(*p4d))
200                                 set_p4d(p4d, *p4d_ref);
201
202                         spin_unlock(pgt_lock);
203                 }
204                 spin_unlock(&pgd_lock);
205         }
206 }
207
208 /*
209  * When memory was added make sure all the processes MM have
210  * suitable PGD entries in the local PGD level page.
211  */
212 static void sync_global_pgds(unsigned long start, unsigned long end)
213 {
214         if (pgtable_l5_enabled())
215                 sync_global_pgds_l5(start, end);
216         else
217                 sync_global_pgds_l4(start, end);
218 }
219
220 /*
221  * NOTE: This function is marked __ref because it calls __init function
222  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
223  */
224 static __ref void *spp_getpage(void)
225 {
226         void *ptr;
227
228         if (after_bootmem)
229                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
230         else
231                 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
232
233         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
234                 panic("set_pte_phys: cannot allocate page data %s\n",
235                         after_bootmem ? "after bootmem" : "");
236         }
237
238         pr_debug("spp_getpage %p\n", ptr);
239
240         return ptr;
241 }
242
243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
244 {
245         if (pgd_none(*pgd)) {
246                 p4d_t *p4d = (p4d_t *)spp_getpage();
247                 pgd_populate(&init_mm, pgd, p4d);
248                 if (p4d != p4d_offset(pgd, 0))
249                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
250                                p4d, p4d_offset(pgd, 0));
251         }
252         return p4d_offset(pgd, vaddr);
253 }
254
255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
256 {
257         if (p4d_none(*p4d)) {
258                 pud_t *pud = (pud_t *)spp_getpage();
259                 p4d_populate(&init_mm, p4d, pud);
260                 if (pud != pud_offset(p4d, 0))
261                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
262                                pud, pud_offset(p4d, 0));
263         }
264         return pud_offset(p4d, vaddr);
265 }
266
267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
268 {
269         if (pud_none(*pud)) {
270                 pmd_t *pmd = (pmd_t *) spp_getpage();
271                 pud_populate(&init_mm, pud, pmd);
272                 if (pmd != pmd_offset(pud, 0))
273                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
274                                pmd, pmd_offset(pud, 0));
275         }
276         return pmd_offset(pud, vaddr);
277 }
278
279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
280 {
281         if (pmd_none(*pmd)) {
282                 pte_t *pte = (pte_t *) spp_getpage();
283                 pmd_populate_kernel(&init_mm, pmd, pte);
284                 if (pte != pte_offset_kernel(pmd, 0))
285                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
286         }
287         return pte_offset_kernel(pmd, vaddr);
288 }
289
290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
291 {
292         pmd_t *pmd = fill_pmd(pud, vaddr);
293         pte_t *pte = fill_pte(pmd, vaddr);
294
295         set_pte(pte, new_pte);
296
297         /*
298          * It's enough to flush this one mapping.
299          * (PGE mappings get flushed as well)
300          */
301         flush_tlb_one_kernel(vaddr);
302 }
303
304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
305 {
306         p4d_t *p4d = p4d_page + p4d_index(vaddr);
307         pud_t *pud = fill_pud(p4d, vaddr);
308
309         __set_pte_vaddr(pud, vaddr, new_pte);
310 }
311
312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
313 {
314         pud_t *pud = pud_page + pud_index(vaddr);
315
316         __set_pte_vaddr(pud, vaddr, new_pte);
317 }
318
319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
320 {
321         pgd_t *pgd;
322         p4d_t *p4d_page;
323
324         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
325
326         pgd = pgd_offset_k(vaddr);
327         if (pgd_none(*pgd)) {
328                 printk(KERN_ERR
329                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
330                 return;
331         }
332
333         p4d_page = p4d_offset(pgd, 0);
334         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
335 }
336
337 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
338 {
339         pgd_t *pgd;
340         p4d_t *p4d;
341         pud_t *pud;
342
343         pgd = pgd_offset_k(vaddr);
344         p4d = fill_p4d(pgd, vaddr);
345         pud = fill_pud(p4d, vaddr);
346         return fill_pmd(pud, vaddr);
347 }
348
349 pte_t * __init populate_extra_pte(unsigned long vaddr)
350 {
351         pmd_t *pmd;
352
353         pmd = populate_extra_pmd(vaddr);
354         return fill_pte(pmd, vaddr);
355 }
356
357 /*
358  * Create large page table mappings for a range of physical addresses.
359  */
360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
361                                         enum page_cache_mode cache)
362 {
363         pgd_t *pgd;
364         p4d_t *p4d;
365         pud_t *pud;
366         pmd_t *pmd;
367         pgprot_t prot;
368
369         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
370                 protval_4k_2_large(cachemode2protval(cache));
371         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
372         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
373                 pgd = pgd_offset_k((unsigned long)__va(phys));
374                 if (pgd_none(*pgd)) {
375                         p4d = (p4d_t *) spp_getpage();
376                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
377                                                 _PAGE_USER));
378                 }
379                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
380                 if (p4d_none(*p4d)) {
381                         pud = (pud_t *) spp_getpage();
382                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
383                                                 _PAGE_USER));
384                 }
385                 pud = pud_offset(p4d, (unsigned long)__va(phys));
386                 if (pud_none(*pud)) {
387                         pmd = (pmd_t *) spp_getpage();
388                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
389                                                 _PAGE_USER));
390                 }
391                 pmd = pmd_offset(pud, phys);
392                 BUG_ON(!pmd_none(*pmd));
393                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
394         }
395 }
396
397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
398 {
399         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
400 }
401
402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
403 {
404         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
405 }
406
407 /*
408  * The head.S code sets up the kernel high mapping:
409  *
410  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
411  *
412  * phys_base holds the negative offset to the kernel, which is added
413  * to the compile time generated pmds. This results in invalid pmds up
414  * to the point where we hit the physaddr 0 mapping.
415  *
416  * We limit the mappings to the region from _text to _brk_end.  _brk_end
417  * is rounded up to the 2MB boundary. This catches the invalid pmds as
418  * well, as they are located before _text:
419  */
420 void __init cleanup_highmap(void)
421 {
422         unsigned long vaddr = __START_KERNEL_map;
423         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
424         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
425         pmd_t *pmd = level2_kernel_pgt;
426
427         /*
428          * Native path, max_pfn_mapped is not set yet.
429          * Xen has valid max_pfn_mapped set in
430          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
431          */
432         if (max_pfn_mapped)
433                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
434
435         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
436                 if (pmd_none(*pmd))
437                         continue;
438                 if (vaddr < (unsigned long) _text || vaddr > end)
439                         set_pmd(pmd, __pmd(0));
440         }
441 }
442
443 /*
444  * Create PTE level page table mapping for physical addresses.
445  * It returns the last physical address mapped.
446  */
447 static unsigned long __meminit
448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
449               pgprot_t prot, bool init)
450 {
451         unsigned long pages = 0, paddr_next;
452         unsigned long paddr_last = paddr_end;
453         pte_t *pte;
454         int i;
455
456         pte = pte_page + pte_index(paddr);
457         i = pte_index(paddr);
458
459         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
460                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
461                 if (paddr >= paddr_end) {
462                         if (!after_bootmem &&
463                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
464                                              E820_TYPE_RAM) &&
465                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466                                              E820_TYPE_RESERVED_KERN))
467                                 set_pte_init(pte, __pte(0), init);
468                         continue;
469                 }
470
471                 /*
472                  * We will re-use the existing mapping.
473                  * Xen for example has some special requirements, like mapping
474                  * pagetable pages as RO. So assume someone who pre-setup
475                  * these mappings are more intelligent.
476                  */
477                 if (!pte_none(*pte)) {
478                         if (!after_bootmem)
479                                 pages++;
480                         continue;
481                 }
482
483                 if (0)
484                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
485                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
486                 pages++;
487                 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
488                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
489         }
490
491         update_page_count(PG_LEVEL_4K, pages);
492
493         return paddr_last;
494 }
495
496 /*
497  * Create PMD level page table mapping for physical addresses. The virtual
498  * and physical address have to be aligned at this level.
499  * It returns the last physical address mapped.
500  */
501 static unsigned long __meminit
502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
503               unsigned long page_size_mask, pgprot_t prot, bool init)
504 {
505         unsigned long pages = 0, paddr_next;
506         unsigned long paddr_last = paddr_end;
507
508         int i = pmd_index(paddr);
509
510         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
511                 pmd_t *pmd = pmd_page + pmd_index(paddr);
512                 pte_t *pte;
513                 pgprot_t new_prot = prot;
514
515                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
516                 if (paddr >= paddr_end) {
517                         if (!after_bootmem &&
518                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
519                                              E820_TYPE_RAM) &&
520                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521                                              E820_TYPE_RESERVED_KERN))
522                                 set_pmd_init(pmd, __pmd(0), init);
523                         continue;
524                 }
525
526                 if (!pmd_none(*pmd)) {
527                         if (!pmd_large(*pmd)) {
528                                 spin_lock(&init_mm.page_table_lock);
529                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
530                                 paddr_last = phys_pte_init(pte, paddr,
531                                                            paddr_end, prot,
532                                                            init);
533                                 spin_unlock(&init_mm.page_table_lock);
534                                 continue;
535                         }
536                         /*
537                          * If we are ok with PG_LEVEL_2M mapping, then we will
538                          * use the existing mapping,
539                          *
540                          * Otherwise, we will split the large page mapping but
541                          * use the same existing protection bits except for
542                          * large page, so that we don't violate Intel's TLB
543                          * Application note (317080) which says, while changing
544                          * the page sizes, new and old translations should
545                          * not differ with respect to page frame and
546                          * attributes.
547                          */
548                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
549                                 if (!after_bootmem)
550                                         pages++;
551                                 paddr_last = paddr_next;
552                                 continue;
553                         }
554                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
555                 }
556
557                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
558                         pages++;
559                         spin_lock(&init_mm.page_table_lock);
560                         set_pte_init((pte_t *)pmd,
561                                      pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
562                                              __pgprot(pgprot_val(prot) | _PAGE_PSE)),
563                                      init);
564                         spin_unlock(&init_mm.page_table_lock);
565                         paddr_last = paddr_next;
566                         continue;
567                 }
568
569                 pte = alloc_low_page();
570                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
571
572                 spin_lock(&init_mm.page_table_lock);
573                 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
574                 spin_unlock(&init_mm.page_table_lock);
575         }
576         update_page_count(PG_LEVEL_2M, pages);
577         return paddr_last;
578 }
579
580 /*
581  * Create PUD level page table mapping for physical addresses. The virtual
582  * and physical address do not have to be aligned at this level. KASLR can
583  * randomize virtual addresses up to this level.
584  * It returns the last physical address mapped.
585  */
586 static unsigned long __meminit
587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
588               unsigned long page_size_mask, pgprot_t _prot, bool init)
589 {
590         unsigned long pages = 0, paddr_next;
591         unsigned long paddr_last = paddr_end;
592         unsigned long vaddr = (unsigned long)__va(paddr);
593         int i = pud_index(vaddr);
594
595         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
596                 pud_t *pud;
597                 pmd_t *pmd;
598                 pgprot_t prot = _prot;
599
600                 vaddr = (unsigned long)__va(paddr);
601                 pud = pud_page + pud_index(vaddr);
602                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
603
604                 if (paddr >= paddr_end) {
605                         if (!after_bootmem &&
606                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
607                                              E820_TYPE_RAM) &&
608                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609                                              E820_TYPE_RESERVED_KERN))
610                                 set_pud_init(pud, __pud(0), init);
611                         continue;
612                 }
613
614                 if (!pud_none(*pud)) {
615                         if (!pud_large(*pud)) {
616                                 pmd = pmd_offset(pud, 0);
617                                 paddr_last = phys_pmd_init(pmd, paddr,
618                                                            paddr_end,
619                                                            page_size_mask,
620                                                            prot, init);
621                                 continue;
622                         }
623                         /*
624                          * If we are ok with PG_LEVEL_1G mapping, then we will
625                          * use the existing mapping.
626                          *
627                          * Otherwise, we will split the gbpage mapping but use
628                          * the same existing protection  bits except for large
629                          * page, so that we don't violate Intel's TLB
630                          * Application note (317080) which says, while changing
631                          * the page sizes, new and old translations should
632                          * not differ with respect to page frame and
633                          * attributes.
634                          */
635                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
636                                 if (!after_bootmem)
637                                         pages++;
638                                 paddr_last = paddr_next;
639                                 continue;
640                         }
641                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
642                 }
643
644                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
645                         pages++;
646                         spin_lock(&init_mm.page_table_lock);
647
648                         prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
649
650                         set_pte_init((pte_t *)pud,
651                                      pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
652                                              prot),
653                                      init);
654                         spin_unlock(&init_mm.page_table_lock);
655                         paddr_last = paddr_next;
656                         continue;
657                 }
658
659                 pmd = alloc_low_page();
660                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
661                                            page_size_mask, prot, init);
662
663                 spin_lock(&init_mm.page_table_lock);
664                 pud_populate_init(&init_mm, pud, pmd, init);
665                 spin_unlock(&init_mm.page_table_lock);
666         }
667
668         update_page_count(PG_LEVEL_1G, pages);
669
670         return paddr_last;
671 }
672
673 static unsigned long __meminit
674 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
675               unsigned long page_size_mask, pgprot_t prot, bool init)
676 {
677         unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
678
679         paddr_last = paddr_end;
680         vaddr = (unsigned long)__va(paddr);
681         vaddr_end = (unsigned long)__va(paddr_end);
682
683         if (!pgtable_l5_enabled())
684                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
685                                      page_size_mask, prot, init);
686
687         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
688                 p4d_t *p4d = p4d_page + p4d_index(vaddr);
689                 pud_t *pud;
690
691                 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
692                 paddr = __pa(vaddr);
693
694                 if (paddr >= paddr_end) {
695                         paddr_next = __pa(vaddr_next);
696                         if (!after_bootmem &&
697                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
698                                              E820_TYPE_RAM) &&
699                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
700                                              E820_TYPE_RESERVED_KERN))
701                                 set_p4d_init(p4d, __p4d(0), init);
702                         continue;
703                 }
704
705                 if (!p4d_none(*p4d)) {
706                         pud = pud_offset(p4d, 0);
707                         paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
708                                         page_size_mask, prot, init);
709                         continue;
710                 }
711
712                 pud = alloc_low_page();
713                 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
714                                            page_size_mask, prot, init);
715
716                 spin_lock(&init_mm.page_table_lock);
717                 p4d_populate_init(&init_mm, p4d, pud, init);
718                 spin_unlock(&init_mm.page_table_lock);
719         }
720
721         return paddr_last;
722 }
723
724 static unsigned long __meminit
725 __kernel_physical_mapping_init(unsigned long paddr_start,
726                                unsigned long paddr_end,
727                                unsigned long page_size_mask,
728                                pgprot_t prot, bool init)
729 {
730         bool pgd_changed = false;
731         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
732
733         paddr_last = paddr_end;
734         vaddr = (unsigned long)__va(paddr_start);
735         vaddr_end = (unsigned long)__va(paddr_end);
736         vaddr_start = vaddr;
737
738         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
739                 pgd_t *pgd = pgd_offset_k(vaddr);
740                 p4d_t *p4d;
741
742                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
743
744                 if (pgd_val(*pgd)) {
745                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
746                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
747                                                    __pa(vaddr_end),
748                                                    page_size_mask,
749                                                    prot, init);
750                         continue;
751                 }
752
753                 p4d = alloc_low_page();
754                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
755                                            page_size_mask, prot, init);
756
757                 spin_lock(&init_mm.page_table_lock);
758                 if (pgtable_l5_enabled())
759                         pgd_populate_init(&init_mm, pgd, p4d, init);
760                 else
761                         p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
762                                           (pud_t *) p4d, init);
763
764                 spin_unlock(&init_mm.page_table_lock);
765                 pgd_changed = true;
766         }
767
768         if (pgd_changed)
769                 sync_global_pgds(vaddr_start, vaddr_end - 1);
770
771         return paddr_last;
772 }
773
774
775 /*
776  * Create page table mapping for the physical memory for specific physical
777  * addresses. Note that it can only be used to populate non-present entries.
778  * The virtual and physical addresses have to be aligned on PMD level
779  * down. It returns the last physical address mapped.
780  */
781 unsigned long __meminit
782 kernel_physical_mapping_init(unsigned long paddr_start,
783                              unsigned long paddr_end,
784                              unsigned long page_size_mask, pgprot_t prot)
785 {
786         return __kernel_physical_mapping_init(paddr_start, paddr_end,
787                                               page_size_mask, prot, true);
788 }
789
790 /*
791  * This function is similar to kernel_physical_mapping_init() above with the
792  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
793  * when updating the mapping. The caller is responsible to flush the TLBs after
794  * the function returns.
795  */
796 unsigned long __meminit
797 kernel_physical_mapping_change(unsigned long paddr_start,
798                                unsigned long paddr_end,
799                                unsigned long page_size_mask)
800 {
801         return __kernel_physical_mapping_init(paddr_start, paddr_end,
802                                               page_size_mask, PAGE_KERNEL,
803                                               false);
804 }
805
806 #ifndef CONFIG_NUMA
807 void __init initmem_init(void)
808 {
809         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
810 }
811 #endif
812
813 void __init paging_init(void)
814 {
815         sparse_init();
816
817         /*
818          * clear the default setting with node 0
819          * note: don't use nodes_clear here, that is really clearing when
820          *       numa support is not compiled in, and later node_set_state
821          *       will not set it back.
822          */
823         node_clear_state(0, N_MEMORY);
824         node_clear_state(0, N_NORMAL_MEMORY);
825
826         zone_sizes_init();
827 }
828
829 /*
830  * Memory hotplug specific functions
831  */
832 #ifdef CONFIG_MEMORY_HOTPLUG
833 /*
834  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
835  * updating.
836  */
837 static void update_end_of_memory_vars(u64 start, u64 size)
838 {
839         unsigned long end_pfn = PFN_UP(start + size);
840
841         if (end_pfn > max_pfn) {
842                 max_pfn = end_pfn;
843                 max_low_pfn = end_pfn;
844                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
845         }
846 }
847
848 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
849               struct mhp_params *params)
850 {
851         int ret;
852
853         ret = __add_pages(nid, start_pfn, nr_pages, params);
854         WARN_ON_ONCE(ret);
855
856         /* update max_pfn, max_low_pfn and high_memory */
857         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
858                                   nr_pages << PAGE_SHIFT);
859
860         return ret;
861 }
862
863 int arch_add_memory(int nid, u64 start, u64 size,
864                     struct mhp_params *params)
865 {
866         unsigned long start_pfn = start >> PAGE_SHIFT;
867         unsigned long nr_pages = size >> PAGE_SHIFT;
868
869         init_memory_mapping(start, start + size, params->pgprot);
870
871         return add_pages(nid, start_pfn, nr_pages, params);
872 }
873
874 #define PAGE_INUSE 0xFD
875
876 static void __meminit free_pagetable(struct page *page, int order)
877 {
878         unsigned long magic;
879         unsigned int nr_pages = 1 << order;
880
881         /* bootmem page has reserved flag */
882         if (PageReserved(page)) {
883                 __ClearPageReserved(page);
884
885                 magic = (unsigned long)page->freelist;
886                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
887                         while (nr_pages--)
888                                 put_page_bootmem(page++);
889                 } else
890                         while (nr_pages--)
891                                 free_reserved_page(page++);
892         } else
893                 free_pages((unsigned long)page_address(page), order);
894 }
895
896 static void __meminit free_hugepage_table(struct page *page,
897                 struct vmem_altmap *altmap)
898 {
899         if (altmap)
900                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
901         else
902                 free_pagetable(page, get_order(PMD_SIZE));
903 }
904
905 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
906 {
907         pte_t *pte;
908         int i;
909
910         for (i = 0; i < PTRS_PER_PTE; i++) {
911                 pte = pte_start + i;
912                 if (!pte_none(*pte))
913                         return;
914         }
915
916         /* free a pte talbe */
917         free_pagetable(pmd_page(*pmd), 0);
918         spin_lock(&init_mm.page_table_lock);
919         pmd_clear(pmd);
920         spin_unlock(&init_mm.page_table_lock);
921 }
922
923 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
924 {
925         pmd_t *pmd;
926         int i;
927
928         for (i = 0; i < PTRS_PER_PMD; i++) {
929                 pmd = pmd_start + i;
930                 if (!pmd_none(*pmd))
931                         return;
932         }
933
934         /* free a pmd talbe */
935         free_pagetable(pud_page(*pud), 0);
936         spin_lock(&init_mm.page_table_lock);
937         pud_clear(pud);
938         spin_unlock(&init_mm.page_table_lock);
939 }
940
941 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
942 {
943         pud_t *pud;
944         int i;
945
946         for (i = 0; i < PTRS_PER_PUD; i++) {
947                 pud = pud_start + i;
948                 if (!pud_none(*pud))
949                         return;
950         }
951
952         /* free a pud talbe */
953         free_pagetable(p4d_page(*p4d), 0);
954         spin_lock(&init_mm.page_table_lock);
955         p4d_clear(p4d);
956         spin_unlock(&init_mm.page_table_lock);
957 }
958
959 static void __meminit
960 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
961                  bool direct)
962 {
963         unsigned long next, pages = 0;
964         pte_t *pte;
965         void *page_addr;
966         phys_addr_t phys_addr;
967
968         pte = pte_start + pte_index(addr);
969         for (; addr < end; addr = next, pte++) {
970                 next = (addr + PAGE_SIZE) & PAGE_MASK;
971                 if (next > end)
972                         next = end;
973
974                 if (!pte_present(*pte))
975                         continue;
976
977                 /*
978                  * We mapped [0,1G) memory as identity mapping when
979                  * initializing, in arch/x86/kernel/head_64.S. These
980                  * pagetables cannot be removed.
981                  */
982                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
983                 if (phys_addr < (phys_addr_t)0x40000000)
984                         return;
985
986                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
987                         /*
988                          * Do not free direct mapping pages since they were
989                          * freed when offlining, or simplely not in use.
990                          */
991                         if (!direct)
992                                 free_pagetable(pte_page(*pte), 0);
993
994                         spin_lock(&init_mm.page_table_lock);
995                         pte_clear(&init_mm, addr, pte);
996                         spin_unlock(&init_mm.page_table_lock);
997
998                         /* For non-direct mapping, pages means nothing. */
999                         pages++;
1000                 } else {
1001                         /*
1002                          * If we are here, we are freeing vmemmap pages since
1003                          * direct mapped memory ranges to be freed are aligned.
1004                          *
1005                          * If we are not removing the whole page, it means
1006                          * other page structs in this page are being used and
1007                          * we canot remove them. So fill the unused page_structs
1008                          * with 0xFD, and remove the page when it is wholly
1009                          * filled with 0xFD.
1010                          */
1011                         memset((void *)addr, PAGE_INUSE, next - addr);
1012
1013                         page_addr = page_address(pte_page(*pte));
1014                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1015                                 free_pagetable(pte_page(*pte), 0);
1016
1017                                 spin_lock(&init_mm.page_table_lock);
1018                                 pte_clear(&init_mm, addr, pte);
1019                                 spin_unlock(&init_mm.page_table_lock);
1020                         }
1021                 }
1022         }
1023
1024         /* Call free_pte_table() in remove_pmd_table(). */
1025         flush_tlb_all();
1026         if (direct)
1027                 update_page_count(PG_LEVEL_4K, -pages);
1028 }
1029
1030 static void __meminit
1031 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1032                  bool direct, struct vmem_altmap *altmap)
1033 {
1034         unsigned long next, pages = 0;
1035         pte_t *pte_base;
1036         pmd_t *pmd;
1037         void *page_addr;
1038
1039         pmd = pmd_start + pmd_index(addr);
1040         for (; addr < end; addr = next, pmd++) {
1041                 next = pmd_addr_end(addr, end);
1042
1043                 if (!pmd_present(*pmd))
1044                         continue;
1045
1046                 if (pmd_large(*pmd)) {
1047                         if (IS_ALIGNED(addr, PMD_SIZE) &&
1048                             IS_ALIGNED(next, PMD_SIZE)) {
1049                                 if (!direct)
1050                                         free_hugepage_table(pmd_page(*pmd),
1051                                                             altmap);
1052
1053                                 spin_lock(&init_mm.page_table_lock);
1054                                 pmd_clear(pmd);
1055                                 spin_unlock(&init_mm.page_table_lock);
1056                                 pages++;
1057                         } else {
1058                                 /* If here, we are freeing vmemmap pages. */
1059                                 memset((void *)addr, PAGE_INUSE, next - addr);
1060
1061                                 page_addr = page_address(pmd_page(*pmd));
1062                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1063                                                 PMD_SIZE)) {
1064                                         free_hugepage_table(pmd_page(*pmd),
1065                                                             altmap);
1066
1067                                         spin_lock(&init_mm.page_table_lock);
1068                                         pmd_clear(pmd);
1069                                         spin_unlock(&init_mm.page_table_lock);
1070                                 }
1071                         }
1072
1073                         continue;
1074                 }
1075
1076                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1077                 remove_pte_table(pte_base, addr, next, direct);
1078                 free_pte_table(pte_base, pmd);
1079         }
1080
1081         /* Call free_pmd_table() in remove_pud_table(). */
1082         if (direct)
1083                 update_page_count(PG_LEVEL_2M, -pages);
1084 }
1085
1086 static void __meminit
1087 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1088                  struct vmem_altmap *altmap, bool direct)
1089 {
1090         unsigned long next, pages = 0;
1091         pmd_t *pmd_base;
1092         pud_t *pud;
1093         void *page_addr;
1094
1095         pud = pud_start + pud_index(addr);
1096         for (; addr < end; addr = next, pud++) {
1097                 next = pud_addr_end(addr, end);
1098
1099                 if (!pud_present(*pud))
1100                         continue;
1101
1102                 if (pud_large(*pud)) {
1103                         if (IS_ALIGNED(addr, PUD_SIZE) &&
1104                             IS_ALIGNED(next, PUD_SIZE)) {
1105                                 if (!direct)
1106                                         free_pagetable(pud_page(*pud),
1107                                                        get_order(PUD_SIZE));
1108
1109                                 spin_lock(&init_mm.page_table_lock);
1110                                 pud_clear(pud);
1111                                 spin_unlock(&init_mm.page_table_lock);
1112                                 pages++;
1113                         } else {
1114                                 /* If here, we are freeing vmemmap pages. */
1115                                 memset((void *)addr, PAGE_INUSE, next - addr);
1116
1117                                 page_addr = page_address(pud_page(*pud));
1118                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1119                                                 PUD_SIZE)) {
1120                                         free_pagetable(pud_page(*pud),
1121                                                        get_order(PUD_SIZE));
1122
1123                                         spin_lock(&init_mm.page_table_lock);
1124                                         pud_clear(pud);
1125                                         spin_unlock(&init_mm.page_table_lock);
1126                                 }
1127                         }
1128
1129                         continue;
1130                 }
1131
1132                 pmd_base = pmd_offset(pud, 0);
1133                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1134                 free_pmd_table(pmd_base, pud);
1135         }
1136
1137         if (direct)
1138                 update_page_count(PG_LEVEL_1G, -pages);
1139 }
1140
1141 static void __meminit
1142 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1143                  struct vmem_altmap *altmap, bool direct)
1144 {
1145         unsigned long next, pages = 0;
1146         pud_t *pud_base;
1147         p4d_t *p4d;
1148
1149         p4d = p4d_start + p4d_index(addr);
1150         for (; addr < end; addr = next, p4d++) {
1151                 next = p4d_addr_end(addr, end);
1152
1153                 if (!p4d_present(*p4d))
1154                         continue;
1155
1156                 BUILD_BUG_ON(p4d_large(*p4d));
1157
1158                 pud_base = pud_offset(p4d, 0);
1159                 remove_pud_table(pud_base, addr, next, altmap, direct);
1160                 /*
1161                  * For 4-level page tables we do not want to free PUDs, but in the
1162                  * 5-level case we should free them. This code will have to change
1163                  * to adapt for boot-time switching between 4 and 5 level page tables.
1164                  */
1165                 if (pgtable_l5_enabled())
1166                         free_pud_table(pud_base, p4d);
1167         }
1168
1169         if (direct)
1170                 update_page_count(PG_LEVEL_512G, -pages);
1171 }
1172
1173 /* start and end are both virtual address. */
1174 static void __meminit
1175 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1176                 struct vmem_altmap *altmap)
1177 {
1178         unsigned long next;
1179         unsigned long addr;
1180         pgd_t *pgd;
1181         p4d_t *p4d;
1182
1183         for (addr = start; addr < end; addr = next) {
1184                 next = pgd_addr_end(addr, end);
1185
1186                 pgd = pgd_offset_k(addr);
1187                 if (!pgd_present(*pgd))
1188                         continue;
1189
1190                 p4d = p4d_offset(pgd, 0);
1191                 remove_p4d_table(p4d, addr, next, altmap, direct);
1192         }
1193
1194         flush_tlb_all();
1195 }
1196
1197 void __ref vmemmap_free(unsigned long start, unsigned long end,
1198                 struct vmem_altmap *altmap)
1199 {
1200         remove_pagetable(start, end, false, altmap);
1201 }
1202
1203 static void __meminit
1204 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1205 {
1206         start = (unsigned long)__va(start);
1207         end = (unsigned long)__va(end);
1208
1209         remove_pagetable(start, end, true, NULL);
1210 }
1211
1212 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1213                               struct vmem_altmap *altmap)
1214 {
1215         unsigned long start_pfn = start >> PAGE_SHIFT;
1216         unsigned long nr_pages = size >> PAGE_SHIFT;
1217
1218         __remove_pages(start_pfn, nr_pages, altmap);
1219         kernel_physical_mapping_remove(start, start + size);
1220 }
1221 #endif /* CONFIG_MEMORY_HOTPLUG */
1222
1223 static struct kcore_list kcore_vsyscall;
1224
1225 static void __init register_page_bootmem_info(void)
1226 {
1227 #ifdef CONFIG_NUMA
1228         int i;
1229
1230         for_each_online_node(i)
1231                 register_page_bootmem_info_node(NODE_DATA(i));
1232 #endif
1233 }
1234
1235 /*
1236  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1237  * Only the level which needs to be synchronized between all page-tables is
1238  * allocated because the synchronization can be expensive.
1239  */
1240 static void __init preallocate_vmalloc_pages(void)
1241 {
1242         unsigned long addr;
1243         const char *lvl;
1244
1245         for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1246                 pgd_t *pgd = pgd_offset_k(addr);
1247                 p4d_t *p4d;
1248                 pud_t *pud;
1249
1250                 lvl = "p4d";
1251                 p4d = p4d_alloc(&init_mm, pgd, addr);
1252                 if (!p4d)
1253                         goto failed;
1254
1255                 if (pgtable_l5_enabled())
1256                         continue;
1257
1258                 /*
1259                  * The goal here is to allocate all possibly required
1260                  * hardware page tables pointed to by the top hardware
1261                  * level.
1262                  *
1263                  * On 4-level systems, the P4D layer is folded away and
1264                  * the above code does no preallocation.  Below, go down
1265                  * to the pud _software_ level to ensure the second
1266                  * hardware level is allocated on 4-level systems too.
1267                  */
1268                 lvl = "pud";
1269                 pud = pud_alloc(&init_mm, p4d, addr);
1270                 if (!pud)
1271                         goto failed;
1272         }
1273
1274         return;
1275
1276 failed:
1277
1278         /*
1279          * The pages have to be there now or they will be missing in
1280          * process page-tables later.
1281          */
1282         panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1283 }
1284
1285 void __init mem_init(void)
1286 {
1287         pci_iommu_alloc();
1288
1289         /* clear_bss() already clear the empty_zero_page */
1290
1291         /* this will put all memory onto the freelists */
1292         memblock_free_all();
1293         after_bootmem = 1;
1294         x86_init.hyper.init_after_bootmem();
1295
1296         /*
1297          * Must be done after boot memory is put on freelist, because here we
1298          * might set fields in deferred struct pages that have not yet been
1299          * initialized, and memblock_free_all() initializes all the reserved
1300          * deferred pages for us.
1301          */
1302         register_page_bootmem_info();
1303
1304         /* Register memory areas for /proc/kcore */
1305         if (get_gate_vma(&init_mm))
1306                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1307
1308         preallocate_vmalloc_pages();
1309
1310         mem_init_print_info(NULL);
1311 }
1312
1313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1314 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1315 {
1316         /*
1317          * More CPUs always led to greater speedups on tested systems, up to
1318          * all the nodes' CPUs.  Use all since the system is otherwise idle
1319          * now.
1320          */
1321         return max_t(int, cpumask_weight(node_cpumask), 1);
1322 }
1323 #endif
1324
1325 int kernel_set_to_readonly;
1326
1327 void mark_rodata_ro(void)
1328 {
1329         unsigned long start = PFN_ALIGN(_text);
1330         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1331         unsigned long end = (unsigned long)__end_rodata_hpage_align;
1332         unsigned long text_end = PFN_ALIGN(_etext);
1333         unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1334         unsigned long all_end;
1335
1336         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1337                (end - start) >> 10);
1338         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1339
1340         kernel_set_to_readonly = 1;
1341
1342         /*
1343          * The rodata/data/bss/brk section (but not the kernel text!)
1344          * should also be not-executable.
1345          *
1346          * We align all_end to PMD_SIZE because the existing mapping
1347          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1348          * split the PMD and the reminder between _brk_end and the end
1349          * of the PMD will remain mapped executable.
1350          *
1351          * Any PMD which was setup after the one which covers _brk_end
1352          * has been zapped already via cleanup_highmem().
1353          */
1354         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1355         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1356
1357         set_ftrace_ops_ro();
1358
1359 #ifdef CONFIG_CPA_DEBUG
1360         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1361         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1362
1363         printk(KERN_INFO "Testing CPA: again\n");
1364         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1365 #endif
1366
1367         free_kernel_image_pages("unused kernel image (text/rodata gap)",
1368                                 (void *)text_end, (void *)rodata_start);
1369         free_kernel_image_pages("unused kernel image (rodata/data gap)",
1370                                 (void *)rodata_end, (void *)_sdata);
1371
1372         debug_checkwx();
1373 }
1374
1375 int kern_addr_valid(unsigned long addr)
1376 {
1377         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1378         pgd_t *pgd;
1379         p4d_t *p4d;
1380         pud_t *pud;
1381         pmd_t *pmd;
1382         pte_t *pte;
1383
1384         if (above != 0 && above != -1UL)
1385                 return 0;
1386
1387         pgd = pgd_offset_k(addr);
1388         if (pgd_none(*pgd))
1389                 return 0;
1390
1391         p4d = p4d_offset(pgd, addr);
1392         if (p4d_none(*p4d))
1393                 return 0;
1394
1395         pud = pud_offset(p4d, addr);
1396         if (pud_none(*pud))
1397                 return 0;
1398
1399         if (pud_large(*pud))
1400                 return pfn_valid(pud_pfn(*pud));
1401
1402         pmd = pmd_offset(pud, addr);
1403         if (pmd_none(*pmd))
1404                 return 0;
1405
1406         if (pmd_large(*pmd))
1407                 return pfn_valid(pmd_pfn(*pmd));
1408
1409         pte = pte_offset_kernel(pmd, addr);
1410         if (pte_none(*pte))
1411                 return 0;
1412
1413         return pfn_valid(pte_pfn(*pte));
1414 }
1415
1416 /*
1417  * Block size is the minimum amount of memory which can be hotplugged or
1418  * hotremoved. It must be power of two and must be equal or larger than
1419  * MIN_MEMORY_BLOCK_SIZE.
1420  */
1421 #define MAX_BLOCK_SIZE (2UL << 30)
1422
1423 /* Amount of ram needed to start using large blocks */
1424 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1425
1426 /* Adjustable memory block size */
1427 static unsigned long set_memory_block_size;
1428 int __init set_memory_block_size_order(unsigned int order)
1429 {
1430         unsigned long size = 1UL << order;
1431
1432         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1433                 return -EINVAL;
1434
1435         set_memory_block_size = size;
1436         return 0;
1437 }
1438
1439 static unsigned long probe_memory_block_size(void)
1440 {
1441         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1442         unsigned long bz;
1443
1444         /* If memory block size has been set, then use it */
1445         bz = set_memory_block_size;
1446         if (bz)
1447                 goto done;
1448
1449         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1450         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1451                 bz = MIN_MEMORY_BLOCK_SIZE;
1452                 goto done;
1453         }
1454
1455         /*
1456          * Use max block size to minimize overhead on bare metal, where
1457          * alignment for memory hotplug isn't a concern.
1458          */
1459         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1460                 bz = MAX_BLOCK_SIZE;
1461                 goto done;
1462         }
1463
1464         /* Find the largest allowed block size that aligns to memory end */
1465         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1466                 if (IS_ALIGNED(boot_mem_end, bz))
1467                         break;
1468         }
1469 done:
1470         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1471
1472         return bz;
1473 }
1474
1475 static unsigned long memory_block_size_probed;
1476 unsigned long memory_block_size_bytes(void)
1477 {
1478         if (!memory_block_size_probed)
1479                 memory_block_size_probed = probe_memory_block_size();
1480
1481         return memory_block_size_probed;
1482 }
1483
1484 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1485 /*
1486  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1487  */
1488 static long __meminitdata addr_start, addr_end;
1489 static void __meminitdata *p_start, *p_end;
1490 static int __meminitdata node_start;
1491
1492 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1493                 unsigned long end, int node, struct vmem_altmap *altmap)
1494 {
1495         unsigned long addr;
1496         unsigned long next;
1497         pgd_t *pgd;
1498         p4d_t *p4d;
1499         pud_t *pud;
1500         pmd_t *pmd;
1501
1502         for (addr = start; addr < end; addr = next) {
1503                 next = pmd_addr_end(addr, end);
1504
1505                 pgd = vmemmap_pgd_populate(addr, node);
1506                 if (!pgd)
1507                         return -ENOMEM;
1508
1509                 p4d = vmemmap_p4d_populate(pgd, addr, node);
1510                 if (!p4d)
1511                         return -ENOMEM;
1512
1513                 pud = vmemmap_pud_populate(p4d, addr, node);
1514                 if (!pud)
1515                         return -ENOMEM;
1516
1517                 pmd = pmd_offset(pud, addr);
1518                 if (pmd_none(*pmd)) {
1519                         void *p;
1520
1521                         p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1522                         if (p) {
1523                                 pte_t entry;
1524
1525                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1526                                                 PAGE_KERNEL_LARGE);
1527                                 set_pmd(pmd, __pmd(pte_val(entry)));
1528
1529                                 /* check to see if we have contiguous blocks */
1530                                 if (p_end != p || node_start != node) {
1531                                         if (p_start)
1532                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1533                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1534                                         addr_start = addr;
1535                                         node_start = node;
1536                                         p_start = p;
1537                                 }
1538
1539                                 addr_end = addr + PMD_SIZE;
1540                                 p_end = p + PMD_SIZE;
1541                                 continue;
1542                         } else if (altmap)
1543                                 return -ENOMEM; /* no fallback */
1544                 } else if (pmd_large(*pmd)) {
1545                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1546                         continue;
1547                 }
1548                 if (vmemmap_populate_basepages(addr, next, node, NULL))
1549                         return -ENOMEM;
1550         }
1551         return 0;
1552 }
1553
1554 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1555                 struct vmem_altmap *altmap)
1556 {
1557         int err;
1558
1559         if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1560                 err = vmemmap_populate_basepages(start, end, node, NULL);
1561         else if (boot_cpu_has(X86_FEATURE_PSE))
1562                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1563         else if (altmap) {
1564                 pr_err_once("%s: no cpu support for altmap allocations\n",
1565                                 __func__);
1566                 err = -ENOMEM;
1567         } else
1568                 err = vmemmap_populate_basepages(start, end, node, NULL);
1569         if (!err)
1570                 sync_global_pgds(start, end - 1);
1571         return err;
1572 }
1573
1574 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1575 void register_page_bootmem_memmap(unsigned long section_nr,
1576                                   struct page *start_page, unsigned long nr_pages)
1577 {
1578         unsigned long addr = (unsigned long)start_page;
1579         unsigned long end = (unsigned long)(start_page + nr_pages);
1580         unsigned long next;
1581         pgd_t *pgd;
1582         p4d_t *p4d;
1583         pud_t *pud;
1584         pmd_t *pmd;
1585         unsigned int nr_pmd_pages;
1586         struct page *page;
1587
1588         for (; addr < end; addr = next) {
1589                 pte_t *pte = NULL;
1590
1591                 pgd = pgd_offset_k(addr);
1592                 if (pgd_none(*pgd)) {
1593                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1594                         continue;
1595                 }
1596                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1597
1598                 p4d = p4d_offset(pgd, addr);
1599                 if (p4d_none(*p4d)) {
1600                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1601                         continue;
1602                 }
1603                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1604
1605                 pud = pud_offset(p4d, addr);
1606                 if (pud_none(*pud)) {
1607                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1608                         continue;
1609                 }
1610                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1611
1612                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1613                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1614                         pmd = pmd_offset(pud, addr);
1615                         if (pmd_none(*pmd))
1616                                 continue;
1617                         get_page_bootmem(section_nr, pmd_page(*pmd),
1618                                          MIX_SECTION_INFO);
1619
1620                         pte = pte_offset_kernel(pmd, addr);
1621                         if (pte_none(*pte))
1622                                 continue;
1623                         get_page_bootmem(section_nr, pte_page(*pte),
1624                                          SECTION_INFO);
1625                 } else {
1626                         next = pmd_addr_end(addr, end);
1627
1628                         pmd = pmd_offset(pud, addr);
1629                         if (pmd_none(*pmd))
1630                                 continue;
1631
1632                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1633                         page = pmd_page(*pmd);
1634                         while (nr_pmd_pages--)
1635                                 get_page_bootmem(section_nr, page++,
1636                                                  SECTION_INFO);
1637                 }
1638         }
1639 }
1640 #endif
1641
1642 void __meminit vmemmap_populate_print_last(void)
1643 {
1644         if (p_start) {
1645                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1646                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1647                 p_start = NULL;
1648                 p_end = NULL;
1649                 node_start = 0;
1650         }
1651 }
1652 #endif