Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>            /* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31
32 /*
33  * We need to define the tracepoints somewhere, and tlb.c
34  * is only compiled when SMP=y.
35  */
36 #include <trace/events/tlb.h>
37
38 #include "mm_internal.h"
39
40 /*
41  * Tables translating between page_cache_type_t and pte encoding.
42  *
43  * The default values are defined statically as minimal supported mode;
44  * WC and WT fall back to UC-.  pat_init() updates these values to support
45  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46  * for the details.  Note, __early_ioremap() used during early boot-time
47  * takes pgprot_t (pte encoding) and does not use these tables.
48  *
49  *   Index into __cachemode2pte_tbl[] is the cachemode.
50  *
51  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53  */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55         [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
56         [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
57         [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
58         [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
59         [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
60         [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
61 };
62
63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65         if (likely(pcm == 0))
66                 return 0;
67         return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70
71 static uint8_t __pte2cachemode_tbl[8] = {
72         [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73         [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74         [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76         [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77         [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78         [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81
82 /*
83  * Check that the write-protect PAT entry is set for write-protect.
84  * To do this without making assumptions how PAT has been set up (Xen has
85  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87  * bits will select a cache mode of WP or better), and then translate the
88  * protection bits back into the cache mode using __pte2cm_idx() and the
89  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90  */
91 bool x86_has_pat_wp(void)
92 {
93         uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94
95         return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97
98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100         unsigned long masked;
101
102         masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103         if (likely(masked == 0))
104                 return 0;
105         return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111
112 static unsigned long min_pfn_mapped;
113
114 static bool __initdata can_use_brk_pgt = true;
115
116 /*
117  * Pages returned are already directly mapped.
118  *
119  * Changing that is likely to break Xen, see commit:
120  *
121  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122  *
123  * for detailed information.
124  */
125 __ref void *alloc_low_pages(unsigned int num)
126 {
127         unsigned long pfn;
128         int i;
129
130         if (after_bootmem) {
131                 unsigned int order;
132
133                 order = get_order((unsigned long)num << PAGE_SHIFT);
134                 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135         }
136
137         if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138                 unsigned long ret = 0;
139
140                 if (min_pfn_mapped < max_pfn_mapped) {
141                         ret = memblock_phys_alloc_range(
142                                         PAGE_SIZE * num, PAGE_SIZE,
143                                         min_pfn_mapped << PAGE_SHIFT,
144                                         max_pfn_mapped << PAGE_SHIFT);
145                 }
146                 if (!ret && can_use_brk_pgt)
147                         ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148
149                 if (!ret)
150                         panic("alloc_low_pages: can not alloc memory");
151
152                 pfn = ret >> PAGE_SHIFT;
153         } else {
154                 pfn = pgt_buf_end;
155                 pgt_buf_end += num;
156         }
157
158         for (i = 0; i < num; i++) {
159                 void *adr;
160
161                 adr = __va((pfn + i) << PAGE_SHIFT);
162                 clear_page(adr);
163         }
164
165         return __va(pfn << PAGE_SHIFT);
166 }
167
168 /*
169  * By default need to be able to allocate page tables below PGD firstly for
170  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171  * With KASLR memory randomization, depending on the machine e820 memory and the
172  * PUD alignment, twice that many pages may be needed when KASLR memory
173  * randomization is enabled.
174  */
175
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES    3
178 #else
179 #define INIT_PGD_PAGE_TABLES    4
180 #endif
181
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
184 #else
185 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
186 #endif
187
188 #define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190 void  __init early_alloc_pgt_buf(void)
191 {
192         unsigned long tables = INIT_PGT_BUF_SIZE;
193         phys_addr_t base;
194
195         base = __pa(extend_brk(tables, PAGE_SIZE));
196
197         pgt_buf_start = base >> PAGE_SHIFT;
198         pgt_buf_end = pgt_buf_start;
199         pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200 }
201
202 int after_bootmem;
203
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205
206 struct map_range {
207         unsigned long start;
208         unsigned long end;
209         unsigned page_size_mask;
210 };
211
212 static int page_size_mask;
213
214 /*
215  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
216  * enable and PPro Global page enable), so that any CPU's that boot
217  * up after us can get the correct flags. Invoked on the boot CPU.
218  */
219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220 {
221         mmu_cr4_features |= mask;
222         if (trampoline_cr4_features)
223                 *trampoline_cr4_features = mmu_cr4_features;
224         cr4_set_bits(mask);
225 }
226
227 static void __init probe_page_size_mask(void)
228 {
229         /*
230          * For pagealloc debugging, identity mapping will use small pages.
231          * This will simplify cpa(), which otherwise needs to support splitting
232          * large pages into small in interrupt context, etc.
233          */
234         if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235                 page_size_mask |= 1 << PG_LEVEL_2M;
236         else
237                 direct_gbpages = 0;
238
239         /* Enable PSE if available */
240         if (boot_cpu_has(X86_FEATURE_PSE))
241                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
242
243         /* Enable PGE if available */
244         __supported_pte_mask &= ~_PAGE_GLOBAL;
245         if (boot_cpu_has(X86_FEATURE_PGE)) {
246                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
247                 __supported_pte_mask |= _PAGE_GLOBAL;
248         }
249
250         /* By the default is everything supported: */
251         __default_kernel_pte_mask = __supported_pte_mask;
252         /* Except when with PTI where the kernel is mostly non-Global: */
253         if (cpu_feature_enabled(X86_FEATURE_PTI))
254                 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255
256         /* Enable 1 GB linear kernel mappings if available: */
257         if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258                 printk(KERN_INFO "Using GB pages for direct mapping\n");
259                 page_size_mask |= 1 << PG_LEVEL_1G;
260         } else {
261                 direct_gbpages = 0;
262         }
263 }
264
265 /*
266  * INVLPG may not properly flush Global entries
267  * on these CPUs when PCIDs are enabled.
268  */
269 static const struct x86_cpu_id invlpg_miss_ids[] = {
270         X86_MATCH_VFM(INTEL_ALDERLAKE,      0),
271         X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0),
272         X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0),
273         X86_MATCH_VFM(INTEL_RAPTORLAKE,     0),
274         X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0),
275         X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0),
276         {}
277 };
278
279 static void setup_pcid(void)
280 {
281         if (!IS_ENABLED(CONFIG_X86_64))
282                 return;
283
284         if (!boot_cpu_has(X86_FEATURE_PCID))
285                 return;
286
287         if (x86_match_cpu(invlpg_miss_ids)) {
288                 pr_info("Incomplete global flushes, disabling PCID");
289                 setup_clear_cpu_cap(X86_FEATURE_PCID);
290                 return;
291         }
292
293         if (boot_cpu_has(X86_FEATURE_PGE)) {
294                 /*
295                  * This can't be cr4_set_bits_and_update_boot() -- the
296                  * trampoline code can't handle CR4.PCIDE and it wouldn't
297                  * do any good anyway.  Despite the name,
298                  * cr4_set_bits_and_update_boot() doesn't actually cause
299                  * the bits in question to remain set all the way through
300                  * the secondary boot asm.
301                  *
302                  * Instead, we brute-force it and set CR4.PCIDE manually in
303                  * start_secondary().
304                  */
305                 cr4_set_bits(X86_CR4_PCIDE);
306         } else {
307                 /*
308                  * flush_tlb_all(), as currently implemented, won't work if
309                  * PCID is on but PGE is not.  Since that combination
310                  * doesn't exist on real hardware, there's no reason to try
311                  * to fully support it, but it's polite to avoid corrupting
312                  * data if we're on an improperly configured VM.
313                  */
314                 setup_clear_cpu_cap(X86_FEATURE_PCID);
315         }
316 }
317
318 #ifdef CONFIG_X86_32
319 #define NR_RANGE_MR 3
320 #else /* CONFIG_X86_64 */
321 #define NR_RANGE_MR 5
322 #endif
323
324 static int __meminit save_mr(struct map_range *mr, int nr_range,
325                              unsigned long start_pfn, unsigned long end_pfn,
326                              unsigned long page_size_mask)
327 {
328         if (start_pfn < end_pfn) {
329                 if (nr_range >= NR_RANGE_MR)
330                         panic("run out of range for init_memory_mapping\n");
331                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
332                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
333                 mr[nr_range].page_size_mask = page_size_mask;
334                 nr_range++;
335         }
336
337         return nr_range;
338 }
339
340 /*
341  * adjust the page_size_mask for small range to go with
342  *      big page size instead small one if nearby are ram too.
343  */
344 static void __ref adjust_range_page_size_mask(struct map_range *mr,
345                                                          int nr_range)
346 {
347         int i;
348
349         for (i = 0; i < nr_range; i++) {
350                 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
351                     !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
352                         unsigned long start = round_down(mr[i].start, PMD_SIZE);
353                         unsigned long end = round_up(mr[i].end, PMD_SIZE);
354
355 #ifdef CONFIG_X86_32
356                         if ((end >> PAGE_SHIFT) > max_low_pfn)
357                                 continue;
358 #endif
359
360                         if (memblock_is_region_memory(start, end - start))
361                                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
362                 }
363                 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
364                     !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
365                         unsigned long start = round_down(mr[i].start, PUD_SIZE);
366                         unsigned long end = round_up(mr[i].end, PUD_SIZE);
367
368                         if (memblock_is_region_memory(start, end - start))
369                                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
370                 }
371         }
372 }
373
374 static const char *page_size_string(struct map_range *mr)
375 {
376         static const char str_1g[] = "1G";
377         static const char str_2m[] = "2M";
378         static const char str_4m[] = "4M";
379         static const char str_4k[] = "4k";
380
381         if (mr->page_size_mask & (1<<PG_LEVEL_1G))
382                 return str_1g;
383         /*
384          * 32-bit without PAE has a 4M large page size.
385          * PG_LEVEL_2M is misnamed, but we can at least
386          * print out the right size in the string.
387          */
388         if (IS_ENABLED(CONFIG_X86_32) &&
389             !IS_ENABLED(CONFIG_X86_PAE) &&
390             mr->page_size_mask & (1<<PG_LEVEL_2M))
391                 return str_4m;
392
393         if (mr->page_size_mask & (1<<PG_LEVEL_2M))
394                 return str_2m;
395
396         return str_4k;
397 }
398
399 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
400                                      unsigned long start,
401                                      unsigned long end)
402 {
403         unsigned long start_pfn, end_pfn, limit_pfn;
404         unsigned long pfn;
405         int i;
406
407         limit_pfn = PFN_DOWN(end);
408
409         /* head if not big page alignment ? */
410         pfn = start_pfn = PFN_DOWN(start);
411 #ifdef CONFIG_X86_32
412         /*
413          * Don't use a large page for the first 2/4MB of memory
414          * because there are often fixed size MTRRs in there
415          * and overlapping MTRRs into large pages can cause
416          * slowdowns.
417          */
418         if (pfn == 0)
419                 end_pfn = PFN_DOWN(PMD_SIZE);
420         else
421                 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
422 #else /* CONFIG_X86_64 */
423         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
424 #endif
425         if (end_pfn > limit_pfn)
426                 end_pfn = limit_pfn;
427         if (start_pfn < end_pfn) {
428                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
429                 pfn = end_pfn;
430         }
431
432         /* big page (2M) range */
433         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
434 #ifdef CONFIG_X86_32
435         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
436 #else /* CONFIG_X86_64 */
437         end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
438         if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
439                 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440 #endif
441
442         if (start_pfn < end_pfn) {
443                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444                                 page_size_mask & (1<<PG_LEVEL_2M));
445                 pfn = end_pfn;
446         }
447
448 #ifdef CONFIG_X86_64
449         /* big page (1G) range */
450         start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
451         end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
452         if (start_pfn < end_pfn) {
453                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
454                                 page_size_mask &
455                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
456                 pfn = end_pfn;
457         }
458
459         /* tail is not big page (1G) alignment */
460         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
461         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
462         if (start_pfn < end_pfn) {
463                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
464                                 page_size_mask & (1<<PG_LEVEL_2M));
465                 pfn = end_pfn;
466         }
467 #endif
468
469         /* tail is not big page (2M) alignment */
470         start_pfn = pfn;
471         end_pfn = limit_pfn;
472         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
473
474         if (!after_bootmem)
475                 adjust_range_page_size_mask(mr, nr_range);
476
477         /* try to merge same page size and continuous */
478         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
479                 unsigned long old_start;
480                 if (mr[i].end != mr[i+1].start ||
481                     mr[i].page_size_mask != mr[i+1].page_size_mask)
482                         continue;
483                 /* move it */
484                 old_start = mr[i].start;
485                 memmove(&mr[i], &mr[i+1],
486                         (nr_range - 1 - i) * sizeof(struct map_range));
487                 mr[i--].start = old_start;
488                 nr_range--;
489         }
490
491         for (i = 0; i < nr_range; i++)
492                 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
493                                 mr[i].start, mr[i].end - 1,
494                                 page_size_string(&mr[i]));
495
496         return nr_range;
497 }
498
499 struct range pfn_mapped[E820_MAX_ENTRIES];
500 int nr_pfn_mapped;
501
502 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
503 {
504         nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
505                                              nr_pfn_mapped, start_pfn, end_pfn);
506         nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
507
508         max_pfn_mapped = max(max_pfn_mapped, end_pfn);
509
510         if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
511                 max_low_pfn_mapped = max(max_low_pfn_mapped,
512                                          min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
513 }
514
515 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
516 {
517         int i;
518
519         for (i = 0; i < nr_pfn_mapped; i++)
520                 if ((start_pfn >= pfn_mapped[i].start) &&
521                     (end_pfn <= pfn_mapped[i].end))
522                         return true;
523
524         return false;
525 }
526
527 /*
528  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
529  * This runs before bootmem is initialized and gets pages directly from
530  * the physical memory. To access them they are temporarily mapped.
531  */
532 unsigned long __ref init_memory_mapping(unsigned long start,
533                                         unsigned long end, pgprot_t prot)
534 {
535         struct map_range mr[NR_RANGE_MR];
536         unsigned long ret = 0;
537         int nr_range, i;
538
539         pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
540                start, end - 1);
541
542         memset(mr, 0, sizeof(mr));
543         nr_range = split_mem_range(mr, 0, start, end);
544
545         for (i = 0; i < nr_range; i++)
546                 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
547                                                    mr[i].page_size_mask,
548                                                    prot);
549
550         add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
551
552         return ret >> PAGE_SHIFT;
553 }
554
555 /*
556  * We need to iterate through the E820 memory map and create direct mappings
557  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
558  * create direct mappings for all pfns from [0 to max_low_pfn) and
559  * [4GB to max_pfn) because of possible memory holes in high addresses
560  * that cannot be marked as UC by fixed/variable range MTRRs.
561  * Depending on the alignment of E820 ranges, this may possibly result
562  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
563  *
564  * init_mem_mapping() calls init_range_memory_mapping() with big range.
565  * That range would have hole in the middle or ends, and only ram parts
566  * will be mapped in init_range_memory_mapping().
567  */
568 static unsigned long __init init_range_memory_mapping(
569                                            unsigned long r_start,
570                                            unsigned long r_end)
571 {
572         unsigned long start_pfn, end_pfn;
573         unsigned long mapped_ram_size = 0;
574         int i;
575
576         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
577                 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
578                 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
579                 if (start >= end)
580                         continue;
581
582                 /*
583                  * if it is overlapping with brk pgt, we need to
584                  * alloc pgt buf from memblock instead.
585                  */
586                 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
587                                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
588                 init_memory_mapping(start, end, PAGE_KERNEL);
589                 mapped_ram_size += end - start;
590                 can_use_brk_pgt = true;
591         }
592
593         return mapped_ram_size;
594 }
595
596 static unsigned long __init get_new_step_size(unsigned long step_size)
597 {
598         /*
599          * Initial mapped size is PMD_SIZE (2M).
600          * We can not set step_size to be PUD_SIZE (1G) yet.
601          * In worse case, when we cross the 1G boundary, and
602          * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
603          * to map 1G range with PTE. Hence we use one less than the
604          * difference of page table level shifts.
605          *
606          * Don't need to worry about overflow in the top-down case, on 32bit,
607          * when step_size is 0, round_down() returns 0 for start, and that
608          * turns it into 0x100000000ULL.
609          * In the bottom-up case, round_up(x, 0) returns 0 though too, which
610          * needs to be taken into consideration by the code below.
611          */
612         return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
613 }
614
615 /**
616  * memory_map_top_down - Map [map_start, map_end) top down
617  * @map_start: start address of the target memory range
618  * @map_end: end address of the target memory range
619  *
620  * This function will setup direct mapping for memory range
621  * [map_start, map_end) in top-down. That said, the page tables
622  * will be allocated at the end of the memory, and we map the
623  * memory in top-down.
624  */
625 static void __init memory_map_top_down(unsigned long map_start,
626                                        unsigned long map_end)
627 {
628         unsigned long real_end, last_start;
629         unsigned long step_size;
630         unsigned long addr;
631         unsigned long mapped_ram_size = 0;
632
633         /*
634          * Systems that have many reserved areas near top of the memory,
635          * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
636          * require lots of 4K mappings which may exhaust pgt_buf.
637          * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
638          * there is enough mapped memory that can be allocated from
639          * memblock.
640          */
641         addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
642                                          map_end);
643         memblock_phys_free(addr, PMD_SIZE);
644         real_end = addr + PMD_SIZE;
645
646         /* step_size need to be small so pgt_buf from BRK could cover it */
647         step_size = PMD_SIZE;
648         max_pfn_mapped = 0; /* will get exact value next */
649         min_pfn_mapped = real_end >> PAGE_SHIFT;
650         last_start = real_end;
651
652         /*
653          * We start from the top (end of memory) and go to the bottom.
654          * The memblock_find_in_range() gets us a block of RAM from the
655          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
656          * for page table.
657          */
658         while (last_start > map_start) {
659                 unsigned long start;
660
661                 if (last_start > step_size) {
662                         start = round_down(last_start - 1, step_size);
663                         if (start < map_start)
664                                 start = map_start;
665                 } else
666                         start = map_start;
667                 mapped_ram_size += init_range_memory_mapping(start,
668                                                         last_start);
669                 last_start = start;
670                 min_pfn_mapped = last_start >> PAGE_SHIFT;
671                 if (mapped_ram_size >= step_size)
672                         step_size = get_new_step_size(step_size);
673         }
674
675         if (real_end < map_end)
676                 init_range_memory_mapping(real_end, map_end);
677 }
678
679 /**
680  * memory_map_bottom_up - Map [map_start, map_end) bottom up
681  * @map_start: start address of the target memory range
682  * @map_end: end address of the target memory range
683  *
684  * This function will setup direct mapping for memory range
685  * [map_start, map_end) in bottom-up. Since we have limited the
686  * bottom-up allocation above the kernel, the page tables will
687  * be allocated just above the kernel and we map the memory
688  * in [map_start, map_end) in bottom-up.
689  */
690 static void __init memory_map_bottom_up(unsigned long map_start,
691                                         unsigned long map_end)
692 {
693         unsigned long next, start;
694         unsigned long mapped_ram_size = 0;
695         /* step_size need to be small so pgt_buf from BRK could cover it */
696         unsigned long step_size = PMD_SIZE;
697
698         start = map_start;
699         min_pfn_mapped = start >> PAGE_SHIFT;
700
701         /*
702          * We start from the bottom (@map_start) and go to the top (@map_end).
703          * The memblock_find_in_range() gets us a block of RAM from the
704          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
705          * for page table.
706          */
707         while (start < map_end) {
708                 if (step_size && map_end - start > step_size) {
709                         next = round_up(start + 1, step_size);
710                         if (next > map_end)
711                                 next = map_end;
712                 } else {
713                         next = map_end;
714                 }
715
716                 mapped_ram_size += init_range_memory_mapping(start, next);
717                 start = next;
718
719                 if (mapped_ram_size >= step_size)
720                         step_size = get_new_step_size(step_size);
721         }
722 }
723
724 /*
725  * The real mode trampoline, which is required for bootstrapping CPUs
726  * occupies only a small area under the low 1MB.  See reserve_real_mode()
727  * for details.
728  *
729  * If KASLR is disabled the first PGD entry of the direct mapping is copied
730  * to map the real mode trampoline.
731  *
732  * If KASLR is enabled, copy only the PUD which covers the low 1MB
733  * area. This limits the randomization granularity to 1GB for both 4-level
734  * and 5-level paging.
735  */
736 static void __init init_trampoline(void)
737 {
738 #ifdef CONFIG_X86_64
739         /*
740          * The code below will alias kernel page-tables in the user-range of the
741          * address space, including the Global bit. So global TLB entries will
742          * be created when using the trampoline page-table.
743          */
744         if (!kaslr_memory_enabled())
745                 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
746         else
747                 init_trampoline_kaslr();
748 #endif
749 }
750
751 void __init init_mem_mapping(void)
752 {
753         unsigned long end;
754
755         pti_check_boottime_disable();
756         probe_page_size_mask();
757         setup_pcid();
758
759 #ifdef CONFIG_X86_64
760         end = max_pfn << PAGE_SHIFT;
761 #else
762         end = max_low_pfn << PAGE_SHIFT;
763 #endif
764
765         /* the ISA range is always mapped regardless of memory holes */
766         init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
767
768         /* Init the trampoline, possibly with KASLR memory offset */
769         init_trampoline();
770
771         /*
772          * If the allocation is in bottom-up direction, we setup direct mapping
773          * in bottom-up, otherwise we setup direct mapping in top-down.
774          */
775         if (memblock_bottom_up()) {
776                 unsigned long kernel_end = __pa_symbol(_end);
777
778                 /*
779                  * we need two separate calls here. This is because we want to
780                  * allocate page tables above the kernel. So we first map
781                  * [kernel_end, end) to make memory above the kernel be mapped
782                  * as soon as possible. And then use page tables allocated above
783                  * the kernel to map [ISA_END_ADDRESS, kernel_end).
784                  */
785                 memory_map_bottom_up(kernel_end, end);
786                 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
787         } else {
788                 memory_map_top_down(ISA_END_ADDRESS, end);
789         }
790
791 #ifdef CONFIG_X86_64
792         if (max_pfn > max_low_pfn) {
793                 /* can we preserve max_low_pfn ?*/
794                 max_low_pfn = max_pfn;
795         }
796 #else
797         early_ioremap_page_table_range_init();
798 #endif
799
800         load_cr3(swapper_pg_dir);
801         __flush_tlb_all();
802
803         x86_init.hyper.init_mem_mapping();
804
805         early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
806 }
807
808 /*
809  * Initialize an mm_struct to be used during poking and a pointer to be used
810  * during patching.
811  */
812 void __init poking_init(void)
813 {
814         spinlock_t *ptl;
815         pte_t *ptep;
816
817         poking_mm = mm_alloc();
818         BUG_ON(!poking_mm);
819
820         /* Xen PV guests need the PGD to be pinned. */
821         paravirt_enter_mmap(poking_mm);
822
823         /*
824          * Randomize the poking address, but make sure that the following page
825          * will be mapped at the same PMD. We need 2 pages, so find space for 3,
826          * and adjust the address if the PMD ends after the first one.
827          */
828         poking_addr = TASK_UNMAPPED_BASE;
829         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
830                 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
831                         (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
832
833         if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
834                 poking_addr += PAGE_SIZE;
835
836         /*
837          * We need to trigger the allocation of the page-tables that will be
838          * needed for poking now. Later, poking may be performed in an atomic
839          * section, which might cause allocation to fail.
840          */
841         ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
842         BUG_ON(!ptep);
843         pte_unmap_unlock(ptep, ptl);
844 }
845
846 /*
847  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
848  * is valid. The argument is a physical page number.
849  *
850  * On x86, access has to be given to the first megabyte of RAM because that
851  * area traditionally contains BIOS code and data regions used by X, dosemu,
852  * and similar apps. Since they map the entire memory range, the whole range
853  * must be allowed (for mapping), but any areas that would otherwise be
854  * disallowed are flagged as being "zero filled" instead of rejected.
855  * Access has to be given to non-kernel-ram areas as well, these contain the
856  * PCI mmio resources as well as potential bios/acpi data regions.
857  */
858 int devmem_is_allowed(unsigned long pagenr)
859 {
860         if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
861                                 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
862                         != REGION_DISJOINT) {
863                 /*
864                  * For disallowed memory regions in the low 1MB range,
865                  * request that the page be shown as all zeros.
866                  */
867                 if (pagenr < 256)
868                         return 2;
869
870                 return 0;
871         }
872
873         /*
874          * This must follow RAM test, since System RAM is considered a
875          * restricted resource under CONFIG_STRICT_DEVMEM.
876          */
877         if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
878                 /* Low 1MB bypasses iomem restrictions. */
879                 if (pagenr < 256)
880                         return 1;
881
882                 return 0;
883         }
884
885         return 1;
886 }
887
888 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
889 {
890         unsigned long begin_aligned, end_aligned;
891
892         /* Make sure boundaries are page aligned */
893         begin_aligned = PAGE_ALIGN(begin);
894         end_aligned   = end & PAGE_MASK;
895
896         if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
897                 begin = begin_aligned;
898                 end   = end_aligned;
899         }
900
901         if (begin >= end)
902                 return;
903
904         /*
905          * If debugging page accesses then do not free this memory but
906          * mark them not present - any buggy init-section access will
907          * create a kernel page fault:
908          */
909         if (debug_pagealloc_enabled()) {
910                 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
911                         begin, end - 1);
912                 /*
913                  * Inform kmemleak about the hole in the memory since the
914                  * corresponding pages will be unmapped.
915                  */
916                 kmemleak_free_part((void *)begin, end - begin);
917                 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
918         } else {
919                 /*
920                  * We just marked the kernel text read only above, now that
921                  * we are going to free part of that, we need to make that
922                  * writeable and non-executable first.
923                  */
924                 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
925                 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
926
927                 free_reserved_area((void *)begin, (void *)end,
928                                    POISON_FREE_INITMEM, what);
929         }
930 }
931
932 /*
933  * begin/end can be in the direct map or the "high kernel mapping"
934  * used for the kernel image only.  free_init_pages() will do the
935  * right thing for either kind of address.
936  */
937 void free_kernel_image_pages(const char *what, void *begin, void *end)
938 {
939         unsigned long begin_ul = (unsigned long)begin;
940         unsigned long end_ul = (unsigned long)end;
941         unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
942
943         free_init_pages(what, begin_ul, end_ul);
944
945         /*
946          * PTI maps some of the kernel into userspace.  For performance,
947          * this includes some kernel areas that do not contain secrets.
948          * Those areas might be adjacent to the parts of the kernel image
949          * being freed, which may contain secrets.  Remove the "high kernel
950          * image mapping" for these freed areas, ensuring they are not even
951          * potentially vulnerable to Meltdown regardless of the specific
952          * optimizations PTI is currently using.
953          *
954          * The "noalias" prevents unmapping the direct map alias which is
955          * needed to access the freed pages.
956          *
957          * This is only valid for 64bit kernels. 32bit has only one mapping
958          * which can't be treated in this way for obvious reasons.
959          */
960         if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
961                 set_memory_np_noalias(begin_ul, len_pages);
962 }
963
964 void __ref free_initmem(void)
965 {
966         e820__reallocate_tables();
967
968         mem_encrypt_free_decrypted_mem();
969
970         free_kernel_image_pages("unused kernel image (initmem)",
971                                 &__init_begin, &__init_end);
972 }
973
974 #ifdef CONFIG_BLK_DEV_INITRD
975 void __init free_initrd_mem(unsigned long start, unsigned long end)
976 {
977         /*
978          * end could be not aligned, and We can not align that,
979          * decompressor could be confused by aligned initrd_end
980          * We already reserve the end partial page before in
981          *   - i386_start_kernel()
982          *   - x86_64_start_kernel()
983          *   - relocate_initrd()
984          * So here We can do PAGE_ALIGN() safely to get partial page to be freed
985          */
986         free_init_pages("initrd", start, PAGE_ALIGN(end));
987 }
988 #endif
989
990 void __init zone_sizes_init(void)
991 {
992         unsigned long max_zone_pfns[MAX_NR_ZONES];
993
994         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
995
996 #ifdef CONFIG_ZONE_DMA
997         max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
998 #endif
999 #ifdef CONFIG_ZONE_DMA32
1000         max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
1001 #endif
1002         max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
1003 #ifdef CONFIG_HIGHMEM
1004         max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
1005 #endif
1006
1007         free_area_init(max_zone_pfns);
1008 }
1009
1010 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1011         .loaded_mm = &init_mm,
1012         .next_asid = 1,
1013         .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
1014 };
1015
1016 #ifdef CONFIG_ADDRESS_MASKING
1017 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1018 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1019 #endif
1020
1021 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1022 {
1023         /* entry 0 MUST be WB (hardwired to speed up translations) */
1024         BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1025
1026         __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1027         __pte2cachemode_tbl[entry] = cache;
1028 }
1029
1030 #ifdef CONFIG_SWAP
1031 unsigned long arch_max_swapfile_size(void)
1032 {
1033         unsigned long pages;
1034
1035         pages = generic_max_swapfile_size();
1036
1037         if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1038                 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1039                 unsigned long long l1tf_limit = l1tf_pfn_limit();
1040                 /*
1041                  * We encode swap offsets also with 3 bits below those for pfn
1042                  * which makes the usable limit higher.
1043                  */
1044 #if CONFIG_PGTABLE_LEVELS > 2
1045                 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1046 #endif
1047                 pages = min_t(unsigned long long, l1tf_limit, pages);
1048         }
1049         return pages;
1050 }
1051 #endif
1052
1053 #ifdef CONFIG_EXECMEM
1054 static struct execmem_info execmem_info __ro_after_init;
1055
1056 struct execmem_info __init *execmem_arch_setup(void)
1057 {
1058         unsigned long start, offset = 0;
1059
1060         if (kaslr_enabled())
1061                 offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1062
1063         start = MODULES_VADDR + offset;
1064
1065         execmem_info = (struct execmem_info){
1066                 .ranges = {
1067                         [EXECMEM_DEFAULT] = {
1068                                 .flags  = EXECMEM_KASAN_SHADOW,
1069                                 .start  = start,
1070                                 .end    = MODULES_END,
1071                                 .pgprot = PAGE_KERNEL,
1072                                 .alignment = MODULE_ALIGN,
1073                         },
1074                 },
1075         };
1076
1077         return &execmem_info;
1078 }
1079 #endif /* CONFIG_EXECMEM */