Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / arch / x86 / kvm / xen.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12
13 #include <linux/kvm_host.h>
14 #include <linux/sched/stat.h>
15
16 #include <trace/events/kvm.h>
17 #include <xen/interface/xen.h>
18 #include <xen/interface/vcpu.h>
19 #include <xen/interface/event_channel.h>
20
21 #include "trace.h"
22
23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
24
25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
26 {
27         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
28         struct pvclock_wall_clock *wc;
29         gpa_t gpa = gfn_to_gpa(gfn);
30         u32 *wc_sec_hi;
31         u32 wc_version;
32         u64 wall_nsec;
33         int ret = 0;
34         int idx = srcu_read_lock(&kvm->srcu);
35
36         if (gfn == GPA_INVALID) {
37                 kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
38                 goto out;
39         }
40
41         do {
42                 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true,
43                                                 gpa, PAGE_SIZE, false);
44                 if (ret)
45                         goto out;
46
47                 /*
48                  * This code mirrors kvm_write_wall_clock() except that it writes
49                  * directly through the pfn cache and doesn't mark the page dirty.
50                  */
51                 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
52
53                 /* It could be invalid again already, so we need to check */
54                 read_lock_irq(&gpc->lock);
55
56                 if (gpc->valid)
57                         break;
58
59                 read_unlock_irq(&gpc->lock);
60         } while (1);
61
62         /* Paranoia checks on the 32-bit struct layout */
63         BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
64         BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
65         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
66
67 #ifdef CONFIG_X86_64
68         /* Paranoia checks on the 64-bit struct layout */
69         BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
70         BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
71
72         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
73                 struct shared_info *shinfo = gpc->khva;
74
75                 wc_sec_hi = &shinfo->wc_sec_hi;
76                 wc = &shinfo->wc;
77         } else
78 #endif
79         {
80                 struct compat_shared_info *shinfo = gpc->khva;
81
82                 wc_sec_hi = &shinfo->arch.wc_sec_hi;
83                 wc = &shinfo->wc;
84         }
85
86         /* Increment and ensure an odd value */
87         wc_version = wc->version = (wc->version + 1) | 1;
88         smp_wmb();
89
90         wc->nsec = do_div(wall_nsec,  1000000000);
91         wc->sec = (u32)wall_nsec;
92         *wc_sec_hi = wall_nsec >> 32;
93         smp_wmb();
94
95         wc->version = wc_version + 1;
96         read_unlock_irq(&gpc->lock);
97
98         kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
99
100 out:
101         srcu_read_unlock(&kvm->srcu, idx);
102         return ret;
103 }
104
105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
106 {
107         struct kvm_vcpu_xen *vx = &v->arch.xen;
108         u64 now = get_kvmclock_ns(v->kvm);
109         u64 delta_ns = now - vx->runstate_entry_time;
110         u64 run_delay = current->sched_info.run_delay;
111
112         if (unlikely(!vx->runstate_entry_time))
113                 vx->current_runstate = RUNSTATE_offline;
114
115         /*
116          * Time waiting for the scheduler isn't "stolen" if the
117          * vCPU wasn't running anyway.
118          */
119         if (vx->current_runstate == RUNSTATE_running) {
120                 u64 steal_ns = run_delay - vx->last_steal;
121
122                 delta_ns -= steal_ns;
123
124                 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
125         }
126         vx->last_steal = run_delay;
127
128         vx->runstate_times[vx->current_runstate] += delta_ns;
129         vx->current_runstate = state;
130         vx->runstate_entry_time = now;
131 }
132
133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
134 {
135         struct kvm_vcpu_xen *vx = &v->arch.xen;
136         uint64_t state_entry_time;
137         unsigned int offset;
138
139         kvm_xen_update_runstate(v, state);
140
141         if (!vx->runstate_set)
142                 return;
143
144         BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
145
146         offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time);
147 #ifdef CONFIG_X86_64
148         /*
149          * The only difference is alignment of uint64_t in 32-bit.
150          * So the first field 'state' is accessed directly using
151          * offsetof() (where its offset happens to be zero), while the
152          * remaining fields which are all uint64_t, start at 'offset'
153          * which we tweak here by adding 4.
154          */
155         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
156                      offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
157         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
158                      offsetof(struct compat_vcpu_runstate_info, time) + 4);
159
160         if (v->kvm->arch.xen.long_mode)
161                 offset = offsetof(struct vcpu_runstate_info, state_entry_time);
162 #endif
163         /*
164          * First write the updated state_entry_time at the appropriate
165          * location determined by 'offset'.
166          */
167         state_entry_time = vx->runstate_entry_time;
168         state_entry_time |= XEN_RUNSTATE_UPDATE;
169
170         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
171                      sizeof(state_entry_time));
172         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
173                      sizeof(state_entry_time));
174
175         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
176                                           &state_entry_time, offset,
177                                           sizeof(state_entry_time)))
178                 return;
179         smp_wmb();
180
181         /*
182          * Next, write the new runstate. This is in the *same* place
183          * for 32-bit and 64-bit guests, asserted here for paranoia.
184          */
185         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
186                      offsetof(struct compat_vcpu_runstate_info, state));
187         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
188                      sizeof(vx->current_runstate));
189         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
190                      sizeof(vx->current_runstate));
191
192         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
193                                           &vx->current_runstate,
194                                           offsetof(struct vcpu_runstate_info, state),
195                                           sizeof(vx->current_runstate)))
196                 return;
197
198         /*
199          * Write the actual runstate times immediately after the
200          * runstate_entry_time.
201          */
202         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203                      offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
204         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
205                      offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
206         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
207                      sizeof_field(struct compat_vcpu_runstate_info, time));
208         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
209                      sizeof(vx->runstate_times));
210
211         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
212                                           &vx->runstate_times[0],
213                                           offset + sizeof(u64),
214                                           sizeof(vx->runstate_times)))
215                 return;
216
217         smp_wmb();
218
219         /*
220          * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
221          * runstate_entry_time field.
222          */
223
224         state_entry_time &= ~XEN_RUNSTATE_UPDATE;
225         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
226                                           &state_entry_time, offset,
227                                           sizeof(state_entry_time)))
228                 return;
229 }
230
231 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
232 {
233         unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
234         bool atomic = in_atomic() || !task_is_running(current);
235         int err;
236         u8 rc = 0;
237
238         /*
239          * If the global upcall vector (HVMIRQ_callback_vector) is set and
240          * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
241          */
242         struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
243         struct kvm_memslots *slots = kvm_memslots(v->kvm);
244         bool ghc_valid = slots->generation == ghc->generation &&
245                 !kvm_is_error_hva(ghc->hva) && ghc->memslot;
246
247         unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
248
249         /* No need for compat handling here */
250         BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
251                      offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
252         BUILD_BUG_ON(sizeof(rc) !=
253                      sizeof_field(struct vcpu_info, evtchn_upcall_pending));
254         BUILD_BUG_ON(sizeof(rc) !=
255                      sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
256
257         /*
258          * For efficiency, this mirrors the checks for using the valid
259          * cache in kvm_read_guest_offset_cached(), but just uses
260          * __get_user() instead. And falls back to the slow path.
261          */
262         if (!evtchn_pending_sel && ghc_valid) {
263                 /* Fast path */
264                 pagefault_disable();
265                 err = __get_user(rc, (u8 __user *)ghc->hva + offset);
266                 pagefault_enable();
267                 if (!err)
268                         return rc;
269         }
270
271         /* Slow path */
272
273         /*
274          * This function gets called from kvm_vcpu_block() after setting the
275          * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
276          * from a HLT. So we really mustn't sleep. If the page ended up absent
277          * at that point, just return 1 in order to trigger an immediate wake,
278          * and we'll end up getting called again from a context where we *can*
279          * fault in the page and wait for it.
280          */
281         if (atomic)
282                 return 1;
283
284         if (!ghc_valid) {
285                 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
286                 if (err || !ghc->memslot) {
287                         /*
288                          * If this failed, userspace has screwed up the
289                          * vcpu_info mapping. No interrupts for you.
290                          */
291                         return 0;
292                 }
293         }
294
295         /*
296          * Now we have a valid (protected by srcu) userspace HVA in
297          * ghc->hva which points to the struct vcpu_info. If there
298          * are any bits in the in-kernel evtchn_pending_sel then
299          * we need to write those to the guest vcpu_info and set
300          * its evtchn_upcall_pending flag. If there aren't any bits
301          * to add, we only want to *check* evtchn_upcall_pending.
302          */
303         if (evtchn_pending_sel) {
304                 bool long_mode = v->kvm->arch.xen.long_mode;
305
306                 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
307                         return 0;
308
309                 if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
310                         struct vcpu_info __user *vi = (void __user *)ghc->hva;
311
312                         /* Attempt to set the evtchn_pending_sel bits in the
313                          * guest, and if that succeeds then clear the same
314                          * bits in the in-kernel version. */
315                         asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
316                                      "\tnotq %0\n"
317                                      "\t" LOCK_PREFIX "andq %0, %2\n"
318                                      "2:\n"
319                                      _ASM_EXTABLE_UA(1b, 2b)
320                                      : "=r" (evtchn_pending_sel),
321                                        "+m" (vi->evtchn_pending_sel),
322                                        "+m" (v->arch.xen.evtchn_pending_sel)
323                                      : "0" (evtchn_pending_sel));
324                 } else {
325                         struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
326                         u32 evtchn_pending_sel32 = evtchn_pending_sel;
327
328                         /* Attempt to set the evtchn_pending_sel bits in the
329                          * guest, and if that succeeds then clear the same
330                          * bits in the in-kernel version. */
331                         asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
332                                      "\tnotl %0\n"
333                                      "\t" LOCK_PREFIX "andl %0, %2\n"
334                                      "2:\n"
335                                      _ASM_EXTABLE_UA(1b, 2b)
336                                      : "=r" (evtchn_pending_sel32),
337                                        "+m" (vi->evtchn_pending_sel),
338                                        "+m" (v->arch.xen.evtchn_pending_sel)
339                                      : "0" (evtchn_pending_sel32));
340                 }
341                 rc = 1;
342                 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
343
344         err:
345                 user_access_end();
346
347                 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
348         } else {
349                 __get_user(rc, (u8 __user *)ghc->hva + offset);
350         }
351
352         return rc;
353 }
354
355 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
356 {
357         int r = -ENOENT;
358
359         mutex_lock(&kvm->lock);
360
361         switch (data->type) {
362         case KVM_XEN_ATTR_TYPE_LONG_MODE:
363                 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
364                         r = -EINVAL;
365                 } else {
366                         kvm->arch.xen.long_mode = !!data->u.long_mode;
367                         r = 0;
368                 }
369                 break;
370
371         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
372                 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
373                 break;
374
375         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
376                 if (data->u.vector && data->u.vector < 0x10)
377                         r = -EINVAL;
378                 else {
379                         kvm->arch.xen.upcall_vector = data->u.vector;
380                         r = 0;
381                 }
382                 break;
383
384         default:
385                 break;
386         }
387
388         mutex_unlock(&kvm->lock);
389         return r;
390 }
391
392 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
393 {
394         int r = -ENOENT;
395
396         mutex_lock(&kvm->lock);
397
398         switch (data->type) {
399         case KVM_XEN_ATTR_TYPE_LONG_MODE:
400                 data->u.long_mode = kvm->arch.xen.long_mode;
401                 r = 0;
402                 break;
403
404         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
405                 if (kvm->arch.xen.shinfo_cache.active)
406                         data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
407                 else
408                         data->u.shared_info.gfn = GPA_INVALID;
409                 r = 0;
410                 break;
411
412         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
413                 data->u.vector = kvm->arch.xen.upcall_vector;
414                 r = 0;
415                 break;
416
417         default:
418                 break;
419         }
420
421         mutex_unlock(&kvm->lock);
422         return r;
423 }
424
425 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
426 {
427         int idx, r = -ENOENT;
428
429         mutex_lock(&vcpu->kvm->lock);
430         idx = srcu_read_lock(&vcpu->kvm->srcu);
431
432         switch (data->type) {
433         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
434                 /* No compat necessary here. */
435                 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
436                              sizeof(struct compat_vcpu_info));
437                 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
438                              offsetof(struct compat_vcpu_info, time));
439
440                 if (data->u.gpa == GPA_INVALID) {
441                         vcpu->arch.xen.vcpu_info_set = false;
442                         r = 0;
443                         break;
444                 }
445
446                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
447                                               &vcpu->arch.xen.vcpu_info_cache,
448                                               data->u.gpa,
449                                               sizeof(struct vcpu_info));
450                 if (!r) {
451                         vcpu->arch.xen.vcpu_info_set = true;
452                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
453                 }
454                 break;
455
456         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
457                 if (data->u.gpa == GPA_INVALID) {
458                         vcpu->arch.xen.vcpu_time_info_set = false;
459                         r = 0;
460                         break;
461                 }
462
463                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
464                                               &vcpu->arch.xen.vcpu_time_info_cache,
465                                               data->u.gpa,
466                                               sizeof(struct pvclock_vcpu_time_info));
467                 if (!r) {
468                         vcpu->arch.xen.vcpu_time_info_set = true;
469                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
470                 }
471                 break;
472
473         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
474                 if (!sched_info_on()) {
475                         r = -EOPNOTSUPP;
476                         break;
477                 }
478                 if (data->u.gpa == GPA_INVALID) {
479                         vcpu->arch.xen.runstate_set = false;
480                         r = 0;
481                         break;
482                 }
483
484                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
485                                               &vcpu->arch.xen.runstate_cache,
486                                               data->u.gpa,
487                                               sizeof(struct vcpu_runstate_info));
488                 if (!r) {
489                         vcpu->arch.xen.runstate_set = true;
490                 }
491                 break;
492
493         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
494                 if (!sched_info_on()) {
495                         r = -EOPNOTSUPP;
496                         break;
497                 }
498                 if (data->u.runstate.state > RUNSTATE_offline) {
499                         r = -EINVAL;
500                         break;
501                 }
502
503                 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
504                 r = 0;
505                 break;
506
507         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
508                 if (!sched_info_on()) {
509                         r = -EOPNOTSUPP;
510                         break;
511                 }
512                 if (data->u.runstate.state > RUNSTATE_offline) {
513                         r = -EINVAL;
514                         break;
515                 }
516                 if (data->u.runstate.state_entry_time !=
517                     (data->u.runstate.time_running +
518                      data->u.runstate.time_runnable +
519                      data->u.runstate.time_blocked +
520                      data->u.runstate.time_offline)) {
521                         r = -EINVAL;
522                         break;
523                 }
524                 if (get_kvmclock_ns(vcpu->kvm) <
525                     data->u.runstate.state_entry_time) {
526                         r = -EINVAL;
527                         break;
528                 }
529
530                 vcpu->arch.xen.current_runstate = data->u.runstate.state;
531                 vcpu->arch.xen.runstate_entry_time =
532                         data->u.runstate.state_entry_time;
533                 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
534                         data->u.runstate.time_running;
535                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
536                         data->u.runstate.time_runnable;
537                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
538                         data->u.runstate.time_blocked;
539                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
540                         data->u.runstate.time_offline;
541                 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
542                 r = 0;
543                 break;
544
545         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
546                 if (!sched_info_on()) {
547                         r = -EOPNOTSUPP;
548                         break;
549                 }
550                 if (data->u.runstate.state > RUNSTATE_offline &&
551                     data->u.runstate.state != (u64)-1) {
552                         r = -EINVAL;
553                         break;
554                 }
555                 /* The adjustment must add up */
556                 if (data->u.runstate.state_entry_time !=
557                     (data->u.runstate.time_running +
558                      data->u.runstate.time_runnable +
559                      data->u.runstate.time_blocked +
560                      data->u.runstate.time_offline)) {
561                         r = -EINVAL;
562                         break;
563                 }
564
565                 if (get_kvmclock_ns(vcpu->kvm) <
566                     (vcpu->arch.xen.runstate_entry_time +
567                      data->u.runstate.state_entry_time)) {
568                         r = -EINVAL;
569                         break;
570                 }
571
572                 vcpu->arch.xen.runstate_entry_time +=
573                         data->u.runstate.state_entry_time;
574                 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
575                         data->u.runstate.time_running;
576                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
577                         data->u.runstate.time_runnable;
578                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
579                         data->u.runstate.time_blocked;
580                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
581                         data->u.runstate.time_offline;
582
583                 if (data->u.runstate.state <= RUNSTATE_offline)
584                         kvm_xen_update_runstate(vcpu, data->u.runstate.state);
585                 r = 0;
586                 break;
587
588         default:
589                 break;
590         }
591
592         srcu_read_unlock(&vcpu->kvm->srcu, idx);
593         mutex_unlock(&vcpu->kvm->lock);
594         return r;
595 }
596
597 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
598 {
599         int r = -ENOENT;
600
601         mutex_lock(&vcpu->kvm->lock);
602
603         switch (data->type) {
604         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
605                 if (vcpu->arch.xen.vcpu_info_set)
606                         data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
607                 else
608                         data->u.gpa = GPA_INVALID;
609                 r = 0;
610                 break;
611
612         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
613                 if (vcpu->arch.xen.vcpu_time_info_set)
614                         data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
615                 else
616                         data->u.gpa = GPA_INVALID;
617                 r = 0;
618                 break;
619
620         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
621                 if (!sched_info_on()) {
622                         r = -EOPNOTSUPP;
623                         break;
624                 }
625                 if (vcpu->arch.xen.runstate_set) {
626                         data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
627                         r = 0;
628                 }
629                 break;
630
631         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
632                 if (!sched_info_on()) {
633                         r = -EOPNOTSUPP;
634                         break;
635                 }
636                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
637                 r = 0;
638                 break;
639
640         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
641                 if (!sched_info_on()) {
642                         r = -EOPNOTSUPP;
643                         break;
644                 }
645                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
646                 data->u.runstate.state_entry_time =
647                         vcpu->arch.xen.runstate_entry_time;
648                 data->u.runstate.time_running =
649                         vcpu->arch.xen.runstate_times[RUNSTATE_running];
650                 data->u.runstate.time_runnable =
651                         vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
652                 data->u.runstate.time_blocked =
653                         vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
654                 data->u.runstate.time_offline =
655                         vcpu->arch.xen.runstate_times[RUNSTATE_offline];
656                 r = 0;
657                 break;
658
659         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
660                 r = -EINVAL;
661                 break;
662
663         default:
664                 break;
665         }
666
667         mutex_unlock(&vcpu->kvm->lock);
668         return r;
669 }
670
671 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
672 {
673         struct kvm *kvm = vcpu->kvm;
674         u32 page_num = data & ~PAGE_MASK;
675         u64 page_addr = data & PAGE_MASK;
676         bool lm = is_long_mode(vcpu);
677
678         /* Latch long_mode for shared_info pages etc. */
679         vcpu->kvm->arch.xen.long_mode = lm;
680
681         /*
682          * If Xen hypercall intercept is enabled, fill the hypercall
683          * page with VMCALL/VMMCALL instructions since that's what
684          * we catch. Else the VMM has provided the hypercall pages
685          * with instructions of its own choosing, so use those.
686          */
687         if (kvm_xen_hypercall_enabled(kvm)) {
688                 u8 instructions[32];
689                 int i;
690
691                 if (page_num)
692                         return 1;
693
694                 /* mov imm32, %eax */
695                 instructions[0] = 0xb8;
696
697                 /* vmcall / vmmcall */
698                 kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
699
700                 /* ret */
701                 instructions[8] = 0xc3;
702
703                 /* int3 to pad */
704                 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
705
706                 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
707                         *(u32 *)&instructions[1] = i;
708                         if (kvm_vcpu_write_guest(vcpu,
709                                                  page_addr + (i * sizeof(instructions)),
710                                                  instructions, sizeof(instructions)))
711                                 return 1;
712                 }
713         } else {
714                 /*
715                  * Note, truncation is a non-issue as 'lm' is guaranteed to be
716                  * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
717                  */
718                 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
719                                      : kvm->arch.xen_hvm_config.blob_addr_32;
720                 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
721                                   : kvm->arch.xen_hvm_config.blob_size_32;
722                 u8 *page;
723
724                 if (page_num >= blob_size)
725                         return 1;
726
727                 blob_addr += page_num * PAGE_SIZE;
728
729                 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
730                 if (IS_ERR(page))
731                         return PTR_ERR(page);
732
733                 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
734                         kfree(page);
735                         return 1;
736                 }
737         }
738         return 0;
739 }
740
741 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
742 {
743         if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
744                 return -EINVAL;
745
746         /*
747          * With hypercall interception the kernel generates its own
748          * hypercall page so it must not be provided.
749          */
750         if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
751             (xhc->blob_addr_32 || xhc->blob_addr_64 ||
752              xhc->blob_size_32 || xhc->blob_size_64))
753                 return -EINVAL;
754
755         mutex_lock(&kvm->lock);
756
757         if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
758                 static_branch_inc(&kvm_xen_enabled.key);
759         else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
760                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
761
762         memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
763
764         mutex_unlock(&kvm->lock);
765         return 0;
766 }
767
768 void kvm_xen_init_vm(struct kvm *kvm)
769 {
770 }
771
772 void kvm_xen_destroy_vm(struct kvm *kvm)
773 {
774         kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
775
776         if (kvm->arch.xen_hvm_config.msr)
777                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
778 }
779
780 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
781 {
782         kvm_rax_write(vcpu, result);
783         return kvm_skip_emulated_instruction(vcpu);
784 }
785
786 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
787 {
788         struct kvm_run *run = vcpu->run;
789
790         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
791                 return 1;
792
793         return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
794 }
795
796 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
797 {
798         bool longmode;
799         u64 input, params[6];
800
801         input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
802
803         /* Hyper-V hypercalls get bit 31 set in EAX */
804         if ((input & 0x80000000) &&
805             kvm_hv_hypercall_enabled(vcpu))
806                 return kvm_hv_hypercall(vcpu);
807
808         longmode = is_64_bit_hypercall(vcpu);
809         if (!longmode) {
810                 params[0] = (u32)kvm_rbx_read(vcpu);
811                 params[1] = (u32)kvm_rcx_read(vcpu);
812                 params[2] = (u32)kvm_rdx_read(vcpu);
813                 params[3] = (u32)kvm_rsi_read(vcpu);
814                 params[4] = (u32)kvm_rdi_read(vcpu);
815                 params[5] = (u32)kvm_rbp_read(vcpu);
816         }
817 #ifdef CONFIG_X86_64
818         else {
819                 params[0] = (u64)kvm_rdi_read(vcpu);
820                 params[1] = (u64)kvm_rsi_read(vcpu);
821                 params[2] = (u64)kvm_rdx_read(vcpu);
822                 params[3] = (u64)kvm_r10_read(vcpu);
823                 params[4] = (u64)kvm_r8_read(vcpu);
824                 params[5] = (u64)kvm_r9_read(vcpu);
825         }
826 #endif
827         trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
828                                 params[3], params[4], params[5]);
829
830         vcpu->run->exit_reason = KVM_EXIT_XEN;
831         vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
832         vcpu->run->xen.u.hcall.longmode = longmode;
833         vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
834         vcpu->run->xen.u.hcall.input = input;
835         vcpu->run->xen.u.hcall.params[0] = params[0];
836         vcpu->run->xen.u.hcall.params[1] = params[1];
837         vcpu->run->xen.u.hcall.params[2] = params[2];
838         vcpu->run->xen.u.hcall.params[3] = params[3];
839         vcpu->run->xen.u.hcall.params[4] = params[4];
840         vcpu->run->xen.u.hcall.params[5] = params[5];
841         vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
842         vcpu->arch.complete_userspace_io =
843                 kvm_xen_hypercall_complete_userspace;
844
845         return 0;
846 }
847
848 static inline int max_evtchn_port(struct kvm *kvm)
849 {
850         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
851                 return EVTCHN_2L_NR_CHANNELS;
852         else
853                 return COMPAT_EVTCHN_2L_NR_CHANNELS;
854 }
855
856 /*
857  * This follows the kvm_set_irq() API, so it returns:
858  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
859  *  = 0   Interrupt was coalesced (previous irq is still pending)
860  *  > 0   Number of CPUs interrupt was delivered to
861  */
862 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
863                             struct kvm *kvm)
864 {
865         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
866         struct kvm_vcpu *vcpu;
867         unsigned long *pending_bits, *mask_bits;
868         unsigned long flags;
869         int port_word_bit;
870         bool kick_vcpu = false;
871         int idx;
872         int rc;
873
874         vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
875         if (!vcpu)
876                 return -1;
877
878         if (!vcpu->arch.xen.vcpu_info_set)
879                 return -1;
880
881         if (e->xen_evtchn.port >= max_evtchn_port(kvm))
882                 return -1;
883
884         rc = -EWOULDBLOCK;
885         read_lock_irqsave(&gpc->lock, flags);
886
887         idx = srcu_read_lock(&kvm->srcu);
888         if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
889                 goto out_rcu;
890
891         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
892                 struct shared_info *shinfo = gpc->khva;
893                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
894                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
895                 port_word_bit = e->xen_evtchn.port / 64;
896         } else {
897                 struct compat_shared_info *shinfo = gpc->khva;
898                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
899                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
900                 port_word_bit = e->xen_evtchn.port / 32;
901         }
902
903         /*
904          * If this port wasn't already set, and if it isn't masked, then
905          * we try to set the corresponding bit in the in-kernel shadow of
906          * evtchn_pending_sel for the target vCPU. And if *that* wasn't
907          * already set, then we kick the vCPU in question to write to the
908          * *real* evtchn_pending_sel in its own guest vcpu_info struct.
909          */
910         if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
911                 rc = 0; /* It was already raised */
912         } else if (test_bit(e->xen_evtchn.port, mask_bits)) {
913                 rc = -1; /* Masked */
914         } else {
915                 rc = 1; /* Delivered. But was the vCPU waking already? */
916                 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
917                         kick_vcpu = true;
918         }
919
920  out_rcu:
921         srcu_read_unlock(&kvm->srcu, idx);
922         read_unlock_irqrestore(&gpc->lock, flags);
923
924         if (kick_vcpu) {
925                 kvm_make_request(KVM_REQ_EVENT, vcpu);
926                 kvm_vcpu_kick(vcpu);
927         }
928
929         return rc;
930 }
931
932 /* This is the version called from kvm_set_irq() as the .set function */
933 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
934                          int irq_source_id, int level, bool line_status)
935 {
936         bool mm_borrowed = false;
937         int rc;
938
939         if (!level)
940                 return -1;
941
942         rc = kvm_xen_set_evtchn_fast(e, kvm);
943         if (rc != -EWOULDBLOCK)
944                 return rc;
945
946         if (current->mm != kvm->mm) {
947                 /*
948                  * If not on a thread which already belongs to this KVM,
949                  * we'd better be in the irqfd workqueue.
950                  */
951                 if (WARN_ON_ONCE(current->mm))
952                         return -EINVAL;
953
954                 kthread_use_mm(kvm->mm);
955                 mm_borrowed = true;
956         }
957
958         /*
959          * For the irqfd workqueue, using the main kvm->lock mutex is
960          * fine since this function is invoked from kvm_set_irq() with
961          * no other lock held, no srcu. In future if it will be called
962          * directly from a vCPU thread (e.g. on hypercall for an IPI)
963          * then it may need to switch to using a leaf-node mutex for
964          * serializing the shared_info mapping.
965          */
966         mutex_lock(&kvm->lock);
967
968         /*
969          * It is theoretically possible for the page to be unmapped
970          * and the MMU notifier to invalidate the shared_info before
971          * we even get to use it. In that case, this looks like an
972          * infinite loop. It was tempting to do it via the userspace
973          * HVA instead... but that just *hides* the fact that it's
974          * an infinite loop, because if a fault occurs and it waits
975          * for the page to come back, it can *still* immediately
976          * fault and have to wait again, repeatedly.
977          *
978          * Conversely, the page could also have been reinstated by
979          * another thread before we even obtain the mutex above, so
980          * check again *first* before remapping it.
981          */
982         do {
983                 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
984                 int idx;
985
986                 rc = kvm_xen_set_evtchn_fast(e, kvm);
987                 if (rc != -EWOULDBLOCK)
988                         break;
989
990                 idx = srcu_read_lock(&kvm->srcu);
991                 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa,
992                                                   PAGE_SIZE, false);
993                 srcu_read_unlock(&kvm->srcu, idx);
994         } while(!rc);
995
996         mutex_unlock(&kvm->lock);
997
998         if (mm_borrowed)
999                 kthread_unuse_mm(kvm->mm);
1000
1001         return rc;
1002 }
1003
1004 int kvm_xen_setup_evtchn(struct kvm *kvm,
1005                          struct kvm_kernel_irq_routing_entry *e,
1006                          const struct kvm_irq_routing_entry *ue)
1007
1008 {
1009         if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1010                 return -EINVAL;
1011
1012         /* We only support 2 level event channels for now */
1013         if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1014                 return -EINVAL;
1015
1016         e->xen_evtchn.port = ue->u.xen_evtchn.port;
1017         e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
1018         e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1019         e->set = evtchn_set_fn;
1020
1021         return 0;
1022 }