clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / arch / x86 / kvm / xen.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12
13 #include <linux/kvm_host.h>
14 #include <linux/sched/stat.h>
15
16 #include <trace/events/kvm.h>
17 #include <xen/interface/xen.h>
18 #include <xen/interface/vcpu.h>
19 #include <xen/interface/event_channel.h>
20
21 #include "trace.h"
22
23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
24
25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
26 {
27         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
28         struct pvclock_wall_clock *wc;
29         gpa_t gpa = gfn_to_gpa(gfn);
30         u32 *wc_sec_hi;
31         u32 wc_version;
32         u64 wall_nsec;
33         int ret = 0;
34         int idx = srcu_read_lock(&kvm->srcu);
35
36         if (gfn == GPA_INVALID) {
37                 kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
38                 goto out;
39         }
40
41         do {
42                 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true,
43                                                 gpa, PAGE_SIZE, false);
44                 if (ret)
45                         goto out;
46
47                 /*
48                  * This code mirrors kvm_write_wall_clock() except that it writes
49                  * directly through the pfn cache and doesn't mark the page dirty.
50                  */
51                 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
52
53                 /* It could be invalid again already, so we need to check */
54                 read_lock_irq(&gpc->lock);
55
56                 if (gpc->valid)
57                         break;
58
59                 read_unlock_irq(&gpc->lock);
60         } while (1);
61
62         /* Paranoia checks on the 32-bit struct layout */
63         BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
64         BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
65         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
66
67 #ifdef CONFIG_X86_64
68         /* Paranoia checks on the 64-bit struct layout */
69         BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
70         BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
71
72         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
73                 struct shared_info *shinfo = gpc->khva;
74
75                 wc_sec_hi = &shinfo->wc_sec_hi;
76                 wc = &shinfo->wc;
77         } else
78 #endif
79         {
80                 struct compat_shared_info *shinfo = gpc->khva;
81
82                 wc_sec_hi = &shinfo->arch.wc_sec_hi;
83                 wc = &shinfo->wc;
84         }
85
86         /* Increment and ensure an odd value */
87         wc_version = wc->version = (wc->version + 1) | 1;
88         smp_wmb();
89
90         wc->nsec = do_div(wall_nsec,  1000000000);
91         wc->sec = (u32)wall_nsec;
92         *wc_sec_hi = wall_nsec >> 32;
93         smp_wmb();
94
95         wc->version = wc_version + 1;
96         read_unlock_irq(&gpc->lock);
97
98         kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
99
100 out:
101         srcu_read_unlock(&kvm->srcu, idx);
102         return ret;
103 }
104
105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
106 {
107         struct kvm_vcpu_xen *vx = &v->arch.xen;
108         u64 now = get_kvmclock_ns(v->kvm);
109         u64 delta_ns = now - vx->runstate_entry_time;
110         u64 run_delay = current->sched_info.run_delay;
111
112         if (unlikely(!vx->runstate_entry_time))
113                 vx->current_runstate = RUNSTATE_offline;
114
115         /*
116          * Time waiting for the scheduler isn't "stolen" if the
117          * vCPU wasn't running anyway.
118          */
119         if (vx->current_runstate == RUNSTATE_running) {
120                 u64 steal_ns = run_delay - vx->last_steal;
121
122                 delta_ns -= steal_ns;
123
124                 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
125         }
126         vx->last_steal = run_delay;
127
128         vx->runstate_times[vx->current_runstate] += delta_ns;
129         vx->current_runstate = state;
130         vx->runstate_entry_time = now;
131 }
132
133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
134 {
135         struct kvm_vcpu_xen *vx = &v->arch.xen;
136         uint64_t state_entry_time;
137         unsigned int offset;
138
139         kvm_xen_update_runstate(v, state);
140
141         if (!vx->runstate_set)
142                 return;
143
144         BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
145
146         offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time);
147 #ifdef CONFIG_X86_64
148         /*
149          * The only difference is alignment of uint64_t in 32-bit.
150          * So the first field 'state' is accessed directly using
151          * offsetof() (where its offset happens to be zero), while the
152          * remaining fields which are all uint64_t, start at 'offset'
153          * which we tweak here by adding 4.
154          */
155         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
156                      offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
157         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
158                      offsetof(struct compat_vcpu_runstate_info, time) + 4);
159
160         if (v->kvm->arch.xen.long_mode)
161                 offset = offsetof(struct vcpu_runstate_info, state_entry_time);
162 #endif
163         /*
164          * First write the updated state_entry_time at the appropriate
165          * location determined by 'offset'.
166          */
167         state_entry_time = vx->runstate_entry_time;
168         state_entry_time |= XEN_RUNSTATE_UPDATE;
169
170         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
171                      sizeof(state_entry_time));
172         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
173                      sizeof(state_entry_time));
174
175         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
176                                           &state_entry_time, offset,
177                                           sizeof(state_entry_time)))
178                 return;
179         smp_wmb();
180
181         /*
182          * Next, write the new runstate. This is in the *same* place
183          * for 32-bit and 64-bit guests, asserted here for paranoia.
184          */
185         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
186                      offsetof(struct compat_vcpu_runstate_info, state));
187         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
188                      sizeof(vx->current_runstate));
189         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
190                      sizeof(vx->current_runstate));
191
192         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
193                                           &vx->current_runstate,
194                                           offsetof(struct vcpu_runstate_info, state),
195                                           sizeof(vx->current_runstate)))
196                 return;
197
198         /*
199          * Write the actual runstate times immediately after the
200          * runstate_entry_time.
201          */
202         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203                      offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
204         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
205                      offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
206         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
207                      sizeof_field(struct compat_vcpu_runstate_info, time));
208         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
209                      sizeof(vx->runstate_times));
210
211         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
212                                           &vx->runstate_times[0],
213                                           offset + sizeof(u64),
214                                           sizeof(vx->runstate_times)))
215                 return;
216
217         smp_wmb();
218
219         /*
220          * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
221          * runstate_entry_time field.
222          */
223
224         state_entry_time &= ~XEN_RUNSTATE_UPDATE;
225         if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
226                                           &state_entry_time, offset,
227                                           sizeof(state_entry_time)))
228                 return;
229 }
230
231 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
232 {
233         unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
234         bool atomic = in_atomic() || !task_is_running(current);
235         int err;
236         u8 rc = 0;
237
238         /*
239          * If the global upcall vector (HVMIRQ_callback_vector) is set and
240          * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
241          */
242         struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
243         struct kvm_memslots *slots = kvm_memslots(v->kvm);
244         bool ghc_valid = slots->generation == ghc->generation &&
245                 !kvm_is_error_hva(ghc->hva) && ghc->memslot;
246
247         unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
248
249         /* No need for compat handling here */
250         BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
251                      offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
252         BUILD_BUG_ON(sizeof(rc) !=
253                      sizeof_field(struct vcpu_info, evtchn_upcall_pending));
254         BUILD_BUG_ON(sizeof(rc) !=
255                      sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
256
257         /*
258          * For efficiency, this mirrors the checks for using the valid
259          * cache in kvm_read_guest_offset_cached(), but just uses
260          * __get_user() instead. And falls back to the slow path.
261          */
262         if (!evtchn_pending_sel && ghc_valid) {
263                 /* Fast path */
264                 pagefault_disable();
265                 err = __get_user(rc, (u8 __user *)ghc->hva + offset);
266                 pagefault_enable();
267                 if (!err)
268                         return rc;
269         }
270
271         /* Slow path */
272
273         /*
274          * This function gets called from kvm_vcpu_block() after setting the
275          * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
276          * from a HLT. So we really mustn't sleep. If the page ended up absent
277          * at that point, just return 1 in order to trigger an immediate wake,
278          * and we'll end up getting called again from a context where we *can*
279          * fault in the page and wait for it.
280          */
281         if (atomic)
282                 return 1;
283
284         if (!ghc_valid) {
285                 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
286                 if (err || !ghc->memslot) {
287                         /*
288                          * If this failed, userspace has screwed up the
289                          * vcpu_info mapping. No interrupts for you.
290                          */
291                         return 0;
292                 }
293         }
294
295         /*
296          * Now we have a valid (protected by srcu) userspace HVA in
297          * ghc->hva which points to the struct vcpu_info. If there
298          * are any bits in the in-kernel evtchn_pending_sel then
299          * we need to write those to the guest vcpu_info and set
300          * its evtchn_upcall_pending flag. If there aren't any bits
301          * to add, we only want to *check* evtchn_upcall_pending.
302          */
303         if (evtchn_pending_sel) {
304                 bool long_mode = v->kvm->arch.xen.long_mode;
305
306                 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
307                         return 0;
308
309                 if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
310                         struct vcpu_info __user *vi = (void __user *)ghc->hva;
311
312                         /* Attempt to set the evtchn_pending_sel bits in the
313                          * guest, and if that succeeds then clear the same
314                          * bits in the in-kernel version. */
315                         asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
316                                      "\tnotq %0\n"
317                                      "\t" LOCK_PREFIX "andq %0, %2\n"
318                                      "2:\n"
319                                      "\t.section .fixup,\"ax\"\n"
320                                      "3:\tjmp\t2b\n"
321                                      "\t.previous\n"
322                                      _ASM_EXTABLE_UA(1b, 3b)
323                                      : "=r" (evtchn_pending_sel),
324                                        "+m" (vi->evtchn_pending_sel),
325                                        "+m" (v->arch.xen.evtchn_pending_sel)
326                                      : "0" (evtchn_pending_sel));
327                 } else {
328                         struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
329                         u32 evtchn_pending_sel32 = evtchn_pending_sel;
330
331                         /* Attempt to set the evtchn_pending_sel bits in the
332                          * guest, and if that succeeds then clear the same
333                          * bits in the in-kernel version. */
334                         asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
335                                      "\tnotl %0\n"
336                                      "\t" LOCK_PREFIX "andl %0, %2\n"
337                                      "2:\n"
338                                      "\t.section .fixup,\"ax\"\n"
339                                      "3:\tjmp\t2b\n"
340                                      "\t.previous\n"
341                                      _ASM_EXTABLE_UA(1b, 3b)
342                                      : "=r" (evtchn_pending_sel32),
343                                        "+m" (vi->evtchn_pending_sel),
344                                        "+m" (v->arch.xen.evtchn_pending_sel)
345                                      : "0" (evtchn_pending_sel32));
346                 }
347                 rc = 1;
348                 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
349
350         err:
351                 user_access_end();
352
353                 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
354         } else {
355                 __get_user(rc, (u8 __user *)ghc->hva + offset);
356         }
357
358         return rc;
359 }
360
361 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
362 {
363         int r = -ENOENT;
364
365         mutex_lock(&kvm->lock);
366
367         switch (data->type) {
368         case KVM_XEN_ATTR_TYPE_LONG_MODE:
369                 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
370                         r = -EINVAL;
371                 } else {
372                         kvm->arch.xen.long_mode = !!data->u.long_mode;
373                         r = 0;
374                 }
375                 break;
376
377         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
378                 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
379                 break;
380
381         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
382                 if (data->u.vector && data->u.vector < 0x10)
383                         r = -EINVAL;
384                 else {
385                         kvm->arch.xen.upcall_vector = data->u.vector;
386                         r = 0;
387                 }
388                 break;
389
390         default:
391                 break;
392         }
393
394         mutex_unlock(&kvm->lock);
395         return r;
396 }
397
398 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
399 {
400         int r = -ENOENT;
401
402         mutex_lock(&kvm->lock);
403
404         switch (data->type) {
405         case KVM_XEN_ATTR_TYPE_LONG_MODE:
406                 data->u.long_mode = kvm->arch.xen.long_mode;
407                 r = 0;
408                 break;
409
410         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
411                 if (kvm->arch.xen.shinfo_cache.active)
412                         data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
413                 else
414                         data->u.shared_info.gfn = GPA_INVALID;
415                 r = 0;
416                 break;
417
418         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
419                 data->u.vector = kvm->arch.xen.upcall_vector;
420                 r = 0;
421                 break;
422
423         default:
424                 break;
425         }
426
427         mutex_unlock(&kvm->lock);
428         return r;
429 }
430
431 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
432 {
433         int idx, r = -ENOENT;
434
435         mutex_lock(&vcpu->kvm->lock);
436         idx = srcu_read_lock(&vcpu->kvm->srcu);
437
438         switch (data->type) {
439         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
440                 /* No compat necessary here. */
441                 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
442                              sizeof(struct compat_vcpu_info));
443                 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
444                              offsetof(struct compat_vcpu_info, time));
445
446                 if (data->u.gpa == GPA_INVALID) {
447                         vcpu->arch.xen.vcpu_info_set = false;
448                         r = 0;
449                         break;
450                 }
451
452                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
453                                               &vcpu->arch.xen.vcpu_info_cache,
454                                               data->u.gpa,
455                                               sizeof(struct vcpu_info));
456                 if (!r) {
457                         vcpu->arch.xen.vcpu_info_set = true;
458                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
459                 }
460                 break;
461
462         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
463                 if (data->u.gpa == GPA_INVALID) {
464                         vcpu->arch.xen.vcpu_time_info_set = false;
465                         r = 0;
466                         break;
467                 }
468
469                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
470                                               &vcpu->arch.xen.vcpu_time_info_cache,
471                                               data->u.gpa,
472                                               sizeof(struct pvclock_vcpu_time_info));
473                 if (!r) {
474                         vcpu->arch.xen.vcpu_time_info_set = true;
475                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
476                 }
477                 break;
478
479         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
480                 if (!sched_info_on()) {
481                         r = -EOPNOTSUPP;
482                         break;
483                 }
484                 if (data->u.gpa == GPA_INVALID) {
485                         vcpu->arch.xen.runstate_set = false;
486                         r = 0;
487                         break;
488                 }
489
490                 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
491                                               &vcpu->arch.xen.runstate_cache,
492                                               data->u.gpa,
493                                               sizeof(struct vcpu_runstate_info));
494                 if (!r) {
495                         vcpu->arch.xen.runstate_set = true;
496                 }
497                 break;
498
499         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
500                 if (!sched_info_on()) {
501                         r = -EOPNOTSUPP;
502                         break;
503                 }
504                 if (data->u.runstate.state > RUNSTATE_offline) {
505                         r = -EINVAL;
506                         break;
507                 }
508
509                 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
510                 r = 0;
511                 break;
512
513         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
514                 if (!sched_info_on()) {
515                         r = -EOPNOTSUPP;
516                         break;
517                 }
518                 if (data->u.runstate.state > RUNSTATE_offline) {
519                         r = -EINVAL;
520                         break;
521                 }
522                 if (data->u.runstate.state_entry_time !=
523                     (data->u.runstate.time_running +
524                      data->u.runstate.time_runnable +
525                      data->u.runstate.time_blocked +
526                      data->u.runstate.time_offline)) {
527                         r = -EINVAL;
528                         break;
529                 }
530                 if (get_kvmclock_ns(vcpu->kvm) <
531                     data->u.runstate.state_entry_time) {
532                         r = -EINVAL;
533                         break;
534                 }
535
536                 vcpu->arch.xen.current_runstate = data->u.runstate.state;
537                 vcpu->arch.xen.runstate_entry_time =
538                         data->u.runstate.state_entry_time;
539                 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
540                         data->u.runstate.time_running;
541                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
542                         data->u.runstate.time_runnable;
543                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
544                         data->u.runstate.time_blocked;
545                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
546                         data->u.runstate.time_offline;
547                 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
548                 r = 0;
549                 break;
550
551         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
552                 if (!sched_info_on()) {
553                         r = -EOPNOTSUPP;
554                         break;
555                 }
556                 if (data->u.runstate.state > RUNSTATE_offline &&
557                     data->u.runstate.state != (u64)-1) {
558                         r = -EINVAL;
559                         break;
560                 }
561                 /* The adjustment must add up */
562                 if (data->u.runstate.state_entry_time !=
563                     (data->u.runstate.time_running +
564                      data->u.runstate.time_runnable +
565                      data->u.runstate.time_blocked +
566                      data->u.runstate.time_offline)) {
567                         r = -EINVAL;
568                         break;
569                 }
570
571                 if (get_kvmclock_ns(vcpu->kvm) <
572                     (vcpu->arch.xen.runstate_entry_time +
573                      data->u.runstate.state_entry_time)) {
574                         r = -EINVAL;
575                         break;
576                 }
577
578                 vcpu->arch.xen.runstate_entry_time +=
579                         data->u.runstate.state_entry_time;
580                 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
581                         data->u.runstate.time_running;
582                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
583                         data->u.runstate.time_runnable;
584                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
585                         data->u.runstate.time_blocked;
586                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
587                         data->u.runstate.time_offline;
588
589                 if (data->u.runstate.state <= RUNSTATE_offline)
590                         kvm_xen_update_runstate(vcpu, data->u.runstate.state);
591                 r = 0;
592                 break;
593
594         default:
595                 break;
596         }
597
598         srcu_read_unlock(&vcpu->kvm->srcu, idx);
599         mutex_unlock(&vcpu->kvm->lock);
600         return r;
601 }
602
603 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
604 {
605         int r = -ENOENT;
606
607         mutex_lock(&vcpu->kvm->lock);
608
609         switch (data->type) {
610         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
611                 if (vcpu->arch.xen.vcpu_info_set)
612                         data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
613                 else
614                         data->u.gpa = GPA_INVALID;
615                 r = 0;
616                 break;
617
618         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
619                 if (vcpu->arch.xen.vcpu_time_info_set)
620                         data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
621                 else
622                         data->u.gpa = GPA_INVALID;
623                 r = 0;
624                 break;
625
626         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
627                 if (!sched_info_on()) {
628                         r = -EOPNOTSUPP;
629                         break;
630                 }
631                 if (vcpu->arch.xen.runstate_set) {
632                         data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
633                         r = 0;
634                 }
635                 break;
636
637         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
638                 if (!sched_info_on()) {
639                         r = -EOPNOTSUPP;
640                         break;
641                 }
642                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
643                 r = 0;
644                 break;
645
646         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
647                 if (!sched_info_on()) {
648                         r = -EOPNOTSUPP;
649                         break;
650                 }
651                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
652                 data->u.runstate.state_entry_time =
653                         vcpu->arch.xen.runstate_entry_time;
654                 data->u.runstate.time_running =
655                         vcpu->arch.xen.runstate_times[RUNSTATE_running];
656                 data->u.runstate.time_runnable =
657                         vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
658                 data->u.runstate.time_blocked =
659                         vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
660                 data->u.runstate.time_offline =
661                         vcpu->arch.xen.runstate_times[RUNSTATE_offline];
662                 r = 0;
663                 break;
664
665         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
666                 r = -EINVAL;
667                 break;
668
669         default:
670                 break;
671         }
672
673         mutex_unlock(&vcpu->kvm->lock);
674         return r;
675 }
676
677 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
678 {
679         struct kvm *kvm = vcpu->kvm;
680         u32 page_num = data & ~PAGE_MASK;
681         u64 page_addr = data & PAGE_MASK;
682         bool lm = is_long_mode(vcpu);
683
684         /* Latch long_mode for shared_info pages etc. */
685         vcpu->kvm->arch.xen.long_mode = lm;
686
687         /*
688          * If Xen hypercall intercept is enabled, fill the hypercall
689          * page with VMCALL/VMMCALL instructions since that's what
690          * we catch. Else the VMM has provided the hypercall pages
691          * with instructions of its own choosing, so use those.
692          */
693         if (kvm_xen_hypercall_enabled(kvm)) {
694                 u8 instructions[32];
695                 int i;
696
697                 if (page_num)
698                         return 1;
699
700                 /* mov imm32, %eax */
701                 instructions[0] = 0xb8;
702
703                 /* vmcall / vmmcall */
704                 kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
705
706                 /* ret */
707                 instructions[8] = 0xc3;
708
709                 /* int3 to pad */
710                 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
711
712                 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
713                         *(u32 *)&instructions[1] = i;
714                         if (kvm_vcpu_write_guest(vcpu,
715                                                  page_addr + (i * sizeof(instructions)),
716                                                  instructions, sizeof(instructions)))
717                                 return 1;
718                 }
719         } else {
720                 /*
721                  * Note, truncation is a non-issue as 'lm' is guaranteed to be
722                  * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
723                  */
724                 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
725                                      : kvm->arch.xen_hvm_config.blob_addr_32;
726                 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
727                                   : kvm->arch.xen_hvm_config.blob_size_32;
728                 u8 *page;
729
730                 if (page_num >= blob_size)
731                         return 1;
732
733                 blob_addr += page_num * PAGE_SIZE;
734
735                 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
736                 if (IS_ERR(page))
737                         return PTR_ERR(page);
738
739                 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
740                         kfree(page);
741                         return 1;
742                 }
743         }
744         return 0;
745 }
746
747 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
748 {
749         if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
750                 return -EINVAL;
751
752         /*
753          * With hypercall interception the kernel generates its own
754          * hypercall page so it must not be provided.
755          */
756         if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
757             (xhc->blob_addr_32 || xhc->blob_addr_64 ||
758              xhc->blob_size_32 || xhc->blob_size_64))
759                 return -EINVAL;
760
761         mutex_lock(&kvm->lock);
762
763         if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
764                 static_branch_inc(&kvm_xen_enabled.key);
765         else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
766                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
767
768         memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
769
770         mutex_unlock(&kvm->lock);
771         return 0;
772 }
773
774 void kvm_xen_init_vm(struct kvm *kvm)
775 {
776 }
777
778 void kvm_xen_destroy_vm(struct kvm *kvm)
779 {
780         kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
781
782         if (kvm->arch.xen_hvm_config.msr)
783                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
784 }
785
786 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
787 {
788         kvm_rax_write(vcpu, result);
789         return kvm_skip_emulated_instruction(vcpu);
790 }
791
792 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
793 {
794         struct kvm_run *run = vcpu->run;
795
796         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
797                 return 1;
798
799         return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
800 }
801
802 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
803 {
804         bool longmode;
805         u64 input, params[6];
806
807         input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
808
809         /* Hyper-V hypercalls get bit 31 set in EAX */
810         if ((input & 0x80000000) &&
811             kvm_hv_hypercall_enabled(vcpu))
812                 return kvm_hv_hypercall(vcpu);
813
814         longmode = is_64_bit_hypercall(vcpu);
815         if (!longmode) {
816                 params[0] = (u32)kvm_rbx_read(vcpu);
817                 params[1] = (u32)kvm_rcx_read(vcpu);
818                 params[2] = (u32)kvm_rdx_read(vcpu);
819                 params[3] = (u32)kvm_rsi_read(vcpu);
820                 params[4] = (u32)kvm_rdi_read(vcpu);
821                 params[5] = (u32)kvm_rbp_read(vcpu);
822         }
823 #ifdef CONFIG_X86_64
824         else {
825                 params[0] = (u64)kvm_rdi_read(vcpu);
826                 params[1] = (u64)kvm_rsi_read(vcpu);
827                 params[2] = (u64)kvm_rdx_read(vcpu);
828                 params[3] = (u64)kvm_r10_read(vcpu);
829                 params[4] = (u64)kvm_r8_read(vcpu);
830                 params[5] = (u64)kvm_r9_read(vcpu);
831         }
832 #endif
833         trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
834                                 params[3], params[4], params[5]);
835
836         vcpu->run->exit_reason = KVM_EXIT_XEN;
837         vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
838         vcpu->run->xen.u.hcall.longmode = longmode;
839         vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
840         vcpu->run->xen.u.hcall.input = input;
841         vcpu->run->xen.u.hcall.params[0] = params[0];
842         vcpu->run->xen.u.hcall.params[1] = params[1];
843         vcpu->run->xen.u.hcall.params[2] = params[2];
844         vcpu->run->xen.u.hcall.params[3] = params[3];
845         vcpu->run->xen.u.hcall.params[4] = params[4];
846         vcpu->run->xen.u.hcall.params[5] = params[5];
847         vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
848         vcpu->arch.complete_userspace_io =
849                 kvm_xen_hypercall_complete_userspace;
850
851         return 0;
852 }
853
854 static inline int max_evtchn_port(struct kvm *kvm)
855 {
856         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
857                 return EVTCHN_2L_NR_CHANNELS;
858         else
859                 return COMPAT_EVTCHN_2L_NR_CHANNELS;
860 }
861
862 /*
863  * This follows the kvm_set_irq() API, so it returns:
864  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
865  *  = 0   Interrupt was coalesced (previous irq is still pending)
866  *  > 0   Number of CPUs interrupt was delivered to
867  */
868 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
869                             struct kvm *kvm)
870 {
871         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
872         struct kvm_vcpu *vcpu;
873         unsigned long *pending_bits, *mask_bits;
874         unsigned long flags;
875         int port_word_bit;
876         bool kick_vcpu = false;
877         int idx;
878         int rc;
879
880         vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
881         if (!vcpu)
882                 return -1;
883
884         if (!vcpu->arch.xen.vcpu_info_set)
885                 return -1;
886
887         if (e->xen_evtchn.port >= max_evtchn_port(kvm))
888                 return -1;
889
890         rc = -EWOULDBLOCK;
891         read_lock_irqsave(&gpc->lock, flags);
892
893         idx = srcu_read_lock(&kvm->srcu);
894         if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
895                 goto out_rcu;
896
897         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
898                 struct shared_info *shinfo = gpc->khva;
899                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
900                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
901                 port_word_bit = e->xen_evtchn.port / 64;
902         } else {
903                 struct compat_shared_info *shinfo = gpc->khva;
904                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
905                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
906                 port_word_bit = e->xen_evtchn.port / 32;
907         }
908
909         /*
910          * If this port wasn't already set, and if it isn't masked, then
911          * we try to set the corresponding bit in the in-kernel shadow of
912          * evtchn_pending_sel for the target vCPU. And if *that* wasn't
913          * already set, then we kick the vCPU in question to write to the
914          * *real* evtchn_pending_sel in its own guest vcpu_info struct.
915          */
916         if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
917                 rc = 0; /* It was already raised */
918         } else if (test_bit(e->xen_evtchn.port, mask_bits)) {
919                 rc = -1; /* Masked */
920         } else {
921                 rc = 1; /* Delivered. But was the vCPU waking already? */
922                 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
923                         kick_vcpu = true;
924         }
925
926  out_rcu:
927         srcu_read_unlock(&kvm->srcu, idx);
928         read_unlock_irqrestore(&gpc->lock, flags);
929
930         if (kick_vcpu) {
931                 kvm_make_request(KVM_REQ_EVENT, vcpu);
932                 kvm_vcpu_kick(vcpu);
933         }
934
935         return rc;
936 }
937
938 /* This is the version called from kvm_set_irq() as the .set function */
939 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
940                          int irq_source_id, int level, bool line_status)
941 {
942         bool mm_borrowed = false;
943         int rc;
944
945         if (!level)
946                 return -1;
947
948         rc = kvm_xen_set_evtchn_fast(e, kvm);
949         if (rc != -EWOULDBLOCK)
950                 return rc;
951
952         if (current->mm != kvm->mm) {
953                 /*
954                  * If not on a thread which already belongs to this KVM,
955                  * we'd better be in the irqfd workqueue.
956                  */
957                 if (WARN_ON_ONCE(current->mm))
958                         return -EINVAL;
959
960                 kthread_use_mm(kvm->mm);
961                 mm_borrowed = true;
962         }
963
964         /*
965          * For the irqfd workqueue, using the main kvm->lock mutex is
966          * fine since this function is invoked from kvm_set_irq() with
967          * no other lock held, no srcu. In future if it will be called
968          * directly from a vCPU thread (e.g. on hypercall for an IPI)
969          * then it may need to switch to using a leaf-node mutex for
970          * serializing the shared_info mapping.
971          */
972         mutex_lock(&kvm->lock);
973
974         /*
975          * It is theoretically possible for the page to be unmapped
976          * and the MMU notifier to invalidate the shared_info before
977          * we even get to use it. In that case, this looks like an
978          * infinite loop. It was tempting to do it via the userspace
979          * HVA instead... but that just *hides* the fact that it's
980          * an infinite loop, because if a fault occurs and it waits
981          * for the page to come back, it can *still* immediately
982          * fault and have to wait again, repeatedly.
983          *
984          * Conversely, the page could also have been reinstated by
985          * another thread before we even obtain the mutex above, so
986          * check again *first* before remapping it.
987          */
988         do {
989                 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
990                 int idx;
991
992                 rc = kvm_xen_set_evtchn_fast(e, kvm);
993                 if (rc != -EWOULDBLOCK)
994                         break;
995
996                 idx = srcu_read_lock(&kvm->srcu);
997                 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa,
998                                                   PAGE_SIZE, false);
999                 srcu_read_unlock(&kvm->srcu, idx);
1000         } while(!rc);
1001
1002         mutex_unlock(&kvm->lock);
1003
1004         if (mm_borrowed)
1005                 kthread_unuse_mm(kvm->mm);
1006
1007         return rc;
1008 }
1009
1010 int kvm_xen_setup_evtchn(struct kvm *kvm,
1011                          struct kvm_kernel_irq_routing_entry *e,
1012                          const struct kvm_irq_routing_entry *ue)
1013
1014 {
1015         if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1016                 return -EINVAL;
1017
1018         /* We only support 2 level event channels for now */
1019         if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1020                 return -EINVAL;
1021
1022         e->xen_evtchn.port = ue->u.xen_evtchn.port;
1023         e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
1024         e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1025         e->set = evtchn_set_fn;
1026
1027         return 0;
1028 }