Merge tag 'trace-v5.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83
84 #define emul_to_vcpu(ctxt) \
85         ((struct kvm_vcpu *)(ctxt)->vcpu)
86
87 /* EFER defaults:
88  * - enable syscall per default because its emulated by KVM
89  * - enable LME and LMA per default on 64 bit KVM
90  */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 #define KVM_NR_SHARED_MSRS 16
166
167 struct kvm_shared_msrs_global {
168         int nr;
169         u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171
172 struct kvm_shared_msrs {
173         struct user_return_notifier urn;
174         bool registered;
175         struct kvm_shared_msr_values {
176                 u64 host;
177                 u64 curr;
178         } values[KVM_NR_SHARED_MSRS];
179 };
180
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183
184 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187                                 | XFEATURE_MASK_PKRU)
188
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197         { "pf_fixed", VCPU_STAT(pf_fixed) },
198         { "pf_guest", VCPU_STAT(pf_guest) },
199         { "tlb_flush", VCPU_STAT(tlb_flush) },
200         { "invlpg", VCPU_STAT(invlpg) },
201         { "exits", VCPU_STAT(exits) },
202         { "io_exits", VCPU_STAT(io_exits) },
203         { "mmio_exits", VCPU_STAT(mmio_exits) },
204         { "signal_exits", VCPU_STAT(signal_exits) },
205         { "irq_window", VCPU_STAT(irq_window_exits) },
206         { "nmi_window", VCPU_STAT(nmi_window_exits) },
207         { "halt_exits", VCPU_STAT(halt_exits) },
208         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
212         { "hypercalls", VCPU_STAT(hypercalls) },
213         { "request_irq", VCPU_STAT(request_irq_exits) },
214         { "irq_exits", VCPU_STAT(irq_exits) },
215         { "host_state_reload", VCPU_STAT(host_state_reload) },
216         { "fpu_reload", VCPU_STAT(fpu_reload) },
217         { "insn_emulation", VCPU_STAT(insn_emulation) },
218         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219         { "irq_injections", VCPU_STAT(irq_injections) },
220         { "nmi_injections", VCPU_STAT(nmi_injections) },
221         { "req_event", VCPU_STAT(req_event) },
222         { "l1d_flush", VCPU_STAT(l1d_flush) },
223         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
225         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227         { "mmu_flooded", VM_STAT(mmu_flooded) },
228         { "mmu_recycled", VM_STAT(mmu_recycled) },
229         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230         { "mmu_unsync", VM_STAT(mmu_unsync) },
231         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232         { "largepages", VM_STAT(lpages, .mode = 0444) },
233         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234         { "max_mmu_page_hash_collisions",
235                 VM_STAT(max_mmu_page_hash_collisions) },
236         { NULL }
237 };
238
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245
246 static struct kmem_cache *x86_emulator_cache;
247
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251         unsigned int size = sizeof(struct x86_emulate_ctxt);
252
253         return kmem_cache_create_usercopy("x86_emulator", size,
254                                           __alignof__(struct x86_emulate_ctxt),
255                                           SLAB_ACCOUNT, useroffset,
256                                           size - useroffset, NULL);
257 }
258
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263         int i;
264         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265                 vcpu->arch.apf.gfns[i] = ~0;
266 }
267
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270         unsigned slot;
271         struct kvm_shared_msrs *locals
272                 = container_of(urn, struct kvm_shared_msrs, urn);
273         struct kvm_shared_msr_values *values;
274         unsigned long flags;
275
276         /*
277          * Disabling irqs at this point since the following code could be
278          * interrupted and executed through kvm_arch_hardware_disable()
279          */
280         local_irq_save(flags);
281         if (locals->registered) {
282                 locals->registered = false;
283                 user_return_notifier_unregister(urn);
284         }
285         local_irq_restore(flags);
286         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287                 values = &locals->values[slot];
288                 if (values->host != values->curr) {
289                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
290                         values->curr = values->host;
291                 }
292         }
293 }
294
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298         shared_msrs_global.msrs[slot] = msr;
299         if (slot >= shared_msrs_global.nr)
300                 shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303
304 static void kvm_shared_msr_cpu_online(void)
305 {
306         unsigned int cpu = smp_processor_id();
307         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308         u64 value;
309         int i;
310
311         for (i = 0; i < shared_msrs_global.nr; ++i) {
312                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313                 smsr->values[i].host = value;
314                 smsr->values[i].curr = value;
315         }
316 }
317
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322         int err;
323
324         value = (value & mask) | (smsr->values[slot].host & ~mask);
325         if (value == smsr->values[slot].curr)
326                 return 0;
327         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328         if (err)
329                 return 1;
330
331         smsr->values[slot].curr = value;
332         if (!smsr->registered) {
333                 smsr->urn.on_user_return = kvm_on_user_return;
334                 user_return_notifier_register(&smsr->urn);
335                 smsr->registered = true;
336         }
337         return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340
341 static void drop_user_return_notifiers(void)
342 {
343         unsigned int cpu = smp_processor_id();
344         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345
346         if (smsr->registered)
347                 kvm_on_user_return(&smsr->urn);
348 }
349
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352         return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358         return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368
369         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370                 return 1;
371         if (!msr_info->host_initiated) {
372                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373                         return 1;
374                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375                         return 1;
376         }
377
378         kvm_lapic_set_base(vcpu, msr_info->data);
379         kvm_recalculate_apic_map(vcpu->kvm);
380         return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386         /* Fault while not rebooting.  We want the trace. */
387         BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390
391 #define EXCPT_BENIGN            0
392 #define EXCPT_CONTRIBUTORY      1
393 #define EXCPT_PF                2
394
395 static int exception_class(int vector)
396 {
397         switch (vector) {
398         case PF_VECTOR:
399                 return EXCPT_PF;
400         case DE_VECTOR:
401         case TS_VECTOR:
402         case NP_VECTOR:
403         case SS_VECTOR:
404         case GP_VECTOR:
405                 return EXCPT_CONTRIBUTORY;
406         default:
407                 break;
408         }
409         return EXCPT_BENIGN;
410 }
411
412 #define EXCPT_FAULT             0
413 #define EXCPT_TRAP              1
414 #define EXCPT_ABORT             2
415 #define EXCPT_INTERRUPT         3
416
417 static int exception_type(int vector)
418 {
419         unsigned int mask;
420
421         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422                 return EXCPT_INTERRUPT;
423
424         mask = 1 << vector;
425
426         /* #DB is trap, as instruction watchpoints are handled elsewhere */
427         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428                 return EXCPT_TRAP;
429
430         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431                 return EXCPT_ABORT;
432
433         /* Reserved exceptions will result in fault */
434         return EXCPT_FAULT;
435 }
436
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439         unsigned nr = vcpu->arch.exception.nr;
440         bool has_payload = vcpu->arch.exception.has_payload;
441         unsigned long payload = vcpu->arch.exception.payload;
442
443         if (!has_payload)
444                 return;
445
446         switch (nr) {
447         case DB_VECTOR:
448                 /*
449                  * "Certain debug exceptions may clear bit 0-3.  The
450                  * remaining contents of the DR6 register are never
451                  * cleared by the processor".
452                  */
453                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454                 /*
455                  * DR6.RTM is set by all #DB exceptions that don't clear it.
456                  */
457                 vcpu->arch.dr6 |= DR6_RTM;
458                 vcpu->arch.dr6 |= payload;
459                 /*
460                  * Bit 16 should be set in the payload whenever the #DB
461                  * exception should clear DR6.RTM. This makes the payload
462                  * compatible with the pending debug exceptions under VMX.
463                  * Though not currently documented in the SDM, this also
464                  * makes the payload compatible with the exit qualification
465                  * for #DB exceptions under VMX.
466                  */
467                 vcpu->arch.dr6 ^= payload & DR6_RTM;
468
469                 /*
470                  * The #DB payload is defined as compatible with the 'pending
471                  * debug exceptions' field under VMX, not DR6. While bit 12 is
472                  * defined in the 'pending debug exceptions' field (enabled
473                  * breakpoint), it is reserved and must be zero in DR6.
474                  */
475                 vcpu->arch.dr6 &= ~BIT(12);
476                 break;
477         case PF_VECTOR:
478                 vcpu->arch.cr2 = payload;
479                 break;
480         }
481
482         vcpu->arch.exception.has_payload = false;
483         vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488                 unsigned nr, bool has_error, u32 error_code,
489                 bool has_payload, unsigned long payload, bool reinject)
490 {
491         u32 prev_nr;
492         int class1, class2;
493
494         kvm_make_request(KVM_REQ_EVENT, vcpu);
495
496         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497         queue:
498                 if (has_error && !is_protmode(vcpu))
499                         has_error = false;
500                 if (reinject) {
501                         /*
502                          * On vmentry, vcpu->arch.exception.pending is only
503                          * true if an event injection was blocked by
504                          * nested_run_pending.  In that case, however,
505                          * vcpu_enter_guest requests an immediate exit,
506                          * and the guest shouldn't proceed far enough to
507                          * need reinjection.
508                          */
509                         WARN_ON_ONCE(vcpu->arch.exception.pending);
510                         vcpu->arch.exception.injected = true;
511                         if (WARN_ON_ONCE(has_payload)) {
512                                 /*
513                                  * A reinjected event has already
514                                  * delivered its payload.
515                                  */
516                                 has_payload = false;
517                                 payload = 0;
518                         }
519                 } else {
520                         vcpu->arch.exception.pending = true;
521                         vcpu->arch.exception.injected = false;
522                 }
523                 vcpu->arch.exception.has_error_code = has_error;
524                 vcpu->arch.exception.nr = nr;
525                 vcpu->arch.exception.error_code = error_code;
526                 vcpu->arch.exception.has_payload = has_payload;
527                 vcpu->arch.exception.payload = payload;
528                 if (!is_guest_mode(vcpu))
529                         kvm_deliver_exception_payload(vcpu);
530                 return;
531         }
532
533         /* to check exception */
534         prev_nr = vcpu->arch.exception.nr;
535         if (prev_nr == DF_VECTOR) {
536                 /* triple fault -> shutdown */
537                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538                 return;
539         }
540         class1 = exception_class(prev_nr);
541         class2 = exception_class(nr);
542         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544                 /*
545                  * Generate double fault per SDM Table 5-5.  Set
546                  * exception.pending = true so that the double fault
547                  * can trigger a nested vmexit.
548                  */
549                 vcpu->arch.exception.pending = true;
550                 vcpu->arch.exception.injected = false;
551                 vcpu->arch.exception.has_error_code = true;
552                 vcpu->arch.exception.nr = DF_VECTOR;
553                 vcpu->arch.exception.error_code = 0;
554                 vcpu->arch.exception.has_payload = false;
555                 vcpu->arch.exception.payload = 0;
556         } else
557                 /* replace previous exception with a new one in a hope
558                    that instruction re-execution will regenerate lost
559                    exception */
560                 goto queue;
561 }
562
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576                                   unsigned long payload)
577 {
578         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582                                     u32 error_code, unsigned long payload)
583 {
584         kvm_multiple_exception(vcpu, nr, true, error_code,
585                                true, payload, false);
586 }
587
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590         if (err)
591                 kvm_inject_gp(vcpu, 0);
592         else
593                 return kvm_skip_emulated_instruction(vcpu);
594
595         return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601         ++vcpu->stat.pf_guest;
602         vcpu->arch.exception.nested_apf =
603                 is_guest_mode(vcpu) && fault->async_page_fault;
604         if (vcpu->arch.exception.nested_apf) {
605                 vcpu->arch.apf.nested_apf_token = fault->address;
606                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607         } else {
608                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609                                         fault->address);
610         }
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618         else
619                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620
621         return fault->nested_page_fault;
622 }
623
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626         atomic_inc(&vcpu->arch.nmi_queued);
627         kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642
643 /*
644  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
645  * a #GP and return false.
646  */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
650                 return true;
651         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652         return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659                 return true;
660
661         kvm_queue_exception(vcpu, UD_VECTOR);
662         return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665
666 /*
667  * This function will be used to read from the physical memory of the currently
668  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669  * can read from guest physical or from the guest's guest physical memory.
670  */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672                             gfn_t ngfn, void *data, int offset, int len,
673                             u32 access)
674 {
675         struct x86_exception exception;
676         gfn_t real_gfn;
677         gpa_t ngpa;
678
679         ngpa     = gfn_to_gpa(ngfn);
680         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681         if (real_gfn == UNMAPPED_GVA)
682                 return -EFAULT;
683
684         real_gfn = gpa_to_gfn(real_gfn);
685
686         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691                                void *data, int offset, int len, u32 access)
692 {
693         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694                                        data, offset, len, access);
695 }
696
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700                rsvd_bits(1, 2);
701 }
702
703 /*
704  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
705  */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710         int i;
711         int ret;
712         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713
714         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715                                       offset * sizeof(u64), sizeof(pdpte),
716                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
717         if (ret < 0) {
718                 ret = 0;
719                 goto out;
720         }
721         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722                 if ((pdpte[i] & PT_PRESENT_MASK) &&
723                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724                         ret = 0;
725                         goto out;
726                 }
727         }
728         ret = 1;
729
730         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732
733 out:
734
735         return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742         int offset;
743         gfn_t gfn;
744         int r;
745
746         if (!is_pae_paging(vcpu))
747                 return false;
748
749         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750                 return true;
751
752         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
756         if (r < 0)
757                 return true;
758
759         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765         unsigned long old_cr0 = kvm_read_cr0(vcpu);
766         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767
768         cr0 |= X86_CR0_ET;
769
770 #ifdef CONFIG_X86_64
771         if (cr0 & 0xffffffff00000000UL)
772                 return 1;
773 #endif
774
775         cr0 &= ~CR0_RESERVED_BITS;
776
777         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778                 return 1;
779
780         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781                 return 1;
782
783         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785                 if ((vcpu->arch.efer & EFER_LME)) {
786                         int cs_db, cs_l;
787
788                         if (!is_pae(vcpu))
789                                 return 1;
790                         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791                         if (cs_l)
792                                 return 1;
793                 } else
794 #endif
795                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796                                                  kvm_read_cr3(vcpu)))
797                         return 1;
798         }
799
800         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801                 return 1;
802
803         kvm_x86_ops.set_cr0(vcpu, cr0);
804
805         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806                 kvm_clear_async_pf_completion_queue(vcpu);
807                 kvm_async_pf_hash_reset(vcpu);
808         }
809
810         if ((cr0 ^ old_cr0) & update_bits)
811                 kvm_mmu_reset_context(vcpu);
812
813         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817
818         return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831
832                 if (vcpu->arch.xcr0 != host_xcr0)
833                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834
835                 if (vcpu->arch.xsaves_enabled &&
836                     vcpu->arch.ia32_xss != host_xss)
837                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838         }
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845
846                 if (vcpu->arch.xcr0 != host_xcr0)
847                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848
849                 if (vcpu->arch.xsaves_enabled &&
850                     vcpu->arch.ia32_xss != host_xss)
851                         wrmsrl(MSR_IA32_XSS, host_xss);
852         }
853
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859         u64 xcr0 = xcr;
860         u64 old_xcr0 = vcpu->arch.xcr0;
861         u64 valid_bits;
862
863         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
864         if (index != XCR_XFEATURE_ENABLED_MASK)
865                 return 1;
866         if (!(xcr0 & XFEATURE_MASK_FP))
867                 return 1;
868         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869                 return 1;
870
871         /*
872          * Do not allow the guest to set bits that we do not support
873          * saving.  However, xcr0 bit 0 is always set, even if the
874          * emulated CPU does not support XSAVE (see fx_init).
875          */
876         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877         if (xcr0 & ~valid_bits)
878                 return 1;
879
880         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882                 return 1;
883
884         if (xcr0 & XFEATURE_MASK_AVX512) {
885                 if (!(xcr0 & XFEATURE_MASK_YMM))
886                         return 1;
887                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888                         return 1;
889         }
890         vcpu->arch.xcr0 = xcr0;
891
892         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893                 kvm_update_cpuid(vcpu);
894         return 0;
895 }
896
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
900             __kvm_set_xcr(vcpu, index, xcr)) {
901                 kvm_inject_gp(vcpu, 0);
902                 return 1;
903         }
904         return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907
908 #define __cr4_reserved_bits(__cpu_has, __c)             \
909 ({                                                      \
910         u64 __reserved_bits = CR4_RESERVED_BITS;        \
911                                                         \
912         if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
913                 __reserved_bits |= X86_CR4_OSXSAVE;     \
914         if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
915                 __reserved_bits |= X86_CR4_SMEP;        \
916         if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
917                 __reserved_bits |= X86_CR4_SMAP;        \
918         if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
919                 __reserved_bits |= X86_CR4_FSGSBASE;    \
920         if (!__cpu_has(__c, X86_FEATURE_PKU))           \
921                 __reserved_bits |= X86_CR4_PKE;         \
922         if (!__cpu_has(__c, X86_FEATURE_LA57))          \
923                 __reserved_bits |= X86_CR4_LA57;        \
924         if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
925                 __reserved_bits |= X86_CR4_UMIP;        \
926         __reserved_bits;                                \
927 })
928
929 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
930 {
931         if (cr4 & cr4_reserved_bits)
932                 return -EINVAL;
933
934         if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
935                 return -EINVAL;
936
937         return 0;
938 }
939
940 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
941 {
942         unsigned long old_cr4 = kvm_read_cr4(vcpu);
943         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
944                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
945
946         if (kvm_valid_cr4(vcpu, cr4))
947                 return 1;
948
949         if (is_long_mode(vcpu)) {
950                 if (!(cr4 & X86_CR4_PAE))
951                         return 1;
952         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
953                    && ((cr4 ^ old_cr4) & pdptr_bits)
954                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
955                                    kvm_read_cr3(vcpu)))
956                 return 1;
957
958         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
959                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
960                         return 1;
961
962                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
963                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
964                         return 1;
965         }
966
967         if (kvm_x86_ops.set_cr4(vcpu, cr4))
968                 return 1;
969
970         if (((cr4 ^ old_cr4) & pdptr_bits) ||
971             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
972                 kvm_mmu_reset_context(vcpu);
973
974         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
975                 kvm_update_cpuid(vcpu);
976
977         return 0;
978 }
979 EXPORT_SYMBOL_GPL(kvm_set_cr4);
980
981 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
982 {
983         bool skip_tlb_flush = false;
984 #ifdef CONFIG_X86_64
985         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
986
987         if (pcid_enabled) {
988                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
989                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
990         }
991 #endif
992
993         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
994                 if (!skip_tlb_flush) {
995                         kvm_mmu_sync_roots(vcpu);
996                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
997                 }
998                 return 0;
999         }
1000
1001         if (is_long_mode(vcpu) &&
1002             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1003                 return 1;
1004         else if (is_pae_paging(vcpu) &&
1005                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1006                 return 1;
1007
1008         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1009         vcpu->arch.cr3 = cr3;
1010         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1011
1012         return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1015
1016 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1017 {
1018         if (cr8 & CR8_RESERVED_BITS)
1019                 return 1;
1020         if (lapic_in_kernel(vcpu))
1021                 kvm_lapic_set_tpr(vcpu, cr8);
1022         else
1023                 vcpu->arch.cr8 = cr8;
1024         return 0;
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1027
1028 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1029 {
1030         if (lapic_in_kernel(vcpu))
1031                 return kvm_lapic_get_cr8(vcpu);
1032         else
1033                 return vcpu->arch.cr8;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1036
1037 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1038 {
1039         int i;
1040
1041         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1042                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1043                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1044                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1045         }
1046 }
1047
1048 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1049 {
1050         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1051                 kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6);
1052 }
1053
1054 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1055 {
1056         unsigned long dr7;
1057
1058         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1059                 dr7 = vcpu->arch.guest_debug_dr7;
1060         else
1061                 dr7 = vcpu->arch.dr7;
1062         kvm_x86_ops.set_dr7(vcpu, dr7);
1063         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1064         if (dr7 & DR7_BP_EN_MASK)
1065                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1066 }
1067
1068 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1069 {
1070         u64 fixed = DR6_FIXED_1;
1071
1072         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1073                 fixed |= DR6_RTM;
1074         return fixed;
1075 }
1076
1077 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1078 {
1079         size_t size = ARRAY_SIZE(vcpu->arch.db);
1080
1081         switch (dr) {
1082         case 0 ... 3:
1083                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1084                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1085                         vcpu->arch.eff_db[dr] = val;
1086                 break;
1087         case 4:
1088                 /* fall through */
1089         case 6:
1090                 if (val & 0xffffffff00000000ULL)
1091                         return -1; /* #GP */
1092                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1093                 kvm_update_dr6(vcpu);
1094                 break;
1095         case 5:
1096                 /* fall through */
1097         default: /* 7 */
1098                 if (!kvm_dr7_valid(val))
1099                         return -1; /* #GP */
1100                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1101                 kvm_update_dr7(vcpu);
1102                 break;
1103         }
1104
1105         return 0;
1106 }
1107
1108 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1109 {
1110         if (__kvm_set_dr(vcpu, dr, val)) {
1111                 kvm_inject_gp(vcpu, 0);
1112                 return 1;
1113         }
1114         return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_set_dr);
1117
1118 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1119 {
1120         size_t size = ARRAY_SIZE(vcpu->arch.db);
1121
1122         switch (dr) {
1123         case 0 ... 3:
1124                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1125                 break;
1126         case 4:
1127                 /* fall through */
1128         case 6:
1129                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1130                         *val = vcpu->arch.dr6;
1131                 else
1132                         *val = kvm_x86_ops.get_dr6(vcpu);
1133                 break;
1134         case 5:
1135                 /* fall through */
1136         default: /* 7 */
1137                 *val = vcpu->arch.dr7;
1138                 break;
1139         }
1140         return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dr);
1143
1144 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1145 {
1146         u32 ecx = kvm_rcx_read(vcpu);
1147         u64 data;
1148         int err;
1149
1150         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1151         if (err)
1152                 return err;
1153         kvm_rax_write(vcpu, (u32)data);
1154         kvm_rdx_write(vcpu, data >> 32);
1155         return err;
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1158
1159 /*
1160  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1161  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1162  *
1163  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1164  * extract the supported MSRs from the related const lists.
1165  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1166  * capabilities of the host cpu. This capabilities test skips MSRs that are
1167  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1168  * may depend on host virtualization features rather than host cpu features.
1169  */
1170
1171 static const u32 msrs_to_save_all[] = {
1172         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1173         MSR_STAR,
1174 #ifdef CONFIG_X86_64
1175         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1176 #endif
1177         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1178         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1179         MSR_IA32_SPEC_CTRL,
1180         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1181         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1182         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1183         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1184         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1185         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1186         MSR_IA32_UMWAIT_CONTROL,
1187
1188         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1189         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1190         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1191         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1192         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1193         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1194         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1195         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1196         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1197         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1198         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1199         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1200         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1201         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1202         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1203         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1204         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1205         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1206         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1207         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1208         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1209         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1210 };
1211
1212 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1213 static unsigned num_msrs_to_save;
1214
1215 static const u32 emulated_msrs_all[] = {
1216         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1217         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1218         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1219         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1220         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1221         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1222         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1223         HV_X64_MSR_RESET,
1224         HV_X64_MSR_VP_INDEX,
1225         HV_X64_MSR_VP_RUNTIME,
1226         HV_X64_MSR_SCONTROL,
1227         HV_X64_MSR_STIMER0_CONFIG,
1228         HV_X64_MSR_VP_ASSIST_PAGE,
1229         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1230         HV_X64_MSR_TSC_EMULATION_STATUS,
1231
1232         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1233         MSR_KVM_PV_EOI_EN,
1234
1235         MSR_IA32_TSC_ADJUST,
1236         MSR_IA32_TSCDEADLINE,
1237         MSR_IA32_ARCH_CAPABILITIES,
1238         MSR_IA32_MISC_ENABLE,
1239         MSR_IA32_MCG_STATUS,
1240         MSR_IA32_MCG_CTL,
1241         MSR_IA32_MCG_EXT_CTL,
1242         MSR_IA32_SMBASE,
1243         MSR_SMI_COUNT,
1244         MSR_PLATFORM_INFO,
1245         MSR_MISC_FEATURES_ENABLES,
1246         MSR_AMD64_VIRT_SPEC_CTRL,
1247         MSR_IA32_POWER_CTL,
1248         MSR_IA32_UCODE_REV,
1249
1250         /*
1251          * The following list leaves out MSRs whose values are determined
1252          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1253          * We always support the "true" VMX control MSRs, even if the host
1254          * processor does not, so I am putting these registers here rather
1255          * than in msrs_to_save_all.
1256          */
1257         MSR_IA32_VMX_BASIC,
1258         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1259         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1260         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1261         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1262         MSR_IA32_VMX_MISC,
1263         MSR_IA32_VMX_CR0_FIXED0,
1264         MSR_IA32_VMX_CR4_FIXED0,
1265         MSR_IA32_VMX_VMCS_ENUM,
1266         MSR_IA32_VMX_PROCBASED_CTLS2,
1267         MSR_IA32_VMX_EPT_VPID_CAP,
1268         MSR_IA32_VMX_VMFUNC,
1269
1270         MSR_K7_HWCR,
1271         MSR_KVM_POLL_CONTROL,
1272 };
1273
1274 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1275 static unsigned num_emulated_msrs;
1276
1277 /*
1278  * List of msr numbers which are used to expose MSR-based features that
1279  * can be used by a hypervisor to validate requested CPU features.
1280  */
1281 static const u32 msr_based_features_all[] = {
1282         MSR_IA32_VMX_BASIC,
1283         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1284         MSR_IA32_VMX_PINBASED_CTLS,
1285         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1286         MSR_IA32_VMX_PROCBASED_CTLS,
1287         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1288         MSR_IA32_VMX_EXIT_CTLS,
1289         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1290         MSR_IA32_VMX_ENTRY_CTLS,
1291         MSR_IA32_VMX_MISC,
1292         MSR_IA32_VMX_CR0_FIXED0,
1293         MSR_IA32_VMX_CR0_FIXED1,
1294         MSR_IA32_VMX_CR4_FIXED0,
1295         MSR_IA32_VMX_CR4_FIXED1,
1296         MSR_IA32_VMX_VMCS_ENUM,
1297         MSR_IA32_VMX_PROCBASED_CTLS2,
1298         MSR_IA32_VMX_EPT_VPID_CAP,
1299         MSR_IA32_VMX_VMFUNC,
1300
1301         MSR_F10H_DECFG,
1302         MSR_IA32_UCODE_REV,
1303         MSR_IA32_ARCH_CAPABILITIES,
1304 };
1305
1306 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1307 static unsigned int num_msr_based_features;
1308
1309 static u64 kvm_get_arch_capabilities(void)
1310 {
1311         u64 data = 0;
1312
1313         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1314                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1315
1316         /*
1317          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1318          * the nested hypervisor runs with NX huge pages.  If it is not,
1319          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1320          * L1 guests, so it need not worry about its own (L2) guests.
1321          */
1322         data |= ARCH_CAP_PSCHANGE_MC_NO;
1323
1324         /*
1325          * If we're doing cache flushes (either "always" or "cond")
1326          * we will do one whenever the guest does a vmlaunch/vmresume.
1327          * If an outer hypervisor is doing the cache flush for us
1328          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1329          * capability to the guest too, and if EPT is disabled we're not
1330          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1331          * require a nested hypervisor to do a flush of its own.
1332          */
1333         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1334                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1335
1336         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1337                 data |= ARCH_CAP_RDCL_NO;
1338         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1339                 data |= ARCH_CAP_SSB_NO;
1340         if (!boot_cpu_has_bug(X86_BUG_MDS))
1341                 data |= ARCH_CAP_MDS_NO;
1342
1343         /*
1344          * On TAA affected systems:
1345          *      - nothing to do if TSX is disabled on the host.
1346          *      - we emulate TSX_CTRL if present on the host.
1347          *        This lets the guest use VERW to clear CPU buffers.
1348          */
1349         if (!boot_cpu_has(X86_FEATURE_RTM))
1350                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1351         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1352                 data |= ARCH_CAP_TAA_NO;
1353
1354         return data;
1355 }
1356
1357 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1358 {
1359         switch (msr->index) {
1360         case MSR_IA32_ARCH_CAPABILITIES:
1361                 msr->data = kvm_get_arch_capabilities();
1362                 break;
1363         case MSR_IA32_UCODE_REV:
1364                 rdmsrl_safe(msr->index, &msr->data);
1365                 break;
1366         default:
1367                 if (kvm_x86_ops.get_msr_feature(msr))
1368                         return 1;
1369         }
1370         return 0;
1371 }
1372
1373 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1374 {
1375         struct kvm_msr_entry msr;
1376         int r;
1377
1378         msr.index = index;
1379         r = kvm_get_msr_feature(&msr);
1380         if (r)
1381                 return r;
1382
1383         *data = msr.data;
1384
1385         return 0;
1386 }
1387
1388 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1389 {
1390         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1391                 return false;
1392
1393         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1394                 return false;
1395
1396         if (efer & (EFER_LME | EFER_LMA) &&
1397             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1398                 return false;
1399
1400         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1401                 return false;
1402
1403         return true;
1404
1405 }
1406 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1407 {
1408         if (efer & efer_reserved_bits)
1409                 return false;
1410
1411         return __kvm_valid_efer(vcpu, efer);
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1414
1415 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1416 {
1417         u64 old_efer = vcpu->arch.efer;
1418         u64 efer = msr_info->data;
1419
1420         if (efer & efer_reserved_bits)
1421                 return 1;
1422
1423         if (!msr_info->host_initiated) {
1424                 if (!__kvm_valid_efer(vcpu, efer))
1425                         return 1;
1426
1427                 if (is_paging(vcpu) &&
1428                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1429                         return 1;
1430         }
1431
1432         efer &= ~EFER_LMA;
1433         efer |= vcpu->arch.efer & EFER_LMA;
1434
1435         kvm_x86_ops.set_efer(vcpu, efer);
1436
1437         /* Update reserved bits */
1438         if ((efer ^ old_efer) & EFER_NX)
1439                 kvm_mmu_reset_context(vcpu);
1440
1441         return 0;
1442 }
1443
1444 void kvm_enable_efer_bits(u64 mask)
1445 {
1446        efer_reserved_bits &= ~mask;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1449
1450 /*
1451  * Write @data into the MSR specified by @index.  Select MSR specific fault
1452  * checks are bypassed if @host_initiated is %true.
1453  * Returns 0 on success, non-0 otherwise.
1454  * Assumes vcpu_load() was already called.
1455  */
1456 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1457                          bool host_initiated)
1458 {
1459         struct msr_data msr;
1460
1461         switch (index) {
1462         case MSR_FS_BASE:
1463         case MSR_GS_BASE:
1464         case MSR_KERNEL_GS_BASE:
1465         case MSR_CSTAR:
1466         case MSR_LSTAR:
1467                 if (is_noncanonical_address(data, vcpu))
1468                         return 1;
1469                 break;
1470         case MSR_IA32_SYSENTER_EIP:
1471         case MSR_IA32_SYSENTER_ESP:
1472                 /*
1473                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1474                  * non-canonical address is written on Intel but not on
1475                  * AMD (which ignores the top 32-bits, because it does
1476                  * not implement 64-bit SYSENTER).
1477                  *
1478                  * 64-bit code should hence be able to write a non-canonical
1479                  * value on AMD.  Making the address canonical ensures that
1480                  * vmentry does not fail on Intel after writing a non-canonical
1481                  * value, and that something deterministic happens if the guest
1482                  * invokes 64-bit SYSENTER.
1483                  */
1484                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1485         }
1486
1487         msr.data = data;
1488         msr.index = index;
1489         msr.host_initiated = host_initiated;
1490
1491         return kvm_x86_ops.set_msr(vcpu, &msr);
1492 }
1493
1494 /*
1495  * Read the MSR specified by @index into @data.  Select MSR specific fault
1496  * checks are bypassed if @host_initiated is %true.
1497  * Returns 0 on success, non-0 otherwise.
1498  * Assumes vcpu_load() was already called.
1499  */
1500 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1501                   bool host_initiated)
1502 {
1503         struct msr_data msr;
1504         int ret;
1505
1506         msr.index = index;
1507         msr.host_initiated = host_initiated;
1508
1509         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1510         if (!ret)
1511                 *data = msr.data;
1512         return ret;
1513 }
1514
1515 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1516 {
1517         return __kvm_get_msr(vcpu, index, data, false);
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_get_msr);
1520
1521 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1522 {
1523         return __kvm_set_msr(vcpu, index, data, false);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_set_msr);
1526
1527 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1528 {
1529         u32 ecx = kvm_rcx_read(vcpu);
1530         u64 data;
1531
1532         if (kvm_get_msr(vcpu, ecx, &data)) {
1533                 trace_kvm_msr_read_ex(ecx);
1534                 kvm_inject_gp(vcpu, 0);
1535                 return 1;
1536         }
1537
1538         trace_kvm_msr_read(ecx, data);
1539
1540         kvm_rax_write(vcpu, data & -1u);
1541         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1542         return kvm_skip_emulated_instruction(vcpu);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1545
1546 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1547 {
1548         u32 ecx = kvm_rcx_read(vcpu);
1549         u64 data = kvm_read_edx_eax(vcpu);
1550
1551         if (kvm_set_msr(vcpu, ecx, data)) {
1552                 trace_kvm_msr_write_ex(ecx, data);
1553                 kvm_inject_gp(vcpu, 0);
1554                 return 1;
1555         }
1556
1557         trace_kvm_msr_write(ecx, data);
1558         return kvm_skip_emulated_instruction(vcpu);
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1561
1562 /*
1563  * The fast path for frequent and performance sensitive wrmsr emulation,
1564  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1565  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1566  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1567  * other cases which must be called after interrupts are enabled on the host.
1568  */
1569 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1570 {
1571         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1572                 return 1;
1573
1574         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1575                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1576                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1577                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1578
1579                 data &= ~(1 << 12);
1580                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1581                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1582                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1583                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1584                 return 0;
1585         }
1586
1587         return 1;
1588 }
1589
1590 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1591 {
1592         u32 msr = kvm_rcx_read(vcpu);
1593         u64 data;
1594         int ret = 0;
1595
1596         switch (msr) {
1597         case APIC_BASE_MSR + (APIC_ICR >> 4):
1598                 data = kvm_read_edx_eax(vcpu);
1599                 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1600                 break;
1601         default:
1602                 return EXIT_FASTPATH_NONE;
1603         }
1604
1605         if (!ret) {
1606                 trace_kvm_msr_write(msr, data);
1607                 return EXIT_FASTPATH_SKIP_EMUL_INS;
1608         }
1609
1610         return EXIT_FASTPATH_NONE;
1611 }
1612 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1613
1614 /*
1615  * Adapt set_msr() to msr_io()'s calling convention
1616  */
1617 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1618 {
1619         return __kvm_get_msr(vcpu, index, data, true);
1620 }
1621
1622 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1623 {
1624         return __kvm_set_msr(vcpu, index, *data, true);
1625 }
1626
1627 #ifdef CONFIG_X86_64
1628 struct pvclock_clock {
1629         int vclock_mode;
1630         u64 cycle_last;
1631         u64 mask;
1632         u32 mult;
1633         u32 shift;
1634         u64 base_cycles;
1635         u64 offset;
1636 };
1637
1638 struct pvclock_gtod_data {
1639         seqcount_t      seq;
1640
1641         struct pvclock_clock clock; /* extract of a clocksource struct */
1642         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1643
1644         ktime_t         offs_boot;
1645         u64             wall_time_sec;
1646 };
1647
1648 static struct pvclock_gtod_data pvclock_gtod_data;
1649
1650 static void update_pvclock_gtod(struct timekeeper *tk)
1651 {
1652         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1653
1654         write_seqcount_begin(&vdata->seq);
1655
1656         /* copy pvclock gtod data */
1657         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1658         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1659         vdata->clock.mask               = tk->tkr_mono.mask;
1660         vdata->clock.mult               = tk->tkr_mono.mult;
1661         vdata->clock.shift              = tk->tkr_mono.shift;
1662         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1663         vdata->clock.offset             = tk->tkr_mono.base;
1664
1665         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1666         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1667         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1668         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1669         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1670         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1671         vdata->raw_clock.offset         = tk->tkr_raw.base;
1672
1673         vdata->wall_time_sec            = tk->xtime_sec;
1674
1675         vdata->offs_boot                = tk->offs_boot;
1676
1677         write_seqcount_end(&vdata->seq);
1678 }
1679
1680 static s64 get_kvmclock_base_ns(void)
1681 {
1682         /* Count up from boot time, but with the frequency of the raw clock.  */
1683         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1684 }
1685 #else
1686 static s64 get_kvmclock_base_ns(void)
1687 {
1688         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1689         return ktime_get_boottime_ns();
1690 }
1691 #endif
1692
1693 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1694 {
1695         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1696         kvm_vcpu_kick(vcpu);
1697 }
1698
1699 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1700 {
1701         int version;
1702         int r;
1703         struct pvclock_wall_clock wc;
1704         u64 wall_nsec;
1705
1706         if (!wall_clock)
1707                 return;
1708
1709         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1710         if (r)
1711                 return;
1712
1713         if (version & 1)
1714                 ++version;  /* first time write, random junk */
1715
1716         ++version;
1717
1718         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1719                 return;
1720
1721         /*
1722          * The guest calculates current wall clock time by adding
1723          * system time (updated by kvm_guest_time_update below) to the
1724          * wall clock specified here.  We do the reverse here.
1725          */
1726         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1727
1728         wc.nsec = do_div(wall_nsec, 1000000000);
1729         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1730         wc.version = version;
1731
1732         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1733
1734         version++;
1735         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1736 }
1737
1738 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1739 {
1740         do_shl32_div32(dividend, divisor);
1741         return dividend;
1742 }
1743
1744 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1745                                s8 *pshift, u32 *pmultiplier)
1746 {
1747         uint64_t scaled64;
1748         int32_t  shift = 0;
1749         uint64_t tps64;
1750         uint32_t tps32;
1751
1752         tps64 = base_hz;
1753         scaled64 = scaled_hz;
1754         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1755                 tps64 >>= 1;
1756                 shift--;
1757         }
1758
1759         tps32 = (uint32_t)tps64;
1760         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1761                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1762                         scaled64 >>= 1;
1763                 else
1764                         tps32 <<= 1;
1765                 shift++;
1766         }
1767
1768         *pshift = shift;
1769         *pmultiplier = div_frac(scaled64, tps32);
1770 }
1771
1772 #ifdef CONFIG_X86_64
1773 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1774 #endif
1775
1776 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1777 static unsigned long max_tsc_khz;
1778
1779 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1780 {
1781         u64 v = (u64)khz * (1000000 + ppm);
1782         do_div(v, 1000000);
1783         return v;
1784 }
1785
1786 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1787 {
1788         u64 ratio;
1789
1790         /* Guest TSC same frequency as host TSC? */
1791         if (!scale) {
1792                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1793                 return 0;
1794         }
1795
1796         /* TSC scaling supported? */
1797         if (!kvm_has_tsc_control) {
1798                 if (user_tsc_khz > tsc_khz) {
1799                         vcpu->arch.tsc_catchup = 1;
1800                         vcpu->arch.tsc_always_catchup = 1;
1801                         return 0;
1802                 } else {
1803                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1804                         return -1;
1805                 }
1806         }
1807
1808         /* TSC scaling required  - calculate ratio */
1809         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1810                                 user_tsc_khz, tsc_khz);
1811
1812         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1813                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1814                                     user_tsc_khz);
1815                 return -1;
1816         }
1817
1818         vcpu->arch.tsc_scaling_ratio = ratio;
1819         return 0;
1820 }
1821
1822 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1823 {
1824         u32 thresh_lo, thresh_hi;
1825         int use_scaling = 0;
1826
1827         /* tsc_khz can be zero if TSC calibration fails */
1828         if (user_tsc_khz == 0) {
1829                 /* set tsc_scaling_ratio to a safe value */
1830                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1831                 return -1;
1832         }
1833
1834         /* Compute a scale to convert nanoseconds in TSC cycles */
1835         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1836                            &vcpu->arch.virtual_tsc_shift,
1837                            &vcpu->arch.virtual_tsc_mult);
1838         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1839
1840         /*
1841          * Compute the variation in TSC rate which is acceptable
1842          * within the range of tolerance and decide if the
1843          * rate being applied is within that bounds of the hardware
1844          * rate.  If so, no scaling or compensation need be done.
1845          */
1846         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1847         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1848         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1849                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1850                 use_scaling = 1;
1851         }
1852         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1853 }
1854
1855 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1856 {
1857         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1858                                       vcpu->arch.virtual_tsc_mult,
1859                                       vcpu->arch.virtual_tsc_shift);
1860         tsc += vcpu->arch.this_tsc_write;
1861         return tsc;
1862 }
1863
1864 static inline int gtod_is_based_on_tsc(int mode)
1865 {
1866         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1867 }
1868
1869 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1870 {
1871 #ifdef CONFIG_X86_64
1872         bool vcpus_matched;
1873         struct kvm_arch *ka = &vcpu->kvm->arch;
1874         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1875
1876         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1877                          atomic_read(&vcpu->kvm->online_vcpus));
1878
1879         /*
1880          * Once the masterclock is enabled, always perform request in
1881          * order to update it.
1882          *
1883          * In order to enable masterclock, the host clocksource must be TSC
1884          * and the vcpus need to have matched TSCs.  When that happens,
1885          * perform request to enable masterclock.
1886          */
1887         if (ka->use_master_clock ||
1888             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1889                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1890
1891         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1892                             atomic_read(&vcpu->kvm->online_vcpus),
1893                             ka->use_master_clock, gtod->clock.vclock_mode);
1894 #endif
1895 }
1896
1897 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1898 {
1899         u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1900         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1901 }
1902
1903 /*
1904  * Multiply tsc by a fixed point number represented by ratio.
1905  *
1906  * The most significant 64-N bits (mult) of ratio represent the
1907  * integral part of the fixed point number; the remaining N bits
1908  * (frac) represent the fractional part, ie. ratio represents a fixed
1909  * point number (mult + frac * 2^(-N)).
1910  *
1911  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1912  */
1913 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1914 {
1915         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1916 }
1917
1918 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1919 {
1920         u64 _tsc = tsc;
1921         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1922
1923         if (ratio != kvm_default_tsc_scaling_ratio)
1924                 _tsc = __scale_tsc(ratio, tsc);
1925
1926         return _tsc;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1929
1930 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1931 {
1932         u64 tsc;
1933
1934         tsc = kvm_scale_tsc(vcpu, rdtsc());
1935
1936         return target_tsc - tsc;
1937 }
1938
1939 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1940 {
1941         u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1942
1943         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1946
1947 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1948 {
1949         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1950 }
1951
1952 static inline bool kvm_check_tsc_unstable(void)
1953 {
1954 #ifdef CONFIG_X86_64
1955         /*
1956          * TSC is marked unstable when we're running on Hyper-V,
1957          * 'TSC page' clocksource is good.
1958          */
1959         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
1960                 return false;
1961 #endif
1962         return check_tsc_unstable();
1963 }
1964
1965 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1966 {
1967         struct kvm *kvm = vcpu->kvm;
1968         u64 offset, ns, elapsed;
1969         unsigned long flags;
1970         bool matched;
1971         bool already_matched;
1972         u64 data = msr->data;
1973         bool synchronizing = false;
1974
1975         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1976         offset = kvm_compute_tsc_offset(vcpu, data);
1977         ns = get_kvmclock_base_ns();
1978         elapsed = ns - kvm->arch.last_tsc_nsec;
1979
1980         if (vcpu->arch.virtual_tsc_khz) {
1981                 if (data == 0 && msr->host_initiated) {
1982                         /*
1983                          * detection of vcpu initialization -- need to sync
1984                          * with other vCPUs. This particularly helps to keep
1985                          * kvm_clock stable after CPU hotplug
1986                          */
1987                         synchronizing = true;
1988                 } else {
1989                         u64 tsc_exp = kvm->arch.last_tsc_write +
1990                                                 nsec_to_cycles(vcpu, elapsed);
1991                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1992                         /*
1993                          * Special case: TSC write with a small delta (1 second)
1994                          * of virtual cycle time against real time is
1995                          * interpreted as an attempt to synchronize the CPU.
1996                          */
1997                         synchronizing = data < tsc_exp + tsc_hz &&
1998                                         data + tsc_hz > tsc_exp;
1999                 }
2000         }
2001
2002         /*
2003          * For a reliable TSC, we can match TSC offsets, and for an unstable
2004          * TSC, we add elapsed time in this computation.  We could let the
2005          * compensation code attempt to catch up if we fall behind, but
2006          * it's better to try to match offsets from the beginning.
2007          */
2008         if (synchronizing &&
2009             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2010                 if (!kvm_check_tsc_unstable()) {
2011                         offset = kvm->arch.cur_tsc_offset;
2012                 } else {
2013                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2014                         data += delta;
2015                         offset = kvm_compute_tsc_offset(vcpu, data);
2016                 }
2017                 matched = true;
2018                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2019         } else {
2020                 /*
2021                  * We split periods of matched TSC writes into generations.
2022                  * For each generation, we track the original measured
2023                  * nanosecond time, offset, and write, so if TSCs are in
2024                  * sync, we can match exact offset, and if not, we can match
2025                  * exact software computation in compute_guest_tsc()
2026                  *
2027                  * These values are tracked in kvm->arch.cur_xxx variables.
2028                  */
2029                 kvm->arch.cur_tsc_generation++;
2030                 kvm->arch.cur_tsc_nsec = ns;
2031                 kvm->arch.cur_tsc_write = data;
2032                 kvm->arch.cur_tsc_offset = offset;
2033                 matched = false;
2034         }
2035
2036         /*
2037          * We also track th most recent recorded KHZ, write and time to
2038          * allow the matching interval to be extended at each write.
2039          */
2040         kvm->arch.last_tsc_nsec = ns;
2041         kvm->arch.last_tsc_write = data;
2042         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2043
2044         vcpu->arch.last_guest_tsc = data;
2045
2046         /* Keep track of which generation this VCPU has synchronized to */
2047         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2048         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2049         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2050
2051         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2052                 update_ia32_tsc_adjust_msr(vcpu, offset);
2053
2054         kvm_vcpu_write_tsc_offset(vcpu, offset);
2055         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2056
2057         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2058         if (!matched) {
2059                 kvm->arch.nr_vcpus_matched_tsc = 0;
2060         } else if (!already_matched) {
2061                 kvm->arch.nr_vcpus_matched_tsc++;
2062         }
2063
2064         kvm_track_tsc_matching(vcpu);
2065         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2066 }
2067
2068 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2069
2070 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2071                                            s64 adjustment)
2072 {
2073         u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
2074         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2075 }
2076
2077 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2078 {
2079         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2080                 WARN_ON(adjustment < 0);
2081         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2082         adjust_tsc_offset_guest(vcpu, adjustment);
2083 }
2084
2085 #ifdef CONFIG_X86_64
2086
2087 static u64 read_tsc(void)
2088 {
2089         u64 ret = (u64)rdtsc_ordered();
2090         u64 last = pvclock_gtod_data.clock.cycle_last;
2091
2092         if (likely(ret >= last))
2093                 return ret;
2094
2095         /*
2096          * GCC likes to generate cmov here, but this branch is extremely
2097          * predictable (it's just a function of time and the likely is
2098          * very likely) and there's a data dependence, so force GCC
2099          * to generate a branch instead.  I don't barrier() because
2100          * we don't actually need a barrier, and if this function
2101          * ever gets inlined it will generate worse code.
2102          */
2103         asm volatile ("");
2104         return last;
2105 }
2106
2107 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2108                           int *mode)
2109 {
2110         long v;
2111         u64 tsc_pg_val;
2112
2113         switch (clock->vclock_mode) {
2114         case VDSO_CLOCKMODE_HVCLOCK:
2115                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2116                                                   tsc_timestamp);
2117                 if (tsc_pg_val != U64_MAX) {
2118                         /* TSC page valid */
2119                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2120                         v = (tsc_pg_val - clock->cycle_last) &
2121                                 clock->mask;
2122                 } else {
2123                         /* TSC page invalid */
2124                         *mode = VDSO_CLOCKMODE_NONE;
2125                 }
2126                 break;
2127         case VDSO_CLOCKMODE_TSC:
2128                 *mode = VDSO_CLOCKMODE_TSC;
2129                 *tsc_timestamp = read_tsc();
2130                 v = (*tsc_timestamp - clock->cycle_last) &
2131                         clock->mask;
2132                 break;
2133         default:
2134                 *mode = VDSO_CLOCKMODE_NONE;
2135         }
2136
2137         if (*mode == VDSO_CLOCKMODE_NONE)
2138                 *tsc_timestamp = v = 0;
2139
2140         return v * clock->mult;
2141 }
2142
2143 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2144 {
2145         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2146         unsigned long seq;
2147         int mode;
2148         u64 ns;
2149
2150         do {
2151                 seq = read_seqcount_begin(&gtod->seq);
2152                 ns = gtod->raw_clock.base_cycles;
2153                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2154                 ns >>= gtod->raw_clock.shift;
2155                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2156         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2157         *t = ns;
2158
2159         return mode;
2160 }
2161
2162 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2163 {
2164         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2165         unsigned long seq;
2166         int mode;
2167         u64 ns;
2168
2169         do {
2170                 seq = read_seqcount_begin(&gtod->seq);
2171                 ts->tv_sec = gtod->wall_time_sec;
2172                 ns = gtod->clock.base_cycles;
2173                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2174                 ns >>= gtod->clock.shift;
2175         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2176
2177         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2178         ts->tv_nsec = ns;
2179
2180         return mode;
2181 }
2182
2183 /* returns true if host is using TSC based clocksource */
2184 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2185 {
2186         /* checked again under seqlock below */
2187         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2188                 return false;
2189
2190         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2191                                                       tsc_timestamp));
2192 }
2193
2194 /* returns true if host is using TSC based clocksource */
2195 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2196                                            u64 *tsc_timestamp)
2197 {
2198         /* checked again under seqlock below */
2199         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2200                 return false;
2201
2202         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2203 }
2204 #endif
2205
2206 /*
2207  *
2208  * Assuming a stable TSC across physical CPUS, and a stable TSC
2209  * across virtual CPUs, the following condition is possible.
2210  * Each numbered line represents an event visible to both
2211  * CPUs at the next numbered event.
2212  *
2213  * "timespecX" represents host monotonic time. "tscX" represents
2214  * RDTSC value.
2215  *
2216  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2217  *
2218  * 1.  read timespec0,tsc0
2219  * 2.                                   | timespec1 = timespec0 + N
2220  *                                      | tsc1 = tsc0 + M
2221  * 3. transition to guest               | transition to guest
2222  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2223  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2224  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2225  *
2226  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2227  *
2228  *      - ret0 < ret1
2229  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2230  *              ...
2231  *      - 0 < N - M => M < N
2232  *
2233  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2234  * always the case (the difference between two distinct xtime instances
2235  * might be smaller then the difference between corresponding TSC reads,
2236  * when updating guest vcpus pvclock areas).
2237  *
2238  * To avoid that problem, do not allow visibility of distinct
2239  * system_timestamp/tsc_timestamp values simultaneously: use a master
2240  * copy of host monotonic time values. Update that master copy
2241  * in lockstep.
2242  *
2243  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2244  *
2245  */
2246
2247 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2248 {
2249 #ifdef CONFIG_X86_64
2250         struct kvm_arch *ka = &kvm->arch;
2251         int vclock_mode;
2252         bool host_tsc_clocksource, vcpus_matched;
2253
2254         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2255                         atomic_read(&kvm->online_vcpus));
2256
2257         /*
2258          * If the host uses TSC clock, then passthrough TSC as stable
2259          * to the guest.
2260          */
2261         host_tsc_clocksource = kvm_get_time_and_clockread(
2262                                         &ka->master_kernel_ns,
2263                                         &ka->master_cycle_now);
2264
2265         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2266                                 && !ka->backwards_tsc_observed
2267                                 && !ka->boot_vcpu_runs_old_kvmclock;
2268
2269         if (ka->use_master_clock)
2270                 atomic_set(&kvm_guest_has_master_clock, 1);
2271
2272         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2273         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2274                                         vcpus_matched);
2275 #endif
2276 }
2277
2278 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2279 {
2280         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2281 }
2282
2283 static void kvm_gen_update_masterclock(struct kvm *kvm)
2284 {
2285 #ifdef CONFIG_X86_64
2286         int i;
2287         struct kvm_vcpu *vcpu;
2288         struct kvm_arch *ka = &kvm->arch;
2289
2290         spin_lock(&ka->pvclock_gtod_sync_lock);
2291         kvm_make_mclock_inprogress_request(kvm);
2292         /* no guest entries from this point */
2293         pvclock_update_vm_gtod_copy(kvm);
2294
2295         kvm_for_each_vcpu(i, vcpu, kvm)
2296                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2297
2298         /* guest entries allowed */
2299         kvm_for_each_vcpu(i, vcpu, kvm)
2300                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2301
2302         spin_unlock(&ka->pvclock_gtod_sync_lock);
2303 #endif
2304 }
2305
2306 u64 get_kvmclock_ns(struct kvm *kvm)
2307 {
2308         struct kvm_arch *ka = &kvm->arch;
2309         struct pvclock_vcpu_time_info hv_clock;
2310         u64 ret;
2311
2312         spin_lock(&ka->pvclock_gtod_sync_lock);
2313         if (!ka->use_master_clock) {
2314                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2315                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2316         }
2317
2318         hv_clock.tsc_timestamp = ka->master_cycle_now;
2319         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2320         spin_unlock(&ka->pvclock_gtod_sync_lock);
2321
2322         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2323         get_cpu();
2324
2325         if (__this_cpu_read(cpu_tsc_khz)) {
2326                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2327                                    &hv_clock.tsc_shift,
2328                                    &hv_clock.tsc_to_system_mul);
2329                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2330         } else
2331                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2332
2333         put_cpu();
2334
2335         return ret;
2336 }
2337
2338 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2339 {
2340         struct kvm_vcpu_arch *vcpu = &v->arch;
2341         struct pvclock_vcpu_time_info guest_hv_clock;
2342
2343         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2344                 &guest_hv_clock, sizeof(guest_hv_clock))))
2345                 return;
2346
2347         /* This VCPU is paused, but it's legal for a guest to read another
2348          * VCPU's kvmclock, so we really have to follow the specification where
2349          * it says that version is odd if data is being modified, and even after
2350          * it is consistent.
2351          *
2352          * Version field updates must be kept separate.  This is because
2353          * kvm_write_guest_cached might use a "rep movs" instruction, and
2354          * writes within a string instruction are weakly ordered.  So there
2355          * are three writes overall.
2356          *
2357          * As a small optimization, only write the version field in the first
2358          * and third write.  The vcpu->pv_time cache is still valid, because the
2359          * version field is the first in the struct.
2360          */
2361         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2362
2363         if (guest_hv_clock.version & 1)
2364                 ++guest_hv_clock.version;  /* first time write, random junk */
2365
2366         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2367         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2368                                 &vcpu->hv_clock,
2369                                 sizeof(vcpu->hv_clock.version));
2370
2371         smp_wmb();
2372
2373         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2374         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2375
2376         if (vcpu->pvclock_set_guest_stopped_request) {
2377                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2378                 vcpu->pvclock_set_guest_stopped_request = false;
2379         }
2380
2381         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2382
2383         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2384                                 &vcpu->hv_clock,
2385                                 sizeof(vcpu->hv_clock));
2386
2387         smp_wmb();
2388
2389         vcpu->hv_clock.version++;
2390         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2391                                 &vcpu->hv_clock,
2392                                 sizeof(vcpu->hv_clock.version));
2393 }
2394
2395 static int kvm_guest_time_update(struct kvm_vcpu *v)
2396 {
2397         unsigned long flags, tgt_tsc_khz;
2398         struct kvm_vcpu_arch *vcpu = &v->arch;
2399         struct kvm_arch *ka = &v->kvm->arch;
2400         s64 kernel_ns;
2401         u64 tsc_timestamp, host_tsc;
2402         u8 pvclock_flags;
2403         bool use_master_clock;
2404
2405         kernel_ns = 0;
2406         host_tsc = 0;
2407
2408         /*
2409          * If the host uses TSC clock, then passthrough TSC as stable
2410          * to the guest.
2411          */
2412         spin_lock(&ka->pvclock_gtod_sync_lock);
2413         use_master_clock = ka->use_master_clock;
2414         if (use_master_clock) {
2415                 host_tsc = ka->master_cycle_now;
2416                 kernel_ns = ka->master_kernel_ns;
2417         }
2418         spin_unlock(&ka->pvclock_gtod_sync_lock);
2419
2420         /* Keep irq disabled to prevent changes to the clock */
2421         local_irq_save(flags);
2422         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2423         if (unlikely(tgt_tsc_khz == 0)) {
2424                 local_irq_restore(flags);
2425                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2426                 return 1;
2427         }
2428         if (!use_master_clock) {
2429                 host_tsc = rdtsc();
2430                 kernel_ns = get_kvmclock_base_ns();
2431         }
2432
2433         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2434
2435         /*
2436          * We may have to catch up the TSC to match elapsed wall clock
2437          * time for two reasons, even if kvmclock is used.
2438          *   1) CPU could have been running below the maximum TSC rate
2439          *   2) Broken TSC compensation resets the base at each VCPU
2440          *      entry to avoid unknown leaps of TSC even when running
2441          *      again on the same CPU.  This may cause apparent elapsed
2442          *      time to disappear, and the guest to stand still or run
2443          *      very slowly.
2444          */
2445         if (vcpu->tsc_catchup) {
2446                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2447                 if (tsc > tsc_timestamp) {
2448                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2449                         tsc_timestamp = tsc;
2450                 }
2451         }
2452
2453         local_irq_restore(flags);
2454
2455         /* With all the info we got, fill in the values */
2456
2457         if (kvm_has_tsc_control)
2458                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2459
2460         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2461                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2462                                    &vcpu->hv_clock.tsc_shift,
2463                                    &vcpu->hv_clock.tsc_to_system_mul);
2464                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2465         }
2466
2467         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2468         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2469         vcpu->last_guest_tsc = tsc_timestamp;
2470
2471         /* If the host uses TSC clocksource, then it is stable */
2472         pvclock_flags = 0;
2473         if (use_master_clock)
2474                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2475
2476         vcpu->hv_clock.flags = pvclock_flags;
2477
2478         if (vcpu->pv_time_enabled)
2479                 kvm_setup_pvclock_page(v);
2480         if (v == kvm_get_vcpu(v->kvm, 0))
2481                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2482         return 0;
2483 }
2484
2485 /*
2486  * kvmclock updates which are isolated to a given vcpu, such as
2487  * vcpu->cpu migration, should not allow system_timestamp from
2488  * the rest of the vcpus to remain static. Otherwise ntp frequency
2489  * correction applies to one vcpu's system_timestamp but not
2490  * the others.
2491  *
2492  * So in those cases, request a kvmclock update for all vcpus.
2493  * We need to rate-limit these requests though, as they can
2494  * considerably slow guests that have a large number of vcpus.
2495  * The time for a remote vcpu to update its kvmclock is bound
2496  * by the delay we use to rate-limit the updates.
2497  */
2498
2499 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2500
2501 static void kvmclock_update_fn(struct work_struct *work)
2502 {
2503         int i;
2504         struct delayed_work *dwork = to_delayed_work(work);
2505         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2506                                            kvmclock_update_work);
2507         struct kvm *kvm = container_of(ka, struct kvm, arch);
2508         struct kvm_vcpu *vcpu;
2509
2510         kvm_for_each_vcpu(i, vcpu, kvm) {
2511                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2512                 kvm_vcpu_kick(vcpu);
2513         }
2514 }
2515
2516 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2517 {
2518         struct kvm *kvm = v->kvm;
2519
2520         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2521         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2522                                         KVMCLOCK_UPDATE_DELAY);
2523 }
2524
2525 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2526
2527 static void kvmclock_sync_fn(struct work_struct *work)
2528 {
2529         struct delayed_work *dwork = to_delayed_work(work);
2530         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2531                                            kvmclock_sync_work);
2532         struct kvm *kvm = container_of(ka, struct kvm, arch);
2533
2534         if (!kvmclock_periodic_sync)
2535                 return;
2536
2537         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2538         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2539                                         KVMCLOCK_SYNC_PERIOD);
2540 }
2541
2542 /*
2543  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2544  */
2545 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2546 {
2547         /* McStatusWrEn enabled? */
2548         if (guest_cpuid_is_amd_or_hygon(vcpu))
2549                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2550
2551         return false;
2552 }
2553
2554 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2555 {
2556         u64 mcg_cap = vcpu->arch.mcg_cap;
2557         unsigned bank_num = mcg_cap & 0xff;
2558         u32 msr = msr_info->index;
2559         u64 data = msr_info->data;
2560
2561         switch (msr) {
2562         case MSR_IA32_MCG_STATUS:
2563                 vcpu->arch.mcg_status = data;
2564                 break;
2565         case MSR_IA32_MCG_CTL:
2566                 if (!(mcg_cap & MCG_CTL_P) &&
2567                     (data || !msr_info->host_initiated))
2568                         return 1;
2569                 if (data != 0 && data != ~(u64)0)
2570                         return 1;
2571                 vcpu->arch.mcg_ctl = data;
2572                 break;
2573         default:
2574                 if (msr >= MSR_IA32_MC0_CTL &&
2575                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2576                         u32 offset = array_index_nospec(
2577                                 msr - MSR_IA32_MC0_CTL,
2578                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2579
2580                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2581                          * some Linux kernels though clear bit 10 in bank 4 to
2582                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2583                          * this to avoid an uncatched #GP in the guest
2584                          */
2585                         if ((offset & 0x3) == 0 &&
2586                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2587                                 return -1;
2588
2589                         /* MCi_STATUS */
2590                         if (!msr_info->host_initiated &&
2591                             (offset & 0x3) == 1 && data != 0) {
2592                                 if (!can_set_mci_status(vcpu))
2593                                         return -1;
2594                         }
2595
2596                         vcpu->arch.mce_banks[offset] = data;
2597                         break;
2598                 }
2599                 return 1;
2600         }
2601         return 0;
2602 }
2603
2604 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2605 {
2606         struct kvm *kvm = vcpu->kvm;
2607         int lm = is_long_mode(vcpu);
2608         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2609                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2610         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2611                 : kvm->arch.xen_hvm_config.blob_size_32;
2612         u32 page_num = data & ~PAGE_MASK;
2613         u64 page_addr = data & PAGE_MASK;
2614         u8 *page;
2615         int r;
2616
2617         r = -E2BIG;
2618         if (page_num >= blob_size)
2619                 goto out;
2620         r = -ENOMEM;
2621         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2622         if (IS_ERR(page)) {
2623                 r = PTR_ERR(page);
2624                 goto out;
2625         }
2626         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2627                 goto out_free;
2628         r = 0;
2629 out_free:
2630         kfree(page);
2631 out:
2632         return r;
2633 }
2634
2635 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2636 {
2637         gpa_t gpa = data & ~0x3f;
2638
2639         /* Bits 3:5 are reserved, Should be zero */
2640         if (data & 0x38)
2641                 return 1;
2642
2643         vcpu->arch.apf.msr_val = data;
2644
2645         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2646                 kvm_clear_async_pf_completion_queue(vcpu);
2647                 kvm_async_pf_hash_reset(vcpu);
2648                 return 0;
2649         }
2650
2651         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2652                                         sizeof(u32)))
2653                 return 1;
2654
2655         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2656         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2657         kvm_async_pf_wakeup_all(vcpu);
2658         return 0;
2659 }
2660
2661 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2662 {
2663         vcpu->arch.pv_time_enabled = false;
2664         vcpu->arch.time = 0;
2665 }
2666
2667 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2668 {
2669         ++vcpu->stat.tlb_flush;
2670         kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
2671 }
2672
2673 static void record_steal_time(struct kvm_vcpu *vcpu)
2674 {
2675         struct kvm_host_map map;
2676         struct kvm_steal_time *st;
2677
2678         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2679                 return;
2680
2681         /* -EAGAIN is returned in atomic context so we can just return. */
2682         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2683                         &map, &vcpu->arch.st.cache, false))
2684                 return;
2685
2686         st = map.hva +
2687                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2688
2689         /*
2690          * Doing a TLB flush here, on the guest's behalf, can avoid
2691          * expensive IPIs.
2692          */
2693         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2694                 st->preempted & KVM_VCPU_FLUSH_TLB);
2695         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2696                 kvm_vcpu_flush_tlb(vcpu, false);
2697
2698         vcpu->arch.st.preempted = 0;
2699
2700         if (st->version & 1)
2701                 st->version += 1;  /* first time write, random junk */
2702
2703         st->version += 1;
2704
2705         smp_wmb();
2706
2707         st->steal += current->sched_info.run_delay -
2708                 vcpu->arch.st.last_steal;
2709         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2710
2711         smp_wmb();
2712
2713         st->version += 1;
2714
2715         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2716 }
2717
2718 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2719 {
2720         bool pr = false;
2721         u32 msr = msr_info->index;
2722         u64 data = msr_info->data;
2723
2724         switch (msr) {
2725         case MSR_AMD64_NB_CFG:
2726         case MSR_IA32_UCODE_WRITE:
2727         case MSR_VM_HSAVE_PA:
2728         case MSR_AMD64_PATCH_LOADER:
2729         case MSR_AMD64_BU_CFG2:
2730         case MSR_AMD64_DC_CFG:
2731         case MSR_F15H_EX_CFG:
2732                 break;
2733
2734         case MSR_IA32_UCODE_REV:
2735                 if (msr_info->host_initiated)
2736                         vcpu->arch.microcode_version = data;
2737                 break;
2738         case MSR_IA32_ARCH_CAPABILITIES:
2739                 if (!msr_info->host_initiated)
2740                         return 1;
2741                 vcpu->arch.arch_capabilities = data;
2742                 break;
2743         case MSR_EFER:
2744                 return set_efer(vcpu, msr_info);
2745         case MSR_K7_HWCR:
2746                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2747                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2748                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2749
2750                 /* Handle McStatusWrEn */
2751                 if (data == BIT_ULL(18)) {
2752                         vcpu->arch.msr_hwcr = data;
2753                 } else if (data != 0) {
2754                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2755                                     data);
2756                         return 1;
2757                 }
2758                 break;
2759         case MSR_FAM10H_MMIO_CONF_BASE:
2760                 if (data != 0) {
2761                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2762                                     "0x%llx\n", data);
2763                         return 1;
2764                 }
2765                 break;
2766         case MSR_IA32_DEBUGCTLMSR:
2767                 if (!data) {
2768                         /* We support the non-activated case already */
2769                         break;
2770                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2771                         /* Values other than LBR and BTF are vendor-specific,
2772                            thus reserved and should throw a #GP */
2773                         return 1;
2774                 }
2775                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2776                             __func__, data);
2777                 break;
2778         case 0x200 ... 0x2ff:
2779                 return kvm_mtrr_set_msr(vcpu, msr, data);
2780         case MSR_IA32_APICBASE:
2781                 return kvm_set_apic_base(vcpu, msr_info);
2782         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2783                 return kvm_x2apic_msr_write(vcpu, msr, data);
2784         case MSR_IA32_TSCDEADLINE:
2785                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2786                 break;
2787         case MSR_IA32_TSC_ADJUST:
2788                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2789                         if (!msr_info->host_initiated) {
2790                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2791                                 adjust_tsc_offset_guest(vcpu, adj);
2792                         }
2793                         vcpu->arch.ia32_tsc_adjust_msr = data;
2794                 }
2795                 break;
2796         case MSR_IA32_MISC_ENABLE:
2797                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2798                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2799                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2800                                 return 1;
2801                         vcpu->arch.ia32_misc_enable_msr = data;
2802                         kvm_update_cpuid(vcpu);
2803                 } else {
2804                         vcpu->arch.ia32_misc_enable_msr = data;
2805                 }
2806                 break;
2807         case MSR_IA32_SMBASE:
2808                 if (!msr_info->host_initiated)
2809                         return 1;
2810                 vcpu->arch.smbase = data;
2811                 break;
2812         case MSR_IA32_POWER_CTL:
2813                 vcpu->arch.msr_ia32_power_ctl = data;
2814                 break;
2815         case MSR_IA32_TSC:
2816                 kvm_write_tsc(vcpu, msr_info);
2817                 break;
2818         case MSR_IA32_XSS:
2819                 if (!msr_info->host_initiated &&
2820                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2821                         return 1;
2822                 /*
2823                  * KVM supports exposing PT to the guest, but does not support
2824                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2825                  * XSAVES/XRSTORS to save/restore PT MSRs.
2826                  */
2827                 if (data & ~supported_xss)
2828                         return 1;
2829                 vcpu->arch.ia32_xss = data;
2830                 break;
2831         case MSR_SMI_COUNT:
2832                 if (!msr_info->host_initiated)
2833                         return 1;
2834                 vcpu->arch.smi_count = data;
2835                 break;
2836         case MSR_KVM_WALL_CLOCK_NEW:
2837         case MSR_KVM_WALL_CLOCK:
2838                 vcpu->kvm->arch.wall_clock = data;
2839                 kvm_write_wall_clock(vcpu->kvm, data);
2840                 break;
2841         case MSR_KVM_SYSTEM_TIME_NEW:
2842         case MSR_KVM_SYSTEM_TIME: {
2843                 struct kvm_arch *ka = &vcpu->kvm->arch;
2844
2845                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2846                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2847
2848                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2849                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2850
2851                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2852                 }
2853
2854                 vcpu->arch.time = data;
2855                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2856
2857                 /* we verify if the enable bit is set... */
2858                 vcpu->arch.pv_time_enabled = false;
2859                 if (!(data & 1))
2860                         break;
2861
2862                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2863                      &vcpu->arch.pv_time, data & ~1ULL,
2864                      sizeof(struct pvclock_vcpu_time_info)))
2865                         vcpu->arch.pv_time_enabled = true;
2866
2867                 break;
2868         }
2869         case MSR_KVM_ASYNC_PF_EN:
2870                 if (kvm_pv_enable_async_pf(vcpu, data))
2871                         return 1;
2872                 break;
2873         case MSR_KVM_STEAL_TIME:
2874
2875                 if (unlikely(!sched_info_on()))
2876                         return 1;
2877
2878                 if (data & KVM_STEAL_RESERVED_MASK)
2879                         return 1;
2880
2881                 vcpu->arch.st.msr_val = data;
2882
2883                 if (!(data & KVM_MSR_ENABLED))
2884                         break;
2885
2886                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2887
2888                 break;
2889         case MSR_KVM_PV_EOI_EN:
2890                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2891                         return 1;
2892                 break;
2893
2894         case MSR_KVM_POLL_CONTROL:
2895                 /* only enable bit supported */
2896                 if (data & (-1ULL << 1))
2897                         return 1;
2898
2899                 vcpu->arch.msr_kvm_poll_control = data;
2900                 break;
2901
2902         case MSR_IA32_MCG_CTL:
2903         case MSR_IA32_MCG_STATUS:
2904         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2905                 return set_msr_mce(vcpu, msr_info);
2906
2907         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2908         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2909                 pr = true; /* fall through */
2910         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2911         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2912                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2913                         return kvm_pmu_set_msr(vcpu, msr_info);
2914
2915                 if (pr || data != 0)
2916                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2917                                     "0x%x data 0x%llx\n", msr, data);
2918                 break;
2919         case MSR_K7_CLK_CTL:
2920                 /*
2921                  * Ignore all writes to this no longer documented MSR.
2922                  * Writes are only relevant for old K7 processors,
2923                  * all pre-dating SVM, but a recommended workaround from
2924                  * AMD for these chips. It is possible to specify the
2925                  * affected processor models on the command line, hence
2926                  * the need to ignore the workaround.
2927                  */
2928                 break;
2929         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2930         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2931         case HV_X64_MSR_CRASH_CTL:
2932         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2933         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2934         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2935         case HV_X64_MSR_TSC_EMULATION_STATUS:
2936                 return kvm_hv_set_msr_common(vcpu, msr, data,
2937                                              msr_info->host_initiated);
2938         case MSR_IA32_BBL_CR_CTL3:
2939                 /* Drop writes to this legacy MSR -- see rdmsr
2940                  * counterpart for further detail.
2941                  */
2942                 if (report_ignored_msrs)
2943                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2944                                 msr, data);
2945                 break;
2946         case MSR_AMD64_OSVW_ID_LENGTH:
2947                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2948                         return 1;
2949                 vcpu->arch.osvw.length = data;
2950                 break;
2951         case MSR_AMD64_OSVW_STATUS:
2952                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2953                         return 1;
2954                 vcpu->arch.osvw.status = data;
2955                 break;
2956         case MSR_PLATFORM_INFO:
2957                 if (!msr_info->host_initiated ||
2958                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2959                      cpuid_fault_enabled(vcpu)))
2960                         return 1;
2961                 vcpu->arch.msr_platform_info = data;
2962                 break;
2963         case MSR_MISC_FEATURES_ENABLES:
2964                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2965                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2966                      !supports_cpuid_fault(vcpu)))
2967                         return 1;
2968                 vcpu->arch.msr_misc_features_enables = data;
2969                 break;
2970         default:
2971                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2972                         return xen_hvm_config(vcpu, data);
2973                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2974                         return kvm_pmu_set_msr(vcpu, msr_info);
2975                 if (!ignore_msrs) {
2976                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2977                                     msr, data);
2978                         return 1;
2979                 } else {
2980                         if (report_ignored_msrs)
2981                                 vcpu_unimpl(vcpu,
2982                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2983                                         msr, data);
2984                         break;
2985                 }
2986         }
2987         return 0;
2988 }
2989 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2990
2991 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2992 {
2993         u64 data;
2994         u64 mcg_cap = vcpu->arch.mcg_cap;
2995         unsigned bank_num = mcg_cap & 0xff;
2996
2997         switch (msr) {
2998         case MSR_IA32_P5_MC_ADDR:
2999         case MSR_IA32_P5_MC_TYPE:
3000                 data = 0;
3001                 break;
3002         case MSR_IA32_MCG_CAP:
3003                 data = vcpu->arch.mcg_cap;
3004                 break;
3005         case MSR_IA32_MCG_CTL:
3006                 if (!(mcg_cap & MCG_CTL_P) && !host)
3007                         return 1;
3008                 data = vcpu->arch.mcg_ctl;
3009                 break;
3010         case MSR_IA32_MCG_STATUS:
3011                 data = vcpu->arch.mcg_status;
3012                 break;
3013         default:
3014                 if (msr >= MSR_IA32_MC0_CTL &&
3015                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3016                         u32 offset = array_index_nospec(
3017                                 msr - MSR_IA32_MC0_CTL,
3018                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3019
3020                         data = vcpu->arch.mce_banks[offset];
3021                         break;
3022                 }
3023                 return 1;
3024         }
3025         *pdata = data;
3026         return 0;
3027 }
3028
3029 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3030 {
3031         switch (msr_info->index) {
3032         case MSR_IA32_PLATFORM_ID:
3033         case MSR_IA32_EBL_CR_POWERON:
3034         case MSR_IA32_DEBUGCTLMSR:
3035         case MSR_IA32_LASTBRANCHFROMIP:
3036         case MSR_IA32_LASTBRANCHTOIP:
3037         case MSR_IA32_LASTINTFROMIP:
3038         case MSR_IA32_LASTINTTOIP:
3039         case MSR_K8_SYSCFG:
3040         case MSR_K8_TSEG_ADDR:
3041         case MSR_K8_TSEG_MASK:
3042         case MSR_VM_HSAVE_PA:
3043         case MSR_K8_INT_PENDING_MSG:
3044         case MSR_AMD64_NB_CFG:
3045         case MSR_FAM10H_MMIO_CONF_BASE:
3046         case MSR_AMD64_BU_CFG2:
3047         case MSR_IA32_PERF_CTL:
3048         case MSR_AMD64_DC_CFG:
3049         case MSR_F15H_EX_CFG:
3050         /*
3051          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3052          * limit) MSRs. Just return 0, as we do not want to expose the host
3053          * data here. Do not conditionalize this on CPUID, as KVM does not do
3054          * so for existing CPU-specific MSRs.
3055          */
3056         case MSR_RAPL_POWER_UNIT:
3057         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3058         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3059         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3060         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3061                 msr_info->data = 0;
3062                 break;
3063         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3064         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3065         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3066         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3067         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3068                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3069                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3070                 msr_info->data = 0;
3071                 break;
3072         case MSR_IA32_UCODE_REV:
3073                 msr_info->data = vcpu->arch.microcode_version;
3074                 break;
3075         case MSR_IA32_ARCH_CAPABILITIES:
3076                 if (!msr_info->host_initiated &&
3077                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3078                         return 1;
3079                 msr_info->data = vcpu->arch.arch_capabilities;
3080                 break;
3081         case MSR_IA32_POWER_CTL:
3082                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3083                 break;
3084         case MSR_IA32_TSC:
3085                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3086                 break;
3087         case MSR_MTRRcap:
3088         case 0x200 ... 0x2ff:
3089                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3090         case 0xcd: /* fsb frequency */
3091                 msr_info->data = 3;
3092                 break;
3093                 /*
3094                  * MSR_EBC_FREQUENCY_ID
3095                  * Conservative value valid for even the basic CPU models.
3096                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3097                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3098                  * and 266MHz for model 3, or 4. Set Core Clock
3099                  * Frequency to System Bus Frequency Ratio to 1 (bits
3100                  * 31:24) even though these are only valid for CPU
3101                  * models > 2, however guests may end up dividing or
3102                  * multiplying by zero otherwise.
3103                  */
3104         case MSR_EBC_FREQUENCY_ID:
3105                 msr_info->data = 1 << 24;
3106                 break;
3107         case MSR_IA32_APICBASE:
3108                 msr_info->data = kvm_get_apic_base(vcpu);
3109                 break;
3110         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3111                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3112         case MSR_IA32_TSCDEADLINE:
3113                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3114                 break;
3115         case MSR_IA32_TSC_ADJUST:
3116                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3117                 break;
3118         case MSR_IA32_MISC_ENABLE:
3119                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3120                 break;
3121         case MSR_IA32_SMBASE:
3122                 if (!msr_info->host_initiated)
3123                         return 1;
3124                 msr_info->data = vcpu->arch.smbase;
3125                 break;
3126         case MSR_SMI_COUNT:
3127                 msr_info->data = vcpu->arch.smi_count;
3128                 break;
3129         case MSR_IA32_PERF_STATUS:
3130                 /* TSC increment by tick */
3131                 msr_info->data = 1000ULL;
3132                 /* CPU multiplier */
3133                 msr_info->data |= (((uint64_t)4ULL) << 40);
3134                 break;
3135         case MSR_EFER:
3136                 msr_info->data = vcpu->arch.efer;
3137                 break;
3138         case MSR_KVM_WALL_CLOCK:
3139         case MSR_KVM_WALL_CLOCK_NEW:
3140                 msr_info->data = vcpu->kvm->arch.wall_clock;
3141                 break;
3142         case MSR_KVM_SYSTEM_TIME:
3143         case MSR_KVM_SYSTEM_TIME_NEW:
3144                 msr_info->data = vcpu->arch.time;
3145                 break;
3146         case MSR_KVM_ASYNC_PF_EN:
3147                 msr_info->data = vcpu->arch.apf.msr_val;
3148                 break;
3149         case MSR_KVM_STEAL_TIME:
3150                 msr_info->data = vcpu->arch.st.msr_val;
3151                 break;
3152         case MSR_KVM_PV_EOI_EN:
3153                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3154                 break;
3155         case MSR_KVM_POLL_CONTROL:
3156                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3157                 break;
3158         case MSR_IA32_P5_MC_ADDR:
3159         case MSR_IA32_P5_MC_TYPE:
3160         case MSR_IA32_MCG_CAP:
3161         case MSR_IA32_MCG_CTL:
3162         case MSR_IA32_MCG_STATUS:
3163         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3164                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3165                                    msr_info->host_initiated);
3166         case MSR_IA32_XSS:
3167                 if (!msr_info->host_initiated &&
3168                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3169                         return 1;
3170                 msr_info->data = vcpu->arch.ia32_xss;
3171                 break;
3172         case MSR_K7_CLK_CTL:
3173                 /*
3174                  * Provide expected ramp-up count for K7. All other
3175                  * are set to zero, indicating minimum divisors for
3176                  * every field.
3177                  *
3178                  * This prevents guest kernels on AMD host with CPU
3179                  * type 6, model 8 and higher from exploding due to
3180                  * the rdmsr failing.
3181                  */
3182                 msr_info->data = 0x20000000;
3183                 break;
3184         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3185         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3186         case HV_X64_MSR_CRASH_CTL:
3187         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3188         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3189         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3190         case HV_X64_MSR_TSC_EMULATION_STATUS:
3191                 return kvm_hv_get_msr_common(vcpu,
3192                                              msr_info->index, &msr_info->data,
3193                                              msr_info->host_initiated);
3194         case MSR_IA32_BBL_CR_CTL3:
3195                 /* This legacy MSR exists but isn't fully documented in current
3196                  * silicon.  It is however accessed by winxp in very narrow
3197                  * scenarios where it sets bit #19, itself documented as
3198                  * a "reserved" bit.  Best effort attempt to source coherent
3199                  * read data here should the balance of the register be
3200                  * interpreted by the guest:
3201                  *
3202                  * L2 cache control register 3: 64GB range, 256KB size,
3203                  * enabled, latency 0x1, configured
3204                  */
3205                 msr_info->data = 0xbe702111;
3206                 break;
3207         case MSR_AMD64_OSVW_ID_LENGTH:
3208                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3209                         return 1;
3210                 msr_info->data = vcpu->arch.osvw.length;
3211                 break;
3212         case MSR_AMD64_OSVW_STATUS:
3213                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3214                         return 1;
3215                 msr_info->data = vcpu->arch.osvw.status;
3216                 break;
3217         case MSR_PLATFORM_INFO:
3218                 if (!msr_info->host_initiated &&
3219                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3220                         return 1;
3221                 msr_info->data = vcpu->arch.msr_platform_info;
3222                 break;
3223         case MSR_MISC_FEATURES_ENABLES:
3224                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3225                 break;
3226         case MSR_K7_HWCR:
3227                 msr_info->data = vcpu->arch.msr_hwcr;
3228                 break;
3229         default:
3230                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3231                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3232                 if (!ignore_msrs) {
3233                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3234                                                msr_info->index);
3235                         return 1;
3236                 } else {
3237                         if (report_ignored_msrs)
3238                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3239                                         msr_info->index);
3240                         msr_info->data = 0;
3241                 }
3242                 break;
3243         }
3244         return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3247
3248 /*
3249  * Read or write a bunch of msrs. All parameters are kernel addresses.
3250  *
3251  * @return number of msrs set successfully.
3252  */
3253 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3254                     struct kvm_msr_entry *entries,
3255                     int (*do_msr)(struct kvm_vcpu *vcpu,
3256                                   unsigned index, u64 *data))
3257 {
3258         int i;
3259
3260         for (i = 0; i < msrs->nmsrs; ++i)
3261                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3262                         break;
3263
3264         return i;
3265 }
3266
3267 /*
3268  * Read or write a bunch of msrs. Parameters are user addresses.
3269  *
3270  * @return number of msrs set successfully.
3271  */
3272 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3273                   int (*do_msr)(struct kvm_vcpu *vcpu,
3274                                 unsigned index, u64 *data),
3275                   int writeback)
3276 {
3277         struct kvm_msrs msrs;
3278         struct kvm_msr_entry *entries;
3279         int r, n;
3280         unsigned size;
3281
3282         r = -EFAULT;
3283         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3284                 goto out;
3285
3286         r = -E2BIG;
3287         if (msrs.nmsrs >= MAX_IO_MSRS)
3288                 goto out;
3289
3290         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3291         entries = memdup_user(user_msrs->entries, size);
3292         if (IS_ERR(entries)) {
3293                 r = PTR_ERR(entries);
3294                 goto out;
3295         }
3296
3297         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3298         if (r < 0)
3299                 goto out_free;
3300
3301         r = -EFAULT;
3302         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3303                 goto out_free;
3304
3305         r = n;
3306
3307 out_free:
3308         kfree(entries);
3309 out:
3310         return r;
3311 }
3312
3313 static inline bool kvm_can_mwait_in_guest(void)
3314 {
3315         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3316                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3317                 boot_cpu_has(X86_FEATURE_ARAT);
3318 }
3319
3320 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3321 {
3322         int r = 0;
3323
3324         switch (ext) {
3325         case KVM_CAP_IRQCHIP:
3326         case KVM_CAP_HLT:
3327         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3328         case KVM_CAP_SET_TSS_ADDR:
3329         case KVM_CAP_EXT_CPUID:
3330         case KVM_CAP_EXT_EMUL_CPUID:
3331         case KVM_CAP_CLOCKSOURCE:
3332         case KVM_CAP_PIT:
3333         case KVM_CAP_NOP_IO_DELAY:
3334         case KVM_CAP_MP_STATE:
3335         case KVM_CAP_SYNC_MMU:
3336         case KVM_CAP_USER_NMI:
3337         case KVM_CAP_REINJECT_CONTROL:
3338         case KVM_CAP_IRQ_INJECT_STATUS:
3339         case KVM_CAP_IOEVENTFD:
3340         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3341         case KVM_CAP_PIT2:
3342         case KVM_CAP_PIT_STATE2:
3343         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3344         case KVM_CAP_XEN_HVM:
3345         case KVM_CAP_VCPU_EVENTS:
3346         case KVM_CAP_HYPERV:
3347         case KVM_CAP_HYPERV_VAPIC:
3348         case KVM_CAP_HYPERV_SPIN:
3349         case KVM_CAP_HYPERV_SYNIC:
3350         case KVM_CAP_HYPERV_SYNIC2:
3351         case KVM_CAP_HYPERV_VP_INDEX:
3352         case KVM_CAP_HYPERV_EVENTFD:
3353         case KVM_CAP_HYPERV_TLBFLUSH:
3354         case KVM_CAP_HYPERV_SEND_IPI:
3355         case KVM_CAP_HYPERV_CPUID:
3356         case KVM_CAP_PCI_SEGMENT:
3357         case KVM_CAP_DEBUGREGS:
3358         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3359         case KVM_CAP_XSAVE:
3360         case KVM_CAP_ASYNC_PF:
3361         case KVM_CAP_GET_TSC_KHZ:
3362         case KVM_CAP_KVMCLOCK_CTRL:
3363         case KVM_CAP_READONLY_MEM:
3364         case KVM_CAP_HYPERV_TIME:
3365         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3366         case KVM_CAP_TSC_DEADLINE_TIMER:
3367         case KVM_CAP_DISABLE_QUIRKS:
3368         case KVM_CAP_SET_BOOT_CPU_ID:
3369         case KVM_CAP_SPLIT_IRQCHIP:
3370         case KVM_CAP_IMMEDIATE_EXIT:
3371         case KVM_CAP_PMU_EVENT_FILTER:
3372         case KVM_CAP_GET_MSR_FEATURES:
3373         case KVM_CAP_MSR_PLATFORM_INFO:
3374         case KVM_CAP_EXCEPTION_PAYLOAD:
3375         case KVM_CAP_SET_GUEST_DEBUG:
3376                 r = 1;
3377                 break;
3378         case KVM_CAP_SYNC_REGS:
3379                 r = KVM_SYNC_X86_VALID_FIELDS;
3380                 break;
3381         case KVM_CAP_ADJUST_CLOCK:
3382                 r = KVM_CLOCK_TSC_STABLE;
3383                 break;
3384         case KVM_CAP_X86_DISABLE_EXITS:
3385                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3386                       KVM_X86_DISABLE_EXITS_CSTATE;
3387                 if(kvm_can_mwait_in_guest())
3388                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3389                 break;
3390         case KVM_CAP_X86_SMM:
3391                 /* SMBASE is usually relocated above 1M on modern chipsets,
3392                  * and SMM handlers might indeed rely on 4G segment limits,
3393                  * so do not report SMM to be available if real mode is
3394                  * emulated via vm86 mode.  Still, do not go to great lengths
3395                  * to avoid userspace's usage of the feature, because it is a
3396                  * fringe case that is not enabled except via specific settings
3397                  * of the module parameters.
3398                  */
3399                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3400                 break;
3401         case KVM_CAP_VAPIC:
3402                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3403                 break;
3404         case KVM_CAP_NR_VCPUS:
3405                 r = KVM_SOFT_MAX_VCPUS;
3406                 break;
3407         case KVM_CAP_MAX_VCPUS:
3408                 r = KVM_MAX_VCPUS;
3409                 break;
3410         case KVM_CAP_MAX_VCPU_ID:
3411                 r = KVM_MAX_VCPU_ID;
3412                 break;
3413         case KVM_CAP_PV_MMU:    /* obsolete */
3414                 r = 0;
3415                 break;
3416         case KVM_CAP_MCE:
3417                 r = KVM_MAX_MCE_BANKS;
3418                 break;
3419         case KVM_CAP_XCRS:
3420                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3421                 break;
3422         case KVM_CAP_TSC_CONTROL:
3423                 r = kvm_has_tsc_control;
3424                 break;
3425         case KVM_CAP_X2APIC_API:
3426                 r = KVM_X2APIC_API_VALID_FLAGS;
3427                 break;
3428         case KVM_CAP_NESTED_STATE:
3429                 r = kvm_x86_ops.get_nested_state ?
3430                         kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
3431                 break;
3432         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3433                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3434                 break;
3435         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3436                 r = kvm_x86_ops.nested_enable_evmcs != NULL;
3437                 break;
3438         default:
3439                 break;
3440         }
3441         return r;
3442
3443 }
3444
3445 long kvm_arch_dev_ioctl(struct file *filp,
3446                         unsigned int ioctl, unsigned long arg)
3447 {
3448         void __user *argp = (void __user *)arg;
3449         long r;
3450
3451         switch (ioctl) {
3452         case KVM_GET_MSR_INDEX_LIST: {
3453                 struct kvm_msr_list __user *user_msr_list = argp;
3454                 struct kvm_msr_list msr_list;
3455                 unsigned n;
3456
3457                 r = -EFAULT;
3458                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3459                         goto out;
3460                 n = msr_list.nmsrs;
3461                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3462                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3463                         goto out;
3464                 r = -E2BIG;
3465                 if (n < msr_list.nmsrs)
3466                         goto out;
3467                 r = -EFAULT;
3468                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3469                                  num_msrs_to_save * sizeof(u32)))
3470                         goto out;
3471                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3472                                  &emulated_msrs,
3473                                  num_emulated_msrs * sizeof(u32)))
3474                         goto out;
3475                 r = 0;
3476                 break;
3477         }
3478         case KVM_GET_SUPPORTED_CPUID:
3479         case KVM_GET_EMULATED_CPUID: {
3480                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3481                 struct kvm_cpuid2 cpuid;
3482
3483                 r = -EFAULT;
3484                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3485                         goto out;
3486
3487                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3488                                             ioctl);
3489                 if (r)
3490                         goto out;
3491
3492                 r = -EFAULT;
3493                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3494                         goto out;
3495                 r = 0;
3496                 break;
3497         }
3498         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3499                 r = -EFAULT;
3500                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3501                                  sizeof(kvm_mce_cap_supported)))
3502                         goto out;
3503                 r = 0;
3504                 break;
3505         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3506                 struct kvm_msr_list __user *user_msr_list = argp;
3507                 struct kvm_msr_list msr_list;
3508                 unsigned int n;
3509
3510                 r = -EFAULT;
3511                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3512                         goto out;
3513                 n = msr_list.nmsrs;
3514                 msr_list.nmsrs = num_msr_based_features;
3515                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3516                         goto out;
3517                 r = -E2BIG;
3518                 if (n < msr_list.nmsrs)
3519                         goto out;
3520                 r = -EFAULT;
3521                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3522                                  num_msr_based_features * sizeof(u32)))
3523                         goto out;
3524                 r = 0;
3525                 break;
3526         }
3527         case KVM_GET_MSRS:
3528                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3529                 break;
3530         default:
3531                 r = -EINVAL;
3532                 break;
3533         }
3534 out:
3535         return r;
3536 }
3537
3538 static void wbinvd_ipi(void *garbage)
3539 {
3540         wbinvd();
3541 }
3542
3543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3544 {
3545         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3546 }
3547
3548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3549 {
3550         /* Address WBINVD may be executed by guest */
3551         if (need_emulate_wbinvd(vcpu)) {
3552                 if (kvm_x86_ops.has_wbinvd_exit())
3553                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3554                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3555                         smp_call_function_single(vcpu->cpu,
3556                                         wbinvd_ipi, NULL, 1);
3557         }
3558
3559         kvm_x86_ops.vcpu_load(vcpu, cpu);
3560
3561         /* Apply any externally detected TSC adjustments (due to suspend) */
3562         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3563                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3564                 vcpu->arch.tsc_offset_adjustment = 0;
3565                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3566         }
3567
3568         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3569                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3570                                 rdtsc() - vcpu->arch.last_host_tsc;
3571                 if (tsc_delta < 0)
3572                         mark_tsc_unstable("KVM discovered backwards TSC");
3573
3574                 if (kvm_check_tsc_unstable()) {
3575                         u64 offset = kvm_compute_tsc_offset(vcpu,
3576                                                 vcpu->arch.last_guest_tsc);
3577                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3578                         vcpu->arch.tsc_catchup = 1;
3579                 }
3580
3581                 if (kvm_lapic_hv_timer_in_use(vcpu))
3582                         kvm_lapic_restart_hv_timer(vcpu);
3583
3584                 /*
3585                  * On a host with synchronized TSC, there is no need to update
3586                  * kvmclock on vcpu->cpu migration
3587                  */
3588                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3589                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3590                 if (vcpu->cpu != cpu)
3591                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3592                 vcpu->cpu = cpu;
3593         }
3594
3595         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3596 }
3597
3598 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3599 {
3600         struct kvm_host_map map;
3601         struct kvm_steal_time *st;
3602
3603         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3604                 return;
3605
3606         if (vcpu->arch.st.preempted)
3607                 return;
3608
3609         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3610                         &vcpu->arch.st.cache, true))
3611                 return;
3612
3613         st = map.hva +
3614                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3615
3616         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3617
3618         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3619 }
3620
3621 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3622 {
3623         int idx;
3624
3625         if (vcpu->preempted)
3626                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3627
3628         /*
3629          * Disable page faults because we're in atomic context here.
3630          * kvm_write_guest_offset_cached() would call might_fault()
3631          * that relies on pagefault_disable() to tell if there's a
3632          * bug. NOTE: the write to guest memory may not go through if
3633          * during postcopy live migration or if there's heavy guest
3634          * paging.
3635          */
3636         pagefault_disable();
3637         /*
3638          * kvm_memslots() will be called by
3639          * kvm_write_guest_offset_cached() so take the srcu lock.
3640          */
3641         idx = srcu_read_lock(&vcpu->kvm->srcu);
3642         kvm_steal_time_set_preempted(vcpu);
3643         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3644         pagefault_enable();
3645         kvm_x86_ops.vcpu_put(vcpu);
3646         vcpu->arch.last_host_tsc = rdtsc();
3647         /*
3648          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3649          * on every vmexit, but if not, we might have a stale dr6 from the
3650          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3651          */
3652         set_debugreg(0, 6);
3653 }
3654
3655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3656                                     struct kvm_lapic_state *s)
3657 {
3658         if (vcpu->arch.apicv_active)
3659                 kvm_x86_ops.sync_pir_to_irr(vcpu);
3660
3661         return kvm_apic_get_state(vcpu, s);
3662 }
3663
3664 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3665                                     struct kvm_lapic_state *s)
3666 {
3667         int r;
3668
3669         r = kvm_apic_set_state(vcpu, s);
3670         if (r)
3671                 return r;
3672         update_cr8_intercept(vcpu);
3673
3674         return 0;
3675 }
3676
3677 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3678 {
3679         return (!lapic_in_kernel(vcpu) ||
3680                 kvm_apic_accept_pic_intr(vcpu));
3681 }
3682
3683 /*
3684  * if userspace requested an interrupt window, check that the
3685  * interrupt window is open.
3686  *
3687  * No need to exit to userspace if we already have an interrupt queued.
3688  */
3689 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3690 {
3691         return kvm_arch_interrupt_allowed(vcpu) &&
3692                 !kvm_cpu_has_interrupt(vcpu) &&
3693                 !kvm_event_needs_reinjection(vcpu) &&
3694                 kvm_cpu_accept_dm_intr(vcpu);
3695 }
3696
3697 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3698                                     struct kvm_interrupt *irq)
3699 {
3700         if (irq->irq >= KVM_NR_INTERRUPTS)
3701                 return -EINVAL;
3702
3703         if (!irqchip_in_kernel(vcpu->kvm)) {
3704                 kvm_queue_interrupt(vcpu, irq->irq, false);
3705                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3706                 return 0;
3707         }
3708
3709         /*
3710          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3711          * fail for in-kernel 8259.
3712          */
3713         if (pic_in_kernel(vcpu->kvm))
3714                 return -ENXIO;
3715
3716         if (vcpu->arch.pending_external_vector != -1)
3717                 return -EEXIST;
3718
3719         vcpu->arch.pending_external_vector = irq->irq;
3720         kvm_make_request(KVM_REQ_EVENT, vcpu);
3721         return 0;
3722 }
3723
3724 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3725 {
3726         kvm_inject_nmi(vcpu);
3727
3728         return 0;
3729 }
3730
3731 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3732 {
3733         kvm_make_request(KVM_REQ_SMI, vcpu);
3734
3735         return 0;
3736 }
3737
3738 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3739                                            struct kvm_tpr_access_ctl *tac)
3740 {
3741         if (tac->flags)
3742                 return -EINVAL;
3743         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3744         return 0;
3745 }
3746
3747 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3748                                         u64 mcg_cap)
3749 {
3750         int r;
3751         unsigned bank_num = mcg_cap & 0xff, bank;
3752
3753         r = -EINVAL;
3754         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3755                 goto out;
3756         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3757                 goto out;
3758         r = 0;
3759         vcpu->arch.mcg_cap = mcg_cap;
3760         /* Init IA32_MCG_CTL to all 1s */
3761         if (mcg_cap & MCG_CTL_P)
3762                 vcpu->arch.mcg_ctl = ~(u64)0;
3763         /* Init IA32_MCi_CTL to all 1s */
3764         for (bank = 0; bank < bank_num; bank++)
3765                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3766
3767         kvm_x86_ops.setup_mce(vcpu);
3768 out:
3769         return r;
3770 }
3771
3772 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3773                                       struct kvm_x86_mce *mce)
3774 {
3775         u64 mcg_cap = vcpu->arch.mcg_cap;
3776         unsigned bank_num = mcg_cap & 0xff;
3777         u64 *banks = vcpu->arch.mce_banks;
3778
3779         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3780                 return -EINVAL;
3781         /*
3782          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3783          * reporting is disabled
3784          */
3785         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3786             vcpu->arch.mcg_ctl != ~(u64)0)
3787                 return 0;
3788         banks += 4 * mce->bank;
3789         /*
3790          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3791          * reporting is disabled for the bank
3792          */
3793         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3794                 return 0;
3795         if (mce->status & MCI_STATUS_UC) {
3796                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3797                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3798                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3799                         return 0;
3800                 }
3801                 if (banks[1] & MCI_STATUS_VAL)
3802                         mce->status |= MCI_STATUS_OVER;
3803                 banks[2] = mce->addr;
3804                 banks[3] = mce->misc;
3805                 vcpu->arch.mcg_status = mce->mcg_status;
3806                 banks[1] = mce->status;
3807                 kvm_queue_exception(vcpu, MC_VECTOR);
3808         } else if (!(banks[1] & MCI_STATUS_VAL)
3809                    || !(banks[1] & MCI_STATUS_UC)) {
3810                 if (banks[1] & MCI_STATUS_VAL)
3811                         mce->status |= MCI_STATUS_OVER;
3812                 banks[2] = mce->addr;
3813                 banks[3] = mce->misc;
3814                 banks[1] = mce->status;
3815         } else
3816                 banks[1] |= MCI_STATUS_OVER;
3817         return 0;
3818 }
3819
3820 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3821                                                struct kvm_vcpu_events *events)
3822 {
3823         process_nmi(vcpu);
3824
3825         /*
3826          * In guest mode, payload delivery should be deferred,
3827          * so that the L1 hypervisor can intercept #PF before
3828          * CR2 is modified (or intercept #DB before DR6 is
3829          * modified under nVMX). Unless the per-VM capability,
3830          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3831          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3832          * opportunistically defer the exception payload, deliver it if the
3833          * capability hasn't been requested before processing a
3834          * KVM_GET_VCPU_EVENTS.
3835          */
3836         if (!vcpu->kvm->arch.exception_payload_enabled &&
3837             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3838                 kvm_deliver_exception_payload(vcpu);
3839
3840         /*
3841          * The API doesn't provide the instruction length for software
3842          * exceptions, so don't report them. As long as the guest RIP
3843          * isn't advanced, we should expect to encounter the exception
3844          * again.
3845          */
3846         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3847                 events->exception.injected = 0;
3848                 events->exception.pending = 0;
3849         } else {
3850                 events->exception.injected = vcpu->arch.exception.injected;
3851                 events->exception.pending = vcpu->arch.exception.pending;
3852                 /*
3853                  * For ABI compatibility, deliberately conflate
3854                  * pending and injected exceptions when
3855                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3856                  */
3857                 if (!vcpu->kvm->arch.exception_payload_enabled)
3858                         events->exception.injected |=
3859                                 vcpu->arch.exception.pending;
3860         }
3861         events->exception.nr = vcpu->arch.exception.nr;
3862         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3863         events->exception.error_code = vcpu->arch.exception.error_code;
3864         events->exception_has_payload = vcpu->arch.exception.has_payload;
3865         events->exception_payload = vcpu->arch.exception.payload;
3866
3867         events->interrupt.injected =
3868                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3869         events->interrupt.nr = vcpu->arch.interrupt.nr;
3870         events->interrupt.soft = 0;
3871         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3872
3873         events->nmi.injected = vcpu->arch.nmi_injected;
3874         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3875         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3876         events->nmi.pad = 0;
3877
3878         events->sipi_vector = 0; /* never valid when reporting to user space */
3879
3880         events->smi.smm = is_smm(vcpu);
3881         events->smi.pending = vcpu->arch.smi_pending;
3882         events->smi.smm_inside_nmi =
3883                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3884         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3885
3886         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3887                          | KVM_VCPUEVENT_VALID_SHADOW
3888                          | KVM_VCPUEVENT_VALID_SMM);
3889         if (vcpu->kvm->arch.exception_payload_enabled)
3890                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3891
3892         memset(&events->reserved, 0, sizeof(events->reserved));
3893 }
3894
3895 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3896
3897 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3898                                               struct kvm_vcpu_events *events)
3899 {
3900         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3901                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3902                               | KVM_VCPUEVENT_VALID_SHADOW
3903                               | KVM_VCPUEVENT_VALID_SMM
3904                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3905                 return -EINVAL;
3906
3907         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3908                 if (!vcpu->kvm->arch.exception_payload_enabled)
3909                         return -EINVAL;
3910                 if (events->exception.pending)
3911                         events->exception.injected = 0;
3912                 else
3913                         events->exception_has_payload = 0;
3914         } else {
3915                 events->exception.pending = 0;
3916                 events->exception_has_payload = 0;
3917         }
3918
3919         if ((events->exception.injected || events->exception.pending) &&
3920             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3921                 return -EINVAL;
3922
3923         /* INITs are latched while in SMM */
3924         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3925             (events->smi.smm || events->smi.pending) &&
3926             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3927                 return -EINVAL;
3928
3929         process_nmi(vcpu);
3930         vcpu->arch.exception.injected = events->exception.injected;
3931         vcpu->arch.exception.pending = events->exception.pending;
3932         vcpu->arch.exception.nr = events->exception.nr;
3933         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3934         vcpu->arch.exception.error_code = events->exception.error_code;
3935         vcpu->arch.exception.has_payload = events->exception_has_payload;
3936         vcpu->arch.exception.payload = events->exception_payload;
3937
3938         vcpu->arch.interrupt.injected = events->interrupt.injected;
3939         vcpu->arch.interrupt.nr = events->interrupt.nr;
3940         vcpu->arch.interrupt.soft = events->interrupt.soft;
3941         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3942                 kvm_x86_ops.set_interrupt_shadow(vcpu,
3943                                                   events->interrupt.shadow);
3944
3945         vcpu->arch.nmi_injected = events->nmi.injected;
3946         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3947                 vcpu->arch.nmi_pending = events->nmi.pending;
3948         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3949
3950         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3951             lapic_in_kernel(vcpu))
3952                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3953
3954         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3955                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3956                         if (events->smi.smm)
3957                                 vcpu->arch.hflags |= HF_SMM_MASK;
3958                         else
3959                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3960                         kvm_smm_changed(vcpu);
3961                 }
3962
3963                 vcpu->arch.smi_pending = events->smi.pending;
3964
3965                 if (events->smi.smm) {
3966                         if (events->smi.smm_inside_nmi)
3967                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3968                         else
3969                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3970                 }
3971
3972                 if (lapic_in_kernel(vcpu)) {
3973                         if (events->smi.latched_init)
3974                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3975                         else
3976                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3977                 }
3978         }
3979
3980         kvm_make_request(KVM_REQ_EVENT, vcpu);
3981
3982         return 0;
3983 }
3984
3985 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3986                                              struct kvm_debugregs *dbgregs)
3987 {
3988         unsigned long val;
3989
3990         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3991         kvm_get_dr(vcpu, 6, &val);
3992         dbgregs->dr6 = val;
3993         dbgregs->dr7 = vcpu->arch.dr7;
3994         dbgregs->flags = 0;
3995         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3996 }
3997
3998 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3999                                             struct kvm_debugregs *dbgregs)
4000 {
4001         if (dbgregs->flags)
4002                 return -EINVAL;
4003
4004         if (dbgregs->dr6 & ~0xffffffffull)
4005                 return -EINVAL;
4006         if (dbgregs->dr7 & ~0xffffffffull)
4007                 return -EINVAL;
4008
4009         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4010         kvm_update_dr0123(vcpu);
4011         vcpu->arch.dr6 = dbgregs->dr6;
4012         kvm_update_dr6(vcpu);
4013         vcpu->arch.dr7 = dbgregs->dr7;
4014         kvm_update_dr7(vcpu);
4015
4016         return 0;
4017 }
4018
4019 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4020
4021 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4022 {
4023         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4024         u64 xstate_bv = xsave->header.xfeatures;
4025         u64 valid;
4026
4027         /*
4028          * Copy legacy XSAVE area, to avoid complications with CPUID
4029          * leaves 0 and 1 in the loop below.
4030          */
4031         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4032
4033         /* Set XSTATE_BV */
4034         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4035         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4036
4037         /*
4038          * Copy each region from the possibly compacted offset to the
4039          * non-compacted offset.
4040          */
4041         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4042         while (valid) {
4043                 u64 xfeature_mask = valid & -valid;
4044                 int xfeature_nr = fls64(xfeature_mask) - 1;
4045                 void *src = get_xsave_addr(xsave, xfeature_nr);
4046
4047                 if (src) {
4048                         u32 size, offset, ecx, edx;
4049                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4050                                     &size, &offset, &ecx, &edx);
4051                         if (xfeature_nr == XFEATURE_PKRU)
4052                                 memcpy(dest + offset, &vcpu->arch.pkru,
4053                                        sizeof(vcpu->arch.pkru));
4054                         else
4055                                 memcpy(dest + offset, src, size);
4056
4057                 }
4058
4059                 valid -= xfeature_mask;
4060         }
4061 }
4062
4063 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4064 {
4065         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4066         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4067         u64 valid;
4068
4069         /*
4070          * Copy legacy XSAVE area, to avoid complications with CPUID
4071          * leaves 0 and 1 in the loop below.
4072          */
4073         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4074
4075         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4076         xsave->header.xfeatures = xstate_bv;
4077         if (boot_cpu_has(X86_FEATURE_XSAVES))
4078                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4079
4080         /*
4081          * Copy each region from the non-compacted offset to the
4082          * possibly compacted offset.
4083          */
4084         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4085         while (valid) {
4086                 u64 xfeature_mask = valid & -valid;
4087                 int xfeature_nr = fls64(xfeature_mask) - 1;
4088                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4089
4090                 if (dest) {
4091                         u32 size, offset, ecx, edx;
4092                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4093                                     &size, &offset, &ecx, &edx);
4094                         if (xfeature_nr == XFEATURE_PKRU)
4095                                 memcpy(&vcpu->arch.pkru, src + offset,
4096                                        sizeof(vcpu->arch.pkru));
4097                         else
4098                                 memcpy(dest, src + offset, size);
4099                 }
4100
4101                 valid -= xfeature_mask;
4102         }
4103 }
4104
4105 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4106                                          struct kvm_xsave *guest_xsave)
4107 {
4108         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4109                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4110                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4111         } else {
4112                 memcpy(guest_xsave->region,
4113                         &vcpu->arch.guest_fpu->state.fxsave,
4114                         sizeof(struct fxregs_state));
4115                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4116                         XFEATURE_MASK_FPSSE;
4117         }
4118 }
4119
4120 #define XSAVE_MXCSR_OFFSET 24
4121
4122 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4123                                         struct kvm_xsave *guest_xsave)
4124 {
4125         u64 xstate_bv =
4126                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4127         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4128
4129         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4130                 /*
4131                  * Here we allow setting states that are not present in
4132                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4133                  * with old userspace.
4134                  */
4135                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4136                         return -EINVAL;
4137                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4138         } else {
4139                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4140                         mxcsr & ~mxcsr_feature_mask)
4141                         return -EINVAL;
4142                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4143                         guest_xsave->region, sizeof(struct fxregs_state));
4144         }
4145         return 0;
4146 }
4147
4148 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4149                                         struct kvm_xcrs *guest_xcrs)
4150 {
4151         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4152                 guest_xcrs->nr_xcrs = 0;
4153                 return;
4154         }
4155
4156         guest_xcrs->nr_xcrs = 1;
4157         guest_xcrs->flags = 0;
4158         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4159         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4160 }
4161
4162 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4163                                        struct kvm_xcrs *guest_xcrs)
4164 {
4165         int i, r = 0;
4166
4167         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4168                 return -EINVAL;
4169
4170         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4171                 return -EINVAL;
4172
4173         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4174                 /* Only support XCR0 currently */
4175                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4176                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4177                                 guest_xcrs->xcrs[i].value);
4178                         break;
4179                 }
4180         if (r)
4181                 r = -EINVAL;
4182         return r;
4183 }
4184
4185 /*
4186  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4187  * stopped by the hypervisor.  This function will be called from the host only.
4188  * EINVAL is returned when the host attempts to set the flag for a guest that
4189  * does not support pv clocks.
4190  */
4191 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4192 {
4193         if (!vcpu->arch.pv_time_enabled)
4194                 return -EINVAL;
4195         vcpu->arch.pvclock_set_guest_stopped_request = true;
4196         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4197         return 0;
4198 }
4199
4200 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4201                                      struct kvm_enable_cap *cap)
4202 {
4203         int r;
4204         uint16_t vmcs_version;
4205         void __user *user_ptr;
4206
4207         if (cap->flags)
4208                 return -EINVAL;
4209
4210         switch (cap->cap) {
4211         case KVM_CAP_HYPERV_SYNIC2:
4212                 if (cap->args[0])
4213                         return -EINVAL;
4214                 /* fall through */
4215
4216         case KVM_CAP_HYPERV_SYNIC:
4217                 if (!irqchip_in_kernel(vcpu->kvm))
4218                         return -EINVAL;
4219                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4220                                              KVM_CAP_HYPERV_SYNIC2);
4221         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4222                 if (!kvm_x86_ops.nested_enable_evmcs)
4223                         return -ENOTTY;
4224                 r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
4225                 if (!r) {
4226                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4227                         if (copy_to_user(user_ptr, &vmcs_version,
4228                                          sizeof(vmcs_version)))
4229                                 r = -EFAULT;
4230                 }
4231                 return r;
4232         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4233                 if (!kvm_x86_ops.enable_direct_tlbflush)
4234                         return -ENOTTY;
4235
4236                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4237
4238         default:
4239                 return -EINVAL;
4240         }
4241 }
4242
4243 long kvm_arch_vcpu_ioctl(struct file *filp,
4244                          unsigned int ioctl, unsigned long arg)
4245 {
4246         struct kvm_vcpu *vcpu = filp->private_data;
4247         void __user *argp = (void __user *)arg;
4248         int r;
4249         union {
4250                 struct kvm_lapic_state *lapic;
4251                 struct kvm_xsave *xsave;
4252                 struct kvm_xcrs *xcrs;
4253                 void *buffer;
4254         } u;
4255
4256         vcpu_load(vcpu);
4257
4258         u.buffer = NULL;
4259         switch (ioctl) {
4260         case KVM_GET_LAPIC: {
4261                 r = -EINVAL;
4262                 if (!lapic_in_kernel(vcpu))
4263                         goto out;
4264                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4265                                 GFP_KERNEL_ACCOUNT);
4266
4267                 r = -ENOMEM;
4268                 if (!u.lapic)
4269                         goto out;
4270                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4271                 if (r)
4272                         goto out;
4273                 r = -EFAULT;
4274                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4275                         goto out;
4276                 r = 0;
4277                 break;
4278         }
4279         case KVM_SET_LAPIC: {
4280                 r = -EINVAL;
4281                 if (!lapic_in_kernel(vcpu))
4282                         goto out;
4283                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4284                 if (IS_ERR(u.lapic)) {
4285                         r = PTR_ERR(u.lapic);
4286                         goto out_nofree;
4287                 }
4288
4289                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4290                 break;
4291         }
4292         case KVM_INTERRUPT: {
4293                 struct kvm_interrupt irq;
4294
4295                 r = -EFAULT;
4296                 if (copy_from_user(&irq, argp, sizeof(irq)))
4297                         goto out;
4298                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4299                 break;
4300         }
4301         case KVM_NMI: {
4302                 r = kvm_vcpu_ioctl_nmi(vcpu);
4303                 break;
4304         }
4305         case KVM_SMI: {
4306                 r = kvm_vcpu_ioctl_smi(vcpu);
4307                 break;
4308         }
4309         case KVM_SET_CPUID: {
4310                 struct kvm_cpuid __user *cpuid_arg = argp;
4311                 struct kvm_cpuid cpuid;
4312
4313                 r = -EFAULT;
4314                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4315                         goto out;
4316                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4317                 break;
4318         }
4319         case KVM_SET_CPUID2: {
4320                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4321                 struct kvm_cpuid2 cpuid;
4322
4323                 r = -EFAULT;
4324                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4325                         goto out;
4326                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4327                                               cpuid_arg->entries);
4328                 break;
4329         }
4330         case KVM_GET_CPUID2: {
4331                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4332                 struct kvm_cpuid2 cpuid;
4333
4334                 r = -EFAULT;
4335                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4336                         goto out;
4337                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4338                                               cpuid_arg->entries);
4339                 if (r)
4340                         goto out;
4341                 r = -EFAULT;
4342                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4343                         goto out;
4344                 r = 0;
4345                 break;
4346         }
4347         case KVM_GET_MSRS: {
4348                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4349                 r = msr_io(vcpu, argp, do_get_msr, 1);
4350                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4351                 break;
4352         }
4353         case KVM_SET_MSRS: {
4354                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4355                 r = msr_io(vcpu, argp, do_set_msr, 0);
4356                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4357                 break;
4358         }
4359         case KVM_TPR_ACCESS_REPORTING: {
4360                 struct kvm_tpr_access_ctl tac;
4361
4362                 r = -EFAULT;
4363                 if (copy_from_user(&tac, argp, sizeof(tac)))
4364                         goto out;
4365                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4366                 if (r)
4367                         goto out;
4368                 r = -EFAULT;
4369                 if (copy_to_user(argp, &tac, sizeof(tac)))
4370                         goto out;
4371                 r = 0;
4372                 break;
4373         };
4374         case KVM_SET_VAPIC_ADDR: {
4375                 struct kvm_vapic_addr va;
4376                 int idx;
4377
4378                 r = -EINVAL;
4379                 if (!lapic_in_kernel(vcpu))
4380                         goto out;
4381                 r = -EFAULT;
4382                 if (copy_from_user(&va, argp, sizeof(va)))
4383                         goto out;
4384                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4385                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4386                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4387                 break;
4388         }
4389         case KVM_X86_SETUP_MCE: {
4390                 u64 mcg_cap;
4391
4392                 r = -EFAULT;
4393                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4394                         goto out;
4395                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4396                 break;
4397         }
4398         case KVM_X86_SET_MCE: {
4399                 struct kvm_x86_mce mce;
4400
4401                 r = -EFAULT;
4402                 if (copy_from_user(&mce, argp, sizeof(mce)))
4403                         goto out;
4404                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4405                 break;
4406         }
4407         case KVM_GET_VCPU_EVENTS: {
4408                 struct kvm_vcpu_events events;
4409
4410                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4411
4412                 r = -EFAULT;
4413                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4414                         break;
4415                 r = 0;
4416                 break;
4417         }
4418         case KVM_SET_VCPU_EVENTS: {
4419                 struct kvm_vcpu_events events;
4420
4421                 r = -EFAULT;
4422                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4423                         break;
4424
4425                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4426                 break;
4427         }
4428         case KVM_GET_DEBUGREGS: {
4429                 struct kvm_debugregs dbgregs;
4430
4431                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4432
4433                 r = -EFAULT;
4434                 if (copy_to_user(argp, &dbgregs,
4435                                  sizeof(struct kvm_debugregs)))
4436                         break;
4437                 r = 0;
4438                 break;
4439         }
4440         case KVM_SET_DEBUGREGS: {
4441                 struct kvm_debugregs dbgregs;
4442
4443                 r = -EFAULT;
4444                 if (copy_from_user(&dbgregs, argp,
4445                                    sizeof(struct kvm_debugregs)))
4446                         break;
4447
4448                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4449                 break;
4450         }
4451         case KVM_GET_XSAVE: {
4452                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4453                 r = -ENOMEM;
4454                 if (!u.xsave)
4455                         break;
4456
4457                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4458
4459                 r = -EFAULT;
4460                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4461                         break;
4462                 r = 0;
4463                 break;
4464         }
4465         case KVM_SET_XSAVE: {
4466                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4467                 if (IS_ERR(u.xsave)) {
4468                         r = PTR_ERR(u.xsave);
4469                         goto out_nofree;
4470                 }
4471
4472                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4473                 break;
4474         }
4475         case KVM_GET_XCRS: {
4476                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4477                 r = -ENOMEM;
4478                 if (!u.xcrs)
4479                         break;
4480
4481                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4482
4483                 r = -EFAULT;
4484                 if (copy_to_user(argp, u.xcrs,
4485                                  sizeof(struct kvm_xcrs)))
4486                         break;
4487                 r = 0;
4488                 break;
4489         }
4490         case KVM_SET_XCRS: {
4491                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4492                 if (IS_ERR(u.xcrs)) {
4493                         r = PTR_ERR(u.xcrs);
4494                         goto out_nofree;
4495                 }
4496
4497                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4498                 break;
4499         }
4500         case KVM_SET_TSC_KHZ: {
4501                 u32 user_tsc_khz;
4502
4503                 r = -EINVAL;
4504                 user_tsc_khz = (u32)arg;
4505
4506                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4507                         goto out;
4508
4509                 if (user_tsc_khz == 0)
4510                         user_tsc_khz = tsc_khz;
4511
4512                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4513                         r = 0;
4514
4515                 goto out;
4516         }
4517         case KVM_GET_TSC_KHZ: {
4518                 r = vcpu->arch.virtual_tsc_khz;
4519                 goto out;
4520         }
4521         case KVM_KVMCLOCK_CTRL: {
4522                 r = kvm_set_guest_paused(vcpu);
4523                 goto out;
4524         }
4525         case KVM_ENABLE_CAP: {
4526                 struct kvm_enable_cap cap;
4527
4528                 r = -EFAULT;
4529                 if (copy_from_user(&cap, argp, sizeof(cap)))
4530                         goto out;
4531                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4532                 break;
4533         }
4534         case KVM_GET_NESTED_STATE: {
4535                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4536                 u32 user_data_size;
4537
4538                 r = -EINVAL;
4539                 if (!kvm_x86_ops.get_nested_state)
4540                         break;
4541
4542                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4543                 r = -EFAULT;
4544                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4545                         break;
4546
4547                 r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
4548                                                   user_data_size);
4549                 if (r < 0)
4550                         break;
4551
4552                 if (r > user_data_size) {
4553                         if (put_user(r, &user_kvm_nested_state->size))
4554                                 r = -EFAULT;
4555                         else
4556                                 r = -E2BIG;
4557                         break;
4558                 }
4559
4560                 r = 0;
4561                 break;
4562         }
4563         case KVM_SET_NESTED_STATE: {
4564                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4565                 struct kvm_nested_state kvm_state;
4566                 int idx;
4567
4568                 r = -EINVAL;
4569                 if (!kvm_x86_ops.set_nested_state)
4570                         break;
4571
4572                 r = -EFAULT;
4573                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4574                         break;
4575
4576                 r = -EINVAL;
4577                 if (kvm_state.size < sizeof(kvm_state))
4578                         break;
4579
4580                 if (kvm_state.flags &
4581                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4582                       | KVM_STATE_NESTED_EVMCS))
4583                         break;
4584
4585                 /* nested_run_pending implies guest_mode.  */
4586                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4587                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4588                         break;
4589
4590                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4591                 r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4592                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4593                 break;
4594         }
4595         case KVM_GET_SUPPORTED_HV_CPUID: {
4596                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4597                 struct kvm_cpuid2 cpuid;
4598
4599                 r = -EFAULT;
4600                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4601                         goto out;
4602
4603                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4604                                                 cpuid_arg->entries);
4605                 if (r)
4606                         goto out;
4607
4608                 r = -EFAULT;
4609                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4610                         goto out;
4611                 r = 0;
4612                 break;
4613         }
4614         default:
4615                 r = -EINVAL;
4616         }
4617 out:
4618         kfree(u.buffer);
4619 out_nofree:
4620         vcpu_put(vcpu);
4621         return r;
4622 }
4623
4624 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4625 {
4626         return VM_FAULT_SIGBUS;
4627 }
4628
4629 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4630 {
4631         int ret;
4632
4633         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4634                 return -EINVAL;
4635         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4636         return ret;
4637 }
4638
4639 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4640                                               u64 ident_addr)
4641 {
4642         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4643 }
4644
4645 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4646                                          unsigned long kvm_nr_mmu_pages)
4647 {
4648         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4649                 return -EINVAL;
4650
4651         mutex_lock(&kvm->slots_lock);
4652
4653         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4654         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4655
4656         mutex_unlock(&kvm->slots_lock);
4657         return 0;
4658 }
4659
4660 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4661 {
4662         return kvm->arch.n_max_mmu_pages;
4663 }
4664
4665 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4666 {
4667         struct kvm_pic *pic = kvm->arch.vpic;
4668         int r;
4669
4670         r = 0;
4671         switch (chip->chip_id) {
4672         case KVM_IRQCHIP_PIC_MASTER:
4673                 memcpy(&chip->chip.pic, &pic->pics[0],
4674                         sizeof(struct kvm_pic_state));
4675                 break;
4676         case KVM_IRQCHIP_PIC_SLAVE:
4677                 memcpy(&chip->chip.pic, &pic->pics[1],
4678                         sizeof(struct kvm_pic_state));
4679                 break;
4680         case KVM_IRQCHIP_IOAPIC:
4681                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4682                 break;
4683         default:
4684                 r = -EINVAL;
4685                 break;
4686         }
4687         return r;
4688 }
4689
4690 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4691 {
4692         struct kvm_pic *pic = kvm->arch.vpic;
4693         int r;
4694
4695         r = 0;
4696         switch (chip->chip_id) {
4697         case KVM_IRQCHIP_PIC_MASTER:
4698                 spin_lock(&pic->lock);
4699                 memcpy(&pic->pics[0], &chip->chip.pic,
4700                         sizeof(struct kvm_pic_state));
4701                 spin_unlock(&pic->lock);
4702                 break;
4703         case KVM_IRQCHIP_PIC_SLAVE:
4704                 spin_lock(&pic->lock);
4705                 memcpy(&pic->pics[1], &chip->chip.pic,
4706                         sizeof(struct kvm_pic_state));
4707                 spin_unlock(&pic->lock);
4708                 break;
4709         case KVM_IRQCHIP_IOAPIC:
4710                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4711                 break;
4712         default:
4713                 r = -EINVAL;
4714                 break;
4715         }
4716         kvm_pic_update_irq(pic);
4717         return r;
4718 }
4719
4720 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4721 {
4722         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4723
4724         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4725
4726         mutex_lock(&kps->lock);
4727         memcpy(ps, &kps->channels, sizeof(*ps));
4728         mutex_unlock(&kps->lock);
4729         return 0;
4730 }
4731
4732 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4733 {
4734         int i;
4735         struct kvm_pit *pit = kvm->arch.vpit;
4736
4737         mutex_lock(&pit->pit_state.lock);
4738         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4739         for (i = 0; i < 3; i++)
4740                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4741         mutex_unlock(&pit->pit_state.lock);
4742         return 0;
4743 }
4744
4745 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4746 {
4747         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4748         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4749                 sizeof(ps->channels));
4750         ps->flags = kvm->arch.vpit->pit_state.flags;
4751         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4752         memset(&ps->reserved, 0, sizeof(ps->reserved));
4753         return 0;
4754 }
4755
4756 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4757 {
4758         int start = 0;
4759         int i;
4760         u32 prev_legacy, cur_legacy;
4761         struct kvm_pit *pit = kvm->arch.vpit;
4762
4763         mutex_lock(&pit->pit_state.lock);
4764         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4765         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4766         if (!prev_legacy && cur_legacy)
4767                 start = 1;
4768         memcpy(&pit->pit_state.channels, &ps->channels,
4769                sizeof(pit->pit_state.channels));
4770         pit->pit_state.flags = ps->flags;
4771         for (i = 0; i < 3; i++)
4772                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4773                                    start && i == 0);
4774         mutex_unlock(&pit->pit_state.lock);
4775         return 0;
4776 }
4777
4778 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4779                                  struct kvm_reinject_control *control)
4780 {
4781         struct kvm_pit *pit = kvm->arch.vpit;
4782
4783         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4784          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4785          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4786          */
4787         mutex_lock(&pit->pit_state.lock);
4788         kvm_pit_set_reinject(pit, control->pit_reinject);
4789         mutex_unlock(&pit->pit_state.lock);
4790
4791         return 0;
4792 }
4793
4794 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4795 {
4796         /*
4797          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4798          */
4799         if (kvm_x86_ops.flush_log_dirty)
4800                 kvm_x86_ops.flush_log_dirty(kvm);
4801 }
4802
4803 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4804                         bool line_status)
4805 {
4806         if (!irqchip_in_kernel(kvm))
4807                 return -ENXIO;
4808
4809         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4810                                         irq_event->irq, irq_event->level,
4811                                         line_status);
4812         return 0;
4813 }
4814
4815 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4816                             struct kvm_enable_cap *cap)
4817 {
4818         int r;
4819
4820         if (cap->flags)
4821                 return -EINVAL;
4822
4823         switch (cap->cap) {
4824         case KVM_CAP_DISABLE_QUIRKS:
4825                 kvm->arch.disabled_quirks = cap->args[0];
4826                 r = 0;
4827                 break;
4828         case KVM_CAP_SPLIT_IRQCHIP: {
4829                 mutex_lock(&kvm->lock);
4830                 r = -EINVAL;
4831                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4832                         goto split_irqchip_unlock;
4833                 r = -EEXIST;
4834                 if (irqchip_in_kernel(kvm))
4835                         goto split_irqchip_unlock;
4836                 if (kvm->created_vcpus)
4837                         goto split_irqchip_unlock;
4838                 r = kvm_setup_empty_irq_routing(kvm);
4839                 if (r)
4840                         goto split_irqchip_unlock;
4841                 /* Pairs with irqchip_in_kernel. */
4842                 smp_wmb();
4843                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4844                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4845                 r = 0;
4846 split_irqchip_unlock:
4847                 mutex_unlock(&kvm->lock);
4848                 break;
4849         }
4850         case KVM_CAP_X2APIC_API:
4851                 r = -EINVAL;
4852                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4853                         break;
4854
4855                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4856                         kvm->arch.x2apic_format = true;
4857                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4858                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4859
4860                 r = 0;
4861                 break;
4862         case KVM_CAP_X86_DISABLE_EXITS:
4863                 r = -EINVAL;
4864                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4865                         break;
4866
4867                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4868                         kvm_can_mwait_in_guest())
4869                         kvm->arch.mwait_in_guest = true;
4870                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4871                         kvm->arch.hlt_in_guest = true;
4872                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4873                         kvm->arch.pause_in_guest = true;
4874                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4875                         kvm->arch.cstate_in_guest = true;
4876                 r = 0;
4877                 break;
4878         case KVM_CAP_MSR_PLATFORM_INFO:
4879                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4880                 r = 0;
4881                 break;
4882         case KVM_CAP_EXCEPTION_PAYLOAD:
4883                 kvm->arch.exception_payload_enabled = cap->args[0];
4884                 r = 0;
4885                 break;
4886         default:
4887                 r = -EINVAL;
4888                 break;
4889         }
4890         return r;
4891 }
4892
4893 long kvm_arch_vm_ioctl(struct file *filp,
4894                        unsigned int ioctl, unsigned long arg)
4895 {
4896         struct kvm *kvm = filp->private_data;
4897         void __user *argp = (void __user *)arg;
4898         int r = -ENOTTY;
4899         /*
4900          * This union makes it completely explicit to gcc-3.x
4901          * that these two variables' stack usage should be
4902          * combined, not added together.
4903          */
4904         union {
4905                 struct kvm_pit_state ps;
4906                 struct kvm_pit_state2 ps2;
4907                 struct kvm_pit_config pit_config;
4908         } u;
4909
4910         switch (ioctl) {
4911         case KVM_SET_TSS_ADDR:
4912                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4913                 break;
4914         case KVM_SET_IDENTITY_MAP_ADDR: {
4915                 u64 ident_addr;
4916
4917                 mutex_lock(&kvm->lock);
4918                 r = -EINVAL;
4919                 if (kvm->created_vcpus)
4920                         goto set_identity_unlock;
4921                 r = -EFAULT;
4922                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4923                         goto set_identity_unlock;
4924                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4925 set_identity_unlock:
4926                 mutex_unlock(&kvm->lock);
4927                 break;
4928         }
4929         case KVM_SET_NR_MMU_PAGES:
4930                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4931                 break;
4932         case KVM_GET_NR_MMU_PAGES:
4933                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4934                 break;
4935         case KVM_CREATE_IRQCHIP: {
4936                 mutex_lock(&kvm->lock);
4937
4938                 r = -EEXIST;
4939                 if (irqchip_in_kernel(kvm))
4940                         goto create_irqchip_unlock;
4941
4942                 r = -EINVAL;
4943                 if (kvm->created_vcpus)
4944                         goto create_irqchip_unlock;
4945
4946                 r = kvm_pic_init(kvm);
4947                 if (r)
4948                         goto create_irqchip_unlock;
4949
4950                 r = kvm_ioapic_init(kvm);
4951                 if (r) {
4952                         kvm_pic_destroy(kvm);
4953                         goto create_irqchip_unlock;
4954                 }
4955
4956                 r = kvm_setup_default_irq_routing(kvm);
4957                 if (r) {
4958                         kvm_ioapic_destroy(kvm);
4959                         kvm_pic_destroy(kvm);
4960                         goto create_irqchip_unlock;
4961                 }
4962                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4963                 smp_wmb();
4964                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4965         create_irqchip_unlock:
4966                 mutex_unlock(&kvm->lock);
4967                 break;
4968         }
4969         case KVM_CREATE_PIT:
4970                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4971                 goto create_pit;
4972         case KVM_CREATE_PIT2:
4973                 r = -EFAULT;
4974                 if (copy_from_user(&u.pit_config, argp,
4975                                    sizeof(struct kvm_pit_config)))
4976                         goto out;
4977         create_pit:
4978                 mutex_lock(&kvm->lock);
4979                 r = -EEXIST;
4980                 if (kvm->arch.vpit)
4981                         goto create_pit_unlock;
4982                 r = -ENOMEM;
4983                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4984                 if (kvm->arch.vpit)
4985                         r = 0;
4986         create_pit_unlock:
4987                 mutex_unlock(&kvm->lock);
4988                 break;
4989         case KVM_GET_IRQCHIP: {
4990                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4991                 struct kvm_irqchip *chip;
4992
4993                 chip = memdup_user(argp, sizeof(*chip));
4994                 if (IS_ERR(chip)) {
4995                         r = PTR_ERR(chip);
4996                         goto out;
4997                 }
4998
4999                 r = -ENXIO;
5000                 if (!irqchip_kernel(kvm))
5001                         goto get_irqchip_out;
5002                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5003                 if (r)
5004                         goto get_irqchip_out;
5005                 r = -EFAULT;
5006                 if (copy_to_user(argp, chip, sizeof(*chip)))
5007                         goto get_irqchip_out;
5008                 r = 0;
5009         get_irqchip_out:
5010                 kfree(chip);
5011                 break;
5012         }
5013         case KVM_SET_IRQCHIP: {
5014                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5015                 struct kvm_irqchip *chip;
5016
5017                 chip = memdup_user(argp, sizeof(*chip));
5018                 if (IS_ERR(chip)) {
5019                         r = PTR_ERR(chip);
5020                         goto out;
5021                 }
5022
5023                 r = -ENXIO;
5024                 if (!irqchip_kernel(kvm))
5025                         goto set_irqchip_out;
5026                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5027         set_irqchip_out:
5028                 kfree(chip);
5029                 break;
5030         }
5031         case KVM_GET_PIT: {
5032                 r = -EFAULT;
5033                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5034                         goto out;
5035                 r = -ENXIO;
5036                 if (!kvm->arch.vpit)
5037                         goto out;
5038                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5039                 if (r)
5040                         goto out;
5041                 r = -EFAULT;
5042                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5043                         goto out;
5044                 r = 0;
5045                 break;
5046         }
5047         case KVM_SET_PIT: {
5048                 r = -EFAULT;
5049                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5050                         goto out;
5051                 mutex_lock(&kvm->lock);
5052                 r = -ENXIO;
5053                 if (!kvm->arch.vpit)
5054                         goto set_pit_out;
5055                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5056 set_pit_out:
5057                 mutex_unlock(&kvm->lock);
5058                 break;
5059         }
5060         case KVM_GET_PIT2: {
5061                 r = -ENXIO;
5062                 if (!kvm->arch.vpit)
5063                         goto out;
5064                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5065                 if (r)
5066                         goto out;
5067                 r = -EFAULT;
5068                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5069                         goto out;
5070                 r = 0;
5071                 break;
5072         }
5073         case KVM_SET_PIT2: {
5074                 r = -EFAULT;
5075                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5076                         goto out;
5077                 mutex_lock(&kvm->lock);
5078                 r = -ENXIO;
5079                 if (!kvm->arch.vpit)
5080                         goto set_pit2_out;
5081                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5082 set_pit2_out:
5083                 mutex_unlock(&kvm->lock);
5084                 break;
5085         }
5086         case KVM_REINJECT_CONTROL: {
5087                 struct kvm_reinject_control control;
5088                 r =  -EFAULT;
5089                 if (copy_from_user(&control, argp, sizeof(control)))
5090                         goto out;
5091                 r = -ENXIO;
5092                 if (!kvm->arch.vpit)
5093                         goto out;
5094                 r = kvm_vm_ioctl_reinject(kvm, &control);
5095                 break;
5096         }
5097         case KVM_SET_BOOT_CPU_ID:
5098                 r = 0;
5099                 mutex_lock(&kvm->lock);
5100                 if (kvm->created_vcpus)
5101                         r = -EBUSY;
5102                 else
5103                         kvm->arch.bsp_vcpu_id = arg;
5104                 mutex_unlock(&kvm->lock);
5105                 break;
5106         case KVM_XEN_HVM_CONFIG: {
5107                 struct kvm_xen_hvm_config xhc;
5108                 r = -EFAULT;
5109                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5110                         goto out;
5111                 r = -EINVAL;
5112                 if (xhc.flags)
5113                         goto out;
5114                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5115                 r = 0;
5116                 break;
5117         }
5118         case KVM_SET_CLOCK: {
5119                 struct kvm_clock_data user_ns;
5120                 u64 now_ns;
5121
5122                 r = -EFAULT;
5123                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5124                         goto out;
5125
5126                 r = -EINVAL;
5127                 if (user_ns.flags)
5128                         goto out;
5129
5130                 r = 0;
5131                 /*
5132                  * TODO: userspace has to take care of races with VCPU_RUN, so
5133                  * kvm_gen_update_masterclock() can be cut down to locked
5134                  * pvclock_update_vm_gtod_copy().
5135                  */
5136                 kvm_gen_update_masterclock(kvm);
5137                 now_ns = get_kvmclock_ns(kvm);
5138                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5139                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5140                 break;
5141         }
5142         case KVM_GET_CLOCK: {
5143                 struct kvm_clock_data user_ns;
5144                 u64 now_ns;
5145
5146                 now_ns = get_kvmclock_ns(kvm);
5147                 user_ns.clock = now_ns;
5148                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5149                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5150
5151                 r = -EFAULT;
5152                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5153                         goto out;
5154                 r = 0;
5155                 break;
5156         }
5157         case KVM_MEMORY_ENCRYPT_OP: {
5158                 r = -ENOTTY;
5159                 if (kvm_x86_ops.mem_enc_op)
5160                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5161                 break;
5162         }
5163         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5164                 struct kvm_enc_region region;
5165
5166                 r = -EFAULT;
5167                 if (copy_from_user(&region, argp, sizeof(region)))
5168                         goto out;
5169
5170                 r = -ENOTTY;
5171                 if (kvm_x86_ops.mem_enc_reg_region)
5172                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5173                 break;
5174         }
5175         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5176                 struct kvm_enc_region region;
5177
5178                 r = -EFAULT;
5179                 if (copy_from_user(&region, argp, sizeof(region)))
5180                         goto out;
5181
5182                 r = -ENOTTY;
5183                 if (kvm_x86_ops.mem_enc_unreg_region)
5184                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5185                 break;
5186         }
5187         case KVM_HYPERV_EVENTFD: {
5188                 struct kvm_hyperv_eventfd hvevfd;
5189
5190                 r = -EFAULT;
5191                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5192                         goto out;
5193                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5194                 break;
5195         }
5196         case KVM_SET_PMU_EVENT_FILTER:
5197                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5198                 break;
5199         default:
5200                 r = -ENOTTY;
5201         }
5202 out:
5203         return r;
5204 }
5205
5206 static void kvm_init_msr_list(void)
5207 {
5208         struct x86_pmu_capability x86_pmu;
5209         u32 dummy[2];
5210         unsigned i;
5211
5212         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5213                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5214
5215         perf_get_x86_pmu_capability(&x86_pmu);
5216
5217         num_msrs_to_save = 0;
5218         num_emulated_msrs = 0;
5219         num_msr_based_features = 0;
5220
5221         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5222                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5223                         continue;
5224
5225                 /*
5226                  * Even MSRs that are valid in the host may not be exposed
5227                  * to the guests in some cases.
5228                  */
5229                 switch (msrs_to_save_all[i]) {
5230                 case MSR_IA32_BNDCFGS:
5231                         if (!kvm_mpx_supported())
5232                                 continue;
5233                         break;
5234                 case MSR_TSC_AUX:
5235                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5236                                 continue;
5237                         break;
5238                 case MSR_IA32_RTIT_CTL:
5239                 case MSR_IA32_RTIT_STATUS:
5240                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5241                                 continue;
5242                         break;
5243                 case MSR_IA32_RTIT_CR3_MATCH:
5244                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5245                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5246                                 continue;
5247                         break;
5248                 case MSR_IA32_RTIT_OUTPUT_BASE:
5249                 case MSR_IA32_RTIT_OUTPUT_MASK:
5250                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5251                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5252                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5253                                 continue;
5254                         break;
5255                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5256                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5257                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5258                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5259                                 continue;
5260                         break;
5261                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5262                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5263                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5264                                 continue;
5265                         break;
5266                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5267                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5268                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5269                                 continue;
5270                 }
5271                 default:
5272                         break;
5273                 }
5274
5275                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5276         }
5277
5278         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5279                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5280                         continue;
5281
5282                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5283         }
5284
5285         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5286                 struct kvm_msr_entry msr;
5287
5288                 msr.index = msr_based_features_all[i];
5289                 if (kvm_get_msr_feature(&msr))
5290                         continue;
5291
5292                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5293         }
5294 }
5295
5296 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5297                            const void *v)
5298 {
5299         int handled = 0;
5300         int n;
5301
5302         do {
5303                 n = min(len, 8);
5304                 if (!(lapic_in_kernel(vcpu) &&
5305                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5306                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5307                         break;
5308                 handled += n;
5309                 addr += n;
5310                 len -= n;
5311                 v += n;
5312         } while (len);
5313
5314         return handled;
5315 }
5316
5317 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5318 {
5319         int handled = 0;
5320         int n;
5321
5322         do {
5323                 n = min(len, 8);
5324                 if (!(lapic_in_kernel(vcpu) &&
5325                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5326                                          addr, n, v))
5327                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5328                         break;
5329                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5330                 handled += n;
5331                 addr += n;
5332                 len -= n;
5333                 v += n;
5334         } while (len);
5335
5336         return handled;
5337 }
5338
5339 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5340                         struct kvm_segment *var, int seg)
5341 {
5342         kvm_x86_ops.set_segment(vcpu, var, seg);
5343 }
5344
5345 void kvm_get_segment(struct kvm_vcpu *vcpu,
5346                      struct kvm_segment *var, int seg)
5347 {
5348         kvm_x86_ops.get_segment(vcpu, var, seg);
5349 }
5350
5351 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5352                            struct x86_exception *exception)
5353 {
5354         gpa_t t_gpa;
5355
5356         BUG_ON(!mmu_is_nested(vcpu));
5357
5358         /* NPT walks are always user-walks */
5359         access |= PFERR_USER_MASK;
5360         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5361
5362         return t_gpa;
5363 }
5364
5365 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5366                               struct x86_exception *exception)
5367 {
5368         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5369         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5370 }
5371
5372  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5373                                 struct x86_exception *exception)
5374 {
5375         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5376         access |= PFERR_FETCH_MASK;
5377         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5378 }
5379
5380 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5381                                struct x86_exception *exception)
5382 {
5383         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5384         access |= PFERR_WRITE_MASK;
5385         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5386 }
5387
5388 /* uses this to access any guest's mapped memory without checking CPL */
5389 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5390                                 struct x86_exception *exception)
5391 {
5392         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5393 }
5394
5395 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5396                                       struct kvm_vcpu *vcpu, u32 access,
5397                                       struct x86_exception *exception)
5398 {
5399         void *data = val;
5400         int r = X86EMUL_CONTINUE;
5401
5402         while (bytes) {
5403                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5404                                                             exception);
5405                 unsigned offset = addr & (PAGE_SIZE-1);
5406                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5407                 int ret;
5408
5409                 if (gpa == UNMAPPED_GVA)
5410                         return X86EMUL_PROPAGATE_FAULT;
5411                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5412                                                offset, toread);
5413                 if (ret < 0) {
5414                         r = X86EMUL_IO_NEEDED;
5415                         goto out;
5416                 }
5417
5418                 bytes -= toread;
5419                 data += toread;
5420                 addr += toread;
5421         }
5422 out:
5423         return r;
5424 }
5425
5426 /* used for instruction fetching */
5427 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5428                                 gva_t addr, void *val, unsigned int bytes,
5429                                 struct x86_exception *exception)
5430 {
5431         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5432         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5433         unsigned offset;
5434         int ret;
5435
5436         /* Inline kvm_read_guest_virt_helper for speed.  */
5437         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5438                                                     exception);
5439         if (unlikely(gpa == UNMAPPED_GVA))
5440                 return X86EMUL_PROPAGATE_FAULT;
5441
5442         offset = addr & (PAGE_SIZE-1);
5443         if (WARN_ON(offset + bytes > PAGE_SIZE))
5444                 bytes = (unsigned)PAGE_SIZE - offset;
5445         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5446                                        offset, bytes);
5447         if (unlikely(ret < 0))
5448                 return X86EMUL_IO_NEEDED;
5449
5450         return X86EMUL_CONTINUE;
5451 }
5452
5453 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5454                                gva_t addr, void *val, unsigned int bytes,
5455                                struct x86_exception *exception)
5456 {
5457         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5458
5459         /*
5460          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5461          * is returned, but our callers are not ready for that and they blindly
5462          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5463          * uninitialized kernel stack memory into cr2 and error code.
5464          */
5465         memset(exception, 0, sizeof(*exception));
5466         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5467                                           exception);
5468 }
5469 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5470
5471 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5472                              gva_t addr, void *val, unsigned int bytes,
5473                              struct x86_exception *exception, bool system)
5474 {
5475         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5476         u32 access = 0;
5477
5478         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5479                 access |= PFERR_USER_MASK;
5480
5481         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5482 }
5483
5484 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5485                 unsigned long addr, void *val, unsigned int bytes)
5486 {
5487         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5488         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5489
5490         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5491 }
5492
5493 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5494                                       struct kvm_vcpu *vcpu, u32 access,
5495                                       struct x86_exception *exception)
5496 {
5497         void *data = val;
5498         int r = X86EMUL_CONTINUE;
5499
5500         while (bytes) {
5501                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5502                                                              access,
5503                                                              exception);
5504                 unsigned offset = addr & (PAGE_SIZE-1);
5505                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5506                 int ret;
5507
5508                 if (gpa == UNMAPPED_GVA)
5509                         return X86EMUL_PROPAGATE_FAULT;
5510                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5511                 if (ret < 0) {
5512                         r = X86EMUL_IO_NEEDED;
5513                         goto out;
5514                 }
5515
5516                 bytes -= towrite;
5517                 data += towrite;
5518                 addr += towrite;
5519         }
5520 out:
5521         return r;
5522 }
5523
5524 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5525                               unsigned int bytes, struct x86_exception *exception,
5526                               bool system)
5527 {
5528         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5529         u32 access = PFERR_WRITE_MASK;
5530
5531         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5532                 access |= PFERR_USER_MASK;
5533
5534         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5535                                            access, exception);
5536 }
5537
5538 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5539                                 unsigned int bytes, struct x86_exception *exception)
5540 {
5541         /* kvm_write_guest_virt_system can pull in tons of pages. */
5542         vcpu->arch.l1tf_flush_l1d = true;
5543
5544         /*
5545          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5546          * is returned, but our callers are not ready for that and they blindly
5547          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5548          * uninitialized kernel stack memory into cr2 and error code.
5549          */
5550         memset(exception, 0, sizeof(*exception));
5551         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5552                                            PFERR_WRITE_MASK, exception);
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5555
5556 int handle_ud(struct kvm_vcpu *vcpu)
5557 {
5558         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5559         int emul_type = EMULTYPE_TRAP_UD;
5560         char sig[5]; /* ud2; .ascii "kvm" */
5561         struct x86_exception e;
5562
5563         if (force_emulation_prefix &&
5564             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5565                                 sig, sizeof(sig), &e) == 0 &&
5566             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5567                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5568                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5569         }
5570
5571         return kvm_emulate_instruction(vcpu, emul_type);
5572 }
5573 EXPORT_SYMBOL_GPL(handle_ud);
5574
5575 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5576                             gpa_t gpa, bool write)
5577 {
5578         /* For APIC access vmexit */
5579         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5580                 return 1;
5581
5582         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5583                 trace_vcpu_match_mmio(gva, gpa, write, true);
5584                 return 1;
5585         }
5586
5587         return 0;
5588 }
5589
5590 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5591                                 gpa_t *gpa, struct x86_exception *exception,
5592                                 bool write)
5593 {
5594         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5595                 | (write ? PFERR_WRITE_MASK : 0);
5596
5597         /*
5598          * currently PKRU is only applied to ept enabled guest so
5599          * there is no pkey in EPT page table for L1 guest or EPT
5600          * shadow page table for L2 guest.
5601          */
5602         if (vcpu_match_mmio_gva(vcpu, gva)
5603             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5604                                  vcpu->arch.mmio_access, 0, access)) {
5605                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5606                                         (gva & (PAGE_SIZE - 1));
5607                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5608                 return 1;
5609         }
5610
5611         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5612
5613         if (*gpa == UNMAPPED_GVA)
5614                 return -1;
5615
5616         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5617 }
5618
5619 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5620                         const void *val, int bytes)
5621 {
5622         int ret;
5623
5624         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5625         if (ret < 0)
5626                 return 0;
5627         kvm_page_track_write(vcpu, gpa, val, bytes);
5628         return 1;
5629 }
5630
5631 struct read_write_emulator_ops {
5632         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5633                                   int bytes);
5634         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5635                                   void *val, int bytes);
5636         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5637                                int bytes, void *val);
5638         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5639                                     void *val, int bytes);
5640         bool write;
5641 };
5642
5643 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5644 {
5645         if (vcpu->mmio_read_completed) {
5646                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5647                                vcpu->mmio_fragments[0].gpa, val);
5648                 vcpu->mmio_read_completed = 0;
5649                 return 1;
5650         }
5651
5652         return 0;
5653 }
5654
5655 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5656                         void *val, int bytes)
5657 {
5658         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5659 }
5660
5661 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5662                          void *val, int bytes)
5663 {
5664         return emulator_write_phys(vcpu, gpa, val, bytes);
5665 }
5666
5667 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5668 {
5669         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5670         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5671 }
5672
5673 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5674                           void *val, int bytes)
5675 {
5676         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5677         return X86EMUL_IO_NEEDED;
5678 }
5679
5680 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5681                            void *val, int bytes)
5682 {
5683         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5684
5685         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5686         return X86EMUL_CONTINUE;
5687 }
5688
5689 static const struct read_write_emulator_ops read_emultor = {
5690         .read_write_prepare = read_prepare,
5691         .read_write_emulate = read_emulate,
5692         .read_write_mmio = vcpu_mmio_read,
5693         .read_write_exit_mmio = read_exit_mmio,
5694 };
5695
5696 static const struct read_write_emulator_ops write_emultor = {
5697         .read_write_emulate = write_emulate,
5698         .read_write_mmio = write_mmio,
5699         .read_write_exit_mmio = write_exit_mmio,
5700         .write = true,
5701 };
5702
5703 static int emulator_read_write_onepage(unsigned long addr, void *val,
5704                                        unsigned int bytes,
5705                                        struct x86_exception *exception,
5706                                        struct kvm_vcpu *vcpu,
5707                                        const struct read_write_emulator_ops *ops)
5708 {
5709         gpa_t gpa;
5710         int handled, ret;
5711         bool write = ops->write;
5712         struct kvm_mmio_fragment *frag;
5713         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5714
5715         /*
5716          * If the exit was due to a NPF we may already have a GPA.
5717          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5718          * Note, this cannot be used on string operations since string
5719          * operation using rep will only have the initial GPA from the NPF
5720          * occurred.
5721          */
5722         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5723             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5724                 gpa = ctxt->gpa_val;
5725                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5726         } else {
5727                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5728                 if (ret < 0)
5729                         return X86EMUL_PROPAGATE_FAULT;
5730         }
5731
5732         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5733                 return X86EMUL_CONTINUE;
5734
5735         /*
5736          * Is this MMIO handled locally?
5737          */
5738         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5739         if (handled == bytes)
5740                 return X86EMUL_CONTINUE;
5741
5742         gpa += handled;
5743         bytes -= handled;
5744         val += handled;
5745
5746         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5747         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5748         frag->gpa = gpa;
5749         frag->data = val;
5750         frag->len = bytes;
5751         return X86EMUL_CONTINUE;
5752 }
5753
5754 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5755                         unsigned long addr,
5756                         void *val, unsigned int bytes,
5757                         struct x86_exception *exception,
5758                         const struct read_write_emulator_ops *ops)
5759 {
5760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761         gpa_t gpa;
5762         int rc;
5763
5764         if (ops->read_write_prepare &&
5765                   ops->read_write_prepare(vcpu, val, bytes))
5766                 return X86EMUL_CONTINUE;
5767
5768         vcpu->mmio_nr_fragments = 0;
5769
5770         /* Crossing a page boundary? */
5771         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5772                 int now;
5773
5774                 now = -addr & ~PAGE_MASK;
5775                 rc = emulator_read_write_onepage(addr, val, now, exception,
5776                                                  vcpu, ops);
5777
5778                 if (rc != X86EMUL_CONTINUE)
5779                         return rc;
5780                 addr += now;
5781                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5782                         addr = (u32)addr;
5783                 val += now;
5784                 bytes -= now;
5785         }
5786
5787         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5788                                          vcpu, ops);
5789         if (rc != X86EMUL_CONTINUE)
5790                 return rc;
5791
5792         if (!vcpu->mmio_nr_fragments)
5793                 return rc;
5794
5795         gpa = vcpu->mmio_fragments[0].gpa;
5796
5797         vcpu->mmio_needed = 1;
5798         vcpu->mmio_cur_fragment = 0;
5799
5800         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5801         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5802         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5803         vcpu->run->mmio.phys_addr = gpa;
5804
5805         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5806 }
5807
5808 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5809                                   unsigned long addr,
5810                                   void *val,
5811                                   unsigned int bytes,
5812                                   struct x86_exception *exception)
5813 {
5814         return emulator_read_write(ctxt, addr, val, bytes,
5815                                    exception, &read_emultor);
5816 }
5817
5818 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5819                             unsigned long addr,
5820                             const void *val,
5821                             unsigned int bytes,
5822                             struct x86_exception *exception)
5823 {
5824         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5825                                    exception, &write_emultor);
5826 }
5827
5828 #define CMPXCHG_TYPE(t, ptr, old, new) \
5829         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5830
5831 #ifdef CONFIG_X86_64
5832 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5833 #else
5834 #  define CMPXCHG64(ptr, old, new) \
5835         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5836 #endif
5837
5838 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5839                                      unsigned long addr,
5840                                      const void *old,
5841                                      const void *new,
5842                                      unsigned int bytes,
5843                                      struct x86_exception *exception)
5844 {
5845         struct kvm_host_map map;
5846         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5847         u64 page_line_mask;
5848         gpa_t gpa;
5849         char *kaddr;
5850         bool exchanged;
5851
5852         /* guests cmpxchg8b have to be emulated atomically */
5853         if (bytes > 8 || (bytes & (bytes - 1)))
5854                 goto emul_write;
5855
5856         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5857
5858         if (gpa == UNMAPPED_GVA ||
5859             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5860                 goto emul_write;
5861
5862         /*
5863          * Emulate the atomic as a straight write to avoid #AC if SLD is
5864          * enabled in the host and the access splits a cache line.
5865          */
5866         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5867                 page_line_mask = ~(cache_line_size() - 1);
5868         else
5869                 page_line_mask = PAGE_MASK;
5870
5871         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5872                 goto emul_write;
5873
5874         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5875                 goto emul_write;
5876
5877         kaddr = map.hva + offset_in_page(gpa);
5878
5879         switch (bytes) {
5880         case 1:
5881                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5882                 break;
5883         case 2:
5884                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5885                 break;
5886         case 4:
5887                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5888                 break;
5889         case 8:
5890                 exchanged = CMPXCHG64(kaddr, old, new);
5891                 break;
5892         default:
5893                 BUG();
5894         }
5895
5896         kvm_vcpu_unmap(vcpu, &map, true);
5897
5898         if (!exchanged)
5899                 return X86EMUL_CMPXCHG_FAILED;
5900
5901         kvm_page_track_write(vcpu, gpa, new, bytes);
5902
5903         return X86EMUL_CONTINUE;
5904
5905 emul_write:
5906         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5907
5908         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5909 }
5910
5911 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5912 {
5913         int r = 0, i;
5914
5915         for (i = 0; i < vcpu->arch.pio.count; i++) {
5916                 if (vcpu->arch.pio.in)
5917                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5918                                             vcpu->arch.pio.size, pd);
5919                 else
5920                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5921                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5922                                              pd);
5923                 if (r)
5924                         break;
5925                 pd += vcpu->arch.pio.size;
5926         }
5927         return r;
5928 }
5929
5930 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5931                                unsigned short port, void *val,
5932                                unsigned int count, bool in)
5933 {
5934         vcpu->arch.pio.port = port;
5935         vcpu->arch.pio.in = in;
5936         vcpu->arch.pio.count  = count;
5937         vcpu->arch.pio.size = size;
5938
5939         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5940                 vcpu->arch.pio.count = 0;
5941                 return 1;
5942         }
5943
5944         vcpu->run->exit_reason = KVM_EXIT_IO;
5945         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5946         vcpu->run->io.size = size;
5947         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5948         vcpu->run->io.count = count;
5949         vcpu->run->io.port = port;
5950
5951         return 0;
5952 }
5953
5954 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5955                            unsigned short port, void *val, unsigned int count)
5956 {
5957         int ret;
5958
5959         if (vcpu->arch.pio.count)
5960                 goto data_avail;
5961
5962         memset(vcpu->arch.pio_data, 0, size * count);
5963
5964         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5965         if (ret) {
5966 data_avail:
5967                 memcpy(val, vcpu->arch.pio_data, size * count);
5968                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5969                 vcpu->arch.pio.count = 0;
5970                 return 1;
5971         }
5972
5973         return 0;
5974 }
5975
5976 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5977                                     int size, unsigned short port, void *val,
5978                                     unsigned int count)
5979 {
5980         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5981
5982 }
5983
5984 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5985                             unsigned short port, const void *val,
5986                             unsigned int count)
5987 {
5988         memcpy(vcpu->arch.pio_data, val, size * count);
5989         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5990         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5991 }
5992
5993 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5994                                      int size, unsigned short port,
5995                                      const void *val, unsigned int count)
5996 {
5997         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
5998 }
5999
6000 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6001 {
6002         return kvm_x86_ops.get_segment_base(vcpu, seg);
6003 }
6004
6005 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6006 {
6007         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6008 }
6009
6010 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6011 {
6012         if (!need_emulate_wbinvd(vcpu))
6013                 return X86EMUL_CONTINUE;
6014
6015         if (kvm_x86_ops.has_wbinvd_exit()) {
6016                 int cpu = get_cpu();
6017
6018                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6019                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6020                                 wbinvd_ipi, NULL, 1);
6021                 put_cpu();
6022                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6023         } else
6024                 wbinvd();
6025         return X86EMUL_CONTINUE;
6026 }
6027
6028 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6029 {
6030         kvm_emulate_wbinvd_noskip(vcpu);
6031         return kvm_skip_emulated_instruction(vcpu);
6032 }
6033 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6034
6035
6036
6037 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6038 {
6039         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6040 }
6041
6042 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6043                            unsigned long *dest)
6044 {
6045         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6046 }
6047
6048 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6049                            unsigned long value)
6050 {
6051
6052         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6053 }
6054
6055 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6056 {
6057         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6058 }
6059
6060 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6061 {
6062         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6063         unsigned long value;
6064
6065         switch (cr) {
6066         case 0:
6067                 value = kvm_read_cr0(vcpu);
6068                 break;
6069         case 2:
6070                 value = vcpu->arch.cr2;
6071                 break;
6072         case 3:
6073                 value = kvm_read_cr3(vcpu);
6074                 break;
6075         case 4:
6076                 value = kvm_read_cr4(vcpu);
6077                 break;
6078         case 8:
6079                 value = kvm_get_cr8(vcpu);
6080                 break;
6081         default:
6082                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6083                 return 0;
6084         }
6085
6086         return value;
6087 }
6088
6089 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6090 {
6091         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6092         int res = 0;
6093
6094         switch (cr) {
6095         case 0:
6096                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6097                 break;
6098         case 2:
6099                 vcpu->arch.cr2 = val;
6100                 break;
6101         case 3:
6102                 res = kvm_set_cr3(vcpu, val);
6103                 break;
6104         case 4:
6105                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6106                 break;
6107         case 8:
6108                 res = kvm_set_cr8(vcpu, val);
6109                 break;
6110         default:
6111                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6112                 res = -1;
6113         }
6114
6115         return res;
6116 }
6117
6118 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6119 {
6120         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6121 }
6122
6123 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6124 {
6125         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6126 }
6127
6128 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6129 {
6130         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6131 }
6132
6133 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6134 {
6135         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6136 }
6137
6138 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6139 {
6140         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6141 }
6142
6143 static unsigned long emulator_get_cached_segment_base(
6144         struct x86_emulate_ctxt *ctxt, int seg)
6145 {
6146         return get_segment_base(emul_to_vcpu(ctxt), seg);
6147 }
6148
6149 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6150                                  struct desc_struct *desc, u32 *base3,
6151                                  int seg)
6152 {
6153         struct kvm_segment var;
6154
6155         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6156         *selector = var.selector;
6157
6158         if (var.unusable) {
6159                 memset(desc, 0, sizeof(*desc));
6160                 if (base3)
6161                         *base3 = 0;
6162                 return false;
6163         }
6164
6165         if (var.g)
6166                 var.limit >>= 12;
6167         set_desc_limit(desc, var.limit);
6168         set_desc_base(desc, (unsigned long)var.base);
6169 #ifdef CONFIG_X86_64
6170         if (base3)
6171                 *base3 = var.base >> 32;
6172 #endif
6173         desc->type = var.type;
6174         desc->s = var.s;
6175         desc->dpl = var.dpl;
6176         desc->p = var.present;
6177         desc->avl = var.avl;
6178         desc->l = var.l;
6179         desc->d = var.db;
6180         desc->g = var.g;
6181
6182         return true;
6183 }
6184
6185 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6186                                  struct desc_struct *desc, u32 base3,
6187                                  int seg)
6188 {
6189         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6190         struct kvm_segment var;
6191
6192         var.selector = selector;
6193         var.base = get_desc_base(desc);
6194 #ifdef CONFIG_X86_64
6195         var.base |= ((u64)base3) << 32;
6196 #endif
6197         var.limit = get_desc_limit(desc);
6198         if (desc->g)
6199                 var.limit = (var.limit << 12) | 0xfff;
6200         var.type = desc->type;
6201         var.dpl = desc->dpl;
6202         var.db = desc->d;
6203         var.s = desc->s;
6204         var.l = desc->l;
6205         var.g = desc->g;
6206         var.avl = desc->avl;
6207         var.present = desc->p;
6208         var.unusable = !var.present;
6209         var.padding = 0;
6210
6211         kvm_set_segment(vcpu, &var, seg);
6212         return;
6213 }
6214
6215 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6216                             u32 msr_index, u64 *pdata)
6217 {
6218         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6219 }
6220
6221 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6222                             u32 msr_index, u64 data)
6223 {
6224         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6225 }
6226
6227 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6228 {
6229         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6230
6231         return vcpu->arch.smbase;
6232 }
6233
6234 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6235 {
6236         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6237
6238         vcpu->arch.smbase = smbase;
6239 }
6240
6241 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6242                               u32 pmc)
6243 {
6244         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6245 }
6246
6247 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6248                              u32 pmc, u64 *pdata)
6249 {
6250         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6251 }
6252
6253 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6254 {
6255         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6256 }
6257
6258 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6259                               struct x86_instruction_info *info,
6260                               enum x86_intercept_stage stage)
6261 {
6262         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6263                                             &ctxt->exception);
6264 }
6265
6266 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6267                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6268                               bool exact_only)
6269 {
6270         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6271 }
6272
6273 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6274 {
6275         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6276 }
6277
6278 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6279 {
6280         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6281 }
6282
6283 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6284 {
6285         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6286 }
6287
6288 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6289 {
6290         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6291 }
6292
6293 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6294 {
6295         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6296 }
6297
6298 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6299 {
6300         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6301 }
6302
6303 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6304 {
6305         return emul_to_vcpu(ctxt)->arch.hflags;
6306 }
6307
6308 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6309 {
6310         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6311 }
6312
6313 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6314                                   const char *smstate)
6315 {
6316         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6317 }
6318
6319 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6320 {
6321         kvm_smm_changed(emul_to_vcpu(ctxt));
6322 }
6323
6324 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6325 {
6326         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6327 }
6328
6329 static const struct x86_emulate_ops emulate_ops = {
6330         .read_gpr            = emulator_read_gpr,
6331         .write_gpr           = emulator_write_gpr,
6332         .read_std            = emulator_read_std,
6333         .write_std           = emulator_write_std,
6334         .read_phys           = kvm_read_guest_phys_system,
6335         .fetch               = kvm_fetch_guest_virt,
6336         .read_emulated       = emulator_read_emulated,
6337         .write_emulated      = emulator_write_emulated,
6338         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6339         .invlpg              = emulator_invlpg,
6340         .pio_in_emulated     = emulator_pio_in_emulated,
6341         .pio_out_emulated    = emulator_pio_out_emulated,
6342         .get_segment         = emulator_get_segment,
6343         .set_segment         = emulator_set_segment,
6344         .get_cached_segment_base = emulator_get_cached_segment_base,
6345         .get_gdt             = emulator_get_gdt,
6346         .get_idt             = emulator_get_idt,
6347         .set_gdt             = emulator_set_gdt,
6348         .set_idt             = emulator_set_idt,
6349         .get_cr              = emulator_get_cr,
6350         .set_cr              = emulator_set_cr,
6351         .cpl                 = emulator_get_cpl,
6352         .get_dr              = emulator_get_dr,
6353         .set_dr              = emulator_set_dr,
6354         .get_smbase          = emulator_get_smbase,
6355         .set_smbase          = emulator_set_smbase,
6356         .set_msr             = emulator_set_msr,
6357         .get_msr             = emulator_get_msr,
6358         .check_pmc           = emulator_check_pmc,
6359         .read_pmc            = emulator_read_pmc,
6360         .halt                = emulator_halt,
6361         .wbinvd              = emulator_wbinvd,
6362         .fix_hypercall       = emulator_fix_hypercall,
6363         .intercept           = emulator_intercept,
6364         .get_cpuid           = emulator_get_cpuid,
6365         .guest_has_long_mode = emulator_guest_has_long_mode,
6366         .guest_has_movbe     = emulator_guest_has_movbe,
6367         .guest_has_fxsr      = emulator_guest_has_fxsr,
6368         .set_nmi_mask        = emulator_set_nmi_mask,
6369         .get_hflags          = emulator_get_hflags,
6370         .set_hflags          = emulator_set_hflags,
6371         .pre_leave_smm       = emulator_pre_leave_smm,
6372         .post_leave_smm      = emulator_post_leave_smm,
6373         .set_xcr             = emulator_set_xcr,
6374 };
6375
6376 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6377 {
6378         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6379         /*
6380          * an sti; sti; sequence only disable interrupts for the first
6381          * instruction. So, if the last instruction, be it emulated or
6382          * not, left the system with the INT_STI flag enabled, it
6383          * means that the last instruction is an sti. We should not
6384          * leave the flag on in this case. The same goes for mov ss
6385          */
6386         if (int_shadow & mask)
6387                 mask = 0;
6388         if (unlikely(int_shadow || mask)) {
6389                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6390                 if (!mask)
6391                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6392         }
6393 }
6394
6395 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6396 {
6397         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6398         if (ctxt->exception.vector == PF_VECTOR)
6399                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6400
6401         if (ctxt->exception.error_code_valid)
6402                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6403                                       ctxt->exception.error_code);
6404         else
6405                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6406         return false;
6407 }
6408
6409 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6410 {
6411         struct x86_emulate_ctxt *ctxt;
6412
6413         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6414         if (!ctxt) {
6415                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6416                 return NULL;
6417         }
6418
6419         ctxt->vcpu = vcpu;
6420         ctxt->ops = &emulate_ops;
6421         vcpu->arch.emulate_ctxt = ctxt;
6422
6423         return ctxt;
6424 }
6425
6426 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6427 {
6428         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6429         int cs_db, cs_l;
6430
6431         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6432
6433         ctxt->gpa_available = false;
6434         ctxt->eflags = kvm_get_rflags(vcpu);
6435         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6436
6437         ctxt->eip = kvm_rip_read(vcpu);
6438         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6439                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6440                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6441                      cs_db                              ? X86EMUL_MODE_PROT32 :
6442                                                           X86EMUL_MODE_PROT16;
6443         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6444         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6445         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6446
6447         init_decode_cache(ctxt);
6448         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6449 }
6450
6451 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6452 {
6453         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6454         int ret;
6455
6456         init_emulate_ctxt(vcpu);
6457
6458         ctxt->op_bytes = 2;
6459         ctxt->ad_bytes = 2;
6460         ctxt->_eip = ctxt->eip + inc_eip;
6461         ret = emulate_int_real(ctxt, irq);
6462
6463         if (ret != X86EMUL_CONTINUE) {
6464                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6465         } else {
6466                 ctxt->eip = ctxt->_eip;
6467                 kvm_rip_write(vcpu, ctxt->eip);
6468                 kvm_set_rflags(vcpu, ctxt->eflags);
6469         }
6470 }
6471 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6472
6473 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6474 {
6475         ++vcpu->stat.insn_emulation_fail;
6476         trace_kvm_emulate_insn_failed(vcpu);
6477
6478         if (emulation_type & EMULTYPE_VMWARE_GP) {
6479                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6480                 return 1;
6481         }
6482
6483         if (emulation_type & EMULTYPE_SKIP) {
6484                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6485                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6486                 vcpu->run->internal.ndata = 0;
6487                 return 0;
6488         }
6489
6490         kvm_queue_exception(vcpu, UD_VECTOR);
6491
6492         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6493                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6494                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6495                 vcpu->run->internal.ndata = 0;
6496                 return 0;
6497         }
6498
6499         return 1;
6500 }
6501
6502 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6503                                   bool write_fault_to_shadow_pgtable,
6504                                   int emulation_type)
6505 {
6506         gpa_t gpa = cr2_or_gpa;
6507         kvm_pfn_t pfn;
6508
6509         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6510                 return false;
6511
6512         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6513             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6514                 return false;
6515
6516         if (!vcpu->arch.mmu->direct_map) {
6517                 /*
6518                  * Write permission should be allowed since only
6519                  * write access need to be emulated.
6520                  */
6521                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6522
6523                 /*
6524                  * If the mapping is invalid in guest, let cpu retry
6525                  * it to generate fault.
6526                  */
6527                 if (gpa == UNMAPPED_GVA)
6528                         return true;
6529         }
6530
6531         /*
6532          * Do not retry the unhandleable instruction if it faults on the
6533          * readonly host memory, otherwise it will goto a infinite loop:
6534          * retry instruction -> write #PF -> emulation fail -> retry
6535          * instruction -> ...
6536          */
6537         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6538
6539         /*
6540          * If the instruction failed on the error pfn, it can not be fixed,
6541          * report the error to userspace.
6542          */
6543         if (is_error_noslot_pfn(pfn))
6544                 return false;
6545
6546         kvm_release_pfn_clean(pfn);
6547
6548         /* The instructions are well-emulated on direct mmu. */
6549         if (vcpu->arch.mmu->direct_map) {
6550                 unsigned int indirect_shadow_pages;
6551
6552                 spin_lock(&vcpu->kvm->mmu_lock);
6553                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6554                 spin_unlock(&vcpu->kvm->mmu_lock);
6555
6556                 if (indirect_shadow_pages)
6557                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6558
6559                 return true;
6560         }
6561
6562         /*
6563          * if emulation was due to access to shadowed page table
6564          * and it failed try to unshadow page and re-enter the
6565          * guest to let CPU execute the instruction.
6566          */
6567         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6568
6569         /*
6570          * If the access faults on its page table, it can not
6571          * be fixed by unprotecting shadow page and it should
6572          * be reported to userspace.
6573          */
6574         return !write_fault_to_shadow_pgtable;
6575 }
6576
6577 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6578                               gpa_t cr2_or_gpa,  int emulation_type)
6579 {
6580         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6581         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6582
6583         last_retry_eip = vcpu->arch.last_retry_eip;
6584         last_retry_addr = vcpu->arch.last_retry_addr;
6585
6586         /*
6587          * If the emulation is caused by #PF and it is non-page_table
6588          * writing instruction, it means the VM-EXIT is caused by shadow
6589          * page protected, we can zap the shadow page and retry this
6590          * instruction directly.
6591          *
6592          * Note: if the guest uses a non-page-table modifying instruction
6593          * on the PDE that points to the instruction, then we will unmap
6594          * the instruction and go to an infinite loop. So, we cache the
6595          * last retried eip and the last fault address, if we meet the eip
6596          * and the address again, we can break out of the potential infinite
6597          * loop.
6598          */
6599         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6600
6601         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6602                 return false;
6603
6604         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6605             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6606                 return false;
6607
6608         if (x86_page_table_writing_insn(ctxt))
6609                 return false;
6610
6611         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6612                 return false;
6613
6614         vcpu->arch.last_retry_eip = ctxt->eip;
6615         vcpu->arch.last_retry_addr = cr2_or_gpa;
6616
6617         if (!vcpu->arch.mmu->direct_map)
6618                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6619
6620         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6621
6622         return true;
6623 }
6624
6625 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6626 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6627
6628 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6629 {
6630         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6631                 /* This is a good place to trace that we are exiting SMM.  */
6632                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6633
6634                 /* Process a latched INIT or SMI, if any.  */
6635                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6636         }
6637
6638         kvm_mmu_reset_context(vcpu);
6639 }
6640
6641 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6642                                 unsigned long *db)
6643 {
6644         u32 dr6 = 0;
6645         int i;
6646         u32 enable, rwlen;
6647
6648         enable = dr7;
6649         rwlen = dr7 >> 16;
6650         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6651                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6652                         dr6 |= (1 << i);
6653         return dr6;
6654 }
6655
6656 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6657 {
6658         struct kvm_run *kvm_run = vcpu->run;
6659
6660         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6661                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6662                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6663                 kvm_run->debug.arch.exception = DB_VECTOR;
6664                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6665                 return 0;
6666         }
6667         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6668         return 1;
6669 }
6670
6671 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6672 {
6673         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6674         int r;
6675
6676         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6677         if (unlikely(!r))
6678                 return 0;
6679
6680         /*
6681          * rflags is the old, "raw" value of the flags.  The new value has
6682          * not been saved yet.
6683          *
6684          * This is correct even for TF set by the guest, because "the
6685          * processor will not generate this exception after the instruction
6686          * that sets the TF flag".
6687          */
6688         if (unlikely(rflags & X86_EFLAGS_TF))
6689                 r = kvm_vcpu_do_singlestep(vcpu);
6690         return r;
6691 }
6692 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6693
6694 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6695 {
6696         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6697             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6698                 struct kvm_run *kvm_run = vcpu->run;
6699                 unsigned long eip = kvm_get_linear_rip(vcpu);
6700                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6701                                            vcpu->arch.guest_debug_dr7,
6702                                            vcpu->arch.eff_db);
6703
6704                 if (dr6 != 0) {
6705                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6706                         kvm_run->debug.arch.pc = eip;
6707                         kvm_run->debug.arch.exception = DB_VECTOR;
6708                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6709                         *r = 0;
6710                         return true;
6711                 }
6712         }
6713
6714         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6715             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6716                 unsigned long eip = kvm_get_linear_rip(vcpu);
6717                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6718                                            vcpu->arch.dr7,
6719                                            vcpu->arch.db);
6720
6721                 if (dr6 != 0) {
6722                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6723                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6724                         kvm_queue_exception(vcpu, DB_VECTOR);
6725                         *r = 1;
6726                         return true;
6727                 }
6728         }
6729
6730         return false;
6731 }
6732
6733 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6734 {
6735         switch (ctxt->opcode_len) {
6736         case 1:
6737                 switch (ctxt->b) {
6738                 case 0xe4:      /* IN */
6739                 case 0xe5:
6740                 case 0xec:
6741                 case 0xed:
6742                 case 0xe6:      /* OUT */
6743                 case 0xe7:
6744                 case 0xee:
6745                 case 0xef:
6746                 case 0x6c:      /* INS */
6747                 case 0x6d:
6748                 case 0x6e:      /* OUTS */
6749                 case 0x6f:
6750                         return true;
6751                 }
6752                 break;
6753         case 2:
6754                 switch (ctxt->b) {
6755                 case 0x33:      /* RDPMC */
6756                         return true;
6757                 }
6758                 break;
6759         }
6760
6761         return false;
6762 }
6763
6764 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6765                             int emulation_type, void *insn, int insn_len)
6766 {
6767         int r;
6768         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6769         bool writeback = true;
6770         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6771
6772         vcpu->arch.l1tf_flush_l1d = true;
6773
6774         /*
6775          * Clear write_fault_to_shadow_pgtable here to ensure it is
6776          * never reused.
6777          */
6778         vcpu->arch.write_fault_to_shadow_pgtable = false;
6779         kvm_clear_exception_queue(vcpu);
6780
6781         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6782                 init_emulate_ctxt(vcpu);
6783
6784                 /*
6785                  * We will reenter on the same instruction since
6786                  * we do not set complete_userspace_io.  This does not
6787                  * handle watchpoints yet, those would be handled in
6788                  * the emulate_ops.
6789                  */
6790                 if (!(emulation_type & EMULTYPE_SKIP) &&
6791                     kvm_vcpu_check_breakpoint(vcpu, &r))
6792                         return r;
6793
6794                 ctxt->interruptibility = 0;
6795                 ctxt->have_exception = false;
6796                 ctxt->exception.vector = -1;
6797                 ctxt->perm_ok = false;
6798
6799                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6800
6801                 r = x86_decode_insn(ctxt, insn, insn_len);
6802
6803                 trace_kvm_emulate_insn_start(vcpu);
6804                 ++vcpu->stat.insn_emulation;
6805                 if (r != EMULATION_OK)  {
6806                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6807                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6808                                 kvm_queue_exception(vcpu, UD_VECTOR);
6809                                 return 1;
6810                         }
6811                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6812                                                   write_fault_to_spt,
6813                                                   emulation_type))
6814                                 return 1;
6815                         if (ctxt->have_exception) {
6816                                 /*
6817                                  * #UD should result in just EMULATION_FAILED, and trap-like
6818                                  * exception should not be encountered during decode.
6819                                  */
6820                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6821                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6822                                 inject_emulated_exception(vcpu);
6823                                 return 1;
6824                         }
6825                         return handle_emulation_failure(vcpu, emulation_type);
6826                 }
6827         }
6828
6829         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6830             !is_vmware_backdoor_opcode(ctxt)) {
6831                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6832                 return 1;
6833         }
6834
6835         /*
6836          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6837          * for kvm_skip_emulated_instruction().  The caller is responsible for
6838          * updating interruptibility state and injecting single-step #DBs.
6839          */
6840         if (emulation_type & EMULTYPE_SKIP) {
6841                 kvm_rip_write(vcpu, ctxt->_eip);
6842                 if (ctxt->eflags & X86_EFLAGS_RF)
6843                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6844                 return 1;
6845         }
6846
6847         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6848                 return 1;
6849
6850         /* this is needed for vmware backdoor interface to work since it
6851            changes registers values  during IO operation */
6852         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6853                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6854                 emulator_invalidate_register_cache(ctxt);
6855         }
6856
6857 restart:
6858         if (emulation_type & EMULTYPE_PF) {
6859                 /* Save the faulting GPA (cr2) in the address field */
6860                 ctxt->exception.address = cr2_or_gpa;
6861
6862                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
6863                 if (vcpu->arch.mmu->direct_map) {
6864                         ctxt->gpa_available = true;
6865                         ctxt->gpa_val = cr2_or_gpa;
6866                 }
6867         } else {
6868                 /* Sanitize the address out of an abundance of paranoia. */
6869                 ctxt->exception.address = 0;
6870         }
6871
6872         r = x86_emulate_insn(ctxt);
6873
6874         if (r == EMULATION_INTERCEPTED)
6875                 return 1;
6876
6877         if (r == EMULATION_FAILED) {
6878                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6879                                         emulation_type))
6880                         return 1;
6881
6882                 return handle_emulation_failure(vcpu, emulation_type);
6883         }
6884
6885         if (ctxt->have_exception) {
6886                 r = 1;
6887                 if (inject_emulated_exception(vcpu))
6888                         return r;
6889         } else if (vcpu->arch.pio.count) {
6890                 if (!vcpu->arch.pio.in) {
6891                         /* FIXME: return into emulator if single-stepping.  */
6892                         vcpu->arch.pio.count = 0;
6893                 } else {
6894                         writeback = false;
6895                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6896                 }
6897                 r = 0;
6898         } else if (vcpu->mmio_needed) {
6899                 ++vcpu->stat.mmio_exits;
6900
6901                 if (!vcpu->mmio_is_write)
6902                         writeback = false;
6903                 r = 0;
6904                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6905         } else if (r == EMULATION_RESTART)
6906                 goto restart;
6907         else
6908                 r = 1;
6909
6910         if (writeback) {
6911                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6912                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6913                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6914                 if (!ctxt->have_exception ||
6915                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6916                         kvm_rip_write(vcpu, ctxt->eip);
6917                         if (r && ctxt->tf)
6918                                 r = kvm_vcpu_do_singlestep(vcpu);
6919                         if (kvm_x86_ops.update_emulated_instruction)
6920                                 kvm_x86_ops.update_emulated_instruction(vcpu);
6921                         __kvm_set_rflags(vcpu, ctxt->eflags);
6922                 }
6923
6924                 /*
6925                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6926                  * do nothing, and it will be requested again as soon as
6927                  * the shadow expires.  But we still need to check here,
6928                  * because POPF has no interrupt shadow.
6929                  */
6930                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6931                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6932         } else
6933                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6934
6935         return r;
6936 }
6937
6938 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6939 {
6940         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6941 }
6942 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6943
6944 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6945                                         void *insn, int insn_len)
6946 {
6947         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6948 }
6949 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6950
6951 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6952 {
6953         vcpu->arch.pio.count = 0;
6954         return 1;
6955 }
6956
6957 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6958 {
6959         vcpu->arch.pio.count = 0;
6960
6961         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6962                 return 1;
6963
6964         return kvm_skip_emulated_instruction(vcpu);
6965 }
6966
6967 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6968                             unsigned short port)
6969 {
6970         unsigned long val = kvm_rax_read(vcpu);
6971         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6972
6973         if (ret)
6974                 return ret;
6975
6976         /*
6977          * Workaround userspace that relies on old KVM behavior of %rip being
6978          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6979          */
6980         if (port == 0x7e &&
6981             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6982                 vcpu->arch.complete_userspace_io =
6983                         complete_fast_pio_out_port_0x7e;
6984                 kvm_skip_emulated_instruction(vcpu);
6985         } else {
6986                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6987                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6988         }
6989         return 0;
6990 }
6991
6992 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6993 {
6994         unsigned long val;
6995
6996         /* We should only ever be called with arch.pio.count equal to 1 */
6997         BUG_ON(vcpu->arch.pio.count != 1);
6998
6999         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7000                 vcpu->arch.pio.count = 0;
7001                 return 1;
7002         }
7003
7004         /* For size less than 4 we merge, else we zero extend */
7005         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7006
7007         /*
7008          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7009          * the copy and tracing
7010          */
7011         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7012         kvm_rax_write(vcpu, val);
7013
7014         return kvm_skip_emulated_instruction(vcpu);
7015 }
7016
7017 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7018                            unsigned short port)
7019 {
7020         unsigned long val;
7021         int ret;
7022
7023         /* For size less than 4 we merge, else we zero extend */
7024         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7025
7026         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7027         if (ret) {
7028                 kvm_rax_write(vcpu, val);
7029                 return ret;
7030         }
7031
7032         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7033         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7034
7035         return 0;
7036 }
7037
7038 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7039 {
7040         int ret;
7041
7042         if (in)
7043                 ret = kvm_fast_pio_in(vcpu, size, port);
7044         else
7045                 ret = kvm_fast_pio_out(vcpu, size, port);
7046         return ret && kvm_skip_emulated_instruction(vcpu);
7047 }
7048 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7049
7050 static int kvmclock_cpu_down_prep(unsigned int cpu)
7051 {
7052         __this_cpu_write(cpu_tsc_khz, 0);
7053         return 0;
7054 }
7055
7056 static void tsc_khz_changed(void *data)
7057 {
7058         struct cpufreq_freqs *freq = data;
7059         unsigned long khz = 0;
7060
7061         if (data)
7062                 khz = freq->new;
7063         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7064                 khz = cpufreq_quick_get(raw_smp_processor_id());
7065         if (!khz)
7066                 khz = tsc_khz;
7067         __this_cpu_write(cpu_tsc_khz, khz);
7068 }
7069
7070 #ifdef CONFIG_X86_64
7071 static void kvm_hyperv_tsc_notifier(void)
7072 {
7073         struct kvm *kvm;
7074         struct kvm_vcpu *vcpu;
7075         int cpu;
7076
7077         mutex_lock(&kvm_lock);
7078         list_for_each_entry(kvm, &vm_list, vm_list)
7079                 kvm_make_mclock_inprogress_request(kvm);
7080
7081         hyperv_stop_tsc_emulation();
7082
7083         /* TSC frequency always matches when on Hyper-V */
7084         for_each_present_cpu(cpu)
7085                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7086         kvm_max_guest_tsc_khz = tsc_khz;
7087
7088         list_for_each_entry(kvm, &vm_list, vm_list) {
7089                 struct kvm_arch *ka = &kvm->arch;
7090
7091                 spin_lock(&ka->pvclock_gtod_sync_lock);
7092
7093                 pvclock_update_vm_gtod_copy(kvm);
7094
7095                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7096                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7097
7098                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7099                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7100
7101                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7102         }
7103         mutex_unlock(&kvm_lock);
7104 }
7105 #endif
7106
7107 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7108 {
7109         struct kvm *kvm;
7110         struct kvm_vcpu *vcpu;
7111         int i, send_ipi = 0;
7112
7113         /*
7114          * We allow guests to temporarily run on slowing clocks,
7115          * provided we notify them after, or to run on accelerating
7116          * clocks, provided we notify them before.  Thus time never
7117          * goes backwards.
7118          *
7119          * However, we have a problem.  We can't atomically update
7120          * the frequency of a given CPU from this function; it is
7121          * merely a notifier, which can be called from any CPU.
7122          * Changing the TSC frequency at arbitrary points in time
7123          * requires a recomputation of local variables related to
7124          * the TSC for each VCPU.  We must flag these local variables
7125          * to be updated and be sure the update takes place with the
7126          * new frequency before any guests proceed.
7127          *
7128          * Unfortunately, the combination of hotplug CPU and frequency
7129          * change creates an intractable locking scenario; the order
7130          * of when these callouts happen is undefined with respect to
7131          * CPU hotplug, and they can race with each other.  As such,
7132          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7133          * undefined; you can actually have a CPU frequency change take
7134          * place in between the computation of X and the setting of the
7135          * variable.  To protect against this problem, all updates of
7136          * the per_cpu tsc_khz variable are done in an interrupt
7137          * protected IPI, and all callers wishing to update the value
7138          * must wait for a synchronous IPI to complete (which is trivial
7139          * if the caller is on the CPU already).  This establishes the
7140          * necessary total order on variable updates.
7141          *
7142          * Note that because a guest time update may take place
7143          * anytime after the setting of the VCPU's request bit, the
7144          * correct TSC value must be set before the request.  However,
7145          * to ensure the update actually makes it to any guest which
7146          * starts running in hardware virtualization between the set
7147          * and the acquisition of the spinlock, we must also ping the
7148          * CPU after setting the request bit.
7149          *
7150          */
7151
7152         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7153
7154         mutex_lock(&kvm_lock);
7155         list_for_each_entry(kvm, &vm_list, vm_list) {
7156                 kvm_for_each_vcpu(i, vcpu, kvm) {
7157                         if (vcpu->cpu != cpu)
7158                                 continue;
7159                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7160                         if (vcpu->cpu != raw_smp_processor_id())
7161                                 send_ipi = 1;
7162                 }
7163         }
7164         mutex_unlock(&kvm_lock);
7165
7166         if (freq->old < freq->new && send_ipi) {
7167                 /*
7168                  * We upscale the frequency.  Must make the guest
7169                  * doesn't see old kvmclock values while running with
7170                  * the new frequency, otherwise we risk the guest sees
7171                  * time go backwards.
7172                  *
7173                  * In case we update the frequency for another cpu
7174                  * (which might be in guest context) send an interrupt
7175                  * to kick the cpu out of guest context.  Next time
7176                  * guest context is entered kvmclock will be updated,
7177                  * so the guest will not see stale values.
7178                  */
7179                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7180         }
7181 }
7182
7183 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7184                                      void *data)
7185 {
7186         struct cpufreq_freqs *freq = data;
7187         int cpu;
7188
7189         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7190                 return 0;
7191         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7192                 return 0;
7193
7194         for_each_cpu(cpu, freq->policy->cpus)
7195                 __kvmclock_cpufreq_notifier(freq, cpu);
7196
7197         return 0;
7198 }
7199
7200 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7201         .notifier_call  = kvmclock_cpufreq_notifier
7202 };
7203
7204 static int kvmclock_cpu_online(unsigned int cpu)
7205 {
7206         tsc_khz_changed(NULL);
7207         return 0;
7208 }
7209
7210 static void kvm_timer_init(void)
7211 {
7212         max_tsc_khz = tsc_khz;
7213
7214         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7215 #ifdef CONFIG_CPU_FREQ
7216                 struct cpufreq_policy *policy;
7217                 int cpu;
7218
7219                 cpu = get_cpu();
7220                 policy = cpufreq_cpu_get(cpu);
7221                 if (policy) {
7222                         if (policy->cpuinfo.max_freq)
7223                                 max_tsc_khz = policy->cpuinfo.max_freq;
7224                         cpufreq_cpu_put(policy);
7225                 }
7226                 put_cpu();
7227 #endif
7228                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7229                                           CPUFREQ_TRANSITION_NOTIFIER);
7230         }
7231
7232         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7233                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7234 }
7235
7236 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7237 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7238
7239 int kvm_is_in_guest(void)
7240 {
7241         return __this_cpu_read(current_vcpu) != NULL;
7242 }
7243
7244 static int kvm_is_user_mode(void)
7245 {
7246         int user_mode = 3;
7247
7248         if (__this_cpu_read(current_vcpu))
7249                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7250
7251         return user_mode != 0;
7252 }
7253
7254 static unsigned long kvm_get_guest_ip(void)
7255 {
7256         unsigned long ip = 0;
7257
7258         if (__this_cpu_read(current_vcpu))
7259                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7260
7261         return ip;
7262 }
7263
7264 static void kvm_handle_intel_pt_intr(void)
7265 {
7266         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7267
7268         kvm_make_request(KVM_REQ_PMI, vcpu);
7269         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7270                         (unsigned long *)&vcpu->arch.pmu.global_status);
7271 }
7272
7273 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7274         .is_in_guest            = kvm_is_in_guest,
7275         .is_user_mode           = kvm_is_user_mode,
7276         .get_guest_ip           = kvm_get_guest_ip,
7277         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7278 };
7279
7280 #ifdef CONFIG_X86_64
7281 static void pvclock_gtod_update_fn(struct work_struct *work)
7282 {
7283         struct kvm *kvm;
7284
7285         struct kvm_vcpu *vcpu;
7286         int i;
7287
7288         mutex_lock(&kvm_lock);
7289         list_for_each_entry(kvm, &vm_list, vm_list)
7290                 kvm_for_each_vcpu(i, vcpu, kvm)
7291                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7292         atomic_set(&kvm_guest_has_master_clock, 0);
7293         mutex_unlock(&kvm_lock);
7294 }
7295
7296 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7297
7298 /*
7299  * Notification about pvclock gtod data update.
7300  */
7301 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7302                                void *priv)
7303 {
7304         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7305         struct timekeeper *tk = priv;
7306
7307         update_pvclock_gtod(tk);
7308
7309         /* disable master clock if host does not trust, or does not
7310          * use, TSC based clocksource.
7311          */
7312         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7313             atomic_read(&kvm_guest_has_master_clock) != 0)
7314                 queue_work(system_long_wq, &pvclock_gtod_work);
7315
7316         return 0;
7317 }
7318
7319 static struct notifier_block pvclock_gtod_notifier = {
7320         .notifier_call = pvclock_gtod_notify,
7321 };
7322 #endif
7323
7324 int kvm_arch_init(void *opaque)
7325 {
7326         struct kvm_x86_init_ops *ops = opaque;
7327         int r;
7328
7329         if (kvm_x86_ops.hardware_enable) {
7330                 printk(KERN_ERR "kvm: already loaded the other module\n");
7331                 r = -EEXIST;
7332                 goto out;
7333         }
7334
7335         if (!ops->cpu_has_kvm_support()) {
7336                 pr_err_ratelimited("kvm: no hardware support\n");
7337                 r = -EOPNOTSUPP;
7338                 goto out;
7339         }
7340         if (ops->disabled_by_bios()) {
7341                 pr_err_ratelimited("kvm: disabled by bios\n");
7342                 r = -EOPNOTSUPP;
7343                 goto out;
7344         }
7345
7346         /*
7347          * KVM explicitly assumes that the guest has an FPU and
7348          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7349          * vCPU's FPU state as a fxregs_state struct.
7350          */
7351         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7352                 printk(KERN_ERR "kvm: inadequate fpu\n");
7353                 r = -EOPNOTSUPP;
7354                 goto out;
7355         }
7356
7357         r = -ENOMEM;
7358         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7359                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7360                                           NULL);
7361         if (!x86_fpu_cache) {
7362                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7363                 goto out;
7364         }
7365
7366         x86_emulator_cache = kvm_alloc_emulator_cache();
7367         if (!x86_emulator_cache) {
7368                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7369                 goto out_free_x86_fpu_cache;
7370         }
7371
7372         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7373         if (!shared_msrs) {
7374                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7375                 goto out_free_x86_emulator_cache;
7376         }
7377
7378         r = kvm_mmu_module_init();
7379         if (r)
7380                 goto out_free_percpu;
7381
7382         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7383                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7384                         PT_PRESENT_MASK, 0, sme_me_mask);
7385         kvm_timer_init();
7386
7387         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7388
7389         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7390                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7391                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7392         }
7393
7394         kvm_lapic_init();
7395         if (pi_inject_timer == -1)
7396                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7397 #ifdef CONFIG_X86_64
7398         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7399
7400         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7401                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7402 #endif
7403
7404         return 0;
7405
7406 out_free_percpu:
7407         free_percpu(shared_msrs);
7408 out_free_x86_emulator_cache:
7409         kmem_cache_destroy(x86_emulator_cache);
7410 out_free_x86_fpu_cache:
7411         kmem_cache_destroy(x86_fpu_cache);
7412 out:
7413         return r;
7414 }
7415
7416 void kvm_arch_exit(void)
7417 {
7418 #ifdef CONFIG_X86_64
7419         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7420                 clear_hv_tscchange_cb();
7421 #endif
7422         kvm_lapic_exit();
7423         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7424
7425         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7426                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7427                                             CPUFREQ_TRANSITION_NOTIFIER);
7428         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7429 #ifdef CONFIG_X86_64
7430         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7431 #endif
7432         kvm_x86_ops.hardware_enable = NULL;
7433         kvm_mmu_module_exit();
7434         free_percpu(shared_msrs);
7435         kmem_cache_destroy(x86_fpu_cache);
7436 }
7437
7438 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7439 {
7440         ++vcpu->stat.halt_exits;
7441         if (lapic_in_kernel(vcpu)) {
7442                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7443                 return 1;
7444         } else {
7445                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7446                 return 0;
7447         }
7448 }
7449 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7450
7451 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7452 {
7453         int ret = kvm_skip_emulated_instruction(vcpu);
7454         /*
7455          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7456          * KVM_EXIT_DEBUG here.
7457          */
7458         return kvm_vcpu_halt(vcpu) && ret;
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7461
7462 #ifdef CONFIG_X86_64
7463 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7464                                 unsigned long clock_type)
7465 {
7466         struct kvm_clock_pairing clock_pairing;
7467         struct timespec64 ts;
7468         u64 cycle;
7469         int ret;
7470
7471         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7472                 return -KVM_EOPNOTSUPP;
7473
7474         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7475                 return -KVM_EOPNOTSUPP;
7476
7477         clock_pairing.sec = ts.tv_sec;
7478         clock_pairing.nsec = ts.tv_nsec;
7479         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7480         clock_pairing.flags = 0;
7481         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7482
7483         ret = 0;
7484         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7485                             sizeof(struct kvm_clock_pairing)))
7486                 ret = -KVM_EFAULT;
7487
7488         return ret;
7489 }
7490 #endif
7491
7492 /*
7493  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7494  *
7495  * @apicid - apicid of vcpu to be kicked.
7496  */
7497 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7498 {
7499         struct kvm_lapic_irq lapic_irq;
7500
7501         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7502         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7503         lapic_irq.level = 0;
7504         lapic_irq.dest_id = apicid;
7505         lapic_irq.msi_redir_hint = false;
7506
7507         lapic_irq.delivery_mode = APIC_DM_REMRD;
7508         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7509 }
7510
7511 bool kvm_apicv_activated(struct kvm *kvm)
7512 {
7513         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7514 }
7515 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7516
7517 void kvm_apicv_init(struct kvm *kvm, bool enable)
7518 {
7519         if (enable)
7520                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7521                           &kvm->arch.apicv_inhibit_reasons);
7522         else
7523                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7524                         &kvm->arch.apicv_inhibit_reasons);
7525 }
7526 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7527
7528 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7529 {
7530         struct kvm_vcpu *target = NULL;
7531         struct kvm_apic_map *map;
7532
7533         rcu_read_lock();
7534         map = rcu_dereference(kvm->arch.apic_map);
7535
7536         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7537                 target = map->phys_map[dest_id]->vcpu;
7538
7539         rcu_read_unlock();
7540
7541         if (target && READ_ONCE(target->ready))
7542                 kvm_vcpu_yield_to(target);
7543 }
7544
7545 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7546 {
7547         unsigned long nr, a0, a1, a2, a3, ret;
7548         int op_64_bit;
7549
7550         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7551                 return kvm_hv_hypercall(vcpu);
7552
7553         nr = kvm_rax_read(vcpu);
7554         a0 = kvm_rbx_read(vcpu);
7555         a1 = kvm_rcx_read(vcpu);
7556         a2 = kvm_rdx_read(vcpu);
7557         a3 = kvm_rsi_read(vcpu);
7558
7559         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7560
7561         op_64_bit = is_64_bit_mode(vcpu);
7562         if (!op_64_bit) {
7563                 nr &= 0xFFFFFFFF;
7564                 a0 &= 0xFFFFFFFF;
7565                 a1 &= 0xFFFFFFFF;
7566                 a2 &= 0xFFFFFFFF;
7567                 a3 &= 0xFFFFFFFF;
7568         }
7569
7570         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7571                 ret = -KVM_EPERM;
7572                 goto out;
7573         }
7574
7575         switch (nr) {
7576         case KVM_HC_VAPIC_POLL_IRQ:
7577                 ret = 0;
7578                 break;
7579         case KVM_HC_KICK_CPU:
7580                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7581                 kvm_sched_yield(vcpu->kvm, a1);
7582                 ret = 0;
7583                 break;
7584 #ifdef CONFIG_X86_64
7585         case KVM_HC_CLOCK_PAIRING:
7586                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7587                 break;
7588 #endif
7589         case KVM_HC_SEND_IPI:
7590                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7591                 break;
7592         case KVM_HC_SCHED_YIELD:
7593                 kvm_sched_yield(vcpu->kvm, a0);
7594                 ret = 0;
7595                 break;
7596         default:
7597                 ret = -KVM_ENOSYS;
7598                 break;
7599         }
7600 out:
7601         if (!op_64_bit)
7602                 ret = (u32)ret;
7603         kvm_rax_write(vcpu, ret);
7604
7605         ++vcpu->stat.hypercalls;
7606         return kvm_skip_emulated_instruction(vcpu);
7607 }
7608 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7609
7610 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7611 {
7612         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7613         char instruction[3];
7614         unsigned long rip = kvm_rip_read(vcpu);
7615
7616         kvm_x86_ops.patch_hypercall(vcpu, instruction);
7617
7618         return emulator_write_emulated(ctxt, rip, instruction, 3,
7619                 &ctxt->exception);
7620 }
7621
7622 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7623 {
7624         return vcpu->run->request_interrupt_window &&
7625                 likely(!pic_in_kernel(vcpu->kvm));
7626 }
7627
7628 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7629 {
7630         struct kvm_run *kvm_run = vcpu->run;
7631
7632         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7633         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7634         kvm_run->cr8 = kvm_get_cr8(vcpu);
7635         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7636         kvm_run->ready_for_interrupt_injection =
7637                 pic_in_kernel(vcpu->kvm) ||
7638                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7639 }
7640
7641 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7642 {
7643         int max_irr, tpr;
7644
7645         if (!kvm_x86_ops.update_cr8_intercept)
7646                 return;
7647
7648         if (!lapic_in_kernel(vcpu))
7649                 return;
7650
7651         if (vcpu->arch.apicv_active)
7652                 return;
7653
7654         if (!vcpu->arch.apic->vapic_addr)
7655                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7656         else
7657                 max_irr = -1;
7658
7659         if (max_irr != -1)
7660                 max_irr >>= 4;
7661
7662         tpr = kvm_lapic_get_cr8(vcpu);
7663
7664         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7665 }
7666
7667 static int inject_pending_event(struct kvm_vcpu *vcpu)
7668 {
7669         int r;
7670
7671         /* try to reinject previous events if any */
7672
7673         if (vcpu->arch.exception.injected)
7674                 kvm_x86_ops.queue_exception(vcpu);
7675         /*
7676          * Do not inject an NMI or interrupt if there is a pending
7677          * exception.  Exceptions and interrupts are recognized at
7678          * instruction boundaries, i.e. the start of an instruction.
7679          * Trap-like exceptions, e.g. #DB, have higher priority than
7680          * NMIs and interrupts, i.e. traps are recognized before an
7681          * NMI/interrupt that's pending on the same instruction.
7682          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7683          * priority, but are only generated (pended) during instruction
7684          * execution, i.e. a pending fault-like exception means the
7685          * fault occurred on the *previous* instruction and must be
7686          * serviced prior to recognizing any new events in order to
7687          * fully complete the previous instruction.
7688          */
7689         else if (!vcpu->arch.exception.pending) {
7690                 if (vcpu->arch.nmi_injected)
7691                         kvm_x86_ops.set_nmi(vcpu);
7692                 else if (vcpu->arch.interrupt.injected)
7693                         kvm_x86_ops.set_irq(vcpu);
7694         }
7695
7696         /*
7697          * Call check_nested_events() even if we reinjected a previous event
7698          * in order for caller to determine if it should require immediate-exit
7699          * from L2 to L1 due to pending L1 events which require exit
7700          * from L2 to L1.
7701          */
7702         if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7703                 r = kvm_x86_ops.check_nested_events(vcpu);
7704                 if (r != 0)
7705                         return r;
7706         }
7707
7708         /* try to inject new event if pending */
7709         if (vcpu->arch.exception.pending) {
7710                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7711                                         vcpu->arch.exception.has_error_code,
7712                                         vcpu->arch.exception.error_code);
7713
7714                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7715                 vcpu->arch.exception.pending = false;
7716                 vcpu->arch.exception.injected = true;
7717
7718                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7719                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7720                                              X86_EFLAGS_RF);
7721
7722                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7723                         /*
7724                          * This code assumes that nSVM doesn't use
7725                          * check_nested_events(). If it does, the
7726                          * DR6/DR7 changes should happen before L1
7727                          * gets a #VMEXIT for an intercepted #DB in
7728                          * L2.  (Under VMX, on the other hand, the
7729                          * DR6/DR7 changes should not happen in the
7730                          * event of a VM-exit to L1 for an intercepted
7731                          * #DB in L2.)
7732                          */
7733                         kvm_deliver_exception_payload(vcpu);
7734                         if (vcpu->arch.dr7 & DR7_GD) {
7735                                 vcpu->arch.dr7 &= ~DR7_GD;
7736                                 kvm_update_dr7(vcpu);
7737                         }
7738                 }
7739
7740                 kvm_x86_ops.queue_exception(vcpu);
7741         }
7742
7743         /* Don't consider new event if we re-injected an event */
7744         if (kvm_event_needs_reinjection(vcpu))
7745                 return 0;
7746
7747         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7748             kvm_x86_ops.smi_allowed(vcpu)) {
7749                 vcpu->arch.smi_pending = false;
7750                 ++vcpu->arch.smi_count;
7751                 enter_smm(vcpu);
7752         } else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
7753                 --vcpu->arch.nmi_pending;
7754                 vcpu->arch.nmi_injected = true;
7755                 kvm_x86_ops.set_nmi(vcpu);
7756         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7757                 /*
7758                  * Because interrupts can be injected asynchronously, we are
7759                  * calling check_nested_events again here to avoid a race condition.
7760                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7761                  * proposal and current concerns.  Perhaps we should be setting
7762                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7763                  */
7764                 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7765                         r = kvm_x86_ops.check_nested_events(vcpu);
7766                         if (r != 0)
7767                                 return r;
7768                 }
7769                 if (kvm_x86_ops.interrupt_allowed(vcpu)) {
7770                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7771                                             false);
7772                         kvm_x86_ops.set_irq(vcpu);
7773                 }
7774         }
7775
7776         return 0;
7777 }
7778
7779 static void process_nmi(struct kvm_vcpu *vcpu)
7780 {
7781         unsigned limit = 2;
7782
7783         /*
7784          * x86 is limited to one NMI running, and one NMI pending after it.
7785          * If an NMI is already in progress, limit further NMIs to just one.
7786          * Otherwise, allow two (and we'll inject the first one immediately).
7787          */
7788         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7789                 limit = 1;
7790
7791         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7792         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7793         kvm_make_request(KVM_REQ_EVENT, vcpu);
7794 }
7795
7796 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7797 {
7798         u32 flags = 0;
7799         flags |= seg->g       << 23;
7800         flags |= seg->db      << 22;
7801         flags |= seg->l       << 21;
7802         flags |= seg->avl     << 20;
7803         flags |= seg->present << 15;
7804         flags |= seg->dpl     << 13;
7805         flags |= seg->s       << 12;
7806         flags |= seg->type    << 8;
7807         return flags;
7808 }
7809
7810 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7811 {
7812         struct kvm_segment seg;
7813         int offset;
7814
7815         kvm_get_segment(vcpu, &seg, n);
7816         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7817
7818         if (n < 3)
7819                 offset = 0x7f84 + n * 12;
7820         else
7821                 offset = 0x7f2c + (n - 3) * 12;
7822
7823         put_smstate(u32, buf, offset + 8, seg.base);
7824         put_smstate(u32, buf, offset + 4, seg.limit);
7825         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7826 }
7827
7828 #ifdef CONFIG_X86_64
7829 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7830 {
7831         struct kvm_segment seg;
7832         int offset;
7833         u16 flags;
7834
7835         kvm_get_segment(vcpu, &seg, n);
7836         offset = 0x7e00 + n * 16;
7837
7838         flags = enter_smm_get_segment_flags(&seg) >> 8;
7839         put_smstate(u16, buf, offset, seg.selector);
7840         put_smstate(u16, buf, offset + 2, flags);
7841         put_smstate(u32, buf, offset + 4, seg.limit);
7842         put_smstate(u64, buf, offset + 8, seg.base);
7843 }
7844 #endif
7845
7846 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7847 {
7848         struct desc_ptr dt;
7849         struct kvm_segment seg;
7850         unsigned long val;
7851         int i;
7852
7853         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7854         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7855         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7856         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7857
7858         for (i = 0; i < 8; i++)
7859                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7860
7861         kvm_get_dr(vcpu, 6, &val);
7862         put_smstate(u32, buf, 0x7fcc, (u32)val);
7863         kvm_get_dr(vcpu, 7, &val);
7864         put_smstate(u32, buf, 0x7fc8, (u32)val);
7865
7866         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7867         put_smstate(u32, buf, 0x7fc4, seg.selector);
7868         put_smstate(u32, buf, 0x7f64, seg.base);
7869         put_smstate(u32, buf, 0x7f60, seg.limit);
7870         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7871
7872         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7873         put_smstate(u32, buf, 0x7fc0, seg.selector);
7874         put_smstate(u32, buf, 0x7f80, seg.base);
7875         put_smstate(u32, buf, 0x7f7c, seg.limit);
7876         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7877
7878         kvm_x86_ops.get_gdt(vcpu, &dt);
7879         put_smstate(u32, buf, 0x7f74, dt.address);
7880         put_smstate(u32, buf, 0x7f70, dt.size);
7881
7882         kvm_x86_ops.get_idt(vcpu, &dt);
7883         put_smstate(u32, buf, 0x7f58, dt.address);
7884         put_smstate(u32, buf, 0x7f54, dt.size);
7885
7886         for (i = 0; i < 6; i++)
7887                 enter_smm_save_seg_32(vcpu, buf, i);
7888
7889         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7890
7891         /* revision id */
7892         put_smstate(u32, buf, 0x7efc, 0x00020000);
7893         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7894 }
7895
7896 #ifdef CONFIG_X86_64
7897 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7898 {
7899         struct desc_ptr dt;
7900         struct kvm_segment seg;
7901         unsigned long val;
7902         int i;
7903
7904         for (i = 0; i < 16; i++)
7905                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7906
7907         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7908         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7909
7910         kvm_get_dr(vcpu, 6, &val);
7911         put_smstate(u64, buf, 0x7f68, val);
7912         kvm_get_dr(vcpu, 7, &val);
7913         put_smstate(u64, buf, 0x7f60, val);
7914
7915         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7916         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7917         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7918
7919         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7920
7921         /* revision id */
7922         put_smstate(u32, buf, 0x7efc, 0x00020064);
7923
7924         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7925
7926         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7927         put_smstate(u16, buf, 0x7e90, seg.selector);
7928         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7929         put_smstate(u32, buf, 0x7e94, seg.limit);
7930         put_smstate(u64, buf, 0x7e98, seg.base);
7931
7932         kvm_x86_ops.get_idt(vcpu, &dt);
7933         put_smstate(u32, buf, 0x7e84, dt.size);
7934         put_smstate(u64, buf, 0x7e88, dt.address);
7935
7936         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7937         put_smstate(u16, buf, 0x7e70, seg.selector);
7938         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7939         put_smstate(u32, buf, 0x7e74, seg.limit);
7940         put_smstate(u64, buf, 0x7e78, seg.base);
7941
7942         kvm_x86_ops.get_gdt(vcpu, &dt);
7943         put_smstate(u32, buf, 0x7e64, dt.size);
7944         put_smstate(u64, buf, 0x7e68, dt.address);
7945
7946         for (i = 0; i < 6; i++)
7947                 enter_smm_save_seg_64(vcpu, buf, i);
7948 }
7949 #endif
7950
7951 static void enter_smm(struct kvm_vcpu *vcpu)
7952 {
7953         struct kvm_segment cs, ds;
7954         struct desc_ptr dt;
7955         char buf[512];
7956         u32 cr0;
7957
7958         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7959         memset(buf, 0, 512);
7960 #ifdef CONFIG_X86_64
7961         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7962                 enter_smm_save_state_64(vcpu, buf);
7963         else
7964 #endif
7965                 enter_smm_save_state_32(vcpu, buf);
7966
7967         /*
7968          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7969          * vCPU state (e.g. leave guest mode) after we've saved the state into
7970          * the SMM state-save area.
7971          */
7972         kvm_x86_ops.pre_enter_smm(vcpu, buf);
7973
7974         vcpu->arch.hflags |= HF_SMM_MASK;
7975         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7976
7977         if (kvm_x86_ops.get_nmi_mask(vcpu))
7978                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7979         else
7980                 kvm_x86_ops.set_nmi_mask(vcpu, true);
7981
7982         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7983         kvm_rip_write(vcpu, 0x8000);
7984
7985         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7986         kvm_x86_ops.set_cr0(vcpu, cr0);
7987         vcpu->arch.cr0 = cr0;
7988
7989         kvm_x86_ops.set_cr4(vcpu, 0);
7990
7991         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7992         dt.address = dt.size = 0;
7993         kvm_x86_ops.set_idt(vcpu, &dt);
7994
7995         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7996
7997         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7998         cs.base = vcpu->arch.smbase;
7999
8000         ds.selector = 0;
8001         ds.base = 0;
8002
8003         cs.limit    = ds.limit = 0xffffffff;
8004         cs.type     = ds.type = 0x3;
8005         cs.dpl      = ds.dpl = 0;
8006         cs.db       = ds.db = 0;
8007         cs.s        = ds.s = 1;
8008         cs.l        = ds.l = 0;
8009         cs.g        = ds.g = 1;
8010         cs.avl      = ds.avl = 0;
8011         cs.present  = ds.present = 1;
8012         cs.unusable = ds.unusable = 0;
8013         cs.padding  = ds.padding = 0;
8014
8015         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8016         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8017         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8018         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8019         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8020         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8021
8022 #ifdef CONFIG_X86_64
8023         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8024                 kvm_x86_ops.set_efer(vcpu, 0);
8025 #endif
8026
8027         kvm_update_cpuid(vcpu);
8028         kvm_mmu_reset_context(vcpu);
8029 }
8030
8031 static void process_smi(struct kvm_vcpu *vcpu)
8032 {
8033         vcpu->arch.smi_pending = true;
8034         kvm_make_request(KVM_REQ_EVENT, vcpu);
8035 }
8036
8037 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8038                                        unsigned long *vcpu_bitmap)
8039 {
8040         cpumask_var_t cpus;
8041
8042         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8043
8044         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8045                                     vcpu_bitmap, cpus);
8046
8047         free_cpumask_var(cpus);
8048 }
8049
8050 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8051 {
8052         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8053 }
8054
8055 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8056 {
8057         if (!lapic_in_kernel(vcpu))
8058                 return;
8059
8060         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8061         kvm_apic_update_apicv(vcpu);
8062         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8065
8066 /*
8067  * NOTE: Do not hold any lock prior to calling this.
8068  *
8069  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8070  * locked, because it calls __x86_set_memory_region() which does
8071  * synchronize_srcu(&kvm->srcu).
8072  */
8073 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8074 {
8075         unsigned long old, new, expected;
8076
8077         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8078             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8079                 return;
8080
8081         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8082         do {
8083                 expected = new = old;
8084                 if (activate)
8085                         __clear_bit(bit, &new);
8086                 else
8087                         __set_bit(bit, &new);
8088                 if (new == old)
8089                         break;
8090                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8091         } while (old != expected);
8092
8093         if (!!old == !!new)
8094                 return;
8095
8096         trace_kvm_apicv_update_request(activate, bit);
8097         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8098                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8099         kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8102
8103 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8104 {
8105         if (!kvm_apic_present(vcpu))
8106                 return;
8107
8108         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8109
8110         if (irqchip_split(vcpu->kvm))
8111                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8112         else {
8113                 if (vcpu->arch.apicv_active)
8114                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8115                 if (ioapic_in_kernel(vcpu->kvm))
8116                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8117         }
8118
8119         if (is_guest_mode(vcpu))
8120                 vcpu->arch.load_eoi_exitmap_pending = true;
8121         else
8122                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8123 }
8124
8125 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8126 {
8127         u64 eoi_exit_bitmap[4];
8128
8129         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8130                 return;
8131
8132         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8133                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8134         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8135 }
8136
8137 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8138                 unsigned long start, unsigned long end,
8139                 bool blockable)
8140 {
8141         unsigned long apic_address;
8142
8143         /*
8144          * The physical address of apic access page is stored in the VMCS.
8145          * Update it when it becomes invalid.
8146          */
8147         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8148         if (start <= apic_address && apic_address < end)
8149                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8150
8151         return 0;
8152 }
8153
8154 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8155 {
8156         struct page *page = NULL;
8157
8158         if (!lapic_in_kernel(vcpu))
8159                 return;
8160
8161         if (!kvm_x86_ops.set_apic_access_page_addr)
8162                 return;
8163
8164         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8165         if (is_error_page(page))
8166                 return;
8167         kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
8168
8169         /*
8170          * Do not pin apic access page in memory, the MMU notifier
8171          * will call us again if it is migrated or swapped out.
8172          */
8173         put_page(page);
8174 }
8175
8176 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8177 {
8178         smp_send_reschedule(vcpu->cpu);
8179 }
8180 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8181
8182 /*
8183  * Returns 1 to let vcpu_run() continue the guest execution loop without
8184  * exiting to the userspace.  Otherwise, the value will be returned to the
8185  * userspace.
8186  */
8187 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8188 {
8189         int r;
8190         bool req_int_win =
8191                 dm_request_for_irq_injection(vcpu) &&
8192                 kvm_cpu_accept_dm_intr(vcpu);
8193         enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8194
8195         bool req_immediate_exit = false;
8196
8197         if (kvm_request_pending(vcpu)) {
8198                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8199                         if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
8200                                 r = 0;
8201                                 goto out;
8202                         }
8203                 }
8204                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8205                         kvm_mmu_unload(vcpu);
8206                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8207                         __kvm_migrate_timers(vcpu);
8208                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8209                         kvm_gen_update_masterclock(vcpu->kvm);
8210                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8211                         kvm_gen_kvmclock_update(vcpu);
8212                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8213                         r = kvm_guest_time_update(vcpu);
8214                         if (unlikely(r))
8215                                 goto out;
8216                 }
8217                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8218                         kvm_mmu_sync_roots(vcpu);
8219                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8220                         kvm_mmu_load_pgd(vcpu);
8221                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8222                         kvm_vcpu_flush_tlb(vcpu, true);
8223                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8224                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8225                         r = 0;
8226                         goto out;
8227                 }
8228                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8229                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8230                         vcpu->mmio_needed = 0;
8231                         r = 0;
8232                         goto out;
8233                 }
8234                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8235                         /* Page is swapped out. Do synthetic halt */
8236                         vcpu->arch.apf.halted = true;
8237                         r = 1;
8238                         goto out;
8239                 }
8240                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8241                         record_steal_time(vcpu);
8242                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8243                         process_smi(vcpu);
8244                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8245                         process_nmi(vcpu);
8246                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8247                         kvm_pmu_handle_event(vcpu);
8248                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8249                         kvm_pmu_deliver_pmi(vcpu);
8250                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8251                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8252                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8253                                      vcpu->arch.ioapic_handled_vectors)) {
8254                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8255                                 vcpu->run->eoi.vector =
8256                                                 vcpu->arch.pending_ioapic_eoi;
8257                                 r = 0;
8258                                 goto out;
8259                         }
8260                 }
8261                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8262                         vcpu_scan_ioapic(vcpu);
8263                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8264                         vcpu_load_eoi_exitmap(vcpu);
8265                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8266                         kvm_vcpu_reload_apic_access_page(vcpu);
8267                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8268                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8269                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8270                         r = 0;
8271                         goto out;
8272                 }
8273                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8274                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8275                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8276                         r = 0;
8277                         goto out;
8278                 }
8279                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8280                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8281                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8282                         r = 0;
8283                         goto out;
8284                 }
8285
8286                 /*
8287                  * KVM_REQ_HV_STIMER has to be processed after
8288                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8289                  * depend on the guest clock being up-to-date
8290                  */
8291                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8292                         kvm_hv_process_stimers(vcpu);
8293                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8294                         kvm_vcpu_update_apicv(vcpu);
8295         }
8296
8297         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8298                 ++vcpu->stat.req_event;
8299                 kvm_apic_accept_events(vcpu);
8300                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8301                         r = 1;
8302                         goto out;
8303                 }
8304
8305                 if (inject_pending_event(vcpu) != 0)
8306                         req_immediate_exit = true;
8307                 else {
8308                         /* Enable SMI/NMI/IRQ window open exits if needed.
8309                          *
8310                          * SMIs have three cases:
8311                          * 1) They can be nested, and then there is nothing to
8312                          *    do here because RSM will cause a vmexit anyway.
8313                          * 2) There is an ISA-specific reason why SMI cannot be
8314                          *    injected, and the moment when this changes can be
8315                          *    intercepted.
8316                          * 3) Or the SMI can be pending because
8317                          *    inject_pending_event has completed the injection
8318                          *    of an IRQ or NMI from the previous vmexit, and
8319                          *    then we request an immediate exit to inject the
8320                          *    SMI.
8321                          */
8322                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8323                                 if (!kvm_x86_ops.enable_smi_window(vcpu))
8324                                         req_immediate_exit = true;
8325                         if (vcpu->arch.nmi_pending)
8326                                 kvm_x86_ops.enable_nmi_window(vcpu);
8327                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8328                                 kvm_x86_ops.enable_irq_window(vcpu);
8329                         WARN_ON(vcpu->arch.exception.pending);
8330                 }
8331
8332                 if (kvm_lapic_enabled(vcpu)) {
8333                         update_cr8_intercept(vcpu);
8334                         kvm_lapic_sync_to_vapic(vcpu);
8335                 }
8336         }
8337
8338         r = kvm_mmu_reload(vcpu);
8339         if (unlikely(r)) {
8340                 goto cancel_injection;
8341         }
8342
8343         preempt_disable();
8344
8345         kvm_x86_ops.prepare_guest_switch(vcpu);
8346
8347         /*
8348          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8349          * IPI are then delayed after guest entry, which ensures that they
8350          * result in virtual interrupt delivery.
8351          */
8352         local_irq_disable();
8353         vcpu->mode = IN_GUEST_MODE;
8354
8355         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8356
8357         /*
8358          * 1) We should set ->mode before checking ->requests.  Please see
8359          * the comment in kvm_vcpu_exiting_guest_mode().
8360          *
8361          * 2) For APICv, we should set ->mode before checking PID.ON. This
8362          * pairs with the memory barrier implicit in pi_test_and_set_on
8363          * (see vmx_deliver_posted_interrupt).
8364          *
8365          * 3) This also orders the write to mode from any reads to the page
8366          * tables done while the VCPU is running.  Please see the comment
8367          * in kvm_flush_remote_tlbs.
8368          */
8369         smp_mb__after_srcu_read_unlock();
8370
8371         /*
8372          * This handles the case where a posted interrupt was
8373          * notified with kvm_vcpu_kick.
8374          */
8375         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8376                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8377
8378         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8379             || need_resched() || signal_pending(current)) {
8380                 vcpu->mode = OUTSIDE_GUEST_MODE;
8381                 smp_wmb();
8382                 local_irq_enable();
8383                 preempt_enable();
8384                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8385                 r = 1;
8386                 goto cancel_injection;
8387         }
8388
8389         if (req_immediate_exit) {
8390                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8391                 kvm_x86_ops.request_immediate_exit(vcpu);
8392         }
8393
8394         trace_kvm_entry(vcpu->vcpu_id);
8395         guest_enter_irqoff();
8396
8397         fpregs_assert_state_consistent();
8398         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8399                 switch_fpu_return();
8400
8401         if (unlikely(vcpu->arch.switch_db_regs)) {
8402                 set_debugreg(0, 7);
8403                 set_debugreg(vcpu->arch.eff_db[0], 0);
8404                 set_debugreg(vcpu->arch.eff_db[1], 1);
8405                 set_debugreg(vcpu->arch.eff_db[2], 2);
8406                 set_debugreg(vcpu->arch.eff_db[3], 3);
8407                 set_debugreg(vcpu->arch.dr6, 6);
8408                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8409         }
8410
8411         kvm_x86_ops.run(vcpu);
8412
8413         /*
8414          * Do this here before restoring debug registers on the host.  And
8415          * since we do this before handling the vmexit, a DR access vmexit
8416          * can (a) read the correct value of the debug registers, (b) set
8417          * KVM_DEBUGREG_WONT_EXIT again.
8418          */
8419         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8420                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8421                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8422                 kvm_update_dr0123(vcpu);
8423                 kvm_update_dr6(vcpu);
8424                 kvm_update_dr7(vcpu);
8425                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8426         }
8427
8428         /*
8429          * If the guest has used debug registers, at least dr7
8430          * will be disabled while returning to the host.
8431          * If we don't have active breakpoints in the host, we don't
8432          * care about the messed up debug address registers. But if
8433          * we have some of them active, restore the old state.
8434          */
8435         if (hw_breakpoint_active())
8436                 hw_breakpoint_restore();
8437
8438         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8439
8440         vcpu->mode = OUTSIDE_GUEST_MODE;
8441         smp_wmb();
8442
8443         kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
8444
8445         /*
8446          * Consume any pending interrupts, including the possible source of
8447          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8448          * An instruction is required after local_irq_enable() to fully unblock
8449          * interrupts on processors that implement an interrupt shadow, the
8450          * stat.exits increment will do nicely.
8451          */
8452         kvm_before_interrupt(vcpu);
8453         local_irq_enable();
8454         ++vcpu->stat.exits;
8455         local_irq_disable();
8456         kvm_after_interrupt(vcpu);
8457
8458         guest_exit_irqoff();
8459         if (lapic_in_kernel(vcpu)) {
8460                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8461                 if (delta != S64_MIN) {
8462                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8463                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8464                 }
8465         }
8466
8467         local_irq_enable();
8468         preempt_enable();
8469
8470         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8471
8472         /*
8473          * Profile KVM exit RIPs:
8474          */
8475         if (unlikely(prof_on == KVM_PROFILING)) {
8476                 unsigned long rip = kvm_rip_read(vcpu);
8477                 profile_hit(KVM_PROFILING, (void *)rip);
8478         }
8479
8480         if (unlikely(vcpu->arch.tsc_always_catchup))
8481                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8482
8483         if (vcpu->arch.apic_attention)
8484                 kvm_lapic_sync_from_vapic(vcpu);
8485
8486         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8487         return r;
8488
8489 cancel_injection:
8490         kvm_x86_ops.cancel_injection(vcpu);
8491         if (unlikely(vcpu->arch.apic_attention))
8492                 kvm_lapic_sync_from_vapic(vcpu);
8493 out:
8494         return r;
8495 }
8496
8497 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8498 {
8499         if (!kvm_arch_vcpu_runnable(vcpu) &&
8500             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8501                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8502                 kvm_vcpu_block(vcpu);
8503                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8504
8505                 if (kvm_x86_ops.post_block)
8506                         kvm_x86_ops.post_block(vcpu);
8507
8508                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8509                         return 1;
8510         }
8511
8512         kvm_apic_accept_events(vcpu);
8513         switch(vcpu->arch.mp_state) {
8514         case KVM_MP_STATE_HALTED:
8515                 vcpu->arch.pv.pv_unhalted = false;
8516                 vcpu->arch.mp_state =
8517                         KVM_MP_STATE_RUNNABLE;
8518                 /* fall through */
8519         case KVM_MP_STATE_RUNNABLE:
8520                 vcpu->arch.apf.halted = false;
8521                 break;
8522         case KVM_MP_STATE_INIT_RECEIVED:
8523                 break;
8524         default:
8525                 return -EINTR;
8526         }
8527         return 1;
8528 }
8529
8530 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8531 {
8532         if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8533                 kvm_x86_ops.check_nested_events(vcpu);
8534
8535         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8536                 !vcpu->arch.apf.halted);
8537 }
8538
8539 static int vcpu_run(struct kvm_vcpu *vcpu)
8540 {
8541         int r;
8542         struct kvm *kvm = vcpu->kvm;
8543
8544         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8545         vcpu->arch.l1tf_flush_l1d = true;
8546
8547         for (;;) {
8548                 if (kvm_vcpu_running(vcpu)) {
8549                         r = vcpu_enter_guest(vcpu);
8550                 } else {
8551                         r = vcpu_block(kvm, vcpu);
8552                 }
8553
8554                 if (r <= 0)
8555                         break;
8556
8557                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8558                 if (kvm_cpu_has_pending_timer(vcpu))
8559                         kvm_inject_pending_timer_irqs(vcpu);
8560
8561                 if (dm_request_for_irq_injection(vcpu) &&
8562                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8563                         r = 0;
8564                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8565                         ++vcpu->stat.request_irq_exits;
8566                         break;
8567                 }
8568
8569                 kvm_check_async_pf_completion(vcpu);
8570
8571                 if (signal_pending(current)) {
8572                         r = -EINTR;
8573                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8574                         ++vcpu->stat.signal_exits;
8575                         break;
8576                 }
8577                 if (need_resched()) {
8578                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8579                         cond_resched();
8580                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8581                 }
8582         }
8583
8584         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8585
8586         return r;
8587 }
8588
8589 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8590 {
8591         int r;
8592
8593         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8594         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8595         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8596         return r;
8597 }
8598
8599 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8600 {
8601         BUG_ON(!vcpu->arch.pio.count);
8602
8603         return complete_emulated_io(vcpu);
8604 }
8605
8606 /*
8607  * Implements the following, as a state machine:
8608  *
8609  * read:
8610  *   for each fragment
8611  *     for each mmio piece in the fragment
8612  *       write gpa, len
8613  *       exit
8614  *       copy data
8615  *   execute insn
8616  *
8617  * write:
8618  *   for each fragment
8619  *     for each mmio piece in the fragment
8620  *       write gpa, len
8621  *       copy data
8622  *       exit
8623  */
8624 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8625 {
8626         struct kvm_run *run = vcpu->run;
8627         struct kvm_mmio_fragment *frag;
8628         unsigned len;
8629
8630         BUG_ON(!vcpu->mmio_needed);
8631
8632         /* Complete previous fragment */
8633         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8634         len = min(8u, frag->len);
8635         if (!vcpu->mmio_is_write)
8636                 memcpy(frag->data, run->mmio.data, len);
8637
8638         if (frag->len <= 8) {
8639                 /* Switch to the next fragment. */
8640                 frag++;
8641                 vcpu->mmio_cur_fragment++;
8642         } else {
8643                 /* Go forward to the next mmio piece. */
8644                 frag->data += len;
8645                 frag->gpa += len;
8646                 frag->len -= len;
8647         }
8648
8649         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8650                 vcpu->mmio_needed = 0;
8651
8652                 /* FIXME: return into emulator if single-stepping.  */
8653                 if (vcpu->mmio_is_write)
8654                         return 1;
8655                 vcpu->mmio_read_completed = 1;
8656                 return complete_emulated_io(vcpu);
8657         }
8658
8659         run->exit_reason = KVM_EXIT_MMIO;
8660         run->mmio.phys_addr = frag->gpa;
8661         if (vcpu->mmio_is_write)
8662                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8663         run->mmio.len = min(8u, frag->len);
8664         run->mmio.is_write = vcpu->mmio_is_write;
8665         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8666         return 0;
8667 }
8668
8669 static void kvm_save_current_fpu(struct fpu *fpu)
8670 {
8671         /*
8672          * If the target FPU state is not resident in the CPU registers, just
8673          * memcpy() from current, else save CPU state directly to the target.
8674          */
8675         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8676                 memcpy(&fpu->state, &current->thread.fpu.state,
8677                        fpu_kernel_xstate_size);
8678         else
8679                 copy_fpregs_to_fpstate(fpu);
8680 }
8681
8682 /* Swap (qemu) user FPU context for the guest FPU context. */
8683 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8684 {
8685         fpregs_lock();
8686
8687         kvm_save_current_fpu(vcpu->arch.user_fpu);
8688
8689         /* PKRU is separately restored in kvm_x86_ops.run.  */
8690         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8691                                 ~XFEATURE_MASK_PKRU);
8692
8693         fpregs_mark_activate();
8694         fpregs_unlock();
8695
8696         trace_kvm_fpu(1);
8697 }
8698
8699 /* When vcpu_run ends, restore user space FPU context. */
8700 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8701 {
8702         fpregs_lock();
8703
8704         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8705
8706         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8707
8708         fpregs_mark_activate();
8709         fpregs_unlock();
8710
8711         ++vcpu->stat.fpu_reload;
8712         trace_kvm_fpu(0);
8713 }
8714
8715 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8716 {
8717         int r;
8718
8719         vcpu_load(vcpu);
8720         kvm_sigset_activate(vcpu);
8721         kvm_load_guest_fpu(vcpu);
8722
8723         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8724                 if (kvm_run->immediate_exit) {
8725                         r = -EINTR;
8726                         goto out;
8727                 }
8728                 kvm_vcpu_block(vcpu);
8729                 kvm_apic_accept_events(vcpu);
8730                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8731                 r = -EAGAIN;
8732                 if (signal_pending(current)) {
8733                         r = -EINTR;
8734                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8735                         ++vcpu->stat.signal_exits;
8736                 }
8737                 goto out;
8738         }
8739
8740         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8741                 r = -EINVAL;
8742                 goto out;
8743         }
8744
8745         if (vcpu->run->kvm_dirty_regs) {
8746                 r = sync_regs(vcpu);
8747                 if (r != 0)
8748                         goto out;
8749         }
8750
8751         /* re-sync apic's tpr */
8752         if (!lapic_in_kernel(vcpu)) {
8753                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8754                         r = -EINVAL;
8755                         goto out;
8756                 }
8757         }
8758
8759         if (unlikely(vcpu->arch.complete_userspace_io)) {
8760                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8761                 vcpu->arch.complete_userspace_io = NULL;
8762                 r = cui(vcpu);
8763                 if (r <= 0)
8764                         goto out;
8765         } else
8766                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8767
8768         if (kvm_run->immediate_exit)
8769                 r = -EINTR;
8770         else
8771                 r = vcpu_run(vcpu);
8772
8773 out:
8774         kvm_put_guest_fpu(vcpu);
8775         if (vcpu->run->kvm_valid_regs)
8776                 store_regs(vcpu);
8777         post_kvm_run_save(vcpu);
8778         kvm_sigset_deactivate(vcpu);
8779
8780         vcpu_put(vcpu);
8781         return r;
8782 }
8783
8784 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8785 {
8786         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8787                 /*
8788                  * We are here if userspace calls get_regs() in the middle of
8789                  * instruction emulation. Registers state needs to be copied
8790                  * back from emulation context to vcpu. Userspace shouldn't do
8791                  * that usually, but some bad designed PV devices (vmware
8792                  * backdoor interface) need this to work
8793                  */
8794                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8795                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8796         }
8797         regs->rax = kvm_rax_read(vcpu);
8798         regs->rbx = kvm_rbx_read(vcpu);
8799         regs->rcx = kvm_rcx_read(vcpu);
8800         regs->rdx = kvm_rdx_read(vcpu);
8801         regs->rsi = kvm_rsi_read(vcpu);
8802         regs->rdi = kvm_rdi_read(vcpu);
8803         regs->rsp = kvm_rsp_read(vcpu);
8804         regs->rbp = kvm_rbp_read(vcpu);
8805 #ifdef CONFIG_X86_64
8806         regs->r8 = kvm_r8_read(vcpu);
8807         regs->r9 = kvm_r9_read(vcpu);
8808         regs->r10 = kvm_r10_read(vcpu);
8809         regs->r11 = kvm_r11_read(vcpu);
8810         regs->r12 = kvm_r12_read(vcpu);
8811         regs->r13 = kvm_r13_read(vcpu);
8812         regs->r14 = kvm_r14_read(vcpu);
8813         regs->r15 = kvm_r15_read(vcpu);
8814 #endif
8815
8816         regs->rip = kvm_rip_read(vcpu);
8817         regs->rflags = kvm_get_rflags(vcpu);
8818 }
8819
8820 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8821 {
8822         vcpu_load(vcpu);
8823         __get_regs(vcpu, regs);
8824         vcpu_put(vcpu);
8825         return 0;
8826 }
8827
8828 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8829 {
8830         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8831         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8832
8833         kvm_rax_write(vcpu, regs->rax);
8834         kvm_rbx_write(vcpu, regs->rbx);
8835         kvm_rcx_write(vcpu, regs->rcx);
8836         kvm_rdx_write(vcpu, regs->rdx);
8837         kvm_rsi_write(vcpu, regs->rsi);
8838         kvm_rdi_write(vcpu, regs->rdi);
8839         kvm_rsp_write(vcpu, regs->rsp);
8840         kvm_rbp_write(vcpu, regs->rbp);
8841 #ifdef CONFIG_X86_64
8842         kvm_r8_write(vcpu, regs->r8);
8843         kvm_r9_write(vcpu, regs->r9);
8844         kvm_r10_write(vcpu, regs->r10);
8845         kvm_r11_write(vcpu, regs->r11);
8846         kvm_r12_write(vcpu, regs->r12);
8847         kvm_r13_write(vcpu, regs->r13);
8848         kvm_r14_write(vcpu, regs->r14);
8849         kvm_r15_write(vcpu, regs->r15);
8850 #endif
8851
8852         kvm_rip_write(vcpu, regs->rip);
8853         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8854
8855         vcpu->arch.exception.pending = false;
8856
8857         kvm_make_request(KVM_REQ_EVENT, vcpu);
8858 }
8859
8860 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8861 {
8862         vcpu_load(vcpu);
8863         __set_regs(vcpu, regs);
8864         vcpu_put(vcpu);
8865         return 0;
8866 }
8867
8868 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8869 {
8870         struct kvm_segment cs;
8871
8872         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8873         *db = cs.db;
8874         *l = cs.l;
8875 }
8876 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8877
8878 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8879 {
8880         struct desc_ptr dt;
8881
8882         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8883         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8884         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8885         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8886         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8887         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8888
8889         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8890         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8891
8892         kvm_x86_ops.get_idt(vcpu, &dt);
8893         sregs->idt.limit = dt.size;
8894         sregs->idt.base = dt.address;
8895         kvm_x86_ops.get_gdt(vcpu, &dt);
8896         sregs->gdt.limit = dt.size;
8897         sregs->gdt.base = dt.address;
8898
8899         sregs->cr0 = kvm_read_cr0(vcpu);
8900         sregs->cr2 = vcpu->arch.cr2;
8901         sregs->cr3 = kvm_read_cr3(vcpu);
8902         sregs->cr4 = kvm_read_cr4(vcpu);
8903         sregs->cr8 = kvm_get_cr8(vcpu);
8904         sregs->efer = vcpu->arch.efer;
8905         sregs->apic_base = kvm_get_apic_base(vcpu);
8906
8907         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8908
8909         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8910                 set_bit(vcpu->arch.interrupt.nr,
8911                         (unsigned long *)sregs->interrupt_bitmap);
8912 }
8913
8914 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8915                                   struct kvm_sregs *sregs)
8916 {
8917         vcpu_load(vcpu);
8918         __get_sregs(vcpu, sregs);
8919         vcpu_put(vcpu);
8920         return 0;
8921 }
8922
8923 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8924                                     struct kvm_mp_state *mp_state)
8925 {
8926         vcpu_load(vcpu);
8927         if (kvm_mpx_supported())
8928                 kvm_load_guest_fpu(vcpu);
8929
8930         kvm_apic_accept_events(vcpu);
8931         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8932                                         vcpu->arch.pv.pv_unhalted)
8933                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8934         else
8935                 mp_state->mp_state = vcpu->arch.mp_state;
8936
8937         if (kvm_mpx_supported())
8938                 kvm_put_guest_fpu(vcpu);
8939         vcpu_put(vcpu);
8940         return 0;
8941 }
8942
8943 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8944                                     struct kvm_mp_state *mp_state)
8945 {
8946         int ret = -EINVAL;
8947
8948         vcpu_load(vcpu);
8949
8950         if (!lapic_in_kernel(vcpu) &&
8951             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8952                 goto out;
8953
8954         /*
8955          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8956          * INIT state; latched init should be reported using
8957          * KVM_SET_VCPU_EVENTS, so reject it here.
8958          */
8959         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8960             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8961              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8962                 goto out;
8963
8964         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8965                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8966                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8967         } else
8968                 vcpu->arch.mp_state = mp_state->mp_state;
8969         kvm_make_request(KVM_REQ_EVENT, vcpu);
8970
8971         ret = 0;
8972 out:
8973         vcpu_put(vcpu);
8974         return ret;
8975 }
8976
8977 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8978                     int reason, bool has_error_code, u32 error_code)
8979 {
8980         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8981         int ret;
8982
8983         init_emulate_ctxt(vcpu);
8984
8985         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8986                                    has_error_code, error_code);
8987         if (ret) {
8988                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8989                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8990                 vcpu->run->internal.ndata = 0;
8991                 return 0;
8992         }
8993
8994         kvm_rip_write(vcpu, ctxt->eip);
8995         kvm_set_rflags(vcpu, ctxt->eflags);
8996         return 1;
8997 }
8998 EXPORT_SYMBOL_GPL(kvm_task_switch);
8999
9000 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9001 {
9002         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9003                 /*
9004                  * When EFER.LME and CR0.PG are set, the processor is in
9005                  * 64-bit mode (though maybe in a 32-bit code segment).
9006                  * CR4.PAE and EFER.LMA must be set.
9007                  */
9008                 if (!(sregs->cr4 & X86_CR4_PAE)
9009                     || !(sregs->efer & EFER_LMA))
9010                         return -EINVAL;
9011         } else {
9012                 /*
9013                  * Not in 64-bit mode: EFER.LMA is clear and the code
9014                  * segment cannot be 64-bit.
9015                  */
9016                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9017                         return -EINVAL;
9018         }
9019
9020         return kvm_valid_cr4(vcpu, sregs->cr4);
9021 }
9022
9023 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9024 {
9025         struct msr_data apic_base_msr;
9026         int mmu_reset_needed = 0;
9027         int cpuid_update_needed = 0;
9028         int pending_vec, max_bits, idx;
9029         struct desc_ptr dt;
9030         int ret = -EINVAL;
9031
9032         if (kvm_valid_sregs(vcpu, sregs))
9033                 goto out;
9034
9035         apic_base_msr.data = sregs->apic_base;
9036         apic_base_msr.host_initiated = true;
9037         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9038                 goto out;
9039
9040         dt.size = sregs->idt.limit;
9041         dt.address = sregs->idt.base;
9042         kvm_x86_ops.set_idt(vcpu, &dt);
9043         dt.size = sregs->gdt.limit;
9044         dt.address = sregs->gdt.base;
9045         kvm_x86_ops.set_gdt(vcpu, &dt);
9046
9047         vcpu->arch.cr2 = sregs->cr2;
9048         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9049         vcpu->arch.cr3 = sregs->cr3;
9050         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9051
9052         kvm_set_cr8(vcpu, sregs->cr8);
9053
9054         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9055         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9056
9057         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9058         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9059         vcpu->arch.cr0 = sregs->cr0;
9060
9061         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9062         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9063                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9064         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9065         if (cpuid_update_needed)
9066                 kvm_update_cpuid(vcpu);
9067
9068         idx = srcu_read_lock(&vcpu->kvm->srcu);
9069         if (is_pae_paging(vcpu)) {
9070                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9071                 mmu_reset_needed = 1;
9072         }
9073         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9074
9075         if (mmu_reset_needed)
9076                 kvm_mmu_reset_context(vcpu);
9077
9078         max_bits = KVM_NR_INTERRUPTS;
9079         pending_vec = find_first_bit(
9080                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9081         if (pending_vec < max_bits) {
9082                 kvm_queue_interrupt(vcpu, pending_vec, false);
9083                 pr_debug("Set back pending irq %d\n", pending_vec);
9084         }
9085
9086         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9087         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9088         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9089         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9090         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9091         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9092
9093         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9094         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9095
9096         update_cr8_intercept(vcpu);
9097
9098         /* Older userspace won't unhalt the vcpu on reset. */
9099         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9100             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9101             !is_protmode(vcpu))
9102                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9103
9104         kvm_make_request(KVM_REQ_EVENT, vcpu);
9105
9106         ret = 0;
9107 out:
9108         return ret;
9109 }
9110
9111 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9112                                   struct kvm_sregs *sregs)
9113 {
9114         int ret;
9115
9116         vcpu_load(vcpu);
9117         ret = __set_sregs(vcpu, sregs);
9118         vcpu_put(vcpu);
9119         return ret;
9120 }
9121
9122 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9123                                         struct kvm_guest_debug *dbg)
9124 {
9125         unsigned long rflags;
9126         int i, r;
9127
9128         vcpu_load(vcpu);
9129
9130         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9131                 r = -EBUSY;
9132                 if (vcpu->arch.exception.pending)
9133                         goto out;
9134                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9135                         kvm_queue_exception(vcpu, DB_VECTOR);
9136                 else
9137                         kvm_queue_exception(vcpu, BP_VECTOR);
9138         }
9139
9140         /*
9141          * Read rflags as long as potentially injected trace flags are still
9142          * filtered out.
9143          */
9144         rflags = kvm_get_rflags(vcpu);
9145
9146         vcpu->guest_debug = dbg->control;
9147         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9148                 vcpu->guest_debug = 0;
9149
9150         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9151                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9152                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9153                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9154         } else {
9155                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9156                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9157         }
9158         kvm_update_dr7(vcpu);
9159
9160         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9161                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9162                         get_segment_base(vcpu, VCPU_SREG_CS);
9163
9164         /*
9165          * Trigger an rflags update that will inject or remove the trace
9166          * flags.
9167          */
9168         kvm_set_rflags(vcpu, rflags);
9169
9170         kvm_x86_ops.update_bp_intercept(vcpu);
9171
9172         r = 0;
9173
9174 out:
9175         vcpu_put(vcpu);
9176         return r;
9177 }
9178
9179 /*
9180  * Translate a guest virtual address to a guest physical address.
9181  */
9182 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9183                                     struct kvm_translation *tr)
9184 {
9185         unsigned long vaddr = tr->linear_address;
9186         gpa_t gpa;
9187         int idx;
9188
9189         vcpu_load(vcpu);
9190
9191         idx = srcu_read_lock(&vcpu->kvm->srcu);
9192         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9193         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9194         tr->physical_address = gpa;
9195         tr->valid = gpa != UNMAPPED_GVA;
9196         tr->writeable = 1;
9197         tr->usermode = 0;
9198
9199         vcpu_put(vcpu);
9200         return 0;
9201 }
9202
9203 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9204 {
9205         struct fxregs_state *fxsave;
9206
9207         vcpu_load(vcpu);
9208
9209         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9210         memcpy(fpu->fpr, fxsave->st_space, 128);
9211         fpu->fcw = fxsave->cwd;
9212         fpu->fsw = fxsave->swd;
9213         fpu->ftwx = fxsave->twd;
9214         fpu->last_opcode = fxsave->fop;
9215         fpu->last_ip = fxsave->rip;
9216         fpu->last_dp = fxsave->rdp;
9217         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9218
9219         vcpu_put(vcpu);
9220         return 0;
9221 }
9222
9223 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9224 {
9225         struct fxregs_state *fxsave;
9226
9227         vcpu_load(vcpu);
9228
9229         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9230
9231         memcpy(fxsave->st_space, fpu->fpr, 128);
9232         fxsave->cwd = fpu->fcw;
9233         fxsave->swd = fpu->fsw;
9234         fxsave->twd = fpu->ftwx;
9235         fxsave->fop = fpu->last_opcode;
9236         fxsave->rip = fpu->last_ip;
9237         fxsave->rdp = fpu->last_dp;
9238         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9239
9240         vcpu_put(vcpu);
9241         return 0;
9242 }
9243
9244 static void store_regs(struct kvm_vcpu *vcpu)
9245 {
9246         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9247
9248         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9249                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9250
9251         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9252                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9253
9254         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9255                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9256                                 vcpu, &vcpu->run->s.regs.events);
9257 }
9258
9259 static int sync_regs(struct kvm_vcpu *vcpu)
9260 {
9261         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9262                 return -EINVAL;
9263
9264         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9265                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9266                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9267         }
9268         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9269                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9270                         return -EINVAL;
9271                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9272         }
9273         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9274                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9275                                 vcpu, &vcpu->run->s.regs.events))
9276                         return -EINVAL;
9277                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9278         }
9279
9280         return 0;
9281 }
9282
9283 static void fx_init(struct kvm_vcpu *vcpu)
9284 {
9285         fpstate_init(&vcpu->arch.guest_fpu->state);
9286         if (boot_cpu_has(X86_FEATURE_XSAVES))
9287                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9288                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9289
9290         /*
9291          * Ensure guest xcr0 is valid for loading
9292          */
9293         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9294
9295         vcpu->arch.cr0 |= X86_CR0_ET;
9296 }
9297
9298 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9299 {
9300         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9301                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9302                              "guest TSC will not be reliable\n");
9303
9304         return 0;
9305 }
9306
9307 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9308 {
9309         struct page *page;
9310         int r;
9311
9312         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9313                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9314         else
9315                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9316
9317         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9318
9319         r = kvm_mmu_create(vcpu);
9320         if (r < 0)
9321                 return r;
9322
9323         if (irqchip_in_kernel(vcpu->kvm)) {
9324                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9325                 if (r < 0)
9326                         goto fail_mmu_destroy;
9327                 if (kvm_apicv_activated(vcpu->kvm))
9328                         vcpu->arch.apicv_active = true;
9329         } else
9330                 static_key_slow_inc(&kvm_no_apic_vcpu);
9331
9332         r = -ENOMEM;
9333
9334         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9335         if (!page)
9336                 goto fail_free_lapic;
9337         vcpu->arch.pio_data = page_address(page);
9338
9339         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9340                                        GFP_KERNEL_ACCOUNT);
9341         if (!vcpu->arch.mce_banks)
9342                 goto fail_free_pio_data;
9343         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9344
9345         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9346                                 GFP_KERNEL_ACCOUNT))
9347                 goto fail_free_mce_banks;
9348
9349         if (!alloc_emulate_ctxt(vcpu))
9350                 goto free_wbinvd_dirty_mask;
9351
9352         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9353                                                 GFP_KERNEL_ACCOUNT);
9354         if (!vcpu->arch.user_fpu) {
9355                 pr_err("kvm: failed to allocate userspace's fpu\n");
9356                 goto free_emulate_ctxt;
9357         }
9358
9359         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9360                                                  GFP_KERNEL_ACCOUNT);
9361         if (!vcpu->arch.guest_fpu) {
9362                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9363                 goto free_user_fpu;
9364         }
9365         fx_init(vcpu);
9366
9367         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9368
9369         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9370
9371         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9372
9373         kvm_async_pf_hash_reset(vcpu);
9374         kvm_pmu_init(vcpu);
9375
9376         vcpu->arch.pending_external_vector = -1;
9377         vcpu->arch.preempted_in_kernel = false;
9378
9379         kvm_hv_vcpu_init(vcpu);
9380
9381         r = kvm_x86_ops.vcpu_create(vcpu);
9382         if (r)
9383                 goto free_guest_fpu;
9384
9385         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9386         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9387         kvm_vcpu_mtrr_init(vcpu);
9388         vcpu_load(vcpu);
9389         kvm_vcpu_reset(vcpu, false);
9390         kvm_init_mmu(vcpu, false);
9391         vcpu_put(vcpu);
9392         return 0;
9393
9394 free_guest_fpu:
9395         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9396 free_user_fpu:
9397         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9398 free_emulate_ctxt:
9399         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9400 free_wbinvd_dirty_mask:
9401         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9402 fail_free_mce_banks:
9403         kfree(vcpu->arch.mce_banks);
9404 fail_free_pio_data:
9405         free_page((unsigned long)vcpu->arch.pio_data);
9406 fail_free_lapic:
9407         kvm_free_lapic(vcpu);
9408 fail_mmu_destroy:
9409         kvm_mmu_destroy(vcpu);
9410         return r;
9411 }
9412
9413 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9414 {
9415         struct msr_data msr;
9416         struct kvm *kvm = vcpu->kvm;
9417
9418         kvm_hv_vcpu_postcreate(vcpu);
9419
9420         if (mutex_lock_killable(&vcpu->mutex))
9421                 return;
9422         vcpu_load(vcpu);
9423         msr.data = 0x0;
9424         msr.index = MSR_IA32_TSC;
9425         msr.host_initiated = true;
9426         kvm_write_tsc(vcpu, &msr);
9427         vcpu_put(vcpu);
9428
9429         /* poll control enabled by default */
9430         vcpu->arch.msr_kvm_poll_control = 1;
9431
9432         mutex_unlock(&vcpu->mutex);
9433
9434         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9435                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9436                                                 KVMCLOCK_SYNC_PERIOD);
9437 }
9438
9439 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9440 {
9441         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9442         int idx;
9443
9444         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9445
9446         kvmclock_reset(vcpu);
9447
9448         kvm_x86_ops.vcpu_free(vcpu);
9449
9450         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9451         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9452         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9453         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9454
9455         kvm_hv_vcpu_uninit(vcpu);
9456         kvm_pmu_destroy(vcpu);
9457         kfree(vcpu->arch.mce_banks);
9458         kvm_free_lapic(vcpu);
9459         idx = srcu_read_lock(&vcpu->kvm->srcu);
9460         kvm_mmu_destroy(vcpu);
9461         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9462         free_page((unsigned long)vcpu->arch.pio_data);
9463         if (!lapic_in_kernel(vcpu))
9464                 static_key_slow_dec(&kvm_no_apic_vcpu);
9465 }
9466
9467 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9468 {
9469         kvm_lapic_reset(vcpu, init_event);
9470
9471         vcpu->arch.hflags = 0;
9472
9473         vcpu->arch.smi_pending = 0;
9474         vcpu->arch.smi_count = 0;
9475         atomic_set(&vcpu->arch.nmi_queued, 0);
9476         vcpu->arch.nmi_pending = 0;
9477         vcpu->arch.nmi_injected = false;
9478         kvm_clear_interrupt_queue(vcpu);
9479         kvm_clear_exception_queue(vcpu);
9480
9481         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9482         kvm_update_dr0123(vcpu);
9483         vcpu->arch.dr6 = DR6_INIT;
9484         kvm_update_dr6(vcpu);
9485         vcpu->arch.dr7 = DR7_FIXED_1;
9486         kvm_update_dr7(vcpu);
9487
9488         vcpu->arch.cr2 = 0;
9489
9490         kvm_make_request(KVM_REQ_EVENT, vcpu);
9491         vcpu->arch.apf.msr_val = 0;
9492         vcpu->arch.st.msr_val = 0;
9493
9494         kvmclock_reset(vcpu);
9495
9496         kvm_clear_async_pf_completion_queue(vcpu);
9497         kvm_async_pf_hash_reset(vcpu);
9498         vcpu->arch.apf.halted = false;
9499
9500         if (kvm_mpx_supported()) {
9501                 void *mpx_state_buffer;
9502
9503                 /*
9504                  * To avoid have the INIT path from kvm_apic_has_events() that be
9505                  * called with loaded FPU and does not let userspace fix the state.
9506                  */
9507                 if (init_event)
9508                         kvm_put_guest_fpu(vcpu);
9509                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9510                                         XFEATURE_BNDREGS);
9511                 if (mpx_state_buffer)
9512                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9513                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9514                                         XFEATURE_BNDCSR);
9515                 if (mpx_state_buffer)
9516                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9517                 if (init_event)
9518                         kvm_load_guest_fpu(vcpu);
9519         }
9520
9521         if (!init_event) {
9522                 kvm_pmu_reset(vcpu);
9523                 vcpu->arch.smbase = 0x30000;
9524
9525                 vcpu->arch.msr_misc_features_enables = 0;
9526
9527                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9528         }
9529
9530         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9531         vcpu->arch.regs_avail = ~0;
9532         vcpu->arch.regs_dirty = ~0;
9533
9534         vcpu->arch.ia32_xss = 0;
9535
9536         kvm_x86_ops.vcpu_reset(vcpu, init_event);
9537 }
9538
9539 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9540 {
9541         struct kvm_segment cs;
9542
9543         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9544         cs.selector = vector << 8;
9545         cs.base = vector << 12;
9546         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9547         kvm_rip_write(vcpu, 0);
9548 }
9549
9550 int kvm_arch_hardware_enable(void)
9551 {
9552         struct kvm *kvm;
9553         struct kvm_vcpu *vcpu;
9554         int i;
9555         int ret;
9556         u64 local_tsc;
9557         u64 max_tsc = 0;
9558         bool stable, backwards_tsc = false;
9559
9560         kvm_shared_msr_cpu_online();
9561         ret = kvm_x86_ops.hardware_enable();
9562         if (ret != 0)
9563                 return ret;
9564
9565         local_tsc = rdtsc();
9566         stable = !kvm_check_tsc_unstable();
9567         list_for_each_entry(kvm, &vm_list, vm_list) {
9568                 kvm_for_each_vcpu(i, vcpu, kvm) {
9569                         if (!stable && vcpu->cpu == smp_processor_id())
9570                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9571                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9572                                 backwards_tsc = true;
9573                                 if (vcpu->arch.last_host_tsc > max_tsc)
9574                                         max_tsc = vcpu->arch.last_host_tsc;
9575                         }
9576                 }
9577         }
9578
9579         /*
9580          * Sometimes, even reliable TSCs go backwards.  This happens on
9581          * platforms that reset TSC during suspend or hibernate actions, but
9582          * maintain synchronization.  We must compensate.  Fortunately, we can
9583          * detect that condition here, which happens early in CPU bringup,
9584          * before any KVM threads can be running.  Unfortunately, we can't
9585          * bring the TSCs fully up to date with real time, as we aren't yet far
9586          * enough into CPU bringup that we know how much real time has actually
9587          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9588          * variables that haven't been updated yet.
9589          *
9590          * So we simply find the maximum observed TSC above, then record the
9591          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9592          * the adjustment will be applied.  Note that we accumulate
9593          * adjustments, in case multiple suspend cycles happen before some VCPU
9594          * gets a chance to run again.  In the event that no KVM threads get a
9595          * chance to run, we will miss the entire elapsed period, as we'll have
9596          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9597          * loose cycle time.  This isn't too big a deal, since the loss will be
9598          * uniform across all VCPUs (not to mention the scenario is extremely
9599          * unlikely). It is possible that a second hibernate recovery happens
9600          * much faster than a first, causing the observed TSC here to be
9601          * smaller; this would require additional padding adjustment, which is
9602          * why we set last_host_tsc to the local tsc observed here.
9603          *
9604          * N.B. - this code below runs only on platforms with reliable TSC,
9605          * as that is the only way backwards_tsc is set above.  Also note
9606          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9607          * have the same delta_cyc adjustment applied if backwards_tsc
9608          * is detected.  Note further, this adjustment is only done once,
9609          * as we reset last_host_tsc on all VCPUs to stop this from being
9610          * called multiple times (one for each physical CPU bringup).
9611          *
9612          * Platforms with unreliable TSCs don't have to deal with this, they
9613          * will be compensated by the logic in vcpu_load, which sets the TSC to
9614          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9615          * guarantee that they stay in perfect synchronization.
9616          */
9617         if (backwards_tsc) {
9618                 u64 delta_cyc = max_tsc - local_tsc;
9619                 list_for_each_entry(kvm, &vm_list, vm_list) {
9620                         kvm->arch.backwards_tsc_observed = true;
9621                         kvm_for_each_vcpu(i, vcpu, kvm) {
9622                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9623                                 vcpu->arch.last_host_tsc = local_tsc;
9624                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9625                         }
9626
9627                         /*
9628                          * We have to disable TSC offset matching.. if you were
9629                          * booting a VM while issuing an S4 host suspend....
9630                          * you may have some problem.  Solving this issue is
9631                          * left as an exercise to the reader.
9632                          */
9633                         kvm->arch.last_tsc_nsec = 0;
9634                         kvm->arch.last_tsc_write = 0;
9635                 }
9636
9637         }
9638         return 0;
9639 }
9640
9641 void kvm_arch_hardware_disable(void)
9642 {
9643         kvm_x86_ops.hardware_disable();
9644         drop_user_return_notifiers();
9645 }
9646
9647 int kvm_arch_hardware_setup(void *opaque)
9648 {
9649         struct kvm_x86_init_ops *ops = opaque;
9650         int r;
9651
9652         rdmsrl_safe(MSR_EFER, &host_efer);
9653
9654         if (boot_cpu_has(X86_FEATURE_XSAVES))
9655                 rdmsrl(MSR_IA32_XSS, host_xss);
9656
9657         r = ops->hardware_setup();
9658         if (r != 0)
9659                 return r;
9660
9661         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9662
9663         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9664                 supported_xss = 0;
9665
9666 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9667         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9668 #undef __kvm_cpu_cap_has
9669
9670         if (kvm_has_tsc_control) {
9671                 /*
9672                  * Make sure the user can only configure tsc_khz values that
9673                  * fit into a signed integer.
9674                  * A min value is not calculated because it will always
9675                  * be 1 on all machines.
9676                  */
9677                 u64 max = min(0x7fffffffULL,
9678                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9679                 kvm_max_guest_tsc_khz = max;
9680
9681                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9682         }
9683
9684         kvm_init_msr_list();
9685         return 0;
9686 }
9687
9688 void kvm_arch_hardware_unsetup(void)
9689 {
9690         kvm_x86_ops.hardware_unsetup();
9691 }
9692
9693 int kvm_arch_check_processor_compat(void *opaque)
9694 {
9695         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9696         struct kvm_x86_init_ops *ops = opaque;
9697
9698         WARN_ON(!irqs_disabled());
9699
9700         if (__cr4_reserved_bits(cpu_has, c) !=
9701             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9702                 return -EIO;
9703
9704         return ops->check_processor_compatibility();
9705 }
9706
9707 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9708 {
9709         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9710 }
9711 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9712
9713 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9714 {
9715         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9716 }
9717
9718 struct static_key kvm_no_apic_vcpu __read_mostly;
9719 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9720
9721 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9722 {
9723         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9724
9725         vcpu->arch.l1tf_flush_l1d = true;
9726         if (pmu->version && unlikely(pmu->event_count)) {
9727                 pmu->need_cleanup = true;
9728                 kvm_make_request(KVM_REQ_PMU, vcpu);
9729         }
9730         kvm_x86_ops.sched_in(vcpu, cpu);
9731 }
9732
9733 void kvm_arch_free_vm(struct kvm *kvm)
9734 {
9735         kfree(kvm->arch.hyperv.hv_pa_pg);
9736         vfree(kvm);
9737 }
9738
9739
9740 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9741 {
9742         if (type)
9743                 return -EINVAL;
9744
9745         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9746         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9747         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9748         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9749         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9750         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9751
9752         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9753         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9754         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9755         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9756                 &kvm->arch.irq_sources_bitmap);
9757
9758         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9759         mutex_init(&kvm->arch.apic_map_lock);
9760         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9761
9762         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9763         pvclock_update_vm_gtod_copy(kvm);
9764
9765         kvm->arch.guest_can_read_msr_platform_info = true;
9766
9767         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9768         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9769
9770         kvm_hv_init_vm(kvm);
9771         kvm_page_track_init(kvm);
9772         kvm_mmu_init_vm(kvm);
9773
9774         return kvm_x86_ops.vm_init(kvm);
9775 }
9776
9777 int kvm_arch_post_init_vm(struct kvm *kvm)
9778 {
9779         return kvm_mmu_post_init_vm(kvm);
9780 }
9781
9782 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9783 {
9784         vcpu_load(vcpu);
9785         kvm_mmu_unload(vcpu);
9786         vcpu_put(vcpu);
9787 }
9788
9789 static void kvm_free_vcpus(struct kvm *kvm)
9790 {
9791         unsigned int i;
9792         struct kvm_vcpu *vcpu;
9793
9794         /*
9795          * Unpin any mmu pages first.
9796          */
9797         kvm_for_each_vcpu(i, vcpu, kvm) {
9798                 kvm_clear_async_pf_completion_queue(vcpu);
9799                 kvm_unload_vcpu_mmu(vcpu);
9800         }
9801         kvm_for_each_vcpu(i, vcpu, kvm)
9802                 kvm_vcpu_destroy(vcpu);
9803
9804         mutex_lock(&kvm->lock);
9805         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9806                 kvm->vcpus[i] = NULL;
9807
9808         atomic_set(&kvm->online_vcpus, 0);
9809         mutex_unlock(&kvm->lock);
9810 }
9811
9812 void kvm_arch_sync_events(struct kvm *kvm)
9813 {
9814         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9815         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9816         kvm_free_pit(kvm);
9817 }
9818
9819 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9820 {
9821         int i, r;
9822         unsigned long hva, uninitialized_var(old_npages);
9823         struct kvm_memslots *slots = kvm_memslots(kvm);
9824         struct kvm_memory_slot *slot;
9825
9826         /* Called with kvm->slots_lock held.  */
9827         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9828                 return -EINVAL;
9829
9830         slot = id_to_memslot(slots, id);
9831         if (size) {
9832                 if (slot && slot->npages)
9833                         return -EEXIST;
9834
9835                 /*
9836                  * MAP_SHARED to prevent internal slot pages from being moved
9837                  * by fork()/COW.
9838                  */
9839                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9840                               MAP_SHARED | MAP_ANONYMOUS, 0);
9841                 if (IS_ERR((void *)hva))
9842                         return PTR_ERR((void *)hva);
9843         } else {
9844                 if (!slot || !slot->npages)
9845                         return 0;
9846
9847                 /*
9848                  * Stuff a non-canonical value to catch use-after-delete.  This
9849                  * ends up being 0 on 32-bit KVM, but there's no better
9850                  * alternative.
9851                  */
9852                 hva = (unsigned long)(0xdeadull << 48);
9853                 old_npages = slot->npages;
9854         }
9855
9856         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9857                 struct kvm_userspace_memory_region m;
9858
9859                 m.slot = id | (i << 16);
9860                 m.flags = 0;
9861                 m.guest_phys_addr = gpa;
9862                 m.userspace_addr = hva;
9863                 m.memory_size = size;
9864                 r = __kvm_set_memory_region(kvm, &m);
9865                 if (r < 0)
9866                         return r;
9867         }
9868
9869         if (!size)
9870                 vm_munmap(hva, old_npages * PAGE_SIZE);
9871
9872         return 0;
9873 }
9874 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9875
9876 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9877 {
9878         kvm_mmu_pre_destroy_vm(kvm);
9879 }
9880
9881 void kvm_arch_destroy_vm(struct kvm *kvm)
9882 {
9883         if (current->mm == kvm->mm) {
9884                 /*
9885                  * Free memory regions allocated on behalf of userspace,
9886                  * unless the the memory map has changed due to process exit
9887                  * or fd copying.
9888                  */
9889                 mutex_lock(&kvm->slots_lock);
9890                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9891                                         0, 0);
9892                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9893                                         0, 0);
9894                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9895                 mutex_unlock(&kvm->slots_lock);
9896         }
9897         if (kvm_x86_ops.vm_destroy)
9898                 kvm_x86_ops.vm_destroy(kvm);
9899         kvm_pic_destroy(kvm);
9900         kvm_ioapic_destroy(kvm);
9901         kvm_free_vcpus(kvm);
9902         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9903         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9904         kvm_mmu_uninit_vm(kvm);
9905         kvm_page_track_cleanup(kvm);
9906         kvm_hv_destroy_vm(kvm);
9907 }
9908
9909 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9910 {
9911         int i;
9912
9913         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9914                 kvfree(slot->arch.rmap[i]);
9915                 slot->arch.rmap[i] = NULL;
9916
9917                 if (i == 0)
9918                         continue;
9919
9920                 kvfree(slot->arch.lpage_info[i - 1]);
9921                 slot->arch.lpage_info[i - 1] = NULL;
9922         }
9923
9924         kvm_page_track_free_memslot(slot);
9925 }
9926
9927 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9928                                       unsigned long npages)
9929 {
9930         int i;
9931
9932         /*
9933          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9934          * old arrays will be freed by __kvm_set_memory_region() if installing
9935          * the new memslot is successful.
9936          */
9937         memset(&slot->arch, 0, sizeof(slot->arch));
9938
9939         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9940                 struct kvm_lpage_info *linfo;
9941                 unsigned long ugfn;
9942                 int lpages;
9943                 int level = i + 1;
9944
9945                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9946                                       slot->base_gfn, level) + 1;
9947
9948                 slot->arch.rmap[i] =
9949                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9950                                  GFP_KERNEL_ACCOUNT);
9951                 if (!slot->arch.rmap[i])
9952                         goto out_free;
9953                 if (i == 0)
9954                         continue;
9955
9956                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9957                 if (!linfo)
9958                         goto out_free;
9959
9960                 slot->arch.lpage_info[i - 1] = linfo;
9961
9962                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9963                         linfo[0].disallow_lpage = 1;
9964                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9965                         linfo[lpages - 1].disallow_lpage = 1;
9966                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9967                 /*
9968                  * If the gfn and userspace address are not aligned wrt each
9969                  * other, disable large page support for this slot.
9970                  */
9971                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9972                         unsigned long j;
9973
9974                         for (j = 0; j < lpages; ++j)
9975                                 linfo[j].disallow_lpage = 1;
9976                 }
9977         }
9978
9979         if (kvm_page_track_create_memslot(slot, npages))
9980                 goto out_free;
9981
9982         return 0;
9983
9984 out_free:
9985         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9986                 kvfree(slot->arch.rmap[i]);
9987                 slot->arch.rmap[i] = NULL;
9988                 if (i == 0)
9989                         continue;
9990
9991                 kvfree(slot->arch.lpage_info[i - 1]);
9992                 slot->arch.lpage_info[i - 1] = NULL;
9993         }
9994         return -ENOMEM;
9995 }
9996
9997 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9998 {
9999         struct kvm_vcpu *vcpu;
10000         int i;
10001
10002         /*
10003          * memslots->generation has been incremented.
10004          * mmio generation may have reached its maximum value.
10005          */
10006         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10007
10008         /* Force re-initialization of steal_time cache */
10009         kvm_for_each_vcpu(i, vcpu, kvm)
10010                 kvm_vcpu_kick(vcpu);
10011 }
10012
10013 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10014                                 struct kvm_memory_slot *memslot,
10015                                 const struct kvm_userspace_memory_region *mem,
10016                                 enum kvm_mr_change change)
10017 {
10018         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10019                 return kvm_alloc_memslot_metadata(memslot,
10020                                                   mem->memory_size >> PAGE_SHIFT);
10021         return 0;
10022 }
10023
10024 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10025                                      struct kvm_memory_slot *new)
10026 {
10027         /* Still write protect RO slot */
10028         if (new->flags & KVM_MEM_READONLY) {
10029                 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10030                 return;
10031         }
10032
10033         /*
10034          * Call kvm_x86_ops dirty logging hooks when they are valid.
10035          *
10036          * kvm_x86_ops.slot_disable_log_dirty is called when:
10037          *
10038          *  - KVM_MR_CREATE with dirty logging is disabled
10039          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10040          *
10041          * The reason is, in case of PML, we need to set D-bit for any slots
10042          * with dirty logging disabled in order to eliminate unnecessary GPA
10043          * logging in PML buffer (and potential PML buffer full VMEXIT). This
10044          * guarantees leaving PML enabled during guest's lifetime won't have
10045          * any additional overhead from PML when guest is running with dirty
10046          * logging disabled for memory slots.
10047          *
10048          * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
10049          * to dirty logging mode.
10050          *
10051          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10052          *
10053          * In case of write protect:
10054          *
10055          * Write protect all pages for dirty logging.
10056          *
10057          * All the sptes including the large sptes which point to this
10058          * slot are set to readonly. We can not create any new large
10059          * spte on this slot until the end of the logging.
10060          *
10061          * See the comments in fast_page_fault().
10062          */
10063         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10064                 if (kvm_x86_ops.slot_enable_log_dirty) {
10065                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10066                 } else {
10067                         int level =
10068                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10069                                 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10070
10071                         /*
10072                          * If we're with initial-all-set, we don't need
10073                          * to write protect any small page because
10074                          * they're reported as dirty already.  However
10075                          * we still need to write-protect huge pages
10076                          * so that the page split can happen lazily on
10077                          * the first write to the huge page.
10078                          */
10079                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10080                 }
10081         } else {
10082                 if (kvm_x86_ops.slot_disable_log_dirty)
10083                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10084         }
10085 }
10086
10087 void kvm_arch_commit_memory_region(struct kvm *kvm,
10088                                 const struct kvm_userspace_memory_region *mem,
10089                                 struct kvm_memory_slot *old,
10090                                 const struct kvm_memory_slot *new,
10091                                 enum kvm_mr_change change)
10092 {
10093         if (!kvm->arch.n_requested_mmu_pages)
10094                 kvm_mmu_change_mmu_pages(kvm,
10095                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10096
10097         /*
10098          * Dirty logging tracks sptes in 4k granularity, meaning that large
10099          * sptes have to be split.  If live migration is successful, the guest
10100          * in the source machine will be destroyed and large sptes will be
10101          * created in the destination. However, if the guest continues to run
10102          * in the source machine (for example if live migration fails), small
10103          * sptes will remain around and cause bad performance.
10104          *
10105          * Scan sptes if dirty logging has been stopped, dropping those
10106          * which can be collapsed into a single large-page spte.  Later
10107          * page faults will create the large-page sptes.
10108          *
10109          * There is no need to do this in any of the following cases:
10110          * CREATE:      No dirty mappings will already exist.
10111          * MOVE/DELETE: The old mappings will already have been cleaned up by
10112          *              kvm_arch_flush_shadow_memslot()
10113          */
10114         if (change == KVM_MR_FLAGS_ONLY &&
10115                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10116                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10117                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10118
10119         /*
10120          * Set up write protection and/or dirty logging for the new slot.
10121          *
10122          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10123          * been zapped so no dirty logging staff is needed for old slot. For
10124          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10125          * new and it's also covered when dealing with the new slot.
10126          *
10127          * FIXME: const-ify all uses of struct kvm_memory_slot.
10128          */
10129         if (change != KVM_MR_DELETE)
10130                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10131
10132         /* Free the arrays associated with the old memslot. */
10133         if (change == KVM_MR_MOVE)
10134                 kvm_arch_free_memslot(kvm, old);
10135 }
10136
10137 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10138 {
10139         kvm_mmu_zap_all(kvm);
10140 }
10141
10142 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10143                                    struct kvm_memory_slot *slot)
10144 {
10145         kvm_page_track_flush_slot(kvm, slot);
10146 }
10147
10148 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10149 {
10150         return (is_guest_mode(vcpu) &&
10151                         kvm_x86_ops.guest_apic_has_interrupt &&
10152                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10153 }
10154
10155 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10156 {
10157         if (!list_empty_careful(&vcpu->async_pf.done))
10158                 return true;
10159
10160         if (kvm_apic_has_events(vcpu))
10161                 return true;
10162
10163         if (vcpu->arch.pv.pv_unhalted)
10164                 return true;
10165
10166         if (vcpu->arch.exception.pending)
10167                 return true;
10168
10169         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10170             (vcpu->arch.nmi_pending &&
10171              kvm_x86_ops.nmi_allowed(vcpu)))
10172                 return true;
10173
10174         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10175             (vcpu->arch.smi_pending && !is_smm(vcpu)))
10176                 return true;
10177
10178         if (kvm_arch_interrupt_allowed(vcpu) &&
10179             (kvm_cpu_has_interrupt(vcpu) ||
10180             kvm_guest_apic_has_interrupt(vcpu)))
10181                 return true;
10182
10183         if (kvm_hv_has_stimer_pending(vcpu))
10184                 return true;
10185
10186         return false;
10187 }
10188
10189 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10190 {
10191         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10192 }
10193
10194 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10195 {
10196         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10197                 return true;
10198
10199         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10200                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10201                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10202                 return true;
10203
10204         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10205                 return true;
10206
10207         return false;
10208 }
10209
10210 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10211 {
10212         return vcpu->arch.preempted_in_kernel;
10213 }
10214
10215 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10216 {
10217         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10218 }
10219
10220 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10221 {
10222         return kvm_x86_ops.interrupt_allowed(vcpu);
10223 }
10224
10225 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10226 {
10227         if (is_64_bit_mode(vcpu))
10228                 return kvm_rip_read(vcpu);
10229         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10230                      kvm_rip_read(vcpu));
10231 }
10232 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10233
10234 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10235 {
10236         return kvm_get_linear_rip(vcpu) == linear_rip;
10237 }
10238 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10239
10240 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10241 {
10242         unsigned long rflags;
10243
10244         rflags = kvm_x86_ops.get_rflags(vcpu);
10245         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10246                 rflags &= ~X86_EFLAGS_TF;
10247         return rflags;
10248 }
10249 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10250
10251 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10252 {
10253         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10254             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10255                 rflags |= X86_EFLAGS_TF;
10256         kvm_x86_ops.set_rflags(vcpu, rflags);
10257 }
10258
10259 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10260 {
10261         __kvm_set_rflags(vcpu, rflags);
10262         kvm_make_request(KVM_REQ_EVENT, vcpu);
10263 }
10264 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10265
10266 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10267 {
10268         int r;
10269
10270         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10271               work->wakeup_all)
10272                 return;
10273
10274         r = kvm_mmu_reload(vcpu);
10275         if (unlikely(r))
10276                 return;
10277
10278         if (!vcpu->arch.mmu->direct_map &&
10279               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10280                 return;
10281
10282         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10283 }
10284
10285 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10286 {
10287         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10288 }
10289
10290 static inline u32 kvm_async_pf_next_probe(u32 key)
10291 {
10292         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10293 }
10294
10295 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10296 {
10297         u32 key = kvm_async_pf_hash_fn(gfn);
10298
10299         while (vcpu->arch.apf.gfns[key] != ~0)
10300                 key = kvm_async_pf_next_probe(key);
10301
10302         vcpu->arch.apf.gfns[key] = gfn;
10303 }
10304
10305 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10306 {
10307         int i;
10308         u32 key = kvm_async_pf_hash_fn(gfn);
10309
10310         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10311                      (vcpu->arch.apf.gfns[key] != gfn &&
10312                       vcpu->arch.apf.gfns[key] != ~0); i++)
10313                 key = kvm_async_pf_next_probe(key);
10314
10315         return key;
10316 }
10317
10318 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10319 {
10320         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10321 }
10322
10323 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10324 {
10325         u32 i, j, k;
10326
10327         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10328         while (true) {
10329                 vcpu->arch.apf.gfns[i] = ~0;
10330                 do {
10331                         j = kvm_async_pf_next_probe(j);
10332                         if (vcpu->arch.apf.gfns[j] == ~0)
10333                                 return;
10334                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10335                         /*
10336                          * k lies cyclically in ]i,j]
10337                          * |    i.k.j |
10338                          * |....j i.k.| or  |.k..j i...|
10339                          */
10340                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10341                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10342                 i = j;
10343         }
10344 }
10345
10346 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10347 {
10348
10349         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10350                                       sizeof(val));
10351 }
10352
10353 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10354 {
10355
10356         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10357                                       sizeof(u32));
10358 }
10359
10360 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10361 {
10362         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10363                 return false;
10364
10365         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10366             (vcpu->arch.apf.send_user_only &&
10367              kvm_x86_ops.get_cpl(vcpu) == 0))
10368                 return false;
10369
10370         return true;
10371 }
10372
10373 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10374 {
10375         if (unlikely(!lapic_in_kernel(vcpu) ||
10376                      kvm_event_needs_reinjection(vcpu) ||
10377                      vcpu->arch.exception.pending))
10378                 return false;
10379
10380         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10381                 return false;
10382
10383         /*
10384          * If interrupts are off we cannot even use an artificial
10385          * halt state.
10386          */
10387         return kvm_x86_ops.interrupt_allowed(vcpu);
10388 }
10389
10390 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10391                                      struct kvm_async_pf *work)
10392 {
10393         struct x86_exception fault;
10394
10395         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10396         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10397
10398         if (kvm_can_deliver_async_pf(vcpu) &&
10399             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10400                 fault.vector = PF_VECTOR;
10401                 fault.error_code_valid = true;
10402                 fault.error_code = 0;
10403                 fault.nested_page_fault = false;
10404                 fault.address = work->arch.token;
10405                 fault.async_page_fault = true;
10406                 kvm_inject_page_fault(vcpu, &fault);
10407         } else {
10408                 /*
10409                  * It is not possible to deliver a paravirtualized asynchronous
10410                  * page fault, but putting the guest in an artificial halt state
10411                  * can be beneficial nevertheless: if an interrupt arrives, we
10412                  * can deliver it timely and perhaps the guest will schedule
10413                  * another process.  When the instruction that triggered a page
10414                  * fault is retried, hopefully the page will be ready in the host.
10415                  */
10416                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10417         }
10418 }
10419
10420 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10421                                  struct kvm_async_pf *work)
10422 {
10423         struct x86_exception fault;
10424         u32 val;
10425
10426         if (work->wakeup_all)
10427                 work->arch.token = ~0; /* broadcast wakeup */
10428         else
10429                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10430         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10431
10432         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10433             !apf_get_user(vcpu, &val)) {
10434                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10435                     vcpu->arch.exception.pending &&
10436                     vcpu->arch.exception.nr == PF_VECTOR &&
10437                     !apf_put_user(vcpu, 0)) {
10438                         vcpu->arch.exception.injected = false;
10439                         vcpu->arch.exception.pending = false;
10440                         vcpu->arch.exception.nr = 0;
10441                         vcpu->arch.exception.has_error_code = false;
10442                         vcpu->arch.exception.error_code = 0;
10443                         vcpu->arch.exception.has_payload = false;
10444                         vcpu->arch.exception.payload = 0;
10445                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10446                         fault.vector = PF_VECTOR;
10447                         fault.error_code_valid = true;
10448                         fault.error_code = 0;
10449                         fault.nested_page_fault = false;
10450                         fault.address = work->arch.token;
10451                         fault.async_page_fault = true;
10452                         kvm_inject_page_fault(vcpu, &fault);
10453                 }
10454         }
10455         vcpu->arch.apf.halted = false;
10456         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10457 }
10458
10459 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10460 {
10461         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10462                 return true;
10463         else
10464                 return kvm_can_do_async_pf(vcpu);
10465 }
10466
10467 void kvm_arch_start_assignment(struct kvm *kvm)
10468 {
10469         atomic_inc(&kvm->arch.assigned_device_count);
10470 }
10471 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10472
10473 void kvm_arch_end_assignment(struct kvm *kvm)
10474 {
10475         atomic_dec(&kvm->arch.assigned_device_count);
10476 }
10477 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10478
10479 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10480 {
10481         return atomic_read(&kvm->arch.assigned_device_count);
10482 }
10483 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10484
10485 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10486 {
10487         atomic_inc(&kvm->arch.noncoherent_dma_count);
10488 }
10489 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10490
10491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10492 {
10493         atomic_dec(&kvm->arch.noncoherent_dma_count);
10494 }
10495 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10496
10497 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10498 {
10499         return atomic_read(&kvm->arch.noncoherent_dma_count);
10500 }
10501 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10502
10503 bool kvm_arch_has_irq_bypass(void)
10504 {
10505         return true;
10506 }
10507
10508 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10509                                       struct irq_bypass_producer *prod)
10510 {
10511         struct kvm_kernel_irqfd *irqfd =
10512                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10513
10514         irqfd->producer = prod;
10515
10516         return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10517                                            prod->irq, irqfd->gsi, 1);
10518 }
10519
10520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10521                                       struct irq_bypass_producer *prod)
10522 {
10523         int ret;
10524         struct kvm_kernel_irqfd *irqfd =
10525                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10526
10527         WARN_ON(irqfd->producer != prod);
10528         irqfd->producer = NULL;
10529
10530         /*
10531          * When producer of consumer is unregistered, we change back to
10532          * remapped mode, so we can re-use the current implementation
10533          * when the irq is masked/disabled or the consumer side (KVM
10534          * int this case doesn't want to receive the interrupts.
10535         */
10536         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10537         if (ret)
10538                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10539                        " fails: %d\n", irqfd->consumer.token, ret);
10540 }
10541
10542 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10543                                    uint32_t guest_irq, bool set)
10544 {
10545         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10546 }
10547
10548 bool kvm_vector_hashing_enabled(void)
10549 {
10550         return vector_hashing;
10551 }
10552
10553 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10554 {
10555         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10556 }
10557 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10558
10559 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10560 {
10561         uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10562
10563         /* The STIBP bit doesn't fault even if it's not advertised */
10564         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10565             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10566                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10567         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10568             !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10569                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10570
10571         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10572             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10573                 bits &= ~SPEC_CTRL_SSBD;
10574         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10575             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10576                 bits &= ~SPEC_CTRL_SSBD;
10577
10578         return bits;
10579 }
10580 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10581
10582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);