KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92         ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95  * - enable syscall per default because its emulated by KVM
96  * - enable LME and LMA per default on 64 bit KVM
97  */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func)                                             \
127         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
128                                 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32  __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64  __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
167  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
168  * advancement entirely.  Any other value is used as-is and disables adaptive
169  * tuning, i.e. allows privileged userspace to set an exact advancement time.
170  */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188  * Restoring the host value for MSRs that are only consumed when running in
189  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190  * returns to userspace, i.e. the kernel can run with the guest's value.
191  */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195         struct user_return_notifier urn;
196         bool registered;
197         struct kvm_user_return_msr_values {
198                 u64 host;
199                 u64 curr;
200         } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211                                 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228         KVM_GENERIC_VM_STATS(),
229         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230         STATS_DESC_COUNTER(VM, mmu_pte_write),
231         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232         STATS_DESC_COUNTER(VM, mmu_flooded),
233         STATS_DESC_COUNTER(VM, mmu_recycled),
234         STATS_DESC_COUNTER(VM, mmu_cache_miss),
235         STATS_DESC_ICOUNTER(VM, mmu_unsync),
236         STATS_DESC_ICOUNTER(VM, lpages),
237         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
238         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
239         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
240 };
241 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
242                 sizeof(struct kvm_vm_stat) / sizeof(u64));
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245         .name_size = KVM_STATS_NAME_SIZE,
246         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247         .id_offset = sizeof(struct kvm_stats_header),
248         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250                        sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254         KVM_GENERIC_VCPU_STATS(),
255         STATS_DESC_COUNTER(VCPU, pf_fixed),
256         STATS_DESC_COUNTER(VCPU, pf_guest),
257         STATS_DESC_COUNTER(VCPU, tlb_flush),
258         STATS_DESC_COUNTER(VCPU, invlpg),
259         STATS_DESC_COUNTER(VCPU, exits),
260         STATS_DESC_COUNTER(VCPU, io_exits),
261         STATS_DESC_COUNTER(VCPU, mmio_exits),
262         STATS_DESC_COUNTER(VCPU, signal_exits),
263         STATS_DESC_COUNTER(VCPU, irq_window_exits),
264         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265         STATS_DESC_COUNTER(VCPU, l1d_flush),
266         STATS_DESC_COUNTER(VCPU, halt_exits),
267         STATS_DESC_COUNTER(VCPU, request_irq_exits),
268         STATS_DESC_COUNTER(VCPU, irq_exits),
269         STATS_DESC_COUNTER(VCPU, host_state_reload),
270         STATS_DESC_COUNTER(VCPU, fpu_reload),
271         STATS_DESC_COUNTER(VCPU, insn_emulation),
272         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273         STATS_DESC_COUNTER(VCPU, hypercalls),
274         STATS_DESC_COUNTER(VCPU, irq_injections),
275         STATS_DESC_COUNTER(VCPU, nmi_injections),
276         STATS_DESC_COUNTER(VCPU, req_event),
277         STATS_DESC_COUNTER(VCPU, nested_run),
278         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280         STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
283                 sizeof(struct kvm_vcpu_stat) / sizeof(u64));
284
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286         .name_size = KVM_STATS_NAME_SIZE,
287         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288         .id_offset = sizeof(struct kvm_stats_header),
289         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291                        sizeof(kvm_vcpu_stats_desc),
292 };
293
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297
298 static struct kmem_cache *x86_fpu_cache;
299
300 static struct kmem_cache *x86_emulator_cache;
301
302 /*
303  * When called, it means the previous get/set msr reached an invalid msr.
304  * Return true if we want to ignore/silent this failed msr access.
305  */
306 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
307 {
308         const char *op = write ? "wrmsr" : "rdmsr";
309
310         if (ignore_msrs) {
311                 if (report_ignored_msrs)
312                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
313                                       op, msr, data);
314                 /* Mask the error */
315                 return true;
316         } else {
317                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
318                                       op, msr, data);
319                 return false;
320         }
321 }
322
323 static struct kmem_cache *kvm_alloc_emulator_cache(void)
324 {
325         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
326         unsigned int size = sizeof(struct x86_emulate_ctxt);
327
328         return kmem_cache_create_usercopy("x86_emulator", size,
329                                           __alignof__(struct x86_emulate_ctxt),
330                                           SLAB_ACCOUNT, useroffset,
331                                           size - useroffset, NULL);
332 }
333
334 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
335
336 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
337 {
338         int i;
339         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
340                 vcpu->arch.apf.gfns[i] = ~0;
341 }
342
343 static void kvm_on_user_return(struct user_return_notifier *urn)
344 {
345         unsigned slot;
346         struct kvm_user_return_msrs *msrs
347                 = container_of(urn, struct kvm_user_return_msrs, urn);
348         struct kvm_user_return_msr_values *values;
349         unsigned long flags;
350
351         /*
352          * Disabling irqs at this point since the following code could be
353          * interrupted and executed through kvm_arch_hardware_disable()
354          */
355         local_irq_save(flags);
356         if (msrs->registered) {
357                 msrs->registered = false;
358                 user_return_notifier_unregister(urn);
359         }
360         local_irq_restore(flags);
361         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
362                 values = &msrs->values[slot];
363                 if (values->host != values->curr) {
364                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
365                         values->curr = values->host;
366                 }
367         }
368 }
369
370 static int kvm_probe_user_return_msr(u32 msr)
371 {
372         u64 val;
373         int ret;
374
375         preempt_disable();
376         ret = rdmsrl_safe(msr, &val);
377         if (ret)
378                 goto out;
379         ret = wrmsrl_safe(msr, val);
380 out:
381         preempt_enable();
382         return ret;
383 }
384
385 int kvm_add_user_return_msr(u32 msr)
386 {
387         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
388
389         if (kvm_probe_user_return_msr(msr))
390                 return -1;
391
392         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
393         return kvm_nr_uret_msrs++;
394 }
395 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
396
397 int kvm_find_user_return_msr(u32 msr)
398 {
399         int i;
400
401         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
402                 if (kvm_uret_msrs_list[i] == msr)
403                         return i;
404         }
405         return -1;
406 }
407 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
408
409 static void kvm_user_return_msr_cpu_online(void)
410 {
411         unsigned int cpu = smp_processor_id();
412         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
413         u64 value;
414         int i;
415
416         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
418                 msrs->values[i].host = value;
419                 msrs->values[i].curr = value;
420         }
421 }
422
423 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
424 {
425         unsigned int cpu = smp_processor_id();
426         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
427         int err;
428
429         value = (value & mask) | (msrs->values[slot].host & ~mask);
430         if (value == msrs->values[slot].curr)
431                 return 0;
432         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
433         if (err)
434                 return 1;
435
436         msrs->values[slot].curr = value;
437         if (!msrs->registered) {
438                 msrs->urn.on_user_return = kvm_on_user_return;
439                 user_return_notifier_register(&msrs->urn);
440                 msrs->registered = true;
441         }
442         return 0;
443 }
444 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
445
446 static void drop_user_return_notifiers(void)
447 {
448         unsigned int cpu = smp_processor_id();
449         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
450
451         if (msrs->registered)
452                 kvm_on_user_return(&msrs->urn);
453 }
454
455 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
456 {
457         return vcpu->arch.apic_base;
458 }
459 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
460
461 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
462 {
463         return kvm_apic_mode(kvm_get_apic_base(vcpu));
464 }
465 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
466
467 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
468 {
469         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
470         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
471         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
472                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
473
474         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
475                 return 1;
476         if (!msr_info->host_initiated) {
477                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
478                         return 1;
479                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
480                         return 1;
481         }
482
483         kvm_lapic_set_base(vcpu, msr_info->data);
484         kvm_recalculate_apic_map(vcpu->kvm);
485         return 0;
486 }
487 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
488
489 asmlinkage __visible noinstr void kvm_spurious_fault(void)
490 {
491         /* Fault while not rebooting.  We want the trace. */
492         BUG_ON(!kvm_rebooting);
493 }
494 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
495
496 #define EXCPT_BENIGN            0
497 #define EXCPT_CONTRIBUTORY      1
498 #define EXCPT_PF                2
499
500 static int exception_class(int vector)
501 {
502         switch (vector) {
503         case PF_VECTOR:
504                 return EXCPT_PF;
505         case DE_VECTOR:
506         case TS_VECTOR:
507         case NP_VECTOR:
508         case SS_VECTOR:
509         case GP_VECTOR:
510                 return EXCPT_CONTRIBUTORY;
511         default:
512                 break;
513         }
514         return EXCPT_BENIGN;
515 }
516
517 #define EXCPT_FAULT             0
518 #define EXCPT_TRAP              1
519 #define EXCPT_ABORT             2
520 #define EXCPT_INTERRUPT         3
521
522 static int exception_type(int vector)
523 {
524         unsigned int mask;
525
526         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
527                 return EXCPT_INTERRUPT;
528
529         mask = 1 << vector;
530
531         /* #DB is trap, as instruction watchpoints are handled elsewhere */
532         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
533                 return EXCPT_TRAP;
534
535         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
536                 return EXCPT_ABORT;
537
538         /* Reserved exceptions will result in fault */
539         return EXCPT_FAULT;
540 }
541
542 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
543 {
544         unsigned nr = vcpu->arch.exception.nr;
545         bool has_payload = vcpu->arch.exception.has_payload;
546         unsigned long payload = vcpu->arch.exception.payload;
547
548         if (!has_payload)
549                 return;
550
551         switch (nr) {
552         case DB_VECTOR:
553                 /*
554                  * "Certain debug exceptions may clear bit 0-3.  The
555                  * remaining contents of the DR6 register are never
556                  * cleared by the processor".
557                  */
558                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
559                 /*
560                  * In order to reflect the #DB exception payload in guest
561                  * dr6, three components need to be considered: active low
562                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
563                  * DR6_BS and DR6_BT)
564                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
565                  * In the target guest dr6:
566                  * FIXED_1 bits should always be set.
567                  * Active low bits should be cleared if 1-setting in payload.
568                  * Active high bits should be set if 1-setting in payload.
569                  *
570                  * Note, the payload is compatible with the pending debug
571                  * exceptions/exit qualification under VMX, that active_low bits
572                  * are active high in payload.
573                  * So they need to be flipped for DR6.
574                  */
575                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
576                 vcpu->arch.dr6 |= payload;
577                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
578
579                 /*
580                  * The #DB payload is defined as compatible with the 'pending
581                  * debug exceptions' field under VMX, not DR6. While bit 12 is
582                  * defined in the 'pending debug exceptions' field (enabled
583                  * breakpoint), it is reserved and must be zero in DR6.
584                  */
585                 vcpu->arch.dr6 &= ~BIT(12);
586                 break;
587         case PF_VECTOR:
588                 vcpu->arch.cr2 = payload;
589                 break;
590         }
591
592         vcpu->arch.exception.has_payload = false;
593         vcpu->arch.exception.payload = 0;
594 }
595 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
596
597 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
598                 unsigned nr, bool has_error, u32 error_code,
599                 bool has_payload, unsigned long payload, bool reinject)
600 {
601         u32 prev_nr;
602         int class1, class2;
603
604         kvm_make_request(KVM_REQ_EVENT, vcpu);
605
606         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
607         queue:
608                 if (reinject) {
609                         /*
610                          * On vmentry, vcpu->arch.exception.pending is only
611                          * true if an event injection was blocked by
612                          * nested_run_pending.  In that case, however,
613                          * vcpu_enter_guest requests an immediate exit,
614                          * and the guest shouldn't proceed far enough to
615                          * need reinjection.
616                          */
617                         WARN_ON_ONCE(vcpu->arch.exception.pending);
618                         vcpu->arch.exception.injected = true;
619                         if (WARN_ON_ONCE(has_payload)) {
620                                 /*
621                                  * A reinjected event has already
622                                  * delivered its payload.
623                                  */
624                                 has_payload = false;
625                                 payload = 0;
626                         }
627                 } else {
628                         vcpu->arch.exception.pending = true;
629                         vcpu->arch.exception.injected = false;
630                 }
631                 vcpu->arch.exception.has_error_code = has_error;
632                 vcpu->arch.exception.nr = nr;
633                 vcpu->arch.exception.error_code = error_code;
634                 vcpu->arch.exception.has_payload = has_payload;
635                 vcpu->arch.exception.payload = payload;
636                 if (!is_guest_mode(vcpu))
637                         kvm_deliver_exception_payload(vcpu);
638                 return;
639         }
640
641         /* to check exception */
642         prev_nr = vcpu->arch.exception.nr;
643         if (prev_nr == DF_VECTOR) {
644                 /* triple fault -> shutdown */
645                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
646                 return;
647         }
648         class1 = exception_class(prev_nr);
649         class2 = exception_class(nr);
650         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
651                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
652                 /*
653                  * Generate double fault per SDM Table 5-5.  Set
654                  * exception.pending = true so that the double fault
655                  * can trigger a nested vmexit.
656                  */
657                 vcpu->arch.exception.pending = true;
658                 vcpu->arch.exception.injected = false;
659                 vcpu->arch.exception.has_error_code = true;
660                 vcpu->arch.exception.nr = DF_VECTOR;
661                 vcpu->arch.exception.error_code = 0;
662                 vcpu->arch.exception.has_payload = false;
663                 vcpu->arch.exception.payload = 0;
664         } else
665                 /* replace previous exception with a new one in a hope
666                    that instruction re-execution will regenerate lost
667                    exception */
668                 goto queue;
669 }
670
671 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
672 {
673         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
674 }
675 EXPORT_SYMBOL_GPL(kvm_queue_exception);
676
677 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
678 {
679         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
680 }
681 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
682
683 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
684                            unsigned long payload)
685 {
686         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
687 }
688 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
689
690 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
691                                     u32 error_code, unsigned long payload)
692 {
693         kvm_multiple_exception(vcpu, nr, true, error_code,
694                                true, payload, false);
695 }
696
697 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
698 {
699         if (err)
700                 kvm_inject_gp(vcpu, 0);
701         else
702                 return kvm_skip_emulated_instruction(vcpu);
703
704         return 1;
705 }
706 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
707
708 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
709 {
710         ++vcpu->stat.pf_guest;
711         vcpu->arch.exception.nested_apf =
712                 is_guest_mode(vcpu) && fault->async_page_fault;
713         if (vcpu->arch.exception.nested_apf) {
714                 vcpu->arch.apf.nested_apf_token = fault->address;
715                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
716         } else {
717                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
718                                         fault->address);
719         }
720 }
721 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
722
723 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
724                                     struct x86_exception *fault)
725 {
726         struct kvm_mmu *fault_mmu;
727         WARN_ON_ONCE(fault->vector != PF_VECTOR);
728
729         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
730                                                vcpu->arch.walk_mmu;
731
732         /*
733          * Invalidate the TLB entry for the faulting address, if it exists,
734          * else the access will fault indefinitely (and to emulate hardware).
735          */
736         if ((fault->error_code & PFERR_PRESENT_MASK) &&
737             !(fault->error_code & PFERR_RSVD_MASK))
738                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
739                                        fault_mmu->root_hpa);
740
741         fault_mmu->inject_page_fault(vcpu, fault);
742         return fault->nested_page_fault;
743 }
744 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
745
746 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
747 {
748         atomic_inc(&vcpu->arch.nmi_queued);
749         kvm_make_request(KVM_REQ_NMI, vcpu);
750 }
751 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
752
753 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
754 {
755         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
756 }
757 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
758
759 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
760 {
761         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
762 }
763 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
764
765 /*
766  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
767  * a #GP and return false.
768  */
769 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
770 {
771         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
772                 return true;
773         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
774         return false;
775 }
776 EXPORT_SYMBOL_GPL(kvm_require_cpl);
777
778 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
779 {
780         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
781                 return true;
782
783         kvm_queue_exception(vcpu, UD_VECTOR);
784         return false;
785 }
786 EXPORT_SYMBOL_GPL(kvm_require_dr);
787
788 /*
789  * This function will be used to read from the physical memory of the currently
790  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
791  * can read from guest physical or from the guest's guest physical memory.
792  */
793 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
794                             gfn_t ngfn, void *data, int offset, int len,
795                             u32 access)
796 {
797         struct x86_exception exception;
798         gfn_t real_gfn;
799         gpa_t ngpa;
800
801         ngpa     = gfn_to_gpa(ngfn);
802         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
803         if (real_gfn == UNMAPPED_GVA)
804                 return -EFAULT;
805
806         real_gfn = gpa_to_gfn(real_gfn);
807
808         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
809 }
810 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
811
812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
813 {
814         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
815 }
816
817 /*
818  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
819  */
820 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
821 {
822         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
823         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
824         int i;
825         int ret;
826         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
827
828         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
829                                       offset * sizeof(u64), sizeof(pdpte),
830                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
831         if (ret < 0) {
832                 ret = 0;
833                 goto out;
834         }
835         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
836                 if ((pdpte[i] & PT_PRESENT_MASK) &&
837                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
838                         ret = 0;
839                         goto out;
840                 }
841         }
842         ret = 1;
843
844         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
845         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
846         vcpu->arch.pdptrs_from_userspace = false;
847
848 out:
849
850         return ret;
851 }
852 EXPORT_SYMBOL_GPL(load_pdptrs);
853
854 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
855 {
856         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
857                 kvm_clear_async_pf_completion_queue(vcpu);
858                 kvm_async_pf_hash_reset(vcpu);
859         }
860
861         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
862                 kvm_mmu_reset_context(vcpu);
863
864         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
865             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
866             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
867                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
868 }
869 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
870
871 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
872 {
873         unsigned long old_cr0 = kvm_read_cr0(vcpu);
874         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
875
876         cr0 |= X86_CR0_ET;
877
878 #ifdef CONFIG_X86_64
879         if (cr0 & 0xffffffff00000000UL)
880                 return 1;
881 #endif
882
883         cr0 &= ~CR0_RESERVED_BITS;
884
885         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
886                 return 1;
887
888         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
889                 return 1;
890
891 #ifdef CONFIG_X86_64
892         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
893             (cr0 & X86_CR0_PG)) {
894                 int cs_db, cs_l;
895
896                 if (!is_pae(vcpu))
897                         return 1;
898                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
899                 if (cs_l)
900                         return 1;
901         }
902 #endif
903         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
904             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
905             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
906                 return 1;
907
908         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
909                 return 1;
910
911         static_call(kvm_x86_set_cr0)(vcpu, cr0);
912
913         kvm_post_set_cr0(vcpu, old_cr0, cr0);
914
915         return 0;
916 }
917 EXPORT_SYMBOL_GPL(kvm_set_cr0);
918
919 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
920 {
921         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
922 }
923 EXPORT_SYMBOL_GPL(kvm_lmsw);
924
925 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
926 {
927         if (vcpu->arch.guest_state_protected)
928                 return;
929
930         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
931
932                 if (vcpu->arch.xcr0 != host_xcr0)
933                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
934
935                 if (vcpu->arch.xsaves_enabled &&
936                     vcpu->arch.ia32_xss != host_xss)
937                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
938         }
939
940         if (static_cpu_has(X86_FEATURE_PKU) &&
941             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
942              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
943             vcpu->arch.pkru != vcpu->arch.host_pkru)
944                 write_pkru(vcpu->arch.pkru);
945 }
946 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
947
948 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
949 {
950         if (vcpu->arch.guest_state_protected)
951                 return;
952
953         if (static_cpu_has(X86_FEATURE_PKU) &&
954             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
955              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
956                 vcpu->arch.pkru = rdpkru();
957                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
958                         write_pkru(vcpu->arch.host_pkru);
959         }
960
961         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
962
963                 if (vcpu->arch.xcr0 != host_xcr0)
964                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
965
966                 if (vcpu->arch.xsaves_enabled &&
967                     vcpu->arch.ia32_xss != host_xss)
968                         wrmsrl(MSR_IA32_XSS, host_xss);
969         }
970
971 }
972 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
973
974 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
975 {
976         u64 xcr0 = xcr;
977         u64 old_xcr0 = vcpu->arch.xcr0;
978         u64 valid_bits;
979
980         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
981         if (index != XCR_XFEATURE_ENABLED_MASK)
982                 return 1;
983         if (!(xcr0 & XFEATURE_MASK_FP))
984                 return 1;
985         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
986                 return 1;
987
988         /*
989          * Do not allow the guest to set bits that we do not support
990          * saving.  However, xcr0 bit 0 is always set, even if the
991          * emulated CPU does not support XSAVE (see fx_init).
992          */
993         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
994         if (xcr0 & ~valid_bits)
995                 return 1;
996
997         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
998             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
999                 return 1;
1000
1001         if (xcr0 & XFEATURE_MASK_AVX512) {
1002                 if (!(xcr0 & XFEATURE_MASK_YMM))
1003                         return 1;
1004                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1005                         return 1;
1006         }
1007         vcpu->arch.xcr0 = xcr0;
1008
1009         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1010                 kvm_update_cpuid_runtime(vcpu);
1011         return 0;
1012 }
1013
1014 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1015 {
1016         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1017             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1018                 kvm_inject_gp(vcpu, 0);
1019                 return 1;
1020         }
1021
1022         return kvm_skip_emulated_instruction(vcpu);
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1025
1026 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1027 {
1028         if (cr4 & cr4_reserved_bits)
1029                 return false;
1030
1031         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1032                 return false;
1033
1034         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1037
1038 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1039 {
1040         if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1041             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1042                 kvm_mmu_reset_context(vcpu);
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1045
1046 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1047 {
1048         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1049         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1050                                    X86_CR4_SMEP;
1051
1052         if (!kvm_is_valid_cr4(vcpu, cr4))
1053                 return 1;
1054
1055         if (is_long_mode(vcpu)) {
1056                 if (!(cr4 & X86_CR4_PAE))
1057                         return 1;
1058                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1059                         return 1;
1060         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1061                    && ((cr4 ^ old_cr4) & pdptr_bits)
1062                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1063                                    kvm_read_cr3(vcpu)))
1064                 return 1;
1065
1066         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1067                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1068                         return 1;
1069
1070                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1071                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1072                         return 1;
1073         }
1074
1075         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1076
1077         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1078
1079         return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1082
1083 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1084 {
1085         struct kvm_mmu *mmu = vcpu->arch.mmu;
1086         unsigned long roots_to_free = 0;
1087         int i;
1088
1089         /*
1090          * If neither the current CR3 nor any of the prev_roots use the given
1091          * PCID, then nothing needs to be done here because a resync will
1092          * happen anyway before switching to any other CR3.
1093          */
1094         if (kvm_get_active_pcid(vcpu) == pcid) {
1095                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1096                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1097         }
1098
1099         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1100                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1101                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1102
1103         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1104 }
1105
1106 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1107 {
1108         bool skip_tlb_flush = false;
1109         unsigned long pcid = 0;
1110 #ifdef CONFIG_X86_64
1111         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1112
1113         if (pcid_enabled) {
1114                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1115                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1116                 pcid = cr3 & X86_CR3_PCID_MASK;
1117         }
1118 #endif
1119
1120         /* PDPTRs are always reloaded for PAE paging. */
1121         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1122                 goto handle_tlb_flush;
1123
1124         /*
1125          * Do not condition the GPA check on long mode, this helper is used to
1126          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1127          * the current vCPU mode is accurate.
1128          */
1129         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1130                 return 1;
1131
1132         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1133                 return 1;
1134
1135         if (cr3 != kvm_read_cr3(vcpu))
1136                 kvm_mmu_new_pgd(vcpu, cr3);
1137
1138         vcpu->arch.cr3 = cr3;
1139         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1140
1141 handle_tlb_flush:
1142         /*
1143          * A load of CR3 that flushes the TLB flushes only the current PCID,
1144          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1145          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1146          * and it's impossible to use a non-zero PCID when PCID is disabled,
1147          * i.e. only PCID=0 can be relevant.
1148          */
1149         if (!skip_tlb_flush)
1150                 kvm_invalidate_pcid(vcpu, pcid);
1151
1152         return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1155
1156 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1157 {
1158         if (cr8 & CR8_RESERVED_BITS)
1159                 return 1;
1160         if (lapic_in_kernel(vcpu))
1161                 kvm_lapic_set_tpr(vcpu, cr8);
1162         else
1163                 vcpu->arch.cr8 = cr8;
1164         return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1167
1168 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1169 {
1170         if (lapic_in_kernel(vcpu))
1171                 return kvm_lapic_get_cr8(vcpu);
1172         else
1173                 return vcpu->arch.cr8;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1176
1177 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1178 {
1179         int i;
1180
1181         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1182                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1183                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1184         }
1185 }
1186
1187 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1188 {
1189         unsigned long dr7;
1190
1191         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1192                 dr7 = vcpu->arch.guest_debug_dr7;
1193         else
1194                 dr7 = vcpu->arch.dr7;
1195         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1196         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1197         if (dr7 & DR7_BP_EN_MASK)
1198                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1199 }
1200 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1201
1202 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1203 {
1204         u64 fixed = DR6_FIXED_1;
1205
1206         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1207                 fixed |= DR6_RTM;
1208
1209         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1210                 fixed |= DR6_BUS_LOCK;
1211         return fixed;
1212 }
1213
1214 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1215 {
1216         size_t size = ARRAY_SIZE(vcpu->arch.db);
1217
1218         switch (dr) {
1219         case 0 ... 3:
1220                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1221                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1222                         vcpu->arch.eff_db[dr] = val;
1223                 break;
1224         case 4:
1225         case 6:
1226                 if (!kvm_dr6_valid(val))
1227                         return 1; /* #GP */
1228                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1229                 break;
1230         case 5:
1231         default: /* 7 */
1232                 if (!kvm_dr7_valid(val))
1233                         return 1; /* #GP */
1234                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1235                 kvm_update_dr7(vcpu);
1236                 break;
1237         }
1238
1239         return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_set_dr);
1242
1243 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1244 {
1245         size_t size = ARRAY_SIZE(vcpu->arch.db);
1246
1247         switch (dr) {
1248         case 0 ... 3:
1249                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1250                 break;
1251         case 4:
1252         case 6:
1253                 *val = vcpu->arch.dr6;
1254                 break;
1255         case 5:
1256         default: /* 7 */
1257                 *val = vcpu->arch.dr7;
1258                 break;
1259         }
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_get_dr);
1262
1263 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1264 {
1265         u32 ecx = kvm_rcx_read(vcpu);
1266         u64 data;
1267
1268         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1269                 kvm_inject_gp(vcpu, 0);
1270                 return 1;
1271         }
1272
1273         kvm_rax_write(vcpu, (u32)data);
1274         kvm_rdx_write(vcpu, data >> 32);
1275         return kvm_skip_emulated_instruction(vcpu);
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1278
1279 /*
1280  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1281  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1282  *
1283  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1284  * extract the supported MSRs from the related const lists.
1285  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1286  * capabilities of the host cpu. This capabilities test skips MSRs that are
1287  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1288  * may depend on host virtualization features rather than host cpu features.
1289  */
1290
1291 static const u32 msrs_to_save_all[] = {
1292         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1293         MSR_STAR,
1294 #ifdef CONFIG_X86_64
1295         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1296 #endif
1297         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1298         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1299         MSR_IA32_SPEC_CTRL,
1300         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1301         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1302         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1303         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1304         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1305         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1306         MSR_IA32_UMWAIT_CONTROL,
1307
1308         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1309         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1310         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1311         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1312         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1313         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1314         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1315         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1316         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1317         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1318         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1319         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1320         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1321         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1322         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1323         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1324         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1325         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1326         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1327         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1328         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1329         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1330 };
1331
1332 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1333 static unsigned num_msrs_to_save;
1334
1335 static const u32 emulated_msrs_all[] = {
1336         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1337         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1338         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1339         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1340         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1341         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1342         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1343         HV_X64_MSR_RESET,
1344         HV_X64_MSR_VP_INDEX,
1345         HV_X64_MSR_VP_RUNTIME,
1346         HV_X64_MSR_SCONTROL,
1347         HV_X64_MSR_STIMER0_CONFIG,
1348         HV_X64_MSR_VP_ASSIST_PAGE,
1349         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1350         HV_X64_MSR_TSC_EMULATION_STATUS,
1351         HV_X64_MSR_SYNDBG_OPTIONS,
1352         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1353         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1354         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1355
1356         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1357         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1358
1359         MSR_IA32_TSC_ADJUST,
1360         MSR_IA32_TSC_DEADLINE,
1361         MSR_IA32_ARCH_CAPABILITIES,
1362         MSR_IA32_PERF_CAPABILITIES,
1363         MSR_IA32_MISC_ENABLE,
1364         MSR_IA32_MCG_STATUS,
1365         MSR_IA32_MCG_CTL,
1366         MSR_IA32_MCG_EXT_CTL,
1367         MSR_IA32_SMBASE,
1368         MSR_SMI_COUNT,
1369         MSR_PLATFORM_INFO,
1370         MSR_MISC_FEATURES_ENABLES,
1371         MSR_AMD64_VIRT_SPEC_CTRL,
1372         MSR_IA32_POWER_CTL,
1373         MSR_IA32_UCODE_REV,
1374
1375         /*
1376          * The following list leaves out MSRs whose values are determined
1377          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1378          * We always support the "true" VMX control MSRs, even if the host
1379          * processor does not, so I am putting these registers here rather
1380          * than in msrs_to_save_all.
1381          */
1382         MSR_IA32_VMX_BASIC,
1383         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1384         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1385         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1386         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1387         MSR_IA32_VMX_MISC,
1388         MSR_IA32_VMX_CR0_FIXED0,
1389         MSR_IA32_VMX_CR4_FIXED0,
1390         MSR_IA32_VMX_VMCS_ENUM,
1391         MSR_IA32_VMX_PROCBASED_CTLS2,
1392         MSR_IA32_VMX_EPT_VPID_CAP,
1393         MSR_IA32_VMX_VMFUNC,
1394
1395         MSR_K7_HWCR,
1396         MSR_KVM_POLL_CONTROL,
1397 };
1398
1399 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1400 static unsigned num_emulated_msrs;
1401
1402 /*
1403  * List of msr numbers which are used to expose MSR-based features that
1404  * can be used by a hypervisor to validate requested CPU features.
1405  */
1406 static const u32 msr_based_features_all[] = {
1407         MSR_IA32_VMX_BASIC,
1408         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409         MSR_IA32_VMX_PINBASED_CTLS,
1410         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1411         MSR_IA32_VMX_PROCBASED_CTLS,
1412         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1413         MSR_IA32_VMX_EXIT_CTLS,
1414         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1415         MSR_IA32_VMX_ENTRY_CTLS,
1416         MSR_IA32_VMX_MISC,
1417         MSR_IA32_VMX_CR0_FIXED0,
1418         MSR_IA32_VMX_CR0_FIXED1,
1419         MSR_IA32_VMX_CR4_FIXED0,
1420         MSR_IA32_VMX_CR4_FIXED1,
1421         MSR_IA32_VMX_VMCS_ENUM,
1422         MSR_IA32_VMX_PROCBASED_CTLS2,
1423         MSR_IA32_VMX_EPT_VPID_CAP,
1424         MSR_IA32_VMX_VMFUNC,
1425
1426         MSR_F10H_DECFG,
1427         MSR_IA32_UCODE_REV,
1428         MSR_IA32_ARCH_CAPABILITIES,
1429         MSR_IA32_PERF_CAPABILITIES,
1430 };
1431
1432 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1433 static unsigned int num_msr_based_features;
1434
1435 static u64 kvm_get_arch_capabilities(void)
1436 {
1437         u64 data = 0;
1438
1439         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1440                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1441
1442         /*
1443          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1444          * the nested hypervisor runs with NX huge pages.  If it is not,
1445          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1446          * L1 guests, so it need not worry about its own (L2) guests.
1447          */
1448         data |= ARCH_CAP_PSCHANGE_MC_NO;
1449
1450         /*
1451          * If we're doing cache flushes (either "always" or "cond")
1452          * we will do one whenever the guest does a vmlaunch/vmresume.
1453          * If an outer hypervisor is doing the cache flush for us
1454          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1455          * capability to the guest too, and if EPT is disabled we're not
1456          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1457          * require a nested hypervisor to do a flush of its own.
1458          */
1459         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1460                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1461
1462         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1463                 data |= ARCH_CAP_RDCL_NO;
1464         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1465                 data |= ARCH_CAP_SSB_NO;
1466         if (!boot_cpu_has_bug(X86_BUG_MDS))
1467                 data |= ARCH_CAP_MDS_NO;
1468
1469         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1470                 /*
1471                  * If RTM=0 because the kernel has disabled TSX, the host might
1472                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1473                  * and therefore knows that there cannot be TAA) but keep
1474                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1475                  * and we want to allow migrating those guests to tsx=off hosts.
1476                  */
1477                 data &= ~ARCH_CAP_TAA_NO;
1478         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1479                 data |= ARCH_CAP_TAA_NO;
1480         } else {
1481                 /*
1482                  * Nothing to do here; we emulate TSX_CTRL if present on the
1483                  * host so the guest can choose between disabling TSX or
1484                  * using VERW to clear CPU buffers.
1485                  */
1486         }
1487
1488         return data;
1489 }
1490
1491 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1492 {
1493         switch (msr->index) {
1494         case MSR_IA32_ARCH_CAPABILITIES:
1495                 msr->data = kvm_get_arch_capabilities();
1496                 break;
1497         case MSR_IA32_UCODE_REV:
1498                 rdmsrl_safe(msr->index, &msr->data);
1499                 break;
1500         default:
1501                 return static_call(kvm_x86_get_msr_feature)(msr);
1502         }
1503         return 0;
1504 }
1505
1506 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1507 {
1508         struct kvm_msr_entry msr;
1509         int r;
1510
1511         msr.index = index;
1512         r = kvm_get_msr_feature(&msr);
1513
1514         if (r == KVM_MSR_RET_INVALID) {
1515                 /* Unconditionally clear the output for simplicity */
1516                 *data = 0;
1517                 if (kvm_msr_ignored_check(index, 0, false))
1518                         r = 0;
1519         }
1520
1521         if (r)
1522                 return r;
1523
1524         *data = msr.data;
1525
1526         return 0;
1527 }
1528
1529 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1530 {
1531         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1532                 return false;
1533
1534         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1535                 return false;
1536
1537         if (efer & (EFER_LME | EFER_LMA) &&
1538             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1539                 return false;
1540
1541         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1542                 return false;
1543
1544         return true;
1545
1546 }
1547 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1548 {
1549         if (efer & efer_reserved_bits)
1550                 return false;
1551
1552         return __kvm_valid_efer(vcpu, efer);
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1555
1556 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1557 {
1558         u64 old_efer = vcpu->arch.efer;
1559         u64 efer = msr_info->data;
1560         int r;
1561
1562         if (efer & efer_reserved_bits)
1563                 return 1;
1564
1565         if (!msr_info->host_initiated) {
1566                 if (!__kvm_valid_efer(vcpu, efer))
1567                         return 1;
1568
1569                 if (is_paging(vcpu) &&
1570                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1571                         return 1;
1572         }
1573
1574         efer &= ~EFER_LMA;
1575         efer |= vcpu->arch.efer & EFER_LMA;
1576
1577         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1578         if (r) {
1579                 WARN_ON(r > 0);
1580                 return r;
1581         }
1582
1583         /* Update reserved bits */
1584         if ((efer ^ old_efer) & EFER_NX)
1585                 kvm_mmu_reset_context(vcpu);
1586
1587         return 0;
1588 }
1589
1590 void kvm_enable_efer_bits(u64 mask)
1591 {
1592        efer_reserved_bits &= ~mask;
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1595
1596 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1597 {
1598         struct kvm_x86_msr_filter *msr_filter;
1599         struct msr_bitmap_range *ranges;
1600         struct kvm *kvm = vcpu->kvm;
1601         bool allowed;
1602         int idx;
1603         u32 i;
1604
1605         /* x2APIC MSRs do not support filtering. */
1606         if (index >= 0x800 && index <= 0x8ff)
1607                 return true;
1608
1609         idx = srcu_read_lock(&kvm->srcu);
1610
1611         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1612         if (!msr_filter) {
1613                 allowed = true;
1614                 goto out;
1615         }
1616
1617         allowed = msr_filter->default_allow;
1618         ranges = msr_filter->ranges;
1619
1620         for (i = 0; i < msr_filter->count; i++) {
1621                 u32 start = ranges[i].base;
1622                 u32 end = start + ranges[i].nmsrs;
1623                 u32 flags = ranges[i].flags;
1624                 unsigned long *bitmap = ranges[i].bitmap;
1625
1626                 if ((index >= start) && (index < end) && (flags & type)) {
1627                         allowed = !!test_bit(index - start, bitmap);
1628                         break;
1629                 }
1630         }
1631
1632 out:
1633         srcu_read_unlock(&kvm->srcu, idx);
1634
1635         return allowed;
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1638
1639 /*
1640  * Write @data into the MSR specified by @index.  Select MSR specific fault
1641  * checks are bypassed if @host_initiated is %true.
1642  * Returns 0 on success, non-0 otherwise.
1643  * Assumes vcpu_load() was already called.
1644  */
1645 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1646                          bool host_initiated)
1647 {
1648         struct msr_data msr;
1649
1650         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1651                 return KVM_MSR_RET_FILTERED;
1652
1653         switch (index) {
1654         case MSR_FS_BASE:
1655         case MSR_GS_BASE:
1656         case MSR_KERNEL_GS_BASE:
1657         case MSR_CSTAR:
1658         case MSR_LSTAR:
1659                 if (is_noncanonical_address(data, vcpu))
1660                         return 1;
1661                 break;
1662         case MSR_IA32_SYSENTER_EIP:
1663         case MSR_IA32_SYSENTER_ESP:
1664                 /*
1665                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1666                  * non-canonical address is written on Intel but not on
1667                  * AMD (which ignores the top 32-bits, because it does
1668                  * not implement 64-bit SYSENTER).
1669                  *
1670                  * 64-bit code should hence be able to write a non-canonical
1671                  * value on AMD.  Making the address canonical ensures that
1672                  * vmentry does not fail on Intel after writing a non-canonical
1673                  * value, and that something deterministic happens if the guest
1674                  * invokes 64-bit SYSENTER.
1675                  */
1676                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1677                 break;
1678         case MSR_TSC_AUX:
1679                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1680                         return 1;
1681
1682                 if (!host_initiated &&
1683                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1684                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1685                         return 1;
1686
1687                 /*
1688                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1689                  * incomplete and conflicting architectural behavior.  Current
1690                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1691                  * reserved and always read as zeros.  Enforce Intel's reserved
1692                  * bits check if and only if the guest CPU is Intel, and clear
1693                  * the bits in all other cases.  This ensures cross-vendor
1694                  * migration will provide consistent behavior for the guest.
1695                  */
1696                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1697                         return 1;
1698
1699                 data = (u32)data;
1700                 break;
1701         }
1702
1703         msr.data = data;
1704         msr.index = index;
1705         msr.host_initiated = host_initiated;
1706
1707         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1708 }
1709
1710 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1711                                      u32 index, u64 data, bool host_initiated)
1712 {
1713         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1714
1715         if (ret == KVM_MSR_RET_INVALID)
1716                 if (kvm_msr_ignored_check(index, data, true))
1717                         ret = 0;
1718
1719         return ret;
1720 }
1721
1722 /*
1723  * Read the MSR specified by @index into @data.  Select MSR specific fault
1724  * checks are bypassed if @host_initiated is %true.
1725  * Returns 0 on success, non-0 otherwise.
1726  * Assumes vcpu_load() was already called.
1727  */
1728 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1729                   bool host_initiated)
1730 {
1731         struct msr_data msr;
1732         int ret;
1733
1734         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1735                 return KVM_MSR_RET_FILTERED;
1736
1737         switch (index) {
1738         case MSR_TSC_AUX:
1739                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1740                         return 1;
1741
1742                 if (!host_initiated &&
1743                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1744                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1745                         return 1;
1746                 break;
1747         }
1748
1749         msr.index = index;
1750         msr.host_initiated = host_initiated;
1751
1752         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1753         if (!ret)
1754                 *data = msr.data;
1755         return ret;
1756 }
1757
1758 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1759                                      u32 index, u64 *data, bool host_initiated)
1760 {
1761         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1762
1763         if (ret == KVM_MSR_RET_INVALID) {
1764                 /* Unconditionally clear *data for simplicity */
1765                 *data = 0;
1766                 if (kvm_msr_ignored_check(index, 0, false))
1767                         ret = 0;
1768         }
1769
1770         return ret;
1771 }
1772
1773 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1774 {
1775         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_get_msr);
1778
1779 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1780 {
1781         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_set_msr);
1784
1785 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1786 {
1787         int err = vcpu->run->msr.error;
1788         if (!err) {
1789                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1790                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1791         }
1792
1793         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1794 }
1795
1796 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1797 {
1798         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1799 }
1800
1801 static u64 kvm_msr_reason(int r)
1802 {
1803         switch (r) {
1804         case KVM_MSR_RET_INVALID:
1805                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1806         case KVM_MSR_RET_FILTERED:
1807                 return KVM_MSR_EXIT_REASON_FILTER;
1808         default:
1809                 return KVM_MSR_EXIT_REASON_INVAL;
1810         }
1811 }
1812
1813 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1814                               u32 exit_reason, u64 data,
1815                               int (*completion)(struct kvm_vcpu *vcpu),
1816                               int r)
1817 {
1818         u64 msr_reason = kvm_msr_reason(r);
1819
1820         /* Check if the user wanted to know about this MSR fault */
1821         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1822                 return 0;
1823
1824         vcpu->run->exit_reason = exit_reason;
1825         vcpu->run->msr.error = 0;
1826         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1827         vcpu->run->msr.reason = msr_reason;
1828         vcpu->run->msr.index = index;
1829         vcpu->run->msr.data = data;
1830         vcpu->arch.complete_userspace_io = completion;
1831
1832         return 1;
1833 }
1834
1835 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1836 {
1837         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1838                                    complete_emulated_rdmsr, r);
1839 }
1840
1841 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1842 {
1843         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1844                                    complete_emulated_wrmsr, r);
1845 }
1846
1847 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1848 {
1849         u32 ecx = kvm_rcx_read(vcpu);
1850         u64 data;
1851         int r;
1852
1853         r = kvm_get_msr(vcpu, ecx, &data);
1854
1855         /* MSR read failed? See if we should ask user space */
1856         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1857                 /* Bounce to user space */
1858                 return 0;
1859         }
1860
1861         if (!r) {
1862                 trace_kvm_msr_read(ecx, data);
1863
1864                 kvm_rax_write(vcpu, data & -1u);
1865                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1866         } else {
1867                 trace_kvm_msr_read_ex(ecx);
1868         }
1869
1870         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1873
1874 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1875 {
1876         u32 ecx = kvm_rcx_read(vcpu);
1877         u64 data = kvm_read_edx_eax(vcpu);
1878         int r;
1879
1880         r = kvm_set_msr(vcpu, ecx, data);
1881
1882         /* MSR write failed? See if we should ask user space */
1883         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1884                 /* Bounce to user space */
1885                 return 0;
1886
1887         /* Signal all other negative errors to userspace */
1888         if (r < 0)
1889                 return r;
1890
1891         if (!r)
1892                 trace_kvm_msr_write(ecx, data);
1893         else
1894                 trace_kvm_msr_write_ex(ecx, data);
1895
1896         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1899
1900 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1901 {
1902         return kvm_skip_emulated_instruction(vcpu);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1905
1906 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1907 {
1908         /* Treat an INVD instruction as a NOP and just skip it. */
1909         return kvm_emulate_as_nop(vcpu);
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1912
1913 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1914 {
1915         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1916         return kvm_emulate_as_nop(vcpu);
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1919
1920 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1921 {
1922         kvm_queue_exception(vcpu, UD_VECTOR);
1923         return 1;
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1926
1927 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1928 {
1929         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1930         return kvm_emulate_as_nop(vcpu);
1931 }
1932 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1933
1934 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1935 {
1936         xfer_to_guest_mode_prepare();
1937         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1938                 xfer_to_guest_mode_work_pending();
1939 }
1940
1941 /*
1942  * The fast path for frequent and performance sensitive wrmsr emulation,
1943  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1944  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1945  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1946  * other cases which must be called after interrupts are enabled on the host.
1947  */
1948 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1949 {
1950         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1951                 return 1;
1952
1953         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1954                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1955                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1956                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1957
1958                 data &= ~(1 << 12);
1959                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1960                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1961                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1962                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1963                 return 0;
1964         }
1965
1966         return 1;
1967 }
1968
1969 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1970 {
1971         if (!kvm_can_use_hv_timer(vcpu))
1972                 return 1;
1973
1974         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1975         return 0;
1976 }
1977
1978 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1979 {
1980         u32 msr = kvm_rcx_read(vcpu);
1981         u64 data;
1982         fastpath_t ret = EXIT_FASTPATH_NONE;
1983
1984         switch (msr) {
1985         case APIC_BASE_MSR + (APIC_ICR >> 4):
1986                 data = kvm_read_edx_eax(vcpu);
1987                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1988                         kvm_skip_emulated_instruction(vcpu);
1989                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1990                 }
1991                 break;
1992         case MSR_IA32_TSC_DEADLINE:
1993                 data = kvm_read_edx_eax(vcpu);
1994                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1995                         kvm_skip_emulated_instruction(vcpu);
1996                         ret = EXIT_FASTPATH_REENTER_GUEST;
1997                 }
1998                 break;
1999         default:
2000                 break;
2001         }
2002
2003         if (ret != EXIT_FASTPATH_NONE)
2004                 trace_kvm_msr_write(msr, data);
2005
2006         return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2009
2010 /*
2011  * Adapt set_msr() to msr_io()'s calling convention
2012  */
2013 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2014 {
2015         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2016 }
2017
2018 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2019 {
2020         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2021 }
2022
2023 #ifdef CONFIG_X86_64
2024 struct pvclock_clock {
2025         int vclock_mode;
2026         u64 cycle_last;
2027         u64 mask;
2028         u32 mult;
2029         u32 shift;
2030         u64 base_cycles;
2031         u64 offset;
2032 };
2033
2034 struct pvclock_gtod_data {
2035         seqcount_t      seq;
2036
2037         struct pvclock_clock clock; /* extract of a clocksource struct */
2038         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2039
2040         ktime_t         offs_boot;
2041         u64             wall_time_sec;
2042 };
2043
2044 static struct pvclock_gtod_data pvclock_gtod_data;
2045
2046 static void update_pvclock_gtod(struct timekeeper *tk)
2047 {
2048         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2049
2050         write_seqcount_begin(&vdata->seq);
2051
2052         /* copy pvclock gtod data */
2053         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2054         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2055         vdata->clock.mask               = tk->tkr_mono.mask;
2056         vdata->clock.mult               = tk->tkr_mono.mult;
2057         vdata->clock.shift              = tk->tkr_mono.shift;
2058         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2059         vdata->clock.offset             = tk->tkr_mono.base;
2060
2061         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2062         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2063         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2064         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2065         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2066         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2067         vdata->raw_clock.offset         = tk->tkr_raw.base;
2068
2069         vdata->wall_time_sec            = tk->xtime_sec;
2070
2071         vdata->offs_boot                = tk->offs_boot;
2072
2073         write_seqcount_end(&vdata->seq);
2074 }
2075
2076 static s64 get_kvmclock_base_ns(void)
2077 {
2078         /* Count up from boot time, but with the frequency of the raw clock.  */
2079         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2080 }
2081 #else
2082 static s64 get_kvmclock_base_ns(void)
2083 {
2084         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2085         return ktime_get_boottime_ns();
2086 }
2087 #endif
2088
2089 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2090 {
2091         int version;
2092         int r;
2093         struct pvclock_wall_clock wc;
2094         u32 wc_sec_hi;
2095         u64 wall_nsec;
2096
2097         if (!wall_clock)
2098                 return;
2099
2100         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2101         if (r)
2102                 return;
2103
2104         if (version & 1)
2105                 ++version;  /* first time write, random junk */
2106
2107         ++version;
2108
2109         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2110                 return;
2111
2112         /*
2113          * The guest calculates current wall clock time by adding
2114          * system time (updated by kvm_guest_time_update below) to the
2115          * wall clock specified here.  We do the reverse here.
2116          */
2117         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2118
2119         wc.nsec = do_div(wall_nsec, 1000000000);
2120         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2121         wc.version = version;
2122
2123         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2124
2125         if (sec_hi_ofs) {
2126                 wc_sec_hi = wall_nsec >> 32;
2127                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2128                                 &wc_sec_hi, sizeof(wc_sec_hi));
2129         }
2130
2131         version++;
2132         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2133 }
2134
2135 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2136                                   bool old_msr, bool host_initiated)
2137 {
2138         struct kvm_arch *ka = &vcpu->kvm->arch;
2139
2140         if (vcpu->vcpu_id == 0 && !host_initiated) {
2141                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2142                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2143
2144                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2145         }
2146
2147         vcpu->arch.time = system_time;
2148         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2149
2150         /* we verify if the enable bit is set... */
2151         vcpu->arch.pv_time_enabled = false;
2152         if (!(system_time & 1))
2153                 return;
2154
2155         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2156                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2157                                        sizeof(struct pvclock_vcpu_time_info)))
2158                 vcpu->arch.pv_time_enabled = true;
2159
2160         return;
2161 }
2162
2163 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2164 {
2165         do_shl32_div32(dividend, divisor);
2166         return dividend;
2167 }
2168
2169 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2170                                s8 *pshift, u32 *pmultiplier)
2171 {
2172         uint64_t scaled64;
2173         int32_t  shift = 0;
2174         uint64_t tps64;
2175         uint32_t tps32;
2176
2177         tps64 = base_hz;
2178         scaled64 = scaled_hz;
2179         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2180                 tps64 >>= 1;
2181                 shift--;
2182         }
2183
2184         tps32 = (uint32_t)tps64;
2185         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2186                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2187                         scaled64 >>= 1;
2188                 else
2189                         tps32 <<= 1;
2190                 shift++;
2191         }
2192
2193         *pshift = shift;
2194         *pmultiplier = div_frac(scaled64, tps32);
2195 }
2196
2197 #ifdef CONFIG_X86_64
2198 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2199 #endif
2200
2201 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2202 static unsigned long max_tsc_khz;
2203
2204 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2205 {
2206         u64 v = (u64)khz * (1000000 + ppm);
2207         do_div(v, 1000000);
2208         return v;
2209 }
2210
2211 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2212
2213 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2214 {
2215         u64 ratio;
2216
2217         /* Guest TSC same frequency as host TSC? */
2218         if (!scale) {
2219                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2220                 return 0;
2221         }
2222
2223         /* TSC scaling supported? */
2224         if (!kvm_has_tsc_control) {
2225                 if (user_tsc_khz > tsc_khz) {
2226                         vcpu->arch.tsc_catchup = 1;
2227                         vcpu->arch.tsc_always_catchup = 1;
2228                         return 0;
2229                 } else {
2230                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2231                         return -1;
2232                 }
2233         }
2234
2235         /* TSC scaling required  - calculate ratio */
2236         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2237                                 user_tsc_khz, tsc_khz);
2238
2239         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2240                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2241                                     user_tsc_khz);
2242                 return -1;
2243         }
2244
2245         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2246         return 0;
2247 }
2248
2249 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2250 {
2251         u32 thresh_lo, thresh_hi;
2252         int use_scaling = 0;
2253
2254         /* tsc_khz can be zero if TSC calibration fails */
2255         if (user_tsc_khz == 0) {
2256                 /* set tsc_scaling_ratio to a safe value */
2257                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2258                 return -1;
2259         }
2260
2261         /* Compute a scale to convert nanoseconds in TSC cycles */
2262         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2263                            &vcpu->arch.virtual_tsc_shift,
2264                            &vcpu->arch.virtual_tsc_mult);
2265         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2266
2267         /*
2268          * Compute the variation in TSC rate which is acceptable
2269          * within the range of tolerance and decide if the
2270          * rate being applied is within that bounds of the hardware
2271          * rate.  If so, no scaling or compensation need be done.
2272          */
2273         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2274         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2275         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2276                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2277                 use_scaling = 1;
2278         }
2279         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2280 }
2281
2282 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2283 {
2284         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2285                                       vcpu->arch.virtual_tsc_mult,
2286                                       vcpu->arch.virtual_tsc_shift);
2287         tsc += vcpu->arch.this_tsc_write;
2288         return tsc;
2289 }
2290
2291 static inline int gtod_is_based_on_tsc(int mode)
2292 {
2293         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2294 }
2295
2296 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2297 {
2298 #ifdef CONFIG_X86_64
2299         bool vcpus_matched;
2300         struct kvm_arch *ka = &vcpu->kvm->arch;
2301         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2302
2303         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2304                          atomic_read(&vcpu->kvm->online_vcpus));
2305
2306         /*
2307          * Once the masterclock is enabled, always perform request in
2308          * order to update it.
2309          *
2310          * In order to enable masterclock, the host clocksource must be TSC
2311          * and the vcpus need to have matched TSCs.  When that happens,
2312          * perform request to enable masterclock.
2313          */
2314         if (ka->use_master_clock ||
2315             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2316                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2317
2318         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2319                             atomic_read(&vcpu->kvm->online_vcpus),
2320                             ka->use_master_clock, gtod->clock.vclock_mode);
2321 #endif
2322 }
2323
2324 /*
2325  * Multiply tsc by a fixed point number represented by ratio.
2326  *
2327  * The most significant 64-N bits (mult) of ratio represent the
2328  * integral part of the fixed point number; the remaining N bits
2329  * (frac) represent the fractional part, ie. ratio represents a fixed
2330  * point number (mult + frac * 2^(-N)).
2331  *
2332  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2333  */
2334 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2335 {
2336         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2337 }
2338
2339 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2340 {
2341         u64 _tsc = tsc;
2342
2343         if (ratio != kvm_default_tsc_scaling_ratio)
2344                 _tsc = __scale_tsc(ratio, tsc);
2345
2346         return _tsc;
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2349
2350 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2351 {
2352         u64 tsc;
2353
2354         tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2355
2356         return target_tsc - tsc;
2357 }
2358
2359 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2360 {
2361         return vcpu->arch.l1_tsc_offset +
2362                 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2365
2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2367 {
2368         u64 nested_offset;
2369
2370         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2371                 nested_offset = l1_offset;
2372         else
2373                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2374                                                 kvm_tsc_scaling_ratio_frac_bits);
2375
2376         nested_offset += l2_offset;
2377         return nested_offset;
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2380
2381 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2382 {
2383         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2384                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2385                                        kvm_tsc_scaling_ratio_frac_bits);
2386
2387         return l1_multiplier;
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2390
2391 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2392 {
2393         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2394                                    vcpu->arch.l1_tsc_offset,
2395                                    l1_offset);
2396
2397         vcpu->arch.l1_tsc_offset = l1_offset;
2398
2399         /*
2400          * If we are here because L1 chose not to trap WRMSR to TSC then
2401          * according to the spec this should set L1's TSC (as opposed to
2402          * setting L1's offset for L2).
2403          */
2404         if (is_guest_mode(vcpu))
2405                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2406                         l1_offset,
2407                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2408                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2409         else
2410                 vcpu->arch.tsc_offset = l1_offset;
2411
2412         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2413 }
2414
2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2416 {
2417         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2418
2419         /* Userspace is changing the multiplier while L2 is active */
2420         if (is_guest_mode(vcpu))
2421                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2422                         l1_multiplier,
2423                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2424         else
2425                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2426
2427         if (kvm_has_tsc_control)
2428                 static_call(kvm_x86_write_tsc_multiplier)(
2429                         vcpu, vcpu->arch.tsc_scaling_ratio);
2430 }
2431
2432 static inline bool kvm_check_tsc_unstable(void)
2433 {
2434 #ifdef CONFIG_X86_64
2435         /*
2436          * TSC is marked unstable when we're running on Hyper-V,
2437          * 'TSC page' clocksource is good.
2438          */
2439         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2440                 return false;
2441 #endif
2442         return check_tsc_unstable();
2443 }
2444
2445 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2446 {
2447         struct kvm *kvm = vcpu->kvm;
2448         u64 offset, ns, elapsed;
2449         unsigned long flags;
2450         bool matched;
2451         bool already_matched;
2452         bool synchronizing = false;
2453
2454         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2455         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2456         ns = get_kvmclock_base_ns();
2457         elapsed = ns - kvm->arch.last_tsc_nsec;
2458
2459         if (vcpu->arch.virtual_tsc_khz) {
2460                 if (data == 0) {
2461                         /*
2462                          * detection of vcpu initialization -- need to sync
2463                          * with other vCPUs. This particularly helps to keep
2464                          * kvm_clock stable after CPU hotplug
2465                          */
2466                         synchronizing = true;
2467                 } else {
2468                         u64 tsc_exp = kvm->arch.last_tsc_write +
2469                                                 nsec_to_cycles(vcpu, elapsed);
2470                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2471                         /*
2472                          * Special case: TSC write with a small delta (1 second)
2473                          * of virtual cycle time against real time is
2474                          * interpreted as an attempt to synchronize the CPU.
2475                          */
2476                         synchronizing = data < tsc_exp + tsc_hz &&
2477                                         data + tsc_hz > tsc_exp;
2478                 }
2479         }
2480
2481         /*
2482          * For a reliable TSC, we can match TSC offsets, and for an unstable
2483          * TSC, we add elapsed time in this computation.  We could let the
2484          * compensation code attempt to catch up if we fall behind, but
2485          * it's better to try to match offsets from the beginning.
2486          */
2487         if (synchronizing &&
2488             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2489                 if (!kvm_check_tsc_unstable()) {
2490                         offset = kvm->arch.cur_tsc_offset;
2491                 } else {
2492                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2493                         data += delta;
2494                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2495                 }
2496                 matched = true;
2497                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2498         } else {
2499                 /*
2500                  * We split periods of matched TSC writes into generations.
2501                  * For each generation, we track the original measured
2502                  * nanosecond time, offset, and write, so if TSCs are in
2503                  * sync, we can match exact offset, and if not, we can match
2504                  * exact software computation in compute_guest_tsc()
2505                  *
2506                  * These values are tracked in kvm->arch.cur_xxx variables.
2507                  */
2508                 kvm->arch.cur_tsc_generation++;
2509                 kvm->arch.cur_tsc_nsec = ns;
2510                 kvm->arch.cur_tsc_write = data;
2511                 kvm->arch.cur_tsc_offset = offset;
2512                 matched = false;
2513         }
2514
2515         /*
2516          * We also track th most recent recorded KHZ, write and time to
2517          * allow the matching interval to be extended at each write.
2518          */
2519         kvm->arch.last_tsc_nsec = ns;
2520         kvm->arch.last_tsc_write = data;
2521         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2522
2523         vcpu->arch.last_guest_tsc = data;
2524
2525         /* Keep track of which generation this VCPU has synchronized to */
2526         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2527         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2528         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2529
2530         kvm_vcpu_write_tsc_offset(vcpu, offset);
2531         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2532
2533         spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2534         if (!matched) {
2535                 kvm->arch.nr_vcpus_matched_tsc = 0;
2536         } else if (!already_matched) {
2537                 kvm->arch.nr_vcpus_matched_tsc++;
2538         }
2539
2540         kvm_track_tsc_matching(vcpu);
2541         spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2542 }
2543
2544 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2545                                            s64 adjustment)
2546 {
2547         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2548         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2549 }
2550
2551 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2552 {
2553         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2554                 WARN_ON(adjustment < 0);
2555         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2556                                    vcpu->arch.l1_tsc_scaling_ratio);
2557         adjust_tsc_offset_guest(vcpu, adjustment);
2558 }
2559
2560 #ifdef CONFIG_X86_64
2561
2562 static u64 read_tsc(void)
2563 {
2564         u64 ret = (u64)rdtsc_ordered();
2565         u64 last = pvclock_gtod_data.clock.cycle_last;
2566
2567         if (likely(ret >= last))
2568                 return ret;
2569
2570         /*
2571          * GCC likes to generate cmov here, but this branch is extremely
2572          * predictable (it's just a function of time and the likely is
2573          * very likely) and there's a data dependence, so force GCC
2574          * to generate a branch instead.  I don't barrier() because
2575          * we don't actually need a barrier, and if this function
2576          * ever gets inlined it will generate worse code.
2577          */
2578         asm volatile ("");
2579         return last;
2580 }
2581
2582 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2583                           int *mode)
2584 {
2585         long v;
2586         u64 tsc_pg_val;
2587
2588         switch (clock->vclock_mode) {
2589         case VDSO_CLOCKMODE_HVCLOCK:
2590                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2591                                                   tsc_timestamp);
2592                 if (tsc_pg_val != U64_MAX) {
2593                         /* TSC page valid */
2594                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2595                         v = (tsc_pg_val - clock->cycle_last) &
2596                                 clock->mask;
2597                 } else {
2598                         /* TSC page invalid */
2599                         *mode = VDSO_CLOCKMODE_NONE;
2600                 }
2601                 break;
2602         case VDSO_CLOCKMODE_TSC:
2603                 *mode = VDSO_CLOCKMODE_TSC;
2604                 *tsc_timestamp = read_tsc();
2605                 v = (*tsc_timestamp - clock->cycle_last) &
2606                         clock->mask;
2607                 break;
2608         default:
2609                 *mode = VDSO_CLOCKMODE_NONE;
2610         }
2611
2612         if (*mode == VDSO_CLOCKMODE_NONE)
2613                 *tsc_timestamp = v = 0;
2614
2615         return v * clock->mult;
2616 }
2617
2618 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2619 {
2620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2621         unsigned long seq;
2622         int mode;
2623         u64 ns;
2624
2625         do {
2626                 seq = read_seqcount_begin(&gtod->seq);
2627                 ns = gtod->raw_clock.base_cycles;
2628                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2629                 ns >>= gtod->raw_clock.shift;
2630                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2631         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2632         *t = ns;
2633
2634         return mode;
2635 }
2636
2637 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2638 {
2639         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2640         unsigned long seq;
2641         int mode;
2642         u64 ns;
2643
2644         do {
2645                 seq = read_seqcount_begin(&gtod->seq);
2646                 ts->tv_sec = gtod->wall_time_sec;
2647                 ns = gtod->clock.base_cycles;
2648                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2649                 ns >>= gtod->clock.shift;
2650         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2651
2652         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2653         ts->tv_nsec = ns;
2654
2655         return mode;
2656 }
2657
2658 /* returns true if host is using TSC based clocksource */
2659 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2660 {
2661         /* checked again under seqlock below */
2662         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2663                 return false;
2664
2665         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2666                                                       tsc_timestamp));
2667 }
2668
2669 /* returns true if host is using TSC based clocksource */
2670 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2671                                            u64 *tsc_timestamp)
2672 {
2673         /* checked again under seqlock below */
2674         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675                 return false;
2676
2677         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2678 }
2679 #endif
2680
2681 /*
2682  *
2683  * Assuming a stable TSC across physical CPUS, and a stable TSC
2684  * across virtual CPUs, the following condition is possible.
2685  * Each numbered line represents an event visible to both
2686  * CPUs at the next numbered event.
2687  *
2688  * "timespecX" represents host monotonic time. "tscX" represents
2689  * RDTSC value.
2690  *
2691  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2692  *
2693  * 1.  read timespec0,tsc0
2694  * 2.                                   | timespec1 = timespec0 + N
2695  *                                      | tsc1 = tsc0 + M
2696  * 3. transition to guest               | transition to guest
2697  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2698  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2699  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2700  *
2701  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2702  *
2703  *      - ret0 < ret1
2704  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2705  *              ...
2706  *      - 0 < N - M => M < N
2707  *
2708  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2709  * always the case (the difference between two distinct xtime instances
2710  * might be smaller then the difference between corresponding TSC reads,
2711  * when updating guest vcpus pvclock areas).
2712  *
2713  * To avoid that problem, do not allow visibility of distinct
2714  * system_timestamp/tsc_timestamp values simultaneously: use a master
2715  * copy of host monotonic time values. Update that master copy
2716  * in lockstep.
2717  *
2718  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2719  *
2720  */
2721
2722 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2723 {
2724 #ifdef CONFIG_X86_64
2725         struct kvm_arch *ka = &kvm->arch;
2726         int vclock_mode;
2727         bool host_tsc_clocksource, vcpus_matched;
2728
2729         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2730                         atomic_read(&kvm->online_vcpus));
2731
2732         /*
2733          * If the host uses TSC clock, then passthrough TSC as stable
2734          * to the guest.
2735          */
2736         host_tsc_clocksource = kvm_get_time_and_clockread(
2737                                         &ka->master_kernel_ns,
2738                                         &ka->master_cycle_now);
2739
2740         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2741                                 && !ka->backwards_tsc_observed
2742                                 && !ka->boot_vcpu_runs_old_kvmclock;
2743
2744         if (ka->use_master_clock)
2745                 atomic_set(&kvm_guest_has_master_clock, 1);
2746
2747         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2748         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2749                                         vcpus_matched);
2750 #endif
2751 }
2752
2753 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2754 {
2755         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2756 }
2757
2758 static void kvm_gen_update_masterclock(struct kvm *kvm)
2759 {
2760 #ifdef CONFIG_X86_64
2761         int i;
2762         struct kvm_vcpu *vcpu;
2763         struct kvm_arch *ka = &kvm->arch;
2764         unsigned long flags;
2765
2766         kvm_hv_invalidate_tsc_page(kvm);
2767
2768         kvm_make_mclock_inprogress_request(kvm);
2769
2770         /* no guest entries from this point */
2771         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2772         pvclock_update_vm_gtod_copy(kvm);
2773         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2774
2775         kvm_for_each_vcpu(i, vcpu, kvm)
2776                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2777
2778         /* guest entries allowed */
2779         kvm_for_each_vcpu(i, vcpu, kvm)
2780                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2781 #endif
2782 }
2783
2784 u64 get_kvmclock_ns(struct kvm *kvm)
2785 {
2786         struct kvm_arch *ka = &kvm->arch;
2787         struct pvclock_vcpu_time_info hv_clock;
2788         unsigned long flags;
2789         u64 ret;
2790
2791         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2792         if (!ka->use_master_clock) {
2793                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2794                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2795         }
2796
2797         hv_clock.tsc_timestamp = ka->master_cycle_now;
2798         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2799         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2800
2801         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2802         get_cpu();
2803
2804         if (__this_cpu_read(cpu_tsc_khz)) {
2805                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2806                                    &hv_clock.tsc_shift,
2807                                    &hv_clock.tsc_to_system_mul);
2808                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2809         } else
2810                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2811
2812         put_cpu();
2813
2814         return ret;
2815 }
2816
2817 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2818                                    struct gfn_to_hva_cache *cache,
2819                                    unsigned int offset)
2820 {
2821         struct kvm_vcpu_arch *vcpu = &v->arch;
2822         struct pvclock_vcpu_time_info guest_hv_clock;
2823
2824         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2825                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2826                 return;
2827
2828         /* This VCPU is paused, but it's legal for a guest to read another
2829          * VCPU's kvmclock, so we really have to follow the specification where
2830          * it says that version is odd if data is being modified, and even after
2831          * it is consistent.
2832          *
2833          * Version field updates must be kept separate.  This is because
2834          * kvm_write_guest_cached might use a "rep movs" instruction, and
2835          * writes within a string instruction are weakly ordered.  So there
2836          * are three writes overall.
2837          *
2838          * As a small optimization, only write the version field in the first
2839          * and third write.  The vcpu->pv_time cache is still valid, because the
2840          * version field is the first in the struct.
2841          */
2842         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2843
2844         if (guest_hv_clock.version & 1)
2845                 ++guest_hv_clock.version;  /* first time write, random junk */
2846
2847         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2848         kvm_write_guest_offset_cached(v->kvm, cache,
2849                                       &vcpu->hv_clock, offset,
2850                                       sizeof(vcpu->hv_clock.version));
2851
2852         smp_wmb();
2853
2854         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2855         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2856
2857         if (vcpu->pvclock_set_guest_stopped_request) {
2858                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2859                 vcpu->pvclock_set_guest_stopped_request = false;
2860         }
2861
2862         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2863
2864         kvm_write_guest_offset_cached(v->kvm, cache,
2865                                       &vcpu->hv_clock, offset,
2866                                       sizeof(vcpu->hv_clock));
2867
2868         smp_wmb();
2869
2870         vcpu->hv_clock.version++;
2871         kvm_write_guest_offset_cached(v->kvm, cache,
2872                                      &vcpu->hv_clock, offset,
2873                                      sizeof(vcpu->hv_clock.version));
2874 }
2875
2876 static int kvm_guest_time_update(struct kvm_vcpu *v)
2877 {
2878         unsigned long flags, tgt_tsc_khz;
2879         struct kvm_vcpu_arch *vcpu = &v->arch;
2880         struct kvm_arch *ka = &v->kvm->arch;
2881         s64 kernel_ns;
2882         u64 tsc_timestamp, host_tsc;
2883         u8 pvclock_flags;
2884         bool use_master_clock;
2885
2886         kernel_ns = 0;
2887         host_tsc = 0;
2888
2889         /*
2890          * If the host uses TSC clock, then passthrough TSC as stable
2891          * to the guest.
2892          */
2893         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2894         use_master_clock = ka->use_master_clock;
2895         if (use_master_clock) {
2896                 host_tsc = ka->master_cycle_now;
2897                 kernel_ns = ka->master_kernel_ns;
2898         }
2899         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2900
2901         /* Keep irq disabled to prevent changes to the clock */
2902         local_irq_save(flags);
2903         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2904         if (unlikely(tgt_tsc_khz == 0)) {
2905                 local_irq_restore(flags);
2906                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2907                 return 1;
2908         }
2909         if (!use_master_clock) {
2910                 host_tsc = rdtsc();
2911                 kernel_ns = get_kvmclock_base_ns();
2912         }
2913
2914         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2915
2916         /*
2917          * We may have to catch up the TSC to match elapsed wall clock
2918          * time for two reasons, even if kvmclock is used.
2919          *   1) CPU could have been running below the maximum TSC rate
2920          *   2) Broken TSC compensation resets the base at each VCPU
2921          *      entry to avoid unknown leaps of TSC even when running
2922          *      again on the same CPU.  This may cause apparent elapsed
2923          *      time to disappear, and the guest to stand still or run
2924          *      very slowly.
2925          */
2926         if (vcpu->tsc_catchup) {
2927                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2928                 if (tsc > tsc_timestamp) {
2929                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2930                         tsc_timestamp = tsc;
2931                 }
2932         }
2933
2934         local_irq_restore(flags);
2935
2936         /* With all the info we got, fill in the values */
2937
2938         if (kvm_has_tsc_control)
2939                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2940                                             v->arch.l1_tsc_scaling_ratio);
2941
2942         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2943                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2944                                    &vcpu->hv_clock.tsc_shift,
2945                                    &vcpu->hv_clock.tsc_to_system_mul);
2946                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2947         }
2948
2949         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2950         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2951         vcpu->last_guest_tsc = tsc_timestamp;
2952
2953         /* If the host uses TSC clocksource, then it is stable */
2954         pvclock_flags = 0;
2955         if (use_master_clock)
2956                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2957
2958         vcpu->hv_clock.flags = pvclock_flags;
2959
2960         if (vcpu->pv_time_enabled)
2961                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2962         if (vcpu->xen.vcpu_info_set)
2963                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2964                                        offsetof(struct compat_vcpu_info, time));
2965         if (vcpu->xen.vcpu_time_info_set)
2966                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2967         if (v == kvm_get_vcpu(v->kvm, 0))
2968                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2969         return 0;
2970 }
2971
2972 /*
2973  * kvmclock updates which are isolated to a given vcpu, such as
2974  * vcpu->cpu migration, should not allow system_timestamp from
2975  * the rest of the vcpus to remain static. Otherwise ntp frequency
2976  * correction applies to one vcpu's system_timestamp but not
2977  * the others.
2978  *
2979  * So in those cases, request a kvmclock update for all vcpus.
2980  * We need to rate-limit these requests though, as they can
2981  * considerably slow guests that have a large number of vcpus.
2982  * The time for a remote vcpu to update its kvmclock is bound
2983  * by the delay we use to rate-limit the updates.
2984  */
2985
2986 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2987
2988 static void kvmclock_update_fn(struct work_struct *work)
2989 {
2990         int i;
2991         struct delayed_work *dwork = to_delayed_work(work);
2992         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2993                                            kvmclock_update_work);
2994         struct kvm *kvm = container_of(ka, struct kvm, arch);
2995         struct kvm_vcpu *vcpu;
2996
2997         kvm_for_each_vcpu(i, vcpu, kvm) {
2998                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2999                 kvm_vcpu_kick(vcpu);
3000         }
3001 }
3002
3003 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3004 {
3005         struct kvm *kvm = v->kvm;
3006
3007         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3008         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3009                                         KVMCLOCK_UPDATE_DELAY);
3010 }
3011
3012 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3013
3014 static void kvmclock_sync_fn(struct work_struct *work)
3015 {
3016         struct delayed_work *dwork = to_delayed_work(work);
3017         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3018                                            kvmclock_sync_work);
3019         struct kvm *kvm = container_of(ka, struct kvm, arch);
3020
3021         if (!kvmclock_periodic_sync)
3022                 return;
3023
3024         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3025         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3026                                         KVMCLOCK_SYNC_PERIOD);
3027 }
3028
3029 /*
3030  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3031  */
3032 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3033 {
3034         /* McStatusWrEn enabled? */
3035         if (guest_cpuid_is_amd_or_hygon(vcpu))
3036                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3037
3038         return false;
3039 }
3040
3041 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3042 {
3043         u64 mcg_cap = vcpu->arch.mcg_cap;
3044         unsigned bank_num = mcg_cap & 0xff;
3045         u32 msr = msr_info->index;
3046         u64 data = msr_info->data;
3047
3048         switch (msr) {
3049         case MSR_IA32_MCG_STATUS:
3050                 vcpu->arch.mcg_status = data;
3051                 break;
3052         case MSR_IA32_MCG_CTL:
3053                 if (!(mcg_cap & MCG_CTL_P) &&
3054                     (data || !msr_info->host_initiated))
3055                         return 1;
3056                 if (data != 0 && data != ~(u64)0)
3057                         return 1;
3058                 vcpu->arch.mcg_ctl = data;
3059                 break;
3060         default:
3061                 if (msr >= MSR_IA32_MC0_CTL &&
3062                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3063                         u32 offset = array_index_nospec(
3064                                 msr - MSR_IA32_MC0_CTL,
3065                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3066
3067                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3068                          * some Linux kernels though clear bit 10 in bank 4 to
3069                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3070                          * this to avoid an uncatched #GP in the guest
3071                          */
3072                         if ((offset & 0x3) == 0 &&
3073                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3074                                 return -1;
3075
3076                         /* MCi_STATUS */
3077                         if (!msr_info->host_initiated &&
3078                             (offset & 0x3) == 1 && data != 0) {
3079                                 if (!can_set_mci_status(vcpu))
3080                                         return -1;
3081                         }
3082
3083                         vcpu->arch.mce_banks[offset] = data;
3084                         break;
3085                 }
3086                 return 1;
3087         }
3088         return 0;
3089 }
3090
3091 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3092 {
3093         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3094
3095         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3096 }
3097
3098 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3099 {
3100         gpa_t gpa = data & ~0x3f;
3101
3102         /* Bits 4:5 are reserved, Should be zero */
3103         if (data & 0x30)
3104                 return 1;
3105
3106         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3107             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3108                 return 1;
3109
3110         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3111             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3112                 return 1;
3113
3114         if (!lapic_in_kernel(vcpu))
3115                 return data ? 1 : 0;
3116
3117         vcpu->arch.apf.msr_en_val = data;
3118
3119         if (!kvm_pv_async_pf_enabled(vcpu)) {
3120                 kvm_clear_async_pf_completion_queue(vcpu);
3121                 kvm_async_pf_hash_reset(vcpu);
3122                 return 0;
3123         }
3124
3125         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3126                                         sizeof(u64)))
3127                 return 1;
3128
3129         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3130         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3131
3132         kvm_async_pf_wakeup_all(vcpu);
3133
3134         return 0;
3135 }
3136
3137 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3138 {
3139         /* Bits 8-63 are reserved */
3140         if (data >> 8)
3141                 return 1;
3142
3143         if (!lapic_in_kernel(vcpu))
3144                 return 1;
3145
3146         vcpu->arch.apf.msr_int_val = data;
3147
3148         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3149
3150         return 0;
3151 }
3152
3153 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3154 {
3155         vcpu->arch.pv_time_enabled = false;
3156         vcpu->arch.time = 0;
3157 }
3158
3159 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3160 {
3161         ++vcpu->stat.tlb_flush;
3162         static_call(kvm_x86_tlb_flush_all)(vcpu);
3163 }
3164
3165 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3166 {
3167         ++vcpu->stat.tlb_flush;
3168
3169         if (!tdp_enabled) {
3170                /*
3171                  * A TLB flush on behalf of the guest is equivalent to
3172                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3173                  * a forced sync of the shadow page tables.  Unload the
3174                  * entire MMU here and the subsequent load will sync the
3175                  * shadow page tables, and also flush the TLB.
3176                  */
3177                 kvm_mmu_unload(vcpu);
3178                 return;
3179         }
3180
3181         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3182 }
3183
3184 static void record_steal_time(struct kvm_vcpu *vcpu)
3185 {
3186         struct kvm_host_map map;
3187         struct kvm_steal_time *st;
3188
3189         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3190                 kvm_xen_runstate_set_running(vcpu);
3191                 return;
3192         }
3193
3194         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3195                 return;
3196
3197         /* -EAGAIN is returned in atomic context so we can just return. */
3198         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3199                         &map, &vcpu->arch.st.cache, false))
3200                 return;
3201
3202         st = map.hva +
3203                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3204
3205         /*
3206          * Doing a TLB flush here, on the guest's behalf, can avoid
3207          * expensive IPIs.
3208          */
3209         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3210                 u8 st_preempted = xchg(&st->preempted, 0);
3211
3212                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3213                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3214                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3215                         kvm_vcpu_flush_tlb_guest(vcpu);
3216         } else {
3217                 st->preempted = 0;
3218         }
3219
3220         vcpu->arch.st.preempted = 0;
3221
3222         if (st->version & 1)
3223                 st->version += 1;  /* first time write, random junk */
3224
3225         st->version += 1;
3226
3227         smp_wmb();
3228
3229         st->steal += current->sched_info.run_delay -
3230                 vcpu->arch.st.last_steal;
3231         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3232
3233         smp_wmb();
3234
3235         st->version += 1;
3236
3237         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3238 }
3239
3240 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3241 {
3242         bool pr = false;
3243         u32 msr = msr_info->index;
3244         u64 data = msr_info->data;
3245
3246         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3247                 return kvm_xen_write_hypercall_page(vcpu, data);
3248
3249         switch (msr) {
3250         case MSR_AMD64_NB_CFG:
3251         case MSR_IA32_UCODE_WRITE:
3252         case MSR_VM_HSAVE_PA:
3253         case MSR_AMD64_PATCH_LOADER:
3254         case MSR_AMD64_BU_CFG2:
3255         case MSR_AMD64_DC_CFG:
3256         case MSR_F15H_EX_CFG:
3257                 break;
3258
3259         case MSR_IA32_UCODE_REV:
3260                 if (msr_info->host_initiated)
3261                         vcpu->arch.microcode_version = data;
3262                 break;
3263         case MSR_IA32_ARCH_CAPABILITIES:
3264                 if (!msr_info->host_initiated)
3265                         return 1;
3266                 vcpu->arch.arch_capabilities = data;
3267                 break;
3268         case MSR_IA32_PERF_CAPABILITIES: {
3269                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3270
3271                 if (!msr_info->host_initiated)
3272                         return 1;
3273                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3274                         return 1;
3275                 if (data & ~msr_ent.data)
3276                         return 1;
3277
3278                 vcpu->arch.perf_capabilities = data;
3279
3280                 return 0;
3281                 }
3282         case MSR_EFER:
3283                 return set_efer(vcpu, msr_info);
3284         case MSR_K7_HWCR:
3285                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3286                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3287                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3288
3289                 /* Handle McStatusWrEn */
3290                 if (data == BIT_ULL(18)) {
3291                         vcpu->arch.msr_hwcr = data;
3292                 } else if (data != 0) {
3293                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3294                                     data);
3295                         return 1;
3296                 }
3297                 break;
3298         case MSR_FAM10H_MMIO_CONF_BASE:
3299                 if (data != 0) {
3300                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3301                                     "0x%llx\n", data);
3302                         return 1;
3303                 }
3304                 break;
3305         case 0x200 ... 0x2ff:
3306                 return kvm_mtrr_set_msr(vcpu, msr, data);
3307         case MSR_IA32_APICBASE:
3308                 return kvm_set_apic_base(vcpu, msr_info);
3309         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3310                 return kvm_x2apic_msr_write(vcpu, msr, data);
3311         case MSR_IA32_TSC_DEADLINE:
3312                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3313                 break;
3314         case MSR_IA32_TSC_ADJUST:
3315                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3316                         if (!msr_info->host_initiated) {
3317                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3318                                 adjust_tsc_offset_guest(vcpu, adj);
3319                         }
3320                         vcpu->arch.ia32_tsc_adjust_msr = data;
3321                 }
3322                 break;
3323         case MSR_IA32_MISC_ENABLE:
3324                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3325                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3326                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3327                                 return 1;
3328                         vcpu->arch.ia32_misc_enable_msr = data;
3329                         kvm_update_cpuid_runtime(vcpu);
3330                 } else {
3331                         vcpu->arch.ia32_misc_enable_msr = data;
3332                 }
3333                 break;
3334         case MSR_IA32_SMBASE:
3335                 if (!msr_info->host_initiated)
3336                         return 1;
3337                 vcpu->arch.smbase = data;
3338                 break;
3339         case MSR_IA32_POWER_CTL:
3340                 vcpu->arch.msr_ia32_power_ctl = data;
3341                 break;
3342         case MSR_IA32_TSC:
3343                 if (msr_info->host_initiated) {
3344                         kvm_synchronize_tsc(vcpu, data);
3345                 } else {
3346                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3347                         adjust_tsc_offset_guest(vcpu, adj);
3348                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3349                 }
3350                 break;
3351         case MSR_IA32_XSS:
3352                 if (!msr_info->host_initiated &&
3353                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3354                         return 1;
3355                 /*
3356                  * KVM supports exposing PT to the guest, but does not support
3357                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3358                  * XSAVES/XRSTORS to save/restore PT MSRs.
3359                  */
3360                 if (data & ~supported_xss)
3361                         return 1;
3362                 vcpu->arch.ia32_xss = data;
3363                 break;
3364         case MSR_SMI_COUNT:
3365                 if (!msr_info->host_initiated)
3366                         return 1;
3367                 vcpu->arch.smi_count = data;
3368                 break;
3369         case MSR_KVM_WALL_CLOCK_NEW:
3370                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3371                         return 1;
3372
3373                 vcpu->kvm->arch.wall_clock = data;
3374                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3375                 break;
3376         case MSR_KVM_WALL_CLOCK:
3377                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3378                         return 1;
3379
3380                 vcpu->kvm->arch.wall_clock = data;
3381                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3382                 break;
3383         case MSR_KVM_SYSTEM_TIME_NEW:
3384                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3385                         return 1;
3386
3387                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3388                 break;
3389         case MSR_KVM_SYSTEM_TIME:
3390                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3391                         return 1;
3392
3393                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3394                 break;
3395         case MSR_KVM_ASYNC_PF_EN:
3396                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3397                         return 1;
3398
3399                 if (kvm_pv_enable_async_pf(vcpu, data))
3400                         return 1;
3401                 break;
3402         case MSR_KVM_ASYNC_PF_INT:
3403                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3404                         return 1;
3405
3406                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3407                         return 1;
3408                 break;
3409         case MSR_KVM_ASYNC_PF_ACK:
3410                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3411                         return 1;
3412                 if (data & 0x1) {
3413                         vcpu->arch.apf.pageready_pending = false;
3414                         kvm_check_async_pf_completion(vcpu);
3415                 }
3416                 break;
3417         case MSR_KVM_STEAL_TIME:
3418                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3419                         return 1;
3420
3421                 if (unlikely(!sched_info_on()))
3422                         return 1;
3423
3424                 if (data & KVM_STEAL_RESERVED_MASK)
3425                         return 1;
3426
3427                 vcpu->arch.st.msr_val = data;
3428
3429                 if (!(data & KVM_MSR_ENABLED))
3430                         break;
3431
3432                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3433
3434                 break;
3435         case MSR_KVM_PV_EOI_EN:
3436                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3437                         return 1;
3438
3439                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3440                         return 1;
3441                 break;
3442
3443         case MSR_KVM_POLL_CONTROL:
3444                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3445                         return 1;
3446
3447                 /* only enable bit supported */
3448                 if (data & (-1ULL << 1))
3449                         return 1;
3450
3451                 vcpu->arch.msr_kvm_poll_control = data;
3452                 break;
3453
3454         case MSR_IA32_MCG_CTL:
3455         case MSR_IA32_MCG_STATUS:
3456         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3457                 return set_msr_mce(vcpu, msr_info);
3458
3459         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3460         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3461                 pr = true;
3462                 fallthrough;
3463         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3464         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3465                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3466                         return kvm_pmu_set_msr(vcpu, msr_info);
3467
3468                 if (pr || data != 0)
3469                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3470                                     "0x%x data 0x%llx\n", msr, data);
3471                 break;
3472         case MSR_K7_CLK_CTL:
3473                 /*
3474                  * Ignore all writes to this no longer documented MSR.
3475                  * Writes are only relevant for old K7 processors,
3476                  * all pre-dating SVM, but a recommended workaround from
3477                  * AMD for these chips. It is possible to specify the
3478                  * affected processor models on the command line, hence
3479                  * the need to ignore the workaround.
3480                  */
3481                 break;
3482         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3483         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3484         case HV_X64_MSR_SYNDBG_OPTIONS:
3485         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3486         case HV_X64_MSR_CRASH_CTL:
3487         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3488         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3489         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3490         case HV_X64_MSR_TSC_EMULATION_STATUS:
3491                 return kvm_hv_set_msr_common(vcpu, msr, data,
3492                                              msr_info->host_initiated);
3493         case MSR_IA32_BBL_CR_CTL3:
3494                 /* Drop writes to this legacy MSR -- see rdmsr
3495                  * counterpart for further detail.
3496                  */
3497                 if (report_ignored_msrs)
3498                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3499                                 msr, data);
3500                 break;
3501         case MSR_AMD64_OSVW_ID_LENGTH:
3502                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3503                         return 1;
3504                 vcpu->arch.osvw.length = data;
3505                 break;
3506         case MSR_AMD64_OSVW_STATUS:
3507                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3508                         return 1;
3509                 vcpu->arch.osvw.status = data;
3510                 break;
3511         case MSR_PLATFORM_INFO:
3512                 if (!msr_info->host_initiated ||
3513                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3514                      cpuid_fault_enabled(vcpu)))
3515                         return 1;
3516                 vcpu->arch.msr_platform_info = data;
3517                 break;
3518         case MSR_MISC_FEATURES_ENABLES:
3519                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3520                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3521                      !supports_cpuid_fault(vcpu)))
3522                         return 1;
3523                 vcpu->arch.msr_misc_features_enables = data;
3524                 break;
3525         default:
3526                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3527                         return kvm_pmu_set_msr(vcpu, msr_info);
3528                 return KVM_MSR_RET_INVALID;
3529         }
3530         return 0;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3533
3534 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3535 {
3536         u64 data;
3537         u64 mcg_cap = vcpu->arch.mcg_cap;
3538         unsigned bank_num = mcg_cap & 0xff;
3539
3540         switch (msr) {
3541         case MSR_IA32_P5_MC_ADDR:
3542         case MSR_IA32_P5_MC_TYPE:
3543                 data = 0;
3544                 break;
3545         case MSR_IA32_MCG_CAP:
3546                 data = vcpu->arch.mcg_cap;
3547                 break;
3548         case MSR_IA32_MCG_CTL:
3549                 if (!(mcg_cap & MCG_CTL_P) && !host)
3550                         return 1;
3551                 data = vcpu->arch.mcg_ctl;
3552                 break;
3553         case MSR_IA32_MCG_STATUS:
3554                 data = vcpu->arch.mcg_status;
3555                 break;
3556         default:
3557                 if (msr >= MSR_IA32_MC0_CTL &&
3558                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3559                         u32 offset = array_index_nospec(
3560                                 msr - MSR_IA32_MC0_CTL,
3561                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3562
3563                         data = vcpu->arch.mce_banks[offset];
3564                         break;
3565                 }
3566                 return 1;
3567         }
3568         *pdata = data;
3569         return 0;
3570 }
3571
3572 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3573 {
3574         switch (msr_info->index) {
3575         case MSR_IA32_PLATFORM_ID:
3576         case MSR_IA32_EBL_CR_POWERON:
3577         case MSR_IA32_LASTBRANCHFROMIP:
3578         case MSR_IA32_LASTBRANCHTOIP:
3579         case MSR_IA32_LASTINTFROMIP:
3580         case MSR_IA32_LASTINTTOIP:
3581         case MSR_AMD64_SYSCFG:
3582         case MSR_K8_TSEG_ADDR:
3583         case MSR_K8_TSEG_MASK:
3584         case MSR_VM_HSAVE_PA:
3585         case MSR_K8_INT_PENDING_MSG:
3586         case MSR_AMD64_NB_CFG:
3587         case MSR_FAM10H_MMIO_CONF_BASE:
3588         case MSR_AMD64_BU_CFG2:
3589         case MSR_IA32_PERF_CTL:
3590         case MSR_AMD64_DC_CFG:
3591         case MSR_F15H_EX_CFG:
3592         /*
3593          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3594          * limit) MSRs. Just return 0, as we do not want to expose the host
3595          * data here. Do not conditionalize this on CPUID, as KVM does not do
3596          * so for existing CPU-specific MSRs.
3597          */
3598         case MSR_RAPL_POWER_UNIT:
3599         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3600         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3601         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3602         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3603                 msr_info->data = 0;
3604                 break;
3605         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3606                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3607                         return kvm_pmu_get_msr(vcpu, msr_info);
3608                 if (!msr_info->host_initiated)
3609                         return 1;
3610                 msr_info->data = 0;
3611                 break;
3612         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3613         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3614         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3615         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3616                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3617                         return kvm_pmu_get_msr(vcpu, msr_info);
3618                 msr_info->data = 0;
3619                 break;
3620         case MSR_IA32_UCODE_REV:
3621                 msr_info->data = vcpu->arch.microcode_version;
3622                 break;
3623         case MSR_IA32_ARCH_CAPABILITIES:
3624                 if (!msr_info->host_initiated &&
3625                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3626                         return 1;
3627                 msr_info->data = vcpu->arch.arch_capabilities;
3628                 break;
3629         case MSR_IA32_PERF_CAPABILITIES:
3630                 if (!msr_info->host_initiated &&
3631                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3632                         return 1;
3633                 msr_info->data = vcpu->arch.perf_capabilities;
3634                 break;
3635         case MSR_IA32_POWER_CTL:
3636                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3637                 break;
3638         case MSR_IA32_TSC: {
3639                 /*
3640                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3641                  * even when not intercepted. AMD manual doesn't explicitly
3642                  * state this but appears to behave the same.
3643                  *
3644                  * On userspace reads and writes, however, we unconditionally
3645                  * return L1's TSC value to ensure backwards-compatible
3646                  * behavior for migration.
3647                  */
3648                 u64 offset, ratio;
3649
3650                 if (msr_info->host_initiated) {
3651                         offset = vcpu->arch.l1_tsc_offset;
3652                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3653                 } else {
3654                         offset = vcpu->arch.tsc_offset;
3655                         ratio = vcpu->arch.tsc_scaling_ratio;
3656                 }
3657
3658                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3659                 break;
3660         }
3661         case MSR_MTRRcap:
3662         case 0x200 ... 0x2ff:
3663                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3664         case 0xcd: /* fsb frequency */
3665                 msr_info->data = 3;
3666                 break;
3667                 /*
3668                  * MSR_EBC_FREQUENCY_ID
3669                  * Conservative value valid for even the basic CPU models.
3670                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3671                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3672                  * and 266MHz for model 3, or 4. Set Core Clock
3673                  * Frequency to System Bus Frequency Ratio to 1 (bits
3674                  * 31:24) even though these are only valid for CPU
3675                  * models > 2, however guests may end up dividing or
3676                  * multiplying by zero otherwise.
3677                  */
3678         case MSR_EBC_FREQUENCY_ID:
3679                 msr_info->data = 1 << 24;
3680                 break;
3681         case MSR_IA32_APICBASE:
3682                 msr_info->data = kvm_get_apic_base(vcpu);
3683                 break;
3684         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3685                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3686         case MSR_IA32_TSC_DEADLINE:
3687                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3688                 break;
3689         case MSR_IA32_TSC_ADJUST:
3690                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3691                 break;
3692         case MSR_IA32_MISC_ENABLE:
3693                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3694                 break;
3695         case MSR_IA32_SMBASE:
3696                 if (!msr_info->host_initiated)
3697                         return 1;
3698                 msr_info->data = vcpu->arch.smbase;
3699                 break;
3700         case MSR_SMI_COUNT:
3701                 msr_info->data = vcpu->arch.smi_count;
3702                 break;
3703         case MSR_IA32_PERF_STATUS:
3704                 /* TSC increment by tick */
3705                 msr_info->data = 1000ULL;
3706                 /* CPU multiplier */
3707                 msr_info->data |= (((uint64_t)4ULL) << 40);
3708                 break;
3709         case MSR_EFER:
3710                 msr_info->data = vcpu->arch.efer;
3711                 break;
3712         case MSR_KVM_WALL_CLOCK:
3713                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3714                         return 1;
3715
3716                 msr_info->data = vcpu->kvm->arch.wall_clock;
3717                 break;
3718         case MSR_KVM_WALL_CLOCK_NEW:
3719                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3720                         return 1;
3721
3722                 msr_info->data = vcpu->kvm->arch.wall_clock;
3723                 break;
3724         case MSR_KVM_SYSTEM_TIME:
3725                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3726                         return 1;
3727
3728                 msr_info->data = vcpu->arch.time;
3729                 break;
3730         case MSR_KVM_SYSTEM_TIME_NEW:
3731                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3732                         return 1;
3733
3734                 msr_info->data = vcpu->arch.time;
3735                 break;
3736         case MSR_KVM_ASYNC_PF_EN:
3737                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3738                         return 1;
3739
3740                 msr_info->data = vcpu->arch.apf.msr_en_val;
3741                 break;
3742         case MSR_KVM_ASYNC_PF_INT:
3743                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3744                         return 1;
3745
3746                 msr_info->data = vcpu->arch.apf.msr_int_val;
3747                 break;
3748         case MSR_KVM_ASYNC_PF_ACK:
3749                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3750                         return 1;
3751
3752                 msr_info->data = 0;
3753                 break;
3754         case MSR_KVM_STEAL_TIME:
3755                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3756                         return 1;
3757
3758                 msr_info->data = vcpu->arch.st.msr_val;
3759                 break;
3760         case MSR_KVM_PV_EOI_EN:
3761                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3762                         return 1;
3763
3764                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3765                 break;
3766         case MSR_KVM_POLL_CONTROL:
3767                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3768                         return 1;
3769
3770                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3771                 break;
3772         case MSR_IA32_P5_MC_ADDR:
3773         case MSR_IA32_P5_MC_TYPE:
3774         case MSR_IA32_MCG_CAP:
3775         case MSR_IA32_MCG_CTL:
3776         case MSR_IA32_MCG_STATUS:
3777         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3778                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3779                                    msr_info->host_initiated);
3780         case MSR_IA32_XSS:
3781                 if (!msr_info->host_initiated &&
3782                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3783                         return 1;
3784                 msr_info->data = vcpu->arch.ia32_xss;
3785                 break;
3786         case MSR_K7_CLK_CTL:
3787                 /*
3788                  * Provide expected ramp-up count for K7. All other
3789                  * are set to zero, indicating minimum divisors for
3790                  * every field.
3791                  *
3792                  * This prevents guest kernels on AMD host with CPU
3793                  * type 6, model 8 and higher from exploding due to
3794                  * the rdmsr failing.
3795                  */
3796                 msr_info->data = 0x20000000;
3797                 break;
3798         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3799         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3800         case HV_X64_MSR_SYNDBG_OPTIONS:
3801         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3802         case HV_X64_MSR_CRASH_CTL:
3803         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3804         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3805         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3806         case HV_X64_MSR_TSC_EMULATION_STATUS:
3807                 return kvm_hv_get_msr_common(vcpu,
3808                                              msr_info->index, &msr_info->data,
3809                                              msr_info->host_initiated);
3810         case MSR_IA32_BBL_CR_CTL3:
3811                 /* This legacy MSR exists but isn't fully documented in current
3812                  * silicon.  It is however accessed by winxp in very narrow
3813                  * scenarios where it sets bit #19, itself documented as
3814                  * a "reserved" bit.  Best effort attempt to source coherent
3815                  * read data here should the balance of the register be
3816                  * interpreted by the guest:
3817                  *
3818                  * L2 cache control register 3: 64GB range, 256KB size,
3819                  * enabled, latency 0x1, configured
3820                  */
3821                 msr_info->data = 0xbe702111;
3822                 break;
3823         case MSR_AMD64_OSVW_ID_LENGTH:
3824                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3825                         return 1;
3826                 msr_info->data = vcpu->arch.osvw.length;
3827                 break;
3828         case MSR_AMD64_OSVW_STATUS:
3829                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3830                         return 1;
3831                 msr_info->data = vcpu->arch.osvw.status;
3832                 break;
3833         case MSR_PLATFORM_INFO:
3834                 if (!msr_info->host_initiated &&
3835                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3836                         return 1;
3837                 msr_info->data = vcpu->arch.msr_platform_info;
3838                 break;
3839         case MSR_MISC_FEATURES_ENABLES:
3840                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3841                 break;
3842         case MSR_K7_HWCR:
3843                 msr_info->data = vcpu->arch.msr_hwcr;
3844                 break;
3845         default:
3846                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3847                         return kvm_pmu_get_msr(vcpu, msr_info);
3848                 return KVM_MSR_RET_INVALID;
3849         }
3850         return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3853
3854 /*
3855  * Read or write a bunch of msrs. All parameters are kernel addresses.
3856  *
3857  * @return number of msrs set successfully.
3858  */
3859 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3860                     struct kvm_msr_entry *entries,
3861                     int (*do_msr)(struct kvm_vcpu *vcpu,
3862                                   unsigned index, u64 *data))
3863 {
3864         int i;
3865
3866         for (i = 0; i < msrs->nmsrs; ++i)
3867                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3868                         break;
3869
3870         return i;
3871 }
3872
3873 /*
3874  * Read or write a bunch of msrs. Parameters are user addresses.
3875  *
3876  * @return number of msrs set successfully.
3877  */
3878 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3879                   int (*do_msr)(struct kvm_vcpu *vcpu,
3880                                 unsigned index, u64 *data),
3881                   int writeback)
3882 {
3883         struct kvm_msrs msrs;
3884         struct kvm_msr_entry *entries;
3885         int r, n;
3886         unsigned size;
3887
3888         r = -EFAULT;
3889         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3890                 goto out;
3891
3892         r = -E2BIG;
3893         if (msrs.nmsrs >= MAX_IO_MSRS)
3894                 goto out;
3895
3896         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3897         entries = memdup_user(user_msrs->entries, size);
3898         if (IS_ERR(entries)) {
3899                 r = PTR_ERR(entries);
3900                 goto out;
3901         }
3902
3903         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3904         if (r < 0)
3905                 goto out_free;
3906
3907         r = -EFAULT;
3908         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3909                 goto out_free;
3910
3911         r = n;
3912
3913 out_free:
3914         kfree(entries);
3915 out:
3916         return r;
3917 }
3918
3919 static inline bool kvm_can_mwait_in_guest(void)
3920 {
3921         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3922                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3923                 boot_cpu_has(X86_FEATURE_ARAT);
3924 }
3925
3926 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3927                                             struct kvm_cpuid2 __user *cpuid_arg)
3928 {
3929         struct kvm_cpuid2 cpuid;
3930         int r;
3931
3932         r = -EFAULT;
3933         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3934                 return r;
3935
3936         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3937         if (r)
3938                 return r;
3939
3940         r = -EFAULT;
3941         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3942                 return r;
3943
3944         return 0;
3945 }
3946
3947 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3948 {
3949         int r = 0;
3950
3951         switch (ext) {
3952         case KVM_CAP_IRQCHIP:
3953         case KVM_CAP_HLT:
3954         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3955         case KVM_CAP_SET_TSS_ADDR:
3956         case KVM_CAP_EXT_CPUID:
3957         case KVM_CAP_EXT_EMUL_CPUID:
3958         case KVM_CAP_CLOCKSOURCE:
3959         case KVM_CAP_PIT:
3960         case KVM_CAP_NOP_IO_DELAY:
3961         case KVM_CAP_MP_STATE:
3962         case KVM_CAP_SYNC_MMU:
3963         case KVM_CAP_USER_NMI:
3964         case KVM_CAP_REINJECT_CONTROL:
3965         case KVM_CAP_IRQ_INJECT_STATUS:
3966         case KVM_CAP_IOEVENTFD:
3967         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3968         case KVM_CAP_PIT2:
3969         case KVM_CAP_PIT_STATE2:
3970         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3971         case KVM_CAP_VCPU_EVENTS:
3972         case KVM_CAP_HYPERV:
3973         case KVM_CAP_HYPERV_VAPIC:
3974         case KVM_CAP_HYPERV_SPIN:
3975         case KVM_CAP_HYPERV_SYNIC:
3976         case KVM_CAP_HYPERV_SYNIC2:
3977         case KVM_CAP_HYPERV_VP_INDEX:
3978         case KVM_CAP_HYPERV_EVENTFD:
3979         case KVM_CAP_HYPERV_TLBFLUSH:
3980         case KVM_CAP_HYPERV_SEND_IPI:
3981         case KVM_CAP_HYPERV_CPUID:
3982         case KVM_CAP_HYPERV_ENFORCE_CPUID:
3983         case KVM_CAP_SYS_HYPERV_CPUID:
3984         case KVM_CAP_PCI_SEGMENT:
3985         case KVM_CAP_DEBUGREGS:
3986         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3987         case KVM_CAP_XSAVE:
3988         case KVM_CAP_ASYNC_PF:
3989         case KVM_CAP_ASYNC_PF_INT:
3990         case KVM_CAP_GET_TSC_KHZ:
3991         case KVM_CAP_KVMCLOCK_CTRL:
3992         case KVM_CAP_READONLY_MEM:
3993         case KVM_CAP_HYPERV_TIME:
3994         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3995         case KVM_CAP_TSC_DEADLINE_TIMER:
3996         case KVM_CAP_DISABLE_QUIRKS:
3997         case KVM_CAP_SET_BOOT_CPU_ID:
3998         case KVM_CAP_SPLIT_IRQCHIP:
3999         case KVM_CAP_IMMEDIATE_EXIT:
4000         case KVM_CAP_PMU_EVENT_FILTER:
4001         case KVM_CAP_GET_MSR_FEATURES:
4002         case KVM_CAP_MSR_PLATFORM_INFO:
4003         case KVM_CAP_EXCEPTION_PAYLOAD:
4004         case KVM_CAP_SET_GUEST_DEBUG:
4005         case KVM_CAP_LAST_CPU:
4006         case KVM_CAP_X86_USER_SPACE_MSR:
4007         case KVM_CAP_X86_MSR_FILTER:
4008         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4009 #ifdef CONFIG_X86_SGX_KVM
4010         case KVM_CAP_SGX_ATTRIBUTE:
4011 #endif
4012         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4013         case KVM_CAP_SREGS2:
4014         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4015                 r = 1;
4016                 break;
4017         case KVM_CAP_EXIT_HYPERCALL:
4018                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4019                 break;
4020         case KVM_CAP_SET_GUEST_DEBUG2:
4021                 return KVM_GUESTDBG_VALID_MASK;
4022 #ifdef CONFIG_KVM_XEN
4023         case KVM_CAP_XEN_HVM:
4024                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4025                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4026                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
4027                 if (sched_info_on())
4028                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4029                 break;
4030 #endif
4031         case KVM_CAP_SYNC_REGS:
4032                 r = KVM_SYNC_X86_VALID_FIELDS;
4033                 break;
4034         case KVM_CAP_ADJUST_CLOCK:
4035                 r = KVM_CLOCK_TSC_STABLE;
4036                 break;
4037         case KVM_CAP_X86_DISABLE_EXITS:
4038                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4039                       KVM_X86_DISABLE_EXITS_CSTATE;
4040                 if(kvm_can_mwait_in_guest())
4041                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4042                 break;
4043         case KVM_CAP_X86_SMM:
4044                 /* SMBASE is usually relocated above 1M on modern chipsets,
4045                  * and SMM handlers might indeed rely on 4G segment limits,
4046                  * so do not report SMM to be available if real mode is
4047                  * emulated via vm86 mode.  Still, do not go to great lengths
4048                  * to avoid userspace's usage of the feature, because it is a
4049                  * fringe case that is not enabled except via specific settings
4050                  * of the module parameters.
4051                  */
4052                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4053                 break;
4054         case KVM_CAP_VAPIC:
4055                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4056                 break;
4057         case KVM_CAP_NR_VCPUS:
4058                 r = KVM_SOFT_MAX_VCPUS;
4059                 break;
4060         case KVM_CAP_MAX_VCPUS:
4061                 r = KVM_MAX_VCPUS;
4062                 break;
4063         case KVM_CAP_MAX_VCPU_ID:
4064                 r = KVM_MAX_VCPU_ID;
4065                 break;
4066         case KVM_CAP_PV_MMU:    /* obsolete */
4067                 r = 0;
4068                 break;
4069         case KVM_CAP_MCE:
4070                 r = KVM_MAX_MCE_BANKS;
4071                 break;
4072         case KVM_CAP_XCRS:
4073                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4074                 break;
4075         case KVM_CAP_TSC_CONTROL:
4076                 r = kvm_has_tsc_control;
4077                 break;
4078         case KVM_CAP_X2APIC_API:
4079                 r = KVM_X2APIC_API_VALID_FLAGS;
4080                 break;
4081         case KVM_CAP_NESTED_STATE:
4082                 r = kvm_x86_ops.nested_ops->get_state ?
4083                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4084                 break;
4085         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4086                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4087                 break;
4088         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4089                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4090                 break;
4091         case KVM_CAP_SMALLER_MAXPHYADDR:
4092                 r = (int) allow_smaller_maxphyaddr;
4093                 break;
4094         case KVM_CAP_STEAL_TIME:
4095                 r = sched_info_on();
4096                 break;
4097         case KVM_CAP_X86_BUS_LOCK_EXIT:
4098                 if (kvm_has_bus_lock_exit)
4099                         r = KVM_BUS_LOCK_DETECTION_OFF |
4100                             KVM_BUS_LOCK_DETECTION_EXIT;
4101                 else
4102                         r = 0;
4103                 break;
4104         default:
4105                 break;
4106         }
4107         return r;
4108
4109 }
4110
4111 long kvm_arch_dev_ioctl(struct file *filp,
4112                         unsigned int ioctl, unsigned long arg)
4113 {
4114         void __user *argp = (void __user *)arg;
4115         long r;
4116
4117         switch (ioctl) {
4118         case KVM_GET_MSR_INDEX_LIST: {
4119                 struct kvm_msr_list __user *user_msr_list = argp;
4120                 struct kvm_msr_list msr_list;
4121                 unsigned n;
4122
4123                 r = -EFAULT;
4124                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4125                         goto out;
4126                 n = msr_list.nmsrs;
4127                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4128                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4129                         goto out;
4130                 r = -E2BIG;
4131                 if (n < msr_list.nmsrs)
4132                         goto out;
4133                 r = -EFAULT;
4134                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4135                                  num_msrs_to_save * sizeof(u32)))
4136                         goto out;
4137                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4138                                  &emulated_msrs,
4139                                  num_emulated_msrs * sizeof(u32)))
4140                         goto out;
4141                 r = 0;
4142                 break;
4143         }
4144         case KVM_GET_SUPPORTED_CPUID:
4145         case KVM_GET_EMULATED_CPUID: {
4146                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4147                 struct kvm_cpuid2 cpuid;
4148
4149                 r = -EFAULT;
4150                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4151                         goto out;
4152
4153                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4154                                             ioctl);
4155                 if (r)
4156                         goto out;
4157
4158                 r = -EFAULT;
4159                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4160                         goto out;
4161                 r = 0;
4162                 break;
4163         }
4164         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4165                 r = -EFAULT;
4166                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4167                                  sizeof(kvm_mce_cap_supported)))
4168                         goto out;
4169                 r = 0;
4170                 break;
4171         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4172                 struct kvm_msr_list __user *user_msr_list = argp;
4173                 struct kvm_msr_list msr_list;
4174                 unsigned int n;
4175
4176                 r = -EFAULT;
4177                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4178                         goto out;
4179                 n = msr_list.nmsrs;
4180                 msr_list.nmsrs = num_msr_based_features;
4181                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4182                         goto out;
4183                 r = -E2BIG;
4184                 if (n < msr_list.nmsrs)
4185                         goto out;
4186                 r = -EFAULT;
4187                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4188                                  num_msr_based_features * sizeof(u32)))
4189                         goto out;
4190                 r = 0;
4191                 break;
4192         }
4193         case KVM_GET_MSRS:
4194                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4195                 break;
4196         case KVM_GET_SUPPORTED_HV_CPUID:
4197                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4198                 break;
4199         default:
4200                 r = -EINVAL;
4201                 break;
4202         }
4203 out:
4204         return r;
4205 }
4206
4207 static void wbinvd_ipi(void *garbage)
4208 {
4209         wbinvd();
4210 }
4211
4212 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4213 {
4214         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4215 }
4216
4217 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4218 {
4219         /* Address WBINVD may be executed by guest */
4220         if (need_emulate_wbinvd(vcpu)) {
4221                 if (static_call(kvm_x86_has_wbinvd_exit)())
4222                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4223                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4224                         smp_call_function_single(vcpu->cpu,
4225                                         wbinvd_ipi, NULL, 1);
4226         }
4227
4228         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4229
4230         /* Save host pkru register if supported */
4231         vcpu->arch.host_pkru = read_pkru();
4232
4233         /* Apply any externally detected TSC adjustments (due to suspend) */
4234         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4235                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4236                 vcpu->arch.tsc_offset_adjustment = 0;
4237                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4238         }
4239
4240         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4241                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4242                                 rdtsc() - vcpu->arch.last_host_tsc;
4243                 if (tsc_delta < 0)
4244                         mark_tsc_unstable("KVM discovered backwards TSC");
4245
4246                 if (kvm_check_tsc_unstable()) {
4247                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4248                                                 vcpu->arch.last_guest_tsc);
4249                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4250                         vcpu->arch.tsc_catchup = 1;
4251                 }
4252
4253                 if (kvm_lapic_hv_timer_in_use(vcpu))
4254                         kvm_lapic_restart_hv_timer(vcpu);
4255
4256                 /*
4257                  * On a host with synchronized TSC, there is no need to update
4258                  * kvmclock on vcpu->cpu migration
4259                  */
4260                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4261                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4262                 if (vcpu->cpu != cpu)
4263                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4264                 vcpu->cpu = cpu;
4265         }
4266
4267         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4268 }
4269
4270 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4271 {
4272         struct kvm_host_map map;
4273         struct kvm_steal_time *st;
4274
4275         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4276                 return;
4277
4278         if (vcpu->arch.st.preempted)
4279                 return;
4280
4281         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4282                         &vcpu->arch.st.cache, true))
4283                 return;
4284
4285         st = map.hva +
4286                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4287
4288         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4289
4290         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4291 }
4292
4293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4294 {
4295         int idx;
4296
4297         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4298                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4299
4300         /*
4301          * Take the srcu lock as memslots will be accessed to check the gfn
4302          * cache generation against the memslots generation.
4303          */
4304         idx = srcu_read_lock(&vcpu->kvm->srcu);
4305         if (kvm_xen_msr_enabled(vcpu->kvm))
4306                 kvm_xen_runstate_set_preempted(vcpu);
4307         else
4308                 kvm_steal_time_set_preempted(vcpu);
4309         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4310
4311         static_call(kvm_x86_vcpu_put)(vcpu);
4312         vcpu->arch.last_host_tsc = rdtsc();
4313         /*
4314          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4315          * on every vmexit, but if not, we might have a stale dr6 from the
4316          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4317          */
4318         set_debugreg(0, 6);
4319 }
4320
4321 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4322                                     struct kvm_lapic_state *s)
4323 {
4324         if (vcpu->arch.apicv_active)
4325                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4326
4327         return kvm_apic_get_state(vcpu, s);
4328 }
4329
4330 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4331                                     struct kvm_lapic_state *s)
4332 {
4333         int r;
4334
4335         r = kvm_apic_set_state(vcpu, s);
4336         if (r)
4337                 return r;
4338         update_cr8_intercept(vcpu);
4339
4340         return 0;
4341 }
4342
4343 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4344 {
4345         /*
4346          * We can accept userspace's request for interrupt injection
4347          * as long as we have a place to store the interrupt number.
4348          * The actual injection will happen when the CPU is able to
4349          * deliver the interrupt.
4350          */
4351         if (kvm_cpu_has_extint(vcpu))
4352                 return false;
4353
4354         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4355         return (!lapic_in_kernel(vcpu) ||
4356                 kvm_apic_accept_pic_intr(vcpu));
4357 }
4358
4359 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4360 {
4361         /*
4362          * Do not cause an interrupt window exit if an exception
4363          * is pending or an event needs reinjection; userspace
4364          * might want to inject the interrupt manually using KVM_SET_REGS
4365          * or KVM_SET_SREGS.  For that to work, we must be at an
4366          * instruction boundary and with no events half-injected.
4367          */
4368         return (kvm_arch_interrupt_allowed(vcpu) &&
4369                 kvm_cpu_accept_dm_intr(vcpu) &&
4370                 !kvm_event_needs_reinjection(vcpu) &&
4371                 !vcpu->arch.exception.pending);
4372 }
4373
4374 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4375                                     struct kvm_interrupt *irq)
4376 {
4377         if (irq->irq >= KVM_NR_INTERRUPTS)
4378                 return -EINVAL;
4379
4380         if (!irqchip_in_kernel(vcpu->kvm)) {
4381                 kvm_queue_interrupt(vcpu, irq->irq, false);
4382                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4383                 return 0;
4384         }
4385
4386         /*
4387          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4388          * fail for in-kernel 8259.
4389          */
4390         if (pic_in_kernel(vcpu->kvm))
4391                 return -ENXIO;
4392
4393         if (vcpu->arch.pending_external_vector != -1)
4394                 return -EEXIST;
4395
4396         vcpu->arch.pending_external_vector = irq->irq;
4397         kvm_make_request(KVM_REQ_EVENT, vcpu);
4398         return 0;
4399 }
4400
4401 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4402 {
4403         kvm_inject_nmi(vcpu);
4404
4405         return 0;
4406 }
4407
4408 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4409 {
4410         kvm_make_request(KVM_REQ_SMI, vcpu);
4411
4412         return 0;
4413 }
4414
4415 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4416                                            struct kvm_tpr_access_ctl *tac)
4417 {
4418         if (tac->flags)
4419                 return -EINVAL;
4420         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4421         return 0;
4422 }
4423
4424 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4425                                         u64 mcg_cap)
4426 {
4427         int r;
4428         unsigned bank_num = mcg_cap & 0xff, bank;
4429
4430         r = -EINVAL;
4431         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4432                 goto out;
4433         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4434                 goto out;
4435         r = 0;
4436         vcpu->arch.mcg_cap = mcg_cap;
4437         /* Init IA32_MCG_CTL to all 1s */
4438         if (mcg_cap & MCG_CTL_P)
4439                 vcpu->arch.mcg_ctl = ~(u64)0;
4440         /* Init IA32_MCi_CTL to all 1s */
4441         for (bank = 0; bank < bank_num; bank++)
4442                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4443
4444         static_call(kvm_x86_setup_mce)(vcpu);
4445 out:
4446         return r;
4447 }
4448
4449 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4450                                       struct kvm_x86_mce *mce)
4451 {
4452         u64 mcg_cap = vcpu->arch.mcg_cap;
4453         unsigned bank_num = mcg_cap & 0xff;
4454         u64 *banks = vcpu->arch.mce_banks;
4455
4456         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4457                 return -EINVAL;
4458         /*
4459          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4460          * reporting is disabled
4461          */
4462         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4463             vcpu->arch.mcg_ctl != ~(u64)0)
4464                 return 0;
4465         banks += 4 * mce->bank;
4466         /*
4467          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4468          * reporting is disabled for the bank
4469          */
4470         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4471                 return 0;
4472         if (mce->status & MCI_STATUS_UC) {
4473                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4474                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4475                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4476                         return 0;
4477                 }
4478                 if (banks[1] & MCI_STATUS_VAL)
4479                         mce->status |= MCI_STATUS_OVER;
4480                 banks[2] = mce->addr;
4481                 banks[3] = mce->misc;
4482                 vcpu->arch.mcg_status = mce->mcg_status;
4483                 banks[1] = mce->status;
4484                 kvm_queue_exception(vcpu, MC_VECTOR);
4485         } else if (!(banks[1] & MCI_STATUS_VAL)
4486                    || !(banks[1] & MCI_STATUS_UC)) {
4487                 if (banks[1] & MCI_STATUS_VAL)
4488                         mce->status |= MCI_STATUS_OVER;
4489                 banks[2] = mce->addr;
4490                 banks[3] = mce->misc;
4491                 banks[1] = mce->status;
4492         } else
4493                 banks[1] |= MCI_STATUS_OVER;
4494         return 0;
4495 }
4496
4497 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4498                                                struct kvm_vcpu_events *events)
4499 {
4500         process_nmi(vcpu);
4501
4502         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4503                 process_smi(vcpu);
4504
4505         /*
4506          * In guest mode, payload delivery should be deferred,
4507          * so that the L1 hypervisor can intercept #PF before
4508          * CR2 is modified (or intercept #DB before DR6 is
4509          * modified under nVMX). Unless the per-VM capability,
4510          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4511          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4512          * opportunistically defer the exception payload, deliver it if the
4513          * capability hasn't been requested before processing a
4514          * KVM_GET_VCPU_EVENTS.
4515          */
4516         if (!vcpu->kvm->arch.exception_payload_enabled &&
4517             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4518                 kvm_deliver_exception_payload(vcpu);
4519
4520         /*
4521          * The API doesn't provide the instruction length for software
4522          * exceptions, so don't report them. As long as the guest RIP
4523          * isn't advanced, we should expect to encounter the exception
4524          * again.
4525          */
4526         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4527                 events->exception.injected = 0;
4528                 events->exception.pending = 0;
4529         } else {
4530                 events->exception.injected = vcpu->arch.exception.injected;
4531                 events->exception.pending = vcpu->arch.exception.pending;
4532                 /*
4533                  * For ABI compatibility, deliberately conflate
4534                  * pending and injected exceptions when
4535                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4536                  */
4537                 if (!vcpu->kvm->arch.exception_payload_enabled)
4538                         events->exception.injected |=
4539                                 vcpu->arch.exception.pending;
4540         }
4541         events->exception.nr = vcpu->arch.exception.nr;
4542         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4543         events->exception.error_code = vcpu->arch.exception.error_code;
4544         events->exception_has_payload = vcpu->arch.exception.has_payload;
4545         events->exception_payload = vcpu->arch.exception.payload;
4546
4547         events->interrupt.injected =
4548                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4549         events->interrupt.nr = vcpu->arch.interrupt.nr;
4550         events->interrupt.soft = 0;
4551         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4552
4553         events->nmi.injected = vcpu->arch.nmi_injected;
4554         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4555         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4556         events->nmi.pad = 0;
4557
4558         events->sipi_vector = 0; /* never valid when reporting to user space */
4559
4560         events->smi.smm = is_smm(vcpu);
4561         events->smi.pending = vcpu->arch.smi_pending;
4562         events->smi.smm_inside_nmi =
4563                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4564         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4565
4566         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4567                          | KVM_VCPUEVENT_VALID_SHADOW
4568                          | KVM_VCPUEVENT_VALID_SMM);
4569         if (vcpu->kvm->arch.exception_payload_enabled)
4570                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4571
4572         memset(&events->reserved, 0, sizeof(events->reserved));
4573 }
4574
4575 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4576
4577 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4578                                               struct kvm_vcpu_events *events)
4579 {
4580         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4581                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4582                               | KVM_VCPUEVENT_VALID_SHADOW
4583                               | KVM_VCPUEVENT_VALID_SMM
4584                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4585                 return -EINVAL;
4586
4587         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4588                 if (!vcpu->kvm->arch.exception_payload_enabled)
4589                         return -EINVAL;
4590                 if (events->exception.pending)
4591                         events->exception.injected = 0;
4592                 else
4593                         events->exception_has_payload = 0;
4594         } else {
4595                 events->exception.pending = 0;
4596                 events->exception_has_payload = 0;
4597         }
4598
4599         if ((events->exception.injected || events->exception.pending) &&
4600             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4601                 return -EINVAL;
4602
4603         /* INITs are latched while in SMM */
4604         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4605             (events->smi.smm || events->smi.pending) &&
4606             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4607                 return -EINVAL;
4608
4609         process_nmi(vcpu);
4610         vcpu->arch.exception.injected = events->exception.injected;
4611         vcpu->arch.exception.pending = events->exception.pending;
4612         vcpu->arch.exception.nr = events->exception.nr;
4613         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4614         vcpu->arch.exception.error_code = events->exception.error_code;
4615         vcpu->arch.exception.has_payload = events->exception_has_payload;
4616         vcpu->arch.exception.payload = events->exception_payload;
4617
4618         vcpu->arch.interrupt.injected = events->interrupt.injected;
4619         vcpu->arch.interrupt.nr = events->interrupt.nr;
4620         vcpu->arch.interrupt.soft = events->interrupt.soft;
4621         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4622                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4623                                                 events->interrupt.shadow);
4624
4625         vcpu->arch.nmi_injected = events->nmi.injected;
4626         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4627                 vcpu->arch.nmi_pending = events->nmi.pending;
4628         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4629
4630         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4631             lapic_in_kernel(vcpu))
4632                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4633
4634         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4635                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4636                         kvm_smm_changed(vcpu, events->smi.smm);
4637
4638                 vcpu->arch.smi_pending = events->smi.pending;
4639
4640                 if (events->smi.smm) {
4641                         if (events->smi.smm_inside_nmi)
4642                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4643                         else
4644                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4645                 }
4646
4647                 if (lapic_in_kernel(vcpu)) {
4648                         if (events->smi.latched_init)
4649                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4650                         else
4651                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4652                 }
4653         }
4654
4655         kvm_make_request(KVM_REQ_EVENT, vcpu);
4656
4657         return 0;
4658 }
4659
4660 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4661                                              struct kvm_debugregs *dbgregs)
4662 {
4663         unsigned long val;
4664
4665         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4666         kvm_get_dr(vcpu, 6, &val);
4667         dbgregs->dr6 = val;
4668         dbgregs->dr7 = vcpu->arch.dr7;
4669         dbgregs->flags = 0;
4670         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4671 }
4672
4673 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4674                                             struct kvm_debugregs *dbgregs)
4675 {
4676         if (dbgregs->flags)
4677                 return -EINVAL;
4678
4679         if (!kvm_dr6_valid(dbgregs->dr6))
4680                 return -EINVAL;
4681         if (!kvm_dr7_valid(dbgregs->dr7))
4682                 return -EINVAL;
4683
4684         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4685         kvm_update_dr0123(vcpu);
4686         vcpu->arch.dr6 = dbgregs->dr6;
4687         vcpu->arch.dr7 = dbgregs->dr7;
4688         kvm_update_dr7(vcpu);
4689
4690         return 0;
4691 }
4692
4693 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4694
4695 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4696 {
4697         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4698         u64 xstate_bv = xsave->header.xfeatures;
4699         u64 valid;
4700
4701         /*
4702          * Copy legacy XSAVE area, to avoid complications with CPUID
4703          * leaves 0 and 1 in the loop below.
4704          */
4705         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4706
4707         /* Set XSTATE_BV */
4708         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4709         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4710
4711         /*
4712          * Copy each region from the possibly compacted offset to the
4713          * non-compacted offset.
4714          */
4715         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4716         while (valid) {
4717                 u32 size, offset, ecx, edx;
4718                 u64 xfeature_mask = valid & -valid;
4719                 int xfeature_nr = fls64(xfeature_mask) - 1;
4720                 void *src;
4721
4722                 cpuid_count(XSTATE_CPUID, xfeature_nr,
4723                             &size, &offset, &ecx, &edx);
4724
4725                 if (xfeature_nr == XFEATURE_PKRU) {
4726                         memcpy(dest + offset, &vcpu->arch.pkru,
4727                                sizeof(vcpu->arch.pkru));
4728                 } else {
4729                         src = get_xsave_addr(xsave, xfeature_nr);
4730                         if (src)
4731                                 memcpy(dest + offset, src, size);
4732                 }
4733
4734                 valid -= xfeature_mask;
4735         }
4736 }
4737
4738 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4739 {
4740         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4741         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4742         u64 valid;
4743
4744         /*
4745          * Copy legacy XSAVE area, to avoid complications with CPUID
4746          * leaves 0 and 1 in the loop below.
4747          */
4748         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4749
4750         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4751         xsave->header.xfeatures = xstate_bv;
4752         if (boot_cpu_has(X86_FEATURE_XSAVES))
4753                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4754
4755         /*
4756          * Copy each region from the non-compacted offset to the
4757          * possibly compacted offset.
4758          */
4759         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4760         while (valid) {
4761                 u32 size, offset, ecx, edx;
4762                 u64 xfeature_mask = valid & -valid;
4763                 int xfeature_nr = fls64(xfeature_mask) - 1;
4764
4765                 cpuid_count(XSTATE_CPUID, xfeature_nr,
4766                             &size, &offset, &ecx, &edx);
4767
4768                 if (xfeature_nr == XFEATURE_PKRU) {
4769                         memcpy(&vcpu->arch.pkru, src + offset,
4770                                sizeof(vcpu->arch.pkru));
4771                 } else {
4772                         void *dest = get_xsave_addr(xsave, xfeature_nr);
4773
4774                         if (dest)
4775                                 memcpy(dest, src + offset, size);
4776                 }
4777
4778                 valid -= xfeature_mask;
4779         }
4780 }
4781
4782 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4783                                          struct kvm_xsave *guest_xsave)
4784 {
4785         if (!vcpu->arch.guest_fpu)
4786                 return;
4787
4788         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4789                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4790                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4791         } else {
4792                 memcpy(guest_xsave->region,
4793                         &vcpu->arch.guest_fpu->state.fxsave,
4794                         sizeof(struct fxregs_state));
4795                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4796                         XFEATURE_MASK_FPSSE;
4797         }
4798 }
4799
4800 #define XSAVE_MXCSR_OFFSET 24
4801
4802 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4803                                         struct kvm_xsave *guest_xsave)
4804 {
4805         u64 xstate_bv;
4806         u32 mxcsr;
4807
4808         if (!vcpu->arch.guest_fpu)
4809                 return 0;
4810
4811         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4812         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4813
4814         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4815                 /*
4816                  * Here we allow setting states that are not present in
4817                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4818                  * with old userspace.
4819                  */
4820                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4821                         return -EINVAL;
4822                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4823         } else {
4824                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4825                         mxcsr & ~mxcsr_feature_mask)
4826                         return -EINVAL;
4827                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4828                         guest_xsave->region, sizeof(struct fxregs_state));
4829         }
4830         return 0;
4831 }
4832
4833 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4834                                         struct kvm_xcrs *guest_xcrs)
4835 {
4836         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4837                 guest_xcrs->nr_xcrs = 0;
4838                 return;
4839         }
4840
4841         guest_xcrs->nr_xcrs = 1;
4842         guest_xcrs->flags = 0;
4843         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4844         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4845 }
4846
4847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4848                                        struct kvm_xcrs *guest_xcrs)
4849 {
4850         int i, r = 0;
4851
4852         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4853                 return -EINVAL;
4854
4855         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4856                 return -EINVAL;
4857
4858         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4859                 /* Only support XCR0 currently */
4860                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4861                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4862                                 guest_xcrs->xcrs[i].value);
4863                         break;
4864                 }
4865         if (r)
4866                 r = -EINVAL;
4867         return r;
4868 }
4869
4870 /*
4871  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4872  * stopped by the hypervisor.  This function will be called from the host only.
4873  * EINVAL is returned when the host attempts to set the flag for a guest that
4874  * does not support pv clocks.
4875  */
4876 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4877 {
4878         if (!vcpu->arch.pv_time_enabled)
4879                 return -EINVAL;
4880         vcpu->arch.pvclock_set_guest_stopped_request = true;
4881         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4882         return 0;
4883 }
4884
4885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4886                                      struct kvm_enable_cap *cap)
4887 {
4888         int r;
4889         uint16_t vmcs_version;
4890         void __user *user_ptr;
4891
4892         if (cap->flags)
4893                 return -EINVAL;
4894
4895         switch (cap->cap) {
4896         case KVM_CAP_HYPERV_SYNIC2:
4897                 if (cap->args[0])
4898                         return -EINVAL;
4899                 fallthrough;
4900
4901         case KVM_CAP_HYPERV_SYNIC:
4902                 if (!irqchip_in_kernel(vcpu->kvm))
4903                         return -EINVAL;
4904                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4905                                              KVM_CAP_HYPERV_SYNIC2);
4906         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4907                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4908                         return -ENOTTY;
4909                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4910                 if (!r) {
4911                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4912                         if (copy_to_user(user_ptr, &vmcs_version,
4913                                          sizeof(vmcs_version)))
4914                                 r = -EFAULT;
4915                 }
4916                 return r;
4917         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4918                 if (!kvm_x86_ops.enable_direct_tlbflush)
4919                         return -ENOTTY;
4920
4921                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4922
4923         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4924                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4925
4926         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4927                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4928                 if (vcpu->arch.pv_cpuid.enforce)
4929                         kvm_update_pv_runtime(vcpu);
4930
4931                 return 0;
4932         default:
4933                 return -EINVAL;
4934         }
4935 }
4936
4937 long kvm_arch_vcpu_ioctl(struct file *filp,
4938                          unsigned int ioctl, unsigned long arg)
4939 {
4940         struct kvm_vcpu *vcpu = filp->private_data;
4941         void __user *argp = (void __user *)arg;
4942         int r;
4943         union {
4944                 struct kvm_sregs2 *sregs2;
4945                 struct kvm_lapic_state *lapic;
4946                 struct kvm_xsave *xsave;
4947                 struct kvm_xcrs *xcrs;
4948                 void *buffer;
4949         } u;
4950
4951         vcpu_load(vcpu);
4952
4953         u.buffer = NULL;
4954         switch (ioctl) {
4955         case KVM_GET_LAPIC: {
4956                 r = -EINVAL;
4957                 if (!lapic_in_kernel(vcpu))
4958                         goto out;
4959                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4960                                 GFP_KERNEL_ACCOUNT);
4961
4962                 r = -ENOMEM;
4963                 if (!u.lapic)
4964                         goto out;
4965                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4966                 if (r)
4967                         goto out;
4968                 r = -EFAULT;
4969                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4970                         goto out;
4971                 r = 0;
4972                 break;
4973         }
4974         case KVM_SET_LAPIC: {
4975                 r = -EINVAL;
4976                 if (!lapic_in_kernel(vcpu))
4977                         goto out;
4978                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4979                 if (IS_ERR(u.lapic)) {
4980                         r = PTR_ERR(u.lapic);
4981                         goto out_nofree;
4982                 }
4983
4984                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4985                 break;
4986         }
4987         case KVM_INTERRUPT: {
4988                 struct kvm_interrupt irq;
4989
4990                 r = -EFAULT;
4991                 if (copy_from_user(&irq, argp, sizeof(irq)))
4992                         goto out;
4993                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4994                 break;
4995         }
4996         case KVM_NMI: {
4997                 r = kvm_vcpu_ioctl_nmi(vcpu);
4998                 break;
4999         }
5000         case KVM_SMI: {
5001                 r = kvm_vcpu_ioctl_smi(vcpu);
5002                 break;
5003         }
5004         case KVM_SET_CPUID: {
5005                 struct kvm_cpuid __user *cpuid_arg = argp;
5006                 struct kvm_cpuid cpuid;
5007
5008                 r = -EFAULT;
5009                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5010                         goto out;
5011                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5012                 break;
5013         }
5014         case KVM_SET_CPUID2: {
5015                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5016                 struct kvm_cpuid2 cpuid;
5017
5018                 r = -EFAULT;
5019                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020                         goto out;
5021                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5022                                               cpuid_arg->entries);
5023                 break;
5024         }
5025         case KVM_GET_CPUID2: {
5026                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5027                 struct kvm_cpuid2 cpuid;
5028
5029                 r = -EFAULT;
5030                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5031                         goto out;
5032                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5033                                               cpuid_arg->entries);
5034                 if (r)
5035                         goto out;
5036                 r = -EFAULT;
5037                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5038                         goto out;
5039                 r = 0;
5040                 break;
5041         }
5042         case KVM_GET_MSRS: {
5043                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5044                 r = msr_io(vcpu, argp, do_get_msr, 1);
5045                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5046                 break;
5047         }
5048         case KVM_SET_MSRS: {
5049                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5050                 r = msr_io(vcpu, argp, do_set_msr, 0);
5051                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5052                 break;
5053         }
5054         case KVM_TPR_ACCESS_REPORTING: {
5055                 struct kvm_tpr_access_ctl tac;
5056
5057                 r = -EFAULT;
5058                 if (copy_from_user(&tac, argp, sizeof(tac)))
5059                         goto out;
5060                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5061                 if (r)
5062                         goto out;
5063                 r = -EFAULT;
5064                 if (copy_to_user(argp, &tac, sizeof(tac)))
5065                         goto out;
5066                 r = 0;
5067                 break;
5068         };
5069         case KVM_SET_VAPIC_ADDR: {
5070                 struct kvm_vapic_addr va;
5071                 int idx;
5072
5073                 r = -EINVAL;
5074                 if (!lapic_in_kernel(vcpu))
5075                         goto out;
5076                 r = -EFAULT;
5077                 if (copy_from_user(&va, argp, sizeof(va)))
5078                         goto out;
5079                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5080                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5081                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5082                 break;
5083         }
5084         case KVM_X86_SETUP_MCE: {
5085                 u64 mcg_cap;
5086
5087                 r = -EFAULT;
5088                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5089                         goto out;
5090                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5091                 break;
5092         }
5093         case KVM_X86_SET_MCE: {
5094                 struct kvm_x86_mce mce;
5095
5096                 r = -EFAULT;
5097                 if (copy_from_user(&mce, argp, sizeof(mce)))
5098                         goto out;
5099                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5100                 break;
5101         }
5102         case KVM_GET_VCPU_EVENTS: {
5103                 struct kvm_vcpu_events events;
5104
5105                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5106
5107                 r = -EFAULT;
5108                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5109                         break;
5110                 r = 0;
5111                 break;
5112         }
5113         case KVM_SET_VCPU_EVENTS: {
5114                 struct kvm_vcpu_events events;
5115
5116                 r = -EFAULT;
5117                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5118                         break;
5119
5120                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5121                 break;
5122         }
5123         case KVM_GET_DEBUGREGS: {
5124                 struct kvm_debugregs dbgregs;
5125
5126                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5127
5128                 r = -EFAULT;
5129                 if (copy_to_user(argp, &dbgregs,
5130                                  sizeof(struct kvm_debugregs)))
5131                         break;
5132                 r = 0;
5133                 break;
5134         }
5135         case KVM_SET_DEBUGREGS: {
5136                 struct kvm_debugregs dbgregs;
5137
5138                 r = -EFAULT;
5139                 if (copy_from_user(&dbgregs, argp,
5140                                    sizeof(struct kvm_debugregs)))
5141                         break;
5142
5143                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5144                 break;
5145         }
5146         case KVM_GET_XSAVE: {
5147                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5148                 r = -ENOMEM;
5149                 if (!u.xsave)
5150                         break;
5151
5152                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5153
5154                 r = -EFAULT;
5155                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5156                         break;
5157                 r = 0;
5158                 break;
5159         }
5160         case KVM_SET_XSAVE: {
5161                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5162                 if (IS_ERR(u.xsave)) {
5163                         r = PTR_ERR(u.xsave);
5164                         goto out_nofree;
5165                 }
5166
5167                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5168                 break;
5169         }
5170         case KVM_GET_XCRS: {
5171                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5172                 r = -ENOMEM;
5173                 if (!u.xcrs)
5174                         break;
5175
5176                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5177
5178                 r = -EFAULT;
5179                 if (copy_to_user(argp, u.xcrs,
5180                                  sizeof(struct kvm_xcrs)))
5181                         break;
5182                 r = 0;
5183                 break;
5184         }
5185         case KVM_SET_XCRS: {
5186                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5187                 if (IS_ERR(u.xcrs)) {
5188                         r = PTR_ERR(u.xcrs);
5189                         goto out_nofree;
5190                 }
5191
5192                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5193                 break;
5194         }
5195         case KVM_SET_TSC_KHZ: {
5196                 u32 user_tsc_khz;
5197
5198                 r = -EINVAL;
5199                 user_tsc_khz = (u32)arg;
5200
5201                 if (kvm_has_tsc_control &&
5202                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5203                         goto out;
5204
5205                 if (user_tsc_khz == 0)
5206                         user_tsc_khz = tsc_khz;
5207
5208                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5209                         r = 0;
5210
5211                 goto out;
5212         }
5213         case KVM_GET_TSC_KHZ: {
5214                 r = vcpu->arch.virtual_tsc_khz;
5215                 goto out;
5216         }
5217         case KVM_KVMCLOCK_CTRL: {
5218                 r = kvm_set_guest_paused(vcpu);
5219                 goto out;
5220         }
5221         case KVM_ENABLE_CAP: {
5222                 struct kvm_enable_cap cap;
5223
5224                 r = -EFAULT;
5225                 if (copy_from_user(&cap, argp, sizeof(cap)))
5226                         goto out;
5227                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5228                 break;
5229         }
5230         case KVM_GET_NESTED_STATE: {
5231                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5232                 u32 user_data_size;
5233
5234                 r = -EINVAL;
5235                 if (!kvm_x86_ops.nested_ops->get_state)
5236                         break;
5237
5238                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5239                 r = -EFAULT;
5240                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5241                         break;
5242
5243                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5244                                                      user_data_size);
5245                 if (r < 0)
5246                         break;
5247
5248                 if (r > user_data_size) {
5249                         if (put_user(r, &user_kvm_nested_state->size))
5250                                 r = -EFAULT;
5251                         else
5252                                 r = -E2BIG;
5253                         break;
5254                 }
5255
5256                 r = 0;
5257                 break;
5258         }
5259         case KVM_SET_NESTED_STATE: {
5260                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5261                 struct kvm_nested_state kvm_state;
5262                 int idx;
5263
5264                 r = -EINVAL;
5265                 if (!kvm_x86_ops.nested_ops->set_state)
5266                         break;
5267
5268                 r = -EFAULT;
5269                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5270                         break;
5271
5272                 r = -EINVAL;
5273                 if (kvm_state.size < sizeof(kvm_state))
5274                         break;
5275
5276                 if (kvm_state.flags &
5277                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5278                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5279                       | KVM_STATE_NESTED_GIF_SET))
5280                         break;
5281
5282                 /* nested_run_pending implies guest_mode.  */
5283                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5284                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5285                         break;
5286
5287                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5288                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5289                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5290                 break;
5291         }
5292         case KVM_GET_SUPPORTED_HV_CPUID:
5293                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5294                 break;
5295 #ifdef CONFIG_KVM_XEN
5296         case KVM_XEN_VCPU_GET_ATTR: {
5297                 struct kvm_xen_vcpu_attr xva;
5298
5299                 r = -EFAULT;
5300                 if (copy_from_user(&xva, argp, sizeof(xva)))
5301                         goto out;
5302                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5303                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5304                         r = -EFAULT;
5305                 break;
5306         }
5307         case KVM_XEN_VCPU_SET_ATTR: {
5308                 struct kvm_xen_vcpu_attr xva;
5309
5310                 r = -EFAULT;
5311                 if (copy_from_user(&xva, argp, sizeof(xva)))
5312                         goto out;
5313                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5314                 break;
5315         }
5316 #endif
5317         case KVM_GET_SREGS2: {
5318                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5319                 r = -ENOMEM;
5320                 if (!u.sregs2)
5321                         goto out;
5322                 __get_sregs2(vcpu, u.sregs2);
5323                 r = -EFAULT;
5324                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5325                         goto out;
5326                 r = 0;
5327                 break;
5328         }
5329         case KVM_SET_SREGS2: {
5330                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5331                 if (IS_ERR(u.sregs2)) {
5332                         r = PTR_ERR(u.sregs2);
5333                         u.sregs2 = NULL;
5334                         goto out;
5335                 }
5336                 r = __set_sregs2(vcpu, u.sregs2);
5337                 break;
5338         }
5339         default:
5340                 r = -EINVAL;
5341         }
5342 out:
5343         kfree(u.buffer);
5344 out_nofree:
5345         vcpu_put(vcpu);
5346         return r;
5347 }
5348
5349 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5350 {
5351         return VM_FAULT_SIGBUS;
5352 }
5353
5354 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5355 {
5356         int ret;
5357
5358         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5359                 return -EINVAL;
5360         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5361         return ret;
5362 }
5363
5364 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5365                                               u64 ident_addr)
5366 {
5367         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5368 }
5369
5370 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5371                                          unsigned long kvm_nr_mmu_pages)
5372 {
5373         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5374                 return -EINVAL;
5375
5376         mutex_lock(&kvm->slots_lock);
5377
5378         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5379         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5380
5381         mutex_unlock(&kvm->slots_lock);
5382         return 0;
5383 }
5384
5385 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5386 {
5387         return kvm->arch.n_max_mmu_pages;
5388 }
5389
5390 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5391 {
5392         struct kvm_pic *pic = kvm->arch.vpic;
5393         int r;
5394
5395         r = 0;
5396         switch (chip->chip_id) {
5397         case KVM_IRQCHIP_PIC_MASTER:
5398                 memcpy(&chip->chip.pic, &pic->pics[0],
5399                         sizeof(struct kvm_pic_state));
5400                 break;
5401         case KVM_IRQCHIP_PIC_SLAVE:
5402                 memcpy(&chip->chip.pic, &pic->pics[1],
5403                         sizeof(struct kvm_pic_state));
5404                 break;
5405         case KVM_IRQCHIP_IOAPIC:
5406                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5407                 break;
5408         default:
5409                 r = -EINVAL;
5410                 break;
5411         }
5412         return r;
5413 }
5414
5415 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5416 {
5417         struct kvm_pic *pic = kvm->arch.vpic;
5418         int r;
5419
5420         r = 0;
5421         switch (chip->chip_id) {
5422         case KVM_IRQCHIP_PIC_MASTER:
5423                 spin_lock(&pic->lock);
5424                 memcpy(&pic->pics[0], &chip->chip.pic,
5425                         sizeof(struct kvm_pic_state));
5426                 spin_unlock(&pic->lock);
5427                 break;
5428         case KVM_IRQCHIP_PIC_SLAVE:
5429                 spin_lock(&pic->lock);
5430                 memcpy(&pic->pics[1], &chip->chip.pic,
5431                         sizeof(struct kvm_pic_state));
5432                 spin_unlock(&pic->lock);
5433                 break;
5434         case KVM_IRQCHIP_IOAPIC:
5435                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5436                 break;
5437         default:
5438                 r = -EINVAL;
5439                 break;
5440         }
5441         kvm_pic_update_irq(pic);
5442         return r;
5443 }
5444
5445 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5446 {
5447         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5448
5449         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5450
5451         mutex_lock(&kps->lock);
5452         memcpy(ps, &kps->channels, sizeof(*ps));
5453         mutex_unlock(&kps->lock);
5454         return 0;
5455 }
5456
5457 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5458 {
5459         int i;
5460         struct kvm_pit *pit = kvm->arch.vpit;
5461
5462         mutex_lock(&pit->pit_state.lock);
5463         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5464         for (i = 0; i < 3; i++)
5465                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5466         mutex_unlock(&pit->pit_state.lock);
5467         return 0;
5468 }
5469
5470 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5471 {
5472         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5473         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5474                 sizeof(ps->channels));
5475         ps->flags = kvm->arch.vpit->pit_state.flags;
5476         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5477         memset(&ps->reserved, 0, sizeof(ps->reserved));
5478         return 0;
5479 }
5480
5481 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5482 {
5483         int start = 0;
5484         int i;
5485         u32 prev_legacy, cur_legacy;
5486         struct kvm_pit *pit = kvm->arch.vpit;
5487
5488         mutex_lock(&pit->pit_state.lock);
5489         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5490         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5491         if (!prev_legacy && cur_legacy)
5492                 start = 1;
5493         memcpy(&pit->pit_state.channels, &ps->channels,
5494                sizeof(pit->pit_state.channels));
5495         pit->pit_state.flags = ps->flags;
5496         for (i = 0; i < 3; i++)
5497                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5498                                    start && i == 0);
5499         mutex_unlock(&pit->pit_state.lock);
5500         return 0;
5501 }
5502
5503 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5504                                  struct kvm_reinject_control *control)
5505 {
5506         struct kvm_pit *pit = kvm->arch.vpit;
5507
5508         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5509          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5510          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5511          */
5512         mutex_lock(&pit->pit_state.lock);
5513         kvm_pit_set_reinject(pit, control->pit_reinject);
5514         mutex_unlock(&pit->pit_state.lock);
5515
5516         return 0;
5517 }
5518
5519 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5520 {
5521
5522         /*
5523          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5524          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5525          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5526          * VM-Exit.
5527          */
5528         struct kvm_vcpu *vcpu;
5529         int i;
5530
5531         kvm_for_each_vcpu(i, vcpu, kvm)
5532                 kvm_vcpu_kick(vcpu);
5533 }
5534
5535 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5536                         bool line_status)
5537 {
5538         if (!irqchip_in_kernel(kvm))
5539                 return -ENXIO;
5540
5541         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5542                                         irq_event->irq, irq_event->level,
5543                                         line_status);
5544         return 0;
5545 }
5546
5547 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5548                             struct kvm_enable_cap *cap)
5549 {
5550         int r;
5551
5552         if (cap->flags)
5553                 return -EINVAL;
5554
5555         switch (cap->cap) {
5556         case KVM_CAP_DISABLE_QUIRKS:
5557                 kvm->arch.disabled_quirks = cap->args[0];
5558                 r = 0;
5559                 break;
5560         case KVM_CAP_SPLIT_IRQCHIP: {
5561                 mutex_lock(&kvm->lock);
5562                 r = -EINVAL;
5563                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5564                         goto split_irqchip_unlock;
5565                 r = -EEXIST;
5566                 if (irqchip_in_kernel(kvm))
5567                         goto split_irqchip_unlock;
5568                 if (kvm->created_vcpus)
5569                         goto split_irqchip_unlock;
5570                 r = kvm_setup_empty_irq_routing(kvm);
5571                 if (r)
5572                         goto split_irqchip_unlock;
5573                 /* Pairs with irqchip_in_kernel. */
5574                 smp_wmb();
5575                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5576                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5577                 r = 0;
5578 split_irqchip_unlock:
5579                 mutex_unlock(&kvm->lock);
5580                 break;
5581         }
5582         case KVM_CAP_X2APIC_API:
5583                 r = -EINVAL;
5584                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5585                         break;
5586
5587                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5588                         kvm->arch.x2apic_format = true;
5589                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5590                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5591
5592                 r = 0;
5593                 break;
5594         case KVM_CAP_X86_DISABLE_EXITS:
5595                 r = -EINVAL;
5596                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5597                         break;
5598
5599                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5600                         kvm_can_mwait_in_guest())
5601                         kvm->arch.mwait_in_guest = true;
5602                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5603                         kvm->arch.hlt_in_guest = true;
5604                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5605                         kvm->arch.pause_in_guest = true;
5606                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5607                         kvm->arch.cstate_in_guest = true;
5608                 r = 0;
5609                 break;
5610         case KVM_CAP_MSR_PLATFORM_INFO:
5611                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5612                 r = 0;
5613                 break;
5614         case KVM_CAP_EXCEPTION_PAYLOAD:
5615                 kvm->arch.exception_payload_enabled = cap->args[0];
5616                 r = 0;
5617                 break;
5618         case KVM_CAP_X86_USER_SPACE_MSR:
5619                 kvm->arch.user_space_msr_mask = cap->args[0];
5620                 r = 0;
5621                 break;
5622         case KVM_CAP_X86_BUS_LOCK_EXIT:
5623                 r = -EINVAL;
5624                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5625                         break;
5626
5627                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5628                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5629                         break;
5630
5631                 if (kvm_has_bus_lock_exit &&
5632                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5633                         kvm->arch.bus_lock_detection_enabled = true;
5634                 r = 0;
5635                 break;
5636 #ifdef CONFIG_X86_SGX_KVM
5637         case KVM_CAP_SGX_ATTRIBUTE: {
5638                 unsigned long allowed_attributes = 0;
5639
5640                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5641                 if (r)
5642                         break;
5643
5644                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5645                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5646                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5647                         kvm->arch.sgx_provisioning_allowed = true;
5648                 else
5649                         r = -EINVAL;
5650                 break;
5651         }
5652 #endif
5653         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5654                 r = -EINVAL;
5655                 if (kvm_x86_ops.vm_copy_enc_context_from)
5656                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5657                 return r;
5658         case KVM_CAP_EXIT_HYPERCALL:
5659                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5660                         r = -EINVAL;
5661                         break;
5662                 }
5663                 kvm->arch.hypercall_exit_enabled = cap->args[0];
5664                 r = 0;
5665                 break;
5666         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5667                 r = -EINVAL;
5668                 if (cap->args[0] & ~1)
5669                         break;
5670                 kvm->arch.exit_on_emulation_error = cap->args[0];
5671                 r = 0;
5672                 break;
5673         default:
5674                 r = -EINVAL;
5675                 break;
5676         }
5677         return r;
5678 }
5679
5680 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5681 {
5682         struct kvm_x86_msr_filter *msr_filter;
5683
5684         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5685         if (!msr_filter)
5686                 return NULL;
5687
5688         msr_filter->default_allow = default_allow;
5689         return msr_filter;
5690 }
5691
5692 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5693 {
5694         u32 i;
5695
5696         if (!msr_filter)
5697                 return;
5698
5699         for (i = 0; i < msr_filter->count; i++)
5700                 kfree(msr_filter->ranges[i].bitmap);
5701
5702         kfree(msr_filter);
5703 }
5704
5705 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5706                               struct kvm_msr_filter_range *user_range)
5707 {
5708         unsigned long *bitmap = NULL;
5709         size_t bitmap_size;
5710
5711         if (!user_range->nmsrs)
5712                 return 0;
5713
5714         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5715                 return -EINVAL;
5716
5717         if (!user_range->flags)
5718                 return -EINVAL;
5719
5720         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5721         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5722                 return -EINVAL;
5723
5724         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5725         if (IS_ERR(bitmap))
5726                 return PTR_ERR(bitmap);
5727
5728         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5729                 .flags = user_range->flags,
5730                 .base = user_range->base,
5731                 .nmsrs = user_range->nmsrs,
5732                 .bitmap = bitmap,
5733         };
5734
5735         msr_filter->count++;
5736         return 0;
5737 }
5738
5739 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5740 {
5741         struct kvm_msr_filter __user *user_msr_filter = argp;
5742         struct kvm_x86_msr_filter *new_filter, *old_filter;
5743         struct kvm_msr_filter filter;
5744         bool default_allow;
5745         bool empty = true;
5746         int r = 0;
5747         u32 i;
5748
5749         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5750                 return -EFAULT;
5751
5752         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5753                 empty &= !filter.ranges[i].nmsrs;
5754
5755         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5756         if (empty && !default_allow)
5757                 return -EINVAL;
5758
5759         new_filter = kvm_alloc_msr_filter(default_allow);
5760         if (!new_filter)
5761                 return -ENOMEM;
5762
5763         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5764                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5765                 if (r) {
5766                         kvm_free_msr_filter(new_filter);
5767                         return r;
5768                 }
5769         }
5770
5771         mutex_lock(&kvm->lock);
5772
5773         /* The per-VM filter is protected by kvm->lock... */
5774         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5775
5776         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5777         synchronize_srcu(&kvm->srcu);
5778
5779         kvm_free_msr_filter(old_filter);
5780
5781         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5782         mutex_unlock(&kvm->lock);
5783
5784         return 0;
5785 }
5786
5787 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5788 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5789 {
5790         struct kvm_vcpu *vcpu;
5791         int i, ret = 0;
5792
5793         mutex_lock(&kvm->lock);
5794         kvm_for_each_vcpu(i, vcpu, kvm) {
5795                 if (!vcpu->arch.pv_time_enabled)
5796                         continue;
5797
5798                 ret = kvm_set_guest_paused(vcpu);
5799                 if (ret) {
5800                         kvm_err("Failed to pause guest VCPU%d: %d\n",
5801                                 vcpu->vcpu_id, ret);
5802                         break;
5803                 }
5804         }
5805         mutex_unlock(&kvm->lock);
5806
5807         return ret ? NOTIFY_BAD : NOTIFY_DONE;
5808 }
5809
5810 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5811 {
5812         switch (state) {
5813         case PM_HIBERNATION_PREPARE:
5814         case PM_SUSPEND_PREPARE:
5815                 return kvm_arch_suspend_notifier(kvm);
5816         }
5817
5818         return NOTIFY_DONE;
5819 }
5820 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5821
5822 long kvm_arch_vm_ioctl(struct file *filp,
5823                        unsigned int ioctl, unsigned long arg)
5824 {
5825         struct kvm *kvm = filp->private_data;
5826         void __user *argp = (void __user *)arg;
5827         int r = -ENOTTY;
5828         /*
5829          * This union makes it completely explicit to gcc-3.x
5830          * that these two variables' stack usage should be
5831          * combined, not added together.
5832          */
5833         union {
5834                 struct kvm_pit_state ps;
5835                 struct kvm_pit_state2 ps2;
5836                 struct kvm_pit_config pit_config;
5837         } u;
5838
5839         switch (ioctl) {
5840         case KVM_SET_TSS_ADDR:
5841                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5842                 break;
5843         case KVM_SET_IDENTITY_MAP_ADDR: {
5844                 u64 ident_addr;
5845
5846                 mutex_lock(&kvm->lock);
5847                 r = -EINVAL;
5848                 if (kvm->created_vcpus)
5849                         goto set_identity_unlock;
5850                 r = -EFAULT;
5851                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5852                         goto set_identity_unlock;
5853                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5854 set_identity_unlock:
5855                 mutex_unlock(&kvm->lock);
5856                 break;
5857         }
5858         case KVM_SET_NR_MMU_PAGES:
5859                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5860                 break;
5861         case KVM_GET_NR_MMU_PAGES:
5862                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5863                 break;
5864         case KVM_CREATE_IRQCHIP: {
5865                 mutex_lock(&kvm->lock);
5866
5867                 r = -EEXIST;
5868                 if (irqchip_in_kernel(kvm))
5869                         goto create_irqchip_unlock;
5870
5871                 r = -EINVAL;
5872                 if (kvm->created_vcpus)
5873                         goto create_irqchip_unlock;
5874
5875                 r = kvm_pic_init(kvm);
5876                 if (r)
5877                         goto create_irqchip_unlock;
5878
5879                 r = kvm_ioapic_init(kvm);
5880                 if (r) {
5881                         kvm_pic_destroy(kvm);
5882                         goto create_irqchip_unlock;
5883                 }
5884
5885                 r = kvm_setup_default_irq_routing(kvm);
5886                 if (r) {
5887                         kvm_ioapic_destroy(kvm);
5888                         kvm_pic_destroy(kvm);
5889                         goto create_irqchip_unlock;
5890                 }
5891                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5892                 smp_wmb();
5893                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5894         create_irqchip_unlock:
5895                 mutex_unlock(&kvm->lock);
5896                 break;
5897         }
5898         case KVM_CREATE_PIT:
5899                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5900                 goto create_pit;
5901         case KVM_CREATE_PIT2:
5902                 r = -EFAULT;
5903                 if (copy_from_user(&u.pit_config, argp,
5904                                    sizeof(struct kvm_pit_config)))
5905                         goto out;
5906         create_pit:
5907                 mutex_lock(&kvm->lock);
5908                 r = -EEXIST;
5909                 if (kvm->arch.vpit)
5910                         goto create_pit_unlock;
5911                 r = -ENOMEM;
5912                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5913                 if (kvm->arch.vpit)
5914                         r = 0;
5915         create_pit_unlock:
5916                 mutex_unlock(&kvm->lock);
5917                 break;
5918         case KVM_GET_IRQCHIP: {
5919                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5920                 struct kvm_irqchip *chip;
5921
5922                 chip = memdup_user(argp, sizeof(*chip));
5923                 if (IS_ERR(chip)) {
5924                         r = PTR_ERR(chip);
5925                         goto out;
5926                 }
5927
5928                 r = -ENXIO;
5929                 if (!irqchip_kernel(kvm))
5930                         goto get_irqchip_out;
5931                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5932                 if (r)
5933                         goto get_irqchip_out;
5934                 r = -EFAULT;
5935                 if (copy_to_user(argp, chip, sizeof(*chip)))
5936                         goto get_irqchip_out;
5937                 r = 0;
5938         get_irqchip_out:
5939                 kfree(chip);
5940                 break;
5941         }
5942         case KVM_SET_IRQCHIP: {
5943                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5944                 struct kvm_irqchip *chip;
5945
5946                 chip = memdup_user(argp, sizeof(*chip));
5947                 if (IS_ERR(chip)) {
5948                         r = PTR_ERR(chip);
5949                         goto out;
5950                 }
5951
5952                 r = -ENXIO;
5953                 if (!irqchip_kernel(kvm))
5954                         goto set_irqchip_out;
5955                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5956         set_irqchip_out:
5957                 kfree(chip);
5958                 break;
5959         }
5960         case KVM_GET_PIT: {
5961                 r = -EFAULT;
5962                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5963                         goto out;
5964                 r = -ENXIO;
5965                 if (!kvm->arch.vpit)
5966                         goto out;
5967                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5968                 if (r)
5969                         goto out;
5970                 r = -EFAULT;
5971                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5972                         goto out;
5973                 r = 0;
5974                 break;
5975         }
5976         case KVM_SET_PIT: {
5977                 r = -EFAULT;
5978                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5979                         goto out;
5980                 mutex_lock(&kvm->lock);
5981                 r = -ENXIO;
5982                 if (!kvm->arch.vpit)
5983                         goto set_pit_out;
5984                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5985 set_pit_out:
5986                 mutex_unlock(&kvm->lock);
5987                 break;
5988         }
5989         case KVM_GET_PIT2: {
5990                 r = -ENXIO;
5991                 if (!kvm->arch.vpit)
5992                         goto out;
5993                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5994                 if (r)
5995                         goto out;
5996                 r = -EFAULT;
5997                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5998                         goto out;
5999                 r = 0;
6000                 break;
6001         }
6002         case KVM_SET_PIT2: {
6003                 r = -EFAULT;
6004                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6005                         goto out;
6006                 mutex_lock(&kvm->lock);
6007                 r = -ENXIO;
6008                 if (!kvm->arch.vpit)
6009                         goto set_pit2_out;
6010                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6011 set_pit2_out:
6012                 mutex_unlock(&kvm->lock);
6013                 break;
6014         }
6015         case KVM_REINJECT_CONTROL: {
6016                 struct kvm_reinject_control control;
6017                 r =  -EFAULT;
6018                 if (copy_from_user(&control, argp, sizeof(control)))
6019                         goto out;
6020                 r = -ENXIO;
6021                 if (!kvm->arch.vpit)
6022                         goto out;
6023                 r = kvm_vm_ioctl_reinject(kvm, &control);
6024                 break;
6025         }
6026         case KVM_SET_BOOT_CPU_ID:
6027                 r = 0;
6028                 mutex_lock(&kvm->lock);
6029                 if (kvm->created_vcpus)
6030                         r = -EBUSY;
6031                 else
6032                         kvm->arch.bsp_vcpu_id = arg;
6033                 mutex_unlock(&kvm->lock);
6034                 break;
6035 #ifdef CONFIG_KVM_XEN
6036         case KVM_XEN_HVM_CONFIG: {
6037                 struct kvm_xen_hvm_config xhc;
6038                 r = -EFAULT;
6039                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6040                         goto out;
6041                 r = kvm_xen_hvm_config(kvm, &xhc);
6042                 break;
6043         }
6044         case KVM_XEN_HVM_GET_ATTR: {
6045                 struct kvm_xen_hvm_attr xha;
6046
6047                 r = -EFAULT;
6048                 if (copy_from_user(&xha, argp, sizeof(xha)))
6049                         goto out;
6050                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6051                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6052                         r = -EFAULT;
6053                 break;
6054         }
6055         case KVM_XEN_HVM_SET_ATTR: {
6056                 struct kvm_xen_hvm_attr xha;
6057
6058                 r = -EFAULT;
6059                 if (copy_from_user(&xha, argp, sizeof(xha)))
6060                         goto out;
6061                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6062                 break;
6063         }
6064 #endif
6065         case KVM_SET_CLOCK: {
6066                 struct kvm_arch *ka = &kvm->arch;
6067                 struct kvm_clock_data user_ns;
6068                 u64 now_ns;
6069
6070                 r = -EFAULT;
6071                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6072                         goto out;
6073
6074                 r = -EINVAL;
6075                 if (user_ns.flags)
6076                         goto out;
6077
6078                 r = 0;
6079                 /*
6080                  * TODO: userspace has to take care of races with VCPU_RUN, so
6081                  * kvm_gen_update_masterclock() can be cut down to locked
6082                  * pvclock_update_vm_gtod_copy().
6083                  */
6084                 kvm_gen_update_masterclock(kvm);
6085
6086                 /*
6087                  * This pairs with kvm_guest_time_update(): when masterclock is
6088                  * in use, we use master_kernel_ns + kvmclock_offset to set
6089                  * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6090                  * is slightly ahead) here we risk going negative on unsigned
6091                  * 'system_time' when 'user_ns.clock' is very small.
6092                  */
6093                 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6094                 if (kvm->arch.use_master_clock)
6095                         now_ns = ka->master_kernel_ns;
6096                 else
6097                         now_ns = get_kvmclock_base_ns();
6098                 ka->kvmclock_offset = user_ns.clock - now_ns;
6099                 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6100
6101                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6102                 break;
6103         }
6104         case KVM_GET_CLOCK: {
6105                 struct kvm_clock_data user_ns;
6106                 u64 now_ns;
6107
6108                 now_ns = get_kvmclock_ns(kvm);
6109                 user_ns.clock = now_ns;
6110                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6111                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6112
6113                 r = -EFAULT;
6114                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6115                         goto out;
6116                 r = 0;
6117                 break;
6118         }
6119         case KVM_MEMORY_ENCRYPT_OP: {
6120                 r = -ENOTTY;
6121                 if (kvm_x86_ops.mem_enc_op)
6122                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6123                 break;
6124         }
6125         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6126                 struct kvm_enc_region region;
6127
6128                 r = -EFAULT;
6129                 if (copy_from_user(&region, argp, sizeof(region)))
6130                         goto out;
6131
6132                 r = -ENOTTY;
6133                 if (kvm_x86_ops.mem_enc_reg_region)
6134                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6135                 break;
6136         }
6137         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6138                 struct kvm_enc_region region;
6139
6140                 r = -EFAULT;
6141                 if (copy_from_user(&region, argp, sizeof(region)))
6142                         goto out;
6143
6144                 r = -ENOTTY;
6145                 if (kvm_x86_ops.mem_enc_unreg_region)
6146                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6147                 break;
6148         }
6149         case KVM_HYPERV_EVENTFD: {
6150                 struct kvm_hyperv_eventfd hvevfd;
6151
6152                 r = -EFAULT;
6153                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6154                         goto out;
6155                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6156                 break;
6157         }
6158         case KVM_SET_PMU_EVENT_FILTER:
6159                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6160                 break;
6161         case KVM_X86_SET_MSR_FILTER:
6162                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6163                 break;
6164         default:
6165                 r = -ENOTTY;
6166         }
6167 out:
6168         return r;
6169 }
6170
6171 static void kvm_init_msr_list(void)
6172 {
6173         struct x86_pmu_capability x86_pmu;
6174         u32 dummy[2];
6175         unsigned i;
6176
6177         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6178                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6179
6180         perf_get_x86_pmu_capability(&x86_pmu);
6181
6182         num_msrs_to_save = 0;
6183         num_emulated_msrs = 0;
6184         num_msr_based_features = 0;
6185
6186         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6187                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6188                         continue;
6189
6190                 /*
6191                  * Even MSRs that are valid in the host may not be exposed
6192                  * to the guests in some cases.
6193                  */
6194                 switch (msrs_to_save_all[i]) {
6195                 case MSR_IA32_BNDCFGS:
6196                         if (!kvm_mpx_supported())
6197                                 continue;
6198                         break;
6199                 case MSR_TSC_AUX:
6200                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6201                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6202                                 continue;
6203                         break;
6204                 case MSR_IA32_UMWAIT_CONTROL:
6205                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6206                                 continue;
6207                         break;
6208                 case MSR_IA32_RTIT_CTL:
6209                 case MSR_IA32_RTIT_STATUS:
6210                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6211                                 continue;
6212                         break;
6213                 case MSR_IA32_RTIT_CR3_MATCH:
6214                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6215                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6216                                 continue;
6217                         break;
6218                 case MSR_IA32_RTIT_OUTPUT_BASE:
6219                 case MSR_IA32_RTIT_OUTPUT_MASK:
6220                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6221                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6222                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6223                                 continue;
6224                         break;
6225                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6226                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6227                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6228                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6229                                 continue;
6230                         break;
6231                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6232                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6233                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6234                                 continue;
6235                         break;
6236                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6237                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6238                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6239                                 continue;
6240                         break;
6241                 default:
6242                         break;
6243                 }
6244
6245                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6246         }
6247
6248         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6249                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6250                         continue;
6251
6252                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6253         }
6254
6255         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6256                 struct kvm_msr_entry msr;
6257
6258                 msr.index = msr_based_features_all[i];
6259                 if (kvm_get_msr_feature(&msr))
6260                         continue;
6261
6262                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6263         }
6264 }
6265
6266 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6267                            const void *v)
6268 {
6269         int handled = 0;
6270         int n;
6271
6272         do {
6273                 n = min(len, 8);
6274                 if (!(lapic_in_kernel(vcpu) &&
6275                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6276                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6277                         break;
6278                 handled += n;
6279                 addr += n;
6280                 len -= n;
6281                 v += n;
6282         } while (len);
6283
6284         return handled;
6285 }
6286
6287 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6288 {
6289         int handled = 0;
6290         int n;
6291
6292         do {
6293                 n = min(len, 8);
6294                 if (!(lapic_in_kernel(vcpu) &&
6295                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6296                                          addr, n, v))
6297                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6298                         break;
6299                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6300                 handled += n;
6301                 addr += n;
6302                 len -= n;
6303                 v += n;
6304         } while (len);
6305
6306         return handled;
6307 }
6308
6309 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6310                         struct kvm_segment *var, int seg)
6311 {
6312         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6313 }
6314
6315 void kvm_get_segment(struct kvm_vcpu *vcpu,
6316                      struct kvm_segment *var, int seg)
6317 {
6318         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6319 }
6320
6321 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6322                            struct x86_exception *exception)
6323 {
6324         gpa_t t_gpa;
6325
6326         BUG_ON(!mmu_is_nested(vcpu));
6327
6328         /* NPT walks are always user-walks */
6329         access |= PFERR_USER_MASK;
6330         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6331
6332         return t_gpa;
6333 }
6334
6335 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6336                               struct x86_exception *exception)
6337 {
6338         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6339         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6340 }
6341 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6342
6343  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6344                                 struct x86_exception *exception)
6345 {
6346         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6347         access |= PFERR_FETCH_MASK;
6348         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6349 }
6350
6351 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6352                                struct x86_exception *exception)
6353 {
6354         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6355         access |= PFERR_WRITE_MASK;
6356         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6357 }
6358 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6359
6360 /* uses this to access any guest's mapped memory without checking CPL */
6361 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6362                                 struct x86_exception *exception)
6363 {
6364         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6365 }
6366
6367 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6368                                       struct kvm_vcpu *vcpu, u32 access,
6369                                       struct x86_exception *exception)
6370 {
6371         void *data = val;
6372         int r = X86EMUL_CONTINUE;
6373
6374         while (bytes) {
6375                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6376                                                             exception);
6377                 unsigned offset = addr & (PAGE_SIZE-1);
6378                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6379                 int ret;
6380
6381                 if (gpa == UNMAPPED_GVA)
6382                         return X86EMUL_PROPAGATE_FAULT;
6383                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6384                                                offset, toread);
6385                 if (ret < 0) {
6386                         r = X86EMUL_IO_NEEDED;
6387                         goto out;
6388                 }
6389
6390                 bytes -= toread;
6391                 data += toread;
6392                 addr += toread;
6393         }
6394 out:
6395         return r;
6396 }
6397
6398 /* used for instruction fetching */
6399 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6400                                 gva_t addr, void *val, unsigned int bytes,
6401                                 struct x86_exception *exception)
6402 {
6403         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6404         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6405         unsigned offset;
6406         int ret;
6407
6408         /* Inline kvm_read_guest_virt_helper for speed.  */
6409         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6410                                                     exception);
6411         if (unlikely(gpa == UNMAPPED_GVA))
6412                 return X86EMUL_PROPAGATE_FAULT;
6413
6414         offset = addr & (PAGE_SIZE-1);
6415         if (WARN_ON(offset + bytes > PAGE_SIZE))
6416                 bytes = (unsigned)PAGE_SIZE - offset;
6417         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6418                                        offset, bytes);
6419         if (unlikely(ret < 0))
6420                 return X86EMUL_IO_NEEDED;
6421
6422         return X86EMUL_CONTINUE;
6423 }
6424
6425 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6426                                gva_t addr, void *val, unsigned int bytes,
6427                                struct x86_exception *exception)
6428 {
6429         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6430
6431         /*
6432          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6433          * is returned, but our callers are not ready for that and they blindly
6434          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6435          * uninitialized kernel stack memory into cr2 and error code.
6436          */
6437         memset(exception, 0, sizeof(*exception));
6438         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6439                                           exception);
6440 }
6441 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6442
6443 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6444                              gva_t addr, void *val, unsigned int bytes,
6445                              struct x86_exception *exception, bool system)
6446 {
6447         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6448         u32 access = 0;
6449
6450         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6451                 access |= PFERR_USER_MASK;
6452
6453         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6454 }
6455
6456 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6457                 unsigned long addr, void *val, unsigned int bytes)
6458 {
6459         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6461
6462         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6463 }
6464
6465 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6466                                       struct kvm_vcpu *vcpu, u32 access,
6467                                       struct x86_exception *exception)
6468 {
6469         void *data = val;
6470         int r = X86EMUL_CONTINUE;
6471
6472         while (bytes) {
6473                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6474                                                              access,
6475                                                              exception);
6476                 unsigned offset = addr & (PAGE_SIZE-1);
6477                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6478                 int ret;
6479
6480                 if (gpa == UNMAPPED_GVA)
6481                         return X86EMUL_PROPAGATE_FAULT;
6482                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6483                 if (ret < 0) {
6484                         r = X86EMUL_IO_NEEDED;
6485                         goto out;
6486                 }
6487
6488                 bytes -= towrite;
6489                 data += towrite;
6490                 addr += towrite;
6491         }
6492 out:
6493         return r;
6494 }
6495
6496 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6497                               unsigned int bytes, struct x86_exception *exception,
6498                               bool system)
6499 {
6500         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6501         u32 access = PFERR_WRITE_MASK;
6502
6503         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6504                 access |= PFERR_USER_MASK;
6505
6506         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6507                                            access, exception);
6508 }
6509
6510 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6511                                 unsigned int bytes, struct x86_exception *exception)
6512 {
6513         /* kvm_write_guest_virt_system can pull in tons of pages. */
6514         vcpu->arch.l1tf_flush_l1d = true;
6515
6516         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6517                                            PFERR_WRITE_MASK, exception);
6518 }
6519 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6520
6521 int handle_ud(struct kvm_vcpu *vcpu)
6522 {
6523         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6524         int emul_type = EMULTYPE_TRAP_UD;
6525         char sig[5]; /* ud2; .ascii "kvm" */
6526         struct x86_exception e;
6527
6528         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6529                 return 1;
6530
6531         if (force_emulation_prefix &&
6532             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6533                                 sig, sizeof(sig), &e) == 0 &&
6534             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6535                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6536                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6537         }
6538
6539         return kvm_emulate_instruction(vcpu, emul_type);
6540 }
6541 EXPORT_SYMBOL_GPL(handle_ud);
6542
6543 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6544                             gpa_t gpa, bool write)
6545 {
6546         /* For APIC access vmexit */
6547         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6548                 return 1;
6549
6550         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6551                 trace_vcpu_match_mmio(gva, gpa, write, true);
6552                 return 1;
6553         }
6554
6555         return 0;
6556 }
6557
6558 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6559                                 gpa_t *gpa, struct x86_exception *exception,
6560                                 bool write)
6561 {
6562         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6563                 | (write ? PFERR_WRITE_MASK : 0);
6564
6565         /*
6566          * currently PKRU is only applied to ept enabled guest so
6567          * there is no pkey in EPT page table for L1 guest or EPT
6568          * shadow page table for L2 guest.
6569          */
6570         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6571             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6572                               vcpu->arch.mmio_access, 0, access))) {
6573                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6574                                         (gva & (PAGE_SIZE - 1));
6575                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6576                 return 1;
6577         }
6578
6579         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6580
6581         if (*gpa == UNMAPPED_GVA)
6582                 return -1;
6583
6584         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6585 }
6586
6587 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6588                         const void *val, int bytes)
6589 {
6590         int ret;
6591
6592         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6593         if (ret < 0)
6594                 return 0;
6595         kvm_page_track_write(vcpu, gpa, val, bytes);
6596         return 1;
6597 }
6598
6599 struct read_write_emulator_ops {
6600         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6601                                   int bytes);
6602         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6603                                   void *val, int bytes);
6604         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6605                                int bytes, void *val);
6606         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6607                                     void *val, int bytes);
6608         bool write;
6609 };
6610
6611 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6612 {
6613         if (vcpu->mmio_read_completed) {
6614                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6615                                vcpu->mmio_fragments[0].gpa, val);
6616                 vcpu->mmio_read_completed = 0;
6617                 return 1;
6618         }
6619
6620         return 0;
6621 }
6622
6623 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6624                         void *val, int bytes)
6625 {
6626         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6627 }
6628
6629 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6630                          void *val, int bytes)
6631 {
6632         return emulator_write_phys(vcpu, gpa, val, bytes);
6633 }
6634
6635 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6636 {
6637         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6638         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6639 }
6640
6641 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6642                           void *val, int bytes)
6643 {
6644         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6645         return X86EMUL_IO_NEEDED;
6646 }
6647
6648 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6649                            void *val, int bytes)
6650 {
6651         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6652
6653         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6654         return X86EMUL_CONTINUE;
6655 }
6656
6657 static const struct read_write_emulator_ops read_emultor = {
6658         .read_write_prepare = read_prepare,
6659         .read_write_emulate = read_emulate,
6660         .read_write_mmio = vcpu_mmio_read,
6661         .read_write_exit_mmio = read_exit_mmio,
6662 };
6663
6664 static const struct read_write_emulator_ops write_emultor = {
6665         .read_write_emulate = write_emulate,
6666         .read_write_mmio = write_mmio,
6667         .read_write_exit_mmio = write_exit_mmio,
6668         .write = true,
6669 };
6670
6671 static int emulator_read_write_onepage(unsigned long addr, void *val,
6672                                        unsigned int bytes,
6673                                        struct x86_exception *exception,
6674                                        struct kvm_vcpu *vcpu,
6675                                        const struct read_write_emulator_ops *ops)
6676 {
6677         gpa_t gpa;
6678         int handled, ret;
6679         bool write = ops->write;
6680         struct kvm_mmio_fragment *frag;
6681         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6682
6683         /*
6684          * If the exit was due to a NPF we may already have a GPA.
6685          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6686          * Note, this cannot be used on string operations since string
6687          * operation using rep will only have the initial GPA from the NPF
6688          * occurred.
6689          */
6690         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6691             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6692                 gpa = ctxt->gpa_val;
6693                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6694         } else {
6695                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6696                 if (ret < 0)
6697                         return X86EMUL_PROPAGATE_FAULT;
6698         }
6699
6700         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6701                 return X86EMUL_CONTINUE;
6702
6703         /*
6704          * Is this MMIO handled locally?
6705          */
6706         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6707         if (handled == bytes)
6708                 return X86EMUL_CONTINUE;
6709
6710         gpa += handled;
6711         bytes -= handled;
6712         val += handled;
6713
6714         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6715         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6716         frag->gpa = gpa;
6717         frag->data = val;
6718         frag->len = bytes;
6719         return X86EMUL_CONTINUE;
6720 }
6721
6722 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6723                         unsigned long addr,
6724                         void *val, unsigned int bytes,
6725                         struct x86_exception *exception,
6726                         const struct read_write_emulator_ops *ops)
6727 {
6728         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6729         gpa_t gpa;
6730         int rc;
6731
6732         if (ops->read_write_prepare &&
6733                   ops->read_write_prepare(vcpu, val, bytes))
6734                 return X86EMUL_CONTINUE;
6735
6736         vcpu->mmio_nr_fragments = 0;
6737
6738         /* Crossing a page boundary? */
6739         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6740                 int now;
6741
6742                 now = -addr & ~PAGE_MASK;
6743                 rc = emulator_read_write_onepage(addr, val, now, exception,
6744                                                  vcpu, ops);
6745
6746                 if (rc != X86EMUL_CONTINUE)
6747                         return rc;
6748                 addr += now;
6749                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6750                         addr = (u32)addr;
6751                 val += now;
6752                 bytes -= now;
6753         }
6754
6755         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6756                                          vcpu, ops);
6757         if (rc != X86EMUL_CONTINUE)
6758                 return rc;
6759
6760         if (!vcpu->mmio_nr_fragments)
6761                 return rc;
6762
6763         gpa = vcpu->mmio_fragments[0].gpa;
6764
6765         vcpu->mmio_needed = 1;
6766         vcpu->mmio_cur_fragment = 0;
6767
6768         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6769         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6770         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6771         vcpu->run->mmio.phys_addr = gpa;
6772
6773         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6774 }
6775
6776 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6777                                   unsigned long addr,
6778                                   void *val,
6779                                   unsigned int bytes,
6780                                   struct x86_exception *exception)
6781 {
6782         return emulator_read_write(ctxt, addr, val, bytes,
6783                                    exception, &read_emultor);
6784 }
6785
6786 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6787                             unsigned long addr,
6788                             const void *val,
6789                             unsigned int bytes,
6790                             struct x86_exception *exception)
6791 {
6792         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6793                                    exception, &write_emultor);
6794 }
6795
6796 #define CMPXCHG_TYPE(t, ptr, old, new) \
6797         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6798
6799 #ifdef CONFIG_X86_64
6800 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6801 #else
6802 #  define CMPXCHG64(ptr, old, new) \
6803         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6804 #endif
6805
6806 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6807                                      unsigned long addr,
6808                                      const void *old,
6809                                      const void *new,
6810                                      unsigned int bytes,
6811                                      struct x86_exception *exception)
6812 {
6813         struct kvm_host_map map;
6814         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6815         u64 page_line_mask;
6816         gpa_t gpa;
6817         char *kaddr;
6818         bool exchanged;
6819
6820         /* guests cmpxchg8b have to be emulated atomically */
6821         if (bytes > 8 || (bytes & (bytes - 1)))
6822                 goto emul_write;
6823
6824         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6825
6826         if (gpa == UNMAPPED_GVA ||
6827             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6828                 goto emul_write;
6829
6830         /*
6831          * Emulate the atomic as a straight write to avoid #AC if SLD is
6832          * enabled in the host and the access splits a cache line.
6833          */
6834         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6835                 page_line_mask = ~(cache_line_size() - 1);
6836         else
6837                 page_line_mask = PAGE_MASK;
6838
6839         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6840                 goto emul_write;
6841
6842         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6843                 goto emul_write;
6844
6845         kaddr = map.hva + offset_in_page(gpa);
6846
6847         switch (bytes) {
6848         case 1:
6849                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6850                 break;
6851         case 2:
6852                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6853                 break;
6854         case 4:
6855                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6856                 break;
6857         case 8:
6858                 exchanged = CMPXCHG64(kaddr, old, new);
6859                 break;
6860         default:
6861                 BUG();
6862         }
6863
6864         kvm_vcpu_unmap(vcpu, &map, true);
6865
6866         if (!exchanged)
6867                 return X86EMUL_CMPXCHG_FAILED;
6868
6869         kvm_page_track_write(vcpu, gpa, new, bytes);
6870
6871         return X86EMUL_CONTINUE;
6872
6873 emul_write:
6874         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6875
6876         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6877 }
6878
6879 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6880 {
6881         int r = 0, i;
6882
6883         for (i = 0; i < vcpu->arch.pio.count; i++) {
6884                 if (vcpu->arch.pio.in)
6885                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6886                                             vcpu->arch.pio.size, pd);
6887                 else
6888                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6889                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6890                                              pd);
6891                 if (r)
6892                         break;
6893                 pd += vcpu->arch.pio.size;
6894         }
6895         return r;
6896 }
6897
6898 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6899                                unsigned short port, void *val,
6900                                unsigned int count, bool in)
6901 {
6902         vcpu->arch.pio.port = port;
6903         vcpu->arch.pio.in = in;
6904         vcpu->arch.pio.count  = count;
6905         vcpu->arch.pio.size = size;
6906
6907         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6908                 vcpu->arch.pio.count = 0;
6909                 return 1;
6910         }
6911
6912         vcpu->run->exit_reason = KVM_EXIT_IO;
6913         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6914         vcpu->run->io.size = size;
6915         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6916         vcpu->run->io.count = count;
6917         vcpu->run->io.port = port;
6918
6919         return 0;
6920 }
6921
6922 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6923                            unsigned short port, void *val, unsigned int count)
6924 {
6925         int ret;
6926
6927         if (vcpu->arch.pio.count)
6928                 goto data_avail;
6929
6930         memset(vcpu->arch.pio_data, 0, size * count);
6931
6932         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6933         if (ret) {
6934 data_avail:
6935                 memcpy(val, vcpu->arch.pio_data, size * count);
6936                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6937                 vcpu->arch.pio.count = 0;
6938                 return 1;
6939         }
6940
6941         return 0;
6942 }
6943
6944 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6945                                     int size, unsigned short port, void *val,
6946                                     unsigned int count)
6947 {
6948         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6949
6950 }
6951
6952 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6953                             unsigned short port, const void *val,
6954                             unsigned int count)
6955 {
6956         memcpy(vcpu->arch.pio_data, val, size * count);
6957         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6958         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6959 }
6960
6961 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6962                                      int size, unsigned short port,
6963                                      const void *val, unsigned int count)
6964 {
6965         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6966 }
6967
6968 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6969 {
6970         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6971 }
6972
6973 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6974 {
6975         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6976 }
6977
6978 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6979 {
6980         if (!need_emulate_wbinvd(vcpu))
6981                 return X86EMUL_CONTINUE;
6982
6983         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6984                 int cpu = get_cpu();
6985
6986                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6987                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6988                                 wbinvd_ipi, NULL, 1);
6989                 put_cpu();
6990                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6991         } else
6992                 wbinvd();
6993         return X86EMUL_CONTINUE;
6994 }
6995
6996 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6997 {
6998         kvm_emulate_wbinvd_noskip(vcpu);
6999         return kvm_skip_emulated_instruction(vcpu);
7000 }
7001 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7002
7003
7004
7005 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7006 {
7007         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7008 }
7009
7010 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7011                             unsigned long *dest)
7012 {
7013         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7014 }
7015
7016 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7017                            unsigned long value)
7018 {
7019
7020         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7021 }
7022
7023 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7024 {
7025         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7026 }
7027
7028 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7029 {
7030         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7031         unsigned long value;
7032
7033         switch (cr) {
7034         case 0:
7035                 value = kvm_read_cr0(vcpu);
7036                 break;
7037         case 2:
7038                 value = vcpu->arch.cr2;
7039                 break;
7040         case 3:
7041                 value = kvm_read_cr3(vcpu);
7042                 break;
7043         case 4:
7044                 value = kvm_read_cr4(vcpu);
7045                 break;
7046         case 8:
7047                 value = kvm_get_cr8(vcpu);
7048                 break;
7049         default:
7050                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7051                 return 0;
7052         }
7053
7054         return value;
7055 }
7056
7057 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7058 {
7059         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7060         int res = 0;
7061
7062         switch (cr) {
7063         case 0:
7064                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7065                 break;
7066         case 2:
7067                 vcpu->arch.cr2 = val;
7068                 break;
7069         case 3:
7070                 res = kvm_set_cr3(vcpu, val);
7071                 break;
7072         case 4:
7073                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7074                 break;
7075         case 8:
7076                 res = kvm_set_cr8(vcpu, val);
7077                 break;
7078         default:
7079                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7080                 res = -1;
7081         }
7082
7083         return res;
7084 }
7085
7086 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7087 {
7088         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7089 }
7090
7091 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7092 {
7093         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7094 }
7095
7096 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7097 {
7098         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7099 }
7100
7101 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7102 {
7103         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7104 }
7105
7106 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7107 {
7108         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7109 }
7110
7111 static unsigned long emulator_get_cached_segment_base(
7112         struct x86_emulate_ctxt *ctxt, int seg)
7113 {
7114         return get_segment_base(emul_to_vcpu(ctxt), seg);
7115 }
7116
7117 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7118                                  struct desc_struct *desc, u32 *base3,
7119                                  int seg)
7120 {
7121         struct kvm_segment var;
7122
7123         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7124         *selector = var.selector;
7125
7126         if (var.unusable) {
7127                 memset(desc, 0, sizeof(*desc));
7128                 if (base3)
7129                         *base3 = 0;
7130                 return false;
7131         }
7132
7133         if (var.g)
7134                 var.limit >>= 12;
7135         set_desc_limit(desc, var.limit);
7136         set_desc_base(desc, (unsigned long)var.base);
7137 #ifdef CONFIG_X86_64
7138         if (base3)
7139                 *base3 = var.base >> 32;
7140 #endif
7141         desc->type = var.type;
7142         desc->s = var.s;
7143         desc->dpl = var.dpl;
7144         desc->p = var.present;
7145         desc->avl = var.avl;
7146         desc->l = var.l;
7147         desc->d = var.db;
7148         desc->g = var.g;
7149
7150         return true;
7151 }
7152
7153 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7154                                  struct desc_struct *desc, u32 base3,
7155                                  int seg)
7156 {
7157         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7158         struct kvm_segment var;
7159
7160         var.selector = selector;
7161         var.base = get_desc_base(desc);
7162 #ifdef CONFIG_X86_64
7163         var.base |= ((u64)base3) << 32;
7164 #endif
7165         var.limit = get_desc_limit(desc);
7166         if (desc->g)
7167                 var.limit = (var.limit << 12) | 0xfff;
7168         var.type = desc->type;
7169         var.dpl = desc->dpl;
7170         var.db = desc->d;
7171         var.s = desc->s;
7172         var.l = desc->l;
7173         var.g = desc->g;
7174         var.avl = desc->avl;
7175         var.present = desc->p;
7176         var.unusable = !var.present;
7177         var.padding = 0;
7178
7179         kvm_set_segment(vcpu, &var, seg);
7180         return;
7181 }
7182
7183 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7184                             u32 msr_index, u64 *pdata)
7185 {
7186         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7187         int r;
7188
7189         r = kvm_get_msr(vcpu, msr_index, pdata);
7190
7191         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7192                 /* Bounce to user space */
7193                 return X86EMUL_IO_NEEDED;
7194         }
7195
7196         return r;
7197 }
7198
7199 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7200                             u32 msr_index, u64 data)
7201 {
7202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7203         int r;
7204
7205         r = kvm_set_msr(vcpu, msr_index, data);
7206
7207         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7208                 /* Bounce to user space */
7209                 return X86EMUL_IO_NEEDED;
7210         }
7211
7212         return r;
7213 }
7214
7215 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7216 {
7217         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7218
7219         return vcpu->arch.smbase;
7220 }
7221
7222 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7223 {
7224         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7225
7226         vcpu->arch.smbase = smbase;
7227 }
7228
7229 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7230                               u32 pmc)
7231 {
7232         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7233 }
7234
7235 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7236                              u32 pmc, u64 *pdata)
7237 {
7238         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7239 }
7240
7241 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7242 {
7243         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7244 }
7245
7246 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7247                               struct x86_instruction_info *info,
7248                               enum x86_intercept_stage stage)
7249 {
7250         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7251                                             &ctxt->exception);
7252 }
7253
7254 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7255                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7256                               bool exact_only)
7257 {
7258         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7259 }
7260
7261 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7262 {
7263         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7264 }
7265
7266 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7267 {
7268         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7269 }
7270
7271 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7272 {
7273         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7274 }
7275
7276 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7277 {
7278         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7279 }
7280
7281 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7282 {
7283         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7284 }
7285
7286 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7287 {
7288         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7289 }
7290
7291 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7292 {
7293         return emul_to_vcpu(ctxt)->arch.hflags;
7294 }
7295
7296 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7297 {
7298         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7299
7300         kvm_smm_changed(vcpu, false);
7301 }
7302
7303 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7304                                   const char *smstate)
7305 {
7306         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7307 }
7308
7309 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7310 {
7311         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7312 }
7313
7314 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7315 {
7316         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7317 }
7318
7319 static const struct x86_emulate_ops emulate_ops = {
7320         .read_gpr            = emulator_read_gpr,
7321         .write_gpr           = emulator_write_gpr,
7322         .read_std            = emulator_read_std,
7323         .write_std           = emulator_write_std,
7324         .read_phys           = kvm_read_guest_phys_system,
7325         .fetch               = kvm_fetch_guest_virt,
7326         .read_emulated       = emulator_read_emulated,
7327         .write_emulated      = emulator_write_emulated,
7328         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7329         .invlpg              = emulator_invlpg,
7330         .pio_in_emulated     = emulator_pio_in_emulated,
7331         .pio_out_emulated    = emulator_pio_out_emulated,
7332         .get_segment         = emulator_get_segment,
7333         .set_segment         = emulator_set_segment,
7334         .get_cached_segment_base = emulator_get_cached_segment_base,
7335         .get_gdt             = emulator_get_gdt,
7336         .get_idt             = emulator_get_idt,
7337         .set_gdt             = emulator_set_gdt,
7338         .set_idt             = emulator_set_idt,
7339         .get_cr              = emulator_get_cr,
7340         .set_cr              = emulator_set_cr,
7341         .cpl                 = emulator_get_cpl,
7342         .get_dr              = emulator_get_dr,
7343         .set_dr              = emulator_set_dr,
7344         .get_smbase          = emulator_get_smbase,
7345         .set_smbase          = emulator_set_smbase,
7346         .set_msr             = emulator_set_msr,
7347         .get_msr             = emulator_get_msr,
7348         .check_pmc           = emulator_check_pmc,
7349         .read_pmc            = emulator_read_pmc,
7350         .halt                = emulator_halt,
7351         .wbinvd              = emulator_wbinvd,
7352         .fix_hypercall       = emulator_fix_hypercall,
7353         .intercept           = emulator_intercept,
7354         .get_cpuid           = emulator_get_cpuid,
7355         .guest_has_long_mode = emulator_guest_has_long_mode,
7356         .guest_has_movbe     = emulator_guest_has_movbe,
7357         .guest_has_fxsr      = emulator_guest_has_fxsr,
7358         .set_nmi_mask        = emulator_set_nmi_mask,
7359         .get_hflags          = emulator_get_hflags,
7360         .exiting_smm         = emulator_exiting_smm,
7361         .leave_smm           = emulator_leave_smm,
7362         .triple_fault        = emulator_triple_fault,
7363         .set_xcr             = emulator_set_xcr,
7364 };
7365
7366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7367 {
7368         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7369         /*
7370          * an sti; sti; sequence only disable interrupts for the first
7371          * instruction. So, if the last instruction, be it emulated or
7372          * not, left the system with the INT_STI flag enabled, it
7373          * means that the last instruction is an sti. We should not
7374          * leave the flag on in this case. The same goes for mov ss
7375          */
7376         if (int_shadow & mask)
7377                 mask = 0;
7378         if (unlikely(int_shadow || mask)) {
7379                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7380                 if (!mask)
7381                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7382         }
7383 }
7384
7385 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7386 {
7387         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7388         if (ctxt->exception.vector == PF_VECTOR)
7389                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7390
7391         if (ctxt->exception.error_code_valid)
7392                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7393                                       ctxt->exception.error_code);
7394         else
7395                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7396         return false;
7397 }
7398
7399 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7400 {
7401         struct x86_emulate_ctxt *ctxt;
7402
7403         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7404         if (!ctxt) {
7405                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7406                 return NULL;
7407         }
7408
7409         ctxt->vcpu = vcpu;
7410         ctxt->ops = &emulate_ops;
7411         vcpu->arch.emulate_ctxt = ctxt;
7412
7413         return ctxt;
7414 }
7415
7416 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7417 {
7418         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7419         int cs_db, cs_l;
7420
7421         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7422
7423         ctxt->gpa_available = false;
7424         ctxt->eflags = kvm_get_rflags(vcpu);
7425         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7426
7427         ctxt->eip = kvm_rip_read(vcpu);
7428         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7429                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7430                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7431                      cs_db                              ? X86EMUL_MODE_PROT32 :
7432                                                           X86EMUL_MODE_PROT16;
7433         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7434         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7435         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7436
7437         ctxt->interruptibility = 0;
7438         ctxt->have_exception = false;
7439         ctxt->exception.vector = -1;
7440         ctxt->perm_ok = false;
7441
7442         init_decode_cache(ctxt);
7443         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7444 }
7445
7446 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7447 {
7448         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7449         int ret;
7450
7451         init_emulate_ctxt(vcpu);
7452
7453         ctxt->op_bytes = 2;
7454         ctxt->ad_bytes = 2;
7455         ctxt->_eip = ctxt->eip + inc_eip;
7456         ret = emulate_int_real(ctxt, irq);
7457
7458         if (ret != X86EMUL_CONTINUE) {
7459                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7460         } else {
7461                 ctxt->eip = ctxt->_eip;
7462                 kvm_rip_write(vcpu, ctxt->eip);
7463                 kvm_set_rflags(vcpu, ctxt->eflags);
7464         }
7465 }
7466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7467
7468 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7469 {
7470         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7471         u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7472         struct kvm_run *run = vcpu->run;
7473
7474         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7475         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7476         run->emulation_failure.ndata = 0;
7477         run->emulation_failure.flags = 0;
7478
7479         if (insn_size) {
7480                 run->emulation_failure.ndata = 3;
7481                 run->emulation_failure.flags |=
7482                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7483                 run->emulation_failure.insn_size = insn_size;
7484                 memset(run->emulation_failure.insn_bytes, 0x90,
7485                        sizeof(run->emulation_failure.insn_bytes));
7486                 memcpy(run->emulation_failure.insn_bytes,
7487                        ctxt->fetch.data, insn_size);
7488         }
7489 }
7490
7491 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7492 {
7493         struct kvm *kvm = vcpu->kvm;
7494
7495         ++vcpu->stat.insn_emulation_fail;
7496         trace_kvm_emulate_insn_failed(vcpu);
7497
7498         if (emulation_type & EMULTYPE_VMWARE_GP) {
7499                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7500                 return 1;
7501         }
7502
7503         if (kvm->arch.exit_on_emulation_error ||
7504             (emulation_type & EMULTYPE_SKIP)) {
7505                 prepare_emulation_failure_exit(vcpu);
7506                 return 0;
7507         }
7508
7509         kvm_queue_exception(vcpu, UD_VECTOR);
7510
7511         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7512                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7513                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7514                 vcpu->run->internal.ndata = 0;
7515                 return 0;
7516         }
7517
7518         return 1;
7519 }
7520
7521 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7522                                   bool write_fault_to_shadow_pgtable,
7523                                   int emulation_type)
7524 {
7525         gpa_t gpa = cr2_or_gpa;
7526         kvm_pfn_t pfn;
7527
7528         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7529                 return false;
7530
7531         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7532             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7533                 return false;
7534
7535         if (!vcpu->arch.mmu->direct_map) {
7536                 /*
7537                  * Write permission should be allowed since only
7538                  * write access need to be emulated.
7539                  */
7540                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7541
7542                 /*
7543                  * If the mapping is invalid in guest, let cpu retry
7544                  * it to generate fault.
7545                  */
7546                 if (gpa == UNMAPPED_GVA)
7547                         return true;
7548         }
7549
7550         /*
7551          * Do not retry the unhandleable instruction if it faults on the
7552          * readonly host memory, otherwise it will goto a infinite loop:
7553          * retry instruction -> write #PF -> emulation fail -> retry
7554          * instruction -> ...
7555          */
7556         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7557
7558         /*
7559          * If the instruction failed on the error pfn, it can not be fixed,
7560          * report the error to userspace.
7561          */
7562         if (is_error_noslot_pfn(pfn))
7563                 return false;
7564
7565         kvm_release_pfn_clean(pfn);
7566
7567         /* The instructions are well-emulated on direct mmu. */
7568         if (vcpu->arch.mmu->direct_map) {
7569                 unsigned int indirect_shadow_pages;
7570
7571                 write_lock(&vcpu->kvm->mmu_lock);
7572                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7573                 write_unlock(&vcpu->kvm->mmu_lock);
7574
7575                 if (indirect_shadow_pages)
7576                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7577
7578                 return true;
7579         }
7580
7581         /*
7582          * if emulation was due to access to shadowed page table
7583          * and it failed try to unshadow page and re-enter the
7584          * guest to let CPU execute the instruction.
7585          */
7586         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7587
7588         /*
7589          * If the access faults on its page table, it can not
7590          * be fixed by unprotecting shadow page and it should
7591          * be reported to userspace.
7592          */
7593         return !write_fault_to_shadow_pgtable;
7594 }
7595
7596 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7597                               gpa_t cr2_or_gpa,  int emulation_type)
7598 {
7599         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7600         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7601
7602         last_retry_eip = vcpu->arch.last_retry_eip;
7603         last_retry_addr = vcpu->arch.last_retry_addr;
7604
7605         /*
7606          * If the emulation is caused by #PF and it is non-page_table
7607          * writing instruction, it means the VM-EXIT is caused by shadow
7608          * page protected, we can zap the shadow page and retry this
7609          * instruction directly.
7610          *
7611          * Note: if the guest uses a non-page-table modifying instruction
7612          * on the PDE that points to the instruction, then we will unmap
7613          * the instruction and go to an infinite loop. So, we cache the
7614          * last retried eip and the last fault address, if we meet the eip
7615          * and the address again, we can break out of the potential infinite
7616          * loop.
7617          */
7618         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7619
7620         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7621                 return false;
7622
7623         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7624             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7625                 return false;
7626
7627         if (x86_page_table_writing_insn(ctxt))
7628                 return false;
7629
7630         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7631                 return false;
7632
7633         vcpu->arch.last_retry_eip = ctxt->eip;
7634         vcpu->arch.last_retry_addr = cr2_or_gpa;
7635
7636         if (!vcpu->arch.mmu->direct_map)
7637                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7638
7639         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7640
7641         return true;
7642 }
7643
7644 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7645 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7646
7647 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7648 {
7649         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7650
7651         if (entering_smm) {
7652                 vcpu->arch.hflags |= HF_SMM_MASK;
7653         } else {
7654                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7655
7656                 /* Process a latched INIT or SMI, if any.  */
7657                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7658         }
7659
7660         kvm_mmu_reset_context(vcpu);
7661 }
7662
7663 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7664                                 unsigned long *db)
7665 {
7666         u32 dr6 = 0;
7667         int i;
7668         u32 enable, rwlen;
7669
7670         enable = dr7;
7671         rwlen = dr7 >> 16;
7672         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7673                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7674                         dr6 |= (1 << i);
7675         return dr6;
7676 }
7677
7678 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7679 {
7680         struct kvm_run *kvm_run = vcpu->run;
7681
7682         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7683                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7684                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7685                 kvm_run->debug.arch.exception = DB_VECTOR;
7686                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7687                 return 0;
7688         }
7689         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7690         return 1;
7691 }
7692
7693 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7694 {
7695         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7696         int r;
7697
7698         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7699         if (unlikely(!r))
7700                 return 0;
7701
7702         /*
7703          * rflags is the old, "raw" value of the flags.  The new value has
7704          * not been saved yet.
7705          *
7706          * This is correct even for TF set by the guest, because "the
7707          * processor will not generate this exception after the instruction
7708          * that sets the TF flag".
7709          */
7710         if (unlikely(rflags & X86_EFLAGS_TF))
7711                 r = kvm_vcpu_do_singlestep(vcpu);
7712         return r;
7713 }
7714 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7715
7716 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7717 {
7718         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7719             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7720                 struct kvm_run *kvm_run = vcpu->run;
7721                 unsigned long eip = kvm_get_linear_rip(vcpu);
7722                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7723                                            vcpu->arch.guest_debug_dr7,
7724                                            vcpu->arch.eff_db);
7725
7726                 if (dr6 != 0) {
7727                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7728                         kvm_run->debug.arch.pc = eip;
7729                         kvm_run->debug.arch.exception = DB_VECTOR;
7730                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7731                         *r = 0;
7732                         return true;
7733                 }
7734         }
7735
7736         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7737             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7738                 unsigned long eip = kvm_get_linear_rip(vcpu);
7739                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7740                                            vcpu->arch.dr7,
7741                                            vcpu->arch.db);
7742
7743                 if (dr6 != 0) {
7744                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7745                         *r = 1;
7746                         return true;
7747                 }
7748         }
7749
7750         return false;
7751 }
7752
7753 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7754 {
7755         switch (ctxt->opcode_len) {
7756         case 1:
7757                 switch (ctxt->b) {
7758                 case 0xe4:      /* IN */
7759                 case 0xe5:
7760                 case 0xec:
7761                 case 0xed:
7762                 case 0xe6:      /* OUT */
7763                 case 0xe7:
7764                 case 0xee:
7765                 case 0xef:
7766                 case 0x6c:      /* INS */
7767                 case 0x6d:
7768                 case 0x6e:      /* OUTS */
7769                 case 0x6f:
7770                         return true;
7771                 }
7772                 break;
7773         case 2:
7774                 switch (ctxt->b) {
7775                 case 0x33:      /* RDPMC */
7776                         return true;
7777                 }
7778                 break;
7779         }
7780
7781         return false;
7782 }
7783
7784 /*
7785  * Decode to be emulated instruction. Return EMULATION_OK if success.
7786  */
7787 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7788                                     void *insn, int insn_len)
7789 {
7790         int r = EMULATION_OK;
7791         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7792
7793         init_emulate_ctxt(vcpu);
7794
7795         /*
7796          * We will reenter on the same instruction since we do not set
7797          * complete_userspace_io. This does not handle watchpoints yet,
7798          * those would be handled in the emulate_ops.
7799          */
7800         if (!(emulation_type & EMULTYPE_SKIP) &&
7801             kvm_vcpu_check_breakpoint(vcpu, &r))
7802                 return r;
7803
7804         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7805
7806         trace_kvm_emulate_insn_start(vcpu);
7807         ++vcpu->stat.insn_emulation;
7808
7809         return r;
7810 }
7811 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7812
7813 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7814                             int emulation_type, void *insn, int insn_len)
7815 {
7816         int r;
7817         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7818         bool writeback = true;
7819         bool write_fault_to_spt;
7820
7821         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7822                 return 1;
7823
7824         vcpu->arch.l1tf_flush_l1d = true;
7825
7826         /*
7827          * Clear write_fault_to_shadow_pgtable here to ensure it is
7828          * never reused.
7829          */
7830         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7831         vcpu->arch.write_fault_to_shadow_pgtable = false;
7832
7833         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7834                 kvm_clear_exception_queue(vcpu);
7835
7836                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7837                                                     insn, insn_len);
7838                 if (r != EMULATION_OK)  {
7839                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7840                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7841                                 kvm_queue_exception(vcpu, UD_VECTOR);
7842                                 return 1;
7843                         }
7844                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7845                                                   write_fault_to_spt,
7846                                                   emulation_type))
7847                                 return 1;
7848                         if (ctxt->have_exception) {
7849                                 /*
7850                                  * #UD should result in just EMULATION_FAILED, and trap-like
7851                                  * exception should not be encountered during decode.
7852                                  */
7853                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7854                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7855                                 inject_emulated_exception(vcpu);
7856                                 return 1;
7857                         }
7858                         return handle_emulation_failure(vcpu, emulation_type);
7859                 }
7860         }
7861
7862         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7863             !is_vmware_backdoor_opcode(ctxt)) {
7864                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7865                 return 1;
7866         }
7867
7868         /*
7869          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7870          * for kvm_skip_emulated_instruction().  The caller is responsible for
7871          * updating interruptibility state and injecting single-step #DBs.
7872          */
7873         if (emulation_type & EMULTYPE_SKIP) {
7874                 kvm_rip_write(vcpu, ctxt->_eip);
7875                 if (ctxt->eflags & X86_EFLAGS_RF)
7876                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7877                 return 1;
7878         }
7879
7880         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7881                 return 1;
7882
7883         /* this is needed for vmware backdoor interface to work since it
7884            changes registers values  during IO operation */
7885         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7886                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7887                 emulator_invalidate_register_cache(ctxt);
7888         }
7889
7890 restart:
7891         if (emulation_type & EMULTYPE_PF) {
7892                 /* Save the faulting GPA (cr2) in the address field */
7893                 ctxt->exception.address = cr2_or_gpa;
7894
7895                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7896                 if (vcpu->arch.mmu->direct_map) {
7897                         ctxt->gpa_available = true;
7898                         ctxt->gpa_val = cr2_or_gpa;
7899                 }
7900         } else {
7901                 /* Sanitize the address out of an abundance of paranoia. */
7902                 ctxt->exception.address = 0;
7903         }
7904
7905         r = x86_emulate_insn(ctxt);
7906
7907         if (r == EMULATION_INTERCEPTED)
7908                 return 1;
7909
7910         if (r == EMULATION_FAILED) {
7911                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7912                                         emulation_type))
7913                         return 1;
7914
7915                 return handle_emulation_failure(vcpu, emulation_type);
7916         }
7917
7918         if (ctxt->have_exception) {
7919                 r = 1;
7920                 if (inject_emulated_exception(vcpu))
7921                         return r;
7922         } else if (vcpu->arch.pio.count) {
7923                 if (!vcpu->arch.pio.in) {
7924                         /* FIXME: return into emulator if single-stepping.  */
7925                         vcpu->arch.pio.count = 0;
7926                 } else {
7927                         writeback = false;
7928                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7929                 }
7930                 r = 0;
7931         } else if (vcpu->mmio_needed) {
7932                 ++vcpu->stat.mmio_exits;
7933
7934                 if (!vcpu->mmio_is_write)
7935                         writeback = false;
7936                 r = 0;
7937                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7938         } else if (r == EMULATION_RESTART)
7939                 goto restart;
7940         else
7941                 r = 1;
7942
7943         if (writeback) {
7944                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7945                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7946                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7947                 if (!ctxt->have_exception ||
7948                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7949                         kvm_rip_write(vcpu, ctxt->eip);
7950                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7951                                 r = kvm_vcpu_do_singlestep(vcpu);
7952                         if (kvm_x86_ops.update_emulated_instruction)
7953                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7954                         __kvm_set_rflags(vcpu, ctxt->eflags);
7955                 }
7956
7957                 /*
7958                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7959                  * do nothing, and it will be requested again as soon as
7960                  * the shadow expires.  But we still need to check here,
7961                  * because POPF has no interrupt shadow.
7962                  */
7963                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7964                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7965         } else
7966                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7967
7968         return r;
7969 }
7970
7971 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7972 {
7973         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7974 }
7975 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7976
7977 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7978                                         void *insn, int insn_len)
7979 {
7980         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7981 }
7982 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7983
7984 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7985 {
7986         vcpu->arch.pio.count = 0;
7987         return 1;
7988 }
7989
7990 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7991 {
7992         vcpu->arch.pio.count = 0;
7993
7994         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7995                 return 1;
7996
7997         return kvm_skip_emulated_instruction(vcpu);
7998 }
7999
8000 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8001                             unsigned short port)
8002 {
8003         unsigned long val = kvm_rax_read(vcpu);
8004         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8005
8006         if (ret)
8007                 return ret;
8008
8009         /*
8010          * Workaround userspace that relies on old KVM behavior of %rip being
8011          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8012          */
8013         if (port == 0x7e &&
8014             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8015                 vcpu->arch.complete_userspace_io =
8016                         complete_fast_pio_out_port_0x7e;
8017                 kvm_skip_emulated_instruction(vcpu);
8018         } else {
8019                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8020                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8021         }
8022         return 0;
8023 }
8024
8025 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8026 {
8027         unsigned long val;
8028
8029         /* We should only ever be called with arch.pio.count equal to 1 */
8030         BUG_ON(vcpu->arch.pio.count != 1);
8031
8032         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8033                 vcpu->arch.pio.count = 0;
8034                 return 1;
8035         }
8036
8037         /* For size less than 4 we merge, else we zero extend */
8038         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8039
8040         /*
8041          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8042          * the copy and tracing
8043          */
8044         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8045         kvm_rax_write(vcpu, val);
8046
8047         return kvm_skip_emulated_instruction(vcpu);
8048 }
8049
8050 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8051                            unsigned short port)
8052 {
8053         unsigned long val;
8054         int ret;
8055
8056         /* For size less than 4 we merge, else we zero extend */
8057         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8058
8059         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8060         if (ret) {
8061                 kvm_rax_write(vcpu, val);
8062                 return ret;
8063         }
8064
8065         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8066         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8067
8068         return 0;
8069 }
8070
8071 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8072 {
8073         int ret;
8074
8075         if (in)
8076                 ret = kvm_fast_pio_in(vcpu, size, port);
8077         else
8078                 ret = kvm_fast_pio_out(vcpu, size, port);
8079         return ret && kvm_skip_emulated_instruction(vcpu);
8080 }
8081 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8082
8083 static int kvmclock_cpu_down_prep(unsigned int cpu)
8084 {
8085         __this_cpu_write(cpu_tsc_khz, 0);
8086         return 0;
8087 }
8088
8089 static void tsc_khz_changed(void *data)
8090 {
8091         struct cpufreq_freqs *freq = data;
8092         unsigned long khz = 0;
8093
8094         if (data)
8095                 khz = freq->new;
8096         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8097                 khz = cpufreq_quick_get(raw_smp_processor_id());
8098         if (!khz)
8099                 khz = tsc_khz;
8100         __this_cpu_write(cpu_tsc_khz, khz);
8101 }
8102
8103 #ifdef CONFIG_X86_64
8104 static void kvm_hyperv_tsc_notifier(void)
8105 {
8106         struct kvm *kvm;
8107         struct kvm_vcpu *vcpu;
8108         int cpu;
8109         unsigned long flags;
8110
8111         mutex_lock(&kvm_lock);
8112         list_for_each_entry(kvm, &vm_list, vm_list)
8113                 kvm_make_mclock_inprogress_request(kvm);
8114
8115         hyperv_stop_tsc_emulation();
8116
8117         /* TSC frequency always matches when on Hyper-V */
8118         for_each_present_cpu(cpu)
8119                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8120         kvm_max_guest_tsc_khz = tsc_khz;
8121
8122         list_for_each_entry(kvm, &vm_list, vm_list) {
8123                 struct kvm_arch *ka = &kvm->arch;
8124
8125                 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8126                 pvclock_update_vm_gtod_copy(kvm);
8127                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8128
8129                 kvm_for_each_vcpu(cpu, vcpu, kvm)
8130                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8131
8132                 kvm_for_each_vcpu(cpu, vcpu, kvm)
8133                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8134         }
8135         mutex_unlock(&kvm_lock);
8136 }
8137 #endif
8138
8139 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8140 {
8141         struct kvm *kvm;
8142         struct kvm_vcpu *vcpu;
8143         int i, send_ipi = 0;
8144
8145         /*
8146          * We allow guests to temporarily run on slowing clocks,
8147          * provided we notify them after, or to run on accelerating
8148          * clocks, provided we notify them before.  Thus time never
8149          * goes backwards.
8150          *
8151          * However, we have a problem.  We can't atomically update
8152          * the frequency of a given CPU from this function; it is
8153          * merely a notifier, which can be called from any CPU.
8154          * Changing the TSC frequency at arbitrary points in time
8155          * requires a recomputation of local variables related to
8156          * the TSC for each VCPU.  We must flag these local variables
8157          * to be updated and be sure the update takes place with the
8158          * new frequency before any guests proceed.
8159          *
8160          * Unfortunately, the combination of hotplug CPU and frequency
8161          * change creates an intractable locking scenario; the order
8162          * of when these callouts happen is undefined with respect to
8163          * CPU hotplug, and they can race with each other.  As such,
8164          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8165          * undefined; you can actually have a CPU frequency change take
8166          * place in between the computation of X and the setting of the
8167          * variable.  To protect against this problem, all updates of
8168          * the per_cpu tsc_khz variable are done in an interrupt
8169          * protected IPI, and all callers wishing to update the value
8170          * must wait for a synchronous IPI to complete (which is trivial
8171          * if the caller is on the CPU already).  This establishes the
8172          * necessary total order on variable updates.
8173          *
8174          * Note that because a guest time update may take place
8175          * anytime after the setting of the VCPU's request bit, the
8176          * correct TSC value must be set before the request.  However,
8177          * to ensure the update actually makes it to any guest which
8178          * starts running in hardware virtualization between the set
8179          * and the acquisition of the spinlock, we must also ping the
8180          * CPU after setting the request bit.
8181          *
8182          */
8183
8184         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8185
8186         mutex_lock(&kvm_lock);
8187         list_for_each_entry(kvm, &vm_list, vm_list) {
8188                 kvm_for_each_vcpu(i, vcpu, kvm) {
8189                         if (vcpu->cpu != cpu)
8190                                 continue;
8191                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8192                         if (vcpu->cpu != raw_smp_processor_id())
8193                                 send_ipi = 1;
8194                 }
8195         }
8196         mutex_unlock(&kvm_lock);
8197
8198         if (freq->old < freq->new && send_ipi) {
8199                 /*
8200                  * We upscale the frequency.  Must make the guest
8201                  * doesn't see old kvmclock values while running with
8202                  * the new frequency, otherwise we risk the guest sees
8203                  * time go backwards.
8204                  *
8205                  * In case we update the frequency for another cpu
8206                  * (which might be in guest context) send an interrupt
8207                  * to kick the cpu out of guest context.  Next time
8208                  * guest context is entered kvmclock will be updated,
8209                  * so the guest will not see stale values.
8210                  */
8211                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8212         }
8213 }
8214
8215 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8216                                      void *data)
8217 {
8218         struct cpufreq_freqs *freq = data;
8219         int cpu;
8220
8221         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8222                 return 0;
8223         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8224                 return 0;
8225
8226         for_each_cpu(cpu, freq->policy->cpus)
8227                 __kvmclock_cpufreq_notifier(freq, cpu);
8228
8229         return 0;
8230 }
8231
8232 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8233         .notifier_call  = kvmclock_cpufreq_notifier
8234 };
8235
8236 static int kvmclock_cpu_online(unsigned int cpu)
8237 {
8238         tsc_khz_changed(NULL);
8239         return 0;
8240 }
8241
8242 static void kvm_timer_init(void)
8243 {
8244         max_tsc_khz = tsc_khz;
8245
8246         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8247 #ifdef CONFIG_CPU_FREQ
8248                 struct cpufreq_policy *policy;
8249                 int cpu;
8250
8251                 cpu = get_cpu();
8252                 policy = cpufreq_cpu_get(cpu);
8253                 if (policy) {
8254                         if (policy->cpuinfo.max_freq)
8255                                 max_tsc_khz = policy->cpuinfo.max_freq;
8256                         cpufreq_cpu_put(policy);
8257                 }
8258                 put_cpu();
8259 #endif
8260                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8261                                           CPUFREQ_TRANSITION_NOTIFIER);
8262         }
8263
8264         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8265                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8266 }
8267
8268 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8269 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8270
8271 int kvm_is_in_guest(void)
8272 {
8273         return __this_cpu_read(current_vcpu) != NULL;
8274 }
8275
8276 static int kvm_is_user_mode(void)
8277 {
8278         int user_mode = 3;
8279
8280         if (__this_cpu_read(current_vcpu))
8281                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8282
8283         return user_mode != 0;
8284 }
8285
8286 static unsigned long kvm_get_guest_ip(void)
8287 {
8288         unsigned long ip = 0;
8289
8290         if (__this_cpu_read(current_vcpu))
8291                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8292
8293         return ip;
8294 }
8295
8296 static void kvm_handle_intel_pt_intr(void)
8297 {
8298         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8299
8300         kvm_make_request(KVM_REQ_PMI, vcpu);
8301         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8302                         (unsigned long *)&vcpu->arch.pmu.global_status);
8303 }
8304
8305 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8306         .is_in_guest            = kvm_is_in_guest,
8307         .is_user_mode           = kvm_is_user_mode,
8308         .get_guest_ip           = kvm_get_guest_ip,
8309         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8310 };
8311
8312 #ifdef CONFIG_X86_64
8313 static void pvclock_gtod_update_fn(struct work_struct *work)
8314 {
8315         struct kvm *kvm;
8316
8317         struct kvm_vcpu *vcpu;
8318         int i;
8319
8320         mutex_lock(&kvm_lock);
8321         list_for_each_entry(kvm, &vm_list, vm_list)
8322                 kvm_for_each_vcpu(i, vcpu, kvm)
8323                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8324         atomic_set(&kvm_guest_has_master_clock, 0);
8325         mutex_unlock(&kvm_lock);
8326 }
8327
8328 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8329
8330 /*
8331  * Indirection to move queue_work() out of the tk_core.seq write held
8332  * region to prevent possible deadlocks against time accessors which
8333  * are invoked with work related locks held.
8334  */
8335 static void pvclock_irq_work_fn(struct irq_work *w)
8336 {
8337         queue_work(system_long_wq, &pvclock_gtod_work);
8338 }
8339
8340 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8341
8342 /*
8343  * Notification about pvclock gtod data update.
8344  */
8345 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8346                                void *priv)
8347 {
8348         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8349         struct timekeeper *tk = priv;
8350
8351         update_pvclock_gtod(tk);
8352
8353         /*
8354          * Disable master clock if host does not trust, or does not use,
8355          * TSC based clocksource. Delegate queue_work() to irq_work as
8356          * this is invoked with tk_core.seq write held.
8357          */
8358         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8359             atomic_read(&kvm_guest_has_master_clock) != 0)
8360                 irq_work_queue(&pvclock_irq_work);
8361         return 0;
8362 }
8363
8364 static struct notifier_block pvclock_gtod_notifier = {
8365         .notifier_call = pvclock_gtod_notify,
8366 };
8367 #endif
8368
8369 int kvm_arch_init(void *opaque)
8370 {
8371         struct kvm_x86_init_ops *ops = opaque;
8372         int r;
8373
8374         if (kvm_x86_ops.hardware_enable) {
8375                 printk(KERN_ERR "kvm: already loaded the other module\n");
8376                 r = -EEXIST;
8377                 goto out;
8378         }
8379
8380         if (!ops->cpu_has_kvm_support()) {
8381                 pr_err_ratelimited("kvm: no hardware support\n");
8382                 r = -EOPNOTSUPP;
8383                 goto out;
8384         }
8385         if (ops->disabled_by_bios()) {
8386                 pr_err_ratelimited("kvm: disabled by bios\n");
8387                 r = -EOPNOTSUPP;
8388                 goto out;
8389         }
8390
8391         /*
8392          * KVM explicitly assumes that the guest has an FPU and
8393          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8394          * vCPU's FPU state as a fxregs_state struct.
8395          */
8396         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8397                 printk(KERN_ERR "kvm: inadequate fpu\n");
8398                 r = -EOPNOTSUPP;
8399                 goto out;
8400         }
8401
8402         r = -ENOMEM;
8403         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8404                                           __alignof__(struct fpu), SLAB_ACCOUNT,
8405                                           NULL);
8406         if (!x86_fpu_cache) {
8407                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8408                 goto out;
8409         }
8410
8411         x86_emulator_cache = kvm_alloc_emulator_cache();
8412         if (!x86_emulator_cache) {
8413                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8414                 goto out_free_x86_fpu_cache;
8415         }
8416
8417         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8418         if (!user_return_msrs) {
8419                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8420                 goto out_free_x86_emulator_cache;
8421         }
8422         kvm_nr_uret_msrs = 0;
8423
8424         r = kvm_mmu_module_init();
8425         if (r)
8426                 goto out_free_percpu;
8427
8428         kvm_timer_init();
8429
8430         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8431
8432         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8433                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8434                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8435         }
8436
8437         if (pi_inject_timer == -1)
8438                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8439 #ifdef CONFIG_X86_64
8440         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8441
8442         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8443                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8444 #endif
8445
8446         return 0;
8447
8448 out_free_percpu:
8449         free_percpu(user_return_msrs);
8450 out_free_x86_emulator_cache:
8451         kmem_cache_destroy(x86_emulator_cache);
8452 out_free_x86_fpu_cache:
8453         kmem_cache_destroy(x86_fpu_cache);
8454 out:
8455         return r;
8456 }
8457
8458 void kvm_arch_exit(void)
8459 {
8460 #ifdef CONFIG_X86_64
8461         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8462                 clear_hv_tscchange_cb();
8463 #endif
8464         kvm_lapic_exit();
8465         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8466
8467         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8468                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8469                                             CPUFREQ_TRANSITION_NOTIFIER);
8470         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8471 #ifdef CONFIG_X86_64
8472         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8473         irq_work_sync(&pvclock_irq_work);
8474         cancel_work_sync(&pvclock_gtod_work);
8475 #endif
8476         kvm_x86_ops.hardware_enable = NULL;
8477         kvm_mmu_module_exit();
8478         free_percpu(user_return_msrs);
8479         kmem_cache_destroy(x86_emulator_cache);
8480         kmem_cache_destroy(x86_fpu_cache);
8481 #ifdef CONFIG_KVM_XEN
8482         static_key_deferred_flush(&kvm_xen_enabled);
8483         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8484 #endif
8485 }
8486
8487 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8488 {
8489         ++vcpu->stat.halt_exits;
8490         if (lapic_in_kernel(vcpu)) {
8491                 vcpu->arch.mp_state = state;
8492                 return 1;
8493         } else {
8494                 vcpu->run->exit_reason = reason;
8495                 return 0;
8496         }
8497 }
8498
8499 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8500 {
8501         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8502 }
8503 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8504
8505 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8506 {
8507         int ret = kvm_skip_emulated_instruction(vcpu);
8508         /*
8509          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8510          * KVM_EXIT_DEBUG here.
8511          */
8512         return kvm_vcpu_halt(vcpu) && ret;
8513 }
8514 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8515
8516 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8517 {
8518         int ret = kvm_skip_emulated_instruction(vcpu);
8519
8520         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8521 }
8522 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8523
8524 #ifdef CONFIG_X86_64
8525 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8526                                 unsigned long clock_type)
8527 {
8528         struct kvm_clock_pairing clock_pairing;
8529         struct timespec64 ts;
8530         u64 cycle;
8531         int ret;
8532
8533         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8534                 return -KVM_EOPNOTSUPP;
8535
8536         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8537                 return -KVM_EOPNOTSUPP;
8538
8539         clock_pairing.sec = ts.tv_sec;
8540         clock_pairing.nsec = ts.tv_nsec;
8541         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8542         clock_pairing.flags = 0;
8543         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8544
8545         ret = 0;
8546         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8547                             sizeof(struct kvm_clock_pairing)))
8548                 ret = -KVM_EFAULT;
8549
8550         return ret;
8551 }
8552 #endif
8553
8554 /*
8555  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8556  *
8557  * @apicid - apicid of vcpu to be kicked.
8558  */
8559 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8560 {
8561         struct kvm_lapic_irq lapic_irq;
8562
8563         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8564         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8565         lapic_irq.level = 0;
8566         lapic_irq.dest_id = apicid;
8567         lapic_irq.msi_redir_hint = false;
8568
8569         lapic_irq.delivery_mode = APIC_DM_REMRD;
8570         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8571 }
8572
8573 bool kvm_apicv_activated(struct kvm *kvm)
8574 {
8575         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8576 }
8577 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8578
8579 static void kvm_apicv_init(struct kvm *kvm)
8580 {
8581         if (enable_apicv)
8582                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8583                           &kvm->arch.apicv_inhibit_reasons);
8584         else
8585                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8586                         &kvm->arch.apicv_inhibit_reasons);
8587 }
8588
8589 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8590 {
8591         struct kvm_vcpu *target = NULL;
8592         struct kvm_apic_map *map;
8593
8594         vcpu->stat.directed_yield_attempted++;
8595
8596         if (single_task_running())
8597                 goto no_yield;
8598
8599         rcu_read_lock();
8600         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8601
8602         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8603                 target = map->phys_map[dest_id]->vcpu;
8604
8605         rcu_read_unlock();
8606
8607         if (!target || !READ_ONCE(target->ready))
8608                 goto no_yield;
8609
8610         /* Ignore requests to yield to self */
8611         if (vcpu == target)
8612                 goto no_yield;
8613
8614         if (kvm_vcpu_yield_to(target) <= 0)
8615                 goto no_yield;
8616
8617         vcpu->stat.directed_yield_successful++;
8618
8619 no_yield:
8620         return;
8621 }
8622
8623 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8624 {
8625         u64 ret = vcpu->run->hypercall.ret;
8626
8627         if (!is_64_bit_mode(vcpu))
8628                 ret = (u32)ret;
8629         kvm_rax_write(vcpu, ret);
8630         ++vcpu->stat.hypercalls;
8631         return kvm_skip_emulated_instruction(vcpu);
8632 }
8633
8634 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8635 {
8636         unsigned long nr, a0, a1, a2, a3, ret;
8637         int op_64_bit;
8638
8639         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8640                 return kvm_xen_hypercall(vcpu);
8641
8642         if (kvm_hv_hypercall_enabled(vcpu))
8643                 return kvm_hv_hypercall(vcpu);
8644
8645         nr = kvm_rax_read(vcpu);
8646         a0 = kvm_rbx_read(vcpu);
8647         a1 = kvm_rcx_read(vcpu);
8648         a2 = kvm_rdx_read(vcpu);
8649         a3 = kvm_rsi_read(vcpu);
8650
8651         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8652
8653         op_64_bit = is_64_bit_mode(vcpu);
8654         if (!op_64_bit) {
8655                 nr &= 0xFFFFFFFF;
8656                 a0 &= 0xFFFFFFFF;
8657                 a1 &= 0xFFFFFFFF;
8658                 a2 &= 0xFFFFFFFF;
8659                 a3 &= 0xFFFFFFFF;
8660         }
8661
8662         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8663                 ret = -KVM_EPERM;
8664                 goto out;
8665         }
8666
8667         ret = -KVM_ENOSYS;
8668
8669         switch (nr) {
8670         case KVM_HC_VAPIC_POLL_IRQ:
8671                 ret = 0;
8672                 break;
8673         case KVM_HC_KICK_CPU:
8674                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8675                         break;
8676
8677                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8678                 kvm_sched_yield(vcpu, a1);
8679                 ret = 0;
8680                 break;
8681 #ifdef CONFIG_X86_64
8682         case KVM_HC_CLOCK_PAIRING:
8683                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8684                 break;
8685 #endif
8686         case KVM_HC_SEND_IPI:
8687                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8688                         break;
8689
8690                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8691                 break;
8692         case KVM_HC_SCHED_YIELD:
8693                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8694                         break;
8695
8696                 kvm_sched_yield(vcpu, a0);
8697                 ret = 0;
8698                 break;
8699         case KVM_HC_MAP_GPA_RANGE: {
8700                 u64 gpa = a0, npages = a1, attrs = a2;
8701
8702                 ret = -KVM_ENOSYS;
8703                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8704                         break;
8705
8706                 if (!PAGE_ALIGNED(gpa) || !npages ||
8707                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8708                         ret = -KVM_EINVAL;
8709                         break;
8710                 }
8711
8712                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8713                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8714                 vcpu->run->hypercall.args[0]  = gpa;
8715                 vcpu->run->hypercall.args[1]  = npages;
8716                 vcpu->run->hypercall.args[2]  = attrs;
8717                 vcpu->run->hypercall.longmode = op_64_bit;
8718                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8719                 return 0;
8720         }
8721         default:
8722                 ret = -KVM_ENOSYS;
8723                 break;
8724         }
8725 out:
8726         if (!op_64_bit)
8727                 ret = (u32)ret;
8728         kvm_rax_write(vcpu, ret);
8729
8730         ++vcpu->stat.hypercalls;
8731         return kvm_skip_emulated_instruction(vcpu);
8732 }
8733 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8734
8735 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8736 {
8737         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8738         char instruction[3];
8739         unsigned long rip = kvm_rip_read(vcpu);
8740
8741         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8742
8743         return emulator_write_emulated(ctxt, rip, instruction, 3,
8744                 &ctxt->exception);
8745 }
8746
8747 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8748 {
8749         return vcpu->run->request_interrupt_window &&
8750                 likely(!pic_in_kernel(vcpu->kvm));
8751 }
8752
8753 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8754 {
8755         struct kvm_run *kvm_run = vcpu->run;
8756
8757         /*
8758          * if_flag is obsolete and useless, so do not bother
8759          * setting it for SEV-ES guests.  Userspace can just
8760          * use kvm_run->ready_for_interrupt_injection.
8761          */
8762         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8763                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8764
8765         kvm_run->cr8 = kvm_get_cr8(vcpu);
8766         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8767         kvm_run->ready_for_interrupt_injection =
8768                 pic_in_kernel(vcpu->kvm) ||
8769                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8770
8771         if (is_smm(vcpu))
8772                 kvm_run->flags |= KVM_RUN_X86_SMM;
8773 }
8774
8775 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8776 {
8777         int max_irr, tpr;
8778
8779         if (!kvm_x86_ops.update_cr8_intercept)
8780                 return;
8781
8782         if (!lapic_in_kernel(vcpu))
8783                 return;
8784
8785         if (vcpu->arch.apicv_active)
8786                 return;
8787
8788         if (!vcpu->arch.apic->vapic_addr)
8789                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8790         else
8791                 max_irr = -1;
8792
8793         if (max_irr != -1)
8794                 max_irr >>= 4;
8795
8796         tpr = kvm_lapic_get_cr8(vcpu);
8797
8798         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8799 }
8800
8801
8802 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8803 {
8804         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8805                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8806                 return 1;
8807         }
8808
8809         return kvm_x86_ops.nested_ops->check_events(vcpu);
8810 }
8811
8812 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8813 {
8814         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8815                 vcpu->arch.exception.error_code = false;
8816         static_call(kvm_x86_queue_exception)(vcpu);
8817 }
8818
8819 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8820 {
8821         int r;
8822         bool can_inject = true;
8823
8824         /* try to reinject previous events if any */
8825
8826         if (vcpu->arch.exception.injected) {
8827                 kvm_inject_exception(vcpu);
8828                 can_inject = false;
8829         }
8830         /*
8831          * Do not inject an NMI or interrupt if there is a pending
8832          * exception.  Exceptions and interrupts are recognized at
8833          * instruction boundaries, i.e. the start of an instruction.
8834          * Trap-like exceptions, e.g. #DB, have higher priority than
8835          * NMIs and interrupts, i.e. traps are recognized before an
8836          * NMI/interrupt that's pending on the same instruction.
8837          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8838          * priority, but are only generated (pended) during instruction
8839          * execution, i.e. a pending fault-like exception means the
8840          * fault occurred on the *previous* instruction and must be
8841          * serviced prior to recognizing any new events in order to
8842          * fully complete the previous instruction.
8843          */
8844         else if (!vcpu->arch.exception.pending) {
8845                 if (vcpu->arch.nmi_injected) {
8846                         static_call(kvm_x86_set_nmi)(vcpu);
8847                         can_inject = false;
8848                 } else if (vcpu->arch.interrupt.injected) {
8849                         static_call(kvm_x86_set_irq)(vcpu);
8850                         can_inject = false;
8851                 }
8852         }
8853
8854         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8855                      vcpu->arch.exception.pending);
8856
8857         /*
8858          * Call check_nested_events() even if we reinjected a previous event
8859          * in order for caller to determine if it should require immediate-exit
8860          * from L2 to L1 due to pending L1 events which require exit
8861          * from L2 to L1.
8862          */
8863         if (is_guest_mode(vcpu)) {
8864                 r = kvm_check_nested_events(vcpu);
8865                 if (r < 0)
8866                         goto out;
8867         }
8868
8869         /* try to inject new event if pending */
8870         if (vcpu->arch.exception.pending) {
8871                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8872                                         vcpu->arch.exception.has_error_code,
8873                                         vcpu->arch.exception.error_code);
8874
8875                 vcpu->arch.exception.pending = false;
8876                 vcpu->arch.exception.injected = true;
8877
8878                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8879                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8880                                              X86_EFLAGS_RF);
8881
8882                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8883                         kvm_deliver_exception_payload(vcpu);
8884                         if (vcpu->arch.dr7 & DR7_GD) {
8885                                 vcpu->arch.dr7 &= ~DR7_GD;
8886                                 kvm_update_dr7(vcpu);
8887                         }
8888                 }
8889
8890                 kvm_inject_exception(vcpu);
8891                 can_inject = false;
8892         }
8893
8894         /*
8895          * Finally, inject interrupt events.  If an event cannot be injected
8896          * due to architectural conditions (e.g. IF=0) a window-open exit
8897          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8898          * and can architecturally be injected, but we cannot do it right now:
8899          * an interrupt could have arrived just now and we have to inject it
8900          * as a vmexit, or there could already an event in the queue, which is
8901          * indicated by can_inject.  In that case we request an immediate exit
8902          * in order to make progress and get back here for another iteration.
8903          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8904          */
8905         if (vcpu->arch.smi_pending) {
8906                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8907                 if (r < 0)
8908                         goto out;
8909                 if (r) {
8910                         vcpu->arch.smi_pending = false;
8911                         ++vcpu->arch.smi_count;
8912                         enter_smm(vcpu);
8913                         can_inject = false;
8914                 } else
8915                         static_call(kvm_x86_enable_smi_window)(vcpu);
8916         }
8917
8918         if (vcpu->arch.nmi_pending) {
8919                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8920                 if (r < 0)
8921                         goto out;
8922                 if (r) {
8923                         --vcpu->arch.nmi_pending;
8924                         vcpu->arch.nmi_injected = true;
8925                         static_call(kvm_x86_set_nmi)(vcpu);
8926                         can_inject = false;
8927                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8928                 }
8929                 if (vcpu->arch.nmi_pending)
8930                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8931         }
8932
8933         if (kvm_cpu_has_injectable_intr(vcpu)) {
8934                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8935                 if (r < 0)
8936                         goto out;
8937                 if (r) {
8938                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8939                         static_call(kvm_x86_set_irq)(vcpu);
8940                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8941                 }
8942                 if (kvm_cpu_has_injectable_intr(vcpu))
8943                         static_call(kvm_x86_enable_irq_window)(vcpu);
8944         }
8945
8946         if (is_guest_mode(vcpu) &&
8947             kvm_x86_ops.nested_ops->hv_timer_pending &&
8948             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8949                 *req_immediate_exit = true;
8950
8951         WARN_ON(vcpu->arch.exception.pending);
8952         return 0;
8953
8954 out:
8955         if (r == -EBUSY) {
8956                 *req_immediate_exit = true;
8957                 r = 0;
8958         }
8959         return r;
8960 }
8961
8962 static void process_nmi(struct kvm_vcpu *vcpu)
8963 {
8964         unsigned limit = 2;
8965
8966         /*
8967          * x86 is limited to one NMI running, and one NMI pending after it.
8968          * If an NMI is already in progress, limit further NMIs to just one.
8969          * Otherwise, allow two (and we'll inject the first one immediately).
8970          */
8971         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8972                 limit = 1;
8973
8974         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8975         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8976         kvm_make_request(KVM_REQ_EVENT, vcpu);
8977 }
8978
8979 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8980 {
8981         u32 flags = 0;
8982         flags |= seg->g       << 23;
8983         flags |= seg->db      << 22;
8984         flags |= seg->l       << 21;
8985         flags |= seg->avl     << 20;
8986         flags |= seg->present << 15;
8987         flags |= seg->dpl     << 13;
8988         flags |= seg->s       << 12;
8989         flags |= seg->type    << 8;
8990         return flags;
8991 }
8992
8993 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8994 {
8995         struct kvm_segment seg;
8996         int offset;
8997
8998         kvm_get_segment(vcpu, &seg, n);
8999         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9000
9001         if (n < 3)
9002                 offset = 0x7f84 + n * 12;
9003         else
9004                 offset = 0x7f2c + (n - 3) * 12;
9005
9006         put_smstate(u32, buf, offset + 8, seg.base);
9007         put_smstate(u32, buf, offset + 4, seg.limit);
9008         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9009 }
9010
9011 #ifdef CONFIG_X86_64
9012 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9013 {
9014         struct kvm_segment seg;
9015         int offset;
9016         u16 flags;
9017
9018         kvm_get_segment(vcpu, &seg, n);
9019         offset = 0x7e00 + n * 16;
9020
9021         flags = enter_smm_get_segment_flags(&seg) >> 8;
9022         put_smstate(u16, buf, offset, seg.selector);
9023         put_smstate(u16, buf, offset + 2, flags);
9024         put_smstate(u32, buf, offset + 4, seg.limit);
9025         put_smstate(u64, buf, offset + 8, seg.base);
9026 }
9027 #endif
9028
9029 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9030 {
9031         struct desc_ptr dt;
9032         struct kvm_segment seg;
9033         unsigned long val;
9034         int i;
9035
9036         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9037         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9038         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9039         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9040
9041         for (i = 0; i < 8; i++)
9042                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9043
9044         kvm_get_dr(vcpu, 6, &val);
9045         put_smstate(u32, buf, 0x7fcc, (u32)val);
9046         kvm_get_dr(vcpu, 7, &val);
9047         put_smstate(u32, buf, 0x7fc8, (u32)val);
9048
9049         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9050         put_smstate(u32, buf, 0x7fc4, seg.selector);
9051         put_smstate(u32, buf, 0x7f64, seg.base);
9052         put_smstate(u32, buf, 0x7f60, seg.limit);
9053         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9054
9055         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9056         put_smstate(u32, buf, 0x7fc0, seg.selector);
9057         put_smstate(u32, buf, 0x7f80, seg.base);
9058         put_smstate(u32, buf, 0x7f7c, seg.limit);
9059         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9060
9061         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9062         put_smstate(u32, buf, 0x7f74, dt.address);
9063         put_smstate(u32, buf, 0x7f70, dt.size);
9064
9065         static_call(kvm_x86_get_idt)(vcpu, &dt);
9066         put_smstate(u32, buf, 0x7f58, dt.address);
9067         put_smstate(u32, buf, 0x7f54, dt.size);
9068
9069         for (i = 0; i < 6; i++)
9070                 enter_smm_save_seg_32(vcpu, buf, i);
9071
9072         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9073
9074         /* revision id */
9075         put_smstate(u32, buf, 0x7efc, 0x00020000);
9076         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9077 }
9078
9079 #ifdef CONFIG_X86_64
9080 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9081 {
9082         struct desc_ptr dt;
9083         struct kvm_segment seg;
9084         unsigned long val;
9085         int i;
9086
9087         for (i = 0; i < 16; i++)
9088                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9089
9090         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9091         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9092
9093         kvm_get_dr(vcpu, 6, &val);
9094         put_smstate(u64, buf, 0x7f68, val);
9095         kvm_get_dr(vcpu, 7, &val);
9096         put_smstate(u64, buf, 0x7f60, val);
9097
9098         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9099         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9100         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9101
9102         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9103
9104         /* revision id */
9105         put_smstate(u32, buf, 0x7efc, 0x00020064);
9106
9107         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9108
9109         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9110         put_smstate(u16, buf, 0x7e90, seg.selector);
9111         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9112         put_smstate(u32, buf, 0x7e94, seg.limit);
9113         put_smstate(u64, buf, 0x7e98, seg.base);
9114
9115         static_call(kvm_x86_get_idt)(vcpu, &dt);
9116         put_smstate(u32, buf, 0x7e84, dt.size);
9117         put_smstate(u64, buf, 0x7e88, dt.address);
9118
9119         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9120         put_smstate(u16, buf, 0x7e70, seg.selector);
9121         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9122         put_smstate(u32, buf, 0x7e74, seg.limit);
9123         put_smstate(u64, buf, 0x7e78, seg.base);
9124
9125         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9126         put_smstate(u32, buf, 0x7e64, dt.size);
9127         put_smstate(u64, buf, 0x7e68, dt.address);
9128
9129         for (i = 0; i < 6; i++)
9130                 enter_smm_save_seg_64(vcpu, buf, i);
9131 }
9132 #endif
9133
9134 static void enter_smm(struct kvm_vcpu *vcpu)
9135 {
9136         struct kvm_segment cs, ds;
9137         struct desc_ptr dt;
9138         unsigned long cr0;
9139         char buf[512];
9140
9141         memset(buf, 0, 512);
9142 #ifdef CONFIG_X86_64
9143         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9144                 enter_smm_save_state_64(vcpu, buf);
9145         else
9146 #endif
9147                 enter_smm_save_state_32(vcpu, buf);
9148
9149         /*
9150          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9151          * state (e.g. leave guest mode) after we've saved the state into the
9152          * SMM state-save area.
9153          */
9154         static_call(kvm_x86_enter_smm)(vcpu, buf);
9155
9156         kvm_smm_changed(vcpu, true);
9157         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9158
9159         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9160                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9161         else
9162                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9163
9164         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9165         kvm_rip_write(vcpu, 0x8000);
9166
9167         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9168         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9169         vcpu->arch.cr0 = cr0;
9170
9171         static_call(kvm_x86_set_cr4)(vcpu, 0);
9172
9173         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9174         dt.address = dt.size = 0;
9175         static_call(kvm_x86_set_idt)(vcpu, &dt);
9176
9177         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9178
9179         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9180         cs.base = vcpu->arch.smbase;
9181
9182         ds.selector = 0;
9183         ds.base = 0;
9184
9185         cs.limit    = ds.limit = 0xffffffff;
9186         cs.type     = ds.type = 0x3;
9187         cs.dpl      = ds.dpl = 0;
9188         cs.db       = ds.db = 0;
9189         cs.s        = ds.s = 1;
9190         cs.l        = ds.l = 0;
9191         cs.g        = ds.g = 1;
9192         cs.avl      = ds.avl = 0;
9193         cs.present  = ds.present = 1;
9194         cs.unusable = ds.unusable = 0;
9195         cs.padding  = ds.padding = 0;
9196
9197         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9198         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9199         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9200         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9201         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9202         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9203
9204 #ifdef CONFIG_X86_64
9205         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9206                 static_call(kvm_x86_set_efer)(vcpu, 0);
9207 #endif
9208
9209         kvm_update_cpuid_runtime(vcpu);
9210         kvm_mmu_reset_context(vcpu);
9211 }
9212
9213 static void process_smi(struct kvm_vcpu *vcpu)
9214 {
9215         vcpu->arch.smi_pending = true;
9216         kvm_make_request(KVM_REQ_EVENT, vcpu);
9217 }
9218
9219 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9220                                        unsigned long *vcpu_bitmap)
9221 {
9222         cpumask_var_t cpus;
9223
9224         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9225
9226         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9227                                     NULL, vcpu_bitmap, cpus);
9228
9229         free_cpumask_var(cpus);
9230 }
9231
9232 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9233 {
9234         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9235 }
9236
9237 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9238 {
9239         if (!lapic_in_kernel(vcpu))
9240                 return;
9241
9242         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9243         kvm_apic_update_apicv(vcpu);
9244         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9245
9246         /*
9247          * When APICv gets disabled, we may still have injected interrupts
9248          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9249          * still active when the interrupt got accepted. Make sure
9250          * inject_pending_event() is called to check for that.
9251          */
9252         if (!vcpu->arch.apicv_active)
9253                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9254 }
9255 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9256
9257 /*
9258  * NOTE: Do not hold any lock prior to calling this.
9259  *
9260  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9261  * locked, because it calls __x86_set_memory_region() which does
9262  * synchronize_srcu(&kvm->srcu).
9263  */
9264 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9265 {
9266         unsigned long old, new, expected;
9267
9268         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9269             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9270                 return;
9271
9272         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9273         do {
9274                 expected = new = old;
9275                 if (activate)
9276                         __clear_bit(bit, &new);
9277                 else
9278                         __set_bit(bit, &new);
9279                 if (new == old)
9280                         break;
9281                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9282         } while (old != expected);
9283
9284         if (!!old == !!new)
9285                 return;
9286
9287         trace_kvm_apicv_update_request(activate, bit);
9288         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9289                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9290
9291         kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9292 }
9293 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9294
9295 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9296 {
9297         if (!kvm_apic_present(vcpu))
9298                 return;
9299
9300         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9301
9302         if (irqchip_split(vcpu->kvm))
9303                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9304         else {
9305                 if (vcpu->arch.apicv_active)
9306                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9307                 if (ioapic_in_kernel(vcpu->kvm))
9308                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9309         }
9310
9311         if (is_guest_mode(vcpu))
9312                 vcpu->arch.load_eoi_exitmap_pending = true;
9313         else
9314                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9315 }
9316
9317 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9318 {
9319         u64 eoi_exit_bitmap[4];
9320
9321         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9322                 return;
9323
9324         if (to_hv_vcpu(vcpu))
9325                 bitmap_or((ulong *)eoi_exit_bitmap,
9326                           vcpu->arch.ioapic_handled_vectors,
9327                           to_hv_synic(vcpu)->vec_bitmap, 256);
9328
9329         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9330 }
9331
9332 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9333                                             unsigned long start, unsigned long end)
9334 {
9335         unsigned long apic_address;
9336
9337         /*
9338          * The physical address of apic access page is stored in the VMCS.
9339          * Update it when it becomes invalid.
9340          */
9341         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9342         if (start <= apic_address && apic_address < end)
9343                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9344 }
9345
9346 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9347 {
9348         if (!lapic_in_kernel(vcpu))
9349                 return;
9350
9351         if (!kvm_x86_ops.set_apic_access_page_addr)
9352                 return;
9353
9354         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9355 }
9356
9357 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9358 {
9359         smp_send_reschedule(vcpu->cpu);
9360 }
9361 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9362
9363 /*
9364  * Returns 1 to let vcpu_run() continue the guest execution loop without
9365  * exiting to the userspace.  Otherwise, the value will be returned to the
9366  * userspace.
9367  */
9368 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9369 {
9370         int r;
9371         bool req_int_win =
9372                 dm_request_for_irq_injection(vcpu) &&
9373                 kvm_cpu_accept_dm_intr(vcpu);
9374         fastpath_t exit_fastpath;
9375
9376         bool req_immediate_exit = false;
9377
9378         /* Forbid vmenter if vcpu dirty ring is soft-full */
9379         if (unlikely(vcpu->kvm->dirty_ring_size &&
9380                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9381                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9382                 trace_kvm_dirty_ring_exit(vcpu);
9383                 r = 0;
9384                 goto out;
9385         }
9386
9387         if (kvm_request_pending(vcpu)) {
9388                 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9389                         r = -EIO;
9390                         goto out;
9391                 }
9392                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9393                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9394                                 r = 0;
9395                                 goto out;
9396                         }
9397                 }
9398                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9399                         kvm_mmu_unload(vcpu);
9400                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9401                         __kvm_migrate_timers(vcpu);
9402                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9403                         kvm_gen_update_masterclock(vcpu->kvm);
9404                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9405                         kvm_gen_kvmclock_update(vcpu);
9406                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9407                         r = kvm_guest_time_update(vcpu);
9408                         if (unlikely(r))
9409                                 goto out;
9410                 }
9411                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9412                         kvm_mmu_sync_roots(vcpu);
9413                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9414                         kvm_mmu_load_pgd(vcpu);
9415                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9416                         kvm_vcpu_flush_tlb_all(vcpu);
9417
9418                         /* Flushing all ASIDs flushes the current ASID... */
9419                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9420                 }
9421                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9422                         kvm_vcpu_flush_tlb_current(vcpu);
9423                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9424                         kvm_vcpu_flush_tlb_guest(vcpu);
9425
9426                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9427                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9428                         r = 0;
9429                         goto out;
9430                 }
9431                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9432                         if (is_guest_mode(vcpu)) {
9433                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9434                         } else {
9435                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9436                                 vcpu->mmio_needed = 0;
9437                                 r = 0;
9438                                 goto out;
9439                         }
9440                 }
9441                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9442                         /* Page is swapped out. Do synthetic halt */
9443                         vcpu->arch.apf.halted = true;
9444                         r = 1;
9445                         goto out;
9446                 }
9447                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9448                         record_steal_time(vcpu);
9449                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9450                         process_smi(vcpu);
9451                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9452                         process_nmi(vcpu);
9453                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9454                         kvm_pmu_handle_event(vcpu);
9455                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9456                         kvm_pmu_deliver_pmi(vcpu);
9457                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9458                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9459                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9460                                      vcpu->arch.ioapic_handled_vectors)) {
9461                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9462                                 vcpu->run->eoi.vector =
9463                                                 vcpu->arch.pending_ioapic_eoi;
9464                                 r = 0;
9465                                 goto out;
9466                         }
9467                 }
9468                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9469                         vcpu_scan_ioapic(vcpu);
9470                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9471                         vcpu_load_eoi_exitmap(vcpu);
9472                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9473                         kvm_vcpu_reload_apic_access_page(vcpu);
9474                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9475                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9476                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9477                         r = 0;
9478                         goto out;
9479                 }
9480                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9481                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9482                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9483                         r = 0;
9484                         goto out;
9485                 }
9486                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9487                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9488
9489                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9490                         vcpu->run->hyperv = hv_vcpu->exit;
9491                         r = 0;
9492                         goto out;
9493                 }
9494
9495                 /*
9496                  * KVM_REQ_HV_STIMER has to be processed after
9497                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9498                  * depend on the guest clock being up-to-date
9499                  */
9500                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9501                         kvm_hv_process_stimers(vcpu);
9502                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9503                         kvm_vcpu_update_apicv(vcpu);
9504                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9505                         kvm_check_async_pf_completion(vcpu);
9506                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9507                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9508
9509                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9510                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9511         }
9512
9513         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9514             kvm_xen_has_interrupt(vcpu)) {
9515                 ++vcpu->stat.req_event;
9516                 r = kvm_apic_accept_events(vcpu);
9517                 if (r < 0) {
9518                         r = 0;
9519                         goto out;
9520                 }
9521                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9522                         r = 1;
9523                         goto out;
9524                 }
9525
9526                 r = inject_pending_event(vcpu, &req_immediate_exit);
9527                 if (r < 0) {
9528                         r = 0;
9529                         goto out;
9530                 }
9531                 if (req_int_win)
9532                         static_call(kvm_x86_enable_irq_window)(vcpu);
9533
9534                 if (kvm_lapic_enabled(vcpu)) {
9535                         update_cr8_intercept(vcpu);
9536                         kvm_lapic_sync_to_vapic(vcpu);
9537                 }
9538         }
9539
9540         r = kvm_mmu_reload(vcpu);
9541         if (unlikely(r)) {
9542                 goto cancel_injection;
9543         }
9544
9545         preempt_disable();
9546
9547         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9548
9549         /*
9550          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9551          * IPI are then delayed after guest entry, which ensures that they
9552          * result in virtual interrupt delivery.
9553          */
9554         local_irq_disable();
9555         vcpu->mode = IN_GUEST_MODE;
9556
9557         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9558
9559         /*
9560          * 1) We should set ->mode before checking ->requests.  Please see
9561          * the comment in kvm_vcpu_exiting_guest_mode().
9562          *
9563          * 2) For APICv, we should set ->mode before checking PID.ON. This
9564          * pairs with the memory barrier implicit in pi_test_and_set_on
9565          * (see vmx_deliver_posted_interrupt).
9566          *
9567          * 3) This also orders the write to mode from any reads to the page
9568          * tables done while the VCPU is running.  Please see the comment
9569          * in kvm_flush_remote_tlbs.
9570          */
9571         smp_mb__after_srcu_read_unlock();
9572
9573         /*
9574          * This handles the case where a posted interrupt was
9575          * notified with kvm_vcpu_kick.
9576          */
9577         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9578                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9579
9580         if (kvm_vcpu_exit_request(vcpu)) {
9581                 vcpu->mode = OUTSIDE_GUEST_MODE;
9582                 smp_wmb();
9583                 local_irq_enable();
9584                 preempt_enable();
9585                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9586                 r = 1;
9587                 goto cancel_injection;
9588         }
9589
9590         if (req_immediate_exit) {
9591                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9592                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9593         }
9594
9595         fpregs_assert_state_consistent();
9596         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9597                 switch_fpu_return();
9598
9599         if (unlikely(vcpu->arch.switch_db_regs)) {
9600                 set_debugreg(0, 7);
9601                 set_debugreg(vcpu->arch.eff_db[0], 0);
9602                 set_debugreg(vcpu->arch.eff_db[1], 1);
9603                 set_debugreg(vcpu->arch.eff_db[2], 2);
9604                 set_debugreg(vcpu->arch.eff_db[3], 3);
9605         } else if (unlikely(hw_breakpoint_active())) {
9606                 set_debugreg(0, 7);
9607         }
9608
9609         for (;;) {
9610                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9611                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9612                         break;
9613
9614                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9615                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9616                         break;
9617                 }
9618
9619                 if (vcpu->arch.apicv_active)
9620                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9621         }
9622
9623         /*
9624          * Do this here before restoring debug registers on the host.  And
9625          * since we do this before handling the vmexit, a DR access vmexit
9626          * can (a) read the correct value of the debug registers, (b) set
9627          * KVM_DEBUGREG_WONT_EXIT again.
9628          */
9629         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9630                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9631                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9632                 kvm_update_dr0123(vcpu);
9633                 kvm_update_dr7(vcpu);
9634         }
9635
9636         /*
9637          * If the guest has used debug registers, at least dr7
9638          * will be disabled while returning to the host.
9639          * If we don't have active breakpoints in the host, we don't
9640          * care about the messed up debug address registers. But if
9641          * we have some of them active, restore the old state.
9642          */
9643         if (hw_breakpoint_active())
9644                 hw_breakpoint_restore();
9645
9646         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9647         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9648
9649         vcpu->mode = OUTSIDE_GUEST_MODE;
9650         smp_wmb();
9651
9652         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9653
9654         /*
9655          * Consume any pending interrupts, including the possible source of
9656          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9657          * An instruction is required after local_irq_enable() to fully unblock
9658          * interrupts on processors that implement an interrupt shadow, the
9659          * stat.exits increment will do nicely.
9660          */
9661         kvm_before_interrupt(vcpu);
9662         local_irq_enable();
9663         ++vcpu->stat.exits;
9664         local_irq_disable();
9665         kvm_after_interrupt(vcpu);
9666
9667         /*
9668          * Wait until after servicing IRQs to account guest time so that any
9669          * ticks that occurred while running the guest are properly accounted
9670          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9671          * of accounting via context tracking, but the loss of accuracy is
9672          * acceptable for all known use cases.
9673          */
9674         vtime_account_guest_exit();
9675
9676         if (lapic_in_kernel(vcpu)) {
9677                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9678                 if (delta != S64_MIN) {
9679                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9680                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9681                 }
9682         }
9683
9684         local_irq_enable();
9685         preempt_enable();
9686
9687         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9688
9689         /*
9690          * Profile KVM exit RIPs:
9691          */
9692         if (unlikely(prof_on == KVM_PROFILING)) {
9693                 unsigned long rip = kvm_rip_read(vcpu);
9694                 profile_hit(KVM_PROFILING, (void *)rip);
9695         }
9696
9697         if (unlikely(vcpu->arch.tsc_always_catchup))
9698                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9699
9700         if (vcpu->arch.apic_attention)
9701                 kvm_lapic_sync_from_vapic(vcpu);
9702
9703         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9704         return r;
9705
9706 cancel_injection:
9707         if (req_immediate_exit)
9708                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9709         static_call(kvm_x86_cancel_injection)(vcpu);
9710         if (unlikely(vcpu->arch.apic_attention))
9711                 kvm_lapic_sync_from_vapic(vcpu);
9712 out:
9713         return r;
9714 }
9715
9716 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9717 {
9718         if (!kvm_arch_vcpu_runnable(vcpu) &&
9719             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9720                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9721                 kvm_vcpu_block(vcpu);
9722                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9723
9724                 if (kvm_x86_ops.post_block)
9725                         static_call(kvm_x86_post_block)(vcpu);
9726
9727                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9728                         return 1;
9729         }
9730
9731         if (kvm_apic_accept_events(vcpu) < 0)
9732                 return 0;
9733         switch(vcpu->arch.mp_state) {
9734         case KVM_MP_STATE_HALTED:
9735         case KVM_MP_STATE_AP_RESET_HOLD:
9736                 vcpu->arch.pv.pv_unhalted = false;
9737                 vcpu->arch.mp_state =
9738                         KVM_MP_STATE_RUNNABLE;
9739                 fallthrough;
9740         case KVM_MP_STATE_RUNNABLE:
9741                 vcpu->arch.apf.halted = false;
9742                 break;
9743         case KVM_MP_STATE_INIT_RECEIVED:
9744                 break;
9745         default:
9746                 return -EINTR;
9747         }
9748         return 1;
9749 }
9750
9751 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9752 {
9753         if (is_guest_mode(vcpu))
9754                 kvm_check_nested_events(vcpu);
9755
9756         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9757                 !vcpu->arch.apf.halted);
9758 }
9759
9760 static int vcpu_run(struct kvm_vcpu *vcpu)
9761 {
9762         int r;
9763         struct kvm *kvm = vcpu->kvm;
9764
9765         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9766         vcpu->arch.l1tf_flush_l1d = true;
9767
9768         for (;;) {
9769                 if (kvm_vcpu_running(vcpu)) {
9770                         r = vcpu_enter_guest(vcpu);
9771                 } else {
9772                         r = vcpu_block(kvm, vcpu);
9773                 }
9774
9775                 if (r <= 0)
9776                         break;
9777
9778                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9779                 if (kvm_cpu_has_pending_timer(vcpu))
9780                         kvm_inject_pending_timer_irqs(vcpu);
9781
9782                 if (dm_request_for_irq_injection(vcpu) &&
9783                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9784                         r = 0;
9785                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9786                         ++vcpu->stat.request_irq_exits;
9787                         break;
9788                 }
9789
9790                 if (__xfer_to_guest_mode_work_pending()) {
9791                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9792                         r = xfer_to_guest_mode_handle_work(vcpu);
9793                         if (r)
9794                                 return r;
9795                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9796                 }
9797         }
9798
9799         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9800
9801         return r;
9802 }
9803
9804 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9805 {
9806         int r;
9807
9808         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9809         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9810         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9811         return r;
9812 }
9813
9814 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9815 {
9816         BUG_ON(!vcpu->arch.pio.count);
9817
9818         return complete_emulated_io(vcpu);
9819 }
9820
9821 /*
9822  * Implements the following, as a state machine:
9823  *
9824  * read:
9825  *   for each fragment
9826  *     for each mmio piece in the fragment
9827  *       write gpa, len
9828  *       exit
9829  *       copy data
9830  *   execute insn
9831  *
9832  * write:
9833  *   for each fragment
9834  *     for each mmio piece in the fragment
9835  *       write gpa, len
9836  *       copy data
9837  *       exit
9838  */
9839 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9840 {
9841         struct kvm_run *run = vcpu->run;
9842         struct kvm_mmio_fragment *frag;
9843         unsigned len;
9844
9845         BUG_ON(!vcpu->mmio_needed);
9846
9847         /* Complete previous fragment */
9848         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9849         len = min(8u, frag->len);
9850         if (!vcpu->mmio_is_write)
9851                 memcpy(frag->data, run->mmio.data, len);
9852
9853         if (frag->len <= 8) {
9854                 /* Switch to the next fragment. */
9855                 frag++;
9856                 vcpu->mmio_cur_fragment++;
9857         } else {
9858                 /* Go forward to the next mmio piece. */
9859                 frag->data += len;
9860                 frag->gpa += len;
9861                 frag->len -= len;
9862         }
9863
9864         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9865                 vcpu->mmio_needed = 0;
9866
9867                 /* FIXME: return into emulator if single-stepping.  */
9868                 if (vcpu->mmio_is_write)
9869                         return 1;
9870                 vcpu->mmio_read_completed = 1;
9871                 return complete_emulated_io(vcpu);
9872         }
9873
9874         run->exit_reason = KVM_EXIT_MMIO;
9875         run->mmio.phys_addr = frag->gpa;
9876         if (vcpu->mmio_is_write)
9877                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9878         run->mmio.len = min(8u, frag->len);
9879         run->mmio.is_write = vcpu->mmio_is_write;
9880         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9881         return 0;
9882 }
9883
9884 static void kvm_save_current_fpu(struct fpu *fpu)
9885 {
9886         /*
9887          * If the target FPU state is not resident in the CPU registers, just
9888          * memcpy() from current, else save CPU state directly to the target.
9889          */
9890         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9891                 memcpy(&fpu->state, &current->thread.fpu.state,
9892                        fpu_kernel_xstate_size);
9893         else
9894                 save_fpregs_to_fpstate(fpu);
9895 }
9896
9897 /* Swap (qemu) user FPU context for the guest FPU context. */
9898 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9899 {
9900         fpregs_lock();
9901
9902         kvm_save_current_fpu(vcpu->arch.user_fpu);
9903
9904         /*
9905          * Guests with protected state can't have it set by the hypervisor,
9906          * so skip trying to set it.
9907          */
9908         if (vcpu->arch.guest_fpu)
9909                 /* PKRU is separately restored in kvm_x86_ops.run. */
9910                 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9911                                         ~XFEATURE_MASK_PKRU);
9912
9913         fpregs_mark_activate();
9914         fpregs_unlock();
9915
9916         trace_kvm_fpu(1);
9917 }
9918
9919 /* When vcpu_run ends, restore user space FPU context. */
9920 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9921 {
9922         fpregs_lock();
9923
9924         /*
9925          * Guests with protected state can't have it read by the hypervisor,
9926          * so skip trying to save it.
9927          */
9928         if (vcpu->arch.guest_fpu)
9929                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9930
9931         restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9932
9933         fpregs_mark_activate();
9934         fpregs_unlock();
9935
9936         ++vcpu->stat.fpu_reload;
9937         trace_kvm_fpu(0);
9938 }
9939
9940 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9941 {
9942         struct kvm_run *kvm_run = vcpu->run;
9943         int r;
9944
9945         vcpu_load(vcpu);
9946         kvm_sigset_activate(vcpu);
9947         kvm_run->flags = 0;
9948         kvm_load_guest_fpu(vcpu);
9949
9950         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9951                 if (kvm_run->immediate_exit) {
9952                         r = -EINTR;
9953                         goto out;
9954                 }
9955                 kvm_vcpu_block(vcpu);
9956                 if (kvm_apic_accept_events(vcpu) < 0) {
9957                         r = 0;
9958                         goto out;
9959                 }
9960                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9961                 r = -EAGAIN;
9962                 if (signal_pending(current)) {
9963                         r = -EINTR;
9964                         kvm_run->exit_reason = KVM_EXIT_INTR;
9965                         ++vcpu->stat.signal_exits;
9966                 }
9967                 goto out;
9968         }
9969
9970         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9971             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9972                 r = -EINVAL;
9973                 goto out;
9974         }
9975
9976         if (kvm_run->kvm_dirty_regs) {
9977                 r = sync_regs(vcpu);
9978                 if (r != 0)
9979                         goto out;
9980         }
9981
9982         /* re-sync apic's tpr */
9983         if (!lapic_in_kernel(vcpu)) {
9984                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9985                         r = -EINVAL;
9986                         goto out;
9987                 }
9988         }
9989
9990         if (unlikely(vcpu->arch.complete_userspace_io)) {
9991                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9992                 vcpu->arch.complete_userspace_io = NULL;
9993                 r = cui(vcpu);
9994                 if (r <= 0)
9995                         goto out;
9996         } else
9997                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9998
9999         if (kvm_run->immediate_exit)
10000                 r = -EINTR;
10001         else
10002                 r = vcpu_run(vcpu);
10003
10004 out:
10005         kvm_put_guest_fpu(vcpu);
10006         if (kvm_run->kvm_valid_regs)
10007                 store_regs(vcpu);
10008         post_kvm_run_save(vcpu);
10009         kvm_sigset_deactivate(vcpu);
10010
10011         vcpu_put(vcpu);
10012         return r;
10013 }
10014
10015 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10016 {
10017         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10018                 /*
10019                  * We are here if userspace calls get_regs() in the middle of
10020                  * instruction emulation. Registers state needs to be copied
10021                  * back from emulation context to vcpu. Userspace shouldn't do
10022                  * that usually, but some bad designed PV devices (vmware
10023                  * backdoor interface) need this to work
10024                  */
10025                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10026                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10027         }
10028         regs->rax = kvm_rax_read(vcpu);
10029         regs->rbx = kvm_rbx_read(vcpu);
10030         regs->rcx = kvm_rcx_read(vcpu);
10031         regs->rdx = kvm_rdx_read(vcpu);
10032         regs->rsi = kvm_rsi_read(vcpu);
10033         regs->rdi = kvm_rdi_read(vcpu);
10034         regs->rsp = kvm_rsp_read(vcpu);
10035         regs->rbp = kvm_rbp_read(vcpu);
10036 #ifdef CONFIG_X86_64
10037         regs->r8 = kvm_r8_read(vcpu);
10038         regs->r9 = kvm_r9_read(vcpu);
10039         regs->r10 = kvm_r10_read(vcpu);
10040         regs->r11 = kvm_r11_read(vcpu);
10041         regs->r12 = kvm_r12_read(vcpu);
10042         regs->r13 = kvm_r13_read(vcpu);
10043         regs->r14 = kvm_r14_read(vcpu);
10044         regs->r15 = kvm_r15_read(vcpu);
10045 #endif
10046
10047         regs->rip = kvm_rip_read(vcpu);
10048         regs->rflags = kvm_get_rflags(vcpu);
10049 }
10050
10051 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10052 {
10053         vcpu_load(vcpu);
10054         __get_regs(vcpu, regs);
10055         vcpu_put(vcpu);
10056         return 0;
10057 }
10058
10059 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10060 {
10061         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10062         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10063
10064         kvm_rax_write(vcpu, regs->rax);
10065         kvm_rbx_write(vcpu, regs->rbx);
10066         kvm_rcx_write(vcpu, regs->rcx);
10067         kvm_rdx_write(vcpu, regs->rdx);
10068         kvm_rsi_write(vcpu, regs->rsi);
10069         kvm_rdi_write(vcpu, regs->rdi);
10070         kvm_rsp_write(vcpu, regs->rsp);
10071         kvm_rbp_write(vcpu, regs->rbp);
10072 #ifdef CONFIG_X86_64
10073         kvm_r8_write(vcpu, regs->r8);
10074         kvm_r9_write(vcpu, regs->r9);
10075         kvm_r10_write(vcpu, regs->r10);
10076         kvm_r11_write(vcpu, regs->r11);
10077         kvm_r12_write(vcpu, regs->r12);
10078         kvm_r13_write(vcpu, regs->r13);
10079         kvm_r14_write(vcpu, regs->r14);
10080         kvm_r15_write(vcpu, regs->r15);
10081 #endif
10082
10083         kvm_rip_write(vcpu, regs->rip);
10084         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10085
10086         vcpu->arch.exception.pending = false;
10087
10088         kvm_make_request(KVM_REQ_EVENT, vcpu);
10089 }
10090
10091 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10092 {
10093         vcpu_load(vcpu);
10094         __set_regs(vcpu, regs);
10095         vcpu_put(vcpu);
10096         return 0;
10097 }
10098
10099 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10100 {
10101         struct kvm_segment cs;
10102
10103         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10104         *db = cs.db;
10105         *l = cs.l;
10106 }
10107 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10108
10109 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10110 {
10111         struct desc_ptr dt;
10112
10113         if (vcpu->arch.guest_state_protected)
10114                 goto skip_protected_regs;
10115
10116         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10117         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10118         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10119         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10120         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10121         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10122
10123         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10124         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10125
10126         static_call(kvm_x86_get_idt)(vcpu, &dt);
10127         sregs->idt.limit = dt.size;
10128         sregs->idt.base = dt.address;
10129         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10130         sregs->gdt.limit = dt.size;
10131         sregs->gdt.base = dt.address;
10132
10133         sregs->cr2 = vcpu->arch.cr2;
10134         sregs->cr3 = kvm_read_cr3(vcpu);
10135
10136 skip_protected_regs:
10137         sregs->cr0 = kvm_read_cr0(vcpu);
10138         sregs->cr4 = kvm_read_cr4(vcpu);
10139         sregs->cr8 = kvm_get_cr8(vcpu);
10140         sregs->efer = vcpu->arch.efer;
10141         sregs->apic_base = kvm_get_apic_base(vcpu);
10142 }
10143
10144 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10145 {
10146         __get_sregs_common(vcpu, sregs);
10147
10148         if (vcpu->arch.guest_state_protected)
10149                 return;
10150
10151         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10152                 set_bit(vcpu->arch.interrupt.nr,
10153                         (unsigned long *)sregs->interrupt_bitmap);
10154 }
10155
10156 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10157 {
10158         int i;
10159
10160         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10161
10162         if (vcpu->arch.guest_state_protected)
10163                 return;
10164
10165         if (is_pae_paging(vcpu)) {
10166                 for (i = 0 ; i < 4 ; i++)
10167                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10168                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10169         }
10170 }
10171
10172 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10173                                   struct kvm_sregs *sregs)
10174 {
10175         vcpu_load(vcpu);
10176         __get_sregs(vcpu, sregs);
10177         vcpu_put(vcpu);
10178         return 0;
10179 }
10180
10181 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10182                                     struct kvm_mp_state *mp_state)
10183 {
10184         int r;
10185
10186         vcpu_load(vcpu);
10187         if (kvm_mpx_supported())
10188                 kvm_load_guest_fpu(vcpu);
10189
10190         r = kvm_apic_accept_events(vcpu);
10191         if (r < 0)
10192                 goto out;
10193         r = 0;
10194
10195         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10196              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10197             vcpu->arch.pv.pv_unhalted)
10198                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10199         else
10200                 mp_state->mp_state = vcpu->arch.mp_state;
10201
10202 out:
10203         if (kvm_mpx_supported())
10204                 kvm_put_guest_fpu(vcpu);
10205         vcpu_put(vcpu);
10206         return r;
10207 }
10208
10209 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10210                                     struct kvm_mp_state *mp_state)
10211 {
10212         int ret = -EINVAL;
10213
10214         vcpu_load(vcpu);
10215
10216         if (!lapic_in_kernel(vcpu) &&
10217             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10218                 goto out;
10219
10220         /*
10221          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10222          * INIT state; latched init should be reported using
10223          * KVM_SET_VCPU_EVENTS, so reject it here.
10224          */
10225         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10226             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10227              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10228                 goto out;
10229
10230         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10231                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10232                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10233         } else
10234                 vcpu->arch.mp_state = mp_state->mp_state;
10235         kvm_make_request(KVM_REQ_EVENT, vcpu);
10236
10237         ret = 0;
10238 out:
10239         vcpu_put(vcpu);
10240         return ret;
10241 }
10242
10243 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10244                     int reason, bool has_error_code, u32 error_code)
10245 {
10246         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10247         int ret;
10248
10249         init_emulate_ctxt(vcpu);
10250
10251         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10252                                    has_error_code, error_code);
10253         if (ret) {
10254                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10255                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10256                 vcpu->run->internal.ndata = 0;
10257                 return 0;
10258         }
10259
10260         kvm_rip_write(vcpu, ctxt->eip);
10261         kvm_set_rflags(vcpu, ctxt->eflags);
10262         return 1;
10263 }
10264 EXPORT_SYMBOL_GPL(kvm_task_switch);
10265
10266 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10267 {
10268         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10269                 /*
10270                  * When EFER.LME and CR0.PG are set, the processor is in
10271                  * 64-bit mode (though maybe in a 32-bit code segment).
10272                  * CR4.PAE and EFER.LMA must be set.
10273                  */
10274                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10275                         return false;
10276                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10277                         return false;
10278         } else {
10279                 /*
10280                  * Not in 64-bit mode: EFER.LMA is clear and the code
10281                  * segment cannot be 64-bit.
10282                  */
10283                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10284                         return false;
10285         }
10286
10287         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10288 }
10289
10290 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10291                 int *mmu_reset_needed, bool update_pdptrs)
10292 {
10293         struct msr_data apic_base_msr;
10294         int idx;
10295         struct desc_ptr dt;
10296
10297         if (!kvm_is_valid_sregs(vcpu, sregs))
10298                 return -EINVAL;
10299
10300         apic_base_msr.data = sregs->apic_base;
10301         apic_base_msr.host_initiated = true;
10302         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10303                 return -EINVAL;
10304
10305         if (vcpu->arch.guest_state_protected)
10306                 return 0;
10307
10308         dt.size = sregs->idt.limit;
10309         dt.address = sregs->idt.base;
10310         static_call(kvm_x86_set_idt)(vcpu, &dt);
10311         dt.size = sregs->gdt.limit;
10312         dt.address = sregs->gdt.base;
10313         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10314
10315         vcpu->arch.cr2 = sregs->cr2;
10316         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10317         vcpu->arch.cr3 = sregs->cr3;
10318         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10319
10320         kvm_set_cr8(vcpu, sregs->cr8);
10321
10322         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10323         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10324
10325         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10326         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10327         vcpu->arch.cr0 = sregs->cr0;
10328
10329         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10330         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10331
10332         if (update_pdptrs) {
10333                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10334                 if (is_pae_paging(vcpu)) {
10335                         load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10336                         *mmu_reset_needed = 1;
10337                 }
10338                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10339         }
10340
10341         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10342         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10343         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10344         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10345         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10346         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10347
10348         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10349         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10350
10351         update_cr8_intercept(vcpu);
10352
10353         /* Older userspace won't unhalt the vcpu on reset. */
10354         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10355             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10356             !is_protmode(vcpu))
10357                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10358
10359         return 0;
10360 }
10361
10362 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10363 {
10364         int pending_vec, max_bits;
10365         int mmu_reset_needed = 0;
10366         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10367
10368         if (ret)
10369                 return ret;
10370
10371         if (mmu_reset_needed)
10372                 kvm_mmu_reset_context(vcpu);
10373
10374         max_bits = KVM_NR_INTERRUPTS;
10375         pending_vec = find_first_bit(
10376                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10377
10378         if (pending_vec < max_bits) {
10379                 kvm_queue_interrupt(vcpu, pending_vec, false);
10380                 pr_debug("Set back pending irq %d\n", pending_vec);
10381                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10382         }
10383         return 0;
10384 }
10385
10386 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10387 {
10388         int mmu_reset_needed = 0;
10389         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10390         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10391                 !(sregs2->efer & EFER_LMA);
10392         int i, ret;
10393
10394         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10395                 return -EINVAL;
10396
10397         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10398                 return -EINVAL;
10399
10400         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10401                                  &mmu_reset_needed, !valid_pdptrs);
10402         if (ret)
10403                 return ret;
10404
10405         if (valid_pdptrs) {
10406                 for (i = 0; i < 4 ; i++)
10407                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10408
10409                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10410                 mmu_reset_needed = 1;
10411                 vcpu->arch.pdptrs_from_userspace = true;
10412         }
10413         if (mmu_reset_needed)
10414                 kvm_mmu_reset_context(vcpu);
10415         return 0;
10416 }
10417
10418 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10419                                   struct kvm_sregs *sregs)
10420 {
10421         int ret;
10422
10423         vcpu_load(vcpu);
10424         ret = __set_sregs(vcpu, sregs);
10425         vcpu_put(vcpu);
10426         return ret;
10427 }
10428
10429 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10430                                         struct kvm_guest_debug *dbg)
10431 {
10432         unsigned long rflags;
10433         int i, r;
10434
10435         if (vcpu->arch.guest_state_protected)
10436                 return -EINVAL;
10437
10438         vcpu_load(vcpu);
10439
10440         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10441                 r = -EBUSY;
10442                 if (vcpu->arch.exception.pending)
10443                         goto out;
10444                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10445                         kvm_queue_exception(vcpu, DB_VECTOR);
10446                 else
10447                         kvm_queue_exception(vcpu, BP_VECTOR);
10448         }
10449
10450         /*
10451          * Read rflags as long as potentially injected trace flags are still
10452          * filtered out.
10453          */
10454         rflags = kvm_get_rflags(vcpu);
10455
10456         vcpu->guest_debug = dbg->control;
10457         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10458                 vcpu->guest_debug = 0;
10459
10460         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10461                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10462                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10463                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10464         } else {
10465                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10466                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10467         }
10468         kvm_update_dr7(vcpu);
10469
10470         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10471                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10472
10473         /*
10474          * Trigger an rflags update that will inject or remove the trace
10475          * flags.
10476          */
10477         kvm_set_rflags(vcpu, rflags);
10478
10479         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10480
10481         r = 0;
10482
10483 out:
10484         vcpu_put(vcpu);
10485         return r;
10486 }
10487
10488 /*
10489  * Translate a guest virtual address to a guest physical address.
10490  */
10491 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10492                                     struct kvm_translation *tr)
10493 {
10494         unsigned long vaddr = tr->linear_address;
10495         gpa_t gpa;
10496         int idx;
10497
10498         vcpu_load(vcpu);
10499
10500         idx = srcu_read_lock(&vcpu->kvm->srcu);
10501         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10502         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10503         tr->physical_address = gpa;
10504         tr->valid = gpa != UNMAPPED_GVA;
10505         tr->writeable = 1;
10506         tr->usermode = 0;
10507
10508         vcpu_put(vcpu);
10509         return 0;
10510 }
10511
10512 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10513 {
10514         struct fxregs_state *fxsave;
10515
10516         if (!vcpu->arch.guest_fpu)
10517                 return 0;
10518
10519         vcpu_load(vcpu);
10520
10521         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10522         memcpy(fpu->fpr, fxsave->st_space, 128);
10523         fpu->fcw = fxsave->cwd;
10524         fpu->fsw = fxsave->swd;
10525         fpu->ftwx = fxsave->twd;
10526         fpu->last_opcode = fxsave->fop;
10527         fpu->last_ip = fxsave->rip;
10528         fpu->last_dp = fxsave->rdp;
10529         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10530
10531         vcpu_put(vcpu);
10532         return 0;
10533 }
10534
10535 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10536 {
10537         struct fxregs_state *fxsave;
10538
10539         if (!vcpu->arch.guest_fpu)
10540                 return 0;
10541
10542         vcpu_load(vcpu);
10543
10544         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10545
10546         memcpy(fxsave->st_space, fpu->fpr, 128);
10547         fxsave->cwd = fpu->fcw;
10548         fxsave->swd = fpu->fsw;
10549         fxsave->twd = fpu->ftwx;
10550         fxsave->fop = fpu->last_opcode;
10551         fxsave->rip = fpu->last_ip;
10552         fxsave->rdp = fpu->last_dp;
10553         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10554
10555         vcpu_put(vcpu);
10556         return 0;
10557 }
10558
10559 static void store_regs(struct kvm_vcpu *vcpu)
10560 {
10561         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10562
10563         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10564                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10565
10566         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10567                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10568
10569         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10570                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10571                                 vcpu, &vcpu->run->s.regs.events);
10572 }
10573
10574 static int sync_regs(struct kvm_vcpu *vcpu)
10575 {
10576         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10577                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10578                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10579         }
10580         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10581                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10582                         return -EINVAL;
10583                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10584         }
10585         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10586                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10587                                 vcpu, &vcpu->run->s.regs.events))
10588                         return -EINVAL;
10589                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10590         }
10591
10592         return 0;
10593 }
10594
10595 static void fx_init(struct kvm_vcpu *vcpu)
10596 {
10597         if (!vcpu->arch.guest_fpu)
10598                 return;
10599
10600         fpstate_init(&vcpu->arch.guest_fpu->state);
10601         if (boot_cpu_has(X86_FEATURE_XSAVES))
10602                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10603                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10604
10605         /*
10606          * Ensure guest xcr0 is valid for loading
10607          */
10608         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10609
10610         vcpu->arch.cr0 |= X86_CR0_ET;
10611 }
10612
10613 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10614 {
10615         if (vcpu->arch.guest_fpu) {
10616                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10617                 vcpu->arch.guest_fpu = NULL;
10618         }
10619 }
10620 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10621
10622 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10623 {
10624         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10625                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10626                              "guest TSC will not be reliable\n");
10627
10628         return 0;
10629 }
10630
10631 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10632 {
10633         struct page *page;
10634         int r;
10635
10636         vcpu->arch.last_vmentry_cpu = -1;
10637
10638         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10639                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10640         else
10641                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10642
10643         r = kvm_mmu_create(vcpu);
10644         if (r < 0)
10645                 return r;
10646
10647         if (irqchip_in_kernel(vcpu->kvm)) {
10648                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10649                 if (r < 0)
10650                         goto fail_mmu_destroy;
10651                 if (kvm_apicv_activated(vcpu->kvm))
10652                         vcpu->arch.apicv_active = true;
10653         } else
10654                 static_branch_inc(&kvm_has_noapic_vcpu);
10655
10656         r = -ENOMEM;
10657
10658         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10659         if (!page)
10660                 goto fail_free_lapic;
10661         vcpu->arch.pio_data = page_address(page);
10662
10663         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10664                                        GFP_KERNEL_ACCOUNT);
10665         if (!vcpu->arch.mce_banks)
10666                 goto fail_free_pio_data;
10667         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10668
10669         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10670                                 GFP_KERNEL_ACCOUNT))
10671                 goto fail_free_mce_banks;
10672
10673         if (!alloc_emulate_ctxt(vcpu))
10674                 goto free_wbinvd_dirty_mask;
10675
10676         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10677                                                 GFP_KERNEL_ACCOUNT);
10678         if (!vcpu->arch.user_fpu) {
10679                 pr_err("kvm: failed to allocate userspace's fpu\n");
10680                 goto free_emulate_ctxt;
10681         }
10682
10683         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10684                                                  GFP_KERNEL_ACCOUNT);
10685         if (!vcpu->arch.guest_fpu) {
10686                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10687                 goto free_user_fpu;
10688         }
10689         fx_init(vcpu);
10690
10691         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10692         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10693
10694         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10695
10696         kvm_async_pf_hash_reset(vcpu);
10697         kvm_pmu_init(vcpu);
10698
10699         vcpu->arch.pending_external_vector = -1;
10700         vcpu->arch.preempted_in_kernel = false;
10701
10702 #if IS_ENABLED(CONFIG_HYPERV)
10703         vcpu->arch.hv_root_tdp = INVALID_PAGE;
10704 #endif
10705
10706         r = static_call(kvm_x86_vcpu_create)(vcpu);
10707         if (r)
10708                 goto free_guest_fpu;
10709
10710         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10711         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10712         kvm_vcpu_mtrr_init(vcpu);
10713         vcpu_load(vcpu);
10714         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10715         kvm_vcpu_reset(vcpu, false);
10716         kvm_init_mmu(vcpu);
10717         vcpu_put(vcpu);
10718         return 0;
10719
10720 free_guest_fpu:
10721         kvm_free_guest_fpu(vcpu);
10722 free_user_fpu:
10723         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10724 free_emulate_ctxt:
10725         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10726 free_wbinvd_dirty_mask:
10727         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10728 fail_free_mce_banks:
10729         kfree(vcpu->arch.mce_banks);
10730 fail_free_pio_data:
10731         free_page((unsigned long)vcpu->arch.pio_data);
10732 fail_free_lapic:
10733         kvm_free_lapic(vcpu);
10734 fail_mmu_destroy:
10735         kvm_mmu_destroy(vcpu);
10736         return r;
10737 }
10738
10739 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10740 {
10741         struct kvm *kvm = vcpu->kvm;
10742
10743         if (mutex_lock_killable(&vcpu->mutex))
10744                 return;
10745         vcpu_load(vcpu);
10746         kvm_synchronize_tsc(vcpu, 0);
10747         vcpu_put(vcpu);
10748
10749         /* poll control enabled by default */
10750         vcpu->arch.msr_kvm_poll_control = 1;
10751
10752         mutex_unlock(&vcpu->mutex);
10753
10754         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10755                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10756                                                 KVMCLOCK_SYNC_PERIOD);
10757 }
10758
10759 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10760 {
10761         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10762         int idx;
10763
10764         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10765
10766         kvmclock_reset(vcpu);
10767
10768         static_call(kvm_x86_vcpu_free)(vcpu);
10769
10770         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10771         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10772         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10773         kvm_free_guest_fpu(vcpu);
10774
10775         kvm_hv_vcpu_uninit(vcpu);
10776         kvm_pmu_destroy(vcpu);
10777         kfree(vcpu->arch.mce_banks);
10778         kvm_free_lapic(vcpu);
10779         idx = srcu_read_lock(&vcpu->kvm->srcu);
10780         kvm_mmu_destroy(vcpu);
10781         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10782         free_page((unsigned long)vcpu->arch.pio_data);
10783         kvfree(vcpu->arch.cpuid_entries);
10784         if (!lapic_in_kernel(vcpu))
10785                 static_branch_dec(&kvm_has_noapic_vcpu);
10786 }
10787
10788 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10789 {
10790         unsigned long old_cr0 = kvm_read_cr0(vcpu);
10791         unsigned long new_cr0;
10792         u32 eax, dummy;
10793
10794         kvm_lapic_reset(vcpu, init_event);
10795
10796         vcpu->arch.hflags = 0;
10797
10798         vcpu->arch.smi_pending = 0;
10799         vcpu->arch.smi_count = 0;
10800         atomic_set(&vcpu->arch.nmi_queued, 0);
10801         vcpu->arch.nmi_pending = 0;
10802         vcpu->arch.nmi_injected = false;
10803         kvm_clear_interrupt_queue(vcpu);
10804         kvm_clear_exception_queue(vcpu);
10805
10806         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10807         kvm_update_dr0123(vcpu);
10808         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10809         vcpu->arch.dr7 = DR7_FIXED_1;
10810         kvm_update_dr7(vcpu);
10811
10812         vcpu->arch.cr2 = 0;
10813
10814         kvm_make_request(KVM_REQ_EVENT, vcpu);
10815         vcpu->arch.apf.msr_en_val = 0;
10816         vcpu->arch.apf.msr_int_val = 0;
10817         vcpu->arch.st.msr_val = 0;
10818
10819         kvmclock_reset(vcpu);
10820
10821         kvm_clear_async_pf_completion_queue(vcpu);
10822         kvm_async_pf_hash_reset(vcpu);
10823         vcpu->arch.apf.halted = false;
10824
10825         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10826                 void *mpx_state_buffer;
10827
10828                 /*
10829                  * To avoid have the INIT path from kvm_apic_has_events() that be
10830                  * called with loaded FPU and does not let userspace fix the state.
10831                  */
10832                 if (init_event)
10833                         kvm_put_guest_fpu(vcpu);
10834                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10835                                         XFEATURE_BNDREGS);
10836                 if (mpx_state_buffer)
10837                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10838                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10839                                         XFEATURE_BNDCSR);
10840                 if (mpx_state_buffer)
10841                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10842                 if (init_event)
10843                         kvm_load_guest_fpu(vcpu);
10844         }
10845
10846         if (!init_event) {
10847                 kvm_pmu_reset(vcpu);
10848                 vcpu->arch.smbase = 0x30000;
10849
10850                 vcpu->arch.msr_misc_features_enables = 0;
10851
10852                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10853         }
10854
10855         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10856         vcpu->arch.regs_avail = ~0;
10857         vcpu->arch.regs_dirty = ~0;
10858
10859         /*
10860          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10861          * if no CPUID match is found.  Note, it's impossible to get a match at
10862          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10863          * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10864          * But, go through the motions in case that's ever remedied.
10865          */
10866         eax = 1;
10867         if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10868                 eax = 0x600;
10869         kvm_rdx_write(vcpu, eax);
10870
10871         vcpu->arch.ia32_xss = 0;
10872
10873         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10874
10875         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10876         kvm_rip_write(vcpu, 0xfff0);
10877
10878         /*
10879          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
10880          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10881          * (or qualify) that with a footnote stating that CD/NW are preserved.
10882          */
10883         new_cr0 = X86_CR0_ET;
10884         if (init_event)
10885                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10886         else
10887                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10888
10889         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10890         static_call(kvm_x86_set_cr4)(vcpu, 0);
10891         static_call(kvm_x86_set_efer)(vcpu, 0);
10892         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10893
10894         /*
10895          * Reset the MMU context if paging was enabled prior to INIT (which is
10896          * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
10897          * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10898          * checked because it is unconditionally cleared on INIT and all other
10899          * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10900          * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10901          */
10902         if (old_cr0 & X86_CR0_PG)
10903                 kvm_mmu_reset_context(vcpu);
10904
10905         /*
10906          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
10907          * APM states the TLBs are untouched by INIT, but it also states that
10908          * the TLBs are flushed on "External initialization of the processor."
10909          * Flush the guest TLB regardless of vendor, there is no meaningful
10910          * benefit in relying on the guest to flush the TLB immediately after
10911          * INIT.  A spurious TLB flush is benign and likely negligible from a
10912          * performance perspective.
10913          */
10914         if (init_event)
10915                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10916 }
10917 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10918
10919 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10920 {
10921         struct kvm_segment cs;
10922
10923         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10924         cs.selector = vector << 8;
10925         cs.base = vector << 12;
10926         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10927         kvm_rip_write(vcpu, 0);
10928 }
10929 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10930
10931 int kvm_arch_hardware_enable(void)
10932 {
10933         struct kvm *kvm;
10934         struct kvm_vcpu *vcpu;
10935         int i;
10936         int ret;
10937         u64 local_tsc;
10938         u64 max_tsc = 0;
10939         bool stable, backwards_tsc = false;
10940
10941         kvm_user_return_msr_cpu_online();
10942         ret = static_call(kvm_x86_hardware_enable)();
10943         if (ret != 0)
10944                 return ret;
10945
10946         local_tsc = rdtsc();
10947         stable = !kvm_check_tsc_unstable();
10948         list_for_each_entry(kvm, &vm_list, vm_list) {
10949                 kvm_for_each_vcpu(i, vcpu, kvm) {
10950                         if (!stable && vcpu->cpu == smp_processor_id())
10951                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10952                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10953                                 backwards_tsc = true;
10954                                 if (vcpu->arch.last_host_tsc > max_tsc)
10955                                         max_tsc = vcpu->arch.last_host_tsc;
10956                         }
10957                 }
10958         }
10959
10960         /*
10961          * Sometimes, even reliable TSCs go backwards.  This happens on
10962          * platforms that reset TSC during suspend or hibernate actions, but
10963          * maintain synchronization.  We must compensate.  Fortunately, we can
10964          * detect that condition here, which happens early in CPU bringup,
10965          * before any KVM threads can be running.  Unfortunately, we can't
10966          * bring the TSCs fully up to date with real time, as we aren't yet far
10967          * enough into CPU bringup that we know how much real time has actually
10968          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10969          * variables that haven't been updated yet.
10970          *
10971          * So we simply find the maximum observed TSC above, then record the
10972          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10973          * the adjustment will be applied.  Note that we accumulate
10974          * adjustments, in case multiple suspend cycles happen before some VCPU
10975          * gets a chance to run again.  In the event that no KVM threads get a
10976          * chance to run, we will miss the entire elapsed period, as we'll have
10977          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10978          * loose cycle time.  This isn't too big a deal, since the loss will be
10979          * uniform across all VCPUs (not to mention the scenario is extremely
10980          * unlikely). It is possible that a second hibernate recovery happens
10981          * much faster than a first, causing the observed TSC here to be
10982          * smaller; this would require additional padding adjustment, which is
10983          * why we set last_host_tsc to the local tsc observed here.
10984          *
10985          * N.B. - this code below runs only on platforms with reliable TSC,
10986          * as that is the only way backwards_tsc is set above.  Also note
10987          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10988          * have the same delta_cyc adjustment applied if backwards_tsc
10989          * is detected.  Note further, this adjustment is only done once,
10990          * as we reset last_host_tsc on all VCPUs to stop this from being
10991          * called multiple times (one for each physical CPU bringup).
10992          *
10993          * Platforms with unreliable TSCs don't have to deal with this, they
10994          * will be compensated by the logic in vcpu_load, which sets the TSC to
10995          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10996          * guarantee that they stay in perfect synchronization.
10997          */
10998         if (backwards_tsc) {
10999                 u64 delta_cyc = max_tsc - local_tsc;
11000                 list_for_each_entry(kvm, &vm_list, vm_list) {
11001                         kvm->arch.backwards_tsc_observed = true;
11002                         kvm_for_each_vcpu(i, vcpu, kvm) {
11003                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11004                                 vcpu->arch.last_host_tsc = local_tsc;
11005                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11006                         }
11007
11008                         /*
11009                          * We have to disable TSC offset matching.. if you were
11010                          * booting a VM while issuing an S4 host suspend....
11011                          * you may have some problem.  Solving this issue is
11012                          * left as an exercise to the reader.
11013                          */
11014                         kvm->arch.last_tsc_nsec = 0;
11015                         kvm->arch.last_tsc_write = 0;
11016                 }
11017
11018         }
11019         return 0;
11020 }
11021
11022 void kvm_arch_hardware_disable(void)
11023 {
11024         static_call(kvm_x86_hardware_disable)();
11025         drop_user_return_notifiers();
11026 }
11027
11028 int kvm_arch_hardware_setup(void *opaque)
11029 {
11030         struct kvm_x86_init_ops *ops = opaque;
11031         int r;
11032
11033         rdmsrl_safe(MSR_EFER, &host_efer);
11034
11035         if (boot_cpu_has(X86_FEATURE_XSAVES))
11036                 rdmsrl(MSR_IA32_XSS, host_xss);
11037
11038         r = ops->hardware_setup();
11039         if (r != 0)
11040                 return r;
11041
11042         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11043         kvm_ops_static_call_update();
11044
11045         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11046                 supported_xss = 0;
11047
11048 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11049         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11050 #undef __kvm_cpu_cap_has
11051
11052         if (kvm_has_tsc_control) {
11053                 /*
11054                  * Make sure the user can only configure tsc_khz values that
11055                  * fit into a signed integer.
11056                  * A min value is not calculated because it will always
11057                  * be 1 on all machines.
11058                  */
11059                 u64 max = min(0x7fffffffULL,
11060                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11061                 kvm_max_guest_tsc_khz = max;
11062
11063                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11064         }
11065
11066         kvm_init_msr_list();
11067         return 0;
11068 }
11069
11070 void kvm_arch_hardware_unsetup(void)
11071 {
11072         static_call(kvm_x86_hardware_unsetup)();
11073 }
11074
11075 int kvm_arch_check_processor_compat(void *opaque)
11076 {
11077         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11078         struct kvm_x86_init_ops *ops = opaque;
11079
11080         WARN_ON(!irqs_disabled());
11081
11082         if (__cr4_reserved_bits(cpu_has, c) !=
11083             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11084                 return -EIO;
11085
11086         return ops->check_processor_compatibility();
11087 }
11088
11089 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11090 {
11091         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11092 }
11093 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11094
11095 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11096 {
11097         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11098 }
11099
11100 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11101 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11102
11103 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11104 {
11105         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11106
11107         vcpu->arch.l1tf_flush_l1d = true;
11108         if (pmu->version && unlikely(pmu->event_count)) {
11109                 pmu->need_cleanup = true;
11110                 kvm_make_request(KVM_REQ_PMU, vcpu);
11111         }
11112         static_call(kvm_x86_sched_in)(vcpu, cpu);
11113 }
11114
11115 void kvm_arch_free_vm(struct kvm *kvm)
11116 {
11117         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11118         vfree(kvm);
11119 }
11120
11121
11122 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11123 {
11124         if (type)
11125                 return -EINVAL;
11126
11127         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11128         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11129         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11130         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11131         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11132         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11133
11134         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11135         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11136         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11137         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11138                 &kvm->arch.irq_sources_bitmap);
11139
11140         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11141         mutex_init(&kvm->arch.apic_map_lock);
11142         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11143
11144         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11145         pvclock_update_vm_gtod_copy(kvm);
11146
11147         kvm->arch.guest_can_read_msr_platform_info = true;
11148
11149 #if IS_ENABLED(CONFIG_HYPERV)
11150         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11151         kvm->arch.hv_root_tdp = INVALID_PAGE;
11152 #endif
11153
11154         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11155         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11156
11157         kvm_apicv_init(kvm);
11158         kvm_hv_init_vm(kvm);
11159         kvm_page_track_init(kvm);
11160         kvm_mmu_init_vm(kvm);
11161         kvm_xen_init_vm(kvm);
11162
11163         return static_call(kvm_x86_vm_init)(kvm);
11164 }
11165
11166 int kvm_arch_post_init_vm(struct kvm *kvm)
11167 {
11168         return kvm_mmu_post_init_vm(kvm);
11169 }
11170
11171 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11172 {
11173         vcpu_load(vcpu);
11174         kvm_mmu_unload(vcpu);
11175         vcpu_put(vcpu);
11176 }
11177
11178 static void kvm_free_vcpus(struct kvm *kvm)
11179 {
11180         unsigned int i;
11181         struct kvm_vcpu *vcpu;
11182
11183         /*
11184          * Unpin any mmu pages first.
11185          */
11186         kvm_for_each_vcpu(i, vcpu, kvm) {
11187                 kvm_clear_async_pf_completion_queue(vcpu);
11188                 kvm_unload_vcpu_mmu(vcpu);
11189         }
11190         kvm_for_each_vcpu(i, vcpu, kvm)
11191                 kvm_vcpu_destroy(vcpu);
11192
11193         mutex_lock(&kvm->lock);
11194         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11195                 kvm->vcpus[i] = NULL;
11196
11197         atomic_set(&kvm->online_vcpus, 0);
11198         mutex_unlock(&kvm->lock);
11199 }
11200
11201 void kvm_arch_sync_events(struct kvm *kvm)
11202 {
11203         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11204         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11205         kvm_free_pit(kvm);
11206 }
11207
11208 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11209
11210 /**
11211  * __x86_set_memory_region: Setup KVM internal memory slot
11212  *
11213  * @kvm: the kvm pointer to the VM.
11214  * @id: the slot ID to setup.
11215  * @gpa: the GPA to install the slot (unused when @size == 0).
11216  * @size: the size of the slot. Set to zero to uninstall a slot.
11217  *
11218  * This function helps to setup a KVM internal memory slot.  Specify
11219  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11220  * slot.  The return code can be one of the following:
11221  *
11222  *   HVA:           on success (uninstall will return a bogus HVA)
11223  *   -errno:        on error
11224  *
11225  * The caller should always use IS_ERR() to check the return value
11226  * before use.  Note, the KVM internal memory slots are guaranteed to
11227  * remain valid and unchanged until the VM is destroyed, i.e., the
11228  * GPA->HVA translation will not change.  However, the HVA is a user
11229  * address, i.e. its accessibility is not guaranteed, and must be
11230  * accessed via __copy_{to,from}_user().
11231  */
11232 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11233                                       u32 size)
11234 {
11235         int i, r;
11236         unsigned long hva, old_npages;
11237         struct kvm_memslots *slots = kvm_memslots(kvm);
11238         struct kvm_memory_slot *slot;
11239
11240         /* Called with kvm->slots_lock held.  */
11241         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11242                 return ERR_PTR_USR(-EINVAL);
11243
11244         slot = id_to_memslot(slots, id);
11245         if (size) {
11246                 if (slot && slot->npages)
11247                         return ERR_PTR_USR(-EEXIST);
11248
11249                 /*
11250                  * MAP_SHARED to prevent internal slot pages from being moved
11251                  * by fork()/COW.
11252                  */
11253                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11254                               MAP_SHARED | MAP_ANONYMOUS, 0);
11255                 if (IS_ERR((void *)hva))
11256                         return (void __user *)hva;
11257         } else {
11258                 if (!slot || !slot->npages)
11259                         return NULL;
11260
11261                 old_npages = slot->npages;
11262                 hva = slot->userspace_addr;
11263         }
11264
11265         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11266                 struct kvm_userspace_memory_region m;
11267
11268                 m.slot = id | (i << 16);
11269                 m.flags = 0;
11270                 m.guest_phys_addr = gpa;
11271                 m.userspace_addr = hva;
11272                 m.memory_size = size;
11273                 r = __kvm_set_memory_region(kvm, &m);
11274                 if (r < 0)
11275                         return ERR_PTR_USR(r);
11276         }
11277
11278         if (!size)
11279                 vm_munmap(hva, old_npages * PAGE_SIZE);
11280
11281         return (void __user *)hva;
11282 }
11283 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11284
11285 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11286 {
11287         kvm_mmu_pre_destroy_vm(kvm);
11288 }
11289
11290 void kvm_arch_destroy_vm(struct kvm *kvm)
11291 {
11292         if (current->mm == kvm->mm) {
11293                 /*
11294                  * Free memory regions allocated on behalf of userspace,
11295                  * unless the the memory map has changed due to process exit
11296                  * or fd copying.
11297                  */
11298                 mutex_lock(&kvm->slots_lock);
11299                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11300                                         0, 0);
11301                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11302                                         0, 0);
11303                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11304                 mutex_unlock(&kvm->slots_lock);
11305         }
11306         static_call_cond(kvm_x86_vm_destroy)(kvm);
11307         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11308         kvm_pic_destroy(kvm);
11309         kvm_ioapic_destroy(kvm);
11310         kvm_free_vcpus(kvm);
11311         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11312         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11313         kvm_mmu_uninit_vm(kvm);
11314         kvm_page_track_cleanup(kvm);
11315         kvm_xen_destroy_vm(kvm);
11316         kvm_hv_destroy_vm(kvm);
11317 }
11318
11319 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11320 {
11321         int i;
11322
11323         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11324                 kvfree(slot->arch.rmap[i]);
11325                 slot->arch.rmap[i] = NULL;
11326         }
11327 }
11328
11329 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11330 {
11331         int i;
11332
11333         memslot_rmap_free(slot);
11334
11335         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11336                 kvfree(slot->arch.lpage_info[i - 1]);
11337                 slot->arch.lpage_info[i - 1] = NULL;
11338         }
11339
11340         kvm_page_track_free_memslot(slot);
11341 }
11342
11343 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11344                               unsigned long npages)
11345 {
11346         const int sz = sizeof(*slot->arch.rmap[0]);
11347         int i;
11348
11349         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11350                 int level = i + 1;
11351                 int lpages = gfn_to_index(slot->base_gfn + npages - 1,
11352                                           slot->base_gfn, level) + 1;
11353
11354                 WARN_ON(slot->arch.rmap[i]);
11355
11356                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11357                 if (!slot->arch.rmap[i]) {
11358                         memslot_rmap_free(slot);
11359                         return -ENOMEM;
11360                 }
11361         }
11362
11363         return 0;
11364 }
11365
11366 int alloc_all_memslots_rmaps(struct kvm *kvm)
11367 {
11368         struct kvm_memslots *slots;
11369         struct kvm_memory_slot *slot;
11370         int r, i;
11371
11372         /*
11373          * Check if memslots alreday have rmaps early before acquiring
11374          * the slots_arch_lock below.
11375          */
11376         if (kvm_memslots_have_rmaps(kvm))
11377                 return 0;
11378
11379         mutex_lock(&kvm->slots_arch_lock);
11380
11381         /*
11382          * Read memslots_have_rmaps again, under the slots arch lock,
11383          * before allocating the rmaps
11384          */
11385         if (kvm_memslots_have_rmaps(kvm)) {
11386                 mutex_unlock(&kvm->slots_arch_lock);
11387                 return 0;
11388         }
11389
11390         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11391                 slots = __kvm_memslots(kvm, i);
11392                 kvm_for_each_memslot(slot, slots) {
11393                         r = memslot_rmap_alloc(slot, slot->npages);
11394                         if (r) {
11395                                 mutex_unlock(&kvm->slots_arch_lock);
11396                                 return r;
11397                         }
11398                 }
11399         }
11400
11401         /*
11402          * Ensure that memslots_have_rmaps becomes true strictly after
11403          * all the rmap pointers are set.
11404          */
11405         smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11406         mutex_unlock(&kvm->slots_arch_lock);
11407         return 0;
11408 }
11409
11410 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11411                                       struct kvm_memory_slot *slot,
11412                                       unsigned long npages)
11413 {
11414         int i, r;
11415
11416         /*
11417          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11418          * old arrays will be freed by __kvm_set_memory_region() if installing
11419          * the new memslot is successful.
11420          */
11421         memset(&slot->arch, 0, sizeof(slot->arch));
11422
11423         if (kvm_memslots_have_rmaps(kvm)) {
11424                 r = memslot_rmap_alloc(slot, npages);
11425                 if (r)
11426                         return r;
11427         }
11428
11429         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11430                 struct kvm_lpage_info *linfo;
11431                 unsigned long ugfn;
11432                 int lpages;
11433                 int level = i + 1;
11434
11435                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
11436                                       slot->base_gfn, level) + 1;
11437
11438                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11439                 if (!linfo)
11440                         goto out_free;
11441
11442                 slot->arch.lpage_info[i - 1] = linfo;
11443
11444                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11445                         linfo[0].disallow_lpage = 1;
11446                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11447                         linfo[lpages - 1].disallow_lpage = 1;
11448                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11449                 /*
11450                  * If the gfn and userspace address are not aligned wrt each
11451                  * other, disable large page support for this slot.
11452                  */
11453                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11454                         unsigned long j;
11455
11456                         for (j = 0; j < lpages; ++j)
11457                                 linfo[j].disallow_lpage = 1;
11458                 }
11459         }
11460
11461         if (kvm_page_track_create_memslot(slot, npages))
11462                 goto out_free;
11463
11464         return 0;
11465
11466 out_free:
11467         memslot_rmap_free(slot);
11468
11469         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11470                 kvfree(slot->arch.lpage_info[i - 1]);
11471                 slot->arch.lpage_info[i - 1] = NULL;
11472         }
11473         return -ENOMEM;
11474 }
11475
11476 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11477 {
11478         struct kvm_vcpu *vcpu;
11479         int i;
11480
11481         /*
11482          * memslots->generation has been incremented.
11483          * mmio generation may have reached its maximum value.
11484          */
11485         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11486
11487         /* Force re-initialization of steal_time cache */
11488         kvm_for_each_vcpu(i, vcpu, kvm)
11489                 kvm_vcpu_kick(vcpu);
11490 }
11491
11492 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11493                                 struct kvm_memory_slot *memslot,
11494                                 const struct kvm_userspace_memory_region *mem,
11495                                 enum kvm_mr_change change)
11496 {
11497         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11498                 return kvm_alloc_memslot_metadata(kvm, memslot,
11499                                                   mem->memory_size >> PAGE_SHIFT);
11500         return 0;
11501 }
11502
11503
11504 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11505 {
11506         struct kvm_arch *ka = &kvm->arch;
11507
11508         if (!kvm_x86_ops.cpu_dirty_log_size)
11509                 return;
11510
11511         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11512             (!enable && --ka->cpu_dirty_logging_count == 0))
11513                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11514
11515         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11516 }
11517
11518 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11519                                      struct kvm_memory_slot *old,
11520                                      const struct kvm_memory_slot *new,
11521                                      enum kvm_mr_change change)
11522 {
11523         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11524
11525         /*
11526          * Update CPU dirty logging if dirty logging is being toggled.  This
11527          * applies to all operations.
11528          */
11529         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11530                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11531
11532         /*
11533          * Nothing more to do for RO slots (which can't be dirtied and can't be
11534          * made writable) or CREATE/MOVE/DELETE of a slot.
11535          *
11536          * For a memslot with dirty logging disabled:
11537          * CREATE:      No dirty mappings will already exist.
11538          * MOVE/DELETE: The old mappings will already have been cleaned up by
11539          *              kvm_arch_flush_shadow_memslot()
11540          *
11541          * For a memslot with dirty logging enabled:
11542          * CREATE:      No shadow pages exist, thus nothing to write-protect
11543          *              and no dirty bits to clear.
11544          * MOVE/DELETE: The old mappings will already have been cleaned up by
11545          *              kvm_arch_flush_shadow_memslot().
11546          */
11547         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11548                 return;
11549
11550         /*
11551          * READONLY and non-flags changes were filtered out above, and the only
11552          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11553          * logging isn't being toggled on or off.
11554          */
11555         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11556                 return;
11557
11558         if (!log_dirty_pages) {
11559                 /*
11560                  * Dirty logging tracks sptes in 4k granularity, meaning that
11561                  * large sptes have to be split.  If live migration succeeds,
11562                  * the guest in the source machine will be destroyed and large
11563                  * sptes will be created in the destination.  However, if the
11564                  * guest continues to run in the source machine (for example if
11565                  * live migration fails), small sptes will remain around and
11566                  * cause bad performance.
11567                  *
11568                  * Scan sptes if dirty logging has been stopped, dropping those
11569                  * which can be collapsed into a single large-page spte.  Later
11570                  * page faults will create the large-page sptes.
11571                  */
11572                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11573         } else {
11574                 /*
11575                  * Initially-all-set does not require write protecting any page,
11576                  * because they're all assumed to be dirty.
11577                  */
11578                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11579                         return;
11580
11581                 if (kvm_x86_ops.cpu_dirty_log_size) {
11582                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11583                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11584                 } else {
11585                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11586                 }
11587         }
11588 }
11589
11590 void kvm_arch_commit_memory_region(struct kvm *kvm,
11591                                 const struct kvm_userspace_memory_region *mem,
11592                                 struct kvm_memory_slot *old,
11593                                 const struct kvm_memory_slot *new,
11594                                 enum kvm_mr_change change)
11595 {
11596         if (!kvm->arch.n_requested_mmu_pages)
11597                 kvm_mmu_change_mmu_pages(kvm,
11598                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11599
11600         kvm_mmu_slot_apply_flags(kvm, old, new, change);
11601
11602         /* Free the arrays associated with the old memslot. */
11603         if (change == KVM_MR_MOVE)
11604                 kvm_arch_free_memslot(kvm, old);
11605 }
11606
11607 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11608 {
11609         kvm_mmu_zap_all(kvm);
11610 }
11611
11612 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11613                                    struct kvm_memory_slot *slot)
11614 {
11615         kvm_page_track_flush_slot(kvm, slot);
11616 }
11617
11618 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11619 {
11620         return (is_guest_mode(vcpu) &&
11621                         kvm_x86_ops.guest_apic_has_interrupt &&
11622                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11623 }
11624
11625 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11626 {
11627         if (!list_empty_careful(&vcpu->async_pf.done))
11628                 return true;
11629
11630         if (kvm_apic_has_events(vcpu))
11631                 return true;
11632
11633         if (vcpu->arch.pv.pv_unhalted)
11634                 return true;
11635
11636         if (vcpu->arch.exception.pending)
11637                 return true;
11638
11639         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11640             (vcpu->arch.nmi_pending &&
11641              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11642                 return true;
11643
11644         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11645             (vcpu->arch.smi_pending &&
11646              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11647                 return true;
11648
11649         if (kvm_arch_interrupt_allowed(vcpu) &&
11650             (kvm_cpu_has_interrupt(vcpu) ||
11651             kvm_guest_apic_has_interrupt(vcpu)))
11652                 return true;
11653
11654         if (kvm_hv_has_stimer_pending(vcpu))
11655                 return true;
11656
11657         if (is_guest_mode(vcpu) &&
11658             kvm_x86_ops.nested_ops->hv_timer_pending &&
11659             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11660                 return true;
11661
11662         return false;
11663 }
11664
11665 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11666 {
11667         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11668 }
11669
11670 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11671 {
11672         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11673                 return true;
11674
11675         return false;
11676 }
11677
11678 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11679 {
11680         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11681                 return true;
11682
11683         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11684                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11685                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11686                 return true;
11687
11688         return kvm_arch_dy_has_pending_interrupt(vcpu);
11689 }
11690
11691 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11692 {
11693         if (vcpu->arch.guest_state_protected)
11694                 return true;
11695
11696         return vcpu->arch.preempted_in_kernel;
11697 }
11698
11699 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11700 {
11701         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11702 }
11703
11704 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11705 {
11706         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11707 }
11708
11709 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11710 {
11711         /* Can't read the RIP when guest state is protected, just return 0 */
11712         if (vcpu->arch.guest_state_protected)
11713                 return 0;
11714
11715         if (is_64_bit_mode(vcpu))
11716                 return kvm_rip_read(vcpu);
11717         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11718                      kvm_rip_read(vcpu));
11719 }
11720 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11721
11722 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11723 {
11724         return kvm_get_linear_rip(vcpu) == linear_rip;
11725 }
11726 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11727
11728 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11729 {
11730         unsigned long rflags;
11731
11732         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11733         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11734                 rflags &= ~X86_EFLAGS_TF;
11735         return rflags;
11736 }
11737 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11738
11739 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11740 {
11741         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11742             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11743                 rflags |= X86_EFLAGS_TF;
11744         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11745 }
11746
11747 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11748 {
11749         __kvm_set_rflags(vcpu, rflags);
11750         kvm_make_request(KVM_REQ_EVENT, vcpu);
11751 }
11752 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11753
11754 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11755 {
11756         int r;
11757
11758         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11759               work->wakeup_all)
11760                 return;
11761
11762         r = kvm_mmu_reload(vcpu);
11763         if (unlikely(r))
11764                 return;
11765
11766         if (!vcpu->arch.mmu->direct_map &&
11767               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11768                 return;
11769
11770         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11771 }
11772
11773 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11774 {
11775         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11776
11777         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11778 }
11779
11780 static inline u32 kvm_async_pf_next_probe(u32 key)
11781 {
11782         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11783 }
11784
11785 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11786 {
11787         u32 key = kvm_async_pf_hash_fn(gfn);
11788
11789         while (vcpu->arch.apf.gfns[key] != ~0)
11790                 key = kvm_async_pf_next_probe(key);
11791
11792         vcpu->arch.apf.gfns[key] = gfn;
11793 }
11794
11795 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11796 {
11797         int i;
11798         u32 key = kvm_async_pf_hash_fn(gfn);
11799
11800         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11801                      (vcpu->arch.apf.gfns[key] != gfn &&
11802                       vcpu->arch.apf.gfns[key] != ~0); i++)
11803                 key = kvm_async_pf_next_probe(key);
11804
11805         return key;
11806 }
11807
11808 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11809 {
11810         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11811 }
11812
11813 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11814 {
11815         u32 i, j, k;
11816
11817         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11818
11819         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11820                 return;
11821
11822         while (true) {
11823                 vcpu->arch.apf.gfns[i] = ~0;
11824                 do {
11825                         j = kvm_async_pf_next_probe(j);
11826                         if (vcpu->arch.apf.gfns[j] == ~0)
11827                                 return;
11828                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11829                         /*
11830                          * k lies cyclically in ]i,j]
11831                          * |    i.k.j |
11832                          * |....j i.k.| or  |.k..j i...|
11833                          */
11834                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11835                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11836                 i = j;
11837         }
11838 }
11839
11840 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11841 {
11842         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11843
11844         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11845                                       sizeof(reason));
11846 }
11847
11848 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11849 {
11850         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11851
11852         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11853                                              &token, offset, sizeof(token));
11854 }
11855
11856 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11857 {
11858         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11859         u32 val;
11860
11861         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11862                                          &val, offset, sizeof(val)))
11863                 return false;
11864
11865         return !val;
11866 }
11867
11868 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11869 {
11870         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11871                 return false;
11872
11873         if (!kvm_pv_async_pf_enabled(vcpu) ||
11874             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11875                 return false;
11876
11877         return true;
11878 }
11879
11880 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11881 {
11882         if (unlikely(!lapic_in_kernel(vcpu) ||
11883                      kvm_event_needs_reinjection(vcpu) ||
11884                      vcpu->arch.exception.pending))
11885                 return false;
11886
11887         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11888                 return false;
11889
11890         /*
11891          * If interrupts are off we cannot even use an artificial
11892          * halt state.
11893          */
11894         return kvm_arch_interrupt_allowed(vcpu);
11895 }
11896
11897 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11898                                      struct kvm_async_pf *work)
11899 {
11900         struct x86_exception fault;
11901
11902         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11903         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11904
11905         if (kvm_can_deliver_async_pf(vcpu) &&
11906             !apf_put_user_notpresent(vcpu)) {
11907                 fault.vector = PF_VECTOR;
11908                 fault.error_code_valid = true;
11909                 fault.error_code = 0;
11910                 fault.nested_page_fault = false;
11911                 fault.address = work->arch.token;
11912                 fault.async_page_fault = true;
11913                 kvm_inject_page_fault(vcpu, &fault);
11914                 return true;
11915         } else {
11916                 /*
11917                  * It is not possible to deliver a paravirtualized asynchronous
11918                  * page fault, but putting the guest in an artificial halt state
11919                  * can be beneficial nevertheless: if an interrupt arrives, we
11920                  * can deliver it timely and perhaps the guest will schedule
11921                  * another process.  When the instruction that triggered a page
11922                  * fault is retried, hopefully the page will be ready in the host.
11923                  */
11924                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11925                 return false;
11926         }
11927 }
11928
11929 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11930                                  struct kvm_async_pf *work)
11931 {
11932         struct kvm_lapic_irq irq = {
11933                 .delivery_mode = APIC_DM_FIXED,
11934                 .vector = vcpu->arch.apf.vec
11935         };
11936
11937         if (work->wakeup_all)
11938                 work->arch.token = ~0; /* broadcast wakeup */
11939         else
11940                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11941         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11942
11943         if ((work->wakeup_all || work->notpresent_injected) &&
11944             kvm_pv_async_pf_enabled(vcpu) &&
11945             !apf_put_user_ready(vcpu, work->arch.token)) {
11946                 vcpu->arch.apf.pageready_pending = true;
11947                 kvm_apic_set_irq(vcpu, &irq, NULL);
11948         }
11949
11950         vcpu->arch.apf.halted = false;
11951         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11952 }
11953
11954 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11955 {
11956         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11957         if (!vcpu->arch.apf.pageready_pending)
11958                 kvm_vcpu_kick(vcpu);
11959 }
11960
11961 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11962 {
11963         if (!kvm_pv_async_pf_enabled(vcpu))
11964                 return true;
11965         else
11966                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11967 }
11968
11969 void kvm_arch_start_assignment(struct kvm *kvm)
11970 {
11971         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11972                 static_call_cond(kvm_x86_start_assignment)(kvm);
11973 }
11974 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11975
11976 void kvm_arch_end_assignment(struct kvm *kvm)
11977 {
11978         atomic_dec(&kvm->arch.assigned_device_count);
11979 }
11980 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11981
11982 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11983 {
11984         return atomic_read(&kvm->arch.assigned_device_count);
11985 }
11986 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11987
11988 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11989 {
11990         atomic_inc(&kvm->arch.noncoherent_dma_count);
11991 }
11992 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11993
11994 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11995 {
11996         atomic_dec(&kvm->arch.noncoherent_dma_count);
11997 }
11998 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11999
12000 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12001 {
12002         return atomic_read(&kvm->arch.noncoherent_dma_count);
12003 }
12004 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12005
12006 bool kvm_arch_has_irq_bypass(void)
12007 {
12008         return true;
12009 }
12010
12011 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12012                                       struct irq_bypass_producer *prod)
12013 {
12014         struct kvm_kernel_irqfd *irqfd =
12015                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12016         int ret;
12017
12018         irqfd->producer = prod;
12019         kvm_arch_start_assignment(irqfd->kvm);
12020         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12021                                          prod->irq, irqfd->gsi, 1);
12022
12023         if (ret)
12024                 kvm_arch_end_assignment(irqfd->kvm);
12025
12026         return ret;
12027 }
12028
12029 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12030                                       struct irq_bypass_producer *prod)
12031 {
12032         int ret;
12033         struct kvm_kernel_irqfd *irqfd =
12034                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12035
12036         WARN_ON(irqfd->producer != prod);
12037         irqfd->producer = NULL;
12038
12039         /*
12040          * When producer of consumer is unregistered, we change back to
12041          * remapped mode, so we can re-use the current implementation
12042          * when the irq is masked/disabled or the consumer side (KVM
12043          * int this case doesn't want to receive the interrupts.
12044         */
12045         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12046         if (ret)
12047                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12048                        " fails: %d\n", irqfd->consumer.token, ret);
12049
12050         kvm_arch_end_assignment(irqfd->kvm);
12051 }
12052
12053 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12054                                    uint32_t guest_irq, bool set)
12055 {
12056         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12057 }
12058
12059 bool kvm_vector_hashing_enabled(void)
12060 {
12061         return vector_hashing;
12062 }
12063
12064 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12065 {
12066         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12067 }
12068 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12069
12070
12071 int kvm_spec_ctrl_test_value(u64 value)
12072 {
12073         /*
12074          * test that setting IA32_SPEC_CTRL to given value
12075          * is allowed by the host processor
12076          */
12077
12078         u64 saved_value;
12079         unsigned long flags;
12080         int ret = 0;
12081
12082         local_irq_save(flags);
12083
12084         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12085                 ret = 1;
12086         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12087                 ret = 1;
12088         else
12089                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12090
12091         local_irq_restore(flags);
12092
12093         return ret;
12094 }
12095 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12096
12097 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12098 {
12099         struct x86_exception fault;
12100         u32 access = error_code &
12101                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12102
12103         if (!(error_code & PFERR_PRESENT_MASK) ||
12104             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12105                 /*
12106                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12107                  * tables probably do not match the TLB.  Just proceed
12108                  * with the error code that the processor gave.
12109                  */
12110                 fault.vector = PF_VECTOR;
12111                 fault.error_code_valid = true;
12112                 fault.error_code = error_code;
12113                 fault.nested_page_fault = false;
12114                 fault.address = gva;
12115         }
12116         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12117 }
12118 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12119
12120 /*
12121  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12122  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12123  * indicates whether exit to userspace is needed.
12124  */
12125 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12126                               struct x86_exception *e)
12127 {
12128         if (r == X86EMUL_PROPAGATE_FAULT) {
12129                 kvm_inject_emulated_page_fault(vcpu, e);
12130                 return 1;
12131         }
12132
12133         /*
12134          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12135          * while handling a VMX instruction KVM could've handled the request
12136          * correctly by exiting to userspace and performing I/O but there
12137          * doesn't seem to be a real use-case behind such requests, just return
12138          * KVM_EXIT_INTERNAL_ERROR for now.
12139          */
12140         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12141         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12142         vcpu->run->internal.ndata = 0;
12143
12144         return 0;
12145 }
12146 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12147
12148 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12149 {
12150         bool pcid_enabled;
12151         struct x86_exception e;
12152         struct {
12153                 u64 pcid;
12154                 u64 gla;
12155         } operand;
12156         int r;
12157
12158         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12159         if (r != X86EMUL_CONTINUE)
12160                 return kvm_handle_memory_failure(vcpu, r, &e);
12161
12162         if (operand.pcid >> 12 != 0) {
12163                 kvm_inject_gp(vcpu, 0);
12164                 return 1;
12165         }
12166
12167         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12168
12169         switch (type) {
12170         case INVPCID_TYPE_INDIV_ADDR:
12171                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12172                     is_noncanonical_address(operand.gla, vcpu)) {
12173                         kvm_inject_gp(vcpu, 0);
12174                         return 1;
12175                 }
12176                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12177                 return kvm_skip_emulated_instruction(vcpu);
12178
12179         case INVPCID_TYPE_SINGLE_CTXT:
12180                 if (!pcid_enabled && (operand.pcid != 0)) {
12181                         kvm_inject_gp(vcpu, 0);
12182                         return 1;
12183                 }
12184
12185                 kvm_invalidate_pcid(vcpu, operand.pcid);
12186                 return kvm_skip_emulated_instruction(vcpu);
12187
12188         case INVPCID_TYPE_ALL_NON_GLOBAL:
12189                 /*
12190                  * Currently, KVM doesn't mark global entries in the shadow
12191                  * page tables, so a non-global flush just degenerates to a
12192                  * global flush. If needed, we could optimize this later by
12193                  * keeping track of global entries in shadow page tables.
12194                  */
12195
12196                 fallthrough;
12197         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12198                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12199                 return kvm_skip_emulated_instruction(vcpu);
12200
12201         default:
12202                 BUG(); /* We have already checked above that type <= 3 */
12203         }
12204 }
12205 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12206
12207 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12208 {
12209         struct kvm_run *run = vcpu->run;
12210         struct kvm_mmio_fragment *frag;
12211         unsigned int len;
12212
12213         BUG_ON(!vcpu->mmio_needed);
12214
12215         /* Complete previous fragment */
12216         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12217         len = min(8u, frag->len);
12218         if (!vcpu->mmio_is_write)
12219                 memcpy(frag->data, run->mmio.data, len);
12220
12221         if (frag->len <= 8) {
12222                 /* Switch to the next fragment. */
12223                 frag++;
12224                 vcpu->mmio_cur_fragment++;
12225         } else {
12226                 /* Go forward to the next mmio piece. */
12227                 frag->data += len;
12228                 frag->gpa += len;
12229                 frag->len -= len;
12230         }
12231
12232         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12233                 vcpu->mmio_needed = 0;
12234
12235                 // VMG change, at this point, we're always done
12236                 // RIP has already been advanced
12237                 return 1;
12238         }
12239
12240         // More MMIO is needed
12241         run->mmio.phys_addr = frag->gpa;
12242         run->mmio.len = min(8u, frag->len);
12243         run->mmio.is_write = vcpu->mmio_is_write;
12244         if (run->mmio.is_write)
12245                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12246         run->exit_reason = KVM_EXIT_MMIO;
12247
12248         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12249
12250         return 0;
12251 }
12252
12253 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12254                           void *data)
12255 {
12256         int handled;
12257         struct kvm_mmio_fragment *frag;
12258
12259         if (!data)
12260                 return -EINVAL;
12261
12262         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12263         if (handled == bytes)
12264                 return 1;
12265
12266         bytes -= handled;
12267         gpa += handled;
12268         data += handled;
12269
12270         /*TODO: Check if need to increment number of frags */
12271         frag = vcpu->mmio_fragments;
12272         vcpu->mmio_nr_fragments = 1;
12273         frag->len = bytes;
12274         frag->gpa = gpa;
12275         frag->data = data;
12276
12277         vcpu->mmio_needed = 1;
12278         vcpu->mmio_cur_fragment = 0;
12279
12280         vcpu->run->mmio.phys_addr = gpa;
12281         vcpu->run->mmio.len = min(8u, frag->len);
12282         vcpu->run->mmio.is_write = 1;
12283         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12284         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12285
12286         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12287
12288         return 0;
12289 }
12290 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12291
12292 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12293                          void *data)
12294 {
12295         int handled;
12296         struct kvm_mmio_fragment *frag;
12297
12298         if (!data)
12299                 return -EINVAL;
12300
12301         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12302         if (handled == bytes)
12303                 return 1;
12304
12305         bytes -= handled;
12306         gpa += handled;
12307         data += handled;
12308
12309         /*TODO: Check if need to increment number of frags */
12310         frag = vcpu->mmio_fragments;
12311         vcpu->mmio_nr_fragments = 1;
12312         frag->len = bytes;
12313         frag->gpa = gpa;
12314         frag->data = data;
12315
12316         vcpu->mmio_needed = 1;
12317         vcpu->mmio_cur_fragment = 0;
12318
12319         vcpu->run->mmio.phys_addr = gpa;
12320         vcpu->run->mmio.len = min(8u, frag->len);
12321         vcpu->run->mmio.is_write = 0;
12322         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12323
12324         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12325
12326         return 0;
12327 }
12328 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12329
12330 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12331 {
12332         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12333                vcpu->arch.pio.count * vcpu->arch.pio.size);
12334         vcpu->arch.pio.count = 0;
12335
12336         return 1;
12337 }
12338
12339 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12340                            unsigned int port, void *data,  unsigned int count)
12341 {
12342         int ret;
12343
12344         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12345                                         data, count);
12346         if (ret)
12347                 return ret;
12348
12349         vcpu->arch.pio.count = 0;
12350
12351         return 0;
12352 }
12353
12354 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12355                           unsigned int port, void *data, unsigned int count)
12356 {
12357         int ret;
12358
12359         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12360                                        data, count);
12361         if (ret) {
12362                 vcpu->arch.pio.count = 0;
12363         } else {
12364                 vcpu->arch.guest_ins_data = data;
12365                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12366         }
12367
12368         return 0;
12369 }
12370
12371 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12372                          unsigned int port, void *data,  unsigned int count,
12373                          int in)
12374 {
12375         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12376                   : kvm_sev_es_outs(vcpu, size, port, data, count);
12377 }
12378 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12379
12380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);