Merge tag 'drm-fixes-2021-05-15' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <asm/sgx.h>
79 #include <clocksource/hyperv_timer.h>
80
81 #define CREATE_TRACE_POINTS
82 #include "trace.h"
83
84 #define MAX_IO_MSRS 256
85 #define KVM_MAX_MCE_BANKS 32
86 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
87 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88
89 #define emul_to_vcpu(ctxt) \
90         ((struct kvm_vcpu *)(ctxt)->vcpu)
91
92 /* EFER defaults:
93  * - enable syscall per default because its emulated by KVM
94  * - enable LME and LMA per default on 64 bit KVM
95  */
96 #ifdef CONFIG_X86_64
97 static
98 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 #else
100 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
101 #endif
102
103 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104
105 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
106                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107
108 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
109 static void process_nmi(struct kvm_vcpu *vcpu);
110 static void process_smi(struct kvm_vcpu *vcpu);
111 static void enter_smm(struct kvm_vcpu *vcpu);
112 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
113 static void store_regs(struct kvm_vcpu *vcpu);
114 static int sync_regs(struct kvm_vcpu *vcpu);
115
116 struct kvm_x86_ops kvm_x86_ops __read_mostly;
117 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118
119 #define KVM_X86_OP(func)                                             \
120         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
121                                 *(((struct kvm_x86_ops *)0)->func));
122 #define KVM_X86_OP_NULL KVM_X86_OP
123 #include <asm/kvm-x86-ops.h>
124 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127
128 static bool __read_mostly ignore_msrs = 0;
129 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130
131 bool __read_mostly report_ignored_msrs = true;
132 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
133 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134
135 unsigned int min_timer_period_us = 200;
136 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly kvmclock_periodic_sync = true;
139 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140
141 bool __read_mostly kvm_has_tsc_control;
142 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
143 u32  __read_mostly kvm_max_guest_tsc_khz;
144 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
145 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
146 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
147 u64  __read_mostly kvm_max_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
149 u64 __read_mostly kvm_default_tsc_scaling_ratio;
150 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
151 bool __read_mostly kvm_has_bus_lock_exit;
152 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153
154 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
155 static u32 __read_mostly tsc_tolerance_ppm = 250;
156 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
157
158 /*
159  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
160  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
161  * advancement entirely.  Any other value is used as-is and disables adaptive
162  * tuning, i.e. allows privileged userspace to set an exact advancement time.
163  */
164 static int __read_mostly lapic_timer_advance_ns = -1;
165 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, S_IRUGO);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, S_IRUGO);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 static bool __read_mostly force_emulation_prefix = false;
175 module_param(force_emulation_prefix, bool, S_IRUGO);
176
177 int __read_mostly pi_inject_timer = -1;
178 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
179
180 /*
181  * Restoring the host value for MSRs that are only consumed when running in
182  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
183  * returns to userspace, i.e. the kernel can run with the guest's value.
184  */
185 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186
187 struct kvm_user_return_msrs {
188         struct user_return_notifier urn;
189         bool registered;
190         struct kvm_user_return_msr_values {
191                 u64 host;
192                 u64 curr;
193         } values[KVM_MAX_NR_USER_RETURN_MSRS];
194 };
195
196 u32 __read_mostly kvm_nr_uret_msrs;
197 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
198 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
199 static struct kvm_user_return_msrs __percpu *user_return_msrs;
200
201 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
202                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
203                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
204                                 | XFEATURE_MASK_PKRU)
205
206 u64 __read_mostly host_efer;
207 EXPORT_SYMBOL_GPL(host_efer);
208
209 bool __read_mostly allow_smaller_maxphyaddr = 0;
210 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
211
212 u64 __read_mostly host_xss;
213 EXPORT_SYMBOL_GPL(host_xss);
214 u64 __read_mostly supported_xss;
215 EXPORT_SYMBOL_GPL(supported_xss);
216
217 struct kvm_stats_debugfs_item debugfs_entries[] = {
218         VCPU_STAT("pf_fixed", pf_fixed),
219         VCPU_STAT("pf_guest", pf_guest),
220         VCPU_STAT("tlb_flush", tlb_flush),
221         VCPU_STAT("invlpg", invlpg),
222         VCPU_STAT("exits", exits),
223         VCPU_STAT("io_exits", io_exits),
224         VCPU_STAT("mmio_exits", mmio_exits),
225         VCPU_STAT("signal_exits", signal_exits),
226         VCPU_STAT("irq_window", irq_window_exits),
227         VCPU_STAT("nmi_window", nmi_window_exits),
228         VCPU_STAT("halt_exits", halt_exits),
229         VCPU_STAT("halt_successful_poll", halt_successful_poll),
230         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
231         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
232         VCPU_STAT("halt_wakeup", halt_wakeup),
233         VCPU_STAT("hypercalls", hypercalls),
234         VCPU_STAT("request_irq", request_irq_exits),
235         VCPU_STAT("irq_exits", irq_exits),
236         VCPU_STAT("host_state_reload", host_state_reload),
237         VCPU_STAT("fpu_reload", fpu_reload),
238         VCPU_STAT("insn_emulation", insn_emulation),
239         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
240         VCPU_STAT("irq_injections", irq_injections),
241         VCPU_STAT("nmi_injections", nmi_injections),
242         VCPU_STAT("req_event", req_event),
243         VCPU_STAT("l1d_flush", l1d_flush),
244         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
245         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
246         VCPU_STAT("nested_run", nested_run),
247         VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
248         VCPU_STAT("directed_yield_successful", directed_yield_successful),
249         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
250         VM_STAT("mmu_pte_write", mmu_pte_write),
251         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
252         VM_STAT("mmu_flooded", mmu_flooded),
253         VM_STAT("mmu_recycled", mmu_recycled),
254         VM_STAT("mmu_cache_miss", mmu_cache_miss),
255         VM_STAT("mmu_unsync", mmu_unsync),
256         VM_STAT("remote_tlb_flush", remote_tlb_flush),
257         VM_STAT("largepages", lpages, .mode = 0444),
258         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
259         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
260         { NULL }
261 };
262
263 u64 __read_mostly host_xcr0;
264 u64 __read_mostly supported_xcr0;
265 EXPORT_SYMBOL_GPL(supported_xcr0);
266
267 static struct kmem_cache *x86_fpu_cache;
268
269 static struct kmem_cache *x86_emulator_cache;
270
271 /*
272  * When called, it means the previous get/set msr reached an invalid msr.
273  * Return true if we want to ignore/silent this failed msr access.
274  */
275 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
276 {
277         const char *op = write ? "wrmsr" : "rdmsr";
278
279         if (ignore_msrs) {
280                 if (report_ignored_msrs)
281                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282                                       op, msr, data);
283                 /* Mask the error */
284                 return true;
285         } else {
286                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287                                       op, msr, data);
288                 return false;
289         }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295         unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297         return kmem_cache_create_usercopy("x86_emulator", size,
298                                           __alignof__(struct x86_emulate_ctxt),
299                                           SLAB_ACCOUNT, useroffset,
300                                           size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307         int i;
308         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309                 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314         unsigned slot;
315         struct kvm_user_return_msrs *msrs
316                 = container_of(urn, struct kvm_user_return_msrs, urn);
317         struct kvm_user_return_msr_values *values;
318         unsigned long flags;
319
320         /*
321          * Disabling irqs at this point since the following code could be
322          * interrupted and executed through kvm_arch_hardware_disable()
323          */
324         local_irq_save(flags);
325         if (msrs->registered) {
326                 msrs->registered = false;
327                 user_return_notifier_unregister(urn);
328         }
329         local_irq_restore(flags);
330         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
331                 values = &msrs->values[slot];
332                 if (values->host != values->curr) {
333                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
334                         values->curr = values->host;
335                 }
336         }
337 }
338
339 static int kvm_probe_user_return_msr(u32 msr)
340 {
341         u64 val;
342         int ret;
343
344         preempt_disable();
345         ret = rdmsrl_safe(msr, &val);
346         if (ret)
347                 goto out;
348         ret = wrmsrl_safe(msr, val);
349 out:
350         preempt_enable();
351         return ret;
352 }
353
354 int kvm_add_user_return_msr(u32 msr)
355 {
356         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
357
358         if (kvm_probe_user_return_msr(msr))
359                 return -1;
360
361         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
362         return kvm_nr_uret_msrs++;
363 }
364 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
365
366 int kvm_find_user_return_msr(u32 msr)
367 {
368         int i;
369
370         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
371                 if (kvm_uret_msrs_list[i] == msr)
372                         return i;
373         }
374         return -1;
375 }
376 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
377
378 static void kvm_user_return_msr_cpu_online(void)
379 {
380         unsigned int cpu = smp_processor_id();
381         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
382         u64 value;
383         int i;
384
385         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
386                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
387                 msrs->values[i].host = value;
388                 msrs->values[i].curr = value;
389         }
390 }
391
392 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
393 {
394         unsigned int cpu = smp_processor_id();
395         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
396         int err;
397
398         value = (value & mask) | (msrs->values[slot].host & ~mask);
399         if (value == msrs->values[slot].curr)
400                 return 0;
401         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
402         if (err)
403                 return 1;
404
405         msrs->values[slot].curr = value;
406         if (!msrs->registered) {
407                 msrs->urn.on_user_return = kvm_on_user_return;
408                 user_return_notifier_register(&msrs->urn);
409                 msrs->registered = true;
410         }
411         return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
414
415 static void drop_user_return_notifiers(void)
416 {
417         unsigned int cpu = smp_processor_id();
418         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
419
420         if (msrs->registered)
421                 kvm_on_user_return(&msrs->urn);
422 }
423
424 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
425 {
426         return vcpu->arch.apic_base;
427 }
428 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
429
430 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
431 {
432         return kvm_apic_mode(kvm_get_apic_base(vcpu));
433 }
434 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
435
436 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
437 {
438         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
439         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
440         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
441                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
442
443         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
444                 return 1;
445         if (!msr_info->host_initiated) {
446                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
447                         return 1;
448                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
449                         return 1;
450         }
451
452         kvm_lapic_set_base(vcpu, msr_info->data);
453         kvm_recalculate_apic_map(vcpu->kvm);
454         return 0;
455 }
456 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
457
458 asmlinkage __visible noinstr void kvm_spurious_fault(void)
459 {
460         /* Fault while not rebooting.  We want the trace. */
461         BUG_ON(!kvm_rebooting);
462 }
463 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
464
465 #define EXCPT_BENIGN            0
466 #define EXCPT_CONTRIBUTORY      1
467 #define EXCPT_PF                2
468
469 static int exception_class(int vector)
470 {
471         switch (vector) {
472         case PF_VECTOR:
473                 return EXCPT_PF;
474         case DE_VECTOR:
475         case TS_VECTOR:
476         case NP_VECTOR:
477         case SS_VECTOR:
478         case GP_VECTOR:
479                 return EXCPT_CONTRIBUTORY;
480         default:
481                 break;
482         }
483         return EXCPT_BENIGN;
484 }
485
486 #define EXCPT_FAULT             0
487 #define EXCPT_TRAP              1
488 #define EXCPT_ABORT             2
489 #define EXCPT_INTERRUPT         3
490
491 static int exception_type(int vector)
492 {
493         unsigned int mask;
494
495         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
496                 return EXCPT_INTERRUPT;
497
498         mask = 1 << vector;
499
500         /* #DB is trap, as instruction watchpoints are handled elsewhere */
501         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
502                 return EXCPT_TRAP;
503
504         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
505                 return EXCPT_ABORT;
506
507         /* Reserved exceptions will result in fault */
508         return EXCPT_FAULT;
509 }
510
511 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
512 {
513         unsigned nr = vcpu->arch.exception.nr;
514         bool has_payload = vcpu->arch.exception.has_payload;
515         unsigned long payload = vcpu->arch.exception.payload;
516
517         if (!has_payload)
518                 return;
519
520         switch (nr) {
521         case DB_VECTOR:
522                 /*
523                  * "Certain debug exceptions may clear bit 0-3.  The
524                  * remaining contents of the DR6 register are never
525                  * cleared by the processor".
526                  */
527                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
528                 /*
529                  * In order to reflect the #DB exception payload in guest
530                  * dr6, three components need to be considered: active low
531                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
532                  * DR6_BS and DR6_BT)
533                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
534                  * In the target guest dr6:
535                  * FIXED_1 bits should always be set.
536                  * Active low bits should be cleared if 1-setting in payload.
537                  * Active high bits should be set if 1-setting in payload.
538                  *
539                  * Note, the payload is compatible with the pending debug
540                  * exceptions/exit qualification under VMX, that active_low bits
541                  * are active high in payload.
542                  * So they need to be flipped for DR6.
543                  */
544                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
545                 vcpu->arch.dr6 |= payload;
546                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
547
548                 /*
549                  * The #DB payload is defined as compatible with the 'pending
550                  * debug exceptions' field under VMX, not DR6. While bit 12 is
551                  * defined in the 'pending debug exceptions' field (enabled
552                  * breakpoint), it is reserved and must be zero in DR6.
553                  */
554                 vcpu->arch.dr6 &= ~BIT(12);
555                 break;
556         case PF_VECTOR:
557                 vcpu->arch.cr2 = payload;
558                 break;
559         }
560
561         vcpu->arch.exception.has_payload = false;
562         vcpu->arch.exception.payload = 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
565
566 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
567                 unsigned nr, bool has_error, u32 error_code,
568                 bool has_payload, unsigned long payload, bool reinject)
569 {
570         u32 prev_nr;
571         int class1, class2;
572
573         kvm_make_request(KVM_REQ_EVENT, vcpu);
574
575         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
576         queue:
577                 if (reinject) {
578                         /*
579                          * On vmentry, vcpu->arch.exception.pending is only
580                          * true if an event injection was blocked by
581                          * nested_run_pending.  In that case, however,
582                          * vcpu_enter_guest requests an immediate exit,
583                          * and the guest shouldn't proceed far enough to
584                          * need reinjection.
585                          */
586                         WARN_ON_ONCE(vcpu->arch.exception.pending);
587                         vcpu->arch.exception.injected = true;
588                         if (WARN_ON_ONCE(has_payload)) {
589                                 /*
590                                  * A reinjected event has already
591                                  * delivered its payload.
592                                  */
593                                 has_payload = false;
594                                 payload = 0;
595                         }
596                 } else {
597                         vcpu->arch.exception.pending = true;
598                         vcpu->arch.exception.injected = false;
599                 }
600                 vcpu->arch.exception.has_error_code = has_error;
601                 vcpu->arch.exception.nr = nr;
602                 vcpu->arch.exception.error_code = error_code;
603                 vcpu->arch.exception.has_payload = has_payload;
604                 vcpu->arch.exception.payload = payload;
605                 if (!is_guest_mode(vcpu))
606                         kvm_deliver_exception_payload(vcpu);
607                 return;
608         }
609
610         /* to check exception */
611         prev_nr = vcpu->arch.exception.nr;
612         if (prev_nr == DF_VECTOR) {
613                 /* triple fault -> shutdown */
614                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
615                 return;
616         }
617         class1 = exception_class(prev_nr);
618         class2 = exception_class(nr);
619         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
620                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
621                 /*
622                  * Generate double fault per SDM Table 5-5.  Set
623                  * exception.pending = true so that the double fault
624                  * can trigger a nested vmexit.
625                  */
626                 vcpu->arch.exception.pending = true;
627                 vcpu->arch.exception.injected = false;
628                 vcpu->arch.exception.has_error_code = true;
629                 vcpu->arch.exception.nr = DF_VECTOR;
630                 vcpu->arch.exception.error_code = 0;
631                 vcpu->arch.exception.has_payload = false;
632                 vcpu->arch.exception.payload = 0;
633         } else
634                 /* replace previous exception with a new one in a hope
635                    that instruction re-execution will regenerate lost
636                    exception */
637                 goto queue;
638 }
639
640 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
641 {
642         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
643 }
644 EXPORT_SYMBOL_GPL(kvm_queue_exception);
645
646 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
647 {
648         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
649 }
650 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
651
652 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
653                            unsigned long payload)
654 {
655         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
656 }
657 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
658
659 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
660                                     u32 error_code, unsigned long payload)
661 {
662         kvm_multiple_exception(vcpu, nr, true, error_code,
663                                true, payload, false);
664 }
665
666 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
667 {
668         if (err)
669                 kvm_inject_gp(vcpu, 0);
670         else
671                 return kvm_skip_emulated_instruction(vcpu);
672
673         return 1;
674 }
675 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
676
677 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
678 {
679         ++vcpu->stat.pf_guest;
680         vcpu->arch.exception.nested_apf =
681                 is_guest_mode(vcpu) && fault->async_page_fault;
682         if (vcpu->arch.exception.nested_apf) {
683                 vcpu->arch.apf.nested_apf_token = fault->address;
684                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
685         } else {
686                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
687                                         fault->address);
688         }
689 }
690 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
691
692 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
693                                     struct x86_exception *fault)
694 {
695         struct kvm_mmu *fault_mmu;
696         WARN_ON_ONCE(fault->vector != PF_VECTOR);
697
698         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
699                                                vcpu->arch.walk_mmu;
700
701         /*
702          * Invalidate the TLB entry for the faulting address, if it exists,
703          * else the access will fault indefinitely (and to emulate hardware).
704          */
705         if ((fault->error_code & PFERR_PRESENT_MASK) &&
706             !(fault->error_code & PFERR_RSVD_MASK))
707                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
708                                        fault_mmu->root_hpa);
709
710         fault_mmu->inject_page_fault(vcpu, fault);
711         return fault->nested_page_fault;
712 }
713 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
714
715 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
716 {
717         atomic_inc(&vcpu->arch.nmi_queued);
718         kvm_make_request(KVM_REQ_NMI, vcpu);
719 }
720 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
721
722 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
723 {
724         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
725 }
726 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
727
728 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
729 {
730         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
731 }
732 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
733
734 /*
735  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
736  * a #GP and return false.
737  */
738 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
739 {
740         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
741                 return true;
742         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
743         return false;
744 }
745 EXPORT_SYMBOL_GPL(kvm_require_cpl);
746
747 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
748 {
749         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750                 return true;
751
752         kvm_queue_exception(vcpu, UD_VECTOR);
753         return false;
754 }
755 EXPORT_SYMBOL_GPL(kvm_require_dr);
756
757 /*
758  * This function will be used to read from the physical memory of the currently
759  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
760  * can read from guest physical or from the guest's guest physical memory.
761  */
762 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
763                             gfn_t ngfn, void *data, int offset, int len,
764                             u32 access)
765 {
766         struct x86_exception exception;
767         gfn_t real_gfn;
768         gpa_t ngpa;
769
770         ngpa     = gfn_to_gpa(ngfn);
771         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
772         if (real_gfn == UNMAPPED_GVA)
773                 return -EFAULT;
774
775         real_gfn = gpa_to_gfn(real_gfn);
776
777         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
778 }
779 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
780
781 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
782                                void *data, int offset, int len, u32 access)
783 {
784         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
785                                        data, offset, len, access);
786 }
787
788 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
789 {
790         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
791 }
792
793 /*
794  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
795  */
796 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
797 {
798         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
799         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
800         int i;
801         int ret;
802         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
803
804         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
805                                       offset * sizeof(u64), sizeof(pdpte),
806                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
807         if (ret < 0) {
808                 ret = 0;
809                 goto out;
810         }
811         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812                 if ((pdpte[i] & PT_PRESENT_MASK) &&
813                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
814                         ret = 0;
815                         goto out;
816                 }
817         }
818         ret = 1;
819
820         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
821         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
822
823 out:
824
825         return ret;
826 }
827 EXPORT_SYMBOL_GPL(load_pdptrs);
828
829 bool pdptrs_changed(struct kvm_vcpu *vcpu)
830 {
831         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
832         int offset;
833         gfn_t gfn;
834         int r;
835
836         if (!is_pae_paging(vcpu))
837                 return false;
838
839         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
840                 return true;
841
842         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
843         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
844         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
845                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
846         if (r < 0)
847                 return true;
848
849         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
850 }
851 EXPORT_SYMBOL_GPL(pdptrs_changed);
852
853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
854 {
855         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
856
857         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
858                 kvm_clear_async_pf_completion_queue(vcpu);
859                 kvm_async_pf_hash_reset(vcpu);
860         }
861
862         if ((cr0 ^ old_cr0) & update_bits)
863                 kvm_mmu_reset_context(vcpu);
864
865         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
866             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
867             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
868                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
869 }
870 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
871
872 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
873 {
874         unsigned long old_cr0 = kvm_read_cr0(vcpu);
875         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
876
877         cr0 |= X86_CR0_ET;
878
879 #ifdef CONFIG_X86_64
880         if (cr0 & 0xffffffff00000000UL)
881                 return 1;
882 #endif
883
884         cr0 &= ~CR0_RESERVED_BITS;
885
886         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887                 return 1;
888
889         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
890                 return 1;
891
892 #ifdef CONFIG_X86_64
893         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
894             (cr0 & X86_CR0_PG)) {
895                 int cs_db, cs_l;
896
897                 if (!is_pae(vcpu))
898                         return 1;
899                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
900                 if (cs_l)
901                         return 1;
902         }
903 #endif
904         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
905             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
906             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
907                 return 1;
908
909         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
910                 return 1;
911
912         static_call(kvm_x86_set_cr0)(vcpu, cr0);
913
914         kvm_post_set_cr0(vcpu, old_cr0, cr0);
915
916         return 0;
917 }
918 EXPORT_SYMBOL_GPL(kvm_set_cr0);
919
920 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
921 {
922         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
923 }
924 EXPORT_SYMBOL_GPL(kvm_lmsw);
925
926 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
927 {
928         if (vcpu->arch.guest_state_protected)
929                 return;
930
931         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
932
933                 if (vcpu->arch.xcr0 != host_xcr0)
934                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
935
936                 if (vcpu->arch.xsaves_enabled &&
937                     vcpu->arch.ia32_xss != host_xss)
938                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
939         }
940
941         if (static_cpu_has(X86_FEATURE_PKU) &&
942             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
943              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
944             vcpu->arch.pkru != vcpu->arch.host_pkru)
945                 __write_pkru(vcpu->arch.pkru);
946 }
947 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
948
949 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
950 {
951         if (vcpu->arch.guest_state_protected)
952                 return;
953
954         if (static_cpu_has(X86_FEATURE_PKU) &&
955             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
956              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
957                 vcpu->arch.pkru = rdpkru();
958                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
959                         __write_pkru(vcpu->arch.host_pkru);
960         }
961
962         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
963
964                 if (vcpu->arch.xcr0 != host_xcr0)
965                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
966
967                 if (vcpu->arch.xsaves_enabled &&
968                     vcpu->arch.ia32_xss != host_xss)
969                         wrmsrl(MSR_IA32_XSS, host_xss);
970         }
971
972 }
973 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
974
975 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
976 {
977         u64 xcr0 = xcr;
978         u64 old_xcr0 = vcpu->arch.xcr0;
979         u64 valid_bits;
980
981         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
982         if (index != XCR_XFEATURE_ENABLED_MASK)
983                 return 1;
984         if (!(xcr0 & XFEATURE_MASK_FP))
985                 return 1;
986         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
987                 return 1;
988
989         /*
990          * Do not allow the guest to set bits that we do not support
991          * saving.  However, xcr0 bit 0 is always set, even if the
992          * emulated CPU does not support XSAVE (see fx_init).
993          */
994         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
995         if (xcr0 & ~valid_bits)
996                 return 1;
997
998         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
999             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1000                 return 1;
1001
1002         if (xcr0 & XFEATURE_MASK_AVX512) {
1003                 if (!(xcr0 & XFEATURE_MASK_YMM))
1004                         return 1;
1005                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1006                         return 1;
1007         }
1008         vcpu->arch.xcr0 = xcr0;
1009
1010         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1011                 kvm_update_cpuid_runtime(vcpu);
1012         return 0;
1013 }
1014
1015 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1016 {
1017         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1018             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1019                 kvm_inject_gp(vcpu, 0);
1020                 return 1;
1021         }
1022
1023         return kvm_skip_emulated_instruction(vcpu);
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1026
1027 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1028 {
1029         if (cr4 & cr4_reserved_bits)
1030                 return false;
1031
1032         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1033                 return false;
1034
1035         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1038
1039 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1040 {
1041         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1042                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1043
1044         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1045             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1046                 kvm_mmu_reset_context(vcpu);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1049
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1051 {
1052         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1054                                    X86_CR4_SMEP;
1055
1056         if (!kvm_is_valid_cr4(vcpu, cr4))
1057                 return 1;
1058
1059         if (is_long_mode(vcpu)) {
1060                 if (!(cr4 & X86_CR4_PAE))
1061                         return 1;
1062                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1063                         return 1;
1064         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065                    && ((cr4 ^ old_cr4) & pdptr_bits)
1066                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067                                    kvm_read_cr3(vcpu)))
1068                 return 1;
1069
1070         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1072                         return 1;
1073
1074                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1076                         return 1;
1077         }
1078
1079         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1080
1081         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1082
1083         return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1086
1087 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1088 {
1089         bool skip_tlb_flush = false;
1090 #ifdef CONFIG_X86_64
1091         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1092
1093         if (pcid_enabled) {
1094                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1095                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1096         }
1097 #endif
1098
1099         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1100                 if (!skip_tlb_flush) {
1101                         kvm_mmu_sync_roots(vcpu);
1102                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1103                 }
1104                 return 0;
1105         }
1106
1107         /*
1108          * Do not condition the GPA check on long mode, this helper is used to
1109          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1110          * the current vCPU mode is accurate.
1111          */
1112         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1113                 return 1;
1114
1115         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1116                 return 1;
1117
1118         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1119         vcpu->arch.cr3 = cr3;
1120         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1121
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1125
1126 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1127 {
1128         if (cr8 & CR8_RESERVED_BITS)
1129                 return 1;
1130         if (lapic_in_kernel(vcpu))
1131                 kvm_lapic_set_tpr(vcpu, cr8);
1132         else
1133                 vcpu->arch.cr8 = cr8;
1134         return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1137
1138 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1139 {
1140         if (lapic_in_kernel(vcpu))
1141                 return kvm_lapic_get_cr8(vcpu);
1142         else
1143                 return vcpu->arch.cr8;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1146
1147 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1148 {
1149         int i;
1150
1151         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1152                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1153                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1154                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1155         }
1156 }
1157
1158 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1159 {
1160         unsigned long dr7;
1161
1162         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1163                 dr7 = vcpu->arch.guest_debug_dr7;
1164         else
1165                 dr7 = vcpu->arch.dr7;
1166         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1167         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1168         if (dr7 & DR7_BP_EN_MASK)
1169                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1172
1173 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1174 {
1175         u64 fixed = DR6_FIXED_1;
1176
1177         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1178                 fixed |= DR6_RTM;
1179
1180         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1181                 fixed |= DR6_BUS_LOCK;
1182         return fixed;
1183 }
1184
1185 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1186 {
1187         size_t size = ARRAY_SIZE(vcpu->arch.db);
1188
1189         switch (dr) {
1190         case 0 ... 3:
1191                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1192                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1193                         vcpu->arch.eff_db[dr] = val;
1194                 break;
1195         case 4:
1196         case 6:
1197                 if (!kvm_dr6_valid(val))
1198                         return 1; /* #GP */
1199                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1200                 break;
1201         case 5:
1202         default: /* 7 */
1203                 if (!kvm_dr7_valid(val))
1204                         return 1; /* #GP */
1205                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1206                 kvm_update_dr7(vcpu);
1207                 break;
1208         }
1209
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_dr);
1213
1214 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1215 {
1216         size_t size = ARRAY_SIZE(vcpu->arch.db);
1217
1218         switch (dr) {
1219         case 0 ... 3:
1220                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1221                 break;
1222         case 4:
1223         case 6:
1224                 *val = vcpu->arch.dr6;
1225                 break;
1226         case 5:
1227         default: /* 7 */
1228                 *val = vcpu->arch.dr7;
1229                 break;
1230         }
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_dr);
1233
1234 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1235 {
1236         u32 ecx = kvm_rcx_read(vcpu);
1237         u64 data;
1238
1239         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1240                 kvm_inject_gp(vcpu, 0);
1241                 return 1;
1242         }
1243
1244         kvm_rax_write(vcpu, (u32)data);
1245         kvm_rdx_write(vcpu, data >> 32);
1246         return kvm_skip_emulated_instruction(vcpu);
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1249
1250 /*
1251  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1252  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1253  *
1254  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1255  * extract the supported MSRs from the related const lists.
1256  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1257  * capabilities of the host cpu. This capabilities test skips MSRs that are
1258  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1259  * may depend on host virtualization features rather than host cpu features.
1260  */
1261
1262 static const u32 msrs_to_save_all[] = {
1263         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1264         MSR_STAR,
1265 #ifdef CONFIG_X86_64
1266         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1267 #endif
1268         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1269         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1270         MSR_IA32_SPEC_CTRL,
1271         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1272         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1273         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1274         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1275         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1276         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1277         MSR_IA32_UMWAIT_CONTROL,
1278
1279         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1280         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1281         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1282         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1283         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1284         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1285         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1286         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1287         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1288         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1289         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1290         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1291         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1292         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1293         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1294         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1295         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1296         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1297         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1298         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1299         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1300         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1301 };
1302
1303 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1304 static unsigned num_msrs_to_save;
1305
1306 static const u32 emulated_msrs_all[] = {
1307         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1308         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1309         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1310         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1311         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1312         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1313         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1314         HV_X64_MSR_RESET,
1315         HV_X64_MSR_VP_INDEX,
1316         HV_X64_MSR_VP_RUNTIME,
1317         HV_X64_MSR_SCONTROL,
1318         HV_X64_MSR_STIMER0_CONFIG,
1319         HV_X64_MSR_VP_ASSIST_PAGE,
1320         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1321         HV_X64_MSR_TSC_EMULATION_STATUS,
1322         HV_X64_MSR_SYNDBG_OPTIONS,
1323         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1324         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1325         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1326
1327         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1328         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1329
1330         MSR_IA32_TSC_ADJUST,
1331         MSR_IA32_TSC_DEADLINE,
1332         MSR_IA32_ARCH_CAPABILITIES,
1333         MSR_IA32_PERF_CAPABILITIES,
1334         MSR_IA32_MISC_ENABLE,
1335         MSR_IA32_MCG_STATUS,
1336         MSR_IA32_MCG_CTL,
1337         MSR_IA32_MCG_EXT_CTL,
1338         MSR_IA32_SMBASE,
1339         MSR_SMI_COUNT,
1340         MSR_PLATFORM_INFO,
1341         MSR_MISC_FEATURES_ENABLES,
1342         MSR_AMD64_VIRT_SPEC_CTRL,
1343         MSR_IA32_POWER_CTL,
1344         MSR_IA32_UCODE_REV,
1345
1346         /*
1347          * The following list leaves out MSRs whose values are determined
1348          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1349          * We always support the "true" VMX control MSRs, even if the host
1350          * processor does not, so I am putting these registers here rather
1351          * than in msrs_to_save_all.
1352          */
1353         MSR_IA32_VMX_BASIC,
1354         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1355         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1356         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1357         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1358         MSR_IA32_VMX_MISC,
1359         MSR_IA32_VMX_CR0_FIXED0,
1360         MSR_IA32_VMX_CR4_FIXED0,
1361         MSR_IA32_VMX_VMCS_ENUM,
1362         MSR_IA32_VMX_PROCBASED_CTLS2,
1363         MSR_IA32_VMX_EPT_VPID_CAP,
1364         MSR_IA32_VMX_VMFUNC,
1365
1366         MSR_K7_HWCR,
1367         MSR_KVM_POLL_CONTROL,
1368 };
1369
1370 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1371 static unsigned num_emulated_msrs;
1372
1373 /*
1374  * List of msr numbers which are used to expose MSR-based features that
1375  * can be used by a hypervisor to validate requested CPU features.
1376  */
1377 static const u32 msr_based_features_all[] = {
1378         MSR_IA32_VMX_BASIC,
1379         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1380         MSR_IA32_VMX_PINBASED_CTLS,
1381         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1382         MSR_IA32_VMX_PROCBASED_CTLS,
1383         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1384         MSR_IA32_VMX_EXIT_CTLS,
1385         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1386         MSR_IA32_VMX_ENTRY_CTLS,
1387         MSR_IA32_VMX_MISC,
1388         MSR_IA32_VMX_CR0_FIXED0,
1389         MSR_IA32_VMX_CR0_FIXED1,
1390         MSR_IA32_VMX_CR4_FIXED0,
1391         MSR_IA32_VMX_CR4_FIXED1,
1392         MSR_IA32_VMX_VMCS_ENUM,
1393         MSR_IA32_VMX_PROCBASED_CTLS2,
1394         MSR_IA32_VMX_EPT_VPID_CAP,
1395         MSR_IA32_VMX_VMFUNC,
1396
1397         MSR_F10H_DECFG,
1398         MSR_IA32_UCODE_REV,
1399         MSR_IA32_ARCH_CAPABILITIES,
1400         MSR_IA32_PERF_CAPABILITIES,
1401 };
1402
1403 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1404 static unsigned int num_msr_based_features;
1405
1406 static u64 kvm_get_arch_capabilities(void)
1407 {
1408         u64 data = 0;
1409
1410         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1411                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1412
1413         /*
1414          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1415          * the nested hypervisor runs with NX huge pages.  If it is not,
1416          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1417          * L1 guests, so it need not worry about its own (L2) guests.
1418          */
1419         data |= ARCH_CAP_PSCHANGE_MC_NO;
1420
1421         /*
1422          * If we're doing cache flushes (either "always" or "cond")
1423          * we will do one whenever the guest does a vmlaunch/vmresume.
1424          * If an outer hypervisor is doing the cache flush for us
1425          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1426          * capability to the guest too, and if EPT is disabled we're not
1427          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1428          * require a nested hypervisor to do a flush of its own.
1429          */
1430         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1431                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1432
1433         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1434                 data |= ARCH_CAP_RDCL_NO;
1435         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1436                 data |= ARCH_CAP_SSB_NO;
1437         if (!boot_cpu_has_bug(X86_BUG_MDS))
1438                 data |= ARCH_CAP_MDS_NO;
1439
1440         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1441                 /*
1442                  * If RTM=0 because the kernel has disabled TSX, the host might
1443                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1444                  * and therefore knows that there cannot be TAA) but keep
1445                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1446                  * and we want to allow migrating those guests to tsx=off hosts.
1447                  */
1448                 data &= ~ARCH_CAP_TAA_NO;
1449         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1450                 data |= ARCH_CAP_TAA_NO;
1451         } else {
1452                 /*
1453                  * Nothing to do here; we emulate TSX_CTRL if present on the
1454                  * host so the guest can choose between disabling TSX or
1455                  * using VERW to clear CPU buffers.
1456                  */
1457         }
1458
1459         return data;
1460 }
1461
1462 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1463 {
1464         switch (msr->index) {
1465         case MSR_IA32_ARCH_CAPABILITIES:
1466                 msr->data = kvm_get_arch_capabilities();
1467                 break;
1468         case MSR_IA32_UCODE_REV:
1469                 rdmsrl_safe(msr->index, &msr->data);
1470                 break;
1471         default:
1472                 return static_call(kvm_x86_get_msr_feature)(msr);
1473         }
1474         return 0;
1475 }
1476
1477 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1478 {
1479         struct kvm_msr_entry msr;
1480         int r;
1481
1482         msr.index = index;
1483         r = kvm_get_msr_feature(&msr);
1484
1485         if (r == KVM_MSR_RET_INVALID) {
1486                 /* Unconditionally clear the output for simplicity */
1487                 *data = 0;
1488                 if (kvm_msr_ignored_check(index, 0, false))
1489                         r = 0;
1490         }
1491
1492         if (r)
1493                 return r;
1494
1495         *data = msr.data;
1496
1497         return 0;
1498 }
1499
1500 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1501 {
1502         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1503                 return false;
1504
1505         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1506                 return false;
1507
1508         if (efer & (EFER_LME | EFER_LMA) &&
1509             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1510                 return false;
1511
1512         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1513                 return false;
1514
1515         return true;
1516
1517 }
1518 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1519 {
1520         if (efer & efer_reserved_bits)
1521                 return false;
1522
1523         return __kvm_valid_efer(vcpu, efer);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1526
1527 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1528 {
1529         u64 old_efer = vcpu->arch.efer;
1530         u64 efer = msr_info->data;
1531         int r;
1532
1533         if (efer & efer_reserved_bits)
1534                 return 1;
1535
1536         if (!msr_info->host_initiated) {
1537                 if (!__kvm_valid_efer(vcpu, efer))
1538                         return 1;
1539
1540                 if (is_paging(vcpu) &&
1541                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1542                         return 1;
1543         }
1544
1545         efer &= ~EFER_LMA;
1546         efer |= vcpu->arch.efer & EFER_LMA;
1547
1548         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1549         if (r) {
1550                 WARN_ON(r > 0);
1551                 return r;
1552         }
1553
1554         /* Update reserved bits */
1555         if ((efer ^ old_efer) & EFER_NX)
1556                 kvm_mmu_reset_context(vcpu);
1557
1558         return 0;
1559 }
1560
1561 void kvm_enable_efer_bits(u64 mask)
1562 {
1563        efer_reserved_bits &= ~mask;
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1566
1567 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1568 {
1569         struct kvm_x86_msr_filter *msr_filter;
1570         struct msr_bitmap_range *ranges;
1571         struct kvm *kvm = vcpu->kvm;
1572         bool allowed;
1573         int idx;
1574         u32 i;
1575
1576         /* x2APIC MSRs do not support filtering. */
1577         if (index >= 0x800 && index <= 0x8ff)
1578                 return true;
1579
1580         idx = srcu_read_lock(&kvm->srcu);
1581
1582         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1583         if (!msr_filter) {
1584                 allowed = true;
1585                 goto out;
1586         }
1587
1588         allowed = msr_filter->default_allow;
1589         ranges = msr_filter->ranges;
1590
1591         for (i = 0; i < msr_filter->count; i++) {
1592                 u32 start = ranges[i].base;
1593                 u32 end = start + ranges[i].nmsrs;
1594                 u32 flags = ranges[i].flags;
1595                 unsigned long *bitmap = ranges[i].bitmap;
1596
1597                 if ((index >= start) && (index < end) && (flags & type)) {
1598                         allowed = !!test_bit(index - start, bitmap);
1599                         break;
1600                 }
1601         }
1602
1603 out:
1604         srcu_read_unlock(&kvm->srcu, idx);
1605
1606         return allowed;
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1609
1610 /*
1611  * Write @data into the MSR specified by @index.  Select MSR specific fault
1612  * checks are bypassed if @host_initiated is %true.
1613  * Returns 0 on success, non-0 otherwise.
1614  * Assumes vcpu_load() was already called.
1615  */
1616 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1617                          bool host_initiated)
1618 {
1619         struct msr_data msr;
1620
1621         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1622                 return KVM_MSR_RET_FILTERED;
1623
1624         switch (index) {
1625         case MSR_FS_BASE:
1626         case MSR_GS_BASE:
1627         case MSR_KERNEL_GS_BASE:
1628         case MSR_CSTAR:
1629         case MSR_LSTAR:
1630                 if (is_noncanonical_address(data, vcpu))
1631                         return 1;
1632                 break;
1633         case MSR_IA32_SYSENTER_EIP:
1634         case MSR_IA32_SYSENTER_ESP:
1635                 /*
1636                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1637                  * non-canonical address is written on Intel but not on
1638                  * AMD (which ignores the top 32-bits, because it does
1639                  * not implement 64-bit SYSENTER).
1640                  *
1641                  * 64-bit code should hence be able to write a non-canonical
1642                  * value on AMD.  Making the address canonical ensures that
1643                  * vmentry does not fail on Intel after writing a non-canonical
1644                  * value, and that something deterministic happens if the guest
1645                  * invokes 64-bit SYSENTER.
1646                  */
1647                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1648                 break;
1649         case MSR_TSC_AUX:
1650                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1651                         return 1;
1652
1653                 if (!host_initiated &&
1654                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1655                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1656                         return 1;
1657
1658                 /*
1659                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1660                  * incomplete and conflicting architectural behavior.  Current
1661                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1662                  * reserved and always read as zeros.  Enforce Intel's reserved
1663                  * bits check if and only if the guest CPU is Intel, and clear
1664                  * the bits in all other cases.  This ensures cross-vendor
1665                  * migration will provide consistent behavior for the guest.
1666                  */
1667                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1668                         return 1;
1669
1670                 data = (u32)data;
1671                 break;
1672         }
1673
1674         msr.data = data;
1675         msr.index = index;
1676         msr.host_initiated = host_initiated;
1677
1678         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1679 }
1680
1681 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1682                                      u32 index, u64 data, bool host_initiated)
1683 {
1684         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1685
1686         if (ret == KVM_MSR_RET_INVALID)
1687                 if (kvm_msr_ignored_check(index, data, true))
1688                         ret = 0;
1689
1690         return ret;
1691 }
1692
1693 /*
1694  * Read the MSR specified by @index into @data.  Select MSR specific fault
1695  * checks are bypassed if @host_initiated is %true.
1696  * Returns 0 on success, non-0 otherwise.
1697  * Assumes vcpu_load() was already called.
1698  */
1699 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1700                   bool host_initiated)
1701 {
1702         struct msr_data msr;
1703         int ret;
1704
1705         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1706                 return KVM_MSR_RET_FILTERED;
1707
1708         switch (index) {
1709         case MSR_TSC_AUX:
1710                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1711                         return 1;
1712
1713                 if (!host_initiated &&
1714                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1715                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1716                         return 1;
1717                 break;
1718         }
1719
1720         msr.index = index;
1721         msr.host_initiated = host_initiated;
1722
1723         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1724         if (!ret)
1725                 *data = msr.data;
1726         return ret;
1727 }
1728
1729 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1730                                      u32 index, u64 *data, bool host_initiated)
1731 {
1732         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1733
1734         if (ret == KVM_MSR_RET_INVALID) {
1735                 /* Unconditionally clear *data for simplicity */
1736                 *data = 0;
1737                 if (kvm_msr_ignored_check(index, 0, false))
1738                         ret = 0;
1739         }
1740
1741         return ret;
1742 }
1743
1744 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1745 {
1746         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_get_msr);
1749
1750 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1751 {
1752         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_set_msr);
1755
1756 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1757 {
1758         int err = vcpu->run->msr.error;
1759         if (!err) {
1760                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1761                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1762         }
1763
1764         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1765 }
1766
1767 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1768 {
1769         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1770 }
1771
1772 static u64 kvm_msr_reason(int r)
1773 {
1774         switch (r) {
1775         case KVM_MSR_RET_INVALID:
1776                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1777         case KVM_MSR_RET_FILTERED:
1778                 return KVM_MSR_EXIT_REASON_FILTER;
1779         default:
1780                 return KVM_MSR_EXIT_REASON_INVAL;
1781         }
1782 }
1783
1784 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1785                               u32 exit_reason, u64 data,
1786                               int (*completion)(struct kvm_vcpu *vcpu),
1787                               int r)
1788 {
1789         u64 msr_reason = kvm_msr_reason(r);
1790
1791         /* Check if the user wanted to know about this MSR fault */
1792         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1793                 return 0;
1794
1795         vcpu->run->exit_reason = exit_reason;
1796         vcpu->run->msr.error = 0;
1797         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1798         vcpu->run->msr.reason = msr_reason;
1799         vcpu->run->msr.index = index;
1800         vcpu->run->msr.data = data;
1801         vcpu->arch.complete_userspace_io = completion;
1802
1803         return 1;
1804 }
1805
1806 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1807 {
1808         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1809                                    complete_emulated_rdmsr, r);
1810 }
1811
1812 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1813 {
1814         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1815                                    complete_emulated_wrmsr, r);
1816 }
1817
1818 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1819 {
1820         u32 ecx = kvm_rcx_read(vcpu);
1821         u64 data;
1822         int r;
1823
1824         r = kvm_get_msr(vcpu, ecx, &data);
1825
1826         /* MSR read failed? See if we should ask user space */
1827         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1828                 /* Bounce to user space */
1829                 return 0;
1830         }
1831
1832         if (!r) {
1833                 trace_kvm_msr_read(ecx, data);
1834
1835                 kvm_rax_write(vcpu, data & -1u);
1836                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1837         } else {
1838                 trace_kvm_msr_read_ex(ecx);
1839         }
1840
1841         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1844
1845 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1846 {
1847         u32 ecx = kvm_rcx_read(vcpu);
1848         u64 data = kvm_read_edx_eax(vcpu);
1849         int r;
1850
1851         r = kvm_set_msr(vcpu, ecx, data);
1852
1853         /* MSR write failed? See if we should ask user space */
1854         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1855                 /* Bounce to user space */
1856                 return 0;
1857
1858         /* Signal all other negative errors to userspace */
1859         if (r < 0)
1860                 return r;
1861
1862         if (!r)
1863                 trace_kvm_msr_write(ecx, data);
1864         else
1865                 trace_kvm_msr_write_ex(ecx, data);
1866
1867         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1870
1871 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1872 {
1873         return kvm_skip_emulated_instruction(vcpu);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1876
1877 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1878 {
1879         /* Treat an INVD instruction as a NOP and just skip it. */
1880         return kvm_emulate_as_nop(vcpu);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1883
1884 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1885 {
1886         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1887         return kvm_emulate_as_nop(vcpu);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1890
1891 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1892 {
1893         kvm_queue_exception(vcpu, UD_VECTOR);
1894         return 1;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1897
1898 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1899 {
1900         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1901         return kvm_emulate_as_nop(vcpu);
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1904
1905 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1906 {
1907         xfer_to_guest_mode_prepare();
1908         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1909                 xfer_to_guest_mode_work_pending();
1910 }
1911
1912 /*
1913  * The fast path for frequent and performance sensitive wrmsr emulation,
1914  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1915  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1916  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1917  * other cases which must be called after interrupts are enabled on the host.
1918  */
1919 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1920 {
1921         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1922                 return 1;
1923
1924         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1925                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1926                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1927                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1928
1929                 data &= ~(1 << 12);
1930                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1931                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1932                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1933                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1934                 return 0;
1935         }
1936
1937         return 1;
1938 }
1939
1940 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1941 {
1942         if (!kvm_can_use_hv_timer(vcpu))
1943                 return 1;
1944
1945         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1946         return 0;
1947 }
1948
1949 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1950 {
1951         u32 msr = kvm_rcx_read(vcpu);
1952         u64 data;
1953         fastpath_t ret = EXIT_FASTPATH_NONE;
1954
1955         switch (msr) {
1956         case APIC_BASE_MSR + (APIC_ICR >> 4):
1957                 data = kvm_read_edx_eax(vcpu);
1958                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1959                         kvm_skip_emulated_instruction(vcpu);
1960                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1961                 }
1962                 break;
1963         case MSR_IA32_TSC_DEADLINE:
1964                 data = kvm_read_edx_eax(vcpu);
1965                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1966                         kvm_skip_emulated_instruction(vcpu);
1967                         ret = EXIT_FASTPATH_REENTER_GUEST;
1968                 }
1969                 break;
1970         default:
1971                 break;
1972         }
1973
1974         if (ret != EXIT_FASTPATH_NONE)
1975                 trace_kvm_msr_write(msr, data);
1976
1977         return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1980
1981 /*
1982  * Adapt set_msr() to msr_io()'s calling convention
1983  */
1984 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1985 {
1986         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1987 }
1988
1989 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1990 {
1991         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1992 }
1993
1994 #ifdef CONFIG_X86_64
1995 struct pvclock_clock {
1996         int vclock_mode;
1997         u64 cycle_last;
1998         u64 mask;
1999         u32 mult;
2000         u32 shift;
2001         u64 base_cycles;
2002         u64 offset;
2003 };
2004
2005 struct pvclock_gtod_data {
2006         seqcount_t      seq;
2007
2008         struct pvclock_clock clock; /* extract of a clocksource struct */
2009         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2010
2011         ktime_t         offs_boot;
2012         u64             wall_time_sec;
2013 };
2014
2015 static struct pvclock_gtod_data pvclock_gtod_data;
2016
2017 static void update_pvclock_gtod(struct timekeeper *tk)
2018 {
2019         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2020
2021         write_seqcount_begin(&vdata->seq);
2022
2023         /* copy pvclock gtod data */
2024         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2025         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2026         vdata->clock.mask               = tk->tkr_mono.mask;
2027         vdata->clock.mult               = tk->tkr_mono.mult;
2028         vdata->clock.shift              = tk->tkr_mono.shift;
2029         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2030         vdata->clock.offset             = tk->tkr_mono.base;
2031
2032         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2033         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2034         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2035         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2036         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2037         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2038         vdata->raw_clock.offset         = tk->tkr_raw.base;
2039
2040         vdata->wall_time_sec            = tk->xtime_sec;
2041
2042         vdata->offs_boot                = tk->offs_boot;
2043
2044         write_seqcount_end(&vdata->seq);
2045 }
2046
2047 static s64 get_kvmclock_base_ns(void)
2048 {
2049         /* Count up from boot time, but with the frequency of the raw clock.  */
2050         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2051 }
2052 #else
2053 static s64 get_kvmclock_base_ns(void)
2054 {
2055         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2056         return ktime_get_boottime_ns();
2057 }
2058 #endif
2059
2060 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2061 {
2062         int version;
2063         int r;
2064         struct pvclock_wall_clock wc;
2065         u32 wc_sec_hi;
2066         u64 wall_nsec;
2067
2068         if (!wall_clock)
2069                 return;
2070
2071         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2072         if (r)
2073                 return;
2074
2075         if (version & 1)
2076                 ++version;  /* first time write, random junk */
2077
2078         ++version;
2079
2080         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2081                 return;
2082
2083         /*
2084          * The guest calculates current wall clock time by adding
2085          * system time (updated by kvm_guest_time_update below) to the
2086          * wall clock specified here.  We do the reverse here.
2087          */
2088         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2089
2090         wc.nsec = do_div(wall_nsec, 1000000000);
2091         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2092         wc.version = version;
2093
2094         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2095
2096         if (sec_hi_ofs) {
2097                 wc_sec_hi = wall_nsec >> 32;
2098                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2099                                 &wc_sec_hi, sizeof(wc_sec_hi));
2100         }
2101
2102         version++;
2103         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2104 }
2105
2106 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2107                                   bool old_msr, bool host_initiated)
2108 {
2109         struct kvm_arch *ka = &vcpu->kvm->arch;
2110
2111         if (vcpu->vcpu_id == 0 && !host_initiated) {
2112                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2113                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2114
2115                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2116         }
2117
2118         vcpu->arch.time = system_time;
2119         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2120
2121         /* we verify if the enable bit is set... */
2122         vcpu->arch.pv_time_enabled = false;
2123         if (!(system_time & 1))
2124                 return;
2125
2126         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2127                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2128                                        sizeof(struct pvclock_vcpu_time_info)))
2129                 vcpu->arch.pv_time_enabled = true;
2130
2131         return;
2132 }
2133
2134 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2135 {
2136         do_shl32_div32(dividend, divisor);
2137         return dividend;
2138 }
2139
2140 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2141                                s8 *pshift, u32 *pmultiplier)
2142 {
2143         uint64_t scaled64;
2144         int32_t  shift = 0;
2145         uint64_t tps64;
2146         uint32_t tps32;
2147
2148         tps64 = base_hz;
2149         scaled64 = scaled_hz;
2150         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2151                 tps64 >>= 1;
2152                 shift--;
2153         }
2154
2155         tps32 = (uint32_t)tps64;
2156         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2157                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2158                         scaled64 >>= 1;
2159                 else
2160                         tps32 <<= 1;
2161                 shift++;
2162         }
2163
2164         *pshift = shift;
2165         *pmultiplier = div_frac(scaled64, tps32);
2166 }
2167
2168 #ifdef CONFIG_X86_64
2169 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2170 #endif
2171
2172 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2173 static unsigned long max_tsc_khz;
2174
2175 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2176 {
2177         u64 v = (u64)khz * (1000000 + ppm);
2178         do_div(v, 1000000);
2179         return v;
2180 }
2181
2182 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2183 {
2184         u64 ratio;
2185
2186         /* Guest TSC same frequency as host TSC? */
2187         if (!scale) {
2188                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2189                 return 0;
2190         }
2191
2192         /* TSC scaling supported? */
2193         if (!kvm_has_tsc_control) {
2194                 if (user_tsc_khz > tsc_khz) {
2195                         vcpu->arch.tsc_catchup = 1;
2196                         vcpu->arch.tsc_always_catchup = 1;
2197                         return 0;
2198                 } else {
2199                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2200                         return -1;
2201                 }
2202         }
2203
2204         /* TSC scaling required  - calculate ratio */
2205         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2206                                 user_tsc_khz, tsc_khz);
2207
2208         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2209                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2210                                     user_tsc_khz);
2211                 return -1;
2212         }
2213
2214         vcpu->arch.tsc_scaling_ratio = ratio;
2215         return 0;
2216 }
2217
2218 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2219 {
2220         u32 thresh_lo, thresh_hi;
2221         int use_scaling = 0;
2222
2223         /* tsc_khz can be zero if TSC calibration fails */
2224         if (user_tsc_khz == 0) {
2225                 /* set tsc_scaling_ratio to a safe value */
2226                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2227                 return -1;
2228         }
2229
2230         /* Compute a scale to convert nanoseconds in TSC cycles */
2231         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2232                            &vcpu->arch.virtual_tsc_shift,
2233                            &vcpu->arch.virtual_tsc_mult);
2234         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2235
2236         /*
2237          * Compute the variation in TSC rate which is acceptable
2238          * within the range of tolerance and decide if the
2239          * rate being applied is within that bounds of the hardware
2240          * rate.  If so, no scaling or compensation need be done.
2241          */
2242         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2243         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2244         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2245                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2246                 use_scaling = 1;
2247         }
2248         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2249 }
2250
2251 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2252 {
2253         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2254                                       vcpu->arch.virtual_tsc_mult,
2255                                       vcpu->arch.virtual_tsc_shift);
2256         tsc += vcpu->arch.this_tsc_write;
2257         return tsc;
2258 }
2259
2260 static inline int gtod_is_based_on_tsc(int mode)
2261 {
2262         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2263 }
2264
2265 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2266 {
2267 #ifdef CONFIG_X86_64
2268         bool vcpus_matched;
2269         struct kvm_arch *ka = &vcpu->kvm->arch;
2270         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2271
2272         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2273                          atomic_read(&vcpu->kvm->online_vcpus));
2274
2275         /*
2276          * Once the masterclock is enabled, always perform request in
2277          * order to update it.
2278          *
2279          * In order to enable masterclock, the host clocksource must be TSC
2280          * and the vcpus need to have matched TSCs.  When that happens,
2281          * perform request to enable masterclock.
2282          */
2283         if (ka->use_master_clock ||
2284             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2285                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2286
2287         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2288                             atomic_read(&vcpu->kvm->online_vcpus),
2289                             ka->use_master_clock, gtod->clock.vclock_mode);
2290 #endif
2291 }
2292
2293 /*
2294  * Multiply tsc by a fixed point number represented by ratio.
2295  *
2296  * The most significant 64-N bits (mult) of ratio represent the
2297  * integral part of the fixed point number; the remaining N bits
2298  * (frac) represent the fractional part, ie. ratio represents a fixed
2299  * point number (mult + frac * 2^(-N)).
2300  *
2301  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2302  */
2303 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2304 {
2305         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2306 }
2307
2308 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2309 {
2310         u64 _tsc = tsc;
2311         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2312
2313         if (ratio != kvm_default_tsc_scaling_ratio)
2314                 _tsc = __scale_tsc(ratio, tsc);
2315
2316         return _tsc;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2319
2320 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2321 {
2322         u64 tsc;
2323
2324         tsc = kvm_scale_tsc(vcpu, rdtsc());
2325
2326         return target_tsc - tsc;
2327 }
2328
2329 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2330 {
2331         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2332 }
2333 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2334
2335 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2336 {
2337         vcpu->arch.l1_tsc_offset = offset;
2338         vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2339 }
2340
2341 static inline bool kvm_check_tsc_unstable(void)
2342 {
2343 #ifdef CONFIG_X86_64
2344         /*
2345          * TSC is marked unstable when we're running on Hyper-V,
2346          * 'TSC page' clocksource is good.
2347          */
2348         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2349                 return false;
2350 #endif
2351         return check_tsc_unstable();
2352 }
2353
2354 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2355 {
2356         struct kvm *kvm = vcpu->kvm;
2357         u64 offset, ns, elapsed;
2358         unsigned long flags;
2359         bool matched;
2360         bool already_matched;
2361         bool synchronizing = false;
2362
2363         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2364         offset = kvm_compute_tsc_offset(vcpu, data);
2365         ns = get_kvmclock_base_ns();
2366         elapsed = ns - kvm->arch.last_tsc_nsec;
2367
2368         if (vcpu->arch.virtual_tsc_khz) {
2369                 if (data == 0) {
2370                         /*
2371                          * detection of vcpu initialization -- need to sync
2372                          * with other vCPUs. This particularly helps to keep
2373                          * kvm_clock stable after CPU hotplug
2374                          */
2375                         synchronizing = true;
2376                 } else {
2377                         u64 tsc_exp = kvm->arch.last_tsc_write +
2378                                                 nsec_to_cycles(vcpu, elapsed);
2379                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2380                         /*
2381                          * Special case: TSC write with a small delta (1 second)
2382                          * of virtual cycle time against real time is
2383                          * interpreted as an attempt to synchronize the CPU.
2384                          */
2385                         synchronizing = data < tsc_exp + tsc_hz &&
2386                                         data + tsc_hz > tsc_exp;
2387                 }
2388         }
2389
2390         /*
2391          * For a reliable TSC, we can match TSC offsets, and for an unstable
2392          * TSC, we add elapsed time in this computation.  We could let the
2393          * compensation code attempt to catch up if we fall behind, but
2394          * it's better to try to match offsets from the beginning.
2395          */
2396         if (synchronizing &&
2397             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2398                 if (!kvm_check_tsc_unstable()) {
2399                         offset = kvm->arch.cur_tsc_offset;
2400                 } else {
2401                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2402                         data += delta;
2403                         offset = kvm_compute_tsc_offset(vcpu, data);
2404                 }
2405                 matched = true;
2406                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2407         } else {
2408                 /*
2409                  * We split periods of matched TSC writes into generations.
2410                  * For each generation, we track the original measured
2411                  * nanosecond time, offset, and write, so if TSCs are in
2412                  * sync, we can match exact offset, and if not, we can match
2413                  * exact software computation in compute_guest_tsc()
2414                  *
2415                  * These values are tracked in kvm->arch.cur_xxx variables.
2416                  */
2417                 kvm->arch.cur_tsc_generation++;
2418                 kvm->arch.cur_tsc_nsec = ns;
2419                 kvm->arch.cur_tsc_write = data;
2420                 kvm->arch.cur_tsc_offset = offset;
2421                 matched = false;
2422         }
2423
2424         /*
2425          * We also track th most recent recorded KHZ, write and time to
2426          * allow the matching interval to be extended at each write.
2427          */
2428         kvm->arch.last_tsc_nsec = ns;
2429         kvm->arch.last_tsc_write = data;
2430         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2431
2432         vcpu->arch.last_guest_tsc = data;
2433
2434         /* Keep track of which generation this VCPU has synchronized to */
2435         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2436         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2437         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2438
2439         kvm_vcpu_write_tsc_offset(vcpu, offset);
2440         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2441
2442         spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2443         if (!matched) {
2444                 kvm->arch.nr_vcpus_matched_tsc = 0;
2445         } else if (!already_matched) {
2446                 kvm->arch.nr_vcpus_matched_tsc++;
2447         }
2448
2449         kvm_track_tsc_matching(vcpu);
2450         spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2451 }
2452
2453 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2454                                            s64 adjustment)
2455 {
2456         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2457         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2458 }
2459
2460 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2461 {
2462         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2463                 WARN_ON(adjustment < 0);
2464         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2465         adjust_tsc_offset_guest(vcpu, adjustment);
2466 }
2467
2468 #ifdef CONFIG_X86_64
2469
2470 static u64 read_tsc(void)
2471 {
2472         u64 ret = (u64)rdtsc_ordered();
2473         u64 last = pvclock_gtod_data.clock.cycle_last;
2474
2475         if (likely(ret >= last))
2476                 return ret;
2477
2478         /*
2479          * GCC likes to generate cmov here, but this branch is extremely
2480          * predictable (it's just a function of time and the likely is
2481          * very likely) and there's a data dependence, so force GCC
2482          * to generate a branch instead.  I don't barrier() because
2483          * we don't actually need a barrier, and if this function
2484          * ever gets inlined it will generate worse code.
2485          */
2486         asm volatile ("");
2487         return last;
2488 }
2489
2490 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2491                           int *mode)
2492 {
2493         long v;
2494         u64 tsc_pg_val;
2495
2496         switch (clock->vclock_mode) {
2497         case VDSO_CLOCKMODE_HVCLOCK:
2498                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2499                                                   tsc_timestamp);
2500                 if (tsc_pg_val != U64_MAX) {
2501                         /* TSC page valid */
2502                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2503                         v = (tsc_pg_val - clock->cycle_last) &
2504                                 clock->mask;
2505                 } else {
2506                         /* TSC page invalid */
2507                         *mode = VDSO_CLOCKMODE_NONE;
2508                 }
2509                 break;
2510         case VDSO_CLOCKMODE_TSC:
2511                 *mode = VDSO_CLOCKMODE_TSC;
2512                 *tsc_timestamp = read_tsc();
2513                 v = (*tsc_timestamp - clock->cycle_last) &
2514                         clock->mask;
2515                 break;
2516         default:
2517                 *mode = VDSO_CLOCKMODE_NONE;
2518         }
2519
2520         if (*mode == VDSO_CLOCKMODE_NONE)
2521                 *tsc_timestamp = v = 0;
2522
2523         return v * clock->mult;
2524 }
2525
2526 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2527 {
2528         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2529         unsigned long seq;
2530         int mode;
2531         u64 ns;
2532
2533         do {
2534                 seq = read_seqcount_begin(&gtod->seq);
2535                 ns = gtod->raw_clock.base_cycles;
2536                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2537                 ns >>= gtod->raw_clock.shift;
2538                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2539         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2540         *t = ns;
2541
2542         return mode;
2543 }
2544
2545 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2546 {
2547         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2548         unsigned long seq;
2549         int mode;
2550         u64 ns;
2551
2552         do {
2553                 seq = read_seqcount_begin(&gtod->seq);
2554                 ts->tv_sec = gtod->wall_time_sec;
2555                 ns = gtod->clock.base_cycles;
2556                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2557                 ns >>= gtod->clock.shift;
2558         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2559
2560         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2561         ts->tv_nsec = ns;
2562
2563         return mode;
2564 }
2565
2566 /* returns true if host is using TSC based clocksource */
2567 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2568 {
2569         /* checked again under seqlock below */
2570         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2571                 return false;
2572
2573         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2574                                                       tsc_timestamp));
2575 }
2576
2577 /* returns true if host is using TSC based clocksource */
2578 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2579                                            u64 *tsc_timestamp)
2580 {
2581         /* checked again under seqlock below */
2582         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2583                 return false;
2584
2585         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2586 }
2587 #endif
2588
2589 /*
2590  *
2591  * Assuming a stable TSC across physical CPUS, and a stable TSC
2592  * across virtual CPUs, the following condition is possible.
2593  * Each numbered line represents an event visible to both
2594  * CPUs at the next numbered event.
2595  *
2596  * "timespecX" represents host monotonic time. "tscX" represents
2597  * RDTSC value.
2598  *
2599  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2600  *
2601  * 1.  read timespec0,tsc0
2602  * 2.                                   | timespec1 = timespec0 + N
2603  *                                      | tsc1 = tsc0 + M
2604  * 3. transition to guest               | transition to guest
2605  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2606  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2607  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2608  *
2609  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2610  *
2611  *      - ret0 < ret1
2612  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2613  *              ...
2614  *      - 0 < N - M => M < N
2615  *
2616  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2617  * always the case (the difference between two distinct xtime instances
2618  * might be smaller then the difference between corresponding TSC reads,
2619  * when updating guest vcpus pvclock areas).
2620  *
2621  * To avoid that problem, do not allow visibility of distinct
2622  * system_timestamp/tsc_timestamp values simultaneously: use a master
2623  * copy of host monotonic time values. Update that master copy
2624  * in lockstep.
2625  *
2626  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2627  *
2628  */
2629
2630 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2631 {
2632 #ifdef CONFIG_X86_64
2633         struct kvm_arch *ka = &kvm->arch;
2634         int vclock_mode;
2635         bool host_tsc_clocksource, vcpus_matched;
2636
2637         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2638                         atomic_read(&kvm->online_vcpus));
2639
2640         /*
2641          * If the host uses TSC clock, then passthrough TSC as stable
2642          * to the guest.
2643          */
2644         host_tsc_clocksource = kvm_get_time_and_clockread(
2645                                         &ka->master_kernel_ns,
2646                                         &ka->master_cycle_now);
2647
2648         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2649                                 && !ka->backwards_tsc_observed
2650                                 && !ka->boot_vcpu_runs_old_kvmclock;
2651
2652         if (ka->use_master_clock)
2653                 atomic_set(&kvm_guest_has_master_clock, 1);
2654
2655         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2656         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2657                                         vcpus_matched);
2658 #endif
2659 }
2660
2661 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2662 {
2663         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2664 }
2665
2666 static void kvm_gen_update_masterclock(struct kvm *kvm)
2667 {
2668 #ifdef CONFIG_X86_64
2669         int i;
2670         struct kvm_vcpu *vcpu;
2671         struct kvm_arch *ka = &kvm->arch;
2672         unsigned long flags;
2673
2674         kvm_hv_invalidate_tsc_page(kvm);
2675
2676         kvm_make_mclock_inprogress_request(kvm);
2677
2678         /* no guest entries from this point */
2679         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2680         pvclock_update_vm_gtod_copy(kvm);
2681         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2682
2683         kvm_for_each_vcpu(i, vcpu, kvm)
2684                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2685
2686         /* guest entries allowed */
2687         kvm_for_each_vcpu(i, vcpu, kvm)
2688                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2689 #endif
2690 }
2691
2692 u64 get_kvmclock_ns(struct kvm *kvm)
2693 {
2694         struct kvm_arch *ka = &kvm->arch;
2695         struct pvclock_vcpu_time_info hv_clock;
2696         unsigned long flags;
2697         u64 ret;
2698
2699         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2700         if (!ka->use_master_clock) {
2701                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2702                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2703         }
2704
2705         hv_clock.tsc_timestamp = ka->master_cycle_now;
2706         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2707         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2708
2709         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2710         get_cpu();
2711
2712         if (__this_cpu_read(cpu_tsc_khz)) {
2713                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2714                                    &hv_clock.tsc_shift,
2715                                    &hv_clock.tsc_to_system_mul);
2716                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2717         } else
2718                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2719
2720         put_cpu();
2721
2722         return ret;
2723 }
2724
2725 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2726                                    struct gfn_to_hva_cache *cache,
2727                                    unsigned int offset)
2728 {
2729         struct kvm_vcpu_arch *vcpu = &v->arch;
2730         struct pvclock_vcpu_time_info guest_hv_clock;
2731
2732         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2733                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2734                 return;
2735
2736         /* This VCPU is paused, but it's legal for a guest to read another
2737          * VCPU's kvmclock, so we really have to follow the specification where
2738          * it says that version is odd if data is being modified, and even after
2739          * it is consistent.
2740          *
2741          * Version field updates must be kept separate.  This is because
2742          * kvm_write_guest_cached might use a "rep movs" instruction, and
2743          * writes within a string instruction are weakly ordered.  So there
2744          * are three writes overall.
2745          *
2746          * As a small optimization, only write the version field in the first
2747          * and third write.  The vcpu->pv_time cache is still valid, because the
2748          * version field is the first in the struct.
2749          */
2750         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2751
2752         if (guest_hv_clock.version & 1)
2753                 ++guest_hv_clock.version;  /* first time write, random junk */
2754
2755         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2756         kvm_write_guest_offset_cached(v->kvm, cache,
2757                                       &vcpu->hv_clock, offset,
2758                                       sizeof(vcpu->hv_clock.version));
2759
2760         smp_wmb();
2761
2762         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2763         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2764
2765         if (vcpu->pvclock_set_guest_stopped_request) {
2766                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2767                 vcpu->pvclock_set_guest_stopped_request = false;
2768         }
2769
2770         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2771
2772         kvm_write_guest_offset_cached(v->kvm, cache,
2773                                       &vcpu->hv_clock, offset,
2774                                       sizeof(vcpu->hv_clock));
2775
2776         smp_wmb();
2777
2778         vcpu->hv_clock.version++;
2779         kvm_write_guest_offset_cached(v->kvm, cache,
2780                                      &vcpu->hv_clock, offset,
2781                                      sizeof(vcpu->hv_clock.version));
2782 }
2783
2784 static int kvm_guest_time_update(struct kvm_vcpu *v)
2785 {
2786         unsigned long flags, tgt_tsc_khz;
2787         struct kvm_vcpu_arch *vcpu = &v->arch;
2788         struct kvm_arch *ka = &v->kvm->arch;
2789         s64 kernel_ns;
2790         u64 tsc_timestamp, host_tsc;
2791         u8 pvclock_flags;
2792         bool use_master_clock;
2793
2794         kernel_ns = 0;
2795         host_tsc = 0;
2796
2797         /*
2798          * If the host uses TSC clock, then passthrough TSC as stable
2799          * to the guest.
2800          */
2801         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2802         use_master_clock = ka->use_master_clock;
2803         if (use_master_clock) {
2804                 host_tsc = ka->master_cycle_now;
2805                 kernel_ns = ka->master_kernel_ns;
2806         }
2807         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2808
2809         /* Keep irq disabled to prevent changes to the clock */
2810         local_irq_save(flags);
2811         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2812         if (unlikely(tgt_tsc_khz == 0)) {
2813                 local_irq_restore(flags);
2814                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2815                 return 1;
2816         }
2817         if (!use_master_clock) {
2818                 host_tsc = rdtsc();
2819                 kernel_ns = get_kvmclock_base_ns();
2820         }
2821
2822         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2823
2824         /*
2825          * We may have to catch up the TSC to match elapsed wall clock
2826          * time for two reasons, even if kvmclock is used.
2827          *   1) CPU could have been running below the maximum TSC rate
2828          *   2) Broken TSC compensation resets the base at each VCPU
2829          *      entry to avoid unknown leaps of TSC even when running
2830          *      again on the same CPU.  This may cause apparent elapsed
2831          *      time to disappear, and the guest to stand still or run
2832          *      very slowly.
2833          */
2834         if (vcpu->tsc_catchup) {
2835                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2836                 if (tsc > tsc_timestamp) {
2837                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2838                         tsc_timestamp = tsc;
2839                 }
2840         }
2841
2842         local_irq_restore(flags);
2843
2844         /* With all the info we got, fill in the values */
2845
2846         if (kvm_has_tsc_control)
2847                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2848
2849         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2850                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2851                                    &vcpu->hv_clock.tsc_shift,
2852                                    &vcpu->hv_clock.tsc_to_system_mul);
2853                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2854         }
2855
2856         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2857         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2858         vcpu->last_guest_tsc = tsc_timestamp;
2859
2860         /* If the host uses TSC clocksource, then it is stable */
2861         pvclock_flags = 0;
2862         if (use_master_clock)
2863                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2864
2865         vcpu->hv_clock.flags = pvclock_flags;
2866
2867         if (vcpu->pv_time_enabled)
2868                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2869         if (vcpu->xen.vcpu_info_set)
2870                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2871                                        offsetof(struct compat_vcpu_info, time));
2872         if (vcpu->xen.vcpu_time_info_set)
2873                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2874         if (v == kvm_get_vcpu(v->kvm, 0))
2875                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2876         return 0;
2877 }
2878
2879 /*
2880  * kvmclock updates which are isolated to a given vcpu, such as
2881  * vcpu->cpu migration, should not allow system_timestamp from
2882  * the rest of the vcpus to remain static. Otherwise ntp frequency
2883  * correction applies to one vcpu's system_timestamp but not
2884  * the others.
2885  *
2886  * So in those cases, request a kvmclock update for all vcpus.
2887  * We need to rate-limit these requests though, as they can
2888  * considerably slow guests that have a large number of vcpus.
2889  * The time for a remote vcpu to update its kvmclock is bound
2890  * by the delay we use to rate-limit the updates.
2891  */
2892
2893 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2894
2895 static void kvmclock_update_fn(struct work_struct *work)
2896 {
2897         int i;
2898         struct delayed_work *dwork = to_delayed_work(work);
2899         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2900                                            kvmclock_update_work);
2901         struct kvm *kvm = container_of(ka, struct kvm, arch);
2902         struct kvm_vcpu *vcpu;
2903
2904         kvm_for_each_vcpu(i, vcpu, kvm) {
2905                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2906                 kvm_vcpu_kick(vcpu);
2907         }
2908 }
2909
2910 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2911 {
2912         struct kvm *kvm = v->kvm;
2913
2914         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2915         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2916                                         KVMCLOCK_UPDATE_DELAY);
2917 }
2918
2919 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2920
2921 static void kvmclock_sync_fn(struct work_struct *work)
2922 {
2923         struct delayed_work *dwork = to_delayed_work(work);
2924         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2925                                            kvmclock_sync_work);
2926         struct kvm *kvm = container_of(ka, struct kvm, arch);
2927
2928         if (!kvmclock_periodic_sync)
2929                 return;
2930
2931         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2932         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2933                                         KVMCLOCK_SYNC_PERIOD);
2934 }
2935
2936 /*
2937  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2938  */
2939 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2940 {
2941         /* McStatusWrEn enabled? */
2942         if (guest_cpuid_is_amd_or_hygon(vcpu))
2943                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2944
2945         return false;
2946 }
2947
2948 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2949 {
2950         u64 mcg_cap = vcpu->arch.mcg_cap;
2951         unsigned bank_num = mcg_cap & 0xff;
2952         u32 msr = msr_info->index;
2953         u64 data = msr_info->data;
2954
2955         switch (msr) {
2956         case MSR_IA32_MCG_STATUS:
2957                 vcpu->arch.mcg_status = data;
2958                 break;
2959         case MSR_IA32_MCG_CTL:
2960                 if (!(mcg_cap & MCG_CTL_P) &&
2961                     (data || !msr_info->host_initiated))
2962                         return 1;
2963                 if (data != 0 && data != ~(u64)0)
2964                         return 1;
2965                 vcpu->arch.mcg_ctl = data;
2966                 break;
2967         default:
2968                 if (msr >= MSR_IA32_MC0_CTL &&
2969                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2970                         u32 offset = array_index_nospec(
2971                                 msr - MSR_IA32_MC0_CTL,
2972                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2973
2974                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2975                          * some Linux kernels though clear bit 10 in bank 4 to
2976                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2977                          * this to avoid an uncatched #GP in the guest
2978                          */
2979                         if ((offset & 0x3) == 0 &&
2980                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2981                                 return -1;
2982
2983                         /* MCi_STATUS */
2984                         if (!msr_info->host_initiated &&
2985                             (offset & 0x3) == 1 && data != 0) {
2986                                 if (!can_set_mci_status(vcpu))
2987                                         return -1;
2988                         }
2989
2990                         vcpu->arch.mce_banks[offset] = data;
2991                         break;
2992                 }
2993                 return 1;
2994         }
2995         return 0;
2996 }
2997
2998 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2999 {
3000         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3001
3002         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3003 }
3004
3005 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3006 {
3007         gpa_t gpa = data & ~0x3f;
3008
3009         /* Bits 4:5 are reserved, Should be zero */
3010         if (data & 0x30)
3011                 return 1;
3012
3013         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3014             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3015                 return 1;
3016
3017         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3018             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3019                 return 1;
3020
3021         if (!lapic_in_kernel(vcpu))
3022                 return data ? 1 : 0;
3023
3024         vcpu->arch.apf.msr_en_val = data;
3025
3026         if (!kvm_pv_async_pf_enabled(vcpu)) {
3027                 kvm_clear_async_pf_completion_queue(vcpu);
3028                 kvm_async_pf_hash_reset(vcpu);
3029                 return 0;
3030         }
3031
3032         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3033                                         sizeof(u64)))
3034                 return 1;
3035
3036         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3037         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3038
3039         kvm_async_pf_wakeup_all(vcpu);
3040
3041         return 0;
3042 }
3043
3044 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3045 {
3046         /* Bits 8-63 are reserved */
3047         if (data >> 8)
3048                 return 1;
3049
3050         if (!lapic_in_kernel(vcpu))
3051                 return 1;
3052
3053         vcpu->arch.apf.msr_int_val = data;
3054
3055         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3056
3057         return 0;
3058 }
3059
3060 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3061 {
3062         vcpu->arch.pv_time_enabled = false;
3063         vcpu->arch.time = 0;
3064 }
3065
3066 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3067 {
3068         ++vcpu->stat.tlb_flush;
3069         static_call(kvm_x86_tlb_flush_all)(vcpu);
3070 }
3071
3072 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3073 {
3074         ++vcpu->stat.tlb_flush;
3075         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3076 }
3077
3078 static void record_steal_time(struct kvm_vcpu *vcpu)
3079 {
3080         struct kvm_host_map map;
3081         struct kvm_steal_time *st;
3082
3083         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3084                 kvm_xen_runstate_set_running(vcpu);
3085                 return;
3086         }
3087
3088         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3089                 return;
3090
3091         /* -EAGAIN is returned in atomic context so we can just return. */
3092         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3093                         &map, &vcpu->arch.st.cache, false))
3094                 return;
3095
3096         st = map.hva +
3097                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3098
3099         /*
3100          * Doing a TLB flush here, on the guest's behalf, can avoid
3101          * expensive IPIs.
3102          */
3103         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3104                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3105                                        st->preempted & KVM_VCPU_FLUSH_TLB);
3106                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3107                         kvm_vcpu_flush_tlb_guest(vcpu);
3108         }
3109
3110         vcpu->arch.st.preempted = 0;
3111
3112         if (st->version & 1)
3113                 st->version += 1;  /* first time write, random junk */
3114
3115         st->version += 1;
3116
3117         smp_wmb();
3118
3119         st->steal += current->sched_info.run_delay -
3120                 vcpu->arch.st.last_steal;
3121         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3122
3123         smp_wmb();
3124
3125         st->version += 1;
3126
3127         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3128 }
3129
3130 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3131 {
3132         bool pr = false;
3133         u32 msr = msr_info->index;
3134         u64 data = msr_info->data;
3135
3136         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3137                 return kvm_xen_write_hypercall_page(vcpu, data);
3138
3139         switch (msr) {
3140         case MSR_AMD64_NB_CFG:
3141         case MSR_IA32_UCODE_WRITE:
3142         case MSR_VM_HSAVE_PA:
3143         case MSR_AMD64_PATCH_LOADER:
3144         case MSR_AMD64_BU_CFG2:
3145         case MSR_AMD64_DC_CFG:
3146         case MSR_F15H_EX_CFG:
3147                 break;
3148
3149         case MSR_IA32_UCODE_REV:
3150                 if (msr_info->host_initiated)
3151                         vcpu->arch.microcode_version = data;
3152                 break;
3153         case MSR_IA32_ARCH_CAPABILITIES:
3154                 if (!msr_info->host_initiated)
3155                         return 1;
3156                 vcpu->arch.arch_capabilities = data;
3157                 break;
3158         case MSR_IA32_PERF_CAPABILITIES: {
3159                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3160
3161                 if (!msr_info->host_initiated)
3162                         return 1;
3163                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3164                         return 1;
3165                 if (data & ~msr_ent.data)
3166                         return 1;
3167
3168                 vcpu->arch.perf_capabilities = data;
3169
3170                 return 0;
3171                 }
3172         case MSR_EFER:
3173                 return set_efer(vcpu, msr_info);
3174         case MSR_K7_HWCR:
3175                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3176                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3177                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3178
3179                 /* Handle McStatusWrEn */
3180                 if (data == BIT_ULL(18)) {
3181                         vcpu->arch.msr_hwcr = data;
3182                 } else if (data != 0) {
3183                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3184                                     data);
3185                         return 1;
3186                 }
3187                 break;
3188         case MSR_FAM10H_MMIO_CONF_BASE:
3189                 if (data != 0) {
3190                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3191                                     "0x%llx\n", data);
3192                         return 1;
3193                 }
3194                 break;
3195         case 0x200 ... 0x2ff:
3196                 return kvm_mtrr_set_msr(vcpu, msr, data);
3197         case MSR_IA32_APICBASE:
3198                 return kvm_set_apic_base(vcpu, msr_info);
3199         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3200                 return kvm_x2apic_msr_write(vcpu, msr, data);
3201         case MSR_IA32_TSC_DEADLINE:
3202                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3203                 break;
3204         case MSR_IA32_TSC_ADJUST:
3205                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3206                         if (!msr_info->host_initiated) {
3207                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3208                                 adjust_tsc_offset_guest(vcpu, adj);
3209                         }
3210                         vcpu->arch.ia32_tsc_adjust_msr = data;
3211                 }
3212                 break;
3213         case MSR_IA32_MISC_ENABLE:
3214                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3215                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3216                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3217                                 return 1;
3218                         vcpu->arch.ia32_misc_enable_msr = data;
3219                         kvm_update_cpuid_runtime(vcpu);
3220                 } else {
3221                         vcpu->arch.ia32_misc_enable_msr = data;
3222                 }
3223                 break;
3224         case MSR_IA32_SMBASE:
3225                 if (!msr_info->host_initiated)
3226                         return 1;
3227                 vcpu->arch.smbase = data;
3228                 break;
3229         case MSR_IA32_POWER_CTL:
3230                 vcpu->arch.msr_ia32_power_ctl = data;
3231                 break;
3232         case MSR_IA32_TSC:
3233                 if (msr_info->host_initiated) {
3234                         kvm_synchronize_tsc(vcpu, data);
3235                 } else {
3236                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3237                         adjust_tsc_offset_guest(vcpu, adj);
3238                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3239                 }
3240                 break;
3241         case MSR_IA32_XSS:
3242                 if (!msr_info->host_initiated &&
3243                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3244                         return 1;
3245                 /*
3246                  * KVM supports exposing PT to the guest, but does not support
3247                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3248                  * XSAVES/XRSTORS to save/restore PT MSRs.
3249                  */
3250                 if (data & ~supported_xss)
3251                         return 1;
3252                 vcpu->arch.ia32_xss = data;
3253                 break;
3254         case MSR_SMI_COUNT:
3255                 if (!msr_info->host_initiated)
3256                         return 1;
3257                 vcpu->arch.smi_count = data;
3258                 break;
3259         case MSR_KVM_WALL_CLOCK_NEW:
3260                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3261                         return 1;
3262
3263                 vcpu->kvm->arch.wall_clock = data;
3264                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3265                 break;
3266         case MSR_KVM_WALL_CLOCK:
3267                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3268                         return 1;
3269
3270                 vcpu->kvm->arch.wall_clock = data;
3271                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3272                 break;
3273         case MSR_KVM_SYSTEM_TIME_NEW:
3274                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3275                         return 1;
3276
3277                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3278                 break;
3279         case MSR_KVM_SYSTEM_TIME:
3280                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3281                         return 1;
3282
3283                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3284                 break;
3285         case MSR_KVM_ASYNC_PF_EN:
3286                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3287                         return 1;
3288
3289                 if (kvm_pv_enable_async_pf(vcpu, data))
3290                         return 1;
3291                 break;
3292         case MSR_KVM_ASYNC_PF_INT:
3293                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3294                         return 1;
3295
3296                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3297                         return 1;
3298                 break;
3299         case MSR_KVM_ASYNC_PF_ACK:
3300                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3301                         return 1;
3302                 if (data & 0x1) {
3303                         vcpu->arch.apf.pageready_pending = false;
3304                         kvm_check_async_pf_completion(vcpu);
3305                 }
3306                 break;
3307         case MSR_KVM_STEAL_TIME:
3308                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3309                         return 1;
3310
3311                 if (unlikely(!sched_info_on()))
3312                         return 1;
3313
3314                 if (data & KVM_STEAL_RESERVED_MASK)
3315                         return 1;
3316
3317                 vcpu->arch.st.msr_val = data;
3318
3319                 if (!(data & KVM_MSR_ENABLED))
3320                         break;
3321
3322                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3323
3324                 break;
3325         case MSR_KVM_PV_EOI_EN:
3326                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3327                         return 1;
3328
3329                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3330                         return 1;
3331                 break;
3332
3333         case MSR_KVM_POLL_CONTROL:
3334                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3335                         return 1;
3336
3337                 /* only enable bit supported */
3338                 if (data & (-1ULL << 1))
3339                         return 1;
3340
3341                 vcpu->arch.msr_kvm_poll_control = data;
3342                 break;
3343
3344         case MSR_IA32_MCG_CTL:
3345         case MSR_IA32_MCG_STATUS:
3346         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3347                 return set_msr_mce(vcpu, msr_info);
3348
3349         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3350         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3351                 pr = true;
3352                 fallthrough;
3353         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3354         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3355                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3356                         return kvm_pmu_set_msr(vcpu, msr_info);
3357
3358                 if (pr || data != 0)
3359                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3360                                     "0x%x data 0x%llx\n", msr, data);
3361                 break;
3362         case MSR_K7_CLK_CTL:
3363                 /*
3364                  * Ignore all writes to this no longer documented MSR.
3365                  * Writes are only relevant for old K7 processors,
3366                  * all pre-dating SVM, but a recommended workaround from
3367                  * AMD for these chips. It is possible to specify the
3368                  * affected processor models on the command line, hence
3369                  * the need to ignore the workaround.
3370                  */
3371                 break;
3372         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3373         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3374         case HV_X64_MSR_SYNDBG_OPTIONS:
3375         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3376         case HV_X64_MSR_CRASH_CTL:
3377         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3378         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3379         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3380         case HV_X64_MSR_TSC_EMULATION_STATUS:
3381                 return kvm_hv_set_msr_common(vcpu, msr, data,
3382                                              msr_info->host_initiated);
3383         case MSR_IA32_BBL_CR_CTL3:
3384                 /* Drop writes to this legacy MSR -- see rdmsr
3385                  * counterpart for further detail.
3386                  */
3387                 if (report_ignored_msrs)
3388                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3389                                 msr, data);
3390                 break;
3391         case MSR_AMD64_OSVW_ID_LENGTH:
3392                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3393                         return 1;
3394                 vcpu->arch.osvw.length = data;
3395                 break;
3396         case MSR_AMD64_OSVW_STATUS:
3397                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3398                         return 1;
3399                 vcpu->arch.osvw.status = data;
3400                 break;
3401         case MSR_PLATFORM_INFO:
3402                 if (!msr_info->host_initiated ||
3403                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3404                      cpuid_fault_enabled(vcpu)))
3405                         return 1;
3406                 vcpu->arch.msr_platform_info = data;
3407                 break;
3408         case MSR_MISC_FEATURES_ENABLES:
3409                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3410                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3411                      !supports_cpuid_fault(vcpu)))
3412                         return 1;
3413                 vcpu->arch.msr_misc_features_enables = data;
3414                 break;
3415         default:
3416                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3417                         return kvm_pmu_set_msr(vcpu, msr_info);
3418                 return KVM_MSR_RET_INVALID;
3419         }
3420         return 0;
3421 }
3422 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3423
3424 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3425 {
3426         u64 data;
3427         u64 mcg_cap = vcpu->arch.mcg_cap;
3428         unsigned bank_num = mcg_cap & 0xff;
3429
3430         switch (msr) {
3431         case MSR_IA32_P5_MC_ADDR:
3432         case MSR_IA32_P5_MC_TYPE:
3433                 data = 0;
3434                 break;
3435         case MSR_IA32_MCG_CAP:
3436                 data = vcpu->arch.mcg_cap;
3437                 break;
3438         case MSR_IA32_MCG_CTL:
3439                 if (!(mcg_cap & MCG_CTL_P) && !host)
3440                         return 1;
3441                 data = vcpu->arch.mcg_ctl;
3442                 break;
3443         case MSR_IA32_MCG_STATUS:
3444                 data = vcpu->arch.mcg_status;
3445                 break;
3446         default:
3447                 if (msr >= MSR_IA32_MC0_CTL &&
3448                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3449                         u32 offset = array_index_nospec(
3450                                 msr - MSR_IA32_MC0_CTL,
3451                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3452
3453                         data = vcpu->arch.mce_banks[offset];
3454                         break;
3455                 }
3456                 return 1;
3457         }
3458         *pdata = data;
3459         return 0;
3460 }
3461
3462 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3463 {
3464         switch (msr_info->index) {
3465         case MSR_IA32_PLATFORM_ID:
3466         case MSR_IA32_EBL_CR_POWERON:
3467         case MSR_IA32_LASTBRANCHFROMIP:
3468         case MSR_IA32_LASTBRANCHTOIP:
3469         case MSR_IA32_LASTINTFROMIP:
3470         case MSR_IA32_LASTINTTOIP:
3471         case MSR_K8_SYSCFG:
3472         case MSR_K8_TSEG_ADDR:
3473         case MSR_K8_TSEG_MASK:
3474         case MSR_VM_HSAVE_PA:
3475         case MSR_K8_INT_PENDING_MSG:
3476         case MSR_AMD64_NB_CFG:
3477         case MSR_FAM10H_MMIO_CONF_BASE:
3478         case MSR_AMD64_BU_CFG2:
3479         case MSR_IA32_PERF_CTL:
3480         case MSR_AMD64_DC_CFG:
3481         case MSR_F15H_EX_CFG:
3482         /*
3483          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3484          * limit) MSRs. Just return 0, as we do not want to expose the host
3485          * data here. Do not conditionalize this on CPUID, as KVM does not do
3486          * so for existing CPU-specific MSRs.
3487          */
3488         case MSR_RAPL_POWER_UNIT:
3489         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3490         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3491         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3492         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3493                 msr_info->data = 0;
3494                 break;
3495         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3496                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3497                         return kvm_pmu_get_msr(vcpu, msr_info);
3498                 if (!msr_info->host_initiated)
3499                         return 1;
3500                 msr_info->data = 0;
3501                 break;
3502         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3503         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3504         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3505         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3506                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3507                         return kvm_pmu_get_msr(vcpu, msr_info);
3508                 msr_info->data = 0;
3509                 break;
3510         case MSR_IA32_UCODE_REV:
3511                 msr_info->data = vcpu->arch.microcode_version;
3512                 break;
3513         case MSR_IA32_ARCH_CAPABILITIES:
3514                 if (!msr_info->host_initiated &&
3515                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3516                         return 1;
3517                 msr_info->data = vcpu->arch.arch_capabilities;
3518                 break;
3519         case MSR_IA32_PERF_CAPABILITIES:
3520                 if (!msr_info->host_initiated &&
3521                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3522                         return 1;
3523                 msr_info->data = vcpu->arch.perf_capabilities;
3524                 break;
3525         case MSR_IA32_POWER_CTL:
3526                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3527                 break;
3528         case MSR_IA32_TSC: {
3529                 /*
3530                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3531                  * even when not intercepted. AMD manual doesn't explicitly
3532                  * state this but appears to behave the same.
3533                  *
3534                  * On userspace reads and writes, however, we unconditionally
3535                  * return L1's TSC value to ensure backwards-compatible
3536                  * behavior for migration.
3537                  */
3538                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3539                                                             vcpu->arch.tsc_offset;
3540
3541                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3542                 break;
3543         }
3544         case MSR_MTRRcap:
3545         case 0x200 ... 0x2ff:
3546                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3547         case 0xcd: /* fsb frequency */
3548                 msr_info->data = 3;
3549                 break;
3550                 /*
3551                  * MSR_EBC_FREQUENCY_ID
3552                  * Conservative value valid for even the basic CPU models.
3553                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3554                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3555                  * and 266MHz for model 3, or 4. Set Core Clock
3556                  * Frequency to System Bus Frequency Ratio to 1 (bits
3557                  * 31:24) even though these are only valid for CPU
3558                  * models > 2, however guests may end up dividing or
3559                  * multiplying by zero otherwise.
3560                  */
3561         case MSR_EBC_FREQUENCY_ID:
3562                 msr_info->data = 1 << 24;
3563                 break;
3564         case MSR_IA32_APICBASE:
3565                 msr_info->data = kvm_get_apic_base(vcpu);
3566                 break;
3567         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3568                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3569         case MSR_IA32_TSC_DEADLINE:
3570                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3571                 break;
3572         case MSR_IA32_TSC_ADJUST:
3573                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3574                 break;
3575         case MSR_IA32_MISC_ENABLE:
3576                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3577                 break;
3578         case MSR_IA32_SMBASE:
3579                 if (!msr_info->host_initiated)
3580                         return 1;
3581                 msr_info->data = vcpu->arch.smbase;
3582                 break;
3583         case MSR_SMI_COUNT:
3584                 msr_info->data = vcpu->arch.smi_count;
3585                 break;
3586         case MSR_IA32_PERF_STATUS:
3587                 /* TSC increment by tick */
3588                 msr_info->data = 1000ULL;
3589                 /* CPU multiplier */
3590                 msr_info->data |= (((uint64_t)4ULL) << 40);
3591                 break;
3592         case MSR_EFER:
3593                 msr_info->data = vcpu->arch.efer;
3594                 break;
3595         case MSR_KVM_WALL_CLOCK:
3596                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3597                         return 1;
3598
3599                 msr_info->data = vcpu->kvm->arch.wall_clock;
3600                 break;
3601         case MSR_KVM_WALL_CLOCK_NEW:
3602                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3603                         return 1;
3604
3605                 msr_info->data = vcpu->kvm->arch.wall_clock;
3606                 break;
3607         case MSR_KVM_SYSTEM_TIME:
3608                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3609                         return 1;
3610
3611                 msr_info->data = vcpu->arch.time;
3612                 break;
3613         case MSR_KVM_SYSTEM_TIME_NEW:
3614                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3615                         return 1;
3616
3617                 msr_info->data = vcpu->arch.time;
3618                 break;
3619         case MSR_KVM_ASYNC_PF_EN:
3620                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3621                         return 1;
3622
3623                 msr_info->data = vcpu->arch.apf.msr_en_val;
3624                 break;
3625         case MSR_KVM_ASYNC_PF_INT:
3626                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3627                         return 1;
3628
3629                 msr_info->data = vcpu->arch.apf.msr_int_val;
3630                 break;
3631         case MSR_KVM_ASYNC_PF_ACK:
3632                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3633                         return 1;
3634
3635                 msr_info->data = 0;
3636                 break;
3637         case MSR_KVM_STEAL_TIME:
3638                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3639                         return 1;
3640
3641                 msr_info->data = vcpu->arch.st.msr_val;
3642                 break;
3643         case MSR_KVM_PV_EOI_EN:
3644                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3645                         return 1;
3646
3647                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3648                 break;
3649         case MSR_KVM_POLL_CONTROL:
3650                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3651                         return 1;
3652
3653                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3654                 break;
3655         case MSR_IA32_P5_MC_ADDR:
3656         case MSR_IA32_P5_MC_TYPE:
3657         case MSR_IA32_MCG_CAP:
3658         case MSR_IA32_MCG_CTL:
3659         case MSR_IA32_MCG_STATUS:
3660         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3661                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3662                                    msr_info->host_initiated);
3663         case MSR_IA32_XSS:
3664                 if (!msr_info->host_initiated &&
3665                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3666                         return 1;
3667                 msr_info->data = vcpu->arch.ia32_xss;
3668                 break;
3669         case MSR_K7_CLK_CTL:
3670                 /*
3671                  * Provide expected ramp-up count for K7. All other
3672                  * are set to zero, indicating minimum divisors for
3673                  * every field.
3674                  *
3675                  * This prevents guest kernels on AMD host with CPU
3676                  * type 6, model 8 and higher from exploding due to
3677                  * the rdmsr failing.
3678                  */
3679                 msr_info->data = 0x20000000;
3680                 break;
3681         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3682         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3683         case HV_X64_MSR_SYNDBG_OPTIONS:
3684         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3685         case HV_X64_MSR_CRASH_CTL:
3686         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3687         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3688         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3689         case HV_X64_MSR_TSC_EMULATION_STATUS:
3690                 return kvm_hv_get_msr_common(vcpu,
3691                                              msr_info->index, &msr_info->data,
3692                                              msr_info->host_initiated);
3693         case MSR_IA32_BBL_CR_CTL3:
3694                 /* This legacy MSR exists but isn't fully documented in current
3695                  * silicon.  It is however accessed by winxp in very narrow
3696                  * scenarios where it sets bit #19, itself documented as
3697                  * a "reserved" bit.  Best effort attempt to source coherent
3698                  * read data here should the balance of the register be
3699                  * interpreted by the guest:
3700                  *
3701                  * L2 cache control register 3: 64GB range, 256KB size,
3702                  * enabled, latency 0x1, configured
3703                  */
3704                 msr_info->data = 0xbe702111;
3705                 break;
3706         case MSR_AMD64_OSVW_ID_LENGTH:
3707                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3708                         return 1;
3709                 msr_info->data = vcpu->arch.osvw.length;
3710                 break;
3711         case MSR_AMD64_OSVW_STATUS:
3712                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3713                         return 1;
3714                 msr_info->data = vcpu->arch.osvw.status;
3715                 break;
3716         case MSR_PLATFORM_INFO:
3717                 if (!msr_info->host_initiated &&
3718                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3719                         return 1;
3720                 msr_info->data = vcpu->arch.msr_platform_info;
3721                 break;
3722         case MSR_MISC_FEATURES_ENABLES:
3723                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3724                 break;
3725         case MSR_K7_HWCR:
3726                 msr_info->data = vcpu->arch.msr_hwcr;
3727                 break;
3728         default:
3729                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3730                         return kvm_pmu_get_msr(vcpu, msr_info);
3731                 return KVM_MSR_RET_INVALID;
3732         }
3733         return 0;
3734 }
3735 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3736
3737 /*
3738  * Read or write a bunch of msrs. All parameters are kernel addresses.
3739  *
3740  * @return number of msrs set successfully.
3741  */
3742 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3743                     struct kvm_msr_entry *entries,
3744                     int (*do_msr)(struct kvm_vcpu *vcpu,
3745                                   unsigned index, u64 *data))
3746 {
3747         int i;
3748
3749         for (i = 0; i < msrs->nmsrs; ++i)
3750                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3751                         break;
3752
3753         return i;
3754 }
3755
3756 /*
3757  * Read or write a bunch of msrs. Parameters are user addresses.
3758  *
3759  * @return number of msrs set successfully.
3760  */
3761 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3762                   int (*do_msr)(struct kvm_vcpu *vcpu,
3763                                 unsigned index, u64 *data),
3764                   int writeback)
3765 {
3766         struct kvm_msrs msrs;
3767         struct kvm_msr_entry *entries;
3768         int r, n;
3769         unsigned size;
3770
3771         r = -EFAULT;
3772         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3773                 goto out;
3774
3775         r = -E2BIG;
3776         if (msrs.nmsrs >= MAX_IO_MSRS)
3777                 goto out;
3778
3779         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3780         entries = memdup_user(user_msrs->entries, size);
3781         if (IS_ERR(entries)) {
3782                 r = PTR_ERR(entries);
3783                 goto out;
3784         }
3785
3786         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3787         if (r < 0)
3788                 goto out_free;
3789
3790         r = -EFAULT;
3791         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3792                 goto out_free;
3793
3794         r = n;
3795
3796 out_free:
3797         kfree(entries);
3798 out:
3799         return r;
3800 }
3801
3802 static inline bool kvm_can_mwait_in_guest(void)
3803 {
3804         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3805                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3806                 boot_cpu_has(X86_FEATURE_ARAT);
3807 }
3808
3809 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3810                                             struct kvm_cpuid2 __user *cpuid_arg)
3811 {
3812         struct kvm_cpuid2 cpuid;
3813         int r;
3814
3815         r = -EFAULT;
3816         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3817                 return r;
3818
3819         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3820         if (r)
3821                 return r;
3822
3823         r = -EFAULT;
3824         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3825                 return r;
3826
3827         return 0;
3828 }
3829
3830 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3831 {
3832         int r = 0;
3833
3834         switch (ext) {
3835         case KVM_CAP_IRQCHIP:
3836         case KVM_CAP_HLT:
3837         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3838         case KVM_CAP_SET_TSS_ADDR:
3839         case KVM_CAP_EXT_CPUID:
3840         case KVM_CAP_EXT_EMUL_CPUID:
3841         case KVM_CAP_CLOCKSOURCE:
3842         case KVM_CAP_PIT:
3843         case KVM_CAP_NOP_IO_DELAY:
3844         case KVM_CAP_MP_STATE:
3845         case KVM_CAP_SYNC_MMU:
3846         case KVM_CAP_USER_NMI:
3847         case KVM_CAP_REINJECT_CONTROL:
3848         case KVM_CAP_IRQ_INJECT_STATUS:
3849         case KVM_CAP_IOEVENTFD:
3850         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3851         case KVM_CAP_PIT2:
3852         case KVM_CAP_PIT_STATE2:
3853         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3854         case KVM_CAP_VCPU_EVENTS:
3855         case KVM_CAP_HYPERV:
3856         case KVM_CAP_HYPERV_VAPIC:
3857         case KVM_CAP_HYPERV_SPIN:
3858         case KVM_CAP_HYPERV_SYNIC:
3859         case KVM_CAP_HYPERV_SYNIC2:
3860         case KVM_CAP_HYPERV_VP_INDEX:
3861         case KVM_CAP_HYPERV_EVENTFD:
3862         case KVM_CAP_HYPERV_TLBFLUSH:
3863         case KVM_CAP_HYPERV_SEND_IPI:
3864         case KVM_CAP_HYPERV_CPUID:
3865         case KVM_CAP_SYS_HYPERV_CPUID:
3866         case KVM_CAP_PCI_SEGMENT:
3867         case KVM_CAP_DEBUGREGS:
3868         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3869         case KVM_CAP_XSAVE:
3870         case KVM_CAP_ASYNC_PF:
3871         case KVM_CAP_ASYNC_PF_INT:
3872         case KVM_CAP_GET_TSC_KHZ:
3873         case KVM_CAP_KVMCLOCK_CTRL:
3874         case KVM_CAP_READONLY_MEM:
3875         case KVM_CAP_HYPERV_TIME:
3876         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3877         case KVM_CAP_TSC_DEADLINE_TIMER:
3878         case KVM_CAP_DISABLE_QUIRKS:
3879         case KVM_CAP_SET_BOOT_CPU_ID:
3880         case KVM_CAP_SPLIT_IRQCHIP:
3881         case KVM_CAP_IMMEDIATE_EXIT:
3882         case KVM_CAP_PMU_EVENT_FILTER:
3883         case KVM_CAP_GET_MSR_FEATURES:
3884         case KVM_CAP_MSR_PLATFORM_INFO:
3885         case KVM_CAP_EXCEPTION_PAYLOAD:
3886         case KVM_CAP_SET_GUEST_DEBUG:
3887         case KVM_CAP_LAST_CPU:
3888         case KVM_CAP_X86_USER_SPACE_MSR:
3889         case KVM_CAP_X86_MSR_FILTER:
3890         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3891 #ifdef CONFIG_X86_SGX_KVM
3892         case KVM_CAP_SGX_ATTRIBUTE:
3893 #endif
3894         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3895                 r = 1;
3896                 break;
3897         case KVM_CAP_SET_GUEST_DEBUG2:
3898                 return KVM_GUESTDBG_VALID_MASK;
3899 #ifdef CONFIG_KVM_XEN
3900         case KVM_CAP_XEN_HVM:
3901                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3902                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3903                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
3904                 if (sched_info_on())
3905                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3906                 break;
3907 #endif
3908         case KVM_CAP_SYNC_REGS:
3909                 r = KVM_SYNC_X86_VALID_FIELDS;
3910                 break;
3911         case KVM_CAP_ADJUST_CLOCK:
3912                 r = KVM_CLOCK_TSC_STABLE;
3913                 break;
3914         case KVM_CAP_X86_DISABLE_EXITS:
3915                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3916                       KVM_X86_DISABLE_EXITS_CSTATE;
3917                 if(kvm_can_mwait_in_guest())
3918                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3919                 break;
3920         case KVM_CAP_X86_SMM:
3921                 /* SMBASE is usually relocated above 1M on modern chipsets,
3922                  * and SMM handlers might indeed rely on 4G segment limits,
3923                  * so do not report SMM to be available if real mode is
3924                  * emulated via vm86 mode.  Still, do not go to great lengths
3925                  * to avoid userspace's usage of the feature, because it is a
3926                  * fringe case that is not enabled except via specific settings
3927                  * of the module parameters.
3928                  */
3929                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3930                 break;
3931         case KVM_CAP_VAPIC:
3932                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3933                 break;
3934         case KVM_CAP_NR_VCPUS:
3935                 r = KVM_SOFT_MAX_VCPUS;
3936                 break;
3937         case KVM_CAP_MAX_VCPUS:
3938                 r = KVM_MAX_VCPUS;
3939                 break;
3940         case KVM_CAP_MAX_VCPU_ID:
3941                 r = KVM_MAX_VCPU_ID;
3942                 break;
3943         case KVM_CAP_PV_MMU:    /* obsolete */
3944                 r = 0;
3945                 break;
3946         case KVM_CAP_MCE:
3947                 r = KVM_MAX_MCE_BANKS;
3948                 break;
3949         case KVM_CAP_XCRS:
3950                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3951                 break;
3952         case KVM_CAP_TSC_CONTROL:
3953                 r = kvm_has_tsc_control;
3954                 break;
3955         case KVM_CAP_X2APIC_API:
3956                 r = KVM_X2APIC_API_VALID_FLAGS;
3957                 break;
3958         case KVM_CAP_NESTED_STATE:
3959                 r = kvm_x86_ops.nested_ops->get_state ?
3960                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3961                 break;
3962         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3963                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3964                 break;
3965         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3966                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3967                 break;
3968         case KVM_CAP_SMALLER_MAXPHYADDR:
3969                 r = (int) allow_smaller_maxphyaddr;
3970                 break;
3971         case KVM_CAP_STEAL_TIME:
3972                 r = sched_info_on();
3973                 break;
3974         case KVM_CAP_X86_BUS_LOCK_EXIT:
3975                 if (kvm_has_bus_lock_exit)
3976                         r = KVM_BUS_LOCK_DETECTION_OFF |
3977                             KVM_BUS_LOCK_DETECTION_EXIT;
3978                 else
3979                         r = 0;
3980                 break;
3981         default:
3982                 break;
3983         }
3984         return r;
3985
3986 }
3987
3988 long kvm_arch_dev_ioctl(struct file *filp,
3989                         unsigned int ioctl, unsigned long arg)
3990 {
3991         void __user *argp = (void __user *)arg;
3992         long r;
3993
3994         switch (ioctl) {
3995         case KVM_GET_MSR_INDEX_LIST: {
3996                 struct kvm_msr_list __user *user_msr_list = argp;
3997                 struct kvm_msr_list msr_list;
3998                 unsigned n;
3999
4000                 r = -EFAULT;
4001                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4002                         goto out;
4003                 n = msr_list.nmsrs;
4004                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4005                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4006                         goto out;
4007                 r = -E2BIG;
4008                 if (n < msr_list.nmsrs)
4009                         goto out;
4010                 r = -EFAULT;
4011                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4012                                  num_msrs_to_save * sizeof(u32)))
4013                         goto out;
4014                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4015                                  &emulated_msrs,
4016                                  num_emulated_msrs * sizeof(u32)))
4017                         goto out;
4018                 r = 0;
4019                 break;
4020         }
4021         case KVM_GET_SUPPORTED_CPUID:
4022         case KVM_GET_EMULATED_CPUID: {
4023                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4024                 struct kvm_cpuid2 cpuid;
4025
4026                 r = -EFAULT;
4027                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4028                         goto out;
4029
4030                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4031                                             ioctl);
4032                 if (r)
4033                         goto out;
4034
4035                 r = -EFAULT;
4036                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4037                         goto out;
4038                 r = 0;
4039                 break;
4040         }
4041         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4042                 r = -EFAULT;
4043                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4044                                  sizeof(kvm_mce_cap_supported)))
4045                         goto out;
4046                 r = 0;
4047                 break;
4048         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4049                 struct kvm_msr_list __user *user_msr_list = argp;
4050                 struct kvm_msr_list msr_list;
4051                 unsigned int n;
4052
4053                 r = -EFAULT;
4054                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4055                         goto out;
4056                 n = msr_list.nmsrs;
4057                 msr_list.nmsrs = num_msr_based_features;
4058                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4059                         goto out;
4060                 r = -E2BIG;
4061                 if (n < msr_list.nmsrs)
4062                         goto out;
4063                 r = -EFAULT;
4064                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4065                                  num_msr_based_features * sizeof(u32)))
4066                         goto out;
4067                 r = 0;
4068                 break;
4069         }
4070         case KVM_GET_MSRS:
4071                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4072                 break;
4073         case KVM_GET_SUPPORTED_HV_CPUID:
4074                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4075                 break;
4076         default:
4077                 r = -EINVAL;
4078                 break;
4079         }
4080 out:
4081         return r;
4082 }
4083
4084 static void wbinvd_ipi(void *garbage)
4085 {
4086         wbinvd();
4087 }
4088
4089 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4090 {
4091         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4092 }
4093
4094 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4095 {
4096         /* Address WBINVD may be executed by guest */
4097         if (need_emulate_wbinvd(vcpu)) {
4098                 if (static_call(kvm_x86_has_wbinvd_exit)())
4099                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4100                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4101                         smp_call_function_single(vcpu->cpu,
4102                                         wbinvd_ipi, NULL, 1);
4103         }
4104
4105         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4106
4107         /* Save host pkru register if supported */
4108         vcpu->arch.host_pkru = read_pkru();
4109
4110         /* Apply any externally detected TSC adjustments (due to suspend) */
4111         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4112                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4113                 vcpu->arch.tsc_offset_adjustment = 0;
4114                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4115         }
4116
4117         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4118                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4119                                 rdtsc() - vcpu->arch.last_host_tsc;
4120                 if (tsc_delta < 0)
4121                         mark_tsc_unstable("KVM discovered backwards TSC");
4122
4123                 if (kvm_check_tsc_unstable()) {
4124                         u64 offset = kvm_compute_tsc_offset(vcpu,
4125                                                 vcpu->arch.last_guest_tsc);
4126                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4127                         vcpu->arch.tsc_catchup = 1;
4128                 }
4129
4130                 if (kvm_lapic_hv_timer_in_use(vcpu))
4131                         kvm_lapic_restart_hv_timer(vcpu);
4132
4133                 /*
4134                  * On a host with synchronized TSC, there is no need to update
4135                  * kvmclock on vcpu->cpu migration
4136                  */
4137                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4138                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4139                 if (vcpu->cpu != cpu)
4140                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4141                 vcpu->cpu = cpu;
4142         }
4143
4144         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4145 }
4146
4147 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4148 {
4149         struct kvm_host_map map;
4150         struct kvm_steal_time *st;
4151
4152         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4153                 return;
4154
4155         if (vcpu->arch.st.preempted)
4156                 return;
4157
4158         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4159                         &vcpu->arch.st.cache, true))
4160                 return;
4161
4162         st = map.hva +
4163                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4164
4165         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4166
4167         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4168 }
4169
4170 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4171 {
4172         int idx;
4173
4174         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4175                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4176
4177         /*
4178          * Take the srcu lock as memslots will be accessed to check the gfn
4179          * cache generation against the memslots generation.
4180          */
4181         idx = srcu_read_lock(&vcpu->kvm->srcu);
4182         if (kvm_xen_msr_enabled(vcpu->kvm))
4183                 kvm_xen_runstate_set_preempted(vcpu);
4184         else
4185                 kvm_steal_time_set_preempted(vcpu);
4186         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4187
4188         static_call(kvm_x86_vcpu_put)(vcpu);
4189         vcpu->arch.last_host_tsc = rdtsc();
4190         /*
4191          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4192          * on every vmexit, but if not, we might have a stale dr6 from the
4193          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4194          */
4195         set_debugreg(0, 6);
4196 }
4197
4198 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4199                                     struct kvm_lapic_state *s)
4200 {
4201         if (vcpu->arch.apicv_active)
4202                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4203
4204         return kvm_apic_get_state(vcpu, s);
4205 }
4206
4207 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4208                                     struct kvm_lapic_state *s)
4209 {
4210         int r;
4211
4212         r = kvm_apic_set_state(vcpu, s);
4213         if (r)
4214                 return r;
4215         update_cr8_intercept(vcpu);
4216
4217         return 0;
4218 }
4219
4220 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4221 {
4222         /*
4223          * We can accept userspace's request for interrupt injection
4224          * as long as we have a place to store the interrupt number.
4225          * The actual injection will happen when the CPU is able to
4226          * deliver the interrupt.
4227          */
4228         if (kvm_cpu_has_extint(vcpu))
4229                 return false;
4230
4231         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4232         return (!lapic_in_kernel(vcpu) ||
4233                 kvm_apic_accept_pic_intr(vcpu));
4234 }
4235
4236 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4237 {
4238         return kvm_arch_interrupt_allowed(vcpu) &&
4239                 kvm_cpu_accept_dm_intr(vcpu);
4240 }
4241
4242 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4243                                     struct kvm_interrupt *irq)
4244 {
4245         if (irq->irq >= KVM_NR_INTERRUPTS)
4246                 return -EINVAL;
4247
4248         if (!irqchip_in_kernel(vcpu->kvm)) {
4249                 kvm_queue_interrupt(vcpu, irq->irq, false);
4250                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4251                 return 0;
4252         }
4253
4254         /*
4255          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4256          * fail for in-kernel 8259.
4257          */
4258         if (pic_in_kernel(vcpu->kvm))
4259                 return -ENXIO;
4260
4261         if (vcpu->arch.pending_external_vector != -1)
4262                 return -EEXIST;
4263
4264         vcpu->arch.pending_external_vector = irq->irq;
4265         kvm_make_request(KVM_REQ_EVENT, vcpu);
4266         return 0;
4267 }
4268
4269 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4270 {
4271         kvm_inject_nmi(vcpu);
4272
4273         return 0;
4274 }
4275
4276 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4277 {
4278         kvm_make_request(KVM_REQ_SMI, vcpu);
4279
4280         return 0;
4281 }
4282
4283 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4284                                            struct kvm_tpr_access_ctl *tac)
4285 {
4286         if (tac->flags)
4287                 return -EINVAL;
4288         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4289         return 0;
4290 }
4291
4292 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4293                                         u64 mcg_cap)
4294 {
4295         int r;
4296         unsigned bank_num = mcg_cap & 0xff, bank;
4297
4298         r = -EINVAL;
4299         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4300                 goto out;
4301         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4302                 goto out;
4303         r = 0;
4304         vcpu->arch.mcg_cap = mcg_cap;
4305         /* Init IA32_MCG_CTL to all 1s */
4306         if (mcg_cap & MCG_CTL_P)
4307                 vcpu->arch.mcg_ctl = ~(u64)0;
4308         /* Init IA32_MCi_CTL to all 1s */
4309         for (bank = 0; bank < bank_num; bank++)
4310                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4311
4312         static_call(kvm_x86_setup_mce)(vcpu);
4313 out:
4314         return r;
4315 }
4316
4317 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4318                                       struct kvm_x86_mce *mce)
4319 {
4320         u64 mcg_cap = vcpu->arch.mcg_cap;
4321         unsigned bank_num = mcg_cap & 0xff;
4322         u64 *banks = vcpu->arch.mce_banks;
4323
4324         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4325                 return -EINVAL;
4326         /*
4327          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4328          * reporting is disabled
4329          */
4330         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4331             vcpu->arch.mcg_ctl != ~(u64)0)
4332                 return 0;
4333         banks += 4 * mce->bank;
4334         /*
4335          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4336          * reporting is disabled for the bank
4337          */
4338         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4339                 return 0;
4340         if (mce->status & MCI_STATUS_UC) {
4341                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4342                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4343                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4344                         return 0;
4345                 }
4346                 if (banks[1] & MCI_STATUS_VAL)
4347                         mce->status |= MCI_STATUS_OVER;
4348                 banks[2] = mce->addr;
4349                 banks[3] = mce->misc;
4350                 vcpu->arch.mcg_status = mce->mcg_status;
4351                 banks[1] = mce->status;
4352                 kvm_queue_exception(vcpu, MC_VECTOR);
4353         } else if (!(banks[1] & MCI_STATUS_VAL)
4354                    || !(banks[1] & MCI_STATUS_UC)) {
4355                 if (banks[1] & MCI_STATUS_VAL)
4356                         mce->status |= MCI_STATUS_OVER;
4357                 banks[2] = mce->addr;
4358                 banks[3] = mce->misc;
4359                 banks[1] = mce->status;
4360         } else
4361                 banks[1] |= MCI_STATUS_OVER;
4362         return 0;
4363 }
4364
4365 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4366                                                struct kvm_vcpu_events *events)
4367 {
4368         process_nmi(vcpu);
4369
4370         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4371                 process_smi(vcpu);
4372
4373         /*
4374          * In guest mode, payload delivery should be deferred,
4375          * so that the L1 hypervisor can intercept #PF before
4376          * CR2 is modified (or intercept #DB before DR6 is
4377          * modified under nVMX). Unless the per-VM capability,
4378          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4379          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4380          * opportunistically defer the exception payload, deliver it if the
4381          * capability hasn't been requested before processing a
4382          * KVM_GET_VCPU_EVENTS.
4383          */
4384         if (!vcpu->kvm->arch.exception_payload_enabled &&
4385             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4386                 kvm_deliver_exception_payload(vcpu);
4387
4388         /*
4389          * The API doesn't provide the instruction length for software
4390          * exceptions, so don't report them. As long as the guest RIP
4391          * isn't advanced, we should expect to encounter the exception
4392          * again.
4393          */
4394         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4395                 events->exception.injected = 0;
4396                 events->exception.pending = 0;
4397         } else {
4398                 events->exception.injected = vcpu->arch.exception.injected;
4399                 events->exception.pending = vcpu->arch.exception.pending;
4400                 /*
4401                  * For ABI compatibility, deliberately conflate
4402                  * pending and injected exceptions when
4403                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4404                  */
4405                 if (!vcpu->kvm->arch.exception_payload_enabled)
4406                         events->exception.injected |=
4407                                 vcpu->arch.exception.pending;
4408         }
4409         events->exception.nr = vcpu->arch.exception.nr;
4410         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4411         events->exception.error_code = vcpu->arch.exception.error_code;
4412         events->exception_has_payload = vcpu->arch.exception.has_payload;
4413         events->exception_payload = vcpu->arch.exception.payload;
4414
4415         events->interrupt.injected =
4416                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4417         events->interrupt.nr = vcpu->arch.interrupt.nr;
4418         events->interrupt.soft = 0;
4419         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4420
4421         events->nmi.injected = vcpu->arch.nmi_injected;
4422         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4423         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4424         events->nmi.pad = 0;
4425
4426         events->sipi_vector = 0; /* never valid when reporting to user space */
4427
4428         events->smi.smm = is_smm(vcpu);
4429         events->smi.pending = vcpu->arch.smi_pending;
4430         events->smi.smm_inside_nmi =
4431                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4432         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4433
4434         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4435                          | KVM_VCPUEVENT_VALID_SHADOW
4436                          | KVM_VCPUEVENT_VALID_SMM);
4437         if (vcpu->kvm->arch.exception_payload_enabled)
4438                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4439
4440         memset(&events->reserved, 0, sizeof(events->reserved));
4441 }
4442
4443 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4444
4445 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4446                                               struct kvm_vcpu_events *events)
4447 {
4448         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4449                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4450                               | KVM_VCPUEVENT_VALID_SHADOW
4451                               | KVM_VCPUEVENT_VALID_SMM
4452                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4453                 return -EINVAL;
4454
4455         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4456                 if (!vcpu->kvm->arch.exception_payload_enabled)
4457                         return -EINVAL;
4458                 if (events->exception.pending)
4459                         events->exception.injected = 0;
4460                 else
4461                         events->exception_has_payload = 0;
4462         } else {
4463                 events->exception.pending = 0;
4464                 events->exception_has_payload = 0;
4465         }
4466
4467         if ((events->exception.injected || events->exception.pending) &&
4468             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4469                 return -EINVAL;
4470
4471         /* INITs are latched while in SMM */
4472         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4473             (events->smi.smm || events->smi.pending) &&
4474             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4475                 return -EINVAL;
4476
4477         process_nmi(vcpu);
4478         vcpu->arch.exception.injected = events->exception.injected;
4479         vcpu->arch.exception.pending = events->exception.pending;
4480         vcpu->arch.exception.nr = events->exception.nr;
4481         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4482         vcpu->arch.exception.error_code = events->exception.error_code;
4483         vcpu->arch.exception.has_payload = events->exception_has_payload;
4484         vcpu->arch.exception.payload = events->exception_payload;
4485
4486         vcpu->arch.interrupt.injected = events->interrupt.injected;
4487         vcpu->arch.interrupt.nr = events->interrupt.nr;
4488         vcpu->arch.interrupt.soft = events->interrupt.soft;
4489         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4490                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4491                                                 events->interrupt.shadow);
4492
4493         vcpu->arch.nmi_injected = events->nmi.injected;
4494         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4495                 vcpu->arch.nmi_pending = events->nmi.pending;
4496         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4497
4498         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4499             lapic_in_kernel(vcpu))
4500                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4501
4502         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4503                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4504                         if (events->smi.smm)
4505                                 vcpu->arch.hflags |= HF_SMM_MASK;
4506                         else
4507                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4508                         kvm_smm_changed(vcpu);
4509                 }
4510
4511                 vcpu->arch.smi_pending = events->smi.pending;
4512
4513                 if (events->smi.smm) {
4514                         if (events->smi.smm_inside_nmi)
4515                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4516                         else
4517                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4518                 }
4519
4520                 if (lapic_in_kernel(vcpu)) {
4521                         if (events->smi.latched_init)
4522                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4523                         else
4524                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4525                 }
4526         }
4527
4528         kvm_make_request(KVM_REQ_EVENT, vcpu);
4529
4530         return 0;
4531 }
4532
4533 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4534                                              struct kvm_debugregs *dbgregs)
4535 {
4536         unsigned long val;
4537
4538         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4539         kvm_get_dr(vcpu, 6, &val);
4540         dbgregs->dr6 = val;
4541         dbgregs->dr7 = vcpu->arch.dr7;
4542         dbgregs->flags = 0;
4543         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4544 }
4545
4546 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4547                                             struct kvm_debugregs *dbgregs)
4548 {
4549         if (dbgregs->flags)
4550                 return -EINVAL;
4551
4552         if (!kvm_dr6_valid(dbgregs->dr6))
4553                 return -EINVAL;
4554         if (!kvm_dr7_valid(dbgregs->dr7))
4555                 return -EINVAL;
4556
4557         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4558         kvm_update_dr0123(vcpu);
4559         vcpu->arch.dr6 = dbgregs->dr6;
4560         vcpu->arch.dr7 = dbgregs->dr7;
4561         kvm_update_dr7(vcpu);
4562
4563         return 0;
4564 }
4565
4566 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4567
4568 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4569 {
4570         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4571         u64 xstate_bv = xsave->header.xfeatures;
4572         u64 valid;
4573
4574         /*
4575          * Copy legacy XSAVE area, to avoid complications with CPUID
4576          * leaves 0 and 1 in the loop below.
4577          */
4578         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4579
4580         /* Set XSTATE_BV */
4581         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4582         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4583
4584         /*
4585          * Copy each region from the possibly compacted offset to the
4586          * non-compacted offset.
4587          */
4588         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4589         while (valid) {
4590                 u64 xfeature_mask = valid & -valid;
4591                 int xfeature_nr = fls64(xfeature_mask) - 1;
4592                 void *src = get_xsave_addr(xsave, xfeature_nr);
4593
4594                 if (src) {
4595                         u32 size, offset, ecx, edx;
4596                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4597                                     &size, &offset, &ecx, &edx);
4598                         if (xfeature_nr == XFEATURE_PKRU)
4599                                 memcpy(dest + offset, &vcpu->arch.pkru,
4600                                        sizeof(vcpu->arch.pkru));
4601                         else
4602                                 memcpy(dest + offset, src, size);
4603
4604                 }
4605
4606                 valid -= xfeature_mask;
4607         }
4608 }
4609
4610 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4611 {
4612         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4613         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4614         u64 valid;
4615
4616         /*
4617          * Copy legacy XSAVE area, to avoid complications with CPUID
4618          * leaves 0 and 1 in the loop below.
4619          */
4620         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4621
4622         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4623         xsave->header.xfeatures = xstate_bv;
4624         if (boot_cpu_has(X86_FEATURE_XSAVES))
4625                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4626
4627         /*
4628          * Copy each region from the non-compacted offset to the
4629          * possibly compacted offset.
4630          */
4631         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4632         while (valid) {
4633                 u64 xfeature_mask = valid & -valid;
4634                 int xfeature_nr = fls64(xfeature_mask) - 1;
4635                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4636
4637                 if (dest) {
4638                         u32 size, offset, ecx, edx;
4639                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4640                                     &size, &offset, &ecx, &edx);
4641                         if (xfeature_nr == XFEATURE_PKRU)
4642                                 memcpy(&vcpu->arch.pkru, src + offset,
4643                                        sizeof(vcpu->arch.pkru));
4644                         else
4645                                 memcpy(dest, src + offset, size);
4646                 }
4647
4648                 valid -= xfeature_mask;
4649         }
4650 }
4651
4652 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4653                                          struct kvm_xsave *guest_xsave)
4654 {
4655         if (!vcpu->arch.guest_fpu)
4656                 return;
4657
4658         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4659                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4660                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4661         } else {
4662                 memcpy(guest_xsave->region,
4663                         &vcpu->arch.guest_fpu->state.fxsave,
4664                         sizeof(struct fxregs_state));
4665                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4666                         XFEATURE_MASK_FPSSE;
4667         }
4668 }
4669
4670 #define XSAVE_MXCSR_OFFSET 24
4671
4672 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4673                                         struct kvm_xsave *guest_xsave)
4674 {
4675         u64 xstate_bv;
4676         u32 mxcsr;
4677
4678         if (!vcpu->arch.guest_fpu)
4679                 return 0;
4680
4681         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4682         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4683
4684         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4685                 /*
4686                  * Here we allow setting states that are not present in
4687                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4688                  * with old userspace.
4689                  */
4690                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4691                         return -EINVAL;
4692                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4693         } else {
4694                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4695                         mxcsr & ~mxcsr_feature_mask)
4696                         return -EINVAL;
4697                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4698                         guest_xsave->region, sizeof(struct fxregs_state));
4699         }
4700         return 0;
4701 }
4702
4703 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4704                                         struct kvm_xcrs *guest_xcrs)
4705 {
4706         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4707                 guest_xcrs->nr_xcrs = 0;
4708                 return;
4709         }
4710
4711         guest_xcrs->nr_xcrs = 1;
4712         guest_xcrs->flags = 0;
4713         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4714         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4715 }
4716
4717 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4718                                        struct kvm_xcrs *guest_xcrs)
4719 {
4720         int i, r = 0;
4721
4722         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4723                 return -EINVAL;
4724
4725         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4726                 return -EINVAL;
4727
4728         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4729                 /* Only support XCR0 currently */
4730                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4731                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4732                                 guest_xcrs->xcrs[i].value);
4733                         break;
4734                 }
4735         if (r)
4736                 r = -EINVAL;
4737         return r;
4738 }
4739
4740 /*
4741  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4742  * stopped by the hypervisor.  This function will be called from the host only.
4743  * EINVAL is returned when the host attempts to set the flag for a guest that
4744  * does not support pv clocks.
4745  */
4746 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4747 {
4748         if (!vcpu->arch.pv_time_enabled)
4749                 return -EINVAL;
4750         vcpu->arch.pvclock_set_guest_stopped_request = true;
4751         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4752         return 0;
4753 }
4754
4755 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4756                                      struct kvm_enable_cap *cap)
4757 {
4758         int r;
4759         uint16_t vmcs_version;
4760         void __user *user_ptr;
4761
4762         if (cap->flags)
4763                 return -EINVAL;
4764
4765         switch (cap->cap) {
4766         case KVM_CAP_HYPERV_SYNIC2:
4767                 if (cap->args[0])
4768                         return -EINVAL;
4769                 fallthrough;
4770
4771         case KVM_CAP_HYPERV_SYNIC:
4772                 if (!irqchip_in_kernel(vcpu->kvm))
4773                         return -EINVAL;
4774                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4775                                              KVM_CAP_HYPERV_SYNIC2);
4776         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4777                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4778                         return -ENOTTY;
4779                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4780                 if (!r) {
4781                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4782                         if (copy_to_user(user_ptr, &vmcs_version,
4783                                          sizeof(vmcs_version)))
4784                                 r = -EFAULT;
4785                 }
4786                 return r;
4787         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4788                 if (!kvm_x86_ops.enable_direct_tlbflush)
4789                         return -ENOTTY;
4790
4791                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4792
4793         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4794                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4795                 if (vcpu->arch.pv_cpuid.enforce)
4796                         kvm_update_pv_runtime(vcpu);
4797
4798                 return 0;
4799         default:
4800                 return -EINVAL;
4801         }
4802 }
4803
4804 long kvm_arch_vcpu_ioctl(struct file *filp,
4805                          unsigned int ioctl, unsigned long arg)
4806 {
4807         struct kvm_vcpu *vcpu = filp->private_data;
4808         void __user *argp = (void __user *)arg;
4809         int r;
4810         union {
4811                 struct kvm_lapic_state *lapic;
4812                 struct kvm_xsave *xsave;
4813                 struct kvm_xcrs *xcrs;
4814                 void *buffer;
4815         } u;
4816
4817         vcpu_load(vcpu);
4818
4819         u.buffer = NULL;
4820         switch (ioctl) {
4821         case KVM_GET_LAPIC: {
4822                 r = -EINVAL;
4823                 if (!lapic_in_kernel(vcpu))
4824                         goto out;
4825                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4826                                 GFP_KERNEL_ACCOUNT);
4827
4828                 r = -ENOMEM;
4829                 if (!u.lapic)
4830                         goto out;
4831                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4832                 if (r)
4833                         goto out;
4834                 r = -EFAULT;
4835                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4836                         goto out;
4837                 r = 0;
4838                 break;
4839         }
4840         case KVM_SET_LAPIC: {
4841                 r = -EINVAL;
4842                 if (!lapic_in_kernel(vcpu))
4843                         goto out;
4844                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4845                 if (IS_ERR(u.lapic)) {
4846                         r = PTR_ERR(u.lapic);
4847                         goto out_nofree;
4848                 }
4849
4850                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4851                 break;
4852         }
4853         case KVM_INTERRUPT: {
4854                 struct kvm_interrupt irq;
4855
4856                 r = -EFAULT;
4857                 if (copy_from_user(&irq, argp, sizeof(irq)))
4858                         goto out;
4859                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4860                 break;
4861         }
4862         case KVM_NMI: {
4863                 r = kvm_vcpu_ioctl_nmi(vcpu);
4864                 break;
4865         }
4866         case KVM_SMI: {
4867                 r = kvm_vcpu_ioctl_smi(vcpu);
4868                 break;
4869         }
4870         case KVM_SET_CPUID: {
4871                 struct kvm_cpuid __user *cpuid_arg = argp;
4872                 struct kvm_cpuid cpuid;
4873
4874                 r = -EFAULT;
4875                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4876                         goto out;
4877                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4878                 break;
4879         }
4880         case KVM_SET_CPUID2: {
4881                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4882                 struct kvm_cpuid2 cpuid;
4883
4884                 r = -EFAULT;
4885                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4886                         goto out;
4887                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4888                                               cpuid_arg->entries);
4889                 break;
4890         }
4891         case KVM_GET_CPUID2: {
4892                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4893                 struct kvm_cpuid2 cpuid;
4894
4895                 r = -EFAULT;
4896                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4897                         goto out;
4898                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4899                                               cpuid_arg->entries);
4900                 if (r)
4901                         goto out;
4902                 r = -EFAULT;
4903                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4904                         goto out;
4905                 r = 0;
4906                 break;
4907         }
4908         case KVM_GET_MSRS: {
4909                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4910                 r = msr_io(vcpu, argp, do_get_msr, 1);
4911                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4912                 break;
4913         }
4914         case KVM_SET_MSRS: {
4915                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4916                 r = msr_io(vcpu, argp, do_set_msr, 0);
4917                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4918                 break;
4919         }
4920         case KVM_TPR_ACCESS_REPORTING: {
4921                 struct kvm_tpr_access_ctl tac;
4922
4923                 r = -EFAULT;
4924                 if (copy_from_user(&tac, argp, sizeof(tac)))
4925                         goto out;
4926                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4927                 if (r)
4928                         goto out;
4929                 r = -EFAULT;
4930                 if (copy_to_user(argp, &tac, sizeof(tac)))
4931                         goto out;
4932                 r = 0;
4933                 break;
4934         };
4935         case KVM_SET_VAPIC_ADDR: {
4936                 struct kvm_vapic_addr va;
4937                 int idx;
4938
4939                 r = -EINVAL;
4940                 if (!lapic_in_kernel(vcpu))
4941                         goto out;
4942                 r = -EFAULT;
4943                 if (copy_from_user(&va, argp, sizeof(va)))
4944                         goto out;
4945                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4946                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4947                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4948                 break;
4949         }
4950         case KVM_X86_SETUP_MCE: {
4951                 u64 mcg_cap;
4952
4953                 r = -EFAULT;
4954                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4955                         goto out;
4956                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4957                 break;
4958         }
4959         case KVM_X86_SET_MCE: {
4960                 struct kvm_x86_mce mce;
4961
4962                 r = -EFAULT;
4963                 if (copy_from_user(&mce, argp, sizeof(mce)))
4964                         goto out;
4965                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4966                 break;
4967         }
4968         case KVM_GET_VCPU_EVENTS: {
4969                 struct kvm_vcpu_events events;
4970
4971                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4972
4973                 r = -EFAULT;
4974                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4975                         break;
4976                 r = 0;
4977                 break;
4978         }
4979         case KVM_SET_VCPU_EVENTS: {
4980                 struct kvm_vcpu_events events;
4981
4982                 r = -EFAULT;
4983                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4984                         break;
4985
4986                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4987                 break;
4988         }
4989         case KVM_GET_DEBUGREGS: {
4990                 struct kvm_debugregs dbgregs;
4991
4992                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4993
4994                 r = -EFAULT;
4995                 if (copy_to_user(argp, &dbgregs,
4996                                  sizeof(struct kvm_debugregs)))
4997                         break;
4998                 r = 0;
4999                 break;
5000         }
5001         case KVM_SET_DEBUGREGS: {
5002                 struct kvm_debugregs dbgregs;
5003
5004                 r = -EFAULT;
5005                 if (copy_from_user(&dbgregs, argp,
5006                                    sizeof(struct kvm_debugregs)))
5007                         break;
5008
5009                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5010                 break;
5011         }
5012         case KVM_GET_XSAVE: {
5013                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5014                 r = -ENOMEM;
5015                 if (!u.xsave)
5016                         break;
5017
5018                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5019
5020                 r = -EFAULT;
5021                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5022                         break;
5023                 r = 0;
5024                 break;
5025         }
5026         case KVM_SET_XSAVE: {
5027                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5028                 if (IS_ERR(u.xsave)) {
5029                         r = PTR_ERR(u.xsave);
5030                         goto out_nofree;
5031                 }
5032
5033                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5034                 break;
5035         }
5036         case KVM_GET_XCRS: {
5037                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5038                 r = -ENOMEM;
5039                 if (!u.xcrs)
5040                         break;
5041
5042                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5043
5044                 r = -EFAULT;
5045                 if (copy_to_user(argp, u.xcrs,
5046                                  sizeof(struct kvm_xcrs)))
5047                         break;
5048                 r = 0;
5049                 break;
5050         }
5051         case KVM_SET_XCRS: {
5052                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5053                 if (IS_ERR(u.xcrs)) {
5054                         r = PTR_ERR(u.xcrs);
5055                         goto out_nofree;
5056                 }
5057
5058                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5059                 break;
5060         }
5061         case KVM_SET_TSC_KHZ: {
5062                 u32 user_tsc_khz;
5063
5064                 r = -EINVAL;
5065                 user_tsc_khz = (u32)arg;
5066
5067                 if (kvm_has_tsc_control &&
5068                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5069                         goto out;
5070
5071                 if (user_tsc_khz == 0)
5072                         user_tsc_khz = tsc_khz;
5073
5074                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5075                         r = 0;
5076
5077                 goto out;
5078         }
5079         case KVM_GET_TSC_KHZ: {
5080                 r = vcpu->arch.virtual_tsc_khz;
5081                 goto out;
5082         }
5083         case KVM_KVMCLOCK_CTRL: {
5084                 r = kvm_set_guest_paused(vcpu);
5085                 goto out;
5086         }
5087         case KVM_ENABLE_CAP: {
5088                 struct kvm_enable_cap cap;
5089
5090                 r = -EFAULT;
5091                 if (copy_from_user(&cap, argp, sizeof(cap)))
5092                         goto out;
5093                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5094                 break;
5095         }
5096         case KVM_GET_NESTED_STATE: {
5097                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5098                 u32 user_data_size;
5099
5100                 r = -EINVAL;
5101                 if (!kvm_x86_ops.nested_ops->get_state)
5102                         break;
5103
5104                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5105                 r = -EFAULT;
5106                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5107                         break;
5108
5109                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5110                                                      user_data_size);
5111                 if (r < 0)
5112                         break;
5113
5114                 if (r > user_data_size) {
5115                         if (put_user(r, &user_kvm_nested_state->size))
5116                                 r = -EFAULT;
5117                         else
5118                                 r = -E2BIG;
5119                         break;
5120                 }
5121
5122                 r = 0;
5123                 break;
5124         }
5125         case KVM_SET_NESTED_STATE: {
5126                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5127                 struct kvm_nested_state kvm_state;
5128                 int idx;
5129
5130                 r = -EINVAL;
5131                 if (!kvm_x86_ops.nested_ops->set_state)
5132                         break;
5133
5134                 r = -EFAULT;
5135                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5136                         break;
5137
5138                 r = -EINVAL;
5139                 if (kvm_state.size < sizeof(kvm_state))
5140                         break;
5141
5142                 if (kvm_state.flags &
5143                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5144                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5145                       | KVM_STATE_NESTED_GIF_SET))
5146                         break;
5147
5148                 /* nested_run_pending implies guest_mode.  */
5149                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5150                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5151                         break;
5152
5153                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5154                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5155                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5156                 break;
5157         }
5158         case KVM_GET_SUPPORTED_HV_CPUID:
5159                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5160                 break;
5161 #ifdef CONFIG_KVM_XEN
5162         case KVM_XEN_VCPU_GET_ATTR: {
5163                 struct kvm_xen_vcpu_attr xva;
5164
5165                 r = -EFAULT;
5166                 if (copy_from_user(&xva, argp, sizeof(xva)))
5167                         goto out;
5168                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5169                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5170                         r = -EFAULT;
5171                 break;
5172         }
5173         case KVM_XEN_VCPU_SET_ATTR: {
5174                 struct kvm_xen_vcpu_attr xva;
5175
5176                 r = -EFAULT;
5177                 if (copy_from_user(&xva, argp, sizeof(xva)))
5178                         goto out;
5179                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5180                 break;
5181         }
5182 #endif
5183         default:
5184                 r = -EINVAL;
5185         }
5186 out:
5187         kfree(u.buffer);
5188 out_nofree:
5189         vcpu_put(vcpu);
5190         return r;
5191 }
5192
5193 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5194 {
5195         return VM_FAULT_SIGBUS;
5196 }
5197
5198 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5199 {
5200         int ret;
5201
5202         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5203                 return -EINVAL;
5204         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5205         return ret;
5206 }
5207
5208 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5209                                               u64 ident_addr)
5210 {
5211         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5212 }
5213
5214 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5215                                          unsigned long kvm_nr_mmu_pages)
5216 {
5217         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5218                 return -EINVAL;
5219
5220         mutex_lock(&kvm->slots_lock);
5221
5222         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5223         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5224
5225         mutex_unlock(&kvm->slots_lock);
5226         return 0;
5227 }
5228
5229 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5230 {
5231         return kvm->arch.n_max_mmu_pages;
5232 }
5233
5234 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5235 {
5236         struct kvm_pic *pic = kvm->arch.vpic;
5237         int r;
5238
5239         r = 0;
5240         switch (chip->chip_id) {
5241         case KVM_IRQCHIP_PIC_MASTER:
5242                 memcpy(&chip->chip.pic, &pic->pics[0],
5243                         sizeof(struct kvm_pic_state));
5244                 break;
5245         case KVM_IRQCHIP_PIC_SLAVE:
5246                 memcpy(&chip->chip.pic, &pic->pics[1],
5247                         sizeof(struct kvm_pic_state));
5248                 break;
5249         case KVM_IRQCHIP_IOAPIC:
5250                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5251                 break;
5252         default:
5253                 r = -EINVAL;
5254                 break;
5255         }
5256         return r;
5257 }
5258
5259 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5260 {
5261         struct kvm_pic *pic = kvm->arch.vpic;
5262         int r;
5263
5264         r = 0;
5265         switch (chip->chip_id) {
5266         case KVM_IRQCHIP_PIC_MASTER:
5267                 spin_lock(&pic->lock);
5268                 memcpy(&pic->pics[0], &chip->chip.pic,
5269                         sizeof(struct kvm_pic_state));
5270                 spin_unlock(&pic->lock);
5271                 break;
5272         case KVM_IRQCHIP_PIC_SLAVE:
5273                 spin_lock(&pic->lock);
5274                 memcpy(&pic->pics[1], &chip->chip.pic,
5275                         sizeof(struct kvm_pic_state));
5276                 spin_unlock(&pic->lock);
5277                 break;
5278         case KVM_IRQCHIP_IOAPIC:
5279                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5280                 break;
5281         default:
5282                 r = -EINVAL;
5283                 break;
5284         }
5285         kvm_pic_update_irq(pic);
5286         return r;
5287 }
5288
5289 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5290 {
5291         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5292
5293         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5294
5295         mutex_lock(&kps->lock);
5296         memcpy(ps, &kps->channels, sizeof(*ps));
5297         mutex_unlock(&kps->lock);
5298         return 0;
5299 }
5300
5301 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5302 {
5303         int i;
5304         struct kvm_pit *pit = kvm->arch.vpit;
5305
5306         mutex_lock(&pit->pit_state.lock);
5307         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5308         for (i = 0; i < 3; i++)
5309                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5310         mutex_unlock(&pit->pit_state.lock);
5311         return 0;
5312 }
5313
5314 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5315 {
5316         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5317         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5318                 sizeof(ps->channels));
5319         ps->flags = kvm->arch.vpit->pit_state.flags;
5320         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5321         memset(&ps->reserved, 0, sizeof(ps->reserved));
5322         return 0;
5323 }
5324
5325 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5326 {
5327         int start = 0;
5328         int i;
5329         u32 prev_legacy, cur_legacy;
5330         struct kvm_pit *pit = kvm->arch.vpit;
5331
5332         mutex_lock(&pit->pit_state.lock);
5333         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5334         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5335         if (!prev_legacy && cur_legacy)
5336                 start = 1;
5337         memcpy(&pit->pit_state.channels, &ps->channels,
5338                sizeof(pit->pit_state.channels));
5339         pit->pit_state.flags = ps->flags;
5340         for (i = 0; i < 3; i++)
5341                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5342                                    start && i == 0);
5343         mutex_unlock(&pit->pit_state.lock);
5344         return 0;
5345 }
5346
5347 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5348                                  struct kvm_reinject_control *control)
5349 {
5350         struct kvm_pit *pit = kvm->arch.vpit;
5351
5352         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5353          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5354          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5355          */
5356         mutex_lock(&pit->pit_state.lock);
5357         kvm_pit_set_reinject(pit, control->pit_reinject);
5358         mutex_unlock(&pit->pit_state.lock);
5359
5360         return 0;
5361 }
5362
5363 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5364 {
5365
5366         /*
5367          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5368          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5369          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5370          * VM-Exit.
5371          */
5372         struct kvm_vcpu *vcpu;
5373         int i;
5374
5375         kvm_for_each_vcpu(i, vcpu, kvm)
5376                 kvm_vcpu_kick(vcpu);
5377 }
5378
5379 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5380                         bool line_status)
5381 {
5382         if (!irqchip_in_kernel(kvm))
5383                 return -ENXIO;
5384
5385         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5386                                         irq_event->irq, irq_event->level,
5387                                         line_status);
5388         return 0;
5389 }
5390
5391 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5392                             struct kvm_enable_cap *cap)
5393 {
5394         int r;
5395
5396         if (cap->flags)
5397                 return -EINVAL;
5398
5399         switch (cap->cap) {
5400         case KVM_CAP_DISABLE_QUIRKS:
5401                 kvm->arch.disabled_quirks = cap->args[0];
5402                 r = 0;
5403                 break;
5404         case KVM_CAP_SPLIT_IRQCHIP: {
5405                 mutex_lock(&kvm->lock);
5406                 r = -EINVAL;
5407                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5408                         goto split_irqchip_unlock;
5409                 r = -EEXIST;
5410                 if (irqchip_in_kernel(kvm))
5411                         goto split_irqchip_unlock;
5412                 if (kvm->created_vcpus)
5413                         goto split_irqchip_unlock;
5414                 r = kvm_setup_empty_irq_routing(kvm);
5415                 if (r)
5416                         goto split_irqchip_unlock;
5417                 /* Pairs with irqchip_in_kernel. */
5418                 smp_wmb();
5419                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5420                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5421                 r = 0;
5422 split_irqchip_unlock:
5423                 mutex_unlock(&kvm->lock);
5424                 break;
5425         }
5426         case KVM_CAP_X2APIC_API:
5427                 r = -EINVAL;
5428                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5429                         break;
5430
5431                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5432                         kvm->arch.x2apic_format = true;
5433                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5434                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5435
5436                 r = 0;
5437                 break;
5438         case KVM_CAP_X86_DISABLE_EXITS:
5439                 r = -EINVAL;
5440                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5441                         break;
5442
5443                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5444                         kvm_can_mwait_in_guest())
5445                         kvm->arch.mwait_in_guest = true;
5446                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5447                         kvm->arch.hlt_in_guest = true;
5448                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5449                         kvm->arch.pause_in_guest = true;
5450                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5451                         kvm->arch.cstate_in_guest = true;
5452                 r = 0;
5453                 break;
5454         case KVM_CAP_MSR_PLATFORM_INFO:
5455                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5456                 r = 0;
5457                 break;
5458         case KVM_CAP_EXCEPTION_PAYLOAD:
5459                 kvm->arch.exception_payload_enabled = cap->args[0];
5460                 r = 0;
5461                 break;
5462         case KVM_CAP_X86_USER_SPACE_MSR:
5463                 kvm->arch.user_space_msr_mask = cap->args[0];
5464                 r = 0;
5465                 break;
5466         case KVM_CAP_X86_BUS_LOCK_EXIT:
5467                 r = -EINVAL;
5468                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5469                         break;
5470
5471                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5472                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5473                         break;
5474
5475                 if (kvm_has_bus_lock_exit &&
5476                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5477                         kvm->arch.bus_lock_detection_enabled = true;
5478                 r = 0;
5479                 break;
5480 #ifdef CONFIG_X86_SGX_KVM
5481         case KVM_CAP_SGX_ATTRIBUTE: {
5482                 unsigned long allowed_attributes = 0;
5483
5484                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5485                 if (r)
5486                         break;
5487
5488                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5489                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5490                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5491                         kvm->arch.sgx_provisioning_allowed = true;
5492                 else
5493                         r = -EINVAL;
5494                 break;
5495         }
5496 #endif
5497         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5498                 r = -EINVAL;
5499                 if (kvm_x86_ops.vm_copy_enc_context_from)
5500                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5501                 return r;
5502         default:
5503                 r = -EINVAL;
5504                 break;
5505         }
5506         return r;
5507 }
5508
5509 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5510 {
5511         struct kvm_x86_msr_filter *msr_filter;
5512
5513         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5514         if (!msr_filter)
5515                 return NULL;
5516
5517         msr_filter->default_allow = default_allow;
5518         return msr_filter;
5519 }
5520
5521 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5522 {
5523         u32 i;
5524
5525         if (!msr_filter)
5526                 return;
5527
5528         for (i = 0; i < msr_filter->count; i++)
5529                 kfree(msr_filter->ranges[i].bitmap);
5530
5531         kfree(msr_filter);
5532 }
5533
5534 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5535                               struct kvm_msr_filter_range *user_range)
5536 {
5537         unsigned long *bitmap = NULL;
5538         size_t bitmap_size;
5539
5540         if (!user_range->nmsrs)
5541                 return 0;
5542
5543         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5544                 return -EINVAL;
5545
5546         if (!user_range->flags)
5547                 return -EINVAL;
5548
5549         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5550         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5551                 return -EINVAL;
5552
5553         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5554         if (IS_ERR(bitmap))
5555                 return PTR_ERR(bitmap);
5556
5557         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5558                 .flags = user_range->flags,
5559                 .base = user_range->base,
5560                 .nmsrs = user_range->nmsrs,
5561                 .bitmap = bitmap,
5562         };
5563
5564         msr_filter->count++;
5565         return 0;
5566 }
5567
5568 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5569 {
5570         struct kvm_msr_filter __user *user_msr_filter = argp;
5571         struct kvm_x86_msr_filter *new_filter, *old_filter;
5572         struct kvm_msr_filter filter;
5573         bool default_allow;
5574         bool empty = true;
5575         int r = 0;
5576         u32 i;
5577
5578         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5579                 return -EFAULT;
5580
5581         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5582                 empty &= !filter.ranges[i].nmsrs;
5583
5584         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5585         if (empty && !default_allow)
5586                 return -EINVAL;
5587
5588         new_filter = kvm_alloc_msr_filter(default_allow);
5589         if (!new_filter)
5590                 return -ENOMEM;
5591
5592         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5593                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5594                 if (r) {
5595                         kvm_free_msr_filter(new_filter);
5596                         return r;
5597                 }
5598         }
5599
5600         mutex_lock(&kvm->lock);
5601
5602         /* The per-VM filter is protected by kvm->lock... */
5603         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5604
5605         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5606         synchronize_srcu(&kvm->srcu);
5607
5608         kvm_free_msr_filter(old_filter);
5609
5610         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5611         mutex_unlock(&kvm->lock);
5612
5613         return 0;
5614 }
5615
5616 long kvm_arch_vm_ioctl(struct file *filp,
5617                        unsigned int ioctl, unsigned long arg)
5618 {
5619         struct kvm *kvm = filp->private_data;
5620         void __user *argp = (void __user *)arg;
5621         int r = -ENOTTY;
5622         /*
5623          * This union makes it completely explicit to gcc-3.x
5624          * that these two variables' stack usage should be
5625          * combined, not added together.
5626          */
5627         union {
5628                 struct kvm_pit_state ps;
5629                 struct kvm_pit_state2 ps2;
5630                 struct kvm_pit_config pit_config;
5631         } u;
5632
5633         switch (ioctl) {
5634         case KVM_SET_TSS_ADDR:
5635                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5636                 break;
5637         case KVM_SET_IDENTITY_MAP_ADDR: {
5638                 u64 ident_addr;
5639
5640                 mutex_lock(&kvm->lock);
5641                 r = -EINVAL;
5642                 if (kvm->created_vcpus)
5643                         goto set_identity_unlock;
5644                 r = -EFAULT;
5645                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5646                         goto set_identity_unlock;
5647                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5648 set_identity_unlock:
5649                 mutex_unlock(&kvm->lock);
5650                 break;
5651         }
5652         case KVM_SET_NR_MMU_PAGES:
5653                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5654                 break;
5655         case KVM_GET_NR_MMU_PAGES:
5656                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5657                 break;
5658         case KVM_CREATE_IRQCHIP: {
5659                 mutex_lock(&kvm->lock);
5660
5661                 r = -EEXIST;
5662                 if (irqchip_in_kernel(kvm))
5663                         goto create_irqchip_unlock;
5664
5665                 r = -EINVAL;
5666                 if (kvm->created_vcpus)
5667                         goto create_irqchip_unlock;
5668
5669                 r = kvm_pic_init(kvm);
5670                 if (r)
5671                         goto create_irqchip_unlock;
5672
5673                 r = kvm_ioapic_init(kvm);
5674                 if (r) {
5675                         kvm_pic_destroy(kvm);
5676                         goto create_irqchip_unlock;
5677                 }
5678
5679                 r = kvm_setup_default_irq_routing(kvm);
5680                 if (r) {
5681                         kvm_ioapic_destroy(kvm);
5682                         kvm_pic_destroy(kvm);
5683                         goto create_irqchip_unlock;
5684                 }
5685                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5686                 smp_wmb();
5687                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5688         create_irqchip_unlock:
5689                 mutex_unlock(&kvm->lock);
5690                 break;
5691         }
5692         case KVM_CREATE_PIT:
5693                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5694                 goto create_pit;
5695         case KVM_CREATE_PIT2:
5696                 r = -EFAULT;
5697                 if (copy_from_user(&u.pit_config, argp,
5698                                    sizeof(struct kvm_pit_config)))
5699                         goto out;
5700         create_pit:
5701                 mutex_lock(&kvm->lock);
5702                 r = -EEXIST;
5703                 if (kvm->arch.vpit)
5704                         goto create_pit_unlock;
5705                 r = -ENOMEM;
5706                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5707                 if (kvm->arch.vpit)
5708                         r = 0;
5709         create_pit_unlock:
5710                 mutex_unlock(&kvm->lock);
5711                 break;
5712         case KVM_GET_IRQCHIP: {
5713                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5714                 struct kvm_irqchip *chip;
5715
5716                 chip = memdup_user(argp, sizeof(*chip));
5717                 if (IS_ERR(chip)) {
5718                         r = PTR_ERR(chip);
5719                         goto out;
5720                 }
5721
5722                 r = -ENXIO;
5723                 if (!irqchip_kernel(kvm))
5724                         goto get_irqchip_out;
5725                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5726                 if (r)
5727                         goto get_irqchip_out;
5728                 r = -EFAULT;
5729                 if (copy_to_user(argp, chip, sizeof(*chip)))
5730                         goto get_irqchip_out;
5731                 r = 0;
5732         get_irqchip_out:
5733                 kfree(chip);
5734                 break;
5735         }
5736         case KVM_SET_IRQCHIP: {
5737                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5738                 struct kvm_irqchip *chip;
5739
5740                 chip = memdup_user(argp, sizeof(*chip));
5741                 if (IS_ERR(chip)) {
5742                         r = PTR_ERR(chip);
5743                         goto out;
5744                 }
5745
5746                 r = -ENXIO;
5747                 if (!irqchip_kernel(kvm))
5748                         goto set_irqchip_out;
5749                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5750         set_irqchip_out:
5751                 kfree(chip);
5752                 break;
5753         }
5754         case KVM_GET_PIT: {
5755                 r = -EFAULT;
5756                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5757                         goto out;
5758                 r = -ENXIO;
5759                 if (!kvm->arch.vpit)
5760                         goto out;
5761                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5762                 if (r)
5763                         goto out;
5764                 r = -EFAULT;
5765                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5766                         goto out;
5767                 r = 0;
5768                 break;
5769         }
5770         case KVM_SET_PIT: {
5771                 r = -EFAULT;
5772                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5773                         goto out;
5774                 mutex_lock(&kvm->lock);
5775                 r = -ENXIO;
5776                 if (!kvm->arch.vpit)
5777                         goto set_pit_out;
5778                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5779 set_pit_out:
5780                 mutex_unlock(&kvm->lock);
5781                 break;
5782         }
5783         case KVM_GET_PIT2: {
5784                 r = -ENXIO;
5785                 if (!kvm->arch.vpit)
5786                         goto out;
5787                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5788                 if (r)
5789                         goto out;
5790                 r = -EFAULT;
5791                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5792                         goto out;
5793                 r = 0;
5794                 break;
5795         }
5796         case KVM_SET_PIT2: {
5797                 r = -EFAULT;
5798                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5799                         goto out;
5800                 mutex_lock(&kvm->lock);
5801                 r = -ENXIO;
5802                 if (!kvm->arch.vpit)
5803                         goto set_pit2_out;
5804                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5805 set_pit2_out:
5806                 mutex_unlock(&kvm->lock);
5807                 break;
5808         }
5809         case KVM_REINJECT_CONTROL: {
5810                 struct kvm_reinject_control control;
5811                 r =  -EFAULT;
5812                 if (copy_from_user(&control, argp, sizeof(control)))
5813                         goto out;
5814                 r = -ENXIO;
5815                 if (!kvm->arch.vpit)
5816                         goto out;
5817                 r = kvm_vm_ioctl_reinject(kvm, &control);
5818                 break;
5819         }
5820         case KVM_SET_BOOT_CPU_ID:
5821                 r = 0;
5822                 mutex_lock(&kvm->lock);
5823                 if (kvm->created_vcpus)
5824                         r = -EBUSY;
5825                 else
5826                         kvm->arch.bsp_vcpu_id = arg;
5827                 mutex_unlock(&kvm->lock);
5828                 break;
5829 #ifdef CONFIG_KVM_XEN
5830         case KVM_XEN_HVM_CONFIG: {
5831                 struct kvm_xen_hvm_config xhc;
5832                 r = -EFAULT;
5833                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5834                         goto out;
5835                 r = kvm_xen_hvm_config(kvm, &xhc);
5836                 break;
5837         }
5838         case KVM_XEN_HVM_GET_ATTR: {
5839                 struct kvm_xen_hvm_attr xha;
5840
5841                 r = -EFAULT;
5842                 if (copy_from_user(&xha, argp, sizeof(xha)))
5843                         goto out;
5844                 r = kvm_xen_hvm_get_attr(kvm, &xha);
5845                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5846                         r = -EFAULT;
5847                 break;
5848         }
5849         case KVM_XEN_HVM_SET_ATTR: {
5850                 struct kvm_xen_hvm_attr xha;
5851
5852                 r = -EFAULT;
5853                 if (copy_from_user(&xha, argp, sizeof(xha)))
5854                         goto out;
5855                 r = kvm_xen_hvm_set_attr(kvm, &xha);
5856                 break;
5857         }
5858 #endif
5859         case KVM_SET_CLOCK: {
5860                 struct kvm_arch *ka = &kvm->arch;
5861                 struct kvm_clock_data user_ns;
5862                 u64 now_ns;
5863
5864                 r = -EFAULT;
5865                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5866                         goto out;
5867
5868                 r = -EINVAL;
5869                 if (user_ns.flags)
5870                         goto out;
5871
5872                 r = 0;
5873                 /*
5874                  * TODO: userspace has to take care of races with VCPU_RUN, so
5875                  * kvm_gen_update_masterclock() can be cut down to locked
5876                  * pvclock_update_vm_gtod_copy().
5877                  */
5878                 kvm_gen_update_masterclock(kvm);
5879
5880                 /*
5881                  * This pairs with kvm_guest_time_update(): when masterclock is
5882                  * in use, we use master_kernel_ns + kvmclock_offset to set
5883                  * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5884                  * is slightly ahead) here we risk going negative on unsigned
5885                  * 'system_time' when 'user_ns.clock' is very small.
5886                  */
5887                 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5888                 if (kvm->arch.use_master_clock)
5889                         now_ns = ka->master_kernel_ns;
5890                 else
5891                         now_ns = get_kvmclock_base_ns();
5892                 ka->kvmclock_offset = user_ns.clock - now_ns;
5893                 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5894
5895                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5896                 break;
5897         }
5898         case KVM_GET_CLOCK: {
5899                 struct kvm_clock_data user_ns;
5900                 u64 now_ns;
5901
5902                 now_ns = get_kvmclock_ns(kvm);
5903                 user_ns.clock = now_ns;
5904                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5905                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5906
5907                 r = -EFAULT;
5908                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5909                         goto out;
5910                 r = 0;
5911                 break;
5912         }
5913         case KVM_MEMORY_ENCRYPT_OP: {
5914                 r = -ENOTTY;
5915                 if (kvm_x86_ops.mem_enc_op)
5916                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5917                 break;
5918         }
5919         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5920                 struct kvm_enc_region region;
5921
5922                 r = -EFAULT;
5923                 if (copy_from_user(&region, argp, sizeof(region)))
5924                         goto out;
5925
5926                 r = -ENOTTY;
5927                 if (kvm_x86_ops.mem_enc_reg_region)
5928                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5929                 break;
5930         }
5931         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5932                 struct kvm_enc_region region;
5933
5934                 r = -EFAULT;
5935                 if (copy_from_user(&region, argp, sizeof(region)))
5936                         goto out;
5937
5938                 r = -ENOTTY;
5939                 if (kvm_x86_ops.mem_enc_unreg_region)
5940                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5941                 break;
5942         }
5943         case KVM_HYPERV_EVENTFD: {
5944                 struct kvm_hyperv_eventfd hvevfd;
5945
5946                 r = -EFAULT;
5947                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5948                         goto out;
5949                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5950                 break;
5951         }
5952         case KVM_SET_PMU_EVENT_FILTER:
5953                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5954                 break;
5955         case KVM_X86_SET_MSR_FILTER:
5956                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5957                 break;
5958         default:
5959                 r = -ENOTTY;
5960         }
5961 out:
5962         return r;
5963 }
5964
5965 static void kvm_init_msr_list(void)
5966 {
5967         struct x86_pmu_capability x86_pmu;
5968         u32 dummy[2];
5969         unsigned i;
5970
5971         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5972                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5973
5974         perf_get_x86_pmu_capability(&x86_pmu);
5975
5976         num_msrs_to_save = 0;
5977         num_emulated_msrs = 0;
5978         num_msr_based_features = 0;
5979
5980         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5981                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5982                         continue;
5983
5984                 /*
5985                  * Even MSRs that are valid in the host may not be exposed
5986                  * to the guests in some cases.
5987                  */
5988                 switch (msrs_to_save_all[i]) {
5989                 case MSR_IA32_BNDCFGS:
5990                         if (!kvm_mpx_supported())
5991                                 continue;
5992                         break;
5993                 case MSR_TSC_AUX:
5994                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
5995                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
5996                                 continue;
5997                         break;
5998                 case MSR_IA32_UMWAIT_CONTROL:
5999                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6000                                 continue;
6001                         break;
6002                 case MSR_IA32_RTIT_CTL:
6003                 case MSR_IA32_RTIT_STATUS:
6004                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6005                                 continue;
6006                         break;
6007                 case MSR_IA32_RTIT_CR3_MATCH:
6008                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6009                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6010                                 continue;
6011                         break;
6012                 case MSR_IA32_RTIT_OUTPUT_BASE:
6013                 case MSR_IA32_RTIT_OUTPUT_MASK:
6014                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6015                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6016                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6017                                 continue;
6018                         break;
6019                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6020                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6021                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6022                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6023                                 continue;
6024                         break;
6025                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6026                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6027                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6028                                 continue;
6029                         break;
6030                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6031                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6032                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6033                                 continue;
6034                         break;
6035                 default:
6036                         break;
6037                 }
6038
6039                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6040         }
6041
6042         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6043                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6044                         continue;
6045
6046                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6047         }
6048
6049         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6050                 struct kvm_msr_entry msr;
6051
6052                 msr.index = msr_based_features_all[i];
6053                 if (kvm_get_msr_feature(&msr))
6054                         continue;
6055
6056                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6057         }
6058 }
6059
6060 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6061                            const void *v)
6062 {
6063         int handled = 0;
6064         int n;
6065
6066         do {
6067                 n = min(len, 8);
6068                 if (!(lapic_in_kernel(vcpu) &&
6069                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6070                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6071                         break;
6072                 handled += n;
6073                 addr += n;
6074                 len -= n;
6075                 v += n;
6076         } while (len);
6077
6078         return handled;
6079 }
6080
6081 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6082 {
6083         int handled = 0;
6084         int n;
6085
6086         do {
6087                 n = min(len, 8);
6088                 if (!(lapic_in_kernel(vcpu) &&
6089                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6090                                          addr, n, v))
6091                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6092                         break;
6093                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6094                 handled += n;
6095                 addr += n;
6096                 len -= n;
6097                 v += n;
6098         } while (len);
6099
6100         return handled;
6101 }
6102
6103 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6104                         struct kvm_segment *var, int seg)
6105 {
6106         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6107 }
6108
6109 void kvm_get_segment(struct kvm_vcpu *vcpu,
6110                      struct kvm_segment *var, int seg)
6111 {
6112         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6113 }
6114
6115 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6116                            struct x86_exception *exception)
6117 {
6118         gpa_t t_gpa;
6119
6120         BUG_ON(!mmu_is_nested(vcpu));
6121
6122         /* NPT walks are always user-walks */
6123         access |= PFERR_USER_MASK;
6124         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6125
6126         return t_gpa;
6127 }
6128
6129 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6130                               struct x86_exception *exception)
6131 {
6132         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6133         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6134 }
6135 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6136
6137  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6138                                 struct x86_exception *exception)
6139 {
6140         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6141         access |= PFERR_FETCH_MASK;
6142         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6143 }
6144
6145 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6146                                struct x86_exception *exception)
6147 {
6148         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6149         access |= PFERR_WRITE_MASK;
6150         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6151 }
6152 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6153
6154 /* uses this to access any guest's mapped memory without checking CPL */
6155 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6156                                 struct x86_exception *exception)
6157 {
6158         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6159 }
6160
6161 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6162                                       struct kvm_vcpu *vcpu, u32 access,
6163                                       struct x86_exception *exception)
6164 {
6165         void *data = val;
6166         int r = X86EMUL_CONTINUE;
6167
6168         while (bytes) {
6169                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6170                                                             exception);
6171                 unsigned offset = addr & (PAGE_SIZE-1);
6172                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6173                 int ret;
6174
6175                 if (gpa == UNMAPPED_GVA)
6176                         return X86EMUL_PROPAGATE_FAULT;
6177                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6178                                                offset, toread);
6179                 if (ret < 0) {
6180                         r = X86EMUL_IO_NEEDED;
6181                         goto out;
6182                 }
6183
6184                 bytes -= toread;
6185                 data += toread;
6186                 addr += toread;
6187         }
6188 out:
6189         return r;
6190 }
6191
6192 /* used for instruction fetching */
6193 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6194                                 gva_t addr, void *val, unsigned int bytes,
6195                                 struct x86_exception *exception)
6196 {
6197         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6198         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6199         unsigned offset;
6200         int ret;
6201
6202         /* Inline kvm_read_guest_virt_helper for speed.  */
6203         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6204                                                     exception);
6205         if (unlikely(gpa == UNMAPPED_GVA))
6206                 return X86EMUL_PROPAGATE_FAULT;
6207
6208         offset = addr & (PAGE_SIZE-1);
6209         if (WARN_ON(offset + bytes > PAGE_SIZE))
6210                 bytes = (unsigned)PAGE_SIZE - offset;
6211         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6212                                        offset, bytes);
6213         if (unlikely(ret < 0))
6214                 return X86EMUL_IO_NEEDED;
6215
6216         return X86EMUL_CONTINUE;
6217 }
6218
6219 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6220                                gva_t addr, void *val, unsigned int bytes,
6221                                struct x86_exception *exception)
6222 {
6223         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6224
6225         /*
6226          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6227          * is returned, but our callers are not ready for that and they blindly
6228          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6229          * uninitialized kernel stack memory into cr2 and error code.
6230          */
6231         memset(exception, 0, sizeof(*exception));
6232         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6233                                           exception);
6234 }
6235 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6236
6237 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6238                              gva_t addr, void *val, unsigned int bytes,
6239                              struct x86_exception *exception, bool system)
6240 {
6241         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6242         u32 access = 0;
6243
6244         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6245                 access |= PFERR_USER_MASK;
6246
6247         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6248 }
6249
6250 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6251                 unsigned long addr, void *val, unsigned int bytes)
6252 {
6253         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6254         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6255
6256         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6257 }
6258
6259 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6260                                       struct kvm_vcpu *vcpu, u32 access,
6261                                       struct x86_exception *exception)
6262 {
6263         void *data = val;
6264         int r = X86EMUL_CONTINUE;
6265
6266         while (bytes) {
6267                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6268                                                              access,
6269                                                              exception);
6270                 unsigned offset = addr & (PAGE_SIZE-1);
6271                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6272                 int ret;
6273
6274                 if (gpa == UNMAPPED_GVA)
6275                         return X86EMUL_PROPAGATE_FAULT;
6276                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6277                 if (ret < 0) {
6278                         r = X86EMUL_IO_NEEDED;
6279                         goto out;
6280                 }
6281
6282                 bytes -= towrite;
6283                 data += towrite;
6284                 addr += towrite;
6285         }
6286 out:
6287         return r;
6288 }
6289
6290 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6291                               unsigned int bytes, struct x86_exception *exception,
6292                               bool system)
6293 {
6294         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6295         u32 access = PFERR_WRITE_MASK;
6296
6297         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6298                 access |= PFERR_USER_MASK;
6299
6300         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6301                                            access, exception);
6302 }
6303
6304 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6305                                 unsigned int bytes, struct x86_exception *exception)
6306 {
6307         /* kvm_write_guest_virt_system can pull in tons of pages. */
6308         vcpu->arch.l1tf_flush_l1d = true;
6309
6310         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6311                                            PFERR_WRITE_MASK, exception);
6312 }
6313 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6314
6315 int handle_ud(struct kvm_vcpu *vcpu)
6316 {
6317         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6318         int emul_type = EMULTYPE_TRAP_UD;
6319         char sig[5]; /* ud2; .ascii "kvm" */
6320         struct x86_exception e;
6321
6322         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6323                 return 1;
6324
6325         if (force_emulation_prefix &&
6326             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6327                                 sig, sizeof(sig), &e) == 0 &&
6328             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6329                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6330                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6331         }
6332
6333         return kvm_emulate_instruction(vcpu, emul_type);
6334 }
6335 EXPORT_SYMBOL_GPL(handle_ud);
6336
6337 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6338                             gpa_t gpa, bool write)
6339 {
6340         /* For APIC access vmexit */
6341         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6342                 return 1;
6343
6344         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6345                 trace_vcpu_match_mmio(gva, gpa, write, true);
6346                 return 1;
6347         }
6348
6349         return 0;
6350 }
6351
6352 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6353                                 gpa_t *gpa, struct x86_exception *exception,
6354                                 bool write)
6355 {
6356         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6357                 | (write ? PFERR_WRITE_MASK : 0);
6358
6359         /*
6360          * currently PKRU is only applied to ept enabled guest so
6361          * there is no pkey in EPT page table for L1 guest or EPT
6362          * shadow page table for L2 guest.
6363          */
6364         if (vcpu_match_mmio_gva(vcpu, gva)
6365             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6366                                  vcpu->arch.mmio_access, 0, access)) {
6367                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6368                                         (gva & (PAGE_SIZE - 1));
6369                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6370                 return 1;
6371         }
6372
6373         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6374
6375         if (*gpa == UNMAPPED_GVA)
6376                 return -1;
6377
6378         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6379 }
6380
6381 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6382                         const void *val, int bytes)
6383 {
6384         int ret;
6385
6386         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6387         if (ret < 0)
6388                 return 0;
6389         kvm_page_track_write(vcpu, gpa, val, bytes);
6390         return 1;
6391 }
6392
6393 struct read_write_emulator_ops {
6394         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6395                                   int bytes);
6396         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6397                                   void *val, int bytes);
6398         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6399                                int bytes, void *val);
6400         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6401                                     void *val, int bytes);
6402         bool write;
6403 };
6404
6405 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6406 {
6407         if (vcpu->mmio_read_completed) {
6408                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6409                                vcpu->mmio_fragments[0].gpa, val);
6410                 vcpu->mmio_read_completed = 0;
6411                 return 1;
6412         }
6413
6414         return 0;
6415 }
6416
6417 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6418                         void *val, int bytes)
6419 {
6420         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6421 }
6422
6423 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6424                          void *val, int bytes)
6425 {
6426         return emulator_write_phys(vcpu, gpa, val, bytes);
6427 }
6428
6429 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6430 {
6431         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6432         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6433 }
6434
6435 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6436                           void *val, int bytes)
6437 {
6438         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6439         return X86EMUL_IO_NEEDED;
6440 }
6441
6442 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6443                            void *val, int bytes)
6444 {
6445         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6446
6447         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6448         return X86EMUL_CONTINUE;
6449 }
6450
6451 static const struct read_write_emulator_ops read_emultor = {
6452         .read_write_prepare = read_prepare,
6453         .read_write_emulate = read_emulate,
6454         .read_write_mmio = vcpu_mmio_read,
6455         .read_write_exit_mmio = read_exit_mmio,
6456 };
6457
6458 static const struct read_write_emulator_ops write_emultor = {
6459         .read_write_emulate = write_emulate,
6460         .read_write_mmio = write_mmio,
6461         .read_write_exit_mmio = write_exit_mmio,
6462         .write = true,
6463 };
6464
6465 static int emulator_read_write_onepage(unsigned long addr, void *val,
6466                                        unsigned int bytes,
6467                                        struct x86_exception *exception,
6468                                        struct kvm_vcpu *vcpu,
6469                                        const struct read_write_emulator_ops *ops)
6470 {
6471         gpa_t gpa;
6472         int handled, ret;
6473         bool write = ops->write;
6474         struct kvm_mmio_fragment *frag;
6475         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6476
6477         /*
6478          * If the exit was due to a NPF we may already have a GPA.
6479          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6480          * Note, this cannot be used on string operations since string
6481          * operation using rep will only have the initial GPA from the NPF
6482          * occurred.
6483          */
6484         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6485             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6486                 gpa = ctxt->gpa_val;
6487                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6488         } else {
6489                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6490                 if (ret < 0)
6491                         return X86EMUL_PROPAGATE_FAULT;
6492         }
6493
6494         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6495                 return X86EMUL_CONTINUE;
6496
6497         /*
6498          * Is this MMIO handled locally?
6499          */
6500         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6501         if (handled == bytes)
6502                 return X86EMUL_CONTINUE;
6503
6504         gpa += handled;
6505         bytes -= handled;
6506         val += handled;
6507
6508         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6509         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6510         frag->gpa = gpa;
6511         frag->data = val;
6512         frag->len = bytes;
6513         return X86EMUL_CONTINUE;
6514 }
6515
6516 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6517                         unsigned long addr,
6518                         void *val, unsigned int bytes,
6519                         struct x86_exception *exception,
6520                         const struct read_write_emulator_ops *ops)
6521 {
6522         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6523         gpa_t gpa;
6524         int rc;
6525
6526         if (ops->read_write_prepare &&
6527                   ops->read_write_prepare(vcpu, val, bytes))
6528                 return X86EMUL_CONTINUE;
6529
6530         vcpu->mmio_nr_fragments = 0;
6531
6532         /* Crossing a page boundary? */
6533         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6534                 int now;
6535
6536                 now = -addr & ~PAGE_MASK;
6537                 rc = emulator_read_write_onepage(addr, val, now, exception,
6538                                                  vcpu, ops);
6539
6540                 if (rc != X86EMUL_CONTINUE)
6541                         return rc;
6542                 addr += now;
6543                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6544                         addr = (u32)addr;
6545                 val += now;
6546                 bytes -= now;
6547         }
6548
6549         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6550                                          vcpu, ops);
6551         if (rc != X86EMUL_CONTINUE)
6552                 return rc;
6553
6554         if (!vcpu->mmio_nr_fragments)
6555                 return rc;
6556
6557         gpa = vcpu->mmio_fragments[0].gpa;
6558
6559         vcpu->mmio_needed = 1;
6560         vcpu->mmio_cur_fragment = 0;
6561
6562         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6563         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6564         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6565         vcpu->run->mmio.phys_addr = gpa;
6566
6567         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6568 }
6569
6570 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6571                                   unsigned long addr,
6572                                   void *val,
6573                                   unsigned int bytes,
6574                                   struct x86_exception *exception)
6575 {
6576         return emulator_read_write(ctxt, addr, val, bytes,
6577                                    exception, &read_emultor);
6578 }
6579
6580 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6581                             unsigned long addr,
6582                             const void *val,
6583                             unsigned int bytes,
6584                             struct x86_exception *exception)
6585 {
6586         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6587                                    exception, &write_emultor);
6588 }
6589
6590 #define CMPXCHG_TYPE(t, ptr, old, new) \
6591         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6592
6593 #ifdef CONFIG_X86_64
6594 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6595 #else
6596 #  define CMPXCHG64(ptr, old, new) \
6597         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6598 #endif
6599
6600 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6601                                      unsigned long addr,
6602                                      const void *old,
6603                                      const void *new,
6604                                      unsigned int bytes,
6605                                      struct x86_exception *exception)
6606 {
6607         struct kvm_host_map map;
6608         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6609         u64 page_line_mask;
6610         gpa_t gpa;
6611         char *kaddr;
6612         bool exchanged;
6613
6614         /* guests cmpxchg8b have to be emulated atomically */
6615         if (bytes > 8 || (bytes & (bytes - 1)))
6616                 goto emul_write;
6617
6618         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6619
6620         if (gpa == UNMAPPED_GVA ||
6621             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6622                 goto emul_write;
6623
6624         /*
6625          * Emulate the atomic as a straight write to avoid #AC if SLD is
6626          * enabled in the host and the access splits a cache line.
6627          */
6628         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6629                 page_line_mask = ~(cache_line_size() - 1);
6630         else
6631                 page_line_mask = PAGE_MASK;
6632
6633         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6634                 goto emul_write;
6635
6636         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6637                 goto emul_write;
6638
6639         kaddr = map.hva + offset_in_page(gpa);
6640
6641         switch (bytes) {
6642         case 1:
6643                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6644                 break;
6645         case 2:
6646                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6647                 break;
6648         case 4:
6649                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6650                 break;
6651         case 8:
6652                 exchanged = CMPXCHG64(kaddr, old, new);
6653                 break;
6654         default:
6655                 BUG();
6656         }
6657
6658         kvm_vcpu_unmap(vcpu, &map, true);
6659
6660         if (!exchanged)
6661                 return X86EMUL_CMPXCHG_FAILED;
6662
6663         kvm_page_track_write(vcpu, gpa, new, bytes);
6664
6665         return X86EMUL_CONTINUE;
6666
6667 emul_write:
6668         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6669
6670         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6671 }
6672
6673 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6674 {
6675         int r = 0, i;
6676
6677         for (i = 0; i < vcpu->arch.pio.count; i++) {
6678                 if (vcpu->arch.pio.in)
6679                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6680                                             vcpu->arch.pio.size, pd);
6681                 else
6682                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6683                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6684                                              pd);
6685                 if (r)
6686                         break;
6687                 pd += vcpu->arch.pio.size;
6688         }
6689         return r;
6690 }
6691
6692 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6693                                unsigned short port, void *val,
6694                                unsigned int count, bool in)
6695 {
6696         vcpu->arch.pio.port = port;
6697         vcpu->arch.pio.in = in;
6698         vcpu->arch.pio.count  = count;
6699         vcpu->arch.pio.size = size;
6700
6701         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6702                 vcpu->arch.pio.count = 0;
6703                 return 1;
6704         }
6705
6706         vcpu->run->exit_reason = KVM_EXIT_IO;
6707         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6708         vcpu->run->io.size = size;
6709         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6710         vcpu->run->io.count = count;
6711         vcpu->run->io.port = port;
6712
6713         return 0;
6714 }
6715
6716 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6717                            unsigned short port, void *val, unsigned int count)
6718 {
6719         int ret;
6720
6721         if (vcpu->arch.pio.count)
6722                 goto data_avail;
6723
6724         memset(vcpu->arch.pio_data, 0, size * count);
6725
6726         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6727         if (ret) {
6728 data_avail:
6729                 memcpy(val, vcpu->arch.pio_data, size * count);
6730                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6731                 vcpu->arch.pio.count = 0;
6732                 return 1;
6733         }
6734
6735         return 0;
6736 }
6737
6738 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6739                                     int size, unsigned short port, void *val,
6740                                     unsigned int count)
6741 {
6742         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6743
6744 }
6745
6746 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6747                             unsigned short port, const void *val,
6748                             unsigned int count)
6749 {
6750         memcpy(vcpu->arch.pio_data, val, size * count);
6751         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6752         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6753 }
6754
6755 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6756                                      int size, unsigned short port,
6757                                      const void *val, unsigned int count)
6758 {
6759         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6760 }
6761
6762 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6763 {
6764         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6765 }
6766
6767 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6768 {
6769         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6770 }
6771
6772 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6773 {
6774         if (!need_emulate_wbinvd(vcpu))
6775                 return X86EMUL_CONTINUE;
6776
6777         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6778                 int cpu = get_cpu();
6779
6780                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6781                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6782                                 wbinvd_ipi, NULL, 1);
6783                 put_cpu();
6784                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6785         } else
6786                 wbinvd();
6787         return X86EMUL_CONTINUE;
6788 }
6789
6790 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6791 {
6792         kvm_emulate_wbinvd_noskip(vcpu);
6793         return kvm_skip_emulated_instruction(vcpu);
6794 }
6795 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6796
6797
6798
6799 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6800 {
6801         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6802 }
6803
6804 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6805                             unsigned long *dest)
6806 {
6807         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6808 }
6809
6810 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6811                            unsigned long value)
6812 {
6813
6814         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6815 }
6816
6817 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6818 {
6819         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6820 }
6821
6822 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6823 {
6824         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6825         unsigned long value;
6826
6827         switch (cr) {
6828         case 0:
6829                 value = kvm_read_cr0(vcpu);
6830                 break;
6831         case 2:
6832                 value = vcpu->arch.cr2;
6833                 break;
6834         case 3:
6835                 value = kvm_read_cr3(vcpu);
6836                 break;
6837         case 4:
6838                 value = kvm_read_cr4(vcpu);
6839                 break;
6840         case 8:
6841                 value = kvm_get_cr8(vcpu);
6842                 break;
6843         default:
6844                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6845                 return 0;
6846         }
6847
6848         return value;
6849 }
6850
6851 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6852 {
6853         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6854         int res = 0;
6855
6856         switch (cr) {
6857         case 0:
6858                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6859                 break;
6860         case 2:
6861                 vcpu->arch.cr2 = val;
6862                 break;
6863         case 3:
6864                 res = kvm_set_cr3(vcpu, val);
6865                 break;
6866         case 4:
6867                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6868                 break;
6869         case 8:
6870                 res = kvm_set_cr8(vcpu, val);
6871                 break;
6872         default:
6873                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6874                 res = -1;
6875         }
6876
6877         return res;
6878 }
6879
6880 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6881 {
6882         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6883 }
6884
6885 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6886 {
6887         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6888 }
6889
6890 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6891 {
6892         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6893 }
6894
6895 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6896 {
6897         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6898 }
6899
6900 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6901 {
6902         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6903 }
6904
6905 static unsigned long emulator_get_cached_segment_base(
6906         struct x86_emulate_ctxt *ctxt, int seg)
6907 {
6908         return get_segment_base(emul_to_vcpu(ctxt), seg);
6909 }
6910
6911 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6912                                  struct desc_struct *desc, u32 *base3,
6913                                  int seg)
6914 {
6915         struct kvm_segment var;
6916
6917         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6918         *selector = var.selector;
6919
6920         if (var.unusable) {
6921                 memset(desc, 0, sizeof(*desc));
6922                 if (base3)
6923                         *base3 = 0;
6924                 return false;
6925         }
6926
6927         if (var.g)
6928                 var.limit >>= 12;
6929         set_desc_limit(desc, var.limit);
6930         set_desc_base(desc, (unsigned long)var.base);
6931 #ifdef CONFIG_X86_64
6932         if (base3)
6933                 *base3 = var.base >> 32;
6934 #endif
6935         desc->type = var.type;
6936         desc->s = var.s;
6937         desc->dpl = var.dpl;
6938         desc->p = var.present;
6939         desc->avl = var.avl;
6940         desc->l = var.l;
6941         desc->d = var.db;
6942         desc->g = var.g;
6943
6944         return true;
6945 }
6946
6947 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6948                                  struct desc_struct *desc, u32 base3,
6949                                  int seg)
6950 {
6951         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6952         struct kvm_segment var;
6953
6954         var.selector = selector;
6955         var.base = get_desc_base(desc);
6956 #ifdef CONFIG_X86_64
6957         var.base |= ((u64)base3) << 32;
6958 #endif
6959         var.limit = get_desc_limit(desc);
6960         if (desc->g)
6961                 var.limit = (var.limit << 12) | 0xfff;
6962         var.type = desc->type;
6963         var.dpl = desc->dpl;
6964         var.db = desc->d;
6965         var.s = desc->s;
6966         var.l = desc->l;
6967         var.g = desc->g;
6968         var.avl = desc->avl;
6969         var.present = desc->p;
6970         var.unusable = !var.present;
6971         var.padding = 0;
6972
6973         kvm_set_segment(vcpu, &var, seg);
6974         return;
6975 }
6976
6977 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6978                             u32 msr_index, u64 *pdata)
6979 {
6980         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6981         int r;
6982
6983         r = kvm_get_msr(vcpu, msr_index, pdata);
6984
6985         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6986                 /* Bounce to user space */
6987                 return X86EMUL_IO_NEEDED;
6988         }
6989
6990         return r;
6991 }
6992
6993 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6994                             u32 msr_index, u64 data)
6995 {
6996         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6997         int r;
6998
6999         r = kvm_set_msr(vcpu, msr_index, data);
7000
7001         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7002                 /* Bounce to user space */
7003                 return X86EMUL_IO_NEEDED;
7004         }
7005
7006         return r;
7007 }
7008
7009 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7010 {
7011         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7012
7013         return vcpu->arch.smbase;
7014 }
7015
7016 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7017 {
7018         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7019
7020         vcpu->arch.smbase = smbase;
7021 }
7022
7023 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7024                               u32 pmc)
7025 {
7026         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7027 }
7028
7029 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7030                              u32 pmc, u64 *pdata)
7031 {
7032         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7033 }
7034
7035 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7036 {
7037         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7038 }
7039
7040 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7041                               struct x86_instruction_info *info,
7042                               enum x86_intercept_stage stage)
7043 {
7044         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7045                                             &ctxt->exception);
7046 }
7047
7048 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7049                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7050                               bool exact_only)
7051 {
7052         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7053 }
7054
7055 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7056 {
7057         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7058 }
7059
7060 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7061 {
7062         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7063 }
7064
7065 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7066 {
7067         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7068 }
7069
7070 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7071 {
7072         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7073 }
7074
7075 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7076 {
7077         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7078 }
7079
7080 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7081 {
7082         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7083 }
7084
7085 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7086 {
7087         return emul_to_vcpu(ctxt)->arch.hflags;
7088 }
7089
7090 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7091 {
7092         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
7093 }
7094
7095 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7096                                   const char *smstate)
7097 {
7098         return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7099 }
7100
7101 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7102 {
7103         kvm_smm_changed(emul_to_vcpu(ctxt));
7104 }
7105
7106 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7107 {
7108         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7109 }
7110
7111 static const struct x86_emulate_ops emulate_ops = {
7112         .read_gpr            = emulator_read_gpr,
7113         .write_gpr           = emulator_write_gpr,
7114         .read_std            = emulator_read_std,
7115         .write_std           = emulator_write_std,
7116         .read_phys           = kvm_read_guest_phys_system,
7117         .fetch               = kvm_fetch_guest_virt,
7118         .read_emulated       = emulator_read_emulated,
7119         .write_emulated      = emulator_write_emulated,
7120         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7121         .invlpg              = emulator_invlpg,
7122         .pio_in_emulated     = emulator_pio_in_emulated,
7123         .pio_out_emulated    = emulator_pio_out_emulated,
7124         .get_segment         = emulator_get_segment,
7125         .set_segment         = emulator_set_segment,
7126         .get_cached_segment_base = emulator_get_cached_segment_base,
7127         .get_gdt             = emulator_get_gdt,
7128         .get_idt             = emulator_get_idt,
7129         .set_gdt             = emulator_set_gdt,
7130         .set_idt             = emulator_set_idt,
7131         .get_cr              = emulator_get_cr,
7132         .set_cr              = emulator_set_cr,
7133         .cpl                 = emulator_get_cpl,
7134         .get_dr              = emulator_get_dr,
7135         .set_dr              = emulator_set_dr,
7136         .get_smbase          = emulator_get_smbase,
7137         .set_smbase          = emulator_set_smbase,
7138         .set_msr             = emulator_set_msr,
7139         .get_msr             = emulator_get_msr,
7140         .check_pmc           = emulator_check_pmc,
7141         .read_pmc            = emulator_read_pmc,
7142         .halt                = emulator_halt,
7143         .wbinvd              = emulator_wbinvd,
7144         .fix_hypercall       = emulator_fix_hypercall,
7145         .intercept           = emulator_intercept,
7146         .get_cpuid           = emulator_get_cpuid,
7147         .guest_has_long_mode = emulator_guest_has_long_mode,
7148         .guest_has_movbe     = emulator_guest_has_movbe,
7149         .guest_has_fxsr      = emulator_guest_has_fxsr,
7150         .set_nmi_mask        = emulator_set_nmi_mask,
7151         .get_hflags          = emulator_get_hflags,
7152         .set_hflags          = emulator_set_hflags,
7153         .pre_leave_smm       = emulator_pre_leave_smm,
7154         .post_leave_smm      = emulator_post_leave_smm,
7155         .set_xcr             = emulator_set_xcr,
7156 };
7157
7158 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7159 {
7160         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7161         /*
7162          * an sti; sti; sequence only disable interrupts for the first
7163          * instruction. So, if the last instruction, be it emulated or
7164          * not, left the system with the INT_STI flag enabled, it
7165          * means that the last instruction is an sti. We should not
7166          * leave the flag on in this case. The same goes for mov ss
7167          */
7168         if (int_shadow & mask)
7169                 mask = 0;
7170         if (unlikely(int_shadow || mask)) {
7171                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7172                 if (!mask)
7173                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7174         }
7175 }
7176
7177 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7178 {
7179         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7180         if (ctxt->exception.vector == PF_VECTOR)
7181                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7182
7183         if (ctxt->exception.error_code_valid)
7184                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7185                                       ctxt->exception.error_code);
7186         else
7187                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7188         return false;
7189 }
7190
7191 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7192 {
7193         struct x86_emulate_ctxt *ctxt;
7194
7195         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7196         if (!ctxt) {
7197                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7198                 return NULL;
7199         }
7200
7201         ctxt->vcpu = vcpu;
7202         ctxt->ops = &emulate_ops;
7203         vcpu->arch.emulate_ctxt = ctxt;
7204
7205         return ctxt;
7206 }
7207
7208 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7209 {
7210         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7211         int cs_db, cs_l;
7212
7213         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7214
7215         ctxt->gpa_available = false;
7216         ctxt->eflags = kvm_get_rflags(vcpu);
7217         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7218
7219         ctxt->eip = kvm_rip_read(vcpu);
7220         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7221                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7222                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7223                      cs_db                              ? X86EMUL_MODE_PROT32 :
7224                                                           X86EMUL_MODE_PROT16;
7225         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7226         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7227         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7228
7229         init_decode_cache(ctxt);
7230         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7231 }
7232
7233 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7234 {
7235         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7236         int ret;
7237
7238         init_emulate_ctxt(vcpu);
7239
7240         ctxt->op_bytes = 2;
7241         ctxt->ad_bytes = 2;
7242         ctxt->_eip = ctxt->eip + inc_eip;
7243         ret = emulate_int_real(ctxt, irq);
7244
7245         if (ret != X86EMUL_CONTINUE) {
7246                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7247         } else {
7248                 ctxt->eip = ctxt->_eip;
7249                 kvm_rip_write(vcpu, ctxt->eip);
7250                 kvm_set_rflags(vcpu, ctxt->eflags);
7251         }
7252 }
7253 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7254
7255 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7256 {
7257         ++vcpu->stat.insn_emulation_fail;
7258         trace_kvm_emulate_insn_failed(vcpu);
7259
7260         if (emulation_type & EMULTYPE_VMWARE_GP) {
7261                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7262                 return 1;
7263         }
7264
7265         if (emulation_type & EMULTYPE_SKIP) {
7266                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7267                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7268                 vcpu->run->internal.ndata = 0;
7269                 return 0;
7270         }
7271
7272         kvm_queue_exception(vcpu, UD_VECTOR);
7273
7274         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7275                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7276                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7277                 vcpu->run->internal.ndata = 0;
7278                 return 0;
7279         }
7280
7281         return 1;
7282 }
7283
7284 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7285                                   bool write_fault_to_shadow_pgtable,
7286                                   int emulation_type)
7287 {
7288         gpa_t gpa = cr2_or_gpa;
7289         kvm_pfn_t pfn;
7290
7291         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7292                 return false;
7293
7294         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7295             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7296                 return false;
7297
7298         if (!vcpu->arch.mmu->direct_map) {
7299                 /*
7300                  * Write permission should be allowed since only
7301                  * write access need to be emulated.
7302                  */
7303                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7304
7305                 /*
7306                  * If the mapping is invalid in guest, let cpu retry
7307                  * it to generate fault.
7308                  */
7309                 if (gpa == UNMAPPED_GVA)
7310                         return true;
7311         }
7312
7313         /*
7314          * Do not retry the unhandleable instruction if it faults on the
7315          * readonly host memory, otherwise it will goto a infinite loop:
7316          * retry instruction -> write #PF -> emulation fail -> retry
7317          * instruction -> ...
7318          */
7319         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7320
7321         /*
7322          * If the instruction failed on the error pfn, it can not be fixed,
7323          * report the error to userspace.
7324          */
7325         if (is_error_noslot_pfn(pfn))
7326                 return false;
7327
7328         kvm_release_pfn_clean(pfn);
7329
7330         /* The instructions are well-emulated on direct mmu. */
7331         if (vcpu->arch.mmu->direct_map) {
7332                 unsigned int indirect_shadow_pages;
7333
7334                 write_lock(&vcpu->kvm->mmu_lock);
7335                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7336                 write_unlock(&vcpu->kvm->mmu_lock);
7337
7338                 if (indirect_shadow_pages)
7339                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7340
7341                 return true;
7342         }
7343
7344         /*
7345          * if emulation was due to access to shadowed page table
7346          * and it failed try to unshadow page and re-enter the
7347          * guest to let CPU execute the instruction.
7348          */
7349         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7350
7351         /*
7352          * If the access faults on its page table, it can not
7353          * be fixed by unprotecting shadow page and it should
7354          * be reported to userspace.
7355          */
7356         return !write_fault_to_shadow_pgtable;
7357 }
7358
7359 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7360                               gpa_t cr2_or_gpa,  int emulation_type)
7361 {
7362         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7363         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7364
7365         last_retry_eip = vcpu->arch.last_retry_eip;
7366         last_retry_addr = vcpu->arch.last_retry_addr;
7367
7368         /*
7369          * If the emulation is caused by #PF and it is non-page_table
7370          * writing instruction, it means the VM-EXIT is caused by shadow
7371          * page protected, we can zap the shadow page and retry this
7372          * instruction directly.
7373          *
7374          * Note: if the guest uses a non-page-table modifying instruction
7375          * on the PDE that points to the instruction, then we will unmap
7376          * the instruction and go to an infinite loop. So, we cache the
7377          * last retried eip and the last fault address, if we meet the eip
7378          * and the address again, we can break out of the potential infinite
7379          * loop.
7380          */
7381         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7382
7383         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7384                 return false;
7385
7386         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7387             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7388                 return false;
7389
7390         if (x86_page_table_writing_insn(ctxt))
7391                 return false;
7392
7393         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7394                 return false;
7395
7396         vcpu->arch.last_retry_eip = ctxt->eip;
7397         vcpu->arch.last_retry_addr = cr2_or_gpa;
7398
7399         if (!vcpu->arch.mmu->direct_map)
7400                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7401
7402         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7403
7404         return true;
7405 }
7406
7407 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7408 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7409
7410 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7411 {
7412         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7413                 /* This is a good place to trace that we are exiting SMM.  */
7414                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7415
7416                 /* Process a latched INIT or SMI, if any.  */
7417                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7418         }
7419
7420         kvm_mmu_reset_context(vcpu);
7421 }
7422
7423 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7424                                 unsigned long *db)
7425 {
7426         u32 dr6 = 0;
7427         int i;
7428         u32 enable, rwlen;
7429
7430         enable = dr7;
7431         rwlen = dr7 >> 16;
7432         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7433                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7434                         dr6 |= (1 << i);
7435         return dr6;
7436 }
7437
7438 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7439 {
7440         struct kvm_run *kvm_run = vcpu->run;
7441
7442         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7443                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7444                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7445                 kvm_run->debug.arch.exception = DB_VECTOR;
7446                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7447                 return 0;
7448         }
7449         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7450         return 1;
7451 }
7452
7453 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7454 {
7455         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7456         int r;
7457
7458         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7459         if (unlikely(!r))
7460                 return 0;
7461
7462         /*
7463          * rflags is the old, "raw" value of the flags.  The new value has
7464          * not been saved yet.
7465          *
7466          * This is correct even for TF set by the guest, because "the
7467          * processor will not generate this exception after the instruction
7468          * that sets the TF flag".
7469          */
7470         if (unlikely(rflags & X86_EFLAGS_TF))
7471                 r = kvm_vcpu_do_singlestep(vcpu);
7472         return r;
7473 }
7474 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7475
7476 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7477 {
7478         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7479             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7480                 struct kvm_run *kvm_run = vcpu->run;
7481                 unsigned long eip = kvm_get_linear_rip(vcpu);
7482                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7483                                            vcpu->arch.guest_debug_dr7,
7484                                            vcpu->arch.eff_db);
7485
7486                 if (dr6 != 0) {
7487                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7488                         kvm_run->debug.arch.pc = eip;
7489                         kvm_run->debug.arch.exception = DB_VECTOR;
7490                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7491                         *r = 0;
7492                         return true;
7493                 }
7494         }
7495
7496         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7497             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7498                 unsigned long eip = kvm_get_linear_rip(vcpu);
7499                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7500                                            vcpu->arch.dr7,
7501                                            vcpu->arch.db);
7502
7503                 if (dr6 != 0) {
7504                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7505                         *r = 1;
7506                         return true;
7507                 }
7508         }
7509
7510         return false;
7511 }
7512
7513 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7514 {
7515         switch (ctxt->opcode_len) {
7516         case 1:
7517                 switch (ctxt->b) {
7518                 case 0xe4:      /* IN */
7519                 case 0xe5:
7520                 case 0xec:
7521                 case 0xed:
7522                 case 0xe6:      /* OUT */
7523                 case 0xe7:
7524                 case 0xee:
7525                 case 0xef:
7526                 case 0x6c:      /* INS */
7527                 case 0x6d:
7528                 case 0x6e:      /* OUTS */
7529                 case 0x6f:
7530                         return true;
7531                 }
7532                 break;
7533         case 2:
7534                 switch (ctxt->b) {
7535                 case 0x33:      /* RDPMC */
7536                         return true;
7537                 }
7538                 break;
7539         }
7540
7541         return false;
7542 }
7543
7544 /*
7545  * Decode to be emulated instruction. Return EMULATION_OK if success.
7546  */
7547 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7548                                     void *insn, int insn_len)
7549 {
7550         int r = EMULATION_OK;
7551         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7552
7553         init_emulate_ctxt(vcpu);
7554
7555         /*
7556          * We will reenter on the same instruction since we do not set
7557          * complete_userspace_io. This does not handle watchpoints yet,
7558          * those would be handled in the emulate_ops.
7559          */
7560         if (!(emulation_type & EMULTYPE_SKIP) &&
7561             kvm_vcpu_check_breakpoint(vcpu, &r))
7562                 return r;
7563
7564         ctxt->interruptibility = 0;
7565         ctxt->have_exception = false;
7566         ctxt->exception.vector = -1;
7567         ctxt->perm_ok = false;
7568
7569         ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7570
7571         r = x86_decode_insn(ctxt, insn, insn_len);
7572
7573         trace_kvm_emulate_insn_start(vcpu);
7574         ++vcpu->stat.insn_emulation;
7575
7576         return r;
7577 }
7578 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7579
7580 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7581                             int emulation_type, void *insn, int insn_len)
7582 {
7583         int r;
7584         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7585         bool writeback = true;
7586         bool write_fault_to_spt;
7587
7588         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7589                 return 1;
7590
7591         vcpu->arch.l1tf_flush_l1d = true;
7592
7593         /*
7594          * Clear write_fault_to_shadow_pgtable here to ensure it is
7595          * never reused.
7596          */
7597         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7598         vcpu->arch.write_fault_to_shadow_pgtable = false;
7599
7600         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7601                 kvm_clear_exception_queue(vcpu);
7602
7603                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7604                                                     insn, insn_len);
7605                 if (r != EMULATION_OK)  {
7606                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7607                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7608                                 kvm_queue_exception(vcpu, UD_VECTOR);
7609                                 return 1;
7610                         }
7611                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7612                                                   write_fault_to_spt,
7613                                                   emulation_type))
7614                                 return 1;
7615                         if (ctxt->have_exception) {
7616                                 /*
7617                                  * #UD should result in just EMULATION_FAILED, and trap-like
7618                                  * exception should not be encountered during decode.
7619                                  */
7620                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7621                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7622                                 inject_emulated_exception(vcpu);
7623                                 return 1;
7624                         }
7625                         return handle_emulation_failure(vcpu, emulation_type);
7626                 }
7627         }
7628
7629         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7630             !is_vmware_backdoor_opcode(ctxt)) {
7631                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7632                 return 1;
7633         }
7634
7635         /*
7636          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7637          * for kvm_skip_emulated_instruction().  The caller is responsible for
7638          * updating interruptibility state and injecting single-step #DBs.
7639          */
7640         if (emulation_type & EMULTYPE_SKIP) {
7641                 kvm_rip_write(vcpu, ctxt->_eip);
7642                 if (ctxt->eflags & X86_EFLAGS_RF)
7643                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7644                 return 1;
7645         }
7646
7647         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7648                 return 1;
7649
7650         /* this is needed for vmware backdoor interface to work since it
7651            changes registers values  during IO operation */
7652         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7653                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7654                 emulator_invalidate_register_cache(ctxt);
7655         }
7656
7657 restart:
7658         if (emulation_type & EMULTYPE_PF) {
7659                 /* Save the faulting GPA (cr2) in the address field */
7660                 ctxt->exception.address = cr2_or_gpa;
7661
7662                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7663                 if (vcpu->arch.mmu->direct_map) {
7664                         ctxt->gpa_available = true;
7665                         ctxt->gpa_val = cr2_or_gpa;
7666                 }
7667         } else {
7668                 /* Sanitize the address out of an abundance of paranoia. */
7669                 ctxt->exception.address = 0;
7670         }
7671
7672         r = x86_emulate_insn(ctxt);
7673
7674         if (r == EMULATION_INTERCEPTED)
7675                 return 1;
7676
7677         if (r == EMULATION_FAILED) {
7678                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7679                                         emulation_type))
7680                         return 1;
7681
7682                 return handle_emulation_failure(vcpu, emulation_type);
7683         }
7684
7685         if (ctxt->have_exception) {
7686                 r = 1;
7687                 if (inject_emulated_exception(vcpu))
7688                         return r;
7689         } else if (vcpu->arch.pio.count) {
7690                 if (!vcpu->arch.pio.in) {
7691                         /* FIXME: return into emulator if single-stepping.  */
7692                         vcpu->arch.pio.count = 0;
7693                 } else {
7694                         writeback = false;
7695                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7696                 }
7697                 r = 0;
7698         } else if (vcpu->mmio_needed) {
7699                 ++vcpu->stat.mmio_exits;
7700
7701                 if (!vcpu->mmio_is_write)
7702                         writeback = false;
7703                 r = 0;
7704                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7705         } else if (r == EMULATION_RESTART)
7706                 goto restart;
7707         else
7708                 r = 1;
7709
7710         if (writeback) {
7711                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7712                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7713                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7714                 if (!ctxt->have_exception ||
7715                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7716                         kvm_rip_write(vcpu, ctxt->eip);
7717                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7718                                 r = kvm_vcpu_do_singlestep(vcpu);
7719                         if (kvm_x86_ops.update_emulated_instruction)
7720                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7721                         __kvm_set_rflags(vcpu, ctxt->eflags);
7722                 }
7723
7724                 /*
7725                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7726                  * do nothing, and it will be requested again as soon as
7727                  * the shadow expires.  But we still need to check here,
7728                  * because POPF has no interrupt shadow.
7729                  */
7730                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7731                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7732         } else
7733                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7734
7735         return r;
7736 }
7737
7738 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7739 {
7740         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7741 }
7742 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7743
7744 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7745                                         void *insn, int insn_len)
7746 {
7747         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7748 }
7749 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7750
7751 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7752 {
7753         vcpu->arch.pio.count = 0;
7754         return 1;
7755 }
7756
7757 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7758 {
7759         vcpu->arch.pio.count = 0;
7760
7761         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7762                 return 1;
7763
7764         return kvm_skip_emulated_instruction(vcpu);
7765 }
7766
7767 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7768                             unsigned short port)
7769 {
7770         unsigned long val = kvm_rax_read(vcpu);
7771         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7772
7773         if (ret)
7774                 return ret;
7775
7776         /*
7777          * Workaround userspace that relies on old KVM behavior of %rip being
7778          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7779          */
7780         if (port == 0x7e &&
7781             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7782                 vcpu->arch.complete_userspace_io =
7783                         complete_fast_pio_out_port_0x7e;
7784                 kvm_skip_emulated_instruction(vcpu);
7785         } else {
7786                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7787                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7788         }
7789         return 0;
7790 }
7791
7792 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7793 {
7794         unsigned long val;
7795
7796         /* We should only ever be called with arch.pio.count equal to 1 */
7797         BUG_ON(vcpu->arch.pio.count != 1);
7798
7799         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7800                 vcpu->arch.pio.count = 0;
7801                 return 1;
7802         }
7803
7804         /* For size less than 4 we merge, else we zero extend */
7805         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7806
7807         /*
7808          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7809          * the copy and tracing
7810          */
7811         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7812         kvm_rax_write(vcpu, val);
7813
7814         return kvm_skip_emulated_instruction(vcpu);
7815 }
7816
7817 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7818                            unsigned short port)
7819 {
7820         unsigned long val;
7821         int ret;
7822
7823         /* For size less than 4 we merge, else we zero extend */
7824         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7825
7826         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7827         if (ret) {
7828                 kvm_rax_write(vcpu, val);
7829                 return ret;
7830         }
7831
7832         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7833         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7834
7835         return 0;
7836 }
7837
7838 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7839 {
7840         int ret;
7841
7842         if (in)
7843                 ret = kvm_fast_pio_in(vcpu, size, port);
7844         else
7845                 ret = kvm_fast_pio_out(vcpu, size, port);
7846         return ret && kvm_skip_emulated_instruction(vcpu);
7847 }
7848 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7849
7850 static int kvmclock_cpu_down_prep(unsigned int cpu)
7851 {
7852         __this_cpu_write(cpu_tsc_khz, 0);
7853         return 0;
7854 }
7855
7856 static void tsc_khz_changed(void *data)
7857 {
7858         struct cpufreq_freqs *freq = data;
7859         unsigned long khz = 0;
7860
7861         if (data)
7862                 khz = freq->new;
7863         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7864                 khz = cpufreq_quick_get(raw_smp_processor_id());
7865         if (!khz)
7866                 khz = tsc_khz;
7867         __this_cpu_write(cpu_tsc_khz, khz);
7868 }
7869
7870 #ifdef CONFIG_X86_64
7871 static void kvm_hyperv_tsc_notifier(void)
7872 {
7873         struct kvm *kvm;
7874         struct kvm_vcpu *vcpu;
7875         int cpu;
7876         unsigned long flags;
7877
7878         mutex_lock(&kvm_lock);
7879         list_for_each_entry(kvm, &vm_list, vm_list)
7880                 kvm_make_mclock_inprogress_request(kvm);
7881
7882         hyperv_stop_tsc_emulation();
7883
7884         /* TSC frequency always matches when on Hyper-V */
7885         for_each_present_cpu(cpu)
7886                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7887         kvm_max_guest_tsc_khz = tsc_khz;
7888
7889         list_for_each_entry(kvm, &vm_list, vm_list) {
7890                 struct kvm_arch *ka = &kvm->arch;
7891
7892                 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7893                 pvclock_update_vm_gtod_copy(kvm);
7894                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7895
7896                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7897                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7898
7899                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7900                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7901         }
7902         mutex_unlock(&kvm_lock);
7903 }
7904 #endif
7905
7906 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7907 {
7908         struct kvm *kvm;
7909         struct kvm_vcpu *vcpu;
7910         int i, send_ipi = 0;
7911
7912         /*
7913          * We allow guests to temporarily run on slowing clocks,
7914          * provided we notify them after, or to run on accelerating
7915          * clocks, provided we notify them before.  Thus time never
7916          * goes backwards.
7917          *
7918          * However, we have a problem.  We can't atomically update
7919          * the frequency of a given CPU from this function; it is
7920          * merely a notifier, which can be called from any CPU.
7921          * Changing the TSC frequency at arbitrary points in time
7922          * requires a recomputation of local variables related to
7923          * the TSC for each VCPU.  We must flag these local variables
7924          * to be updated and be sure the update takes place with the
7925          * new frequency before any guests proceed.
7926          *
7927          * Unfortunately, the combination of hotplug CPU and frequency
7928          * change creates an intractable locking scenario; the order
7929          * of when these callouts happen is undefined with respect to
7930          * CPU hotplug, and they can race with each other.  As such,
7931          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7932          * undefined; you can actually have a CPU frequency change take
7933          * place in between the computation of X and the setting of the
7934          * variable.  To protect against this problem, all updates of
7935          * the per_cpu tsc_khz variable are done in an interrupt
7936          * protected IPI, and all callers wishing to update the value
7937          * must wait for a synchronous IPI to complete (which is trivial
7938          * if the caller is on the CPU already).  This establishes the
7939          * necessary total order on variable updates.
7940          *
7941          * Note that because a guest time update may take place
7942          * anytime after the setting of the VCPU's request bit, the
7943          * correct TSC value must be set before the request.  However,
7944          * to ensure the update actually makes it to any guest which
7945          * starts running in hardware virtualization between the set
7946          * and the acquisition of the spinlock, we must also ping the
7947          * CPU after setting the request bit.
7948          *
7949          */
7950
7951         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7952
7953         mutex_lock(&kvm_lock);
7954         list_for_each_entry(kvm, &vm_list, vm_list) {
7955                 kvm_for_each_vcpu(i, vcpu, kvm) {
7956                         if (vcpu->cpu != cpu)
7957                                 continue;
7958                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7959                         if (vcpu->cpu != raw_smp_processor_id())
7960                                 send_ipi = 1;
7961                 }
7962         }
7963         mutex_unlock(&kvm_lock);
7964
7965         if (freq->old < freq->new && send_ipi) {
7966                 /*
7967                  * We upscale the frequency.  Must make the guest
7968                  * doesn't see old kvmclock values while running with
7969                  * the new frequency, otherwise we risk the guest sees
7970                  * time go backwards.
7971                  *
7972                  * In case we update the frequency for another cpu
7973                  * (which might be in guest context) send an interrupt
7974                  * to kick the cpu out of guest context.  Next time
7975                  * guest context is entered kvmclock will be updated,
7976                  * so the guest will not see stale values.
7977                  */
7978                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7979         }
7980 }
7981
7982 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7983                                      void *data)
7984 {
7985         struct cpufreq_freqs *freq = data;
7986         int cpu;
7987
7988         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7989                 return 0;
7990         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7991                 return 0;
7992
7993         for_each_cpu(cpu, freq->policy->cpus)
7994                 __kvmclock_cpufreq_notifier(freq, cpu);
7995
7996         return 0;
7997 }
7998
7999 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8000         .notifier_call  = kvmclock_cpufreq_notifier
8001 };
8002
8003 static int kvmclock_cpu_online(unsigned int cpu)
8004 {
8005         tsc_khz_changed(NULL);
8006         return 0;
8007 }
8008
8009 static void kvm_timer_init(void)
8010 {
8011         max_tsc_khz = tsc_khz;
8012
8013         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8014 #ifdef CONFIG_CPU_FREQ
8015                 struct cpufreq_policy *policy;
8016                 int cpu;
8017
8018                 cpu = get_cpu();
8019                 policy = cpufreq_cpu_get(cpu);
8020                 if (policy) {
8021                         if (policy->cpuinfo.max_freq)
8022                                 max_tsc_khz = policy->cpuinfo.max_freq;
8023                         cpufreq_cpu_put(policy);
8024                 }
8025                 put_cpu();
8026 #endif
8027                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8028                                           CPUFREQ_TRANSITION_NOTIFIER);
8029         }
8030
8031         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8032                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8033 }
8034
8035 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8036 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8037
8038 int kvm_is_in_guest(void)
8039 {
8040         return __this_cpu_read(current_vcpu) != NULL;
8041 }
8042
8043 static int kvm_is_user_mode(void)
8044 {
8045         int user_mode = 3;
8046
8047         if (__this_cpu_read(current_vcpu))
8048                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8049
8050         return user_mode != 0;
8051 }
8052
8053 static unsigned long kvm_get_guest_ip(void)
8054 {
8055         unsigned long ip = 0;
8056
8057         if (__this_cpu_read(current_vcpu))
8058                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8059
8060         return ip;
8061 }
8062
8063 static void kvm_handle_intel_pt_intr(void)
8064 {
8065         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8066
8067         kvm_make_request(KVM_REQ_PMI, vcpu);
8068         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8069                         (unsigned long *)&vcpu->arch.pmu.global_status);
8070 }
8071
8072 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8073         .is_in_guest            = kvm_is_in_guest,
8074         .is_user_mode           = kvm_is_user_mode,
8075         .get_guest_ip           = kvm_get_guest_ip,
8076         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8077 };
8078
8079 #ifdef CONFIG_X86_64
8080 static void pvclock_gtod_update_fn(struct work_struct *work)
8081 {
8082         struct kvm *kvm;
8083
8084         struct kvm_vcpu *vcpu;
8085         int i;
8086
8087         mutex_lock(&kvm_lock);
8088         list_for_each_entry(kvm, &vm_list, vm_list)
8089                 kvm_for_each_vcpu(i, vcpu, kvm)
8090                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8091         atomic_set(&kvm_guest_has_master_clock, 0);
8092         mutex_unlock(&kvm_lock);
8093 }
8094
8095 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8096
8097 /*
8098  * Indirection to move queue_work() out of the tk_core.seq write held
8099  * region to prevent possible deadlocks against time accessors which
8100  * are invoked with work related locks held.
8101  */
8102 static void pvclock_irq_work_fn(struct irq_work *w)
8103 {
8104         queue_work(system_long_wq, &pvclock_gtod_work);
8105 }
8106
8107 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8108
8109 /*
8110  * Notification about pvclock gtod data update.
8111  */
8112 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8113                                void *priv)
8114 {
8115         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8116         struct timekeeper *tk = priv;
8117
8118         update_pvclock_gtod(tk);
8119
8120         /*
8121          * Disable master clock if host does not trust, or does not use,
8122          * TSC based clocksource. Delegate queue_work() to irq_work as
8123          * this is invoked with tk_core.seq write held.
8124          */
8125         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8126             atomic_read(&kvm_guest_has_master_clock) != 0)
8127                 irq_work_queue(&pvclock_irq_work);
8128         return 0;
8129 }
8130
8131 static struct notifier_block pvclock_gtod_notifier = {
8132         .notifier_call = pvclock_gtod_notify,
8133 };
8134 #endif
8135
8136 int kvm_arch_init(void *opaque)
8137 {
8138         struct kvm_x86_init_ops *ops = opaque;
8139         int r;
8140
8141         if (kvm_x86_ops.hardware_enable) {
8142                 printk(KERN_ERR "kvm: already loaded the other module\n");
8143                 r = -EEXIST;
8144                 goto out;
8145         }
8146
8147         if (!ops->cpu_has_kvm_support()) {
8148                 pr_err_ratelimited("kvm: no hardware support\n");
8149                 r = -EOPNOTSUPP;
8150                 goto out;
8151         }
8152         if (ops->disabled_by_bios()) {
8153                 pr_err_ratelimited("kvm: disabled by bios\n");
8154                 r = -EOPNOTSUPP;
8155                 goto out;
8156         }
8157
8158         /*
8159          * KVM explicitly assumes that the guest has an FPU and
8160          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8161          * vCPU's FPU state as a fxregs_state struct.
8162          */
8163         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8164                 printk(KERN_ERR "kvm: inadequate fpu\n");
8165                 r = -EOPNOTSUPP;
8166                 goto out;
8167         }
8168
8169         r = -ENOMEM;
8170         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8171                                           __alignof__(struct fpu), SLAB_ACCOUNT,
8172                                           NULL);
8173         if (!x86_fpu_cache) {
8174                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8175                 goto out;
8176         }
8177
8178         x86_emulator_cache = kvm_alloc_emulator_cache();
8179         if (!x86_emulator_cache) {
8180                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8181                 goto out_free_x86_fpu_cache;
8182         }
8183
8184         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8185         if (!user_return_msrs) {
8186                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8187                 goto out_free_x86_emulator_cache;
8188         }
8189         kvm_nr_uret_msrs = 0;
8190
8191         r = kvm_mmu_module_init();
8192         if (r)
8193                 goto out_free_percpu;
8194
8195         kvm_timer_init();
8196
8197         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8198
8199         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8200                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8201                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8202         }
8203
8204         if (pi_inject_timer == -1)
8205                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8206 #ifdef CONFIG_X86_64
8207         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8208
8209         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8210                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8211 #endif
8212
8213         return 0;
8214
8215 out_free_percpu:
8216         free_percpu(user_return_msrs);
8217 out_free_x86_emulator_cache:
8218         kmem_cache_destroy(x86_emulator_cache);
8219 out_free_x86_fpu_cache:
8220         kmem_cache_destroy(x86_fpu_cache);
8221 out:
8222         return r;
8223 }
8224
8225 void kvm_arch_exit(void)
8226 {
8227 #ifdef CONFIG_X86_64
8228         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8229                 clear_hv_tscchange_cb();
8230 #endif
8231         kvm_lapic_exit();
8232         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8233
8234         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8235                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8236                                             CPUFREQ_TRANSITION_NOTIFIER);
8237         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8238 #ifdef CONFIG_X86_64
8239         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8240         irq_work_sync(&pvclock_irq_work);
8241         cancel_work_sync(&pvclock_gtod_work);
8242 #endif
8243         kvm_x86_ops.hardware_enable = NULL;
8244         kvm_mmu_module_exit();
8245         free_percpu(user_return_msrs);
8246         kmem_cache_destroy(x86_fpu_cache);
8247 #ifdef CONFIG_KVM_XEN
8248         static_key_deferred_flush(&kvm_xen_enabled);
8249         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8250 #endif
8251 }
8252
8253 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8254 {
8255         ++vcpu->stat.halt_exits;
8256         if (lapic_in_kernel(vcpu)) {
8257                 vcpu->arch.mp_state = state;
8258                 return 1;
8259         } else {
8260                 vcpu->run->exit_reason = reason;
8261                 return 0;
8262         }
8263 }
8264
8265 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8266 {
8267         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8268 }
8269 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8270
8271 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8272 {
8273         int ret = kvm_skip_emulated_instruction(vcpu);
8274         /*
8275          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8276          * KVM_EXIT_DEBUG here.
8277          */
8278         return kvm_vcpu_halt(vcpu) && ret;
8279 }
8280 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8281
8282 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8283 {
8284         int ret = kvm_skip_emulated_instruction(vcpu);
8285
8286         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8287 }
8288 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8289
8290 #ifdef CONFIG_X86_64
8291 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8292                                 unsigned long clock_type)
8293 {
8294         struct kvm_clock_pairing clock_pairing;
8295         struct timespec64 ts;
8296         u64 cycle;
8297         int ret;
8298
8299         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8300                 return -KVM_EOPNOTSUPP;
8301
8302         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8303                 return -KVM_EOPNOTSUPP;
8304
8305         clock_pairing.sec = ts.tv_sec;
8306         clock_pairing.nsec = ts.tv_nsec;
8307         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8308         clock_pairing.flags = 0;
8309         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8310
8311         ret = 0;
8312         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8313                             sizeof(struct kvm_clock_pairing)))
8314                 ret = -KVM_EFAULT;
8315
8316         return ret;
8317 }
8318 #endif
8319
8320 /*
8321  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8322  *
8323  * @apicid - apicid of vcpu to be kicked.
8324  */
8325 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8326 {
8327         struct kvm_lapic_irq lapic_irq;
8328
8329         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8330         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8331         lapic_irq.level = 0;
8332         lapic_irq.dest_id = apicid;
8333         lapic_irq.msi_redir_hint = false;
8334
8335         lapic_irq.delivery_mode = APIC_DM_REMRD;
8336         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8337 }
8338
8339 bool kvm_apicv_activated(struct kvm *kvm)
8340 {
8341         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8342 }
8343 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8344
8345 void kvm_apicv_init(struct kvm *kvm, bool enable)
8346 {
8347         if (enable)
8348                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8349                           &kvm->arch.apicv_inhibit_reasons);
8350         else
8351                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8352                         &kvm->arch.apicv_inhibit_reasons);
8353 }
8354 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8355
8356 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8357 {
8358         struct kvm_vcpu *target = NULL;
8359         struct kvm_apic_map *map;
8360
8361         vcpu->stat.directed_yield_attempted++;
8362
8363         rcu_read_lock();
8364         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8365
8366         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8367                 target = map->phys_map[dest_id]->vcpu;
8368
8369         rcu_read_unlock();
8370
8371         if (!target || !READ_ONCE(target->ready))
8372                 goto no_yield;
8373
8374         /* Ignore requests to yield to self */
8375         if (vcpu == target)
8376                 goto no_yield;
8377
8378         if (kvm_vcpu_yield_to(target) <= 0)
8379                 goto no_yield;
8380
8381         vcpu->stat.directed_yield_successful++;
8382
8383 no_yield:
8384         return;
8385 }
8386
8387 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8388 {
8389         unsigned long nr, a0, a1, a2, a3, ret;
8390         int op_64_bit;
8391
8392         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8393                 return kvm_xen_hypercall(vcpu);
8394
8395         if (kvm_hv_hypercall_enabled(vcpu))
8396                 return kvm_hv_hypercall(vcpu);
8397
8398         nr = kvm_rax_read(vcpu);
8399         a0 = kvm_rbx_read(vcpu);
8400         a1 = kvm_rcx_read(vcpu);
8401         a2 = kvm_rdx_read(vcpu);
8402         a3 = kvm_rsi_read(vcpu);
8403
8404         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8405
8406         op_64_bit = is_64_bit_mode(vcpu);
8407         if (!op_64_bit) {
8408                 nr &= 0xFFFFFFFF;
8409                 a0 &= 0xFFFFFFFF;
8410                 a1 &= 0xFFFFFFFF;
8411                 a2 &= 0xFFFFFFFF;
8412                 a3 &= 0xFFFFFFFF;
8413         }
8414
8415         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8416                 ret = -KVM_EPERM;
8417                 goto out;
8418         }
8419
8420         ret = -KVM_ENOSYS;
8421
8422         switch (nr) {
8423         case KVM_HC_VAPIC_POLL_IRQ:
8424                 ret = 0;
8425                 break;
8426         case KVM_HC_KICK_CPU:
8427                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8428                         break;
8429
8430                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8431                 kvm_sched_yield(vcpu, a1);
8432                 ret = 0;
8433                 break;
8434 #ifdef CONFIG_X86_64
8435         case KVM_HC_CLOCK_PAIRING:
8436                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8437                 break;
8438 #endif
8439         case KVM_HC_SEND_IPI:
8440                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8441                         break;
8442
8443                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8444                 break;
8445         case KVM_HC_SCHED_YIELD:
8446                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8447                         break;
8448
8449                 kvm_sched_yield(vcpu, a0);
8450                 ret = 0;
8451                 break;
8452         default:
8453                 ret = -KVM_ENOSYS;
8454                 break;
8455         }
8456 out:
8457         if (!op_64_bit)
8458                 ret = (u32)ret;
8459         kvm_rax_write(vcpu, ret);
8460
8461         ++vcpu->stat.hypercalls;
8462         return kvm_skip_emulated_instruction(vcpu);
8463 }
8464 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8465
8466 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8467 {
8468         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8469         char instruction[3];
8470         unsigned long rip = kvm_rip_read(vcpu);
8471
8472         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8473
8474         return emulator_write_emulated(ctxt, rip, instruction, 3,
8475                 &ctxt->exception);
8476 }
8477
8478 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8479 {
8480         return vcpu->run->request_interrupt_window &&
8481                 likely(!pic_in_kernel(vcpu->kvm));
8482 }
8483
8484 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8485 {
8486         struct kvm_run *kvm_run = vcpu->run;
8487
8488         /*
8489          * if_flag is obsolete and useless, so do not bother
8490          * setting it for SEV-ES guests.  Userspace can just
8491          * use kvm_run->ready_for_interrupt_injection.
8492          */
8493         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8494                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8495
8496         kvm_run->cr8 = kvm_get_cr8(vcpu);
8497         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8498         kvm_run->ready_for_interrupt_injection =
8499                 pic_in_kernel(vcpu->kvm) ||
8500                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8501
8502         if (is_smm(vcpu))
8503                 kvm_run->flags |= KVM_RUN_X86_SMM;
8504 }
8505
8506 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8507 {
8508         int max_irr, tpr;
8509
8510         if (!kvm_x86_ops.update_cr8_intercept)
8511                 return;
8512
8513         if (!lapic_in_kernel(vcpu))
8514                 return;
8515
8516         if (vcpu->arch.apicv_active)
8517                 return;
8518
8519         if (!vcpu->arch.apic->vapic_addr)
8520                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8521         else
8522                 max_irr = -1;
8523
8524         if (max_irr != -1)
8525                 max_irr >>= 4;
8526
8527         tpr = kvm_lapic_get_cr8(vcpu);
8528
8529         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8530 }
8531
8532
8533 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8534 {
8535         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8536                 return -EIO;
8537
8538         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8539                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8540                 return 1;
8541         }
8542
8543         return kvm_x86_ops.nested_ops->check_events(vcpu);
8544 }
8545
8546 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8547 {
8548         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8549                 vcpu->arch.exception.error_code = false;
8550         static_call(kvm_x86_queue_exception)(vcpu);
8551 }
8552
8553 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8554 {
8555         int r;
8556         bool can_inject = true;
8557
8558         /* try to reinject previous events if any */
8559
8560         if (vcpu->arch.exception.injected) {
8561                 kvm_inject_exception(vcpu);
8562                 can_inject = false;
8563         }
8564         /*
8565          * Do not inject an NMI or interrupt if there is a pending
8566          * exception.  Exceptions and interrupts are recognized at
8567          * instruction boundaries, i.e. the start of an instruction.
8568          * Trap-like exceptions, e.g. #DB, have higher priority than
8569          * NMIs and interrupts, i.e. traps are recognized before an
8570          * NMI/interrupt that's pending on the same instruction.
8571          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8572          * priority, but are only generated (pended) during instruction
8573          * execution, i.e. a pending fault-like exception means the
8574          * fault occurred on the *previous* instruction and must be
8575          * serviced prior to recognizing any new events in order to
8576          * fully complete the previous instruction.
8577          */
8578         else if (!vcpu->arch.exception.pending) {
8579                 if (vcpu->arch.nmi_injected) {
8580                         static_call(kvm_x86_set_nmi)(vcpu);
8581                         can_inject = false;
8582                 } else if (vcpu->arch.interrupt.injected) {
8583                         static_call(kvm_x86_set_irq)(vcpu);
8584                         can_inject = false;
8585                 }
8586         }
8587
8588         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8589                      vcpu->arch.exception.pending);
8590
8591         /*
8592          * Call check_nested_events() even if we reinjected a previous event
8593          * in order for caller to determine if it should require immediate-exit
8594          * from L2 to L1 due to pending L1 events which require exit
8595          * from L2 to L1.
8596          */
8597         if (is_guest_mode(vcpu)) {
8598                 r = kvm_check_nested_events(vcpu);
8599                 if (r < 0)
8600                         goto busy;
8601         }
8602
8603         /* try to inject new event if pending */
8604         if (vcpu->arch.exception.pending) {
8605                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8606                                         vcpu->arch.exception.has_error_code,
8607                                         vcpu->arch.exception.error_code);
8608
8609                 vcpu->arch.exception.pending = false;
8610                 vcpu->arch.exception.injected = true;
8611
8612                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8613                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8614                                              X86_EFLAGS_RF);
8615
8616                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8617                         kvm_deliver_exception_payload(vcpu);
8618                         if (vcpu->arch.dr7 & DR7_GD) {
8619                                 vcpu->arch.dr7 &= ~DR7_GD;
8620                                 kvm_update_dr7(vcpu);
8621                         }
8622                 }
8623
8624                 kvm_inject_exception(vcpu);
8625                 can_inject = false;
8626         }
8627
8628         /*
8629          * Finally, inject interrupt events.  If an event cannot be injected
8630          * due to architectural conditions (e.g. IF=0) a window-open exit
8631          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8632          * and can architecturally be injected, but we cannot do it right now:
8633          * an interrupt could have arrived just now and we have to inject it
8634          * as a vmexit, or there could already an event in the queue, which is
8635          * indicated by can_inject.  In that case we request an immediate exit
8636          * in order to make progress and get back here for another iteration.
8637          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8638          */
8639         if (vcpu->arch.smi_pending) {
8640                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8641                 if (r < 0)
8642                         goto busy;
8643                 if (r) {
8644                         vcpu->arch.smi_pending = false;
8645                         ++vcpu->arch.smi_count;
8646                         enter_smm(vcpu);
8647                         can_inject = false;
8648                 } else
8649                         static_call(kvm_x86_enable_smi_window)(vcpu);
8650         }
8651
8652         if (vcpu->arch.nmi_pending) {
8653                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8654                 if (r < 0)
8655                         goto busy;
8656                 if (r) {
8657                         --vcpu->arch.nmi_pending;
8658                         vcpu->arch.nmi_injected = true;
8659                         static_call(kvm_x86_set_nmi)(vcpu);
8660                         can_inject = false;
8661                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8662                 }
8663                 if (vcpu->arch.nmi_pending)
8664                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8665         }
8666
8667         if (kvm_cpu_has_injectable_intr(vcpu)) {
8668                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8669                 if (r < 0)
8670                         goto busy;
8671                 if (r) {
8672                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8673                         static_call(kvm_x86_set_irq)(vcpu);
8674                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8675                 }
8676                 if (kvm_cpu_has_injectable_intr(vcpu))
8677                         static_call(kvm_x86_enable_irq_window)(vcpu);
8678         }
8679
8680         if (is_guest_mode(vcpu) &&
8681             kvm_x86_ops.nested_ops->hv_timer_pending &&
8682             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8683                 *req_immediate_exit = true;
8684
8685         WARN_ON(vcpu->arch.exception.pending);
8686         return;
8687
8688 busy:
8689         *req_immediate_exit = true;
8690         return;
8691 }
8692
8693 static void process_nmi(struct kvm_vcpu *vcpu)
8694 {
8695         unsigned limit = 2;
8696
8697         /*
8698          * x86 is limited to one NMI running, and one NMI pending after it.
8699          * If an NMI is already in progress, limit further NMIs to just one.
8700          * Otherwise, allow two (and we'll inject the first one immediately).
8701          */
8702         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8703                 limit = 1;
8704
8705         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8706         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8707         kvm_make_request(KVM_REQ_EVENT, vcpu);
8708 }
8709
8710 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8711 {
8712         u32 flags = 0;
8713         flags |= seg->g       << 23;
8714         flags |= seg->db      << 22;
8715         flags |= seg->l       << 21;
8716         flags |= seg->avl     << 20;
8717         flags |= seg->present << 15;
8718         flags |= seg->dpl     << 13;
8719         flags |= seg->s       << 12;
8720         flags |= seg->type    << 8;
8721         return flags;
8722 }
8723
8724 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8725 {
8726         struct kvm_segment seg;
8727         int offset;
8728
8729         kvm_get_segment(vcpu, &seg, n);
8730         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8731
8732         if (n < 3)
8733                 offset = 0x7f84 + n * 12;
8734         else
8735                 offset = 0x7f2c + (n - 3) * 12;
8736
8737         put_smstate(u32, buf, offset + 8, seg.base);
8738         put_smstate(u32, buf, offset + 4, seg.limit);
8739         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8740 }
8741
8742 #ifdef CONFIG_X86_64
8743 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8744 {
8745         struct kvm_segment seg;
8746         int offset;
8747         u16 flags;
8748
8749         kvm_get_segment(vcpu, &seg, n);
8750         offset = 0x7e00 + n * 16;
8751
8752         flags = enter_smm_get_segment_flags(&seg) >> 8;
8753         put_smstate(u16, buf, offset, seg.selector);
8754         put_smstate(u16, buf, offset + 2, flags);
8755         put_smstate(u32, buf, offset + 4, seg.limit);
8756         put_smstate(u64, buf, offset + 8, seg.base);
8757 }
8758 #endif
8759
8760 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8761 {
8762         struct desc_ptr dt;
8763         struct kvm_segment seg;
8764         unsigned long val;
8765         int i;
8766
8767         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8768         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8769         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8770         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8771
8772         for (i = 0; i < 8; i++)
8773                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8774
8775         kvm_get_dr(vcpu, 6, &val);
8776         put_smstate(u32, buf, 0x7fcc, (u32)val);
8777         kvm_get_dr(vcpu, 7, &val);
8778         put_smstate(u32, buf, 0x7fc8, (u32)val);
8779
8780         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8781         put_smstate(u32, buf, 0x7fc4, seg.selector);
8782         put_smstate(u32, buf, 0x7f64, seg.base);
8783         put_smstate(u32, buf, 0x7f60, seg.limit);
8784         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8785
8786         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8787         put_smstate(u32, buf, 0x7fc0, seg.selector);
8788         put_smstate(u32, buf, 0x7f80, seg.base);
8789         put_smstate(u32, buf, 0x7f7c, seg.limit);
8790         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8791
8792         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8793         put_smstate(u32, buf, 0x7f74, dt.address);
8794         put_smstate(u32, buf, 0x7f70, dt.size);
8795
8796         static_call(kvm_x86_get_idt)(vcpu, &dt);
8797         put_smstate(u32, buf, 0x7f58, dt.address);
8798         put_smstate(u32, buf, 0x7f54, dt.size);
8799
8800         for (i = 0; i < 6; i++)
8801                 enter_smm_save_seg_32(vcpu, buf, i);
8802
8803         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8804
8805         /* revision id */
8806         put_smstate(u32, buf, 0x7efc, 0x00020000);
8807         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8808 }
8809
8810 #ifdef CONFIG_X86_64
8811 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8812 {
8813         struct desc_ptr dt;
8814         struct kvm_segment seg;
8815         unsigned long val;
8816         int i;
8817
8818         for (i = 0; i < 16; i++)
8819                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8820
8821         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8822         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8823
8824         kvm_get_dr(vcpu, 6, &val);
8825         put_smstate(u64, buf, 0x7f68, val);
8826         kvm_get_dr(vcpu, 7, &val);
8827         put_smstate(u64, buf, 0x7f60, val);
8828
8829         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8830         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8831         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8832
8833         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8834
8835         /* revision id */
8836         put_smstate(u32, buf, 0x7efc, 0x00020064);
8837
8838         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8839
8840         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8841         put_smstate(u16, buf, 0x7e90, seg.selector);
8842         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8843         put_smstate(u32, buf, 0x7e94, seg.limit);
8844         put_smstate(u64, buf, 0x7e98, seg.base);
8845
8846         static_call(kvm_x86_get_idt)(vcpu, &dt);
8847         put_smstate(u32, buf, 0x7e84, dt.size);
8848         put_smstate(u64, buf, 0x7e88, dt.address);
8849
8850         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8851         put_smstate(u16, buf, 0x7e70, seg.selector);
8852         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8853         put_smstate(u32, buf, 0x7e74, seg.limit);
8854         put_smstate(u64, buf, 0x7e78, seg.base);
8855
8856         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8857         put_smstate(u32, buf, 0x7e64, dt.size);
8858         put_smstate(u64, buf, 0x7e68, dt.address);
8859
8860         for (i = 0; i < 6; i++)
8861                 enter_smm_save_seg_64(vcpu, buf, i);
8862 }
8863 #endif
8864
8865 static void enter_smm(struct kvm_vcpu *vcpu)
8866 {
8867         struct kvm_segment cs, ds;
8868         struct desc_ptr dt;
8869         char buf[512];
8870         u32 cr0;
8871
8872         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8873         memset(buf, 0, 512);
8874 #ifdef CONFIG_X86_64
8875         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8876                 enter_smm_save_state_64(vcpu, buf);
8877         else
8878 #endif
8879                 enter_smm_save_state_32(vcpu, buf);
8880
8881         /*
8882          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8883          * vCPU state (e.g. leave guest mode) after we've saved the state into
8884          * the SMM state-save area.
8885          */
8886         static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8887
8888         vcpu->arch.hflags |= HF_SMM_MASK;
8889         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8890
8891         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8892                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8893         else
8894                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8895
8896         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8897         kvm_rip_write(vcpu, 0x8000);
8898
8899         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8900         static_call(kvm_x86_set_cr0)(vcpu, cr0);
8901         vcpu->arch.cr0 = cr0;
8902
8903         static_call(kvm_x86_set_cr4)(vcpu, 0);
8904
8905         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8906         dt.address = dt.size = 0;
8907         static_call(kvm_x86_set_idt)(vcpu, &dt);
8908
8909         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8910
8911         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8912         cs.base = vcpu->arch.smbase;
8913
8914         ds.selector = 0;
8915         ds.base = 0;
8916
8917         cs.limit    = ds.limit = 0xffffffff;
8918         cs.type     = ds.type = 0x3;
8919         cs.dpl      = ds.dpl = 0;
8920         cs.db       = ds.db = 0;
8921         cs.s        = ds.s = 1;
8922         cs.l        = ds.l = 0;
8923         cs.g        = ds.g = 1;
8924         cs.avl      = ds.avl = 0;
8925         cs.present  = ds.present = 1;
8926         cs.unusable = ds.unusable = 0;
8927         cs.padding  = ds.padding = 0;
8928
8929         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8930         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8931         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8932         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8933         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8934         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8935
8936 #ifdef CONFIG_X86_64
8937         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8938                 static_call(kvm_x86_set_efer)(vcpu, 0);
8939 #endif
8940
8941         kvm_update_cpuid_runtime(vcpu);
8942         kvm_mmu_reset_context(vcpu);
8943 }
8944
8945 static void process_smi(struct kvm_vcpu *vcpu)
8946 {
8947         vcpu->arch.smi_pending = true;
8948         kvm_make_request(KVM_REQ_EVENT, vcpu);
8949 }
8950
8951 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8952                                        unsigned long *vcpu_bitmap)
8953 {
8954         cpumask_var_t cpus;
8955
8956         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8957
8958         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8959                                     NULL, vcpu_bitmap, cpus);
8960
8961         free_cpumask_var(cpus);
8962 }
8963
8964 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8965 {
8966         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8967 }
8968
8969 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8970 {
8971         if (!lapic_in_kernel(vcpu))
8972                 return;
8973
8974         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8975         kvm_apic_update_apicv(vcpu);
8976         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8977 }
8978 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8979
8980 /*
8981  * NOTE: Do not hold any lock prior to calling this.
8982  *
8983  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8984  * locked, because it calls __x86_set_memory_region() which does
8985  * synchronize_srcu(&kvm->srcu).
8986  */
8987 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8988 {
8989         struct kvm_vcpu *except;
8990         unsigned long old, new, expected;
8991
8992         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8993             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8994                 return;
8995
8996         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8997         do {
8998                 expected = new = old;
8999                 if (activate)
9000                         __clear_bit(bit, &new);
9001                 else
9002                         __set_bit(bit, &new);
9003                 if (new == old)
9004                         break;
9005                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9006         } while (old != expected);
9007
9008         if (!!old == !!new)
9009                 return;
9010
9011         trace_kvm_apicv_update_request(activate, bit);
9012         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9013                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9014
9015         /*
9016          * Sending request to update APICV for all other vcpus,
9017          * while update the calling vcpu immediately instead of
9018          * waiting for another #VMEXIT to handle the request.
9019          */
9020         except = kvm_get_running_vcpu();
9021         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9022                                          except);
9023         if (except)
9024                 kvm_vcpu_update_apicv(except);
9025 }
9026 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9027
9028 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9029 {
9030         if (!kvm_apic_present(vcpu))
9031                 return;
9032
9033         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9034
9035         if (irqchip_split(vcpu->kvm))
9036                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9037         else {
9038                 if (vcpu->arch.apicv_active)
9039                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9040                 if (ioapic_in_kernel(vcpu->kvm))
9041                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9042         }
9043
9044         if (is_guest_mode(vcpu))
9045                 vcpu->arch.load_eoi_exitmap_pending = true;
9046         else
9047                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9048 }
9049
9050 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9051 {
9052         u64 eoi_exit_bitmap[4];
9053
9054         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9055                 return;
9056
9057         if (to_hv_vcpu(vcpu))
9058                 bitmap_or((ulong *)eoi_exit_bitmap,
9059                           vcpu->arch.ioapic_handled_vectors,
9060                           to_hv_synic(vcpu)->vec_bitmap, 256);
9061
9062         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9063 }
9064
9065 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9066                                             unsigned long start, unsigned long end)
9067 {
9068         unsigned long apic_address;
9069
9070         /*
9071          * The physical address of apic access page is stored in the VMCS.
9072          * Update it when it becomes invalid.
9073          */
9074         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9075         if (start <= apic_address && apic_address < end)
9076                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9077 }
9078
9079 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9080 {
9081         if (!lapic_in_kernel(vcpu))
9082                 return;
9083
9084         if (!kvm_x86_ops.set_apic_access_page_addr)
9085                 return;
9086
9087         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9088 }
9089
9090 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9091 {
9092         smp_send_reschedule(vcpu->cpu);
9093 }
9094 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9095
9096 /*
9097  * Returns 1 to let vcpu_run() continue the guest execution loop without
9098  * exiting to the userspace.  Otherwise, the value will be returned to the
9099  * userspace.
9100  */
9101 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9102 {
9103         int r;
9104         bool req_int_win =
9105                 dm_request_for_irq_injection(vcpu) &&
9106                 kvm_cpu_accept_dm_intr(vcpu);
9107         fastpath_t exit_fastpath;
9108
9109         bool req_immediate_exit = false;
9110
9111         /* Forbid vmenter if vcpu dirty ring is soft-full */
9112         if (unlikely(vcpu->kvm->dirty_ring_size &&
9113                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9114                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9115                 trace_kvm_dirty_ring_exit(vcpu);
9116                 r = 0;
9117                 goto out;
9118         }
9119
9120         if (kvm_request_pending(vcpu)) {
9121                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9122                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9123                                 r = 0;
9124                                 goto out;
9125                         }
9126                 }
9127                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9128                         kvm_mmu_unload(vcpu);
9129                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9130                         __kvm_migrate_timers(vcpu);
9131                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9132                         kvm_gen_update_masterclock(vcpu->kvm);
9133                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9134                         kvm_gen_kvmclock_update(vcpu);
9135                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9136                         r = kvm_guest_time_update(vcpu);
9137                         if (unlikely(r))
9138                                 goto out;
9139                 }
9140                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9141                         kvm_mmu_sync_roots(vcpu);
9142                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9143                         kvm_mmu_load_pgd(vcpu);
9144                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9145                         kvm_vcpu_flush_tlb_all(vcpu);
9146
9147                         /* Flushing all ASIDs flushes the current ASID... */
9148                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9149                 }
9150                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9151                         kvm_vcpu_flush_tlb_current(vcpu);
9152                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
9153                         kvm_vcpu_flush_tlb_guest(vcpu);
9154
9155                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9156                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9157                         r = 0;
9158                         goto out;
9159                 }
9160                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9161                         if (is_guest_mode(vcpu)) {
9162                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9163                         } else {
9164                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9165                                 vcpu->mmio_needed = 0;
9166                                 r = 0;
9167                                 goto out;
9168                         }
9169                 }
9170                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9171                         /* Page is swapped out. Do synthetic halt */
9172                         vcpu->arch.apf.halted = true;
9173                         r = 1;
9174                         goto out;
9175                 }
9176                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9177                         record_steal_time(vcpu);
9178                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9179                         process_smi(vcpu);
9180                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9181                         process_nmi(vcpu);
9182                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9183                         kvm_pmu_handle_event(vcpu);
9184                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9185                         kvm_pmu_deliver_pmi(vcpu);
9186                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9187                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9188                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9189                                      vcpu->arch.ioapic_handled_vectors)) {
9190                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9191                                 vcpu->run->eoi.vector =
9192                                                 vcpu->arch.pending_ioapic_eoi;
9193                                 r = 0;
9194                                 goto out;
9195                         }
9196                 }
9197                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9198                         vcpu_scan_ioapic(vcpu);
9199                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9200                         vcpu_load_eoi_exitmap(vcpu);
9201                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9202                         kvm_vcpu_reload_apic_access_page(vcpu);
9203                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9204                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9205                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9206                         r = 0;
9207                         goto out;
9208                 }
9209                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9210                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9211                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9212                         r = 0;
9213                         goto out;
9214                 }
9215                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9216                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9217
9218                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9219                         vcpu->run->hyperv = hv_vcpu->exit;
9220                         r = 0;
9221                         goto out;
9222                 }
9223
9224                 /*
9225                  * KVM_REQ_HV_STIMER has to be processed after
9226                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9227                  * depend on the guest clock being up-to-date
9228                  */
9229                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9230                         kvm_hv_process_stimers(vcpu);
9231                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9232                         kvm_vcpu_update_apicv(vcpu);
9233                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9234                         kvm_check_async_pf_completion(vcpu);
9235                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9236                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9237
9238                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9239                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9240         }
9241
9242         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9243             kvm_xen_has_interrupt(vcpu)) {
9244                 ++vcpu->stat.req_event;
9245                 kvm_apic_accept_events(vcpu);
9246                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9247                         r = 1;
9248                         goto out;
9249                 }
9250
9251                 inject_pending_event(vcpu, &req_immediate_exit);
9252                 if (req_int_win)
9253                         static_call(kvm_x86_enable_irq_window)(vcpu);
9254
9255                 if (kvm_lapic_enabled(vcpu)) {
9256                         update_cr8_intercept(vcpu);
9257                         kvm_lapic_sync_to_vapic(vcpu);
9258                 }
9259         }
9260
9261         r = kvm_mmu_reload(vcpu);
9262         if (unlikely(r)) {
9263                 goto cancel_injection;
9264         }
9265
9266         preempt_disable();
9267
9268         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9269
9270         /*
9271          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9272          * IPI are then delayed after guest entry, which ensures that they
9273          * result in virtual interrupt delivery.
9274          */
9275         local_irq_disable();
9276         vcpu->mode = IN_GUEST_MODE;
9277
9278         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9279
9280         /*
9281          * 1) We should set ->mode before checking ->requests.  Please see
9282          * the comment in kvm_vcpu_exiting_guest_mode().
9283          *
9284          * 2) For APICv, we should set ->mode before checking PID.ON. This
9285          * pairs with the memory barrier implicit in pi_test_and_set_on
9286          * (see vmx_deliver_posted_interrupt).
9287          *
9288          * 3) This also orders the write to mode from any reads to the page
9289          * tables done while the VCPU is running.  Please see the comment
9290          * in kvm_flush_remote_tlbs.
9291          */
9292         smp_mb__after_srcu_read_unlock();
9293
9294         /*
9295          * This handles the case where a posted interrupt was
9296          * notified with kvm_vcpu_kick.
9297          */
9298         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9299                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9300
9301         if (kvm_vcpu_exit_request(vcpu)) {
9302                 vcpu->mode = OUTSIDE_GUEST_MODE;
9303                 smp_wmb();
9304                 local_irq_enable();
9305                 preempt_enable();
9306                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9307                 r = 1;
9308                 goto cancel_injection;
9309         }
9310
9311         if (req_immediate_exit) {
9312                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9313                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9314         }
9315
9316         fpregs_assert_state_consistent();
9317         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9318                 switch_fpu_return();
9319
9320         if (unlikely(vcpu->arch.switch_db_regs)) {
9321                 set_debugreg(0, 7);
9322                 set_debugreg(vcpu->arch.eff_db[0], 0);
9323                 set_debugreg(vcpu->arch.eff_db[1], 1);
9324                 set_debugreg(vcpu->arch.eff_db[2], 2);
9325                 set_debugreg(vcpu->arch.eff_db[3], 3);
9326                 set_debugreg(vcpu->arch.dr6, 6);
9327                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9328         }
9329
9330         for (;;) {
9331                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9332                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9333                         break;
9334
9335                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9336                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9337                         break;
9338                 }
9339
9340                 if (vcpu->arch.apicv_active)
9341                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9342         }
9343
9344         /*
9345          * Do this here before restoring debug registers on the host.  And
9346          * since we do this before handling the vmexit, a DR access vmexit
9347          * can (a) read the correct value of the debug registers, (b) set
9348          * KVM_DEBUGREG_WONT_EXIT again.
9349          */
9350         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9351                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9352                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9353                 kvm_update_dr0123(vcpu);
9354                 kvm_update_dr7(vcpu);
9355                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9356         }
9357
9358         /*
9359          * If the guest has used debug registers, at least dr7
9360          * will be disabled while returning to the host.
9361          * If we don't have active breakpoints in the host, we don't
9362          * care about the messed up debug address registers. But if
9363          * we have some of them active, restore the old state.
9364          */
9365         if (hw_breakpoint_active())
9366                 hw_breakpoint_restore();
9367
9368         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9369         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9370
9371         vcpu->mode = OUTSIDE_GUEST_MODE;
9372         smp_wmb();
9373
9374         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9375
9376         /*
9377          * Consume any pending interrupts, including the possible source of
9378          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9379          * An instruction is required after local_irq_enable() to fully unblock
9380          * interrupts on processors that implement an interrupt shadow, the
9381          * stat.exits increment will do nicely.
9382          */
9383         kvm_before_interrupt(vcpu);
9384         local_irq_enable();
9385         ++vcpu->stat.exits;
9386         local_irq_disable();
9387         kvm_after_interrupt(vcpu);
9388
9389         /*
9390          * Wait until after servicing IRQs to account guest time so that any
9391          * ticks that occurred while running the guest are properly accounted
9392          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9393          * of accounting via context tracking, but the loss of accuracy is
9394          * acceptable for all known use cases.
9395          */
9396         vtime_account_guest_exit();
9397
9398         if (lapic_in_kernel(vcpu)) {
9399                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9400                 if (delta != S64_MIN) {
9401                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9402                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9403                 }
9404         }
9405
9406         local_irq_enable();
9407         preempt_enable();
9408
9409         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9410
9411         /*
9412          * Profile KVM exit RIPs:
9413          */
9414         if (unlikely(prof_on == KVM_PROFILING)) {
9415                 unsigned long rip = kvm_rip_read(vcpu);
9416                 profile_hit(KVM_PROFILING, (void *)rip);
9417         }
9418
9419         if (unlikely(vcpu->arch.tsc_always_catchup))
9420                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9421
9422         if (vcpu->arch.apic_attention)
9423                 kvm_lapic_sync_from_vapic(vcpu);
9424
9425         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9426         return r;
9427
9428 cancel_injection:
9429         if (req_immediate_exit)
9430                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9431         static_call(kvm_x86_cancel_injection)(vcpu);
9432         if (unlikely(vcpu->arch.apic_attention))
9433                 kvm_lapic_sync_from_vapic(vcpu);
9434 out:
9435         return r;
9436 }
9437
9438 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9439 {
9440         if (!kvm_arch_vcpu_runnable(vcpu) &&
9441             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9442                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9443                 kvm_vcpu_block(vcpu);
9444                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9445
9446                 if (kvm_x86_ops.post_block)
9447                         static_call(kvm_x86_post_block)(vcpu);
9448
9449                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9450                         return 1;
9451         }
9452
9453         kvm_apic_accept_events(vcpu);
9454         switch(vcpu->arch.mp_state) {
9455         case KVM_MP_STATE_HALTED:
9456         case KVM_MP_STATE_AP_RESET_HOLD:
9457                 vcpu->arch.pv.pv_unhalted = false;
9458                 vcpu->arch.mp_state =
9459                         KVM_MP_STATE_RUNNABLE;
9460                 fallthrough;
9461         case KVM_MP_STATE_RUNNABLE:
9462                 vcpu->arch.apf.halted = false;
9463                 break;
9464         case KVM_MP_STATE_INIT_RECEIVED:
9465                 break;
9466         default:
9467                 return -EINTR;
9468         }
9469         return 1;
9470 }
9471
9472 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9473 {
9474         if (is_guest_mode(vcpu))
9475                 kvm_check_nested_events(vcpu);
9476
9477         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9478                 !vcpu->arch.apf.halted);
9479 }
9480
9481 static int vcpu_run(struct kvm_vcpu *vcpu)
9482 {
9483         int r;
9484         struct kvm *kvm = vcpu->kvm;
9485
9486         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9487         vcpu->arch.l1tf_flush_l1d = true;
9488
9489         for (;;) {
9490                 if (kvm_vcpu_running(vcpu)) {
9491                         r = vcpu_enter_guest(vcpu);
9492                 } else {
9493                         r = vcpu_block(kvm, vcpu);
9494                 }
9495
9496                 if (r <= 0)
9497                         break;
9498
9499                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9500                 if (kvm_cpu_has_pending_timer(vcpu))
9501                         kvm_inject_pending_timer_irqs(vcpu);
9502
9503                 if (dm_request_for_irq_injection(vcpu) &&
9504                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9505                         r = 0;
9506                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9507                         ++vcpu->stat.request_irq_exits;
9508                         break;
9509                 }
9510
9511                 if (__xfer_to_guest_mode_work_pending()) {
9512                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9513                         r = xfer_to_guest_mode_handle_work(vcpu);
9514                         if (r)
9515                                 return r;
9516                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9517                 }
9518         }
9519
9520         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9521
9522         return r;
9523 }
9524
9525 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9526 {
9527         int r;
9528
9529         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9530         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9531         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9532         return r;
9533 }
9534
9535 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9536 {
9537         BUG_ON(!vcpu->arch.pio.count);
9538
9539         return complete_emulated_io(vcpu);
9540 }
9541
9542 /*
9543  * Implements the following, as a state machine:
9544  *
9545  * read:
9546  *   for each fragment
9547  *     for each mmio piece in the fragment
9548  *       write gpa, len
9549  *       exit
9550  *       copy data
9551  *   execute insn
9552  *
9553  * write:
9554  *   for each fragment
9555  *     for each mmio piece in the fragment
9556  *       write gpa, len
9557  *       copy data
9558  *       exit
9559  */
9560 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9561 {
9562         struct kvm_run *run = vcpu->run;
9563         struct kvm_mmio_fragment *frag;
9564         unsigned len;
9565
9566         BUG_ON(!vcpu->mmio_needed);
9567
9568         /* Complete previous fragment */
9569         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9570         len = min(8u, frag->len);
9571         if (!vcpu->mmio_is_write)
9572                 memcpy(frag->data, run->mmio.data, len);
9573
9574         if (frag->len <= 8) {
9575                 /* Switch to the next fragment. */
9576                 frag++;
9577                 vcpu->mmio_cur_fragment++;
9578         } else {
9579                 /* Go forward to the next mmio piece. */
9580                 frag->data += len;
9581                 frag->gpa += len;
9582                 frag->len -= len;
9583         }
9584
9585         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9586                 vcpu->mmio_needed = 0;
9587
9588                 /* FIXME: return into emulator if single-stepping.  */
9589                 if (vcpu->mmio_is_write)
9590                         return 1;
9591                 vcpu->mmio_read_completed = 1;
9592                 return complete_emulated_io(vcpu);
9593         }
9594
9595         run->exit_reason = KVM_EXIT_MMIO;
9596         run->mmio.phys_addr = frag->gpa;
9597         if (vcpu->mmio_is_write)
9598                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9599         run->mmio.len = min(8u, frag->len);
9600         run->mmio.is_write = vcpu->mmio_is_write;
9601         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9602         return 0;
9603 }
9604
9605 static void kvm_save_current_fpu(struct fpu *fpu)
9606 {
9607         /*
9608          * If the target FPU state is not resident in the CPU registers, just
9609          * memcpy() from current, else save CPU state directly to the target.
9610          */
9611         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9612                 memcpy(&fpu->state, &current->thread.fpu.state,
9613                        fpu_kernel_xstate_size);
9614         else
9615                 copy_fpregs_to_fpstate(fpu);
9616 }
9617
9618 /* Swap (qemu) user FPU context for the guest FPU context. */
9619 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9620 {
9621         fpregs_lock();
9622
9623         kvm_save_current_fpu(vcpu->arch.user_fpu);
9624
9625         /*
9626          * Guests with protected state can't have it set by the hypervisor,
9627          * so skip trying to set it.
9628          */
9629         if (vcpu->arch.guest_fpu)
9630                 /* PKRU is separately restored in kvm_x86_ops.run. */
9631                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9632                                         ~XFEATURE_MASK_PKRU);
9633
9634         fpregs_mark_activate();
9635         fpregs_unlock();
9636
9637         trace_kvm_fpu(1);
9638 }
9639
9640 /* When vcpu_run ends, restore user space FPU context. */
9641 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9642 {
9643         fpregs_lock();
9644
9645         /*
9646          * Guests with protected state can't have it read by the hypervisor,
9647          * so skip trying to save it.
9648          */
9649         if (vcpu->arch.guest_fpu)
9650                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9651
9652         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9653
9654         fpregs_mark_activate();
9655         fpregs_unlock();
9656
9657         ++vcpu->stat.fpu_reload;
9658         trace_kvm_fpu(0);
9659 }
9660
9661 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9662 {
9663         struct kvm_run *kvm_run = vcpu->run;
9664         int r;
9665
9666         vcpu_load(vcpu);
9667         kvm_sigset_activate(vcpu);
9668         kvm_run->flags = 0;
9669         kvm_load_guest_fpu(vcpu);
9670
9671         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9672                 if (kvm_run->immediate_exit) {
9673                         r = -EINTR;
9674                         goto out;
9675                 }
9676                 kvm_vcpu_block(vcpu);
9677                 kvm_apic_accept_events(vcpu);
9678                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9679                 r = -EAGAIN;
9680                 if (signal_pending(current)) {
9681                         r = -EINTR;
9682                         kvm_run->exit_reason = KVM_EXIT_INTR;
9683                         ++vcpu->stat.signal_exits;
9684                 }
9685                 goto out;
9686         }
9687
9688         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9689                 r = -EINVAL;
9690                 goto out;
9691         }
9692
9693         if (kvm_run->kvm_dirty_regs) {
9694                 r = sync_regs(vcpu);
9695                 if (r != 0)
9696                         goto out;
9697         }
9698
9699         /* re-sync apic's tpr */
9700         if (!lapic_in_kernel(vcpu)) {
9701                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9702                         r = -EINVAL;
9703                         goto out;
9704                 }
9705         }
9706
9707         if (unlikely(vcpu->arch.complete_userspace_io)) {
9708                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9709                 vcpu->arch.complete_userspace_io = NULL;
9710                 r = cui(vcpu);
9711                 if (r <= 0)
9712                         goto out;
9713         } else
9714                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9715
9716         if (kvm_run->immediate_exit)
9717                 r = -EINTR;
9718         else
9719                 r = vcpu_run(vcpu);
9720
9721 out:
9722         kvm_put_guest_fpu(vcpu);
9723         if (kvm_run->kvm_valid_regs)
9724                 store_regs(vcpu);
9725         post_kvm_run_save(vcpu);
9726         kvm_sigset_deactivate(vcpu);
9727
9728         vcpu_put(vcpu);
9729         return r;
9730 }
9731
9732 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9733 {
9734         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9735                 /*
9736                  * We are here if userspace calls get_regs() in the middle of
9737                  * instruction emulation. Registers state needs to be copied
9738                  * back from emulation context to vcpu. Userspace shouldn't do
9739                  * that usually, but some bad designed PV devices (vmware
9740                  * backdoor interface) need this to work
9741                  */
9742                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9743                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9744         }
9745         regs->rax = kvm_rax_read(vcpu);
9746         regs->rbx = kvm_rbx_read(vcpu);
9747         regs->rcx = kvm_rcx_read(vcpu);
9748         regs->rdx = kvm_rdx_read(vcpu);
9749         regs->rsi = kvm_rsi_read(vcpu);
9750         regs->rdi = kvm_rdi_read(vcpu);
9751         regs->rsp = kvm_rsp_read(vcpu);
9752         regs->rbp = kvm_rbp_read(vcpu);
9753 #ifdef CONFIG_X86_64
9754         regs->r8 = kvm_r8_read(vcpu);
9755         regs->r9 = kvm_r9_read(vcpu);
9756         regs->r10 = kvm_r10_read(vcpu);
9757         regs->r11 = kvm_r11_read(vcpu);
9758         regs->r12 = kvm_r12_read(vcpu);
9759         regs->r13 = kvm_r13_read(vcpu);
9760         regs->r14 = kvm_r14_read(vcpu);
9761         regs->r15 = kvm_r15_read(vcpu);
9762 #endif
9763
9764         regs->rip = kvm_rip_read(vcpu);
9765         regs->rflags = kvm_get_rflags(vcpu);
9766 }
9767
9768 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9769 {
9770         vcpu_load(vcpu);
9771         __get_regs(vcpu, regs);
9772         vcpu_put(vcpu);
9773         return 0;
9774 }
9775
9776 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9777 {
9778         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9779         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9780
9781         kvm_rax_write(vcpu, regs->rax);
9782         kvm_rbx_write(vcpu, regs->rbx);
9783         kvm_rcx_write(vcpu, regs->rcx);
9784         kvm_rdx_write(vcpu, regs->rdx);
9785         kvm_rsi_write(vcpu, regs->rsi);
9786         kvm_rdi_write(vcpu, regs->rdi);
9787         kvm_rsp_write(vcpu, regs->rsp);
9788         kvm_rbp_write(vcpu, regs->rbp);
9789 #ifdef CONFIG_X86_64
9790         kvm_r8_write(vcpu, regs->r8);
9791         kvm_r9_write(vcpu, regs->r9);
9792         kvm_r10_write(vcpu, regs->r10);
9793         kvm_r11_write(vcpu, regs->r11);
9794         kvm_r12_write(vcpu, regs->r12);
9795         kvm_r13_write(vcpu, regs->r13);
9796         kvm_r14_write(vcpu, regs->r14);
9797         kvm_r15_write(vcpu, regs->r15);
9798 #endif
9799
9800         kvm_rip_write(vcpu, regs->rip);
9801         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9802
9803         vcpu->arch.exception.pending = false;
9804
9805         kvm_make_request(KVM_REQ_EVENT, vcpu);
9806 }
9807
9808 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9809 {
9810         vcpu_load(vcpu);
9811         __set_regs(vcpu, regs);
9812         vcpu_put(vcpu);
9813         return 0;
9814 }
9815
9816 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9817 {
9818         struct kvm_segment cs;
9819
9820         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9821         *db = cs.db;
9822         *l = cs.l;
9823 }
9824 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9825
9826 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9827 {
9828         struct desc_ptr dt;
9829
9830         if (vcpu->arch.guest_state_protected)
9831                 goto skip_protected_regs;
9832
9833         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9834         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9835         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9836         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9837         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9838         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9839
9840         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9841         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9842
9843         static_call(kvm_x86_get_idt)(vcpu, &dt);
9844         sregs->idt.limit = dt.size;
9845         sregs->idt.base = dt.address;
9846         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9847         sregs->gdt.limit = dt.size;
9848         sregs->gdt.base = dt.address;
9849
9850         sregs->cr2 = vcpu->arch.cr2;
9851         sregs->cr3 = kvm_read_cr3(vcpu);
9852
9853 skip_protected_regs:
9854         sregs->cr0 = kvm_read_cr0(vcpu);
9855         sregs->cr4 = kvm_read_cr4(vcpu);
9856         sregs->cr8 = kvm_get_cr8(vcpu);
9857         sregs->efer = vcpu->arch.efer;
9858         sregs->apic_base = kvm_get_apic_base(vcpu);
9859
9860         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9861
9862         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9863                 set_bit(vcpu->arch.interrupt.nr,
9864                         (unsigned long *)sregs->interrupt_bitmap);
9865 }
9866
9867 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9868                                   struct kvm_sregs *sregs)
9869 {
9870         vcpu_load(vcpu);
9871         __get_sregs(vcpu, sregs);
9872         vcpu_put(vcpu);
9873         return 0;
9874 }
9875
9876 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9877                                     struct kvm_mp_state *mp_state)
9878 {
9879         vcpu_load(vcpu);
9880         if (kvm_mpx_supported())
9881                 kvm_load_guest_fpu(vcpu);
9882
9883         kvm_apic_accept_events(vcpu);
9884         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9885              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9886             vcpu->arch.pv.pv_unhalted)
9887                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9888         else
9889                 mp_state->mp_state = vcpu->arch.mp_state;
9890
9891         if (kvm_mpx_supported())
9892                 kvm_put_guest_fpu(vcpu);
9893         vcpu_put(vcpu);
9894         return 0;
9895 }
9896
9897 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9898                                     struct kvm_mp_state *mp_state)
9899 {
9900         int ret = -EINVAL;
9901
9902         vcpu_load(vcpu);
9903
9904         if (!lapic_in_kernel(vcpu) &&
9905             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9906                 goto out;
9907
9908         /*
9909          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9910          * INIT state; latched init should be reported using
9911          * KVM_SET_VCPU_EVENTS, so reject it here.
9912          */
9913         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9914             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9915              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9916                 goto out;
9917
9918         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9919                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9920                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9921         } else
9922                 vcpu->arch.mp_state = mp_state->mp_state;
9923         kvm_make_request(KVM_REQ_EVENT, vcpu);
9924
9925         ret = 0;
9926 out:
9927         vcpu_put(vcpu);
9928         return ret;
9929 }
9930
9931 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9932                     int reason, bool has_error_code, u32 error_code)
9933 {
9934         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9935         int ret;
9936
9937         init_emulate_ctxt(vcpu);
9938
9939         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9940                                    has_error_code, error_code);
9941         if (ret) {
9942                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9943                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9944                 vcpu->run->internal.ndata = 0;
9945                 return 0;
9946         }
9947
9948         kvm_rip_write(vcpu, ctxt->eip);
9949         kvm_set_rflags(vcpu, ctxt->eflags);
9950         return 1;
9951 }
9952 EXPORT_SYMBOL_GPL(kvm_task_switch);
9953
9954 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9955 {
9956         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9957                 /*
9958                  * When EFER.LME and CR0.PG are set, the processor is in
9959                  * 64-bit mode (though maybe in a 32-bit code segment).
9960                  * CR4.PAE and EFER.LMA must be set.
9961                  */
9962                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9963                         return false;
9964                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9965                         return false;
9966         } else {
9967                 /*
9968                  * Not in 64-bit mode: EFER.LMA is clear and the code
9969                  * segment cannot be 64-bit.
9970                  */
9971                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9972                         return false;
9973         }
9974
9975         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9976 }
9977
9978 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9979 {
9980         struct msr_data apic_base_msr;
9981         int mmu_reset_needed = 0;
9982         int pending_vec, max_bits, idx;
9983         struct desc_ptr dt;
9984         int ret = -EINVAL;
9985
9986         if (!kvm_is_valid_sregs(vcpu, sregs))
9987                 goto out;
9988
9989         apic_base_msr.data = sregs->apic_base;
9990         apic_base_msr.host_initiated = true;
9991         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9992                 goto out;
9993
9994         if (vcpu->arch.guest_state_protected)
9995                 goto skip_protected_regs;
9996
9997         dt.size = sregs->idt.limit;
9998         dt.address = sregs->idt.base;
9999         static_call(kvm_x86_set_idt)(vcpu, &dt);
10000         dt.size = sregs->gdt.limit;
10001         dt.address = sregs->gdt.base;
10002         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10003
10004         vcpu->arch.cr2 = sregs->cr2;
10005         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10006         vcpu->arch.cr3 = sregs->cr3;
10007         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10008
10009         kvm_set_cr8(vcpu, sregs->cr8);
10010
10011         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10012         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10013
10014         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10015         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10016         vcpu->arch.cr0 = sregs->cr0;
10017
10018         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10019         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10020
10021         idx = srcu_read_lock(&vcpu->kvm->srcu);
10022         if (is_pae_paging(vcpu)) {
10023                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10024                 mmu_reset_needed = 1;
10025         }
10026         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10027
10028         if (mmu_reset_needed)
10029                 kvm_mmu_reset_context(vcpu);
10030
10031         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10032         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10033         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10034         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10035         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10036         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10037
10038         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10039         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10040
10041         update_cr8_intercept(vcpu);
10042
10043         /* Older userspace won't unhalt the vcpu on reset. */
10044         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10045             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10046             !is_protmode(vcpu))
10047                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10048
10049 skip_protected_regs:
10050         max_bits = KVM_NR_INTERRUPTS;
10051         pending_vec = find_first_bit(
10052                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10053         if (pending_vec < max_bits) {
10054                 kvm_queue_interrupt(vcpu, pending_vec, false);
10055                 pr_debug("Set back pending irq %d\n", pending_vec);
10056         }
10057
10058         kvm_make_request(KVM_REQ_EVENT, vcpu);
10059
10060         ret = 0;
10061 out:
10062         return ret;
10063 }
10064
10065 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10066                                   struct kvm_sregs *sregs)
10067 {
10068         int ret;
10069
10070         vcpu_load(vcpu);
10071         ret = __set_sregs(vcpu, sregs);
10072         vcpu_put(vcpu);
10073         return ret;
10074 }
10075
10076 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10077                                         struct kvm_guest_debug *dbg)
10078 {
10079         unsigned long rflags;
10080         int i, r;
10081
10082         if (vcpu->arch.guest_state_protected)
10083                 return -EINVAL;
10084
10085         vcpu_load(vcpu);
10086
10087         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10088                 r = -EBUSY;
10089                 if (vcpu->arch.exception.pending)
10090                         goto out;
10091                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10092                         kvm_queue_exception(vcpu, DB_VECTOR);
10093                 else
10094                         kvm_queue_exception(vcpu, BP_VECTOR);
10095         }
10096
10097         /*
10098          * Read rflags as long as potentially injected trace flags are still
10099          * filtered out.
10100          */
10101         rflags = kvm_get_rflags(vcpu);
10102
10103         vcpu->guest_debug = dbg->control;
10104         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10105                 vcpu->guest_debug = 0;
10106
10107         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10108                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10109                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10110                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10111         } else {
10112                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10113                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10114         }
10115         kvm_update_dr7(vcpu);
10116
10117         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10118                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10119                         get_segment_base(vcpu, VCPU_SREG_CS);
10120
10121         /*
10122          * Trigger an rflags update that will inject or remove the trace
10123          * flags.
10124          */
10125         kvm_set_rflags(vcpu, rflags);
10126
10127         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10128
10129         r = 0;
10130
10131 out:
10132         vcpu_put(vcpu);
10133         return r;
10134 }
10135
10136 /*
10137  * Translate a guest virtual address to a guest physical address.
10138  */
10139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10140                                     struct kvm_translation *tr)
10141 {
10142         unsigned long vaddr = tr->linear_address;
10143         gpa_t gpa;
10144         int idx;
10145
10146         vcpu_load(vcpu);
10147
10148         idx = srcu_read_lock(&vcpu->kvm->srcu);
10149         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10150         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10151         tr->physical_address = gpa;
10152         tr->valid = gpa != UNMAPPED_GVA;
10153         tr->writeable = 1;
10154         tr->usermode = 0;
10155
10156         vcpu_put(vcpu);
10157         return 0;
10158 }
10159
10160 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10161 {
10162         struct fxregs_state *fxsave;
10163
10164         if (!vcpu->arch.guest_fpu)
10165                 return 0;
10166
10167         vcpu_load(vcpu);
10168
10169         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10170         memcpy(fpu->fpr, fxsave->st_space, 128);
10171         fpu->fcw = fxsave->cwd;
10172         fpu->fsw = fxsave->swd;
10173         fpu->ftwx = fxsave->twd;
10174         fpu->last_opcode = fxsave->fop;
10175         fpu->last_ip = fxsave->rip;
10176         fpu->last_dp = fxsave->rdp;
10177         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10178
10179         vcpu_put(vcpu);
10180         return 0;
10181 }
10182
10183 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10184 {
10185         struct fxregs_state *fxsave;
10186
10187         if (!vcpu->arch.guest_fpu)
10188                 return 0;
10189
10190         vcpu_load(vcpu);
10191
10192         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10193
10194         memcpy(fxsave->st_space, fpu->fpr, 128);
10195         fxsave->cwd = fpu->fcw;
10196         fxsave->swd = fpu->fsw;
10197         fxsave->twd = fpu->ftwx;
10198         fxsave->fop = fpu->last_opcode;
10199         fxsave->rip = fpu->last_ip;
10200         fxsave->rdp = fpu->last_dp;
10201         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10202
10203         vcpu_put(vcpu);
10204         return 0;
10205 }
10206
10207 static void store_regs(struct kvm_vcpu *vcpu)
10208 {
10209         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10210
10211         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10212                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10213
10214         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10215                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10216
10217         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10218                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10219                                 vcpu, &vcpu->run->s.regs.events);
10220 }
10221
10222 static int sync_regs(struct kvm_vcpu *vcpu)
10223 {
10224         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10225                 return -EINVAL;
10226
10227         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10228                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10229                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10230         }
10231         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10232                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10233                         return -EINVAL;
10234                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10235         }
10236         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10237                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10238                                 vcpu, &vcpu->run->s.regs.events))
10239                         return -EINVAL;
10240                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10241         }
10242
10243         return 0;
10244 }
10245
10246 static void fx_init(struct kvm_vcpu *vcpu)
10247 {
10248         if (!vcpu->arch.guest_fpu)
10249                 return;
10250
10251         fpstate_init(&vcpu->arch.guest_fpu->state);
10252         if (boot_cpu_has(X86_FEATURE_XSAVES))
10253                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10254                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10255
10256         /*
10257          * Ensure guest xcr0 is valid for loading
10258          */
10259         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10260
10261         vcpu->arch.cr0 |= X86_CR0_ET;
10262 }
10263
10264 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10265 {
10266         if (vcpu->arch.guest_fpu) {
10267                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10268                 vcpu->arch.guest_fpu = NULL;
10269         }
10270 }
10271 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10272
10273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10274 {
10275         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10276                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10277                              "guest TSC will not be reliable\n");
10278
10279         return 0;
10280 }
10281
10282 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10283 {
10284         struct page *page;
10285         int r;
10286
10287         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10288                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10289         else
10290                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10291
10292         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10293
10294         r = kvm_mmu_create(vcpu);
10295         if (r < 0)
10296                 return r;
10297
10298         if (irqchip_in_kernel(vcpu->kvm)) {
10299                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10300                 if (r < 0)
10301                         goto fail_mmu_destroy;
10302                 if (kvm_apicv_activated(vcpu->kvm))
10303                         vcpu->arch.apicv_active = true;
10304         } else
10305                 static_branch_inc(&kvm_has_noapic_vcpu);
10306
10307         r = -ENOMEM;
10308
10309         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10310         if (!page)
10311                 goto fail_free_lapic;
10312         vcpu->arch.pio_data = page_address(page);
10313
10314         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10315                                        GFP_KERNEL_ACCOUNT);
10316         if (!vcpu->arch.mce_banks)
10317                 goto fail_free_pio_data;
10318         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10319
10320         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10321                                 GFP_KERNEL_ACCOUNT))
10322                 goto fail_free_mce_banks;
10323
10324         if (!alloc_emulate_ctxt(vcpu))
10325                 goto free_wbinvd_dirty_mask;
10326
10327         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10328                                                 GFP_KERNEL_ACCOUNT);
10329         if (!vcpu->arch.user_fpu) {
10330                 pr_err("kvm: failed to allocate userspace's fpu\n");
10331                 goto free_emulate_ctxt;
10332         }
10333
10334         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10335                                                  GFP_KERNEL_ACCOUNT);
10336         if (!vcpu->arch.guest_fpu) {
10337                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10338                 goto free_user_fpu;
10339         }
10340         fx_init(vcpu);
10341
10342         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10343         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10344
10345         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10346
10347         kvm_async_pf_hash_reset(vcpu);
10348         kvm_pmu_init(vcpu);
10349
10350         vcpu->arch.pending_external_vector = -1;
10351         vcpu->arch.preempted_in_kernel = false;
10352
10353         r = static_call(kvm_x86_vcpu_create)(vcpu);
10354         if (r)
10355                 goto free_guest_fpu;
10356
10357         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10358         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10359         kvm_vcpu_mtrr_init(vcpu);
10360         vcpu_load(vcpu);
10361         kvm_vcpu_reset(vcpu, false);
10362         kvm_init_mmu(vcpu, false);
10363         vcpu_put(vcpu);
10364         return 0;
10365
10366 free_guest_fpu:
10367         kvm_free_guest_fpu(vcpu);
10368 free_user_fpu:
10369         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10370 free_emulate_ctxt:
10371         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10372 free_wbinvd_dirty_mask:
10373         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10374 fail_free_mce_banks:
10375         kfree(vcpu->arch.mce_banks);
10376 fail_free_pio_data:
10377         free_page((unsigned long)vcpu->arch.pio_data);
10378 fail_free_lapic:
10379         kvm_free_lapic(vcpu);
10380 fail_mmu_destroy:
10381         kvm_mmu_destroy(vcpu);
10382         return r;
10383 }
10384
10385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10386 {
10387         struct kvm *kvm = vcpu->kvm;
10388
10389         if (mutex_lock_killable(&vcpu->mutex))
10390                 return;
10391         vcpu_load(vcpu);
10392         kvm_synchronize_tsc(vcpu, 0);
10393         vcpu_put(vcpu);
10394
10395         /* poll control enabled by default */
10396         vcpu->arch.msr_kvm_poll_control = 1;
10397
10398         mutex_unlock(&vcpu->mutex);
10399
10400         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10401                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10402                                                 KVMCLOCK_SYNC_PERIOD);
10403 }
10404
10405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10406 {
10407         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10408         int idx;
10409
10410         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10411
10412         kvmclock_reset(vcpu);
10413
10414         static_call(kvm_x86_vcpu_free)(vcpu);
10415
10416         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10417         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10418         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10419         kvm_free_guest_fpu(vcpu);
10420
10421         kvm_hv_vcpu_uninit(vcpu);
10422         kvm_pmu_destroy(vcpu);
10423         kfree(vcpu->arch.mce_banks);
10424         kvm_free_lapic(vcpu);
10425         idx = srcu_read_lock(&vcpu->kvm->srcu);
10426         kvm_mmu_destroy(vcpu);
10427         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10428         free_page((unsigned long)vcpu->arch.pio_data);
10429         kvfree(vcpu->arch.cpuid_entries);
10430         if (!lapic_in_kernel(vcpu))
10431                 static_branch_dec(&kvm_has_noapic_vcpu);
10432 }
10433
10434 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10435 {
10436         kvm_lapic_reset(vcpu, init_event);
10437
10438         vcpu->arch.hflags = 0;
10439
10440         vcpu->arch.smi_pending = 0;
10441         vcpu->arch.smi_count = 0;
10442         atomic_set(&vcpu->arch.nmi_queued, 0);
10443         vcpu->arch.nmi_pending = 0;
10444         vcpu->arch.nmi_injected = false;
10445         kvm_clear_interrupt_queue(vcpu);
10446         kvm_clear_exception_queue(vcpu);
10447
10448         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10449         kvm_update_dr0123(vcpu);
10450         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10451         vcpu->arch.dr7 = DR7_FIXED_1;
10452         kvm_update_dr7(vcpu);
10453
10454         vcpu->arch.cr2 = 0;
10455
10456         kvm_make_request(KVM_REQ_EVENT, vcpu);
10457         vcpu->arch.apf.msr_en_val = 0;
10458         vcpu->arch.apf.msr_int_val = 0;
10459         vcpu->arch.st.msr_val = 0;
10460
10461         kvmclock_reset(vcpu);
10462
10463         kvm_clear_async_pf_completion_queue(vcpu);
10464         kvm_async_pf_hash_reset(vcpu);
10465         vcpu->arch.apf.halted = false;
10466
10467         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10468                 void *mpx_state_buffer;
10469
10470                 /*
10471                  * To avoid have the INIT path from kvm_apic_has_events() that be
10472                  * called with loaded FPU and does not let userspace fix the state.
10473                  */
10474                 if (init_event)
10475                         kvm_put_guest_fpu(vcpu);
10476                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10477                                         XFEATURE_BNDREGS);
10478                 if (mpx_state_buffer)
10479                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10480                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10481                                         XFEATURE_BNDCSR);
10482                 if (mpx_state_buffer)
10483                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10484                 if (init_event)
10485                         kvm_load_guest_fpu(vcpu);
10486         }
10487
10488         if (!init_event) {
10489                 kvm_pmu_reset(vcpu);
10490                 vcpu->arch.smbase = 0x30000;
10491
10492                 vcpu->arch.msr_misc_features_enables = 0;
10493
10494                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10495         }
10496
10497         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10498         vcpu->arch.regs_avail = ~0;
10499         vcpu->arch.regs_dirty = ~0;
10500
10501         vcpu->arch.ia32_xss = 0;
10502
10503         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10504 }
10505
10506 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10507 {
10508         struct kvm_segment cs;
10509
10510         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10511         cs.selector = vector << 8;
10512         cs.base = vector << 12;
10513         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10514         kvm_rip_write(vcpu, 0);
10515 }
10516 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10517
10518 int kvm_arch_hardware_enable(void)
10519 {
10520         struct kvm *kvm;
10521         struct kvm_vcpu *vcpu;
10522         int i;
10523         int ret;
10524         u64 local_tsc;
10525         u64 max_tsc = 0;
10526         bool stable, backwards_tsc = false;
10527
10528         kvm_user_return_msr_cpu_online();
10529         ret = static_call(kvm_x86_hardware_enable)();
10530         if (ret != 0)
10531                 return ret;
10532
10533         local_tsc = rdtsc();
10534         stable = !kvm_check_tsc_unstable();
10535         list_for_each_entry(kvm, &vm_list, vm_list) {
10536                 kvm_for_each_vcpu(i, vcpu, kvm) {
10537                         if (!stable && vcpu->cpu == smp_processor_id())
10538                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10539                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10540                                 backwards_tsc = true;
10541                                 if (vcpu->arch.last_host_tsc > max_tsc)
10542                                         max_tsc = vcpu->arch.last_host_tsc;
10543                         }
10544                 }
10545         }
10546
10547         /*
10548          * Sometimes, even reliable TSCs go backwards.  This happens on
10549          * platforms that reset TSC during suspend or hibernate actions, but
10550          * maintain synchronization.  We must compensate.  Fortunately, we can
10551          * detect that condition here, which happens early in CPU bringup,
10552          * before any KVM threads can be running.  Unfortunately, we can't
10553          * bring the TSCs fully up to date with real time, as we aren't yet far
10554          * enough into CPU bringup that we know how much real time has actually
10555          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10556          * variables that haven't been updated yet.
10557          *
10558          * So we simply find the maximum observed TSC above, then record the
10559          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10560          * the adjustment will be applied.  Note that we accumulate
10561          * adjustments, in case multiple suspend cycles happen before some VCPU
10562          * gets a chance to run again.  In the event that no KVM threads get a
10563          * chance to run, we will miss the entire elapsed period, as we'll have
10564          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10565          * loose cycle time.  This isn't too big a deal, since the loss will be
10566          * uniform across all VCPUs (not to mention the scenario is extremely
10567          * unlikely). It is possible that a second hibernate recovery happens
10568          * much faster than a first, causing the observed TSC here to be
10569          * smaller; this would require additional padding adjustment, which is
10570          * why we set last_host_tsc to the local tsc observed here.
10571          *
10572          * N.B. - this code below runs only on platforms with reliable TSC,
10573          * as that is the only way backwards_tsc is set above.  Also note
10574          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10575          * have the same delta_cyc adjustment applied if backwards_tsc
10576          * is detected.  Note further, this adjustment is only done once,
10577          * as we reset last_host_tsc on all VCPUs to stop this from being
10578          * called multiple times (one for each physical CPU bringup).
10579          *
10580          * Platforms with unreliable TSCs don't have to deal with this, they
10581          * will be compensated by the logic in vcpu_load, which sets the TSC to
10582          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10583          * guarantee that they stay in perfect synchronization.
10584          */
10585         if (backwards_tsc) {
10586                 u64 delta_cyc = max_tsc - local_tsc;
10587                 list_for_each_entry(kvm, &vm_list, vm_list) {
10588                         kvm->arch.backwards_tsc_observed = true;
10589                         kvm_for_each_vcpu(i, vcpu, kvm) {
10590                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10591                                 vcpu->arch.last_host_tsc = local_tsc;
10592                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10593                         }
10594
10595                         /*
10596                          * We have to disable TSC offset matching.. if you were
10597                          * booting a VM while issuing an S4 host suspend....
10598                          * you may have some problem.  Solving this issue is
10599                          * left as an exercise to the reader.
10600                          */
10601                         kvm->arch.last_tsc_nsec = 0;
10602                         kvm->arch.last_tsc_write = 0;
10603                 }
10604
10605         }
10606         return 0;
10607 }
10608
10609 void kvm_arch_hardware_disable(void)
10610 {
10611         static_call(kvm_x86_hardware_disable)();
10612         drop_user_return_notifiers();
10613 }
10614
10615 int kvm_arch_hardware_setup(void *opaque)
10616 {
10617         struct kvm_x86_init_ops *ops = opaque;
10618         int r;
10619
10620         rdmsrl_safe(MSR_EFER, &host_efer);
10621
10622         if (boot_cpu_has(X86_FEATURE_XSAVES))
10623                 rdmsrl(MSR_IA32_XSS, host_xss);
10624
10625         r = ops->hardware_setup();
10626         if (r != 0)
10627                 return r;
10628
10629         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10630         kvm_ops_static_call_update();
10631
10632         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10633                 supported_xss = 0;
10634
10635 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10636         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10637 #undef __kvm_cpu_cap_has
10638
10639         if (kvm_has_tsc_control) {
10640                 /*
10641                  * Make sure the user can only configure tsc_khz values that
10642                  * fit into a signed integer.
10643                  * A min value is not calculated because it will always
10644                  * be 1 on all machines.
10645                  */
10646                 u64 max = min(0x7fffffffULL,
10647                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10648                 kvm_max_guest_tsc_khz = max;
10649
10650                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10651         }
10652
10653         kvm_init_msr_list();
10654         return 0;
10655 }
10656
10657 void kvm_arch_hardware_unsetup(void)
10658 {
10659         static_call(kvm_x86_hardware_unsetup)();
10660 }
10661
10662 int kvm_arch_check_processor_compat(void *opaque)
10663 {
10664         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10665         struct kvm_x86_init_ops *ops = opaque;
10666
10667         WARN_ON(!irqs_disabled());
10668
10669         if (__cr4_reserved_bits(cpu_has, c) !=
10670             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10671                 return -EIO;
10672
10673         return ops->check_processor_compatibility();
10674 }
10675
10676 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10677 {
10678         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10679 }
10680 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10681
10682 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10683 {
10684         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10685 }
10686
10687 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10688 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10689
10690 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10691 {
10692         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10693
10694         vcpu->arch.l1tf_flush_l1d = true;
10695         if (pmu->version && unlikely(pmu->event_count)) {
10696                 pmu->need_cleanup = true;
10697                 kvm_make_request(KVM_REQ_PMU, vcpu);
10698         }
10699         static_call(kvm_x86_sched_in)(vcpu, cpu);
10700 }
10701
10702 void kvm_arch_free_vm(struct kvm *kvm)
10703 {
10704         kfree(to_kvm_hv(kvm)->hv_pa_pg);
10705         vfree(kvm);
10706 }
10707
10708
10709 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10710 {
10711         if (type)
10712                 return -EINVAL;
10713
10714         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10715         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10716         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10717         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10718         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10719         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10720
10721         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10722         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10723         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10724         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10725                 &kvm->arch.irq_sources_bitmap);
10726
10727         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10728         mutex_init(&kvm->arch.apic_map_lock);
10729         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10730
10731         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10732         pvclock_update_vm_gtod_copy(kvm);
10733
10734         kvm->arch.guest_can_read_msr_platform_info = true;
10735
10736         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10737         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10738
10739         kvm_hv_init_vm(kvm);
10740         kvm_page_track_init(kvm);
10741         kvm_mmu_init_vm(kvm);
10742
10743         return static_call(kvm_x86_vm_init)(kvm);
10744 }
10745
10746 int kvm_arch_post_init_vm(struct kvm *kvm)
10747 {
10748         return kvm_mmu_post_init_vm(kvm);
10749 }
10750
10751 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10752 {
10753         vcpu_load(vcpu);
10754         kvm_mmu_unload(vcpu);
10755         vcpu_put(vcpu);
10756 }
10757
10758 static void kvm_free_vcpus(struct kvm *kvm)
10759 {
10760         unsigned int i;
10761         struct kvm_vcpu *vcpu;
10762
10763         /*
10764          * Unpin any mmu pages first.
10765          */
10766         kvm_for_each_vcpu(i, vcpu, kvm) {
10767                 kvm_clear_async_pf_completion_queue(vcpu);
10768                 kvm_unload_vcpu_mmu(vcpu);
10769         }
10770         kvm_for_each_vcpu(i, vcpu, kvm)
10771                 kvm_vcpu_destroy(vcpu);
10772
10773         mutex_lock(&kvm->lock);
10774         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10775                 kvm->vcpus[i] = NULL;
10776
10777         atomic_set(&kvm->online_vcpus, 0);
10778         mutex_unlock(&kvm->lock);
10779 }
10780
10781 void kvm_arch_sync_events(struct kvm *kvm)
10782 {
10783         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10784         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10785         kvm_free_pit(kvm);
10786 }
10787
10788 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10789
10790 /**
10791  * __x86_set_memory_region: Setup KVM internal memory slot
10792  *
10793  * @kvm: the kvm pointer to the VM.
10794  * @id: the slot ID to setup.
10795  * @gpa: the GPA to install the slot (unused when @size == 0).
10796  * @size: the size of the slot. Set to zero to uninstall a slot.
10797  *
10798  * This function helps to setup a KVM internal memory slot.  Specify
10799  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10800  * slot.  The return code can be one of the following:
10801  *
10802  *   HVA:           on success (uninstall will return a bogus HVA)
10803  *   -errno:        on error
10804  *
10805  * The caller should always use IS_ERR() to check the return value
10806  * before use.  Note, the KVM internal memory slots are guaranteed to
10807  * remain valid and unchanged until the VM is destroyed, i.e., the
10808  * GPA->HVA translation will not change.  However, the HVA is a user
10809  * address, i.e. its accessibility is not guaranteed, and must be
10810  * accessed via __copy_{to,from}_user().
10811  */
10812 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10813                                       u32 size)
10814 {
10815         int i, r;
10816         unsigned long hva, old_npages;
10817         struct kvm_memslots *slots = kvm_memslots(kvm);
10818         struct kvm_memory_slot *slot;
10819
10820         /* Called with kvm->slots_lock held.  */
10821         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10822                 return ERR_PTR_USR(-EINVAL);
10823
10824         slot = id_to_memslot(slots, id);
10825         if (size) {
10826                 if (slot && slot->npages)
10827                         return ERR_PTR_USR(-EEXIST);
10828
10829                 /*
10830                  * MAP_SHARED to prevent internal slot pages from being moved
10831                  * by fork()/COW.
10832                  */
10833                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10834                               MAP_SHARED | MAP_ANONYMOUS, 0);
10835                 if (IS_ERR((void *)hva))
10836                         return (void __user *)hva;
10837         } else {
10838                 if (!slot || !slot->npages)
10839                         return NULL;
10840
10841                 old_npages = slot->npages;
10842                 hva = slot->userspace_addr;
10843         }
10844
10845         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10846                 struct kvm_userspace_memory_region m;
10847
10848                 m.slot = id | (i << 16);
10849                 m.flags = 0;
10850                 m.guest_phys_addr = gpa;
10851                 m.userspace_addr = hva;
10852                 m.memory_size = size;
10853                 r = __kvm_set_memory_region(kvm, &m);
10854                 if (r < 0)
10855                         return ERR_PTR_USR(r);
10856         }
10857
10858         if (!size)
10859                 vm_munmap(hva, old_npages * PAGE_SIZE);
10860
10861         return (void __user *)hva;
10862 }
10863 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10864
10865 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10866 {
10867         kvm_mmu_pre_destroy_vm(kvm);
10868 }
10869
10870 void kvm_arch_destroy_vm(struct kvm *kvm)
10871 {
10872         if (current->mm == kvm->mm) {
10873                 /*
10874                  * Free memory regions allocated on behalf of userspace,
10875                  * unless the the memory map has changed due to process exit
10876                  * or fd copying.
10877                  */
10878                 mutex_lock(&kvm->slots_lock);
10879                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10880                                         0, 0);
10881                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10882                                         0, 0);
10883                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10884                 mutex_unlock(&kvm->slots_lock);
10885         }
10886         static_call_cond(kvm_x86_vm_destroy)(kvm);
10887         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10888         kvm_pic_destroy(kvm);
10889         kvm_ioapic_destroy(kvm);
10890         kvm_free_vcpus(kvm);
10891         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10892         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10893         kvm_mmu_uninit_vm(kvm);
10894         kvm_page_track_cleanup(kvm);
10895         kvm_xen_destroy_vm(kvm);
10896         kvm_hv_destroy_vm(kvm);
10897 }
10898
10899 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10900 {
10901         int i;
10902
10903         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10904                 kvfree(slot->arch.rmap[i]);
10905                 slot->arch.rmap[i] = NULL;
10906
10907                 if (i == 0)
10908                         continue;
10909
10910                 kvfree(slot->arch.lpage_info[i - 1]);
10911                 slot->arch.lpage_info[i - 1] = NULL;
10912         }
10913
10914         kvm_page_track_free_memslot(slot);
10915 }
10916
10917 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10918                                       unsigned long npages)
10919 {
10920         int i;
10921
10922         /*
10923          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10924          * old arrays will be freed by __kvm_set_memory_region() if installing
10925          * the new memslot is successful.
10926          */
10927         memset(&slot->arch, 0, sizeof(slot->arch));
10928
10929         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10930                 struct kvm_lpage_info *linfo;
10931                 unsigned long ugfn;
10932                 int lpages;
10933                 int level = i + 1;
10934
10935                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10936                                       slot->base_gfn, level) + 1;
10937
10938                 slot->arch.rmap[i] =
10939                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10940                                  GFP_KERNEL_ACCOUNT);
10941                 if (!slot->arch.rmap[i])
10942                         goto out_free;
10943                 if (i == 0)
10944                         continue;
10945
10946                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10947                 if (!linfo)
10948                         goto out_free;
10949
10950                 slot->arch.lpage_info[i - 1] = linfo;
10951
10952                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10953                         linfo[0].disallow_lpage = 1;
10954                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10955                         linfo[lpages - 1].disallow_lpage = 1;
10956                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10957                 /*
10958                  * If the gfn and userspace address are not aligned wrt each
10959                  * other, disable large page support for this slot.
10960                  */
10961                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10962                         unsigned long j;
10963
10964                         for (j = 0; j < lpages; ++j)
10965                                 linfo[j].disallow_lpage = 1;
10966                 }
10967         }
10968
10969         if (kvm_page_track_create_memslot(slot, npages))
10970                 goto out_free;
10971
10972         return 0;
10973
10974 out_free:
10975         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10976                 kvfree(slot->arch.rmap[i]);
10977                 slot->arch.rmap[i] = NULL;
10978                 if (i == 0)
10979                         continue;
10980
10981                 kvfree(slot->arch.lpage_info[i - 1]);
10982                 slot->arch.lpage_info[i - 1] = NULL;
10983         }
10984         return -ENOMEM;
10985 }
10986
10987 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10988 {
10989         struct kvm_vcpu *vcpu;
10990         int i;
10991
10992         /*
10993          * memslots->generation has been incremented.
10994          * mmio generation may have reached its maximum value.
10995          */
10996         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10997
10998         /* Force re-initialization of steal_time cache */
10999         kvm_for_each_vcpu(i, vcpu, kvm)
11000                 kvm_vcpu_kick(vcpu);
11001 }
11002
11003 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11004                                 struct kvm_memory_slot *memslot,
11005                                 const struct kvm_userspace_memory_region *mem,
11006                                 enum kvm_mr_change change)
11007 {
11008         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11009                 return kvm_alloc_memslot_metadata(memslot,
11010                                                   mem->memory_size >> PAGE_SHIFT);
11011         return 0;
11012 }
11013
11014
11015 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11016 {
11017         struct kvm_arch *ka = &kvm->arch;
11018
11019         if (!kvm_x86_ops.cpu_dirty_log_size)
11020                 return;
11021
11022         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11023             (!enable && --ka->cpu_dirty_logging_count == 0))
11024                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11025
11026         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11027 }
11028
11029 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11030                                      struct kvm_memory_slot *old,
11031                                      struct kvm_memory_slot *new,
11032                                      enum kvm_mr_change change)
11033 {
11034         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11035
11036         /*
11037          * Update CPU dirty logging if dirty logging is being toggled.  This
11038          * applies to all operations.
11039          */
11040         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11041                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11042
11043         /*
11044          * Nothing more to do for RO slots (which can't be dirtied and can't be
11045          * made writable) or CREATE/MOVE/DELETE of a slot.
11046          *
11047          * For a memslot with dirty logging disabled:
11048          * CREATE:      No dirty mappings will already exist.
11049          * MOVE/DELETE: The old mappings will already have been cleaned up by
11050          *              kvm_arch_flush_shadow_memslot()
11051          *
11052          * For a memslot with dirty logging enabled:
11053          * CREATE:      No shadow pages exist, thus nothing to write-protect
11054          *              and no dirty bits to clear.
11055          * MOVE/DELETE: The old mappings will already have been cleaned up by
11056          *              kvm_arch_flush_shadow_memslot().
11057          */
11058         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11059                 return;
11060
11061         /*
11062          * READONLY and non-flags changes were filtered out above, and the only
11063          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11064          * logging isn't being toggled on or off.
11065          */
11066         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11067                 return;
11068
11069         if (!log_dirty_pages) {
11070                 /*
11071                  * Dirty logging tracks sptes in 4k granularity, meaning that
11072                  * large sptes have to be split.  If live migration succeeds,
11073                  * the guest in the source machine will be destroyed and large
11074                  * sptes will be created in the destination.  However, if the
11075                  * guest continues to run in the source machine (for example if
11076                  * live migration fails), small sptes will remain around and
11077                  * cause bad performance.
11078                  *
11079                  * Scan sptes if dirty logging has been stopped, dropping those
11080                  * which can be collapsed into a single large-page spte.  Later
11081                  * page faults will create the large-page sptes.
11082                  */
11083                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11084         } else {
11085                 /* By default, write-protect everything to log writes. */
11086                 int level = PG_LEVEL_4K;
11087
11088                 if (kvm_x86_ops.cpu_dirty_log_size) {
11089                         /*
11090                          * Clear all dirty bits, unless pages are treated as
11091                          * dirty from the get-go.
11092                          */
11093                         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
11094                                 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11095
11096                         /*
11097                          * Write-protect large pages on write so that dirty
11098                          * logging happens at 4k granularity.  No need to
11099                          * write-protect small SPTEs since write accesses are
11100                          * logged by the CPU via dirty bits.
11101                          */
11102                         level = PG_LEVEL_2M;
11103                 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
11104                         /*
11105                          * If we're with initial-all-set, we don't need
11106                          * to write protect any small page because
11107                          * they're reported as dirty already.  However
11108                          * we still need to write-protect huge pages
11109                          * so that the page split can happen lazily on
11110                          * the first write to the huge page.
11111                          */
11112                         level = PG_LEVEL_2M;
11113                 }
11114                 kvm_mmu_slot_remove_write_access(kvm, new, level);
11115         }
11116 }
11117
11118 void kvm_arch_commit_memory_region(struct kvm *kvm,
11119                                 const struct kvm_userspace_memory_region *mem,
11120                                 struct kvm_memory_slot *old,
11121                                 const struct kvm_memory_slot *new,
11122                                 enum kvm_mr_change change)
11123 {
11124         if (!kvm->arch.n_requested_mmu_pages)
11125                 kvm_mmu_change_mmu_pages(kvm,
11126                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11127
11128         /*
11129          * FIXME: const-ify all uses of struct kvm_memory_slot.
11130          */
11131         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11132
11133         /* Free the arrays associated with the old memslot. */
11134         if (change == KVM_MR_MOVE)
11135                 kvm_arch_free_memslot(kvm, old);
11136 }
11137
11138 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11139 {
11140         kvm_mmu_zap_all(kvm);
11141 }
11142
11143 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11144                                    struct kvm_memory_slot *slot)
11145 {
11146         kvm_page_track_flush_slot(kvm, slot);
11147 }
11148
11149 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11150 {
11151         return (is_guest_mode(vcpu) &&
11152                         kvm_x86_ops.guest_apic_has_interrupt &&
11153                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11154 }
11155
11156 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11157 {
11158         if (!list_empty_careful(&vcpu->async_pf.done))
11159                 return true;
11160
11161         if (kvm_apic_has_events(vcpu))
11162                 return true;
11163
11164         if (vcpu->arch.pv.pv_unhalted)
11165                 return true;
11166
11167         if (vcpu->arch.exception.pending)
11168                 return true;
11169
11170         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11171             (vcpu->arch.nmi_pending &&
11172              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11173                 return true;
11174
11175         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11176             (vcpu->arch.smi_pending &&
11177              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11178                 return true;
11179
11180         if (kvm_arch_interrupt_allowed(vcpu) &&
11181             (kvm_cpu_has_interrupt(vcpu) ||
11182             kvm_guest_apic_has_interrupt(vcpu)))
11183                 return true;
11184
11185         if (kvm_hv_has_stimer_pending(vcpu))
11186                 return true;
11187
11188         if (is_guest_mode(vcpu) &&
11189             kvm_x86_ops.nested_ops->hv_timer_pending &&
11190             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11191                 return true;
11192
11193         return false;
11194 }
11195
11196 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11197 {
11198         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11199 }
11200
11201 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11202 {
11203         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11204                 return true;
11205
11206         return false;
11207 }
11208
11209 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11210 {
11211         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11212                 return true;
11213
11214         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11215                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11216                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11217                 return true;
11218
11219         return kvm_arch_dy_has_pending_interrupt(vcpu);
11220 }
11221
11222 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11223 {
11224         if (vcpu->arch.guest_state_protected)
11225                 return true;
11226
11227         return vcpu->arch.preempted_in_kernel;
11228 }
11229
11230 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11231 {
11232         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11233 }
11234
11235 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11236 {
11237         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11238 }
11239
11240 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11241 {
11242         /* Can't read the RIP when guest state is protected, just return 0 */
11243         if (vcpu->arch.guest_state_protected)
11244                 return 0;
11245
11246         if (is_64_bit_mode(vcpu))
11247                 return kvm_rip_read(vcpu);
11248         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11249                      kvm_rip_read(vcpu));
11250 }
11251 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11252
11253 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11254 {
11255         return kvm_get_linear_rip(vcpu) == linear_rip;
11256 }
11257 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11258
11259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11260 {
11261         unsigned long rflags;
11262
11263         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11264         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11265                 rflags &= ~X86_EFLAGS_TF;
11266         return rflags;
11267 }
11268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11269
11270 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11271 {
11272         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11273             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11274                 rflags |= X86_EFLAGS_TF;
11275         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11276 }
11277
11278 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11279 {
11280         __kvm_set_rflags(vcpu, rflags);
11281         kvm_make_request(KVM_REQ_EVENT, vcpu);
11282 }
11283 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11284
11285 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11286 {
11287         int r;
11288
11289         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11290               work->wakeup_all)
11291                 return;
11292
11293         r = kvm_mmu_reload(vcpu);
11294         if (unlikely(r))
11295                 return;
11296
11297         if (!vcpu->arch.mmu->direct_map &&
11298               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11299                 return;
11300
11301         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11302 }
11303
11304 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11305 {
11306         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11307
11308         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11309 }
11310
11311 static inline u32 kvm_async_pf_next_probe(u32 key)
11312 {
11313         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11314 }
11315
11316 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11317 {
11318         u32 key = kvm_async_pf_hash_fn(gfn);
11319
11320         while (vcpu->arch.apf.gfns[key] != ~0)
11321                 key = kvm_async_pf_next_probe(key);
11322
11323         vcpu->arch.apf.gfns[key] = gfn;
11324 }
11325
11326 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11327 {
11328         int i;
11329         u32 key = kvm_async_pf_hash_fn(gfn);
11330
11331         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11332                      (vcpu->arch.apf.gfns[key] != gfn &&
11333                       vcpu->arch.apf.gfns[key] != ~0); i++)
11334                 key = kvm_async_pf_next_probe(key);
11335
11336         return key;
11337 }
11338
11339 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11340 {
11341         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11342 }
11343
11344 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11345 {
11346         u32 i, j, k;
11347
11348         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11349
11350         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11351                 return;
11352
11353         while (true) {
11354                 vcpu->arch.apf.gfns[i] = ~0;
11355                 do {
11356                         j = kvm_async_pf_next_probe(j);
11357                         if (vcpu->arch.apf.gfns[j] == ~0)
11358                                 return;
11359                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11360                         /*
11361                          * k lies cyclically in ]i,j]
11362                          * |    i.k.j |
11363                          * |....j i.k.| or  |.k..j i...|
11364                          */
11365                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11366                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11367                 i = j;
11368         }
11369 }
11370
11371 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11372 {
11373         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11374
11375         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11376                                       sizeof(reason));
11377 }
11378
11379 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11380 {
11381         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11382
11383         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11384                                              &token, offset, sizeof(token));
11385 }
11386
11387 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11388 {
11389         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11390         u32 val;
11391
11392         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11393                                          &val, offset, sizeof(val)))
11394                 return false;
11395
11396         return !val;
11397 }
11398
11399 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11400 {
11401         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11402                 return false;
11403
11404         if (!kvm_pv_async_pf_enabled(vcpu) ||
11405             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11406                 return false;
11407
11408         return true;
11409 }
11410
11411 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11412 {
11413         if (unlikely(!lapic_in_kernel(vcpu) ||
11414                      kvm_event_needs_reinjection(vcpu) ||
11415                      vcpu->arch.exception.pending))
11416                 return false;
11417
11418         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11419                 return false;
11420
11421         /*
11422          * If interrupts are off we cannot even use an artificial
11423          * halt state.
11424          */
11425         return kvm_arch_interrupt_allowed(vcpu);
11426 }
11427
11428 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11429                                      struct kvm_async_pf *work)
11430 {
11431         struct x86_exception fault;
11432
11433         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11434         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11435
11436         if (kvm_can_deliver_async_pf(vcpu) &&
11437             !apf_put_user_notpresent(vcpu)) {
11438                 fault.vector = PF_VECTOR;
11439                 fault.error_code_valid = true;
11440                 fault.error_code = 0;
11441                 fault.nested_page_fault = false;
11442                 fault.address = work->arch.token;
11443                 fault.async_page_fault = true;
11444                 kvm_inject_page_fault(vcpu, &fault);
11445                 return true;
11446         } else {
11447                 /*
11448                  * It is not possible to deliver a paravirtualized asynchronous
11449                  * page fault, but putting the guest in an artificial halt state
11450                  * can be beneficial nevertheless: if an interrupt arrives, we
11451                  * can deliver it timely and perhaps the guest will schedule
11452                  * another process.  When the instruction that triggered a page
11453                  * fault is retried, hopefully the page will be ready in the host.
11454                  */
11455                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11456                 return false;
11457         }
11458 }
11459
11460 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11461                                  struct kvm_async_pf *work)
11462 {
11463         struct kvm_lapic_irq irq = {
11464                 .delivery_mode = APIC_DM_FIXED,
11465                 .vector = vcpu->arch.apf.vec
11466         };
11467
11468         if (work->wakeup_all)
11469                 work->arch.token = ~0; /* broadcast wakeup */
11470         else
11471                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11472         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11473
11474         if ((work->wakeup_all || work->notpresent_injected) &&
11475             kvm_pv_async_pf_enabled(vcpu) &&
11476             !apf_put_user_ready(vcpu, work->arch.token)) {
11477                 vcpu->arch.apf.pageready_pending = true;
11478                 kvm_apic_set_irq(vcpu, &irq, NULL);
11479         }
11480
11481         vcpu->arch.apf.halted = false;
11482         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11483 }
11484
11485 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11486 {
11487         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11488         if (!vcpu->arch.apf.pageready_pending)
11489                 kvm_vcpu_kick(vcpu);
11490 }
11491
11492 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11493 {
11494         if (!kvm_pv_async_pf_enabled(vcpu))
11495                 return true;
11496         else
11497                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11498 }
11499
11500 void kvm_arch_start_assignment(struct kvm *kvm)
11501 {
11502         atomic_inc(&kvm->arch.assigned_device_count);
11503 }
11504 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11505
11506 void kvm_arch_end_assignment(struct kvm *kvm)
11507 {
11508         atomic_dec(&kvm->arch.assigned_device_count);
11509 }
11510 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11511
11512 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11513 {
11514         return atomic_read(&kvm->arch.assigned_device_count);
11515 }
11516 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11517
11518 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11519 {
11520         atomic_inc(&kvm->arch.noncoherent_dma_count);
11521 }
11522 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11523
11524 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11525 {
11526         atomic_dec(&kvm->arch.noncoherent_dma_count);
11527 }
11528 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11529
11530 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11531 {
11532         return atomic_read(&kvm->arch.noncoherent_dma_count);
11533 }
11534 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11535
11536 bool kvm_arch_has_irq_bypass(void)
11537 {
11538         return true;
11539 }
11540
11541 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11542                                       struct irq_bypass_producer *prod)
11543 {
11544         struct kvm_kernel_irqfd *irqfd =
11545                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11546         int ret;
11547
11548         irqfd->producer = prod;
11549         kvm_arch_start_assignment(irqfd->kvm);
11550         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11551                                          prod->irq, irqfd->gsi, 1);
11552
11553         if (ret)
11554                 kvm_arch_end_assignment(irqfd->kvm);
11555
11556         return ret;
11557 }
11558
11559 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11560                                       struct irq_bypass_producer *prod)
11561 {
11562         int ret;
11563         struct kvm_kernel_irqfd *irqfd =
11564                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11565
11566         WARN_ON(irqfd->producer != prod);
11567         irqfd->producer = NULL;
11568
11569         /*
11570          * When producer of consumer is unregistered, we change back to
11571          * remapped mode, so we can re-use the current implementation
11572          * when the irq is masked/disabled or the consumer side (KVM
11573          * int this case doesn't want to receive the interrupts.
11574         */
11575         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11576         if (ret)
11577                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11578                        " fails: %d\n", irqfd->consumer.token, ret);
11579
11580         kvm_arch_end_assignment(irqfd->kvm);
11581 }
11582
11583 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11584                                    uint32_t guest_irq, bool set)
11585 {
11586         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11587 }
11588
11589 bool kvm_vector_hashing_enabled(void)
11590 {
11591         return vector_hashing;
11592 }
11593
11594 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11595 {
11596         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11597 }
11598 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11599
11600
11601 int kvm_spec_ctrl_test_value(u64 value)
11602 {
11603         /*
11604          * test that setting IA32_SPEC_CTRL to given value
11605          * is allowed by the host processor
11606          */
11607
11608         u64 saved_value;
11609         unsigned long flags;
11610         int ret = 0;
11611
11612         local_irq_save(flags);
11613
11614         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11615                 ret = 1;
11616         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11617                 ret = 1;
11618         else
11619                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11620
11621         local_irq_restore(flags);
11622
11623         return ret;
11624 }
11625 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11626
11627 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11628 {
11629         struct x86_exception fault;
11630         u32 access = error_code &
11631                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11632
11633         if (!(error_code & PFERR_PRESENT_MASK) ||
11634             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11635                 /*
11636                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11637                  * tables probably do not match the TLB.  Just proceed
11638                  * with the error code that the processor gave.
11639                  */
11640                 fault.vector = PF_VECTOR;
11641                 fault.error_code_valid = true;
11642                 fault.error_code = error_code;
11643                 fault.nested_page_fault = false;
11644                 fault.address = gva;
11645         }
11646         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11647 }
11648 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11649
11650 /*
11651  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11652  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11653  * indicates whether exit to userspace is needed.
11654  */
11655 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11656                               struct x86_exception *e)
11657 {
11658         if (r == X86EMUL_PROPAGATE_FAULT) {
11659                 kvm_inject_emulated_page_fault(vcpu, e);
11660                 return 1;
11661         }
11662
11663         /*
11664          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11665          * while handling a VMX instruction KVM could've handled the request
11666          * correctly by exiting to userspace and performing I/O but there
11667          * doesn't seem to be a real use-case behind such requests, just return
11668          * KVM_EXIT_INTERNAL_ERROR for now.
11669          */
11670         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11671         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11672         vcpu->run->internal.ndata = 0;
11673
11674         return 0;
11675 }
11676 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11677
11678 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11679 {
11680         bool pcid_enabled;
11681         struct x86_exception e;
11682         unsigned i;
11683         unsigned long roots_to_free = 0;
11684         struct {
11685                 u64 pcid;
11686                 u64 gla;
11687         } operand;
11688         int r;
11689
11690         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11691         if (r != X86EMUL_CONTINUE)
11692                 return kvm_handle_memory_failure(vcpu, r, &e);
11693
11694         if (operand.pcid >> 12 != 0) {
11695                 kvm_inject_gp(vcpu, 0);
11696                 return 1;
11697         }
11698
11699         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11700
11701         switch (type) {
11702         case INVPCID_TYPE_INDIV_ADDR:
11703                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11704                     is_noncanonical_address(operand.gla, vcpu)) {
11705                         kvm_inject_gp(vcpu, 0);
11706                         return 1;
11707                 }
11708                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11709                 return kvm_skip_emulated_instruction(vcpu);
11710
11711         case INVPCID_TYPE_SINGLE_CTXT:
11712                 if (!pcid_enabled && (operand.pcid != 0)) {
11713                         kvm_inject_gp(vcpu, 0);
11714                         return 1;
11715                 }
11716
11717                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11718                         kvm_mmu_sync_roots(vcpu);
11719                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11720                 }
11721
11722                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11723                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11724                             == operand.pcid)
11725                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11726
11727                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11728                 /*
11729                  * If neither the current cr3 nor any of the prev_roots use the
11730                  * given PCID, then nothing needs to be done here because a
11731                  * resync will happen anyway before switching to any other CR3.
11732                  */
11733
11734                 return kvm_skip_emulated_instruction(vcpu);
11735
11736         case INVPCID_TYPE_ALL_NON_GLOBAL:
11737                 /*
11738                  * Currently, KVM doesn't mark global entries in the shadow
11739                  * page tables, so a non-global flush just degenerates to a
11740                  * global flush. If needed, we could optimize this later by
11741                  * keeping track of global entries in shadow page tables.
11742                  */
11743
11744                 fallthrough;
11745         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11746                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11747                 return kvm_skip_emulated_instruction(vcpu);
11748
11749         default:
11750                 BUG(); /* We have already checked above that type <= 3 */
11751         }
11752 }
11753 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11754
11755 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11756 {
11757         struct kvm_run *run = vcpu->run;
11758         struct kvm_mmio_fragment *frag;
11759         unsigned int len;
11760
11761         BUG_ON(!vcpu->mmio_needed);
11762
11763         /* Complete previous fragment */
11764         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11765         len = min(8u, frag->len);
11766         if (!vcpu->mmio_is_write)
11767                 memcpy(frag->data, run->mmio.data, len);
11768
11769         if (frag->len <= 8) {
11770                 /* Switch to the next fragment. */
11771                 frag++;
11772                 vcpu->mmio_cur_fragment++;
11773         } else {
11774                 /* Go forward to the next mmio piece. */
11775                 frag->data += len;
11776                 frag->gpa += len;
11777                 frag->len -= len;
11778         }
11779
11780         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11781                 vcpu->mmio_needed = 0;
11782
11783                 // VMG change, at this point, we're always done
11784                 // RIP has already been advanced
11785                 return 1;
11786         }
11787
11788         // More MMIO is needed
11789         run->mmio.phys_addr = frag->gpa;
11790         run->mmio.len = min(8u, frag->len);
11791         run->mmio.is_write = vcpu->mmio_is_write;
11792         if (run->mmio.is_write)
11793                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11794         run->exit_reason = KVM_EXIT_MMIO;
11795
11796         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11797
11798         return 0;
11799 }
11800
11801 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11802                           void *data)
11803 {
11804         int handled;
11805         struct kvm_mmio_fragment *frag;
11806
11807         if (!data)
11808                 return -EINVAL;
11809
11810         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11811         if (handled == bytes)
11812                 return 1;
11813
11814         bytes -= handled;
11815         gpa += handled;
11816         data += handled;
11817
11818         /*TODO: Check if need to increment number of frags */
11819         frag = vcpu->mmio_fragments;
11820         vcpu->mmio_nr_fragments = 1;
11821         frag->len = bytes;
11822         frag->gpa = gpa;
11823         frag->data = data;
11824
11825         vcpu->mmio_needed = 1;
11826         vcpu->mmio_cur_fragment = 0;
11827
11828         vcpu->run->mmio.phys_addr = gpa;
11829         vcpu->run->mmio.len = min(8u, frag->len);
11830         vcpu->run->mmio.is_write = 1;
11831         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11832         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11833
11834         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11835
11836         return 0;
11837 }
11838 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11839
11840 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11841                          void *data)
11842 {
11843         int handled;
11844         struct kvm_mmio_fragment *frag;
11845
11846         if (!data)
11847                 return -EINVAL;
11848
11849         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11850         if (handled == bytes)
11851                 return 1;
11852
11853         bytes -= handled;
11854         gpa += handled;
11855         data += handled;
11856
11857         /*TODO: Check if need to increment number of frags */
11858         frag = vcpu->mmio_fragments;
11859         vcpu->mmio_nr_fragments = 1;
11860         frag->len = bytes;
11861         frag->gpa = gpa;
11862         frag->data = data;
11863
11864         vcpu->mmio_needed = 1;
11865         vcpu->mmio_cur_fragment = 0;
11866
11867         vcpu->run->mmio.phys_addr = gpa;
11868         vcpu->run->mmio.len = min(8u, frag->len);
11869         vcpu->run->mmio.is_write = 0;
11870         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11871
11872         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11873
11874         return 0;
11875 }
11876 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11877
11878 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11879 {
11880         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11881                vcpu->arch.pio.count * vcpu->arch.pio.size);
11882         vcpu->arch.pio.count = 0;
11883
11884         return 1;
11885 }
11886
11887 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11888                            unsigned int port, void *data,  unsigned int count)
11889 {
11890         int ret;
11891
11892         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11893                                         data, count);
11894         if (ret)
11895                 return ret;
11896
11897         vcpu->arch.pio.count = 0;
11898
11899         return 0;
11900 }
11901
11902 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11903                           unsigned int port, void *data, unsigned int count)
11904 {
11905         int ret;
11906
11907         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11908                                        data, count);
11909         if (ret) {
11910                 vcpu->arch.pio.count = 0;
11911         } else {
11912                 vcpu->arch.guest_ins_data = data;
11913                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11914         }
11915
11916         return 0;
11917 }
11918
11919 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11920                          unsigned int port, void *data,  unsigned int count,
11921                          int in)
11922 {
11923         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11924                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11925 }
11926 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11927
11928 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11929 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11930 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11932 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11935 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11936 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11937 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11942 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11943 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11944 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11945 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11946 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);