fbd59ad047b0dc5d1bef81d79ef253837e584af0
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
199         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
200         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
201         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
202         { "mmu_flooded", VM_STAT(mmu_flooded) },
203         { "mmu_recycled", VM_STAT(mmu_recycled) },
204         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
205         { "mmu_unsync", VM_STAT(mmu_unsync) },
206         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
207         { "largepages", VM_STAT(lpages) },
208         { "max_mmu_page_hash_collisions",
209                 VM_STAT(max_mmu_page_hash_collisions) },
210         { NULL }
211 };
212
213 u64 __read_mostly host_xcr0;
214
215 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
216
217 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
218 {
219         int i;
220         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
221                 vcpu->arch.apf.gfns[i] = ~0;
222 }
223
224 static void kvm_on_user_return(struct user_return_notifier *urn)
225 {
226         unsigned slot;
227         struct kvm_shared_msrs *locals
228                 = container_of(urn, struct kvm_shared_msrs, urn);
229         struct kvm_shared_msr_values *values;
230         unsigned long flags;
231
232         /*
233          * Disabling irqs at this point since the following code could be
234          * interrupted and executed through kvm_arch_hardware_disable()
235          */
236         local_irq_save(flags);
237         if (locals->registered) {
238                 locals->registered = false;
239                 user_return_notifier_unregister(urn);
240         }
241         local_irq_restore(flags);
242         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
243                 values = &locals->values[slot];
244                 if (values->host != values->curr) {
245                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
246                         values->curr = values->host;
247                 }
248         }
249 }
250
251 static void shared_msr_update(unsigned slot, u32 msr)
252 {
253         u64 value;
254         unsigned int cpu = smp_processor_id();
255         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256
257         /* only read, and nobody should modify it at this time,
258          * so don't need lock */
259         if (slot >= shared_msrs_global.nr) {
260                 printk(KERN_ERR "kvm: invalid MSR slot!");
261                 return;
262         }
263         rdmsrl_safe(msr, &value);
264         smsr->values[slot].host = value;
265         smsr->values[slot].curr = value;
266 }
267
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
269 {
270         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271         shared_msrs_global.msrs[slot] = msr;
272         if (slot >= shared_msrs_global.nr)
273                 shared_msrs_global.nr = slot + 1;
274 }
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
276
277 static void kvm_shared_msr_cpu_online(void)
278 {
279         unsigned i;
280
281         for (i = 0; i < shared_msrs_global.nr; ++i)
282                 shared_msr_update(i, shared_msrs_global.msrs[i]);
283 }
284
285 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
286 {
287         unsigned int cpu = smp_processor_id();
288         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
289         int err;
290
291         if (((value ^ smsr->values[slot].curr) & mask) == 0)
292                 return 0;
293         smsr->values[slot].curr = value;
294         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
295         if (err)
296                 return 1;
297
298         if (!smsr->registered) {
299                 smsr->urn.on_user_return = kvm_on_user_return;
300                 user_return_notifier_register(&smsr->urn);
301                 smsr->registered = true;
302         }
303         return 0;
304 }
305 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
306
307 static void drop_user_return_notifiers(void)
308 {
309         unsigned int cpu = smp_processor_id();
310         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
311
312         if (smsr->registered)
313                 kvm_on_user_return(&smsr->urn);
314 }
315
316 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
317 {
318         return vcpu->arch.apic_base;
319 }
320 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
321
322 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
323 {
324         return kvm_apic_mode(kvm_get_apic_base(vcpu));
325 }
326 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
327
328 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
329 {
330         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
331         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
332         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
333                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
334
335         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
336                 return 1;
337         if (!msr_info->host_initiated) {
338                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
339                         return 1;
340                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
341                         return 1;
342         }
343
344         kvm_lapic_set_base(vcpu, msr_info->data);
345         return 0;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
348
349 asmlinkage __visible void kvm_spurious_fault(void)
350 {
351         /* Fault while not rebooting.  We want the trace. */
352         BUG();
353 }
354 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
355
356 #define EXCPT_BENIGN            0
357 #define EXCPT_CONTRIBUTORY      1
358 #define EXCPT_PF                2
359
360 static int exception_class(int vector)
361 {
362         switch (vector) {
363         case PF_VECTOR:
364                 return EXCPT_PF;
365         case DE_VECTOR:
366         case TS_VECTOR:
367         case NP_VECTOR:
368         case SS_VECTOR:
369         case GP_VECTOR:
370                 return EXCPT_CONTRIBUTORY;
371         default:
372                 break;
373         }
374         return EXCPT_BENIGN;
375 }
376
377 #define EXCPT_FAULT             0
378 #define EXCPT_TRAP              1
379 #define EXCPT_ABORT             2
380 #define EXCPT_INTERRUPT         3
381
382 static int exception_type(int vector)
383 {
384         unsigned int mask;
385
386         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
387                 return EXCPT_INTERRUPT;
388
389         mask = 1 << vector;
390
391         /* #DB is trap, as instruction watchpoints are handled elsewhere */
392         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
393                 return EXCPT_TRAP;
394
395         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
396                 return EXCPT_ABORT;
397
398         /* Reserved exceptions will result in fault */
399         return EXCPT_FAULT;
400 }
401
402 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
403                 unsigned nr, bool has_error, u32 error_code,
404                 bool reinject)
405 {
406         u32 prev_nr;
407         int class1, class2;
408
409         kvm_make_request(KVM_REQ_EVENT, vcpu);
410
411         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
412         queue:
413                 if (has_error && !is_protmode(vcpu))
414                         has_error = false;
415                 if (reinject) {
416                         /*
417                          * On vmentry, vcpu->arch.exception.pending is only
418                          * true if an event injection was blocked by
419                          * nested_run_pending.  In that case, however,
420                          * vcpu_enter_guest requests an immediate exit,
421                          * and the guest shouldn't proceed far enough to
422                          * need reinjection.
423                          */
424                         WARN_ON_ONCE(vcpu->arch.exception.pending);
425                         vcpu->arch.exception.injected = true;
426                 } else {
427                         vcpu->arch.exception.pending = true;
428                         vcpu->arch.exception.injected = false;
429                 }
430                 vcpu->arch.exception.has_error_code = has_error;
431                 vcpu->arch.exception.nr = nr;
432                 vcpu->arch.exception.error_code = error_code;
433                 return;
434         }
435
436         /* to check exception */
437         prev_nr = vcpu->arch.exception.nr;
438         if (prev_nr == DF_VECTOR) {
439                 /* triple fault -> shutdown */
440                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
441                 return;
442         }
443         class1 = exception_class(prev_nr);
444         class2 = exception_class(nr);
445         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
446                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
447                 /*
448                  * Generate double fault per SDM Table 5-5.  Set
449                  * exception.pending = true so that the double fault
450                  * can trigger a nested vmexit.
451                  */
452                 vcpu->arch.exception.pending = true;
453                 vcpu->arch.exception.injected = false;
454                 vcpu->arch.exception.has_error_code = true;
455                 vcpu->arch.exception.nr = DF_VECTOR;
456                 vcpu->arch.exception.error_code = 0;
457         } else
458                 /* replace previous exception with a new one in a hope
459                    that instruction re-execution will regenerate lost
460                    exception */
461                 goto queue;
462 }
463
464 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
465 {
466         kvm_multiple_exception(vcpu, nr, false, 0, false);
467 }
468 EXPORT_SYMBOL_GPL(kvm_queue_exception);
469
470 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
471 {
472         kvm_multiple_exception(vcpu, nr, false, 0, true);
473 }
474 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
475
476 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
477 {
478         if (err)
479                 kvm_inject_gp(vcpu, 0);
480         else
481                 return kvm_skip_emulated_instruction(vcpu);
482
483         return 1;
484 }
485 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
486
487 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
488 {
489         ++vcpu->stat.pf_guest;
490         vcpu->arch.exception.nested_apf =
491                 is_guest_mode(vcpu) && fault->async_page_fault;
492         if (vcpu->arch.exception.nested_apf)
493                 vcpu->arch.apf.nested_apf_token = fault->address;
494         else
495                 vcpu->arch.cr2 = fault->address;
496         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
497 }
498 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
499
500 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
501 {
502         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
503                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
504         else
505                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
506
507         return fault->nested_page_fault;
508 }
509
510 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
511 {
512         atomic_inc(&vcpu->arch.nmi_queued);
513         kvm_make_request(KVM_REQ_NMI, vcpu);
514 }
515 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
516
517 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
518 {
519         kvm_multiple_exception(vcpu, nr, true, error_code, false);
520 }
521 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
522
523 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
524 {
525         kvm_multiple_exception(vcpu, nr, true, error_code, true);
526 }
527 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
528
529 /*
530  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
531  * a #GP and return false.
532  */
533 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
534 {
535         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
536                 return true;
537         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
538         return false;
539 }
540 EXPORT_SYMBOL_GPL(kvm_require_cpl);
541
542 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
543 {
544         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
545                 return true;
546
547         kvm_queue_exception(vcpu, UD_VECTOR);
548         return false;
549 }
550 EXPORT_SYMBOL_GPL(kvm_require_dr);
551
552 /*
553  * This function will be used to read from the physical memory of the currently
554  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
555  * can read from guest physical or from the guest's guest physical memory.
556  */
557 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
558                             gfn_t ngfn, void *data, int offset, int len,
559                             u32 access)
560 {
561         struct x86_exception exception;
562         gfn_t real_gfn;
563         gpa_t ngpa;
564
565         ngpa     = gfn_to_gpa(ngfn);
566         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
567         if (real_gfn == UNMAPPED_GVA)
568                 return -EFAULT;
569
570         real_gfn = gpa_to_gfn(real_gfn);
571
572         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
573 }
574 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
575
576 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
577                                void *data, int offset, int len, u32 access)
578 {
579         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
580                                        data, offset, len, access);
581 }
582
583 /*
584  * Load the pae pdptrs.  Return true is they are all valid.
585  */
586 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
587 {
588         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
589         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
590         int i;
591         int ret;
592         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
593
594         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
595                                       offset * sizeof(u64), sizeof(pdpte),
596                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
597         if (ret < 0) {
598                 ret = 0;
599                 goto out;
600         }
601         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
602                 if ((pdpte[i] & PT_PRESENT_MASK) &&
603                     (pdpte[i] &
604                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
605                         ret = 0;
606                         goto out;
607                 }
608         }
609         ret = 1;
610
611         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
612         __set_bit(VCPU_EXREG_PDPTR,
613                   (unsigned long *)&vcpu->arch.regs_avail);
614         __set_bit(VCPU_EXREG_PDPTR,
615                   (unsigned long *)&vcpu->arch.regs_dirty);
616 out:
617
618         return ret;
619 }
620 EXPORT_SYMBOL_GPL(load_pdptrs);
621
622 bool pdptrs_changed(struct kvm_vcpu *vcpu)
623 {
624         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
625         bool changed = true;
626         int offset;
627         gfn_t gfn;
628         int r;
629
630         if (is_long_mode(vcpu) || !is_pae(vcpu))
631                 return false;
632
633         if (!test_bit(VCPU_EXREG_PDPTR,
634                       (unsigned long *)&vcpu->arch.regs_avail))
635                 return true;
636
637         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
638         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
639         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
640                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
641         if (r < 0)
642                 goto out;
643         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
644 out:
645
646         return changed;
647 }
648 EXPORT_SYMBOL_GPL(pdptrs_changed);
649
650 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
651 {
652         unsigned long old_cr0 = kvm_read_cr0(vcpu);
653         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
654
655         cr0 |= X86_CR0_ET;
656
657 #ifdef CONFIG_X86_64
658         if (cr0 & 0xffffffff00000000UL)
659                 return 1;
660 #endif
661
662         cr0 &= ~CR0_RESERVED_BITS;
663
664         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
665                 return 1;
666
667         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
668                 return 1;
669
670         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
671 #ifdef CONFIG_X86_64
672                 if ((vcpu->arch.efer & EFER_LME)) {
673                         int cs_db, cs_l;
674
675                         if (!is_pae(vcpu))
676                                 return 1;
677                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
678                         if (cs_l)
679                                 return 1;
680                 } else
681 #endif
682                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
683                                                  kvm_read_cr3(vcpu)))
684                         return 1;
685         }
686
687         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
688                 return 1;
689
690         kvm_x86_ops->set_cr0(vcpu, cr0);
691
692         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
693                 kvm_clear_async_pf_completion_queue(vcpu);
694                 kvm_async_pf_hash_reset(vcpu);
695         }
696
697         if ((cr0 ^ old_cr0) & update_bits)
698                 kvm_mmu_reset_context(vcpu);
699
700         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
701             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
702             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
703                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
704
705         return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr0);
708
709 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
710 {
711         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
712 }
713 EXPORT_SYMBOL_GPL(kvm_lmsw);
714
715 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
716 {
717         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
718                         !vcpu->guest_xcr0_loaded) {
719                 /* kvm_set_xcr() also depends on this */
720                 if (vcpu->arch.xcr0 != host_xcr0)
721                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
722                 vcpu->guest_xcr0_loaded = 1;
723         }
724 }
725
726 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
727 {
728         if (vcpu->guest_xcr0_loaded) {
729                 if (vcpu->arch.xcr0 != host_xcr0)
730                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
731                 vcpu->guest_xcr0_loaded = 0;
732         }
733 }
734
735 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737         u64 xcr0 = xcr;
738         u64 old_xcr0 = vcpu->arch.xcr0;
739         u64 valid_bits;
740
741         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
742         if (index != XCR_XFEATURE_ENABLED_MASK)
743                 return 1;
744         if (!(xcr0 & XFEATURE_MASK_FP))
745                 return 1;
746         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
747                 return 1;
748
749         /*
750          * Do not allow the guest to set bits that we do not support
751          * saving.  However, xcr0 bit 0 is always set, even if the
752          * emulated CPU does not support XSAVE (see fx_init).
753          */
754         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
755         if (xcr0 & ~valid_bits)
756                 return 1;
757
758         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
759             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
760                 return 1;
761
762         if (xcr0 & XFEATURE_MASK_AVX512) {
763                 if (!(xcr0 & XFEATURE_MASK_YMM))
764                         return 1;
765                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
766                         return 1;
767         }
768         vcpu->arch.xcr0 = xcr0;
769
770         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
771                 kvm_update_cpuid(vcpu);
772         return 0;
773 }
774
775 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
776 {
777         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
778             __kvm_set_xcr(vcpu, index, xcr)) {
779                 kvm_inject_gp(vcpu, 0);
780                 return 1;
781         }
782         return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_xcr);
785
786 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
787 {
788         unsigned long old_cr4 = kvm_read_cr4(vcpu);
789         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
790                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
791
792         if (cr4 & CR4_RESERVED_BITS)
793                 return 1;
794
795         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
796                 return 1;
797
798         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
799                 return 1;
800
801         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
802                 return 1;
803
804         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
805                 return 1;
806
807         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
808                 return 1;
809
810         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
811                 return 1;
812
813         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
814                 return 1;
815
816         if (is_long_mode(vcpu)) {
817                 if (!(cr4 & X86_CR4_PAE))
818                         return 1;
819         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
820                    && ((cr4 ^ old_cr4) & pdptr_bits)
821                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
822                                    kvm_read_cr3(vcpu)))
823                 return 1;
824
825         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
826                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
827                         return 1;
828
829                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
830                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
831                         return 1;
832         }
833
834         if (kvm_x86_ops->set_cr4(vcpu, cr4))
835                 return 1;
836
837         if (((cr4 ^ old_cr4) & pdptr_bits) ||
838             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
839                 kvm_mmu_reset_context(vcpu);
840
841         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
842                 kvm_update_cpuid(vcpu);
843
844         return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_set_cr4);
847
848 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850 #ifdef CONFIG_X86_64
851         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
852
853         if (pcid_enabled)
854                 cr3 &= ~CR3_PCID_INVD;
855 #endif
856
857         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
858                 kvm_mmu_sync_roots(vcpu);
859                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
860                 return 0;
861         }
862
863         if (is_long_mode(vcpu) &&
864             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
865                 return 1;
866         else if (is_pae(vcpu) && is_paging(vcpu) &&
867                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
868                 return 1;
869
870         vcpu->arch.cr3 = cr3;
871         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
872         kvm_mmu_new_cr3(vcpu);
873         return 0;
874 }
875 EXPORT_SYMBOL_GPL(kvm_set_cr3);
876
877 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
878 {
879         if (cr8 & CR8_RESERVED_BITS)
880                 return 1;
881         if (lapic_in_kernel(vcpu))
882                 kvm_lapic_set_tpr(vcpu, cr8);
883         else
884                 vcpu->arch.cr8 = cr8;
885         return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_cr8);
888
889 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
890 {
891         if (lapic_in_kernel(vcpu))
892                 return kvm_lapic_get_cr8(vcpu);
893         else
894                 return vcpu->arch.cr8;
895 }
896 EXPORT_SYMBOL_GPL(kvm_get_cr8);
897
898 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
899 {
900         int i;
901
902         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
903                 for (i = 0; i < KVM_NR_DB_REGS; i++)
904                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
905                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
906         }
907 }
908
909 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
910 {
911         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
912                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
913 }
914
915 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
916 {
917         unsigned long dr7;
918
919         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
920                 dr7 = vcpu->arch.guest_debug_dr7;
921         else
922                 dr7 = vcpu->arch.dr7;
923         kvm_x86_ops->set_dr7(vcpu, dr7);
924         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
925         if (dr7 & DR7_BP_EN_MASK)
926                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
927 }
928
929 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
930 {
931         u64 fixed = DR6_FIXED_1;
932
933         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
934                 fixed |= DR6_RTM;
935         return fixed;
936 }
937
938 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
939 {
940         switch (dr) {
941         case 0 ... 3:
942                 vcpu->arch.db[dr] = val;
943                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
944                         vcpu->arch.eff_db[dr] = val;
945                 break;
946         case 4:
947                 /* fall through */
948         case 6:
949                 if (val & 0xffffffff00000000ULL)
950                         return -1; /* #GP */
951                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
952                 kvm_update_dr6(vcpu);
953                 break;
954         case 5:
955                 /* fall through */
956         default: /* 7 */
957                 if (val & 0xffffffff00000000ULL)
958                         return -1; /* #GP */
959                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
960                 kvm_update_dr7(vcpu);
961                 break;
962         }
963
964         return 0;
965 }
966
967 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
968 {
969         if (__kvm_set_dr(vcpu, dr, val)) {
970                 kvm_inject_gp(vcpu, 0);
971                 return 1;
972         }
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_dr);
976
977 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
978 {
979         switch (dr) {
980         case 0 ... 3:
981                 *val = vcpu->arch.db[dr];
982                 break;
983         case 4:
984                 /* fall through */
985         case 6:
986                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
987                         *val = vcpu->arch.dr6;
988                 else
989                         *val = kvm_x86_ops->get_dr6(vcpu);
990                 break;
991         case 5:
992                 /* fall through */
993         default: /* 7 */
994                 *val = vcpu->arch.dr7;
995                 break;
996         }
997         return 0;
998 }
999 EXPORT_SYMBOL_GPL(kvm_get_dr);
1000
1001 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1002 {
1003         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1004         u64 data;
1005         int err;
1006
1007         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1008         if (err)
1009                 return err;
1010         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1011         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1012         return err;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1015
1016 /*
1017  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1018  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1019  *
1020  * This list is modified at module load time to reflect the
1021  * capabilities of the host cpu. This capabilities test skips MSRs that are
1022  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1023  * may depend on host virtualization features rather than host cpu features.
1024  */
1025
1026 static u32 msrs_to_save[] = {
1027         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1028         MSR_STAR,
1029 #ifdef CONFIG_X86_64
1030         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1031 #endif
1032         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1033         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1034         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1035 };
1036
1037 static unsigned num_msrs_to_save;
1038
1039 static u32 emulated_msrs[] = {
1040         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1041         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1042         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1043         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1044         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1045         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1046         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1047         HV_X64_MSR_RESET,
1048         HV_X64_MSR_VP_INDEX,
1049         HV_X64_MSR_VP_RUNTIME,
1050         HV_X64_MSR_SCONTROL,
1051         HV_X64_MSR_STIMER0_CONFIG,
1052         HV_X64_MSR_VP_ASSIST_PAGE,
1053         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1054         HV_X64_MSR_TSC_EMULATION_STATUS,
1055
1056         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1057         MSR_KVM_PV_EOI_EN,
1058
1059         MSR_IA32_TSC_ADJUST,
1060         MSR_IA32_TSCDEADLINE,
1061         MSR_IA32_MISC_ENABLE,
1062         MSR_IA32_MCG_STATUS,
1063         MSR_IA32_MCG_CTL,
1064         MSR_IA32_MCG_EXT_CTL,
1065         MSR_IA32_SMBASE,
1066         MSR_SMI_COUNT,
1067         MSR_PLATFORM_INFO,
1068         MSR_MISC_FEATURES_ENABLES,
1069         MSR_AMD64_VIRT_SPEC_CTRL,
1070 };
1071
1072 static unsigned num_emulated_msrs;
1073
1074 /*
1075  * List of msr numbers which are used to expose MSR-based features that
1076  * can be used by a hypervisor to validate requested CPU features.
1077  */
1078 static u32 msr_based_features[] = {
1079         MSR_IA32_VMX_BASIC,
1080         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1081         MSR_IA32_VMX_PINBASED_CTLS,
1082         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1083         MSR_IA32_VMX_PROCBASED_CTLS,
1084         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1085         MSR_IA32_VMX_EXIT_CTLS,
1086         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1087         MSR_IA32_VMX_ENTRY_CTLS,
1088         MSR_IA32_VMX_MISC,
1089         MSR_IA32_VMX_CR0_FIXED0,
1090         MSR_IA32_VMX_CR0_FIXED1,
1091         MSR_IA32_VMX_CR4_FIXED0,
1092         MSR_IA32_VMX_CR4_FIXED1,
1093         MSR_IA32_VMX_VMCS_ENUM,
1094         MSR_IA32_VMX_PROCBASED_CTLS2,
1095         MSR_IA32_VMX_EPT_VPID_CAP,
1096         MSR_IA32_VMX_VMFUNC,
1097
1098         MSR_F10H_DECFG,
1099         MSR_IA32_UCODE_REV,
1100         MSR_IA32_ARCH_CAPABILITIES,
1101 };
1102
1103 static unsigned int num_msr_based_features;
1104
1105 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1106 {
1107         switch (msr->index) {
1108         case MSR_IA32_UCODE_REV:
1109         case MSR_IA32_ARCH_CAPABILITIES:
1110                 rdmsrl_safe(msr->index, &msr->data);
1111                 break;
1112         default:
1113                 if (kvm_x86_ops->get_msr_feature(msr))
1114                         return 1;
1115         }
1116         return 0;
1117 }
1118
1119 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1120 {
1121         struct kvm_msr_entry msr;
1122         int r;
1123
1124         msr.index = index;
1125         r = kvm_get_msr_feature(&msr);
1126         if (r)
1127                 return r;
1128
1129         *data = msr.data;
1130
1131         return 0;
1132 }
1133
1134 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1135 {
1136         if (efer & efer_reserved_bits)
1137                 return false;
1138
1139         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1140                         return false;
1141
1142         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1143                         return false;
1144
1145         return true;
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1148
1149 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1150 {
1151         u64 old_efer = vcpu->arch.efer;
1152
1153         if (!kvm_valid_efer(vcpu, efer))
1154                 return 1;
1155
1156         if (is_paging(vcpu)
1157             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1158                 return 1;
1159
1160         efer &= ~EFER_LMA;
1161         efer |= vcpu->arch.efer & EFER_LMA;
1162
1163         kvm_x86_ops->set_efer(vcpu, efer);
1164
1165         /* Update reserved bits */
1166         if ((efer ^ old_efer) & EFER_NX)
1167                 kvm_mmu_reset_context(vcpu);
1168
1169         return 0;
1170 }
1171
1172 void kvm_enable_efer_bits(u64 mask)
1173 {
1174        efer_reserved_bits &= ~mask;
1175 }
1176 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1177
1178 /*
1179  * Writes msr value into into the appropriate "register".
1180  * Returns 0 on success, non-0 otherwise.
1181  * Assumes vcpu_load() was already called.
1182  */
1183 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1184 {
1185         switch (msr->index) {
1186         case MSR_FS_BASE:
1187         case MSR_GS_BASE:
1188         case MSR_KERNEL_GS_BASE:
1189         case MSR_CSTAR:
1190         case MSR_LSTAR:
1191                 if (is_noncanonical_address(msr->data, vcpu))
1192                         return 1;
1193                 break;
1194         case MSR_IA32_SYSENTER_EIP:
1195         case MSR_IA32_SYSENTER_ESP:
1196                 /*
1197                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1198                  * non-canonical address is written on Intel but not on
1199                  * AMD (which ignores the top 32-bits, because it does
1200                  * not implement 64-bit SYSENTER).
1201                  *
1202                  * 64-bit code should hence be able to write a non-canonical
1203                  * value on AMD.  Making the address canonical ensures that
1204                  * vmentry does not fail on Intel after writing a non-canonical
1205                  * value, and that something deterministic happens if the guest
1206                  * invokes 64-bit SYSENTER.
1207                  */
1208                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1209         }
1210         return kvm_x86_ops->set_msr(vcpu, msr);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_msr);
1213
1214 /*
1215  * Adapt set_msr() to msr_io()'s calling convention
1216  */
1217 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1218 {
1219         struct msr_data msr;
1220         int r;
1221
1222         msr.index = index;
1223         msr.host_initiated = true;
1224         r = kvm_get_msr(vcpu, &msr);
1225         if (r)
1226                 return r;
1227
1228         *data = msr.data;
1229         return 0;
1230 }
1231
1232 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1233 {
1234         struct msr_data msr;
1235
1236         msr.data = *data;
1237         msr.index = index;
1238         msr.host_initiated = true;
1239         return kvm_set_msr(vcpu, &msr);
1240 }
1241
1242 #ifdef CONFIG_X86_64
1243 struct pvclock_gtod_data {
1244         seqcount_t      seq;
1245
1246         struct { /* extract of a clocksource struct */
1247                 int vclock_mode;
1248                 u64     cycle_last;
1249                 u64     mask;
1250                 u32     mult;
1251                 u32     shift;
1252         } clock;
1253
1254         u64             boot_ns;
1255         u64             nsec_base;
1256         u64             wall_time_sec;
1257 };
1258
1259 static struct pvclock_gtod_data pvclock_gtod_data;
1260
1261 static void update_pvclock_gtod(struct timekeeper *tk)
1262 {
1263         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1264         u64 boot_ns;
1265
1266         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1267
1268         write_seqcount_begin(&vdata->seq);
1269
1270         /* copy pvclock gtod data */
1271         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1272         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1273         vdata->clock.mask               = tk->tkr_mono.mask;
1274         vdata->clock.mult               = tk->tkr_mono.mult;
1275         vdata->clock.shift              = tk->tkr_mono.shift;
1276
1277         vdata->boot_ns                  = boot_ns;
1278         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1279
1280         vdata->wall_time_sec            = tk->xtime_sec;
1281
1282         write_seqcount_end(&vdata->seq);
1283 }
1284 #endif
1285
1286 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1287 {
1288         /*
1289          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1290          * vcpu_enter_guest.  This function is only called from
1291          * the physical CPU that is running vcpu.
1292          */
1293         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1294 }
1295
1296 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1297 {
1298         int version;
1299         int r;
1300         struct pvclock_wall_clock wc;
1301         struct timespec64 boot;
1302
1303         if (!wall_clock)
1304                 return;
1305
1306         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1307         if (r)
1308                 return;
1309
1310         if (version & 1)
1311                 ++version;  /* first time write, random junk */
1312
1313         ++version;
1314
1315         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1316                 return;
1317
1318         /*
1319          * The guest calculates current wall clock time by adding
1320          * system time (updated by kvm_guest_time_update below) to the
1321          * wall clock specified here.  guest system time equals host
1322          * system time for us, thus we must fill in host boot time here.
1323          */
1324         getboottime64(&boot);
1325
1326         if (kvm->arch.kvmclock_offset) {
1327                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1328                 boot = timespec64_sub(boot, ts);
1329         }
1330         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1331         wc.nsec = boot.tv_nsec;
1332         wc.version = version;
1333
1334         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1335
1336         version++;
1337         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1338 }
1339
1340 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1341 {
1342         do_shl32_div32(dividend, divisor);
1343         return dividend;
1344 }
1345
1346 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1347                                s8 *pshift, u32 *pmultiplier)
1348 {
1349         uint64_t scaled64;
1350         int32_t  shift = 0;
1351         uint64_t tps64;
1352         uint32_t tps32;
1353
1354         tps64 = base_hz;
1355         scaled64 = scaled_hz;
1356         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1357                 tps64 >>= 1;
1358                 shift--;
1359         }
1360
1361         tps32 = (uint32_t)tps64;
1362         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1363                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1364                         scaled64 >>= 1;
1365                 else
1366                         tps32 <<= 1;
1367                 shift++;
1368         }
1369
1370         *pshift = shift;
1371         *pmultiplier = div_frac(scaled64, tps32);
1372
1373         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1374                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1375 }
1376
1377 #ifdef CONFIG_X86_64
1378 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1379 #endif
1380
1381 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1382 static unsigned long max_tsc_khz;
1383
1384 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1385 {
1386         u64 v = (u64)khz * (1000000 + ppm);
1387         do_div(v, 1000000);
1388         return v;
1389 }
1390
1391 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1392 {
1393         u64 ratio;
1394
1395         /* Guest TSC same frequency as host TSC? */
1396         if (!scale) {
1397                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1398                 return 0;
1399         }
1400
1401         /* TSC scaling supported? */
1402         if (!kvm_has_tsc_control) {
1403                 if (user_tsc_khz > tsc_khz) {
1404                         vcpu->arch.tsc_catchup = 1;
1405                         vcpu->arch.tsc_always_catchup = 1;
1406                         return 0;
1407                 } else {
1408                         WARN(1, "user requested TSC rate below hardware speed\n");
1409                         return -1;
1410                 }
1411         }
1412
1413         /* TSC scaling required  - calculate ratio */
1414         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1415                                 user_tsc_khz, tsc_khz);
1416
1417         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1418                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1419                           user_tsc_khz);
1420                 return -1;
1421         }
1422
1423         vcpu->arch.tsc_scaling_ratio = ratio;
1424         return 0;
1425 }
1426
1427 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1428 {
1429         u32 thresh_lo, thresh_hi;
1430         int use_scaling = 0;
1431
1432         /* tsc_khz can be zero if TSC calibration fails */
1433         if (user_tsc_khz == 0) {
1434                 /* set tsc_scaling_ratio to a safe value */
1435                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1436                 return -1;
1437         }
1438
1439         /* Compute a scale to convert nanoseconds in TSC cycles */
1440         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1441                            &vcpu->arch.virtual_tsc_shift,
1442                            &vcpu->arch.virtual_tsc_mult);
1443         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1444
1445         /*
1446          * Compute the variation in TSC rate which is acceptable
1447          * within the range of tolerance and decide if the
1448          * rate being applied is within that bounds of the hardware
1449          * rate.  If so, no scaling or compensation need be done.
1450          */
1451         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1452         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1453         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1454                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1455                 use_scaling = 1;
1456         }
1457         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1458 }
1459
1460 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1461 {
1462         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1463                                       vcpu->arch.virtual_tsc_mult,
1464                                       vcpu->arch.virtual_tsc_shift);
1465         tsc += vcpu->arch.this_tsc_write;
1466         return tsc;
1467 }
1468
1469 static inline int gtod_is_based_on_tsc(int mode)
1470 {
1471         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1472 }
1473
1474 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1475 {
1476 #ifdef CONFIG_X86_64
1477         bool vcpus_matched;
1478         struct kvm_arch *ka = &vcpu->kvm->arch;
1479         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1480
1481         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1482                          atomic_read(&vcpu->kvm->online_vcpus));
1483
1484         /*
1485          * Once the masterclock is enabled, always perform request in
1486          * order to update it.
1487          *
1488          * In order to enable masterclock, the host clocksource must be TSC
1489          * and the vcpus need to have matched TSCs.  When that happens,
1490          * perform request to enable masterclock.
1491          */
1492         if (ka->use_master_clock ||
1493             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1494                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1495
1496         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1497                             atomic_read(&vcpu->kvm->online_vcpus),
1498                             ka->use_master_clock, gtod->clock.vclock_mode);
1499 #endif
1500 }
1501
1502 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1503 {
1504         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1505         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1506 }
1507
1508 /*
1509  * Multiply tsc by a fixed point number represented by ratio.
1510  *
1511  * The most significant 64-N bits (mult) of ratio represent the
1512  * integral part of the fixed point number; the remaining N bits
1513  * (frac) represent the fractional part, ie. ratio represents a fixed
1514  * point number (mult + frac * 2^(-N)).
1515  *
1516  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1517  */
1518 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1519 {
1520         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1521 }
1522
1523 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1524 {
1525         u64 _tsc = tsc;
1526         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1527
1528         if (ratio != kvm_default_tsc_scaling_ratio)
1529                 _tsc = __scale_tsc(ratio, tsc);
1530
1531         return _tsc;
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1534
1535 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1536 {
1537         u64 tsc;
1538
1539         tsc = kvm_scale_tsc(vcpu, rdtsc());
1540
1541         return target_tsc - tsc;
1542 }
1543
1544 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1545 {
1546         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1547
1548         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1551
1552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1553 {
1554         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1555         vcpu->arch.tsc_offset = offset;
1556 }
1557
1558 static inline bool kvm_check_tsc_unstable(void)
1559 {
1560 #ifdef CONFIG_X86_64
1561         /*
1562          * TSC is marked unstable when we're running on Hyper-V,
1563          * 'TSC page' clocksource is good.
1564          */
1565         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1566                 return false;
1567 #endif
1568         return check_tsc_unstable();
1569 }
1570
1571 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1572 {
1573         struct kvm *kvm = vcpu->kvm;
1574         u64 offset, ns, elapsed;
1575         unsigned long flags;
1576         bool matched;
1577         bool already_matched;
1578         u64 data = msr->data;
1579         bool synchronizing = false;
1580
1581         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1582         offset = kvm_compute_tsc_offset(vcpu, data);
1583         ns = ktime_get_boot_ns();
1584         elapsed = ns - kvm->arch.last_tsc_nsec;
1585
1586         if (vcpu->arch.virtual_tsc_khz) {
1587                 if (data == 0 && msr->host_initiated) {
1588                         /*
1589                          * detection of vcpu initialization -- need to sync
1590                          * with other vCPUs. This particularly helps to keep
1591                          * kvm_clock stable after CPU hotplug
1592                          */
1593                         synchronizing = true;
1594                 } else {
1595                         u64 tsc_exp = kvm->arch.last_tsc_write +
1596                                                 nsec_to_cycles(vcpu, elapsed);
1597                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1598                         /*
1599                          * Special case: TSC write with a small delta (1 second)
1600                          * of virtual cycle time against real time is
1601                          * interpreted as an attempt to synchronize the CPU.
1602                          */
1603                         synchronizing = data < tsc_exp + tsc_hz &&
1604                                         data + tsc_hz > tsc_exp;
1605                 }
1606         }
1607
1608         /*
1609          * For a reliable TSC, we can match TSC offsets, and for an unstable
1610          * TSC, we add elapsed time in this computation.  We could let the
1611          * compensation code attempt to catch up if we fall behind, but
1612          * it's better to try to match offsets from the beginning.
1613          */
1614         if (synchronizing &&
1615             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1616                 if (!kvm_check_tsc_unstable()) {
1617                         offset = kvm->arch.cur_tsc_offset;
1618                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1619                 } else {
1620                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1621                         data += delta;
1622                         offset = kvm_compute_tsc_offset(vcpu, data);
1623                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1624                 }
1625                 matched = true;
1626                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1627         } else {
1628                 /*
1629                  * We split periods of matched TSC writes into generations.
1630                  * For each generation, we track the original measured
1631                  * nanosecond time, offset, and write, so if TSCs are in
1632                  * sync, we can match exact offset, and if not, we can match
1633                  * exact software computation in compute_guest_tsc()
1634                  *
1635                  * These values are tracked in kvm->arch.cur_xxx variables.
1636                  */
1637                 kvm->arch.cur_tsc_generation++;
1638                 kvm->arch.cur_tsc_nsec = ns;
1639                 kvm->arch.cur_tsc_write = data;
1640                 kvm->arch.cur_tsc_offset = offset;
1641                 matched = false;
1642                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1643                          kvm->arch.cur_tsc_generation, data);
1644         }
1645
1646         /*
1647          * We also track th most recent recorded KHZ, write and time to
1648          * allow the matching interval to be extended at each write.
1649          */
1650         kvm->arch.last_tsc_nsec = ns;
1651         kvm->arch.last_tsc_write = data;
1652         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1653
1654         vcpu->arch.last_guest_tsc = data;
1655
1656         /* Keep track of which generation this VCPU has synchronized to */
1657         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1658         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1659         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1660
1661         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1662                 update_ia32_tsc_adjust_msr(vcpu, offset);
1663
1664         kvm_vcpu_write_tsc_offset(vcpu, offset);
1665         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1666
1667         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1668         if (!matched) {
1669                 kvm->arch.nr_vcpus_matched_tsc = 0;
1670         } else if (!already_matched) {
1671                 kvm->arch.nr_vcpus_matched_tsc++;
1672         }
1673
1674         kvm_track_tsc_matching(vcpu);
1675         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1676 }
1677
1678 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1679
1680 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1681                                            s64 adjustment)
1682 {
1683         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1684 }
1685
1686 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1687 {
1688         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1689                 WARN_ON(adjustment < 0);
1690         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1691         adjust_tsc_offset_guest(vcpu, adjustment);
1692 }
1693
1694 #ifdef CONFIG_X86_64
1695
1696 static u64 read_tsc(void)
1697 {
1698         u64 ret = (u64)rdtsc_ordered();
1699         u64 last = pvclock_gtod_data.clock.cycle_last;
1700
1701         if (likely(ret >= last))
1702                 return ret;
1703
1704         /*
1705          * GCC likes to generate cmov here, but this branch is extremely
1706          * predictable (it's just a function of time and the likely is
1707          * very likely) and there's a data dependence, so force GCC
1708          * to generate a branch instead.  I don't barrier() because
1709          * we don't actually need a barrier, and if this function
1710          * ever gets inlined it will generate worse code.
1711          */
1712         asm volatile ("");
1713         return last;
1714 }
1715
1716 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1717 {
1718         long v;
1719         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1720         u64 tsc_pg_val;
1721
1722         switch (gtod->clock.vclock_mode) {
1723         case VCLOCK_HVCLOCK:
1724                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1725                                                   tsc_timestamp);
1726                 if (tsc_pg_val != U64_MAX) {
1727                         /* TSC page valid */
1728                         *mode = VCLOCK_HVCLOCK;
1729                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1730                                 gtod->clock.mask;
1731                 } else {
1732                         /* TSC page invalid */
1733                         *mode = VCLOCK_NONE;
1734                 }
1735                 break;
1736         case VCLOCK_TSC:
1737                 *mode = VCLOCK_TSC;
1738                 *tsc_timestamp = read_tsc();
1739                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1740                         gtod->clock.mask;
1741                 break;
1742         default:
1743                 *mode = VCLOCK_NONE;
1744         }
1745
1746         if (*mode == VCLOCK_NONE)
1747                 *tsc_timestamp = v = 0;
1748
1749         return v * gtod->clock.mult;
1750 }
1751
1752 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1753 {
1754         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1755         unsigned long seq;
1756         int mode;
1757         u64 ns;
1758
1759         do {
1760                 seq = read_seqcount_begin(&gtod->seq);
1761                 ns = gtod->nsec_base;
1762                 ns += vgettsc(tsc_timestamp, &mode);
1763                 ns >>= gtod->clock.shift;
1764                 ns += gtod->boot_ns;
1765         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1766         *t = ns;
1767
1768         return mode;
1769 }
1770
1771 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1772 {
1773         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1774         unsigned long seq;
1775         int mode;
1776         u64 ns;
1777
1778         do {
1779                 seq = read_seqcount_begin(&gtod->seq);
1780                 ts->tv_sec = gtod->wall_time_sec;
1781                 ns = gtod->nsec_base;
1782                 ns += vgettsc(tsc_timestamp, &mode);
1783                 ns >>= gtod->clock.shift;
1784         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1785
1786         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1787         ts->tv_nsec = ns;
1788
1789         return mode;
1790 }
1791
1792 /* returns true if host is using TSC based clocksource */
1793 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1794 {
1795         /* checked again under seqlock below */
1796         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1797                 return false;
1798
1799         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1800                                                       tsc_timestamp));
1801 }
1802
1803 /* returns true if host is using TSC based clocksource */
1804 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1805                                            u64 *tsc_timestamp)
1806 {
1807         /* checked again under seqlock below */
1808         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1809                 return false;
1810
1811         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1812 }
1813 #endif
1814
1815 /*
1816  *
1817  * Assuming a stable TSC across physical CPUS, and a stable TSC
1818  * across virtual CPUs, the following condition is possible.
1819  * Each numbered line represents an event visible to both
1820  * CPUs at the next numbered event.
1821  *
1822  * "timespecX" represents host monotonic time. "tscX" represents
1823  * RDTSC value.
1824  *
1825  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1826  *
1827  * 1.  read timespec0,tsc0
1828  * 2.                                   | timespec1 = timespec0 + N
1829  *                                      | tsc1 = tsc0 + M
1830  * 3. transition to guest               | transition to guest
1831  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1832  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1833  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1834  *
1835  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1836  *
1837  *      - ret0 < ret1
1838  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1839  *              ...
1840  *      - 0 < N - M => M < N
1841  *
1842  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1843  * always the case (the difference between two distinct xtime instances
1844  * might be smaller then the difference between corresponding TSC reads,
1845  * when updating guest vcpus pvclock areas).
1846  *
1847  * To avoid that problem, do not allow visibility of distinct
1848  * system_timestamp/tsc_timestamp values simultaneously: use a master
1849  * copy of host monotonic time values. Update that master copy
1850  * in lockstep.
1851  *
1852  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1853  *
1854  */
1855
1856 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1857 {
1858 #ifdef CONFIG_X86_64
1859         struct kvm_arch *ka = &kvm->arch;
1860         int vclock_mode;
1861         bool host_tsc_clocksource, vcpus_matched;
1862
1863         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1864                         atomic_read(&kvm->online_vcpus));
1865
1866         /*
1867          * If the host uses TSC clock, then passthrough TSC as stable
1868          * to the guest.
1869          */
1870         host_tsc_clocksource = kvm_get_time_and_clockread(
1871                                         &ka->master_kernel_ns,
1872                                         &ka->master_cycle_now);
1873
1874         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1875                                 && !ka->backwards_tsc_observed
1876                                 && !ka->boot_vcpu_runs_old_kvmclock;
1877
1878         if (ka->use_master_clock)
1879                 atomic_set(&kvm_guest_has_master_clock, 1);
1880
1881         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1882         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1883                                         vcpus_matched);
1884 #endif
1885 }
1886
1887 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1888 {
1889         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1890 }
1891
1892 static void kvm_gen_update_masterclock(struct kvm *kvm)
1893 {
1894 #ifdef CONFIG_X86_64
1895         int i;
1896         struct kvm_vcpu *vcpu;
1897         struct kvm_arch *ka = &kvm->arch;
1898
1899         spin_lock(&ka->pvclock_gtod_sync_lock);
1900         kvm_make_mclock_inprogress_request(kvm);
1901         /* no guest entries from this point */
1902         pvclock_update_vm_gtod_copy(kvm);
1903
1904         kvm_for_each_vcpu(i, vcpu, kvm)
1905                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1906
1907         /* guest entries allowed */
1908         kvm_for_each_vcpu(i, vcpu, kvm)
1909                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1910
1911         spin_unlock(&ka->pvclock_gtod_sync_lock);
1912 #endif
1913 }
1914
1915 u64 get_kvmclock_ns(struct kvm *kvm)
1916 {
1917         struct kvm_arch *ka = &kvm->arch;
1918         struct pvclock_vcpu_time_info hv_clock;
1919         u64 ret;
1920
1921         spin_lock(&ka->pvclock_gtod_sync_lock);
1922         if (!ka->use_master_clock) {
1923                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1924                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1925         }
1926
1927         hv_clock.tsc_timestamp = ka->master_cycle_now;
1928         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1929         spin_unlock(&ka->pvclock_gtod_sync_lock);
1930
1931         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1932         get_cpu();
1933
1934         if (__this_cpu_read(cpu_tsc_khz)) {
1935                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1936                                    &hv_clock.tsc_shift,
1937                                    &hv_clock.tsc_to_system_mul);
1938                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1939         } else
1940                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1941
1942         put_cpu();
1943
1944         return ret;
1945 }
1946
1947 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1948 {
1949         struct kvm_vcpu_arch *vcpu = &v->arch;
1950         struct pvclock_vcpu_time_info guest_hv_clock;
1951
1952         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1953                 &guest_hv_clock, sizeof(guest_hv_clock))))
1954                 return;
1955
1956         /* This VCPU is paused, but it's legal for a guest to read another
1957          * VCPU's kvmclock, so we really have to follow the specification where
1958          * it says that version is odd if data is being modified, and even after
1959          * it is consistent.
1960          *
1961          * Version field updates must be kept separate.  This is because
1962          * kvm_write_guest_cached might use a "rep movs" instruction, and
1963          * writes within a string instruction are weakly ordered.  So there
1964          * are three writes overall.
1965          *
1966          * As a small optimization, only write the version field in the first
1967          * and third write.  The vcpu->pv_time cache is still valid, because the
1968          * version field is the first in the struct.
1969          */
1970         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1971
1972         if (guest_hv_clock.version & 1)
1973                 ++guest_hv_clock.version;  /* first time write, random junk */
1974
1975         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1976         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1977                                 &vcpu->hv_clock,
1978                                 sizeof(vcpu->hv_clock.version));
1979
1980         smp_wmb();
1981
1982         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1983         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1984
1985         if (vcpu->pvclock_set_guest_stopped_request) {
1986                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1987                 vcpu->pvclock_set_guest_stopped_request = false;
1988         }
1989
1990         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1991
1992         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1993                                 &vcpu->hv_clock,
1994                                 sizeof(vcpu->hv_clock));
1995
1996         smp_wmb();
1997
1998         vcpu->hv_clock.version++;
1999         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2000                                 &vcpu->hv_clock,
2001                                 sizeof(vcpu->hv_clock.version));
2002 }
2003
2004 static int kvm_guest_time_update(struct kvm_vcpu *v)
2005 {
2006         unsigned long flags, tgt_tsc_khz;
2007         struct kvm_vcpu_arch *vcpu = &v->arch;
2008         struct kvm_arch *ka = &v->kvm->arch;
2009         s64 kernel_ns;
2010         u64 tsc_timestamp, host_tsc;
2011         u8 pvclock_flags;
2012         bool use_master_clock;
2013
2014         kernel_ns = 0;
2015         host_tsc = 0;
2016
2017         /*
2018          * If the host uses TSC clock, then passthrough TSC as stable
2019          * to the guest.
2020          */
2021         spin_lock(&ka->pvclock_gtod_sync_lock);
2022         use_master_clock = ka->use_master_clock;
2023         if (use_master_clock) {
2024                 host_tsc = ka->master_cycle_now;
2025                 kernel_ns = ka->master_kernel_ns;
2026         }
2027         spin_unlock(&ka->pvclock_gtod_sync_lock);
2028
2029         /* Keep irq disabled to prevent changes to the clock */
2030         local_irq_save(flags);
2031         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2032         if (unlikely(tgt_tsc_khz == 0)) {
2033                 local_irq_restore(flags);
2034                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2035                 return 1;
2036         }
2037         if (!use_master_clock) {
2038                 host_tsc = rdtsc();
2039                 kernel_ns = ktime_get_boot_ns();
2040         }
2041
2042         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2043
2044         /*
2045          * We may have to catch up the TSC to match elapsed wall clock
2046          * time for two reasons, even if kvmclock is used.
2047          *   1) CPU could have been running below the maximum TSC rate
2048          *   2) Broken TSC compensation resets the base at each VCPU
2049          *      entry to avoid unknown leaps of TSC even when running
2050          *      again on the same CPU.  This may cause apparent elapsed
2051          *      time to disappear, and the guest to stand still or run
2052          *      very slowly.
2053          */
2054         if (vcpu->tsc_catchup) {
2055                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2056                 if (tsc > tsc_timestamp) {
2057                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2058                         tsc_timestamp = tsc;
2059                 }
2060         }
2061
2062         local_irq_restore(flags);
2063
2064         /* With all the info we got, fill in the values */
2065
2066         if (kvm_has_tsc_control)
2067                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2068
2069         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2070                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2071                                    &vcpu->hv_clock.tsc_shift,
2072                                    &vcpu->hv_clock.tsc_to_system_mul);
2073                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2074         }
2075
2076         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2077         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2078         vcpu->last_guest_tsc = tsc_timestamp;
2079
2080         /* If the host uses TSC clocksource, then it is stable */
2081         pvclock_flags = 0;
2082         if (use_master_clock)
2083                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2084
2085         vcpu->hv_clock.flags = pvclock_flags;
2086
2087         if (vcpu->pv_time_enabled)
2088                 kvm_setup_pvclock_page(v);
2089         if (v == kvm_get_vcpu(v->kvm, 0))
2090                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2091         return 0;
2092 }
2093
2094 /*
2095  * kvmclock updates which are isolated to a given vcpu, such as
2096  * vcpu->cpu migration, should not allow system_timestamp from
2097  * the rest of the vcpus to remain static. Otherwise ntp frequency
2098  * correction applies to one vcpu's system_timestamp but not
2099  * the others.
2100  *
2101  * So in those cases, request a kvmclock update for all vcpus.
2102  * We need to rate-limit these requests though, as they can
2103  * considerably slow guests that have a large number of vcpus.
2104  * The time for a remote vcpu to update its kvmclock is bound
2105  * by the delay we use to rate-limit the updates.
2106  */
2107
2108 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2109
2110 static void kvmclock_update_fn(struct work_struct *work)
2111 {
2112         int i;
2113         struct delayed_work *dwork = to_delayed_work(work);
2114         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2115                                            kvmclock_update_work);
2116         struct kvm *kvm = container_of(ka, struct kvm, arch);
2117         struct kvm_vcpu *vcpu;
2118
2119         kvm_for_each_vcpu(i, vcpu, kvm) {
2120                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2121                 kvm_vcpu_kick(vcpu);
2122         }
2123 }
2124
2125 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2126 {
2127         struct kvm *kvm = v->kvm;
2128
2129         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2130         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2131                                         KVMCLOCK_UPDATE_DELAY);
2132 }
2133
2134 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2135
2136 static void kvmclock_sync_fn(struct work_struct *work)
2137 {
2138         struct delayed_work *dwork = to_delayed_work(work);
2139         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2140                                            kvmclock_sync_work);
2141         struct kvm *kvm = container_of(ka, struct kvm, arch);
2142
2143         if (!kvmclock_periodic_sync)
2144                 return;
2145
2146         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2147         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2148                                         KVMCLOCK_SYNC_PERIOD);
2149 }
2150
2151 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2152 {
2153         u64 mcg_cap = vcpu->arch.mcg_cap;
2154         unsigned bank_num = mcg_cap & 0xff;
2155         u32 msr = msr_info->index;
2156         u64 data = msr_info->data;
2157
2158         switch (msr) {
2159         case MSR_IA32_MCG_STATUS:
2160                 vcpu->arch.mcg_status = data;
2161                 break;
2162         case MSR_IA32_MCG_CTL:
2163                 if (!(mcg_cap & MCG_CTL_P) &&
2164                     (data || !msr_info->host_initiated))
2165                         return 1;
2166                 if (data != 0 && data != ~(u64)0)
2167                         return 1;
2168                 vcpu->arch.mcg_ctl = data;
2169                 break;
2170         default:
2171                 if (msr >= MSR_IA32_MC0_CTL &&
2172                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2173                         u32 offset = msr - MSR_IA32_MC0_CTL;
2174                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2175                          * some Linux kernels though clear bit 10 in bank 4 to
2176                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2177                          * this to avoid an uncatched #GP in the guest
2178                          */
2179                         if ((offset & 0x3) == 0 &&
2180                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2181                                 return -1;
2182                         if (!msr_info->host_initiated &&
2183                                 (offset & 0x3) == 1 && data != 0)
2184                                 return -1;
2185                         vcpu->arch.mce_banks[offset] = data;
2186                         break;
2187                 }
2188                 return 1;
2189         }
2190         return 0;
2191 }
2192
2193 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2194 {
2195         struct kvm *kvm = vcpu->kvm;
2196         int lm = is_long_mode(vcpu);
2197         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2198                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2199         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2200                 : kvm->arch.xen_hvm_config.blob_size_32;
2201         u32 page_num = data & ~PAGE_MASK;
2202         u64 page_addr = data & PAGE_MASK;
2203         u8 *page;
2204         int r;
2205
2206         r = -E2BIG;
2207         if (page_num >= blob_size)
2208                 goto out;
2209         r = -ENOMEM;
2210         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2211         if (IS_ERR(page)) {
2212                 r = PTR_ERR(page);
2213                 goto out;
2214         }
2215         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2216                 goto out_free;
2217         r = 0;
2218 out_free:
2219         kfree(page);
2220 out:
2221         return r;
2222 }
2223
2224 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2225 {
2226         gpa_t gpa = data & ~0x3f;
2227
2228         /* Bits 3:5 are reserved, Should be zero */
2229         if (data & 0x38)
2230                 return 1;
2231
2232         vcpu->arch.apf.msr_val = data;
2233
2234         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2235                 kvm_clear_async_pf_completion_queue(vcpu);
2236                 kvm_async_pf_hash_reset(vcpu);
2237                 return 0;
2238         }
2239
2240         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2241                                         sizeof(u32)))
2242                 return 1;
2243
2244         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2245         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2246         kvm_async_pf_wakeup_all(vcpu);
2247         return 0;
2248 }
2249
2250 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2251 {
2252         vcpu->arch.pv_time_enabled = false;
2253 }
2254
2255 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2256 {
2257         ++vcpu->stat.tlb_flush;
2258         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2259 }
2260
2261 static void record_steal_time(struct kvm_vcpu *vcpu)
2262 {
2263         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2264                 return;
2265
2266         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2267                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2268                 return;
2269
2270         /*
2271          * Doing a TLB flush here, on the guest's behalf, can avoid
2272          * expensive IPIs.
2273          */
2274         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2275                 kvm_vcpu_flush_tlb(vcpu, false);
2276
2277         if (vcpu->arch.st.steal.version & 1)
2278                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2279
2280         vcpu->arch.st.steal.version += 1;
2281
2282         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2283                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2284
2285         smp_wmb();
2286
2287         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2288                 vcpu->arch.st.last_steal;
2289         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2290
2291         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2292                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2293
2294         smp_wmb();
2295
2296         vcpu->arch.st.steal.version += 1;
2297
2298         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2299                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2300 }
2301
2302 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2303 {
2304         bool pr = false;
2305         u32 msr = msr_info->index;
2306         u64 data = msr_info->data;
2307
2308         switch (msr) {
2309         case MSR_AMD64_NB_CFG:
2310         case MSR_IA32_UCODE_WRITE:
2311         case MSR_VM_HSAVE_PA:
2312         case MSR_AMD64_PATCH_LOADER:
2313         case MSR_AMD64_BU_CFG2:
2314         case MSR_AMD64_DC_CFG:
2315                 break;
2316
2317         case MSR_IA32_UCODE_REV:
2318                 if (msr_info->host_initiated)
2319                         vcpu->arch.microcode_version = data;
2320                 break;
2321         case MSR_EFER:
2322                 return set_efer(vcpu, data);
2323         case MSR_K7_HWCR:
2324                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2325                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2326                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2327                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2328                 if (data != 0) {
2329                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2330                                     data);
2331                         return 1;
2332                 }
2333                 break;
2334         case MSR_FAM10H_MMIO_CONF_BASE:
2335                 if (data != 0) {
2336                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2337                                     "0x%llx\n", data);
2338                         return 1;
2339                 }
2340                 break;
2341         case MSR_IA32_DEBUGCTLMSR:
2342                 if (!data) {
2343                         /* We support the non-activated case already */
2344                         break;
2345                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2346                         /* Values other than LBR and BTF are vendor-specific,
2347                            thus reserved and should throw a #GP */
2348                         return 1;
2349                 }
2350                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2351                             __func__, data);
2352                 break;
2353         case 0x200 ... 0x2ff:
2354                 return kvm_mtrr_set_msr(vcpu, msr, data);
2355         case MSR_IA32_APICBASE:
2356                 return kvm_set_apic_base(vcpu, msr_info);
2357         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2358                 return kvm_x2apic_msr_write(vcpu, msr, data);
2359         case MSR_IA32_TSCDEADLINE:
2360                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2361                 break;
2362         case MSR_IA32_TSC_ADJUST:
2363                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2364                         if (!msr_info->host_initiated) {
2365                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2366                                 adjust_tsc_offset_guest(vcpu, adj);
2367                         }
2368                         vcpu->arch.ia32_tsc_adjust_msr = data;
2369                 }
2370                 break;
2371         case MSR_IA32_MISC_ENABLE:
2372                 vcpu->arch.ia32_misc_enable_msr = data;
2373                 break;
2374         case MSR_IA32_SMBASE:
2375                 if (!msr_info->host_initiated)
2376                         return 1;
2377                 vcpu->arch.smbase = data;
2378                 break;
2379         case MSR_IA32_TSC:
2380                 kvm_write_tsc(vcpu, msr_info);
2381                 break;
2382         case MSR_SMI_COUNT:
2383                 if (!msr_info->host_initiated)
2384                         return 1;
2385                 vcpu->arch.smi_count = data;
2386                 break;
2387         case MSR_KVM_WALL_CLOCK_NEW:
2388         case MSR_KVM_WALL_CLOCK:
2389                 vcpu->kvm->arch.wall_clock = data;
2390                 kvm_write_wall_clock(vcpu->kvm, data);
2391                 break;
2392         case MSR_KVM_SYSTEM_TIME_NEW:
2393         case MSR_KVM_SYSTEM_TIME: {
2394                 struct kvm_arch *ka = &vcpu->kvm->arch;
2395
2396                 kvmclock_reset(vcpu);
2397
2398                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2399                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2400
2401                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2402                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2403
2404                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2405                 }
2406
2407                 vcpu->arch.time = data;
2408                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2409
2410                 /* we verify if the enable bit is set... */
2411                 if (!(data & 1))
2412                         break;
2413
2414                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2415                      &vcpu->arch.pv_time, data & ~1ULL,
2416                      sizeof(struct pvclock_vcpu_time_info)))
2417                         vcpu->arch.pv_time_enabled = false;
2418                 else
2419                         vcpu->arch.pv_time_enabled = true;
2420
2421                 break;
2422         }
2423         case MSR_KVM_ASYNC_PF_EN:
2424                 if (kvm_pv_enable_async_pf(vcpu, data))
2425                         return 1;
2426                 break;
2427         case MSR_KVM_STEAL_TIME:
2428
2429                 if (unlikely(!sched_info_on()))
2430                         return 1;
2431
2432                 if (data & KVM_STEAL_RESERVED_MASK)
2433                         return 1;
2434
2435                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2436                                                 data & KVM_STEAL_VALID_BITS,
2437                                                 sizeof(struct kvm_steal_time)))
2438                         return 1;
2439
2440                 vcpu->arch.st.msr_val = data;
2441
2442                 if (!(data & KVM_MSR_ENABLED))
2443                         break;
2444
2445                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2446
2447                 break;
2448         case MSR_KVM_PV_EOI_EN:
2449                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2450                         return 1;
2451                 break;
2452
2453         case MSR_IA32_MCG_CTL:
2454         case MSR_IA32_MCG_STATUS:
2455         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2456                 return set_msr_mce(vcpu, msr_info);
2457
2458         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2459         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2460                 pr = true; /* fall through */
2461         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2462         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2463                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2464                         return kvm_pmu_set_msr(vcpu, msr_info);
2465
2466                 if (pr || data != 0)
2467                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2468                                     "0x%x data 0x%llx\n", msr, data);
2469                 break;
2470         case MSR_K7_CLK_CTL:
2471                 /*
2472                  * Ignore all writes to this no longer documented MSR.
2473                  * Writes are only relevant for old K7 processors,
2474                  * all pre-dating SVM, but a recommended workaround from
2475                  * AMD for these chips. It is possible to specify the
2476                  * affected processor models on the command line, hence
2477                  * the need to ignore the workaround.
2478                  */
2479                 break;
2480         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2481         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2482         case HV_X64_MSR_CRASH_CTL:
2483         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2484         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2485         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2486         case HV_X64_MSR_TSC_EMULATION_STATUS:
2487                 return kvm_hv_set_msr_common(vcpu, msr, data,
2488                                              msr_info->host_initiated);
2489         case MSR_IA32_BBL_CR_CTL3:
2490                 /* Drop writes to this legacy MSR -- see rdmsr
2491                  * counterpart for further detail.
2492                  */
2493                 if (report_ignored_msrs)
2494                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2495                                 msr, data);
2496                 break;
2497         case MSR_AMD64_OSVW_ID_LENGTH:
2498                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2499                         return 1;
2500                 vcpu->arch.osvw.length = data;
2501                 break;
2502         case MSR_AMD64_OSVW_STATUS:
2503                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2504                         return 1;
2505                 vcpu->arch.osvw.status = data;
2506                 break;
2507         case MSR_PLATFORM_INFO:
2508                 if (!msr_info->host_initiated ||
2509                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2510                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2511                      cpuid_fault_enabled(vcpu)))
2512                         return 1;
2513                 vcpu->arch.msr_platform_info = data;
2514                 break;
2515         case MSR_MISC_FEATURES_ENABLES:
2516                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2517                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2518                      !supports_cpuid_fault(vcpu)))
2519                         return 1;
2520                 vcpu->arch.msr_misc_features_enables = data;
2521                 break;
2522         default:
2523                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2524                         return xen_hvm_config(vcpu, data);
2525                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2526                         return kvm_pmu_set_msr(vcpu, msr_info);
2527                 if (!ignore_msrs) {
2528                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2529                                     msr, data);
2530                         return 1;
2531                 } else {
2532                         if (report_ignored_msrs)
2533                                 vcpu_unimpl(vcpu,
2534                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2535                                         msr, data);
2536                         break;
2537                 }
2538         }
2539         return 0;
2540 }
2541 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2542
2543
2544 /*
2545  * Reads an msr value (of 'msr_index') into 'pdata'.
2546  * Returns 0 on success, non-0 otherwise.
2547  * Assumes vcpu_load() was already called.
2548  */
2549 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2550 {
2551         return kvm_x86_ops->get_msr(vcpu, msr);
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_get_msr);
2554
2555 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2556 {
2557         u64 data;
2558         u64 mcg_cap = vcpu->arch.mcg_cap;
2559         unsigned bank_num = mcg_cap & 0xff;
2560
2561         switch (msr) {
2562         case MSR_IA32_P5_MC_ADDR:
2563         case MSR_IA32_P5_MC_TYPE:
2564                 data = 0;
2565                 break;
2566         case MSR_IA32_MCG_CAP:
2567                 data = vcpu->arch.mcg_cap;
2568                 break;
2569         case MSR_IA32_MCG_CTL:
2570                 if (!(mcg_cap & MCG_CTL_P) && !host)
2571                         return 1;
2572                 data = vcpu->arch.mcg_ctl;
2573                 break;
2574         case MSR_IA32_MCG_STATUS:
2575                 data = vcpu->arch.mcg_status;
2576                 break;
2577         default:
2578                 if (msr >= MSR_IA32_MC0_CTL &&
2579                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2580                         u32 offset = msr - MSR_IA32_MC0_CTL;
2581                         data = vcpu->arch.mce_banks[offset];
2582                         break;
2583                 }
2584                 return 1;
2585         }
2586         *pdata = data;
2587         return 0;
2588 }
2589
2590 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2591 {
2592         switch (msr_info->index) {
2593         case MSR_IA32_PLATFORM_ID:
2594         case MSR_IA32_EBL_CR_POWERON:
2595         case MSR_IA32_DEBUGCTLMSR:
2596         case MSR_IA32_LASTBRANCHFROMIP:
2597         case MSR_IA32_LASTBRANCHTOIP:
2598         case MSR_IA32_LASTINTFROMIP:
2599         case MSR_IA32_LASTINTTOIP:
2600         case MSR_K8_SYSCFG:
2601         case MSR_K8_TSEG_ADDR:
2602         case MSR_K8_TSEG_MASK:
2603         case MSR_K7_HWCR:
2604         case MSR_VM_HSAVE_PA:
2605         case MSR_K8_INT_PENDING_MSG:
2606         case MSR_AMD64_NB_CFG:
2607         case MSR_FAM10H_MMIO_CONF_BASE:
2608         case MSR_AMD64_BU_CFG2:
2609         case MSR_IA32_PERF_CTL:
2610         case MSR_AMD64_DC_CFG:
2611                 msr_info->data = 0;
2612                 break;
2613         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2614         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2615         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2616         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2617         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2618                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2619                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2620                 msr_info->data = 0;
2621                 break;
2622         case MSR_IA32_UCODE_REV:
2623                 msr_info->data = vcpu->arch.microcode_version;
2624                 break;
2625         case MSR_IA32_TSC:
2626                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2627                 break;
2628         case MSR_MTRRcap:
2629         case 0x200 ... 0x2ff:
2630                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2631         case 0xcd: /* fsb frequency */
2632                 msr_info->data = 3;
2633                 break;
2634                 /*
2635                  * MSR_EBC_FREQUENCY_ID
2636                  * Conservative value valid for even the basic CPU models.
2637                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2638                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2639                  * and 266MHz for model 3, or 4. Set Core Clock
2640                  * Frequency to System Bus Frequency Ratio to 1 (bits
2641                  * 31:24) even though these are only valid for CPU
2642                  * models > 2, however guests may end up dividing or
2643                  * multiplying by zero otherwise.
2644                  */
2645         case MSR_EBC_FREQUENCY_ID:
2646                 msr_info->data = 1 << 24;
2647                 break;
2648         case MSR_IA32_APICBASE:
2649                 msr_info->data = kvm_get_apic_base(vcpu);
2650                 break;
2651         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2652                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2653                 break;
2654         case MSR_IA32_TSCDEADLINE:
2655                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2656                 break;
2657         case MSR_IA32_TSC_ADJUST:
2658                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2659                 break;
2660         case MSR_IA32_MISC_ENABLE:
2661                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2662                 break;
2663         case MSR_IA32_SMBASE:
2664                 if (!msr_info->host_initiated)
2665                         return 1;
2666                 msr_info->data = vcpu->arch.smbase;
2667                 break;
2668         case MSR_SMI_COUNT:
2669                 msr_info->data = vcpu->arch.smi_count;
2670                 break;
2671         case MSR_IA32_PERF_STATUS:
2672                 /* TSC increment by tick */
2673                 msr_info->data = 1000ULL;
2674                 /* CPU multiplier */
2675                 msr_info->data |= (((uint64_t)4ULL) << 40);
2676                 break;
2677         case MSR_EFER:
2678                 msr_info->data = vcpu->arch.efer;
2679                 break;
2680         case MSR_KVM_WALL_CLOCK:
2681         case MSR_KVM_WALL_CLOCK_NEW:
2682                 msr_info->data = vcpu->kvm->arch.wall_clock;
2683                 break;
2684         case MSR_KVM_SYSTEM_TIME:
2685         case MSR_KVM_SYSTEM_TIME_NEW:
2686                 msr_info->data = vcpu->arch.time;
2687                 break;
2688         case MSR_KVM_ASYNC_PF_EN:
2689                 msr_info->data = vcpu->arch.apf.msr_val;
2690                 break;
2691         case MSR_KVM_STEAL_TIME:
2692                 msr_info->data = vcpu->arch.st.msr_val;
2693                 break;
2694         case MSR_KVM_PV_EOI_EN:
2695                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2696                 break;
2697         case MSR_IA32_P5_MC_ADDR:
2698         case MSR_IA32_P5_MC_TYPE:
2699         case MSR_IA32_MCG_CAP:
2700         case MSR_IA32_MCG_CTL:
2701         case MSR_IA32_MCG_STATUS:
2702         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2703                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2704                                    msr_info->host_initiated);
2705         case MSR_K7_CLK_CTL:
2706                 /*
2707                  * Provide expected ramp-up count for K7. All other
2708                  * are set to zero, indicating minimum divisors for
2709                  * every field.
2710                  *
2711                  * This prevents guest kernels on AMD host with CPU
2712                  * type 6, model 8 and higher from exploding due to
2713                  * the rdmsr failing.
2714                  */
2715                 msr_info->data = 0x20000000;
2716                 break;
2717         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2718         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2719         case HV_X64_MSR_CRASH_CTL:
2720         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2721         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2722         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2723         case HV_X64_MSR_TSC_EMULATION_STATUS:
2724                 return kvm_hv_get_msr_common(vcpu,
2725                                              msr_info->index, &msr_info->data,
2726                                              msr_info->host_initiated);
2727                 break;
2728         case MSR_IA32_BBL_CR_CTL3:
2729                 /* This legacy MSR exists but isn't fully documented in current
2730                  * silicon.  It is however accessed by winxp in very narrow
2731                  * scenarios where it sets bit #19, itself documented as
2732                  * a "reserved" bit.  Best effort attempt to source coherent
2733                  * read data here should the balance of the register be
2734                  * interpreted by the guest:
2735                  *
2736                  * L2 cache control register 3: 64GB range, 256KB size,
2737                  * enabled, latency 0x1, configured
2738                  */
2739                 msr_info->data = 0xbe702111;
2740                 break;
2741         case MSR_AMD64_OSVW_ID_LENGTH:
2742                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2743                         return 1;
2744                 msr_info->data = vcpu->arch.osvw.length;
2745                 break;
2746         case MSR_AMD64_OSVW_STATUS:
2747                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2748                         return 1;
2749                 msr_info->data = vcpu->arch.osvw.status;
2750                 break;
2751         case MSR_PLATFORM_INFO:
2752                 msr_info->data = vcpu->arch.msr_platform_info;
2753                 break;
2754         case MSR_MISC_FEATURES_ENABLES:
2755                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2756                 break;
2757         default:
2758                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2759                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2760                 if (!ignore_msrs) {
2761                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2762                                                msr_info->index);
2763                         return 1;
2764                 } else {
2765                         if (report_ignored_msrs)
2766                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2767                                         msr_info->index);
2768                         msr_info->data = 0;
2769                 }
2770                 break;
2771         }
2772         return 0;
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2775
2776 /*
2777  * Read or write a bunch of msrs. All parameters are kernel addresses.
2778  *
2779  * @return number of msrs set successfully.
2780  */
2781 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2782                     struct kvm_msr_entry *entries,
2783                     int (*do_msr)(struct kvm_vcpu *vcpu,
2784                                   unsigned index, u64 *data))
2785 {
2786         int i;
2787
2788         for (i = 0; i < msrs->nmsrs; ++i)
2789                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2790                         break;
2791
2792         return i;
2793 }
2794
2795 /*
2796  * Read or write a bunch of msrs. Parameters are user addresses.
2797  *
2798  * @return number of msrs set successfully.
2799  */
2800 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2801                   int (*do_msr)(struct kvm_vcpu *vcpu,
2802                                 unsigned index, u64 *data),
2803                   int writeback)
2804 {
2805         struct kvm_msrs msrs;
2806         struct kvm_msr_entry *entries;
2807         int r, n;
2808         unsigned size;
2809
2810         r = -EFAULT;
2811         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2812                 goto out;
2813
2814         r = -E2BIG;
2815         if (msrs.nmsrs >= MAX_IO_MSRS)
2816                 goto out;
2817
2818         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2819         entries = memdup_user(user_msrs->entries, size);
2820         if (IS_ERR(entries)) {
2821                 r = PTR_ERR(entries);
2822                 goto out;
2823         }
2824
2825         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2826         if (r < 0)
2827                 goto out_free;
2828
2829         r = -EFAULT;
2830         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2831                 goto out_free;
2832
2833         r = n;
2834
2835 out_free:
2836         kfree(entries);
2837 out:
2838         return r;
2839 }
2840
2841 static inline bool kvm_can_mwait_in_guest(void)
2842 {
2843         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2844                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2845                 boot_cpu_has(X86_FEATURE_ARAT);
2846 }
2847
2848 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2849 {
2850         int r = 0;
2851
2852         switch (ext) {
2853         case KVM_CAP_IRQCHIP:
2854         case KVM_CAP_HLT:
2855         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2856         case KVM_CAP_SET_TSS_ADDR:
2857         case KVM_CAP_EXT_CPUID:
2858         case KVM_CAP_EXT_EMUL_CPUID:
2859         case KVM_CAP_CLOCKSOURCE:
2860         case KVM_CAP_PIT:
2861         case KVM_CAP_NOP_IO_DELAY:
2862         case KVM_CAP_MP_STATE:
2863         case KVM_CAP_SYNC_MMU:
2864         case KVM_CAP_USER_NMI:
2865         case KVM_CAP_REINJECT_CONTROL:
2866         case KVM_CAP_IRQ_INJECT_STATUS:
2867         case KVM_CAP_IOEVENTFD:
2868         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2869         case KVM_CAP_PIT2:
2870         case KVM_CAP_PIT_STATE2:
2871         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2872         case KVM_CAP_XEN_HVM:
2873         case KVM_CAP_VCPU_EVENTS:
2874         case KVM_CAP_HYPERV:
2875         case KVM_CAP_HYPERV_VAPIC:
2876         case KVM_CAP_HYPERV_SPIN:
2877         case KVM_CAP_HYPERV_SYNIC:
2878         case KVM_CAP_HYPERV_SYNIC2:
2879         case KVM_CAP_HYPERV_VP_INDEX:
2880         case KVM_CAP_HYPERV_EVENTFD:
2881         case KVM_CAP_HYPERV_TLBFLUSH:
2882         case KVM_CAP_PCI_SEGMENT:
2883         case KVM_CAP_DEBUGREGS:
2884         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2885         case KVM_CAP_XSAVE:
2886         case KVM_CAP_ASYNC_PF:
2887         case KVM_CAP_GET_TSC_KHZ:
2888         case KVM_CAP_KVMCLOCK_CTRL:
2889         case KVM_CAP_READONLY_MEM:
2890         case KVM_CAP_HYPERV_TIME:
2891         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2892         case KVM_CAP_TSC_DEADLINE_TIMER:
2893         case KVM_CAP_ENABLE_CAP_VM:
2894         case KVM_CAP_DISABLE_QUIRKS:
2895         case KVM_CAP_SET_BOOT_CPU_ID:
2896         case KVM_CAP_SPLIT_IRQCHIP:
2897         case KVM_CAP_IMMEDIATE_EXIT:
2898         case KVM_CAP_GET_MSR_FEATURES:
2899                 r = 1;
2900                 break;
2901         case KVM_CAP_SYNC_REGS:
2902                 r = KVM_SYNC_X86_VALID_FIELDS;
2903                 break;
2904         case KVM_CAP_ADJUST_CLOCK:
2905                 r = KVM_CLOCK_TSC_STABLE;
2906                 break;
2907         case KVM_CAP_X86_DISABLE_EXITS:
2908                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2909                 if(kvm_can_mwait_in_guest())
2910                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2911                 break;
2912         case KVM_CAP_X86_SMM:
2913                 /* SMBASE is usually relocated above 1M on modern chipsets,
2914                  * and SMM handlers might indeed rely on 4G segment limits,
2915                  * so do not report SMM to be available if real mode is
2916                  * emulated via vm86 mode.  Still, do not go to great lengths
2917                  * to avoid userspace's usage of the feature, because it is a
2918                  * fringe case that is not enabled except via specific settings
2919                  * of the module parameters.
2920                  */
2921                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2922                 break;
2923         case KVM_CAP_VAPIC:
2924                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2925                 break;
2926         case KVM_CAP_NR_VCPUS:
2927                 r = KVM_SOFT_MAX_VCPUS;
2928                 break;
2929         case KVM_CAP_MAX_VCPUS:
2930                 r = KVM_MAX_VCPUS;
2931                 break;
2932         case KVM_CAP_NR_MEMSLOTS:
2933                 r = KVM_USER_MEM_SLOTS;
2934                 break;
2935         case KVM_CAP_PV_MMU:    /* obsolete */
2936                 r = 0;
2937                 break;
2938         case KVM_CAP_MCE:
2939                 r = KVM_MAX_MCE_BANKS;
2940                 break;
2941         case KVM_CAP_XCRS:
2942                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2943                 break;
2944         case KVM_CAP_TSC_CONTROL:
2945                 r = kvm_has_tsc_control;
2946                 break;
2947         case KVM_CAP_X2APIC_API:
2948                 r = KVM_X2APIC_API_VALID_FLAGS;
2949                 break;
2950         default:
2951                 break;
2952         }
2953         return r;
2954
2955 }
2956
2957 long kvm_arch_dev_ioctl(struct file *filp,
2958                         unsigned int ioctl, unsigned long arg)
2959 {
2960         void __user *argp = (void __user *)arg;
2961         long r;
2962
2963         switch (ioctl) {
2964         case KVM_GET_MSR_INDEX_LIST: {
2965                 struct kvm_msr_list __user *user_msr_list = argp;
2966                 struct kvm_msr_list msr_list;
2967                 unsigned n;
2968
2969                 r = -EFAULT;
2970                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2971                         goto out;
2972                 n = msr_list.nmsrs;
2973                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2974                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2975                         goto out;
2976                 r = -E2BIG;
2977                 if (n < msr_list.nmsrs)
2978                         goto out;
2979                 r = -EFAULT;
2980                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2981                                  num_msrs_to_save * sizeof(u32)))
2982                         goto out;
2983                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2984                                  &emulated_msrs,
2985                                  num_emulated_msrs * sizeof(u32)))
2986                         goto out;
2987                 r = 0;
2988                 break;
2989         }
2990         case KVM_GET_SUPPORTED_CPUID:
2991         case KVM_GET_EMULATED_CPUID: {
2992                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2993                 struct kvm_cpuid2 cpuid;
2994
2995                 r = -EFAULT;
2996                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2997                         goto out;
2998
2999                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3000                                             ioctl);
3001                 if (r)
3002                         goto out;
3003
3004                 r = -EFAULT;
3005                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3006                         goto out;
3007                 r = 0;
3008                 break;
3009         }
3010         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3011                 r = -EFAULT;
3012                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3013                                  sizeof(kvm_mce_cap_supported)))
3014                         goto out;
3015                 r = 0;
3016                 break;
3017         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3018                 struct kvm_msr_list __user *user_msr_list = argp;
3019                 struct kvm_msr_list msr_list;
3020                 unsigned int n;
3021
3022                 r = -EFAULT;
3023                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3024                         goto out;
3025                 n = msr_list.nmsrs;
3026                 msr_list.nmsrs = num_msr_based_features;
3027                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3028                         goto out;
3029                 r = -E2BIG;
3030                 if (n < msr_list.nmsrs)
3031                         goto out;
3032                 r = -EFAULT;
3033                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3034                                  num_msr_based_features * sizeof(u32)))
3035                         goto out;
3036                 r = 0;
3037                 break;
3038         }
3039         case KVM_GET_MSRS:
3040                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3041                 break;
3042         }
3043         default:
3044                 r = -EINVAL;
3045         }
3046 out:
3047         return r;
3048 }
3049
3050 static void wbinvd_ipi(void *garbage)
3051 {
3052         wbinvd();
3053 }
3054
3055 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3056 {
3057         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3058 }
3059
3060 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3061 {
3062         /* Address WBINVD may be executed by guest */
3063         if (need_emulate_wbinvd(vcpu)) {
3064                 if (kvm_x86_ops->has_wbinvd_exit())
3065                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3066                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3067                         smp_call_function_single(vcpu->cpu,
3068                                         wbinvd_ipi, NULL, 1);
3069         }
3070
3071         kvm_x86_ops->vcpu_load(vcpu, cpu);
3072
3073         /* Apply any externally detected TSC adjustments (due to suspend) */
3074         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3075                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3076                 vcpu->arch.tsc_offset_adjustment = 0;
3077                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3078         }
3079
3080         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3081                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3082                                 rdtsc() - vcpu->arch.last_host_tsc;
3083                 if (tsc_delta < 0)
3084                         mark_tsc_unstable("KVM discovered backwards TSC");
3085
3086                 if (kvm_check_tsc_unstable()) {
3087                         u64 offset = kvm_compute_tsc_offset(vcpu,
3088                                                 vcpu->arch.last_guest_tsc);
3089                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3090                         vcpu->arch.tsc_catchup = 1;
3091                 }
3092
3093                 if (kvm_lapic_hv_timer_in_use(vcpu))
3094                         kvm_lapic_restart_hv_timer(vcpu);
3095
3096                 /*
3097                  * On a host with synchronized TSC, there is no need to update
3098                  * kvmclock on vcpu->cpu migration
3099                  */
3100                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3101                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3102                 if (vcpu->cpu != cpu)
3103                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3104                 vcpu->cpu = cpu;
3105         }
3106
3107         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3108 }
3109
3110 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3111 {
3112         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3113                 return;
3114
3115         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3116
3117         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3118                         &vcpu->arch.st.steal.preempted,
3119                         offsetof(struct kvm_steal_time, preempted),
3120                         sizeof(vcpu->arch.st.steal.preempted));
3121 }
3122
3123 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3124 {
3125         int idx;
3126
3127         if (vcpu->preempted)
3128                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3129
3130         /*
3131          * Disable page faults because we're in atomic context here.
3132          * kvm_write_guest_offset_cached() would call might_fault()
3133          * that relies on pagefault_disable() to tell if there's a
3134          * bug. NOTE: the write to guest memory may not go through if
3135          * during postcopy live migration or if there's heavy guest
3136          * paging.
3137          */
3138         pagefault_disable();
3139         /*
3140          * kvm_memslots() will be called by
3141          * kvm_write_guest_offset_cached() so take the srcu lock.
3142          */
3143         idx = srcu_read_lock(&vcpu->kvm->srcu);
3144         kvm_steal_time_set_preempted(vcpu);
3145         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3146         pagefault_enable();
3147         kvm_x86_ops->vcpu_put(vcpu);
3148         vcpu->arch.last_host_tsc = rdtsc();
3149         /*
3150          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3151          * on every vmexit, but if not, we might have a stale dr6 from the
3152          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3153          */
3154         set_debugreg(0, 6);
3155 }
3156
3157 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3158                                     struct kvm_lapic_state *s)
3159 {
3160         if (vcpu->arch.apicv_active)
3161                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3162
3163         return kvm_apic_get_state(vcpu, s);
3164 }
3165
3166 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3167                                     struct kvm_lapic_state *s)
3168 {
3169         int r;
3170
3171         r = kvm_apic_set_state(vcpu, s);
3172         if (r)
3173                 return r;
3174         update_cr8_intercept(vcpu);
3175
3176         return 0;
3177 }
3178
3179 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3180 {
3181         return (!lapic_in_kernel(vcpu) ||
3182                 kvm_apic_accept_pic_intr(vcpu));
3183 }
3184
3185 /*
3186  * if userspace requested an interrupt window, check that the
3187  * interrupt window is open.
3188  *
3189  * No need to exit to userspace if we already have an interrupt queued.
3190  */
3191 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3192 {
3193         return kvm_arch_interrupt_allowed(vcpu) &&
3194                 !kvm_cpu_has_interrupt(vcpu) &&
3195                 !kvm_event_needs_reinjection(vcpu) &&
3196                 kvm_cpu_accept_dm_intr(vcpu);
3197 }
3198
3199 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3200                                     struct kvm_interrupt *irq)
3201 {
3202         if (irq->irq >= KVM_NR_INTERRUPTS)
3203                 return -EINVAL;
3204
3205         if (!irqchip_in_kernel(vcpu->kvm)) {
3206                 kvm_queue_interrupt(vcpu, irq->irq, false);
3207                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3208                 return 0;
3209         }
3210
3211         /*
3212          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3213          * fail for in-kernel 8259.
3214          */
3215         if (pic_in_kernel(vcpu->kvm))
3216                 return -ENXIO;
3217
3218         if (vcpu->arch.pending_external_vector != -1)
3219                 return -EEXIST;
3220
3221         vcpu->arch.pending_external_vector = irq->irq;
3222         kvm_make_request(KVM_REQ_EVENT, vcpu);
3223         return 0;
3224 }
3225
3226 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3227 {
3228         kvm_inject_nmi(vcpu);
3229
3230         return 0;
3231 }
3232
3233 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3234 {
3235         kvm_make_request(KVM_REQ_SMI, vcpu);
3236
3237         return 0;
3238 }
3239
3240 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3241                                            struct kvm_tpr_access_ctl *tac)
3242 {
3243         if (tac->flags)
3244                 return -EINVAL;
3245         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3246         return 0;
3247 }
3248
3249 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3250                                         u64 mcg_cap)
3251 {
3252         int r;
3253         unsigned bank_num = mcg_cap & 0xff, bank;
3254
3255         r = -EINVAL;
3256         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3257                 goto out;
3258         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3259                 goto out;
3260         r = 0;
3261         vcpu->arch.mcg_cap = mcg_cap;
3262         /* Init IA32_MCG_CTL to all 1s */
3263         if (mcg_cap & MCG_CTL_P)
3264                 vcpu->arch.mcg_ctl = ~(u64)0;
3265         /* Init IA32_MCi_CTL to all 1s */
3266         for (bank = 0; bank < bank_num; bank++)
3267                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3268
3269         if (kvm_x86_ops->setup_mce)
3270                 kvm_x86_ops->setup_mce(vcpu);
3271 out:
3272         return r;
3273 }
3274
3275 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3276                                       struct kvm_x86_mce *mce)
3277 {
3278         u64 mcg_cap = vcpu->arch.mcg_cap;
3279         unsigned bank_num = mcg_cap & 0xff;
3280         u64 *banks = vcpu->arch.mce_banks;
3281
3282         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3283                 return -EINVAL;
3284         /*
3285          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3286          * reporting is disabled
3287          */
3288         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3289             vcpu->arch.mcg_ctl != ~(u64)0)
3290                 return 0;
3291         banks += 4 * mce->bank;
3292         /*
3293          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3294          * reporting is disabled for the bank
3295          */
3296         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3297                 return 0;
3298         if (mce->status & MCI_STATUS_UC) {
3299                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3300                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3301                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3302                         return 0;
3303                 }
3304                 if (banks[1] & MCI_STATUS_VAL)
3305                         mce->status |= MCI_STATUS_OVER;
3306                 banks[2] = mce->addr;
3307                 banks[3] = mce->misc;
3308                 vcpu->arch.mcg_status = mce->mcg_status;
3309                 banks[1] = mce->status;
3310                 kvm_queue_exception(vcpu, MC_VECTOR);
3311         } else if (!(banks[1] & MCI_STATUS_VAL)
3312                    || !(banks[1] & MCI_STATUS_UC)) {
3313                 if (banks[1] & MCI_STATUS_VAL)
3314                         mce->status |= MCI_STATUS_OVER;
3315                 banks[2] = mce->addr;
3316                 banks[3] = mce->misc;
3317                 banks[1] = mce->status;
3318         } else
3319                 banks[1] |= MCI_STATUS_OVER;
3320         return 0;
3321 }
3322
3323 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3324                                                struct kvm_vcpu_events *events)
3325 {
3326         process_nmi(vcpu);
3327         /*
3328          * FIXME: pass injected and pending separately.  This is only
3329          * needed for nested virtualization, whose state cannot be
3330          * migrated yet.  For now we can combine them.
3331          */
3332         events->exception.injected =
3333                 (vcpu->arch.exception.pending ||
3334                  vcpu->arch.exception.injected) &&
3335                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3336         events->exception.nr = vcpu->arch.exception.nr;
3337         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3338         events->exception.pad = 0;
3339         events->exception.error_code = vcpu->arch.exception.error_code;
3340
3341         events->interrupt.injected =
3342                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3343         events->interrupt.nr = vcpu->arch.interrupt.nr;
3344         events->interrupt.soft = 0;
3345         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3346
3347         events->nmi.injected = vcpu->arch.nmi_injected;
3348         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3349         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3350         events->nmi.pad = 0;
3351
3352         events->sipi_vector = 0; /* never valid when reporting to user space */
3353
3354         events->smi.smm = is_smm(vcpu);
3355         events->smi.pending = vcpu->arch.smi_pending;
3356         events->smi.smm_inside_nmi =
3357                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3358         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3359
3360         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3361                          | KVM_VCPUEVENT_VALID_SHADOW
3362                          | KVM_VCPUEVENT_VALID_SMM);
3363         memset(&events->reserved, 0, sizeof(events->reserved));
3364 }
3365
3366 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3367
3368 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3369                                               struct kvm_vcpu_events *events)
3370 {
3371         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3372                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3373                               | KVM_VCPUEVENT_VALID_SHADOW
3374                               | KVM_VCPUEVENT_VALID_SMM))
3375                 return -EINVAL;
3376
3377         if (events->exception.injected &&
3378             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3379              is_guest_mode(vcpu)))
3380                 return -EINVAL;
3381
3382         /* INITs are latched while in SMM */
3383         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3384             (events->smi.smm || events->smi.pending) &&
3385             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3386                 return -EINVAL;
3387
3388         process_nmi(vcpu);
3389         vcpu->arch.exception.injected = false;
3390         vcpu->arch.exception.pending = events->exception.injected;
3391         vcpu->arch.exception.nr = events->exception.nr;
3392         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3393         vcpu->arch.exception.error_code = events->exception.error_code;
3394
3395         vcpu->arch.interrupt.injected = events->interrupt.injected;
3396         vcpu->arch.interrupt.nr = events->interrupt.nr;
3397         vcpu->arch.interrupt.soft = events->interrupt.soft;
3398         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3399                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3400                                                   events->interrupt.shadow);
3401
3402         vcpu->arch.nmi_injected = events->nmi.injected;
3403         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3404                 vcpu->arch.nmi_pending = events->nmi.pending;
3405         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3406
3407         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3408             lapic_in_kernel(vcpu))
3409                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3410
3411         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3412                 u32 hflags = vcpu->arch.hflags;
3413                 if (events->smi.smm)
3414                         hflags |= HF_SMM_MASK;
3415                 else
3416                         hflags &= ~HF_SMM_MASK;
3417                 kvm_set_hflags(vcpu, hflags);
3418
3419                 vcpu->arch.smi_pending = events->smi.pending;
3420
3421                 if (events->smi.smm) {
3422                         if (events->smi.smm_inside_nmi)
3423                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3424                         else
3425                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3426                         if (lapic_in_kernel(vcpu)) {
3427                                 if (events->smi.latched_init)
3428                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3429                                 else
3430                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3431                         }
3432                 }
3433         }
3434
3435         kvm_make_request(KVM_REQ_EVENT, vcpu);
3436
3437         return 0;
3438 }
3439
3440 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3441                                              struct kvm_debugregs *dbgregs)
3442 {
3443         unsigned long val;
3444
3445         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3446         kvm_get_dr(vcpu, 6, &val);
3447         dbgregs->dr6 = val;
3448         dbgregs->dr7 = vcpu->arch.dr7;
3449         dbgregs->flags = 0;
3450         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3451 }
3452
3453 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3454                                             struct kvm_debugregs *dbgregs)
3455 {
3456         if (dbgregs->flags)
3457                 return -EINVAL;
3458
3459         if (dbgregs->dr6 & ~0xffffffffull)
3460                 return -EINVAL;
3461         if (dbgregs->dr7 & ~0xffffffffull)
3462                 return -EINVAL;
3463
3464         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3465         kvm_update_dr0123(vcpu);
3466         vcpu->arch.dr6 = dbgregs->dr6;
3467         kvm_update_dr6(vcpu);
3468         vcpu->arch.dr7 = dbgregs->dr7;
3469         kvm_update_dr7(vcpu);
3470
3471         return 0;
3472 }
3473
3474 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3475
3476 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3477 {
3478         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3479         u64 xstate_bv = xsave->header.xfeatures;
3480         u64 valid;
3481
3482         /*
3483          * Copy legacy XSAVE area, to avoid complications with CPUID
3484          * leaves 0 and 1 in the loop below.
3485          */
3486         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3487
3488         /* Set XSTATE_BV */
3489         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3490         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3491
3492         /*
3493          * Copy each region from the possibly compacted offset to the
3494          * non-compacted offset.
3495          */
3496         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3497         while (valid) {
3498                 u64 feature = valid & -valid;
3499                 int index = fls64(feature) - 1;
3500                 void *src = get_xsave_addr(xsave, feature);
3501
3502                 if (src) {
3503                         u32 size, offset, ecx, edx;
3504                         cpuid_count(XSTATE_CPUID, index,
3505                                     &size, &offset, &ecx, &edx);
3506                         if (feature == XFEATURE_MASK_PKRU)
3507                                 memcpy(dest + offset, &vcpu->arch.pkru,
3508                                        sizeof(vcpu->arch.pkru));
3509                         else
3510                                 memcpy(dest + offset, src, size);
3511
3512                 }
3513
3514                 valid -= feature;
3515         }
3516 }
3517
3518 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3519 {
3520         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3521         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3522         u64 valid;
3523
3524         /*
3525          * Copy legacy XSAVE area, to avoid complications with CPUID
3526          * leaves 0 and 1 in the loop below.
3527          */
3528         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3529
3530         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3531         xsave->header.xfeatures = xstate_bv;
3532         if (boot_cpu_has(X86_FEATURE_XSAVES))
3533                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3534
3535         /*
3536          * Copy each region from the non-compacted offset to the
3537          * possibly compacted offset.
3538          */
3539         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3540         while (valid) {
3541                 u64 feature = valid & -valid;
3542                 int index = fls64(feature) - 1;
3543                 void *dest = get_xsave_addr(xsave, feature);
3544
3545                 if (dest) {
3546                         u32 size, offset, ecx, edx;
3547                         cpuid_count(XSTATE_CPUID, index,
3548                                     &size, &offset, &ecx, &edx);
3549                         if (feature == XFEATURE_MASK_PKRU)
3550                                 memcpy(&vcpu->arch.pkru, src + offset,
3551                                        sizeof(vcpu->arch.pkru));
3552                         else
3553                                 memcpy(dest, src + offset, size);
3554                 }
3555
3556                 valid -= feature;
3557         }
3558 }
3559
3560 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3561                                          struct kvm_xsave *guest_xsave)
3562 {
3563         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3564                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3565                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3566         } else {
3567                 memcpy(guest_xsave->region,
3568                         &vcpu->arch.guest_fpu.state.fxsave,
3569                         sizeof(struct fxregs_state));
3570                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3571                         XFEATURE_MASK_FPSSE;
3572         }
3573 }
3574
3575 #define XSAVE_MXCSR_OFFSET 24
3576
3577 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3578                                         struct kvm_xsave *guest_xsave)
3579 {
3580         u64 xstate_bv =
3581                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3582         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3583
3584         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3585                 /*
3586                  * Here we allow setting states that are not present in
3587                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3588                  * with old userspace.
3589                  */
3590                 if (xstate_bv & ~kvm_supported_xcr0() ||
3591                         mxcsr & ~mxcsr_feature_mask)
3592                         return -EINVAL;
3593                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3594         } else {
3595                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3596                         mxcsr & ~mxcsr_feature_mask)
3597                         return -EINVAL;
3598                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3599                         guest_xsave->region, sizeof(struct fxregs_state));
3600         }
3601         return 0;
3602 }
3603
3604 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3605                                         struct kvm_xcrs *guest_xcrs)
3606 {
3607         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3608                 guest_xcrs->nr_xcrs = 0;
3609                 return;
3610         }
3611
3612         guest_xcrs->nr_xcrs = 1;
3613         guest_xcrs->flags = 0;
3614         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3615         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3616 }
3617
3618 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3619                                        struct kvm_xcrs *guest_xcrs)
3620 {
3621         int i, r = 0;
3622
3623         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3624                 return -EINVAL;
3625
3626         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3627                 return -EINVAL;
3628
3629         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3630                 /* Only support XCR0 currently */
3631                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3632                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3633                                 guest_xcrs->xcrs[i].value);
3634                         break;
3635                 }
3636         if (r)
3637                 r = -EINVAL;
3638         return r;
3639 }
3640
3641 /*
3642  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3643  * stopped by the hypervisor.  This function will be called from the host only.
3644  * EINVAL is returned when the host attempts to set the flag for a guest that
3645  * does not support pv clocks.
3646  */
3647 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3648 {
3649         if (!vcpu->arch.pv_time_enabled)
3650                 return -EINVAL;
3651         vcpu->arch.pvclock_set_guest_stopped_request = true;
3652         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3653         return 0;
3654 }
3655
3656 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3657                                      struct kvm_enable_cap *cap)
3658 {
3659         if (cap->flags)
3660                 return -EINVAL;
3661
3662         switch (cap->cap) {
3663         case KVM_CAP_HYPERV_SYNIC2:
3664                 if (cap->args[0])
3665                         return -EINVAL;
3666         case KVM_CAP_HYPERV_SYNIC:
3667                 if (!irqchip_in_kernel(vcpu->kvm))
3668                         return -EINVAL;
3669                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3670                                              KVM_CAP_HYPERV_SYNIC2);
3671         default:
3672                 return -EINVAL;
3673         }
3674 }
3675
3676 long kvm_arch_vcpu_ioctl(struct file *filp,
3677                          unsigned int ioctl, unsigned long arg)
3678 {
3679         struct kvm_vcpu *vcpu = filp->private_data;
3680         void __user *argp = (void __user *)arg;
3681         int r;
3682         union {
3683                 struct kvm_lapic_state *lapic;
3684                 struct kvm_xsave *xsave;
3685                 struct kvm_xcrs *xcrs;
3686                 void *buffer;
3687         } u;
3688
3689         vcpu_load(vcpu);
3690
3691         u.buffer = NULL;
3692         switch (ioctl) {
3693         case KVM_GET_LAPIC: {
3694                 r = -EINVAL;
3695                 if (!lapic_in_kernel(vcpu))
3696                         goto out;
3697                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3698
3699                 r = -ENOMEM;
3700                 if (!u.lapic)
3701                         goto out;
3702                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3703                 if (r)
3704                         goto out;
3705                 r = -EFAULT;
3706                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3707                         goto out;
3708                 r = 0;
3709                 break;
3710         }
3711         case KVM_SET_LAPIC: {
3712                 r = -EINVAL;
3713                 if (!lapic_in_kernel(vcpu))
3714                         goto out;
3715                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3716                 if (IS_ERR(u.lapic)) {
3717                         r = PTR_ERR(u.lapic);
3718                         goto out_nofree;
3719                 }
3720
3721                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3722                 break;
3723         }
3724         case KVM_INTERRUPT: {
3725                 struct kvm_interrupt irq;
3726
3727                 r = -EFAULT;
3728                 if (copy_from_user(&irq, argp, sizeof irq))
3729                         goto out;
3730                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3731                 break;
3732         }
3733         case KVM_NMI: {
3734                 r = kvm_vcpu_ioctl_nmi(vcpu);
3735                 break;
3736         }
3737         case KVM_SMI: {
3738                 r = kvm_vcpu_ioctl_smi(vcpu);
3739                 break;
3740         }
3741         case KVM_SET_CPUID: {
3742                 struct kvm_cpuid __user *cpuid_arg = argp;
3743                 struct kvm_cpuid cpuid;
3744
3745                 r = -EFAULT;
3746                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3747                         goto out;
3748                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3749                 break;
3750         }
3751         case KVM_SET_CPUID2: {
3752                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3753                 struct kvm_cpuid2 cpuid;
3754
3755                 r = -EFAULT;
3756                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3757                         goto out;
3758                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3759                                               cpuid_arg->entries);
3760                 break;
3761         }
3762         case KVM_GET_CPUID2: {
3763                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3764                 struct kvm_cpuid2 cpuid;
3765
3766                 r = -EFAULT;
3767                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3768                         goto out;
3769                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3770                                               cpuid_arg->entries);
3771                 if (r)
3772                         goto out;
3773                 r = -EFAULT;
3774                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3775                         goto out;
3776                 r = 0;
3777                 break;
3778         }
3779         case KVM_GET_MSRS: {
3780                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3781                 r = msr_io(vcpu, argp, do_get_msr, 1);
3782                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3783                 break;
3784         }
3785         case KVM_SET_MSRS: {
3786                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3787                 r = msr_io(vcpu, argp, do_set_msr, 0);
3788                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3789                 break;
3790         }
3791         case KVM_TPR_ACCESS_REPORTING: {
3792                 struct kvm_tpr_access_ctl tac;
3793
3794                 r = -EFAULT;
3795                 if (copy_from_user(&tac, argp, sizeof tac))
3796                         goto out;
3797                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3798                 if (r)
3799                         goto out;
3800                 r = -EFAULT;
3801                 if (copy_to_user(argp, &tac, sizeof tac))
3802                         goto out;
3803                 r = 0;
3804                 break;
3805         };
3806         case KVM_SET_VAPIC_ADDR: {
3807                 struct kvm_vapic_addr va;
3808                 int idx;
3809
3810                 r = -EINVAL;
3811                 if (!lapic_in_kernel(vcpu))
3812                         goto out;
3813                 r = -EFAULT;
3814                 if (copy_from_user(&va, argp, sizeof va))
3815                         goto out;
3816                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3817                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3818                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3819                 break;
3820         }
3821         case KVM_X86_SETUP_MCE: {
3822                 u64 mcg_cap;
3823
3824                 r = -EFAULT;
3825                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3826                         goto out;
3827                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3828                 break;
3829         }
3830         case KVM_X86_SET_MCE: {
3831                 struct kvm_x86_mce mce;
3832
3833                 r = -EFAULT;
3834                 if (copy_from_user(&mce, argp, sizeof mce))
3835                         goto out;
3836                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3837                 break;
3838         }
3839         case KVM_GET_VCPU_EVENTS: {
3840                 struct kvm_vcpu_events events;
3841
3842                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3843
3844                 r = -EFAULT;
3845                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3846                         break;
3847                 r = 0;
3848                 break;
3849         }
3850         case KVM_SET_VCPU_EVENTS: {
3851                 struct kvm_vcpu_events events;
3852
3853                 r = -EFAULT;
3854                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3855                         break;
3856
3857                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3858                 break;
3859         }
3860         case KVM_GET_DEBUGREGS: {
3861                 struct kvm_debugregs dbgregs;
3862
3863                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3864
3865                 r = -EFAULT;
3866                 if (copy_to_user(argp, &dbgregs,
3867                                  sizeof(struct kvm_debugregs)))
3868                         break;
3869                 r = 0;
3870                 break;
3871         }
3872         case KVM_SET_DEBUGREGS: {
3873                 struct kvm_debugregs dbgregs;
3874
3875                 r = -EFAULT;
3876                 if (copy_from_user(&dbgregs, argp,
3877                                    sizeof(struct kvm_debugregs)))
3878                         break;
3879
3880                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3881                 break;
3882         }
3883         case KVM_GET_XSAVE: {
3884                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3885                 r = -ENOMEM;
3886                 if (!u.xsave)
3887                         break;
3888
3889                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3890
3891                 r = -EFAULT;
3892                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3893                         break;
3894                 r = 0;
3895                 break;
3896         }
3897         case KVM_SET_XSAVE: {
3898                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3899                 if (IS_ERR(u.xsave)) {
3900                         r = PTR_ERR(u.xsave);
3901                         goto out_nofree;
3902                 }
3903
3904                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3905                 break;
3906         }
3907         case KVM_GET_XCRS: {
3908                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3909                 r = -ENOMEM;
3910                 if (!u.xcrs)
3911                         break;
3912
3913                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3914
3915                 r = -EFAULT;
3916                 if (copy_to_user(argp, u.xcrs,
3917                                  sizeof(struct kvm_xcrs)))
3918                         break;
3919                 r = 0;
3920                 break;
3921         }
3922         case KVM_SET_XCRS: {
3923                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3924                 if (IS_ERR(u.xcrs)) {
3925                         r = PTR_ERR(u.xcrs);
3926                         goto out_nofree;
3927                 }
3928
3929                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3930                 break;
3931         }
3932         case KVM_SET_TSC_KHZ: {
3933                 u32 user_tsc_khz;
3934
3935                 r = -EINVAL;
3936                 user_tsc_khz = (u32)arg;
3937
3938                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3939                         goto out;
3940
3941                 if (user_tsc_khz == 0)
3942                         user_tsc_khz = tsc_khz;
3943
3944                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3945                         r = 0;
3946
3947                 goto out;
3948         }
3949         case KVM_GET_TSC_KHZ: {
3950                 r = vcpu->arch.virtual_tsc_khz;
3951                 goto out;
3952         }
3953         case KVM_KVMCLOCK_CTRL: {
3954                 r = kvm_set_guest_paused(vcpu);
3955                 goto out;
3956         }
3957         case KVM_ENABLE_CAP: {
3958                 struct kvm_enable_cap cap;
3959
3960                 r = -EFAULT;
3961                 if (copy_from_user(&cap, argp, sizeof(cap)))
3962                         goto out;
3963                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3964                 break;
3965         }
3966         default:
3967                 r = -EINVAL;
3968         }
3969 out:
3970         kfree(u.buffer);
3971 out_nofree:
3972         vcpu_put(vcpu);
3973         return r;
3974 }
3975
3976 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3977 {
3978         return VM_FAULT_SIGBUS;
3979 }
3980
3981 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3982 {
3983         int ret;
3984
3985         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3986                 return -EINVAL;
3987         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3988         return ret;
3989 }
3990
3991 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3992                                               u64 ident_addr)
3993 {
3994         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3995 }
3996
3997 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3998                                           u32 kvm_nr_mmu_pages)
3999 {
4000         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4001                 return -EINVAL;
4002
4003         mutex_lock(&kvm->slots_lock);
4004
4005         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4006         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4007
4008         mutex_unlock(&kvm->slots_lock);
4009         return 0;
4010 }
4011
4012 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4013 {
4014         return kvm->arch.n_max_mmu_pages;
4015 }
4016
4017 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4018 {
4019         struct kvm_pic *pic = kvm->arch.vpic;
4020         int r;
4021
4022         r = 0;
4023         switch (chip->chip_id) {
4024         case KVM_IRQCHIP_PIC_MASTER:
4025                 memcpy(&chip->chip.pic, &pic->pics[0],
4026                         sizeof(struct kvm_pic_state));
4027                 break;
4028         case KVM_IRQCHIP_PIC_SLAVE:
4029                 memcpy(&chip->chip.pic, &pic->pics[1],
4030                         sizeof(struct kvm_pic_state));
4031                 break;
4032         case KVM_IRQCHIP_IOAPIC:
4033                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4034                 break;
4035         default:
4036                 r = -EINVAL;
4037                 break;
4038         }
4039         return r;
4040 }
4041
4042 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4043 {
4044         struct kvm_pic *pic = kvm->arch.vpic;
4045         int r;
4046
4047         r = 0;
4048         switch (chip->chip_id) {
4049         case KVM_IRQCHIP_PIC_MASTER:
4050                 spin_lock(&pic->lock);
4051                 memcpy(&pic->pics[0], &chip->chip.pic,
4052                         sizeof(struct kvm_pic_state));
4053                 spin_unlock(&pic->lock);
4054                 break;
4055         case KVM_IRQCHIP_PIC_SLAVE:
4056                 spin_lock(&pic->lock);
4057                 memcpy(&pic->pics[1], &chip->chip.pic,
4058                         sizeof(struct kvm_pic_state));
4059                 spin_unlock(&pic->lock);
4060                 break;
4061         case KVM_IRQCHIP_IOAPIC:
4062                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4063                 break;
4064         default:
4065                 r = -EINVAL;
4066                 break;
4067         }
4068         kvm_pic_update_irq(pic);
4069         return r;
4070 }
4071
4072 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4073 {
4074         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4075
4076         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4077
4078         mutex_lock(&kps->lock);
4079         memcpy(ps, &kps->channels, sizeof(*ps));
4080         mutex_unlock(&kps->lock);
4081         return 0;
4082 }
4083
4084 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4085 {
4086         int i;
4087         struct kvm_pit *pit = kvm->arch.vpit;
4088
4089         mutex_lock(&pit->pit_state.lock);
4090         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4091         for (i = 0; i < 3; i++)
4092                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4093         mutex_unlock(&pit->pit_state.lock);
4094         return 0;
4095 }
4096
4097 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4098 {
4099         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4100         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4101                 sizeof(ps->channels));
4102         ps->flags = kvm->arch.vpit->pit_state.flags;
4103         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4104         memset(&ps->reserved, 0, sizeof(ps->reserved));
4105         return 0;
4106 }
4107
4108 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4109 {
4110         int start = 0;
4111         int i;
4112         u32 prev_legacy, cur_legacy;
4113         struct kvm_pit *pit = kvm->arch.vpit;
4114
4115         mutex_lock(&pit->pit_state.lock);
4116         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4117         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4118         if (!prev_legacy && cur_legacy)
4119                 start = 1;
4120         memcpy(&pit->pit_state.channels, &ps->channels,
4121                sizeof(pit->pit_state.channels));
4122         pit->pit_state.flags = ps->flags;
4123         for (i = 0; i < 3; i++)
4124                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4125                                    start && i == 0);
4126         mutex_unlock(&pit->pit_state.lock);
4127         return 0;
4128 }
4129
4130 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4131                                  struct kvm_reinject_control *control)
4132 {
4133         struct kvm_pit *pit = kvm->arch.vpit;
4134
4135         if (!pit)
4136                 return -ENXIO;
4137
4138         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4139          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4140          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4141          */
4142         mutex_lock(&pit->pit_state.lock);
4143         kvm_pit_set_reinject(pit, control->pit_reinject);
4144         mutex_unlock(&pit->pit_state.lock);
4145
4146         return 0;
4147 }
4148
4149 /**
4150  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4151  * @kvm: kvm instance
4152  * @log: slot id and address to which we copy the log
4153  *
4154  * Steps 1-4 below provide general overview of dirty page logging. See
4155  * kvm_get_dirty_log_protect() function description for additional details.
4156  *
4157  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4158  * always flush the TLB (step 4) even if previous step failed  and the dirty
4159  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4160  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4161  * writes will be marked dirty for next log read.
4162  *
4163  *   1. Take a snapshot of the bit and clear it if needed.
4164  *   2. Write protect the corresponding page.
4165  *   3. Copy the snapshot to the userspace.
4166  *   4. Flush TLB's if needed.
4167  */
4168 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4169 {
4170         bool is_dirty = false;
4171         int r;
4172
4173         mutex_lock(&kvm->slots_lock);
4174
4175         /*
4176          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4177          */
4178         if (kvm_x86_ops->flush_log_dirty)
4179                 kvm_x86_ops->flush_log_dirty(kvm);
4180
4181         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4182
4183         /*
4184          * All the TLBs can be flushed out of mmu lock, see the comments in
4185          * kvm_mmu_slot_remove_write_access().
4186          */
4187         lockdep_assert_held(&kvm->slots_lock);
4188         if (is_dirty)
4189                 kvm_flush_remote_tlbs(kvm);
4190
4191         mutex_unlock(&kvm->slots_lock);
4192         return r;
4193 }
4194
4195 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4196                         bool line_status)
4197 {
4198         if (!irqchip_in_kernel(kvm))
4199                 return -ENXIO;
4200
4201         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4202                                         irq_event->irq, irq_event->level,
4203                                         line_status);
4204         return 0;
4205 }
4206
4207 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4208                                    struct kvm_enable_cap *cap)
4209 {
4210         int r;
4211
4212         if (cap->flags)
4213                 return -EINVAL;
4214
4215         switch (cap->cap) {
4216         case KVM_CAP_DISABLE_QUIRKS:
4217                 kvm->arch.disabled_quirks = cap->args[0];
4218                 r = 0;
4219                 break;
4220         case KVM_CAP_SPLIT_IRQCHIP: {
4221                 mutex_lock(&kvm->lock);
4222                 r = -EINVAL;
4223                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4224                         goto split_irqchip_unlock;
4225                 r = -EEXIST;
4226                 if (irqchip_in_kernel(kvm))
4227                         goto split_irqchip_unlock;
4228                 if (kvm->created_vcpus)
4229                         goto split_irqchip_unlock;
4230                 r = kvm_setup_empty_irq_routing(kvm);
4231                 if (r)
4232                         goto split_irqchip_unlock;
4233                 /* Pairs with irqchip_in_kernel. */
4234                 smp_wmb();
4235                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4236                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4237                 r = 0;
4238 split_irqchip_unlock:
4239                 mutex_unlock(&kvm->lock);
4240                 break;
4241         }
4242         case KVM_CAP_X2APIC_API:
4243                 r = -EINVAL;
4244                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4245                         break;
4246
4247                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4248                         kvm->arch.x2apic_format = true;
4249                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4250                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4251
4252                 r = 0;
4253                 break;
4254         case KVM_CAP_X86_DISABLE_EXITS:
4255                 r = -EINVAL;
4256                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4257                         break;
4258
4259                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4260                         kvm_can_mwait_in_guest())
4261                         kvm->arch.mwait_in_guest = true;
4262                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4263                         kvm->arch.hlt_in_guest = true;
4264                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4265                         kvm->arch.pause_in_guest = true;
4266                 r = 0;
4267                 break;
4268         default:
4269                 r = -EINVAL;
4270                 break;
4271         }
4272         return r;
4273 }
4274
4275 long kvm_arch_vm_ioctl(struct file *filp,
4276                        unsigned int ioctl, unsigned long arg)
4277 {
4278         struct kvm *kvm = filp->private_data;
4279         void __user *argp = (void __user *)arg;
4280         int r = -ENOTTY;
4281         /*
4282          * This union makes it completely explicit to gcc-3.x
4283          * that these two variables' stack usage should be
4284          * combined, not added together.
4285          */
4286         union {
4287                 struct kvm_pit_state ps;
4288                 struct kvm_pit_state2 ps2;
4289                 struct kvm_pit_config pit_config;
4290         } u;
4291
4292         switch (ioctl) {
4293         case KVM_SET_TSS_ADDR:
4294                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4295                 break;
4296         case KVM_SET_IDENTITY_MAP_ADDR: {
4297                 u64 ident_addr;
4298
4299                 mutex_lock(&kvm->lock);
4300                 r = -EINVAL;
4301                 if (kvm->created_vcpus)
4302                         goto set_identity_unlock;
4303                 r = -EFAULT;
4304                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4305                         goto set_identity_unlock;
4306                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4307 set_identity_unlock:
4308                 mutex_unlock(&kvm->lock);
4309                 break;
4310         }
4311         case KVM_SET_NR_MMU_PAGES:
4312                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4313                 break;
4314         case KVM_GET_NR_MMU_PAGES:
4315                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4316                 break;
4317         case KVM_CREATE_IRQCHIP: {
4318                 mutex_lock(&kvm->lock);
4319
4320                 r = -EEXIST;
4321                 if (irqchip_in_kernel(kvm))
4322                         goto create_irqchip_unlock;
4323
4324                 r = -EINVAL;
4325                 if (kvm->created_vcpus)
4326                         goto create_irqchip_unlock;
4327
4328                 r = kvm_pic_init(kvm);
4329                 if (r)
4330                         goto create_irqchip_unlock;
4331
4332                 r = kvm_ioapic_init(kvm);
4333                 if (r) {
4334                         kvm_pic_destroy(kvm);
4335                         goto create_irqchip_unlock;
4336                 }
4337
4338                 r = kvm_setup_default_irq_routing(kvm);
4339                 if (r) {
4340                         kvm_ioapic_destroy(kvm);
4341                         kvm_pic_destroy(kvm);
4342                         goto create_irqchip_unlock;
4343                 }
4344                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4345                 smp_wmb();
4346                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4347         create_irqchip_unlock:
4348                 mutex_unlock(&kvm->lock);
4349                 break;
4350         }
4351         case KVM_CREATE_PIT:
4352                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4353                 goto create_pit;
4354         case KVM_CREATE_PIT2:
4355                 r = -EFAULT;
4356                 if (copy_from_user(&u.pit_config, argp,
4357                                    sizeof(struct kvm_pit_config)))
4358                         goto out;
4359         create_pit:
4360                 mutex_lock(&kvm->lock);
4361                 r = -EEXIST;
4362                 if (kvm->arch.vpit)
4363                         goto create_pit_unlock;
4364                 r = -ENOMEM;
4365                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4366                 if (kvm->arch.vpit)
4367                         r = 0;
4368         create_pit_unlock:
4369                 mutex_unlock(&kvm->lock);
4370                 break;
4371         case KVM_GET_IRQCHIP: {
4372                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4373                 struct kvm_irqchip *chip;
4374
4375                 chip = memdup_user(argp, sizeof(*chip));
4376                 if (IS_ERR(chip)) {
4377                         r = PTR_ERR(chip);
4378                         goto out;
4379                 }
4380
4381                 r = -ENXIO;
4382                 if (!irqchip_kernel(kvm))
4383                         goto get_irqchip_out;
4384                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4385                 if (r)
4386                         goto get_irqchip_out;
4387                 r = -EFAULT;
4388                 if (copy_to_user(argp, chip, sizeof *chip))
4389                         goto get_irqchip_out;
4390                 r = 0;
4391         get_irqchip_out:
4392                 kfree(chip);
4393                 break;
4394         }
4395         case KVM_SET_IRQCHIP: {
4396                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4397                 struct kvm_irqchip *chip;
4398
4399                 chip = memdup_user(argp, sizeof(*chip));
4400                 if (IS_ERR(chip)) {
4401                         r = PTR_ERR(chip);
4402                         goto out;
4403                 }
4404
4405                 r = -ENXIO;
4406                 if (!irqchip_kernel(kvm))
4407                         goto set_irqchip_out;
4408                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4409                 if (r)
4410                         goto set_irqchip_out;
4411                 r = 0;
4412         set_irqchip_out:
4413                 kfree(chip);
4414                 break;
4415         }
4416         case KVM_GET_PIT: {
4417                 r = -EFAULT;
4418                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4419                         goto out;
4420                 r = -ENXIO;
4421                 if (!kvm->arch.vpit)
4422                         goto out;
4423                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4424                 if (r)
4425                         goto out;
4426                 r = -EFAULT;
4427                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4428                         goto out;
4429                 r = 0;
4430                 break;
4431         }
4432         case KVM_SET_PIT: {
4433                 r = -EFAULT;
4434                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4435                         goto out;
4436                 r = -ENXIO;
4437                 if (!kvm->arch.vpit)
4438                         goto out;
4439                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4440                 break;
4441         }
4442         case KVM_GET_PIT2: {
4443                 r = -ENXIO;
4444                 if (!kvm->arch.vpit)
4445                         goto out;
4446                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4447                 if (r)
4448                         goto out;
4449                 r = -EFAULT;
4450                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4451                         goto out;
4452                 r = 0;
4453                 break;
4454         }
4455         case KVM_SET_PIT2: {
4456                 r = -EFAULT;
4457                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4458                         goto out;
4459                 r = -ENXIO;
4460                 if (!kvm->arch.vpit)
4461                         goto out;
4462                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4463                 break;
4464         }
4465         case KVM_REINJECT_CONTROL: {
4466                 struct kvm_reinject_control control;
4467                 r =  -EFAULT;
4468                 if (copy_from_user(&control, argp, sizeof(control)))
4469                         goto out;
4470                 r = kvm_vm_ioctl_reinject(kvm, &control);
4471                 break;
4472         }
4473         case KVM_SET_BOOT_CPU_ID:
4474                 r = 0;
4475                 mutex_lock(&kvm->lock);
4476                 if (kvm->created_vcpus)
4477                         r = -EBUSY;
4478                 else
4479                         kvm->arch.bsp_vcpu_id = arg;
4480                 mutex_unlock(&kvm->lock);
4481                 break;
4482         case KVM_XEN_HVM_CONFIG: {
4483                 struct kvm_xen_hvm_config xhc;
4484                 r = -EFAULT;
4485                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4486                         goto out;
4487                 r = -EINVAL;
4488                 if (xhc.flags)
4489                         goto out;
4490                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4491                 r = 0;
4492                 break;
4493         }
4494         case KVM_SET_CLOCK: {
4495                 struct kvm_clock_data user_ns;
4496                 u64 now_ns;
4497
4498                 r = -EFAULT;
4499                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4500                         goto out;
4501
4502                 r = -EINVAL;
4503                 if (user_ns.flags)
4504                         goto out;
4505
4506                 r = 0;
4507                 /*
4508                  * TODO: userspace has to take care of races with VCPU_RUN, so
4509                  * kvm_gen_update_masterclock() can be cut down to locked
4510                  * pvclock_update_vm_gtod_copy().
4511                  */
4512                 kvm_gen_update_masterclock(kvm);
4513                 now_ns = get_kvmclock_ns(kvm);
4514                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4515                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4516                 break;
4517         }
4518         case KVM_GET_CLOCK: {
4519                 struct kvm_clock_data user_ns;
4520                 u64 now_ns;
4521
4522                 now_ns = get_kvmclock_ns(kvm);
4523                 user_ns.clock = now_ns;
4524                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4525                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4526
4527                 r = -EFAULT;
4528                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4529                         goto out;
4530                 r = 0;
4531                 break;
4532         }
4533         case KVM_ENABLE_CAP: {
4534                 struct kvm_enable_cap cap;
4535
4536                 r = -EFAULT;
4537                 if (copy_from_user(&cap, argp, sizeof(cap)))
4538                         goto out;
4539                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4540                 break;
4541         }
4542         case KVM_MEMORY_ENCRYPT_OP: {
4543                 r = -ENOTTY;
4544                 if (kvm_x86_ops->mem_enc_op)
4545                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4546                 break;
4547         }
4548         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4549                 struct kvm_enc_region region;
4550
4551                 r = -EFAULT;
4552                 if (copy_from_user(&region, argp, sizeof(region)))
4553                         goto out;
4554
4555                 r = -ENOTTY;
4556                 if (kvm_x86_ops->mem_enc_reg_region)
4557                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4558                 break;
4559         }
4560         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4561                 struct kvm_enc_region region;
4562
4563                 r = -EFAULT;
4564                 if (copy_from_user(&region, argp, sizeof(region)))
4565                         goto out;
4566
4567                 r = -ENOTTY;
4568                 if (kvm_x86_ops->mem_enc_unreg_region)
4569                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4570                 break;
4571         }
4572         case KVM_HYPERV_EVENTFD: {
4573                 struct kvm_hyperv_eventfd hvevfd;
4574
4575                 r = -EFAULT;
4576                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4577                         goto out;
4578                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4579                 break;
4580         }
4581         default:
4582                 r = -ENOTTY;
4583         }
4584 out:
4585         return r;
4586 }
4587
4588 static void kvm_init_msr_list(void)
4589 {
4590         u32 dummy[2];
4591         unsigned i, j;
4592
4593         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4594                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4595                         continue;
4596
4597                 /*
4598                  * Even MSRs that are valid in the host may not be exposed
4599                  * to the guests in some cases.
4600                  */
4601                 switch (msrs_to_save[i]) {
4602                 case MSR_IA32_BNDCFGS:
4603                         if (!kvm_x86_ops->mpx_supported())
4604                                 continue;
4605                         break;
4606                 case MSR_TSC_AUX:
4607                         if (!kvm_x86_ops->rdtscp_supported())
4608                                 continue;
4609                         break;
4610                 default:
4611                         break;
4612                 }
4613
4614                 if (j < i)
4615                         msrs_to_save[j] = msrs_to_save[i];
4616                 j++;
4617         }
4618         num_msrs_to_save = j;
4619
4620         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4621                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4622                         continue;
4623
4624                 if (j < i)
4625                         emulated_msrs[j] = emulated_msrs[i];
4626                 j++;
4627         }
4628         num_emulated_msrs = j;
4629
4630         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4631                 struct kvm_msr_entry msr;
4632
4633                 msr.index = msr_based_features[i];
4634                 if (kvm_get_msr_feature(&msr))
4635                         continue;
4636
4637                 if (j < i)
4638                         msr_based_features[j] = msr_based_features[i];
4639                 j++;
4640         }
4641         num_msr_based_features = j;
4642 }
4643
4644 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4645                            const void *v)
4646 {
4647         int handled = 0;
4648         int n;
4649
4650         do {
4651                 n = min(len, 8);
4652                 if (!(lapic_in_kernel(vcpu) &&
4653                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4654                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4655                         break;
4656                 handled += n;
4657                 addr += n;
4658                 len -= n;
4659                 v += n;
4660         } while (len);
4661
4662         return handled;
4663 }
4664
4665 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4666 {
4667         int handled = 0;
4668         int n;
4669
4670         do {
4671                 n = min(len, 8);
4672                 if (!(lapic_in_kernel(vcpu) &&
4673                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4674                                          addr, n, v))
4675                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4676                         break;
4677                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4678                 handled += n;
4679                 addr += n;
4680                 len -= n;
4681                 v += n;
4682         } while (len);
4683
4684         return handled;
4685 }
4686
4687 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4688                         struct kvm_segment *var, int seg)
4689 {
4690         kvm_x86_ops->set_segment(vcpu, var, seg);
4691 }
4692
4693 void kvm_get_segment(struct kvm_vcpu *vcpu,
4694                      struct kvm_segment *var, int seg)
4695 {
4696         kvm_x86_ops->get_segment(vcpu, var, seg);
4697 }
4698
4699 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4700                            struct x86_exception *exception)
4701 {
4702         gpa_t t_gpa;
4703
4704         BUG_ON(!mmu_is_nested(vcpu));
4705
4706         /* NPT walks are always user-walks */
4707         access |= PFERR_USER_MASK;
4708         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4709
4710         return t_gpa;
4711 }
4712
4713 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4714                               struct x86_exception *exception)
4715 {
4716         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4717         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4718 }
4719
4720  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4721                                 struct x86_exception *exception)
4722 {
4723         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4724         access |= PFERR_FETCH_MASK;
4725         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4726 }
4727
4728 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4729                                struct x86_exception *exception)
4730 {
4731         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4732         access |= PFERR_WRITE_MASK;
4733         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4734 }
4735
4736 /* uses this to access any guest's mapped memory without checking CPL */
4737 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4738                                 struct x86_exception *exception)
4739 {
4740         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4741 }
4742
4743 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4744                                       struct kvm_vcpu *vcpu, u32 access,
4745                                       struct x86_exception *exception)
4746 {
4747         void *data = val;
4748         int r = X86EMUL_CONTINUE;
4749
4750         while (bytes) {
4751                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4752                                                             exception);
4753                 unsigned offset = addr & (PAGE_SIZE-1);
4754                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4755                 int ret;
4756
4757                 if (gpa == UNMAPPED_GVA)
4758                         return X86EMUL_PROPAGATE_FAULT;
4759                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4760                                                offset, toread);
4761                 if (ret < 0) {
4762                         r = X86EMUL_IO_NEEDED;
4763                         goto out;
4764                 }
4765
4766                 bytes -= toread;
4767                 data += toread;
4768                 addr += toread;
4769         }
4770 out:
4771         return r;
4772 }
4773
4774 /* used for instruction fetching */
4775 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4776                                 gva_t addr, void *val, unsigned int bytes,
4777                                 struct x86_exception *exception)
4778 {
4779         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4780         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4781         unsigned offset;
4782         int ret;
4783
4784         /* Inline kvm_read_guest_virt_helper for speed.  */
4785         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4786                                                     exception);
4787         if (unlikely(gpa == UNMAPPED_GVA))
4788                 return X86EMUL_PROPAGATE_FAULT;
4789
4790         offset = addr & (PAGE_SIZE-1);
4791         if (WARN_ON(offset + bytes > PAGE_SIZE))
4792                 bytes = (unsigned)PAGE_SIZE - offset;
4793         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4794                                        offset, bytes);
4795         if (unlikely(ret < 0))
4796                 return X86EMUL_IO_NEEDED;
4797
4798         return X86EMUL_CONTINUE;
4799 }
4800
4801 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4802                                gva_t addr, void *val, unsigned int bytes,
4803                                struct x86_exception *exception)
4804 {
4805         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4806
4807         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4808                                           exception);
4809 }
4810 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4811
4812 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4813                              gva_t addr, void *val, unsigned int bytes,
4814                              struct x86_exception *exception, bool system)
4815 {
4816         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4817         u32 access = 0;
4818
4819         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4820                 access |= PFERR_USER_MASK;
4821
4822         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4823 }
4824
4825 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4826                 unsigned long addr, void *val, unsigned int bytes)
4827 {
4828         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4829         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4830
4831         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4832 }
4833
4834 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4835                                       struct kvm_vcpu *vcpu, u32 access,
4836                                       struct x86_exception *exception)
4837 {
4838         void *data = val;
4839         int r = X86EMUL_CONTINUE;
4840
4841         while (bytes) {
4842                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4843                                                              access,
4844                                                              exception);
4845                 unsigned offset = addr & (PAGE_SIZE-1);
4846                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4847                 int ret;
4848
4849                 if (gpa == UNMAPPED_GVA)
4850                         return X86EMUL_PROPAGATE_FAULT;
4851                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4852                 if (ret < 0) {
4853                         r = X86EMUL_IO_NEEDED;
4854                         goto out;
4855                 }
4856
4857                 bytes -= towrite;
4858                 data += towrite;
4859                 addr += towrite;
4860         }
4861 out:
4862         return r;
4863 }
4864
4865 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4866                               unsigned int bytes, struct x86_exception *exception,
4867                               bool system)
4868 {
4869         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4870         u32 access = PFERR_WRITE_MASK;
4871
4872         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4873                 access |= PFERR_USER_MASK;
4874
4875         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4876                                            access, exception);
4877 }
4878
4879 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4880                                 unsigned int bytes, struct x86_exception *exception)
4881 {
4882         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4883                                            PFERR_WRITE_MASK, exception);
4884 }
4885 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4886
4887 int handle_ud(struct kvm_vcpu *vcpu)
4888 {
4889         int emul_type = EMULTYPE_TRAP_UD;
4890         enum emulation_result er;
4891         char sig[5]; /* ud2; .ascii "kvm" */
4892         struct x86_exception e;
4893
4894         if (force_emulation_prefix &&
4895             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4896                                 sig, sizeof(sig), &e) == 0 &&
4897             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4898                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4899                 emul_type = 0;
4900         }
4901
4902         er = emulate_instruction(vcpu, emul_type);
4903         if (er == EMULATE_USER_EXIT)
4904                 return 0;
4905         if (er != EMULATE_DONE)
4906                 kvm_queue_exception(vcpu, UD_VECTOR);
4907         return 1;
4908 }
4909 EXPORT_SYMBOL_GPL(handle_ud);
4910
4911 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4912                             gpa_t gpa, bool write)
4913 {
4914         /* For APIC access vmexit */
4915         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4916                 return 1;
4917
4918         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4919                 trace_vcpu_match_mmio(gva, gpa, write, true);
4920                 return 1;
4921         }
4922
4923         return 0;
4924 }
4925
4926 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4927                                 gpa_t *gpa, struct x86_exception *exception,
4928                                 bool write)
4929 {
4930         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4931                 | (write ? PFERR_WRITE_MASK : 0);
4932
4933         /*
4934          * currently PKRU is only applied to ept enabled guest so
4935          * there is no pkey in EPT page table for L1 guest or EPT
4936          * shadow page table for L2 guest.
4937          */
4938         if (vcpu_match_mmio_gva(vcpu, gva)
4939             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4940                                  vcpu->arch.access, 0, access)) {
4941                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4942                                         (gva & (PAGE_SIZE - 1));
4943                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4944                 return 1;
4945         }
4946
4947         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4948
4949         if (*gpa == UNMAPPED_GVA)
4950                 return -1;
4951
4952         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4953 }
4954
4955 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4956                         const void *val, int bytes)
4957 {
4958         int ret;
4959
4960         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4961         if (ret < 0)
4962                 return 0;
4963         kvm_page_track_write(vcpu, gpa, val, bytes);
4964         return 1;
4965 }
4966
4967 struct read_write_emulator_ops {
4968         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4969                                   int bytes);
4970         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4971                                   void *val, int bytes);
4972         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4973                                int bytes, void *val);
4974         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4975                                     void *val, int bytes);
4976         bool write;
4977 };
4978
4979 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4980 {
4981         if (vcpu->mmio_read_completed) {
4982                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4983                                vcpu->mmio_fragments[0].gpa, val);
4984                 vcpu->mmio_read_completed = 0;
4985                 return 1;
4986         }
4987
4988         return 0;
4989 }
4990
4991 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4992                         void *val, int bytes)
4993 {
4994         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4995 }
4996
4997 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4998                          void *val, int bytes)
4999 {
5000         return emulator_write_phys(vcpu, gpa, val, bytes);
5001 }
5002
5003 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5004 {
5005         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5006         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5007 }
5008
5009 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5010                           void *val, int bytes)
5011 {
5012         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5013         return X86EMUL_IO_NEEDED;
5014 }
5015
5016 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5017                            void *val, int bytes)
5018 {
5019         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5020
5021         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5022         return X86EMUL_CONTINUE;
5023 }
5024
5025 static const struct read_write_emulator_ops read_emultor = {
5026         .read_write_prepare = read_prepare,
5027         .read_write_emulate = read_emulate,
5028         .read_write_mmio = vcpu_mmio_read,
5029         .read_write_exit_mmio = read_exit_mmio,
5030 };
5031
5032 static const struct read_write_emulator_ops write_emultor = {
5033         .read_write_emulate = write_emulate,
5034         .read_write_mmio = write_mmio,
5035         .read_write_exit_mmio = write_exit_mmio,
5036         .write = true,
5037 };
5038
5039 static int emulator_read_write_onepage(unsigned long addr, void *val,
5040                                        unsigned int bytes,
5041                                        struct x86_exception *exception,
5042                                        struct kvm_vcpu *vcpu,
5043                                        const struct read_write_emulator_ops *ops)
5044 {
5045         gpa_t gpa;
5046         int handled, ret;
5047         bool write = ops->write;
5048         struct kvm_mmio_fragment *frag;
5049         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5050
5051         /*
5052          * If the exit was due to a NPF we may already have a GPA.
5053          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5054          * Note, this cannot be used on string operations since string
5055          * operation using rep will only have the initial GPA from the NPF
5056          * occurred.
5057          */
5058         if (vcpu->arch.gpa_available &&
5059             emulator_can_use_gpa(ctxt) &&
5060             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5061                 gpa = vcpu->arch.gpa_val;
5062                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5063         } else {
5064                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5065                 if (ret < 0)
5066                         return X86EMUL_PROPAGATE_FAULT;
5067         }
5068
5069         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5070                 return X86EMUL_CONTINUE;
5071
5072         /*
5073          * Is this MMIO handled locally?
5074          */
5075         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5076         if (handled == bytes)
5077                 return X86EMUL_CONTINUE;
5078
5079         gpa += handled;
5080         bytes -= handled;
5081         val += handled;
5082
5083         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5084         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5085         frag->gpa = gpa;
5086         frag->data = val;
5087         frag->len = bytes;
5088         return X86EMUL_CONTINUE;
5089 }
5090
5091 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5092                         unsigned long addr,
5093                         void *val, unsigned int bytes,
5094                         struct x86_exception *exception,
5095                         const struct read_write_emulator_ops *ops)
5096 {
5097         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5098         gpa_t gpa;
5099         int rc;
5100
5101         if (ops->read_write_prepare &&
5102                   ops->read_write_prepare(vcpu, val, bytes))
5103                 return X86EMUL_CONTINUE;
5104
5105         vcpu->mmio_nr_fragments = 0;
5106
5107         /* Crossing a page boundary? */
5108         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5109                 int now;
5110
5111                 now = -addr & ~PAGE_MASK;
5112                 rc = emulator_read_write_onepage(addr, val, now, exception,
5113                                                  vcpu, ops);
5114
5115                 if (rc != X86EMUL_CONTINUE)
5116                         return rc;
5117                 addr += now;
5118                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5119                         addr = (u32)addr;
5120                 val += now;
5121                 bytes -= now;
5122         }
5123
5124         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5125                                          vcpu, ops);
5126         if (rc != X86EMUL_CONTINUE)
5127                 return rc;
5128
5129         if (!vcpu->mmio_nr_fragments)
5130                 return rc;
5131
5132         gpa = vcpu->mmio_fragments[0].gpa;
5133
5134         vcpu->mmio_needed = 1;
5135         vcpu->mmio_cur_fragment = 0;
5136
5137         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5138         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5139         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5140         vcpu->run->mmio.phys_addr = gpa;
5141
5142         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5143 }
5144
5145 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5146                                   unsigned long addr,
5147                                   void *val,
5148                                   unsigned int bytes,
5149                                   struct x86_exception *exception)
5150 {
5151         return emulator_read_write(ctxt, addr, val, bytes,
5152                                    exception, &read_emultor);
5153 }
5154
5155 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5156                             unsigned long addr,
5157                             const void *val,
5158                             unsigned int bytes,
5159                             struct x86_exception *exception)
5160 {
5161         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5162                                    exception, &write_emultor);
5163 }
5164
5165 #define CMPXCHG_TYPE(t, ptr, old, new) \
5166         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5167
5168 #ifdef CONFIG_X86_64
5169 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5170 #else
5171 #  define CMPXCHG64(ptr, old, new) \
5172         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5173 #endif
5174
5175 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5176                                      unsigned long addr,
5177                                      const void *old,
5178                                      const void *new,
5179                                      unsigned int bytes,
5180                                      struct x86_exception *exception)
5181 {
5182         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5183         gpa_t gpa;
5184         struct page *page;
5185         char *kaddr;
5186         bool exchanged;
5187
5188         /* guests cmpxchg8b have to be emulated atomically */
5189         if (bytes > 8 || (bytes & (bytes - 1)))
5190                 goto emul_write;
5191
5192         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5193
5194         if (gpa == UNMAPPED_GVA ||
5195             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5196                 goto emul_write;
5197
5198         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5199                 goto emul_write;
5200
5201         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5202         if (is_error_page(page))
5203                 goto emul_write;
5204
5205         kaddr = kmap_atomic(page);
5206         kaddr += offset_in_page(gpa);
5207         switch (bytes) {
5208         case 1:
5209                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5210                 break;
5211         case 2:
5212                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5213                 break;
5214         case 4:
5215                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5216                 break;
5217         case 8:
5218                 exchanged = CMPXCHG64(kaddr, old, new);
5219                 break;
5220         default:
5221                 BUG();
5222         }
5223         kunmap_atomic(kaddr);
5224         kvm_release_page_dirty(page);
5225
5226         if (!exchanged)
5227                 return X86EMUL_CMPXCHG_FAILED;
5228
5229         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5230         kvm_page_track_write(vcpu, gpa, new, bytes);
5231
5232         return X86EMUL_CONTINUE;
5233
5234 emul_write:
5235         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5236
5237         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5238 }
5239
5240 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5241 {
5242         int r = 0, i;
5243
5244         for (i = 0; i < vcpu->arch.pio.count; i++) {
5245                 if (vcpu->arch.pio.in)
5246                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5247                                             vcpu->arch.pio.size, pd);
5248                 else
5249                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5250                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5251                                              pd);
5252                 if (r)
5253                         break;
5254                 pd += vcpu->arch.pio.size;
5255         }
5256         return r;
5257 }
5258
5259 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5260                                unsigned short port, void *val,
5261                                unsigned int count, bool in)
5262 {
5263         vcpu->arch.pio.port = port;
5264         vcpu->arch.pio.in = in;
5265         vcpu->arch.pio.count  = count;
5266         vcpu->arch.pio.size = size;
5267
5268         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5269                 vcpu->arch.pio.count = 0;
5270                 return 1;
5271         }
5272
5273         vcpu->run->exit_reason = KVM_EXIT_IO;
5274         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5275         vcpu->run->io.size = size;
5276         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5277         vcpu->run->io.count = count;
5278         vcpu->run->io.port = port;
5279
5280         return 0;
5281 }
5282
5283 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5284                                     int size, unsigned short port, void *val,
5285                                     unsigned int count)
5286 {
5287         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5288         int ret;
5289
5290         if (vcpu->arch.pio.count)
5291                 goto data_avail;
5292
5293         memset(vcpu->arch.pio_data, 0, size * count);
5294
5295         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5296         if (ret) {
5297 data_avail:
5298                 memcpy(val, vcpu->arch.pio_data, size * count);
5299                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5300                 vcpu->arch.pio.count = 0;
5301                 return 1;
5302         }
5303
5304         return 0;
5305 }
5306
5307 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5308                                      int size, unsigned short port,
5309                                      const void *val, unsigned int count)
5310 {
5311         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5312
5313         memcpy(vcpu->arch.pio_data, val, size * count);
5314         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5315         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5316 }
5317
5318 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5319 {
5320         return kvm_x86_ops->get_segment_base(vcpu, seg);
5321 }
5322
5323 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5324 {
5325         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5326 }
5327
5328 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5329 {
5330         if (!need_emulate_wbinvd(vcpu))
5331                 return X86EMUL_CONTINUE;
5332
5333         if (kvm_x86_ops->has_wbinvd_exit()) {
5334                 int cpu = get_cpu();
5335
5336                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5337                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5338                                 wbinvd_ipi, NULL, 1);
5339                 put_cpu();
5340                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5341         } else
5342                 wbinvd();
5343         return X86EMUL_CONTINUE;
5344 }
5345
5346 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5347 {
5348         kvm_emulate_wbinvd_noskip(vcpu);
5349         return kvm_skip_emulated_instruction(vcpu);
5350 }
5351 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5352
5353
5354
5355 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5356 {
5357         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5358 }
5359
5360 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5361                            unsigned long *dest)
5362 {
5363         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5364 }
5365
5366 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5367                            unsigned long value)
5368 {
5369
5370         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5371 }
5372
5373 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5374 {
5375         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5376 }
5377
5378 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5379 {
5380         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5381         unsigned long value;
5382
5383         switch (cr) {
5384         case 0:
5385                 value = kvm_read_cr0(vcpu);
5386                 break;
5387         case 2:
5388                 value = vcpu->arch.cr2;
5389                 break;
5390         case 3:
5391                 value = kvm_read_cr3(vcpu);
5392                 break;
5393         case 4:
5394                 value = kvm_read_cr4(vcpu);
5395                 break;
5396         case 8:
5397                 value = kvm_get_cr8(vcpu);
5398                 break;
5399         default:
5400                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5401                 return 0;
5402         }
5403
5404         return value;
5405 }
5406
5407 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5408 {
5409         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5410         int res = 0;
5411
5412         switch (cr) {
5413         case 0:
5414                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5415                 break;
5416         case 2:
5417                 vcpu->arch.cr2 = val;
5418                 break;
5419         case 3:
5420                 res = kvm_set_cr3(vcpu, val);
5421                 break;
5422         case 4:
5423                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5424                 break;
5425         case 8:
5426                 res = kvm_set_cr8(vcpu, val);
5427                 break;
5428         default:
5429                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5430                 res = -1;
5431         }
5432
5433         return res;
5434 }
5435
5436 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5437 {
5438         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5439 }
5440
5441 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5442 {
5443         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5444 }
5445
5446 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5447 {
5448         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5449 }
5450
5451 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5452 {
5453         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5454 }
5455
5456 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5457 {
5458         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5459 }
5460
5461 static unsigned long emulator_get_cached_segment_base(
5462         struct x86_emulate_ctxt *ctxt, int seg)
5463 {
5464         return get_segment_base(emul_to_vcpu(ctxt), seg);
5465 }
5466
5467 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5468                                  struct desc_struct *desc, u32 *base3,
5469                                  int seg)
5470 {
5471         struct kvm_segment var;
5472
5473         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5474         *selector = var.selector;
5475
5476         if (var.unusable) {
5477                 memset(desc, 0, sizeof(*desc));
5478                 if (base3)
5479                         *base3 = 0;
5480                 return false;
5481         }
5482
5483         if (var.g)
5484                 var.limit >>= 12;
5485         set_desc_limit(desc, var.limit);
5486         set_desc_base(desc, (unsigned long)var.base);
5487 #ifdef CONFIG_X86_64
5488         if (base3)
5489                 *base3 = var.base >> 32;
5490 #endif
5491         desc->type = var.type;
5492         desc->s = var.s;
5493         desc->dpl = var.dpl;
5494         desc->p = var.present;
5495         desc->avl = var.avl;
5496         desc->l = var.l;
5497         desc->d = var.db;
5498         desc->g = var.g;
5499
5500         return true;
5501 }
5502
5503 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5504                                  struct desc_struct *desc, u32 base3,
5505                                  int seg)
5506 {
5507         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5508         struct kvm_segment var;
5509
5510         var.selector = selector;
5511         var.base = get_desc_base(desc);
5512 #ifdef CONFIG_X86_64
5513         var.base |= ((u64)base3) << 32;
5514 #endif
5515         var.limit = get_desc_limit(desc);
5516         if (desc->g)
5517                 var.limit = (var.limit << 12) | 0xfff;
5518         var.type = desc->type;
5519         var.dpl = desc->dpl;
5520         var.db = desc->d;
5521         var.s = desc->s;
5522         var.l = desc->l;
5523         var.g = desc->g;
5524         var.avl = desc->avl;
5525         var.present = desc->p;
5526         var.unusable = !var.present;
5527         var.padding = 0;
5528
5529         kvm_set_segment(vcpu, &var, seg);
5530         return;
5531 }
5532
5533 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5534                             u32 msr_index, u64 *pdata)
5535 {
5536         struct msr_data msr;
5537         int r;
5538
5539         msr.index = msr_index;
5540         msr.host_initiated = false;
5541         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5542         if (r)
5543                 return r;
5544
5545         *pdata = msr.data;
5546         return 0;
5547 }
5548
5549 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5550                             u32 msr_index, u64 data)
5551 {
5552         struct msr_data msr;
5553
5554         msr.data = data;
5555         msr.index = msr_index;
5556         msr.host_initiated = false;
5557         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5558 }
5559
5560 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5561 {
5562         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5563
5564         return vcpu->arch.smbase;
5565 }
5566
5567 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5568 {
5569         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5570
5571         vcpu->arch.smbase = smbase;
5572 }
5573
5574 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5575                               u32 pmc)
5576 {
5577         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5578 }
5579
5580 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5581                              u32 pmc, u64 *pdata)
5582 {
5583         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5584 }
5585
5586 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5587 {
5588         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5589 }
5590
5591 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5592                               struct x86_instruction_info *info,
5593                               enum x86_intercept_stage stage)
5594 {
5595         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5596 }
5597
5598 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5599                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5600 {
5601         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5602 }
5603
5604 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5605 {
5606         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5607 }
5608
5609 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5610 {
5611         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5612 }
5613
5614 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5615 {
5616         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5617 }
5618
5619 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5620 {
5621         return emul_to_vcpu(ctxt)->arch.hflags;
5622 }
5623
5624 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5625 {
5626         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5627 }
5628
5629 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5630 {
5631         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5632 }
5633
5634 static const struct x86_emulate_ops emulate_ops = {
5635         .read_gpr            = emulator_read_gpr,
5636         .write_gpr           = emulator_write_gpr,
5637         .read_std            = emulator_read_std,
5638         .write_std           = emulator_write_std,
5639         .read_phys           = kvm_read_guest_phys_system,
5640         .fetch               = kvm_fetch_guest_virt,
5641         .read_emulated       = emulator_read_emulated,
5642         .write_emulated      = emulator_write_emulated,
5643         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5644         .invlpg              = emulator_invlpg,
5645         .pio_in_emulated     = emulator_pio_in_emulated,
5646         .pio_out_emulated    = emulator_pio_out_emulated,
5647         .get_segment         = emulator_get_segment,
5648         .set_segment         = emulator_set_segment,
5649         .get_cached_segment_base = emulator_get_cached_segment_base,
5650         .get_gdt             = emulator_get_gdt,
5651         .get_idt             = emulator_get_idt,
5652         .set_gdt             = emulator_set_gdt,
5653         .set_idt             = emulator_set_idt,
5654         .get_cr              = emulator_get_cr,
5655         .set_cr              = emulator_set_cr,
5656         .cpl                 = emulator_get_cpl,
5657         .get_dr              = emulator_get_dr,
5658         .set_dr              = emulator_set_dr,
5659         .get_smbase          = emulator_get_smbase,
5660         .set_smbase          = emulator_set_smbase,
5661         .set_msr             = emulator_set_msr,
5662         .get_msr             = emulator_get_msr,
5663         .check_pmc           = emulator_check_pmc,
5664         .read_pmc            = emulator_read_pmc,
5665         .halt                = emulator_halt,
5666         .wbinvd              = emulator_wbinvd,
5667         .fix_hypercall       = emulator_fix_hypercall,
5668         .intercept           = emulator_intercept,
5669         .get_cpuid           = emulator_get_cpuid,
5670         .set_nmi_mask        = emulator_set_nmi_mask,
5671         .get_hflags          = emulator_get_hflags,
5672         .set_hflags          = emulator_set_hflags,
5673         .pre_leave_smm       = emulator_pre_leave_smm,
5674 };
5675
5676 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5677 {
5678         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5679         /*
5680          * an sti; sti; sequence only disable interrupts for the first
5681          * instruction. So, if the last instruction, be it emulated or
5682          * not, left the system with the INT_STI flag enabled, it
5683          * means that the last instruction is an sti. We should not
5684          * leave the flag on in this case. The same goes for mov ss
5685          */
5686         if (int_shadow & mask)
5687                 mask = 0;
5688         if (unlikely(int_shadow || mask)) {
5689                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5690                 if (!mask)
5691                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5692         }
5693 }
5694
5695 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5696 {
5697         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5698         if (ctxt->exception.vector == PF_VECTOR)
5699                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5700
5701         if (ctxt->exception.error_code_valid)
5702                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5703                                       ctxt->exception.error_code);
5704         else
5705                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5706         return false;
5707 }
5708
5709 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5710 {
5711         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5712         int cs_db, cs_l;
5713
5714         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5715
5716         ctxt->eflags = kvm_get_rflags(vcpu);
5717         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5718
5719         ctxt->eip = kvm_rip_read(vcpu);
5720         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5721                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5722                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5723                      cs_db                              ? X86EMUL_MODE_PROT32 :
5724                                                           X86EMUL_MODE_PROT16;
5725         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5726         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5727         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5728
5729         init_decode_cache(ctxt);
5730         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5731 }
5732
5733 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5734 {
5735         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5736         int ret;
5737
5738         init_emulate_ctxt(vcpu);
5739
5740         ctxt->op_bytes = 2;
5741         ctxt->ad_bytes = 2;
5742         ctxt->_eip = ctxt->eip + inc_eip;
5743         ret = emulate_int_real(ctxt, irq);
5744
5745         if (ret != X86EMUL_CONTINUE)
5746                 return EMULATE_FAIL;
5747
5748         ctxt->eip = ctxt->_eip;
5749         kvm_rip_write(vcpu, ctxt->eip);
5750         kvm_set_rflags(vcpu, ctxt->eflags);
5751
5752         return EMULATE_DONE;
5753 }
5754 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5755
5756 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5757 {
5758         int r = EMULATE_DONE;
5759
5760         ++vcpu->stat.insn_emulation_fail;
5761         trace_kvm_emulate_insn_failed(vcpu);
5762
5763         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5764                 return EMULATE_FAIL;
5765
5766         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5767                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5768                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5769                 vcpu->run->internal.ndata = 0;
5770                 r = EMULATE_USER_EXIT;
5771         }
5772
5773         kvm_queue_exception(vcpu, UD_VECTOR);
5774
5775         return r;
5776 }
5777
5778 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5779                                   bool write_fault_to_shadow_pgtable,
5780                                   int emulation_type)
5781 {
5782         gpa_t gpa = cr2;
5783         kvm_pfn_t pfn;
5784
5785         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5786                 return false;
5787
5788         if (!vcpu->arch.mmu.direct_map) {
5789                 /*
5790                  * Write permission should be allowed since only
5791                  * write access need to be emulated.
5792                  */
5793                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5794
5795                 /*
5796                  * If the mapping is invalid in guest, let cpu retry
5797                  * it to generate fault.
5798                  */
5799                 if (gpa == UNMAPPED_GVA)
5800                         return true;
5801         }
5802
5803         /*
5804          * Do not retry the unhandleable instruction if it faults on the
5805          * readonly host memory, otherwise it will goto a infinite loop:
5806          * retry instruction -> write #PF -> emulation fail -> retry
5807          * instruction -> ...
5808          */
5809         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5810
5811         /*
5812          * If the instruction failed on the error pfn, it can not be fixed,
5813          * report the error to userspace.
5814          */
5815         if (is_error_noslot_pfn(pfn))
5816                 return false;
5817
5818         kvm_release_pfn_clean(pfn);
5819
5820         /* The instructions are well-emulated on direct mmu. */
5821         if (vcpu->arch.mmu.direct_map) {
5822                 unsigned int indirect_shadow_pages;
5823
5824                 spin_lock(&vcpu->kvm->mmu_lock);
5825                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5826                 spin_unlock(&vcpu->kvm->mmu_lock);
5827
5828                 if (indirect_shadow_pages)
5829                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5830
5831                 return true;
5832         }
5833
5834         /*
5835          * if emulation was due to access to shadowed page table
5836          * and it failed try to unshadow page and re-enter the
5837          * guest to let CPU execute the instruction.
5838          */
5839         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5840
5841         /*
5842          * If the access faults on its page table, it can not
5843          * be fixed by unprotecting shadow page and it should
5844          * be reported to userspace.
5845          */
5846         return !write_fault_to_shadow_pgtable;
5847 }
5848
5849 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5850                               unsigned long cr2,  int emulation_type)
5851 {
5852         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5853         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5854
5855         last_retry_eip = vcpu->arch.last_retry_eip;
5856         last_retry_addr = vcpu->arch.last_retry_addr;
5857
5858         /*
5859          * If the emulation is caused by #PF and it is non-page_table
5860          * writing instruction, it means the VM-EXIT is caused by shadow
5861          * page protected, we can zap the shadow page and retry this
5862          * instruction directly.
5863          *
5864          * Note: if the guest uses a non-page-table modifying instruction
5865          * on the PDE that points to the instruction, then we will unmap
5866          * the instruction and go to an infinite loop. So, we cache the
5867          * last retried eip and the last fault address, if we meet the eip
5868          * and the address again, we can break out of the potential infinite
5869          * loop.
5870          */
5871         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5872
5873         if (!(emulation_type & EMULTYPE_RETRY))
5874                 return false;
5875
5876         if (x86_page_table_writing_insn(ctxt))
5877                 return false;
5878
5879         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5880                 return false;
5881
5882         vcpu->arch.last_retry_eip = ctxt->eip;
5883         vcpu->arch.last_retry_addr = cr2;
5884
5885         if (!vcpu->arch.mmu.direct_map)
5886                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5887
5888         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5889
5890         return true;
5891 }
5892
5893 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5894 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5895
5896 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5897 {
5898         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5899                 /* This is a good place to trace that we are exiting SMM.  */
5900                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5901
5902                 /* Process a latched INIT or SMI, if any.  */
5903                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5904         }
5905
5906         kvm_mmu_reset_context(vcpu);
5907 }
5908
5909 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5910 {
5911         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5912
5913         vcpu->arch.hflags = emul_flags;
5914
5915         if (changed & HF_SMM_MASK)
5916                 kvm_smm_changed(vcpu);
5917 }
5918
5919 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5920                                 unsigned long *db)
5921 {
5922         u32 dr6 = 0;
5923         int i;
5924         u32 enable, rwlen;
5925
5926         enable = dr7;
5927         rwlen = dr7 >> 16;
5928         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5929                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5930                         dr6 |= (1 << i);
5931         return dr6;
5932 }
5933
5934 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5935 {
5936         struct kvm_run *kvm_run = vcpu->run;
5937
5938         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5939                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5940                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5941                 kvm_run->debug.arch.exception = DB_VECTOR;
5942                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5943                 *r = EMULATE_USER_EXIT;
5944         } else {
5945                 /*
5946                  * "Certain debug exceptions may clear bit 0-3.  The
5947                  * remaining contents of the DR6 register are never
5948                  * cleared by the processor".
5949                  */
5950                 vcpu->arch.dr6 &= ~15;
5951                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5952                 kvm_queue_exception(vcpu, DB_VECTOR);
5953         }
5954 }
5955
5956 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5957 {
5958         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5959         int r = EMULATE_DONE;
5960
5961         kvm_x86_ops->skip_emulated_instruction(vcpu);
5962
5963         /*
5964          * rflags is the old, "raw" value of the flags.  The new value has
5965          * not been saved yet.
5966          *
5967          * This is correct even for TF set by the guest, because "the
5968          * processor will not generate this exception after the instruction
5969          * that sets the TF flag".
5970          */
5971         if (unlikely(rflags & X86_EFLAGS_TF))
5972                 kvm_vcpu_do_singlestep(vcpu, &r);
5973         return r == EMULATE_DONE;
5974 }
5975 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5976
5977 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5978 {
5979         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5980             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5981                 struct kvm_run *kvm_run = vcpu->run;
5982                 unsigned long eip = kvm_get_linear_rip(vcpu);
5983                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5984                                            vcpu->arch.guest_debug_dr7,
5985                                            vcpu->arch.eff_db);
5986
5987                 if (dr6 != 0) {
5988                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5989                         kvm_run->debug.arch.pc = eip;
5990                         kvm_run->debug.arch.exception = DB_VECTOR;
5991                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5992                         *r = EMULATE_USER_EXIT;
5993                         return true;
5994                 }
5995         }
5996
5997         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5998             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5999                 unsigned long eip = kvm_get_linear_rip(vcpu);
6000                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6001                                            vcpu->arch.dr7,
6002                                            vcpu->arch.db);
6003
6004                 if (dr6 != 0) {
6005                         vcpu->arch.dr6 &= ~15;
6006                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6007                         kvm_queue_exception(vcpu, DB_VECTOR);
6008                         *r = EMULATE_DONE;
6009                         return true;
6010                 }
6011         }
6012
6013         return false;
6014 }
6015
6016 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6017 {
6018         switch (ctxt->opcode_len) {
6019         case 1:
6020                 switch (ctxt->b) {
6021                 case 0xe4:      /* IN */
6022                 case 0xe5:
6023                 case 0xec:
6024                 case 0xed:
6025                 case 0xe6:      /* OUT */
6026                 case 0xe7:
6027                 case 0xee:
6028                 case 0xef:
6029                 case 0x6c:      /* INS */
6030                 case 0x6d:
6031                 case 0x6e:      /* OUTS */
6032                 case 0x6f:
6033                         return true;
6034                 }
6035                 break;
6036         case 2:
6037                 switch (ctxt->b) {
6038                 case 0x33:      /* RDPMC */
6039                         return true;
6040                 }
6041                 break;
6042         }
6043
6044         return false;
6045 }
6046
6047 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6048                             unsigned long cr2,
6049                             int emulation_type,
6050                             void *insn,
6051                             int insn_len)
6052 {
6053         int r;
6054         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6055         bool writeback = true;
6056         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6057
6058         /*
6059          * Clear write_fault_to_shadow_pgtable here to ensure it is
6060          * never reused.
6061          */
6062         vcpu->arch.write_fault_to_shadow_pgtable = false;
6063         kvm_clear_exception_queue(vcpu);
6064
6065         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6066                 init_emulate_ctxt(vcpu);
6067
6068                 /*
6069                  * We will reenter on the same instruction since
6070                  * we do not set complete_userspace_io.  This does not
6071                  * handle watchpoints yet, those would be handled in
6072                  * the emulate_ops.
6073                  */
6074                 if (!(emulation_type & EMULTYPE_SKIP) &&
6075                     kvm_vcpu_check_breakpoint(vcpu, &r))
6076                         return r;
6077
6078                 ctxt->interruptibility = 0;
6079                 ctxt->have_exception = false;
6080                 ctxt->exception.vector = -1;
6081                 ctxt->perm_ok = false;
6082
6083                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6084
6085                 r = x86_decode_insn(ctxt, insn, insn_len);
6086
6087                 trace_kvm_emulate_insn_start(vcpu);
6088                 ++vcpu->stat.insn_emulation;
6089                 if (r != EMULATION_OK)  {
6090                         if (emulation_type & EMULTYPE_TRAP_UD)
6091                                 return EMULATE_FAIL;
6092                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6093                                                 emulation_type))
6094                                 return EMULATE_DONE;
6095                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6096                                 return EMULATE_DONE;
6097                         if (emulation_type & EMULTYPE_SKIP)
6098                                 return EMULATE_FAIL;
6099                         return handle_emulation_failure(vcpu, emulation_type);
6100                 }
6101         }
6102
6103         if ((emulation_type & EMULTYPE_VMWARE) &&
6104             !is_vmware_backdoor_opcode(ctxt))
6105                 return EMULATE_FAIL;
6106
6107         if (emulation_type & EMULTYPE_SKIP) {
6108                 kvm_rip_write(vcpu, ctxt->_eip);
6109                 if (ctxt->eflags & X86_EFLAGS_RF)
6110                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6111                 return EMULATE_DONE;
6112         }
6113
6114         if (retry_instruction(ctxt, cr2, emulation_type))
6115                 return EMULATE_DONE;
6116
6117         /* this is needed for vmware backdoor interface to work since it
6118            changes registers values  during IO operation */
6119         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6120                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6121                 emulator_invalidate_register_cache(ctxt);
6122         }
6123
6124 restart:
6125         /* Save the faulting GPA (cr2) in the address field */
6126         ctxt->exception.address = cr2;
6127
6128         r = x86_emulate_insn(ctxt);
6129
6130         if (r == EMULATION_INTERCEPTED)
6131                 return EMULATE_DONE;
6132
6133         if (r == EMULATION_FAILED) {
6134                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6135                                         emulation_type))
6136                         return EMULATE_DONE;
6137
6138                 return handle_emulation_failure(vcpu, emulation_type);
6139         }
6140
6141         if (ctxt->have_exception) {
6142                 r = EMULATE_DONE;
6143                 if (inject_emulated_exception(vcpu))
6144                         return r;
6145         } else if (vcpu->arch.pio.count) {
6146                 if (!vcpu->arch.pio.in) {
6147                         /* FIXME: return into emulator if single-stepping.  */
6148                         vcpu->arch.pio.count = 0;
6149                 } else {
6150                         writeback = false;
6151                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6152                 }
6153                 r = EMULATE_USER_EXIT;
6154         } else if (vcpu->mmio_needed) {
6155                 if (!vcpu->mmio_is_write)
6156                         writeback = false;
6157                 r = EMULATE_USER_EXIT;
6158                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6159         } else if (r == EMULATION_RESTART)
6160                 goto restart;
6161         else
6162                 r = EMULATE_DONE;
6163
6164         if (writeback) {
6165                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6166                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6167                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6168                 kvm_rip_write(vcpu, ctxt->eip);
6169                 if (r == EMULATE_DONE &&
6170                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6171                         kvm_vcpu_do_singlestep(vcpu, &r);
6172                 if (!ctxt->have_exception ||
6173                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6174                         __kvm_set_rflags(vcpu, ctxt->eflags);
6175
6176                 /*
6177                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6178                  * do nothing, and it will be requested again as soon as
6179                  * the shadow expires.  But we still need to check here,
6180                  * because POPF has no interrupt shadow.
6181                  */
6182                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6183                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6184         } else
6185                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6186
6187         return r;
6188 }
6189 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6190
6191 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6192                             unsigned short port)
6193 {
6194         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6195         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6196                                             size, port, &val, 1);
6197         /* do not return to emulator after return from userspace */
6198         vcpu->arch.pio.count = 0;
6199         return ret;
6200 }
6201
6202 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6203 {
6204         unsigned long val;
6205
6206         /* We should only ever be called with arch.pio.count equal to 1 */
6207         BUG_ON(vcpu->arch.pio.count != 1);
6208
6209         /* For size less than 4 we merge, else we zero extend */
6210         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6211                                         : 0;
6212
6213         /*
6214          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6215          * the copy and tracing
6216          */
6217         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6218                                  vcpu->arch.pio.port, &val, 1);
6219         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6220
6221         return 1;
6222 }
6223
6224 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6225                            unsigned short port)
6226 {
6227         unsigned long val;
6228         int ret;
6229
6230         /* For size less than 4 we merge, else we zero extend */
6231         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6232
6233         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6234                                        &val, 1);
6235         if (ret) {
6236                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6237                 return ret;
6238         }
6239
6240         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6241
6242         return 0;
6243 }
6244
6245 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6246 {
6247         int ret = kvm_skip_emulated_instruction(vcpu);
6248
6249         /*
6250          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6251          * KVM_EXIT_DEBUG here.
6252          */
6253         if (in)
6254                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6255         else
6256                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6257 }
6258 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6259
6260 static int kvmclock_cpu_down_prep(unsigned int cpu)
6261 {
6262         __this_cpu_write(cpu_tsc_khz, 0);
6263         return 0;
6264 }
6265
6266 static void tsc_khz_changed(void *data)
6267 {
6268         struct cpufreq_freqs *freq = data;
6269         unsigned long khz = 0;
6270
6271         if (data)
6272                 khz = freq->new;
6273         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6274                 khz = cpufreq_quick_get(raw_smp_processor_id());
6275         if (!khz)
6276                 khz = tsc_khz;
6277         __this_cpu_write(cpu_tsc_khz, khz);
6278 }
6279
6280 #ifdef CONFIG_X86_64
6281 static void kvm_hyperv_tsc_notifier(void)
6282 {
6283         struct kvm *kvm;
6284         struct kvm_vcpu *vcpu;
6285         int cpu;
6286
6287         spin_lock(&kvm_lock);
6288         list_for_each_entry(kvm, &vm_list, vm_list)
6289                 kvm_make_mclock_inprogress_request(kvm);
6290
6291         hyperv_stop_tsc_emulation();
6292
6293         /* TSC frequency always matches when on Hyper-V */
6294         for_each_present_cpu(cpu)
6295                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6296         kvm_max_guest_tsc_khz = tsc_khz;
6297
6298         list_for_each_entry(kvm, &vm_list, vm_list) {
6299                 struct kvm_arch *ka = &kvm->arch;
6300
6301                 spin_lock(&ka->pvclock_gtod_sync_lock);
6302
6303                 pvclock_update_vm_gtod_copy(kvm);
6304
6305                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6306                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6307
6308                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6309                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6310
6311                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6312         }
6313         spin_unlock(&kvm_lock);
6314 }
6315 #endif
6316
6317 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6318                                      void *data)
6319 {
6320         struct cpufreq_freqs *freq = data;
6321         struct kvm *kvm;
6322         struct kvm_vcpu *vcpu;
6323         int i, send_ipi = 0;
6324
6325         /*
6326          * We allow guests to temporarily run on slowing clocks,
6327          * provided we notify them after, or to run on accelerating
6328          * clocks, provided we notify them before.  Thus time never
6329          * goes backwards.
6330          *
6331          * However, we have a problem.  We can't atomically update
6332          * the frequency of a given CPU from this function; it is
6333          * merely a notifier, which can be called from any CPU.
6334          * Changing the TSC frequency at arbitrary points in time
6335          * requires a recomputation of local variables related to
6336          * the TSC for each VCPU.  We must flag these local variables
6337          * to be updated and be sure the update takes place with the
6338          * new frequency before any guests proceed.
6339          *
6340          * Unfortunately, the combination of hotplug CPU and frequency
6341          * change creates an intractable locking scenario; the order
6342          * of when these callouts happen is undefined with respect to
6343          * CPU hotplug, and they can race with each other.  As such,
6344          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6345          * undefined; you can actually have a CPU frequency change take
6346          * place in between the computation of X and the setting of the
6347          * variable.  To protect against this problem, all updates of
6348          * the per_cpu tsc_khz variable are done in an interrupt
6349          * protected IPI, and all callers wishing to update the value
6350          * must wait for a synchronous IPI to complete (which is trivial
6351          * if the caller is on the CPU already).  This establishes the
6352          * necessary total order on variable updates.
6353          *
6354          * Note that because a guest time update may take place
6355          * anytime after the setting of the VCPU's request bit, the
6356          * correct TSC value must be set before the request.  However,
6357          * to ensure the update actually makes it to any guest which
6358          * starts running in hardware virtualization between the set
6359          * and the acquisition of the spinlock, we must also ping the
6360          * CPU after setting the request bit.
6361          *
6362          */
6363
6364         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6365                 return 0;
6366         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6367                 return 0;
6368
6369         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6370
6371         spin_lock(&kvm_lock);
6372         list_for_each_entry(kvm, &vm_list, vm_list) {
6373                 kvm_for_each_vcpu(i, vcpu, kvm) {
6374                         if (vcpu->cpu != freq->cpu)
6375                                 continue;
6376                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6377                         if (vcpu->cpu != smp_processor_id())
6378                                 send_ipi = 1;
6379                 }
6380         }
6381         spin_unlock(&kvm_lock);
6382
6383         if (freq->old < freq->new && send_ipi) {
6384                 /*
6385                  * We upscale the frequency.  Must make the guest
6386                  * doesn't see old kvmclock values while running with
6387                  * the new frequency, otherwise we risk the guest sees
6388                  * time go backwards.
6389                  *
6390                  * In case we update the frequency for another cpu
6391                  * (which might be in guest context) send an interrupt
6392                  * to kick the cpu out of guest context.  Next time
6393                  * guest context is entered kvmclock will be updated,
6394                  * so the guest will not see stale values.
6395                  */
6396                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6397         }
6398         return 0;
6399 }
6400
6401 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6402         .notifier_call  = kvmclock_cpufreq_notifier
6403 };
6404
6405 static int kvmclock_cpu_online(unsigned int cpu)
6406 {
6407         tsc_khz_changed(NULL);
6408         return 0;
6409 }
6410
6411 static void kvm_timer_init(void)
6412 {
6413         max_tsc_khz = tsc_khz;
6414
6415         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6416 #ifdef CONFIG_CPU_FREQ
6417                 struct cpufreq_policy policy;
6418                 int cpu;
6419
6420                 memset(&policy, 0, sizeof(policy));
6421                 cpu = get_cpu();
6422                 cpufreq_get_policy(&policy, cpu);
6423                 if (policy.cpuinfo.max_freq)
6424                         max_tsc_khz = policy.cpuinfo.max_freq;
6425                 put_cpu();
6426 #endif
6427                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6428                                           CPUFREQ_TRANSITION_NOTIFIER);
6429         }
6430         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6431
6432         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6433                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6434 }
6435
6436 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6437 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6438
6439 int kvm_is_in_guest(void)
6440 {
6441         return __this_cpu_read(current_vcpu) != NULL;
6442 }
6443
6444 static int kvm_is_user_mode(void)
6445 {
6446         int user_mode = 3;
6447
6448         if (__this_cpu_read(current_vcpu))
6449                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6450
6451         return user_mode != 0;
6452 }
6453
6454 static unsigned long kvm_get_guest_ip(void)
6455 {
6456         unsigned long ip = 0;
6457
6458         if (__this_cpu_read(current_vcpu))
6459                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6460
6461         return ip;
6462 }
6463
6464 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6465         .is_in_guest            = kvm_is_in_guest,
6466         .is_user_mode           = kvm_is_user_mode,
6467         .get_guest_ip           = kvm_get_guest_ip,
6468 };
6469
6470 static void kvm_set_mmio_spte_mask(void)
6471 {
6472         u64 mask;
6473         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6474
6475         /*
6476          * Set the reserved bits and the present bit of an paging-structure
6477          * entry to generate page fault with PFER.RSV = 1.
6478          */
6479          /* Mask the reserved physical address bits. */
6480         mask = rsvd_bits(maxphyaddr, 51);
6481
6482         /* Set the present bit. */
6483         mask |= 1ull;
6484
6485 #ifdef CONFIG_X86_64
6486         /*
6487          * If reserved bit is not supported, clear the present bit to disable
6488          * mmio page fault.
6489          */
6490         if (maxphyaddr == 52)
6491                 mask &= ~1ull;
6492 #endif
6493
6494         kvm_mmu_set_mmio_spte_mask(mask, mask);
6495 }
6496
6497 #ifdef CONFIG_X86_64
6498 static void pvclock_gtod_update_fn(struct work_struct *work)
6499 {
6500         struct kvm *kvm;
6501
6502         struct kvm_vcpu *vcpu;
6503         int i;
6504
6505         spin_lock(&kvm_lock);
6506         list_for_each_entry(kvm, &vm_list, vm_list)
6507                 kvm_for_each_vcpu(i, vcpu, kvm)
6508                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6509         atomic_set(&kvm_guest_has_master_clock, 0);
6510         spin_unlock(&kvm_lock);
6511 }
6512
6513 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6514
6515 /*
6516  * Notification about pvclock gtod data update.
6517  */
6518 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6519                                void *priv)
6520 {
6521         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6522         struct timekeeper *tk = priv;
6523
6524         update_pvclock_gtod(tk);
6525
6526         /* disable master clock if host does not trust, or does not
6527          * use, TSC based clocksource.
6528          */
6529         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6530             atomic_read(&kvm_guest_has_master_clock) != 0)
6531                 queue_work(system_long_wq, &pvclock_gtod_work);
6532
6533         return 0;
6534 }
6535
6536 static struct notifier_block pvclock_gtod_notifier = {
6537         .notifier_call = pvclock_gtod_notify,
6538 };
6539 #endif
6540
6541 int kvm_arch_init(void *opaque)
6542 {
6543         int r;
6544         struct kvm_x86_ops *ops = opaque;
6545
6546         if (kvm_x86_ops) {
6547                 printk(KERN_ERR "kvm: already loaded the other module\n");
6548                 r = -EEXIST;
6549                 goto out;
6550         }
6551
6552         if (!ops->cpu_has_kvm_support()) {
6553                 printk(KERN_ERR "kvm: no hardware support\n");
6554                 r = -EOPNOTSUPP;
6555                 goto out;
6556         }
6557         if (ops->disabled_by_bios()) {
6558                 printk(KERN_ERR "kvm: disabled by bios\n");
6559                 r = -EOPNOTSUPP;
6560                 goto out;
6561         }
6562
6563         r = -ENOMEM;
6564         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6565         if (!shared_msrs) {
6566                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6567                 goto out;
6568         }
6569
6570         r = kvm_mmu_module_init();
6571         if (r)
6572                 goto out_free_percpu;
6573
6574         kvm_set_mmio_spte_mask();
6575
6576         kvm_x86_ops = ops;
6577
6578         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6579                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6580                         PT_PRESENT_MASK, 0, sme_me_mask);
6581         kvm_timer_init();
6582
6583         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6584
6585         if (boot_cpu_has(X86_FEATURE_XSAVE))
6586                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6587
6588         kvm_lapic_init();
6589 #ifdef CONFIG_X86_64
6590         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6591
6592         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6593                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6594 #endif
6595
6596         return 0;
6597
6598 out_free_percpu:
6599         free_percpu(shared_msrs);
6600 out:
6601         return r;
6602 }
6603
6604 void kvm_arch_exit(void)
6605 {
6606 #ifdef CONFIG_X86_64
6607         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6608                 clear_hv_tscchange_cb();
6609 #endif
6610         kvm_lapic_exit();
6611         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6612
6613         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6614                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6615                                             CPUFREQ_TRANSITION_NOTIFIER);
6616         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6617 #ifdef CONFIG_X86_64
6618         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6619 #endif
6620         kvm_x86_ops = NULL;
6621         kvm_mmu_module_exit();
6622         free_percpu(shared_msrs);
6623 }
6624
6625 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6626 {
6627         ++vcpu->stat.halt_exits;
6628         if (lapic_in_kernel(vcpu)) {
6629                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6630                 return 1;
6631         } else {
6632                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6633                 return 0;
6634         }
6635 }
6636 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6637
6638 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6639 {
6640         int ret = kvm_skip_emulated_instruction(vcpu);
6641         /*
6642          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6643          * KVM_EXIT_DEBUG here.
6644          */
6645         return kvm_vcpu_halt(vcpu) && ret;
6646 }
6647 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6648
6649 #ifdef CONFIG_X86_64
6650 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6651                                 unsigned long clock_type)
6652 {
6653         struct kvm_clock_pairing clock_pairing;
6654         struct timespec64 ts;
6655         u64 cycle;
6656         int ret;
6657
6658         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6659                 return -KVM_EOPNOTSUPP;
6660
6661         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6662                 return -KVM_EOPNOTSUPP;
6663
6664         clock_pairing.sec = ts.tv_sec;
6665         clock_pairing.nsec = ts.tv_nsec;
6666         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6667         clock_pairing.flags = 0;
6668
6669         ret = 0;
6670         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6671                             sizeof(struct kvm_clock_pairing)))
6672                 ret = -KVM_EFAULT;
6673
6674         return ret;
6675 }
6676 #endif
6677
6678 /*
6679  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6680  *
6681  * @apicid - apicid of vcpu to be kicked.
6682  */
6683 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6684 {
6685         struct kvm_lapic_irq lapic_irq;
6686
6687         lapic_irq.shorthand = 0;
6688         lapic_irq.dest_mode = 0;
6689         lapic_irq.level = 0;
6690         lapic_irq.dest_id = apicid;
6691         lapic_irq.msi_redir_hint = false;
6692
6693         lapic_irq.delivery_mode = APIC_DM_REMRD;
6694         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6695 }
6696
6697 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6698 {
6699         vcpu->arch.apicv_active = false;
6700         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6701 }
6702
6703 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6704 {
6705         unsigned long nr, a0, a1, a2, a3, ret;
6706         int op_64_bit;
6707
6708         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6709                 return kvm_hv_hypercall(vcpu);
6710
6711         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6712         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6713         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6714         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6715         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6716
6717         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6718
6719         op_64_bit = is_64_bit_mode(vcpu);
6720         if (!op_64_bit) {
6721                 nr &= 0xFFFFFFFF;
6722                 a0 &= 0xFFFFFFFF;
6723                 a1 &= 0xFFFFFFFF;
6724                 a2 &= 0xFFFFFFFF;
6725                 a3 &= 0xFFFFFFFF;
6726         }
6727
6728         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6729                 ret = -KVM_EPERM;
6730                 goto out;
6731         }
6732
6733         switch (nr) {
6734         case KVM_HC_VAPIC_POLL_IRQ:
6735                 ret = 0;
6736                 break;
6737         case KVM_HC_KICK_CPU:
6738                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6739                 ret = 0;
6740                 break;
6741 #ifdef CONFIG_X86_64
6742         case KVM_HC_CLOCK_PAIRING:
6743                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6744                 break;
6745 #endif
6746         default:
6747                 ret = -KVM_ENOSYS;
6748                 break;
6749         }
6750 out:
6751         if (!op_64_bit)
6752                 ret = (u32)ret;
6753         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6754
6755         ++vcpu->stat.hypercalls;
6756         return kvm_skip_emulated_instruction(vcpu);
6757 }
6758 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6759
6760 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6761 {
6762         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6763         char instruction[3];
6764         unsigned long rip = kvm_rip_read(vcpu);
6765
6766         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6767
6768         return emulator_write_emulated(ctxt, rip, instruction, 3,
6769                 &ctxt->exception);
6770 }
6771
6772 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6773 {
6774         return vcpu->run->request_interrupt_window &&
6775                 likely(!pic_in_kernel(vcpu->kvm));
6776 }
6777
6778 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6779 {
6780         struct kvm_run *kvm_run = vcpu->run;
6781
6782         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6783         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6784         kvm_run->cr8 = kvm_get_cr8(vcpu);
6785         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6786         kvm_run->ready_for_interrupt_injection =
6787                 pic_in_kernel(vcpu->kvm) ||
6788                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6789 }
6790
6791 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6792 {
6793         int max_irr, tpr;
6794
6795         if (!kvm_x86_ops->update_cr8_intercept)
6796                 return;
6797
6798         if (!lapic_in_kernel(vcpu))
6799                 return;
6800
6801         if (vcpu->arch.apicv_active)
6802                 return;
6803
6804         if (!vcpu->arch.apic->vapic_addr)
6805                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6806         else
6807                 max_irr = -1;
6808
6809         if (max_irr != -1)
6810                 max_irr >>= 4;
6811
6812         tpr = kvm_lapic_get_cr8(vcpu);
6813
6814         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6815 }
6816
6817 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6818 {
6819         int r;
6820
6821         /* try to reinject previous events if any */
6822
6823         if (vcpu->arch.exception.injected)
6824                 kvm_x86_ops->queue_exception(vcpu);
6825         /*
6826          * Do not inject an NMI or interrupt if there is a pending
6827          * exception.  Exceptions and interrupts are recognized at
6828          * instruction boundaries, i.e. the start of an instruction.
6829          * Trap-like exceptions, e.g. #DB, have higher priority than
6830          * NMIs and interrupts, i.e. traps are recognized before an
6831          * NMI/interrupt that's pending on the same instruction.
6832          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6833          * priority, but are only generated (pended) during instruction
6834          * execution, i.e. a pending fault-like exception means the
6835          * fault occurred on the *previous* instruction and must be
6836          * serviced prior to recognizing any new events in order to
6837          * fully complete the previous instruction.
6838          */
6839         else if (!vcpu->arch.exception.pending) {
6840                 if (vcpu->arch.nmi_injected)
6841                         kvm_x86_ops->set_nmi(vcpu);
6842                 else if (vcpu->arch.interrupt.injected)
6843                         kvm_x86_ops->set_irq(vcpu);
6844         }
6845
6846         /*
6847          * Call check_nested_events() even if we reinjected a previous event
6848          * in order for caller to determine if it should require immediate-exit
6849          * from L2 to L1 due to pending L1 events which require exit
6850          * from L2 to L1.
6851          */
6852         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6853                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6854                 if (r != 0)
6855                         return r;
6856         }
6857
6858         /* try to inject new event if pending */
6859         if (vcpu->arch.exception.pending) {
6860                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6861                                         vcpu->arch.exception.has_error_code,
6862                                         vcpu->arch.exception.error_code);
6863
6864                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6865                 vcpu->arch.exception.pending = false;
6866                 vcpu->arch.exception.injected = true;
6867
6868                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6869                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6870                                              X86_EFLAGS_RF);
6871
6872                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6873                     (vcpu->arch.dr7 & DR7_GD)) {
6874                         vcpu->arch.dr7 &= ~DR7_GD;
6875                         kvm_update_dr7(vcpu);
6876                 }
6877
6878                 kvm_x86_ops->queue_exception(vcpu);
6879         }
6880
6881         /* Don't consider new event if we re-injected an event */
6882         if (kvm_event_needs_reinjection(vcpu))
6883                 return 0;
6884
6885         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6886             kvm_x86_ops->smi_allowed(vcpu)) {
6887                 vcpu->arch.smi_pending = false;
6888                 ++vcpu->arch.smi_count;
6889                 enter_smm(vcpu);
6890         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6891                 --vcpu->arch.nmi_pending;
6892                 vcpu->arch.nmi_injected = true;
6893                 kvm_x86_ops->set_nmi(vcpu);
6894         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6895                 /*
6896                  * Because interrupts can be injected asynchronously, we are
6897                  * calling check_nested_events again here to avoid a race condition.
6898                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6899                  * proposal and current concerns.  Perhaps we should be setting
6900                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6901                  */
6902                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6903                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6904                         if (r != 0)
6905                                 return r;
6906                 }
6907                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6908                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6909                                             false);
6910                         kvm_x86_ops->set_irq(vcpu);
6911                 }
6912         }
6913
6914         return 0;
6915 }
6916
6917 static void process_nmi(struct kvm_vcpu *vcpu)
6918 {
6919         unsigned limit = 2;
6920
6921         /*
6922          * x86 is limited to one NMI running, and one NMI pending after it.
6923          * If an NMI is already in progress, limit further NMIs to just one.
6924          * Otherwise, allow two (and we'll inject the first one immediately).
6925          */
6926         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6927                 limit = 1;
6928
6929         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6930         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6931         kvm_make_request(KVM_REQ_EVENT, vcpu);
6932 }
6933
6934 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6935 {
6936         u32 flags = 0;
6937         flags |= seg->g       << 23;
6938         flags |= seg->db      << 22;
6939         flags |= seg->l       << 21;
6940         flags |= seg->avl     << 20;
6941         flags |= seg->present << 15;
6942         flags |= seg->dpl     << 13;
6943         flags |= seg->s       << 12;
6944         flags |= seg->type    << 8;
6945         return flags;
6946 }
6947
6948 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6949 {
6950         struct kvm_segment seg;
6951         int offset;
6952
6953         kvm_get_segment(vcpu, &seg, n);
6954         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6955
6956         if (n < 3)
6957                 offset = 0x7f84 + n * 12;
6958         else
6959                 offset = 0x7f2c + (n - 3) * 12;
6960
6961         put_smstate(u32, buf, offset + 8, seg.base);
6962         put_smstate(u32, buf, offset + 4, seg.limit);
6963         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6964 }
6965
6966 #ifdef CONFIG_X86_64
6967 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6968 {
6969         struct kvm_segment seg;
6970         int offset;
6971         u16 flags;
6972
6973         kvm_get_segment(vcpu, &seg, n);
6974         offset = 0x7e00 + n * 16;
6975
6976         flags = enter_smm_get_segment_flags(&seg) >> 8;
6977         put_smstate(u16, buf, offset, seg.selector);
6978         put_smstate(u16, buf, offset + 2, flags);
6979         put_smstate(u32, buf, offset + 4, seg.limit);
6980         put_smstate(u64, buf, offset + 8, seg.base);
6981 }
6982 #endif
6983
6984 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6985 {
6986         struct desc_ptr dt;
6987         struct kvm_segment seg;
6988         unsigned long val;
6989         int i;
6990
6991         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6992         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6993         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6994         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6995
6996         for (i = 0; i < 8; i++)
6997                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6998
6999         kvm_get_dr(vcpu, 6, &val);
7000         put_smstate(u32, buf, 0x7fcc, (u32)val);
7001         kvm_get_dr(vcpu, 7, &val);
7002         put_smstate(u32, buf, 0x7fc8, (u32)val);
7003
7004         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7005         put_smstate(u32, buf, 0x7fc4, seg.selector);
7006         put_smstate(u32, buf, 0x7f64, seg.base);
7007         put_smstate(u32, buf, 0x7f60, seg.limit);
7008         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7009
7010         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7011         put_smstate(u32, buf, 0x7fc0, seg.selector);
7012         put_smstate(u32, buf, 0x7f80, seg.base);
7013         put_smstate(u32, buf, 0x7f7c, seg.limit);
7014         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7015
7016         kvm_x86_ops->get_gdt(vcpu, &dt);
7017         put_smstate(u32, buf, 0x7f74, dt.address);
7018         put_smstate(u32, buf, 0x7f70, dt.size);
7019
7020         kvm_x86_ops->get_idt(vcpu, &dt);
7021         put_smstate(u32, buf, 0x7f58, dt.address);
7022         put_smstate(u32, buf, 0x7f54, dt.size);
7023
7024         for (i = 0; i < 6; i++)
7025                 enter_smm_save_seg_32(vcpu, buf, i);
7026
7027         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7028
7029         /* revision id */
7030         put_smstate(u32, buf, 0x7efc, 0x00020000);
7031         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7032 }
7033
7034 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7035 {
7036 #ifdef CONFIG_X86_64
7037         struct desc_ptr dt;
7038         struct kvm_segment seg;
7039         unsigned long val;
7040         int i;
7041
7042         for (i = 0; i < 16; i++)
7043                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7044
7045         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7046         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7047
7048         kvm_get_dr(vcpu, 6, &val);
7049         put_smstate(u64, buf, 0x7f68, val);
7050         kvm_get_dr(vcpu, 7, &val);
7051         put_smstate(u64, buf, 0x7f60, val);
7052
7053         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7054         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7055         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7056
7057         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7058
7059         /* revision id */
7060         put_smstate(u32, buf, 0x7efc, 0x00020064);
7061
7062         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7063
7064         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7065         put_smstate(u16, buf, 0x7e90, seg.selector);
7066         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7067         put_smstate(u32, buf, 0x7e94, seg.limit);
7068         put_smstate(u64, buf, 0x7e98, seg.base);
7069
7070         kvm_x86_ops->get_idt(vcpu, &dt);
7071         put_smstate(u32, buf, 0x7e84, dt.size);
7072         put_smstate(u64, buf, 0x7e88, dt.address);
7073
7074         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7075         put_smstate(u16, buf, 0x7e70, seg.selector);
7076         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7077         put_smstate(u32, buf, 0x7e74, seg.limit);
7078         put_smstate(u64, buf, 0x7e78, seg.base);
7079
7080         kvm_x86_ops->get_gdt(vcpu, &dt);
7081         put_smstate(u32, buf, 0x7e64, dt.size);
7082         put_smstate(u64, buf, 0x7e68, dt.address);
7083
7084         for (i = 0; i < 6; i++)
7085                 enter_smm_save_seg_64(vcpu, buf, i);
7086 #else
7087         WARN_ON_ONCE(1);
7088 #endif
7089 }
7090
7091 static void enter_smm(struct kvm_vcpu *vcpu)
7092 {
7093         struct kvm_segment cs, ds;
7094         struct desc_ptr dt;
7095         char buf[512];
7096         u32 cr0;
7097
7098         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7099         memset(buf, 0, 512);
7100         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7101                 enter_smm_save_state_64(vcpu, buf);
7102         else
7103                 enter_smm_save_state_32(vcpu, buf);
7104
7105         /*
7106          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7107          * vCPU state (e.g. leave guest mode) after we've saved the state into
7108          * the SMM state-save area.
7109          */
7110         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7111
7112         vcpu->arch.hflags |= HF_SMM_MASK;
7113         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7114
7115         if (kvm_x86_ops->get_nmi_mask(vcpu))
7116                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7117         else
7118                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7119
7120         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7121         kvm_rip_write(vcpu, 0x8000);
7122
7123         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7124         kvm_x86_ops->set_cr0(vcpu, cr0);
7125         vcpu->arch.cr0 = cr0;
7126
7127         kvm_x86_ops->set_cr4(vcpu, 0);
7128
7129         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7130         dt.address = dt.size = 0;
7131         kvm_x86_ops->set_idt(vcpu, &dt);
7132
7133         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7134
7135         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7136         cs.base = vcpu->arch.smbase;
7137
7138         ds.selector = 0;
7139         ds.base = 0;
7140
7141         cs.limit    = ds.limit = 0xffffffff;
7142         cs.type     = ds.type = 0x3;
7143         cs.dpl      = ds.dpl = 0;
7144         cs.db       = ds.db = 0;
7145         cs.s        = ds.s = 1;
7146         cs.l        = ds.l = 0;
7147         cs.g        = ds.g = 1;
7148         cs.avl      = ds.avl = 0;
7149         cs.present  = ds.present = 1;
7150         cs.unusable = ds.unusable = 0;
7151         cs.padding  = ds.padding = 0;
7152
7153         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7154         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7155         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7156         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7157         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7158         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7159
7160         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7161                 kvm_x86_ops->set_efer(vcpu, 0);
7162
7163         kvm_update_cpuid(vcpu);
7164         kvm_mmu_reset_context(vcpu);
7165 }
7166
7167 static void process_smi(struct kvm_vcpu *vcpu)
7168 {
7169         vcpu->arch.smi_pending = true;
7170         kvm_make_request(KVM_REQ_EVENT, vcpu);
7171 }
7172
7173 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7174 {
7175         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7176 }
7177
7178 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7179 {
7180         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7181                 return;
7182
7183         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7184
7185         if (irqchip_split(vcpu->kvm))
7186                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7187         else {
7188                 if (vcpu->arch.apicv_active)
7189                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7190                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7191         }
7192
7193         if (is_guest_mode(vcpu))
7194                 vcpu->arch.load_eoi_exitmap_pending = true;
7195         else
7196                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7197 }
7198
7199 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7200 {
7201         u64 eoi_exit_bitmap[4];
7202
7203         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7204                 return;
7205
7206         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7207                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7208         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7209 }
7210
7211 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7212                 unsigned long start, unsigned long end)
7213 {
7214         unsigned long apic_address;
7215
7216         /*
7217          * The physical address of apic access page is stored in the VMCS.
7218          * Update it when it becomes invalid.
7219          */
7220         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7221         if (start <= apic_address && apic_address < end)
7222                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7223 }
7224
7225 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7226 {
7227         struct page *page = NULL;
7228
7229         if (!lapic_in_kernel(vcpu))
7230                 return;
7231
7232         if (!kvm_x86_ops->set_apic_access_page_addr)
7233                 return;
7234
7235         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7236         if (is_error_page(page))
7237                 return;
7238         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7239
7240         /*
7241          * Do not pin apic access page in memory, the MMU notifier
7242          * will call us again if it is migrated or swapped out.
7243          */
7244         put_page(page);
7245 }
7246 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7247
7248 /*
7249  * Returns 1 to let vcpu_run() continue the guest execution loop without
7250  * exiting to the userspace.  Otherwise, the value will be returned to the
7251  * userspace.
7252  */
7253 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7254 {
7255         int r;
7256         bool req_int_win =
7257                 dm_request_for_irq_injection(vcpu) &&
7258                 kvm_cpu_accept_dm_intr(vcpu);
7259
7260         bool req_immediate_exit = false;
7261
7262         if (kvm_request_pending(vcpu)) {
7263                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7264                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7265                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7266                         kvm_mmu_unload(vcpu);
7267                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7268                         __kvm_migrate_timers(vcpu);
7269                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7270                         kvm_gen_update_masterclock(vcpu->kvm);
7271                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7272                         kvm_gen_kvmclock_update(vcpu);
7273                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7274                         r = kvm_guest_time_update(vcpu);
7275                         if (unlikely(r))
7276                                 goto out;
7277                 }
7278                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7279                         kvm_mmu_sync_roots(vcpu);
7280                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7281                         kvm_vcpu_flush_tlb(vcpu, true);
7282                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7283                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7284                         r = 0;
7285                         goto out;
7286                 }
7287                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7288                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7289                         vcpu->mmio_needed = 0;
7290                         r = 0;
7291                         goto out;
7292                 }
7293                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7294                         /* Page is swapped out. Do synthetic halt */
7295                         vcpu->arch.apf.halted = true;
7296                         r = 1;
7297                         goto out;
7298                 }
7299                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7300                         record_steal_time(vcpu);
7301                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7302                         process_smi(vcpu);
7303                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7304                         process_nmi(vcpu);
7305                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7306                         kvm_pmu_handle_event(vcpu);
7307                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7308                         kvm_pmu_deliver_pmi(vcpu);
7309                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7310                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7311                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7312                                      vcpu->arch.ioapic_handled_vectors)) {
7313                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7314                                 vcpu->run->eoi.vector =
7315                                                 vcpu->arch.pending_ioapic_eoi;
7316                                 r = 0;
7317                                 goto out;
7318                         }
7319                 }
7320                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7321                         vcpu_scan_ioapic(vcpu);
7322                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7323                         vcpu_load_eoi_exitmap(vcpu);
7324                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7325                         kvm_vcpu_reload_apic_access_page(vcpu);
7326                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7327                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7328                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7329                         r = 0;
7330                         goto out;
7331                 }
7332                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7333                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7334                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7335                         r = 0;
7336                         goto out;
7337                 }
7338                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7339                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7340                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7341                         r = 0;
7342                         goto out;
7343                 }
7344
7345                 /*
7346                  * KVM_REQ_HV_STIMER has to be processed after
7347                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7348                  * depend on the guest clock being up-to-date
7349                  */
7350                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7351                         kvm_hv_process_stimers(vcpu);
7352         }
7353
7354         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7355                 ++vcpu->stat.req_event;
7356                 kvm_apic_accept_events(vcpu);
7357                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7358                         r = 1;
7359                         goto out;
7360                 }
7361
7362                 if (inject_pending_event(vcpu, req_int_win) != 0)
7363                         req_immediate_exit = true;
7364                 else {
7365                         /* Enable SMI/NMI/IRQ window open exits if needed.
7366                          *
7367                          * SMIs have three cases:
7368                          * 1) They can be nested, and then there is nothing to
7369                          *    do here because RSM will cause a vmexit anyway.
7370                          * 2) There is an ISA-specific reason why SMI cannot be
7371                          *    injected, and the moment when this changes can be
7372                          *    intercepted.
7373                          * 3) Or the SMI can be pending because
7374                          *    inject_pending_event has completed the injection
7375                          *    of an IRQ or NMI from the previous vmexit, and
7376                          *    then we request an immediate exit to inject the
7377                          *    SMI.
7378                          */
7379                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7380                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7381                                         req_immediate_exit = true;
7382                         if (vcpu->arch.nmi_pending)
7383                                 kvm_x86_ops->enable_nmi_window(vcpu);
7384                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7385                                 kvm_x86_ops->enable_irq_window(vcpu);
7386                         WARN_ON(vcpu->arch.exception.pending);
7387                 }
7388
7389                 if (kvm_lapic_enabled(vcpu)) {
7390                         update_cr8_intercept(vcpu);
7391                         kvm_lapic_sync_to_vapic(vcpu);
7392                 }
7393         }
7394
7395         r = kvm_mmu_reload(vcpu);
7396         if (unlikely(r)) {
7397                 goto cancel_injection;
7398         }
7399
7400         preempt_disable();
7401
7402         kvm_x86_ops->prepare_guest_switch(vcpu);
7403
7404         /*
7405          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7406          * IPI are then delayed after guest entry, which ensures that they
7407          * result in virtual interrupt delivery.
7408          */
7409         local_irq_disable();
7410         vcpu->mode = IN_GUEST_MODE;
7411
7412         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7413
7414         /*
7415          * 1) We should set ->mode before checking ->requests.  Please see
7416          * the comment in kvm_vcpu_exiting_guest_mode().
7417          *
7418          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7419          * pairs with the memory barrier implicit in pi_test_and_set_on
7420          * (see vmx_deliver_posted_interrupt).
7421          *
7422          * 3) This also orders the write to mode from any reads to the page
7423          * tables done while the VCPU is running.  Please see the comment
7424          * in kvm_flush_remote_tlbs.
7425          */
7426         smp_mb__after_srcu_read_unlock();
7427
7428         /*
7429          * This handles the case where a posted interrupt was
7430          * notified with kvm_vcpu_kick.
7431          */
7432         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7433                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7434
7435         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7436             || need_resched() || signal_pending(current)) {
7437                 vcpu->mode = OUTSIDE_GUEST_MODE;
7438                 smp_wmb();
7439                 local_irq_enable();
7440                 preempt_enable();
7441                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7442                 r = 1;
7443                 goto cancel_injection;
7444         }
7445
7446         kvm_load_guest_xcr0(vcpu);
7447
7448         if (req_immediate_exit) {
7449                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7450                 smp_send_reschedule(vcpu->cpu);
7451         }
7452
7453         trace_kvm_entry(vcpu->vcpu_id);
7454         if (lapic_timer_advance_ns)
7455                 wait_lapic_expire(vcpu);
7456         guest_enter_irqoff();
7457
7458         if (unlikely(vcpu->arch.switch_db_regs)) {
7459                 set_debugreg(0, 7);
7460                 set_debugreg(vcpu->arch.eff_db[0], 0);
7461                 set_debugreg(vcpu->arch.eff_db[1], 1);
7462                 set_debugreg(vcpu->arch.eff_db[2], 2);
7463                 set_debugreg(vcpu->arch.eff_db[3], 3);
7464                 set_debugreg(vcpu->arch.dr6, 6);
7465                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7466         }
7467
7468         kvm_x86_ops->run(vcpu);
7469
7470         /*
7471          * Do this here before restoring debug registers on the host.  And
7472          * since we do this before handling the vmexit, a DR access vmexit
7473          * can (a) read the correct value of the debug registers, (b) set
7474          * KVM_DEBUGREG_WONT_EXIT again.
7475          */
7476         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7477                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7478                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7479                 kvm_update_dr0123(vcpu);
7480                 kvm_update_dr6(vcpu);
7481                 kvm_update_dr7(vcpu);
7482                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7483         }
7484
7485         /*
7486          * If the guest has used debug registers, at least dr7
7487          * will be disabled while returning to the host.
7488          * If we don't have active breakpoints in the host, we don't
7489          * care about the messed up debug address registers. But if
7490          * we have some of them active, restore the old state.
7491          */
7492         if (hw_breakpoint_active())
7493                 hw_breakpoint_restore();
7494
7495         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7496
7497         vcpu->mode = OUTSIDE_GUEST_MODE;
7498         smp_wmb();
7499
7500         kvm_put_guest_xcr0(vcpu);
7501
7502         kvm_before_interrupt(vcpu);
7503         kvm_x86_ops->handle_external_intr(vcpu);
7504         kvm_after_interrupt(vcpu);
7505
7506         ++vcpu->stat.exits;
7507
7508         guest_exit_irqoff();
7509
7510         local_irq_enable();
7511         preempt_enable();
7512
7513         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7514
7515         /*
7516          * Profile KVM exit RIPs:
7517          */
7518         if (unlikely(prof_on == KVM_PROFILING)) {
7519                 unsigned long rip = kvm_rip_read(vcpu);
7520                 profile_hit(KVM_PROFILING, (void *)rip);
7521         }
7522
7523         if (unlikely(vcpu->arch.tsc_always_catchup))
7524                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7525
7526         if (vcpu->arch.apic_attention)
7527                 kvm_lapic_sync_from_vapic(vcpu);
7528
7529         vcpu->arch.gpa_available = false;
7530         r = kvm_x86_ops->handle_exit(vcpu);
7531         return r;
7532
7533 cancel_injection:
7534         kvm_x86_ops->cancel_injection(vcpu);
7535         if (unlikely(vcpu->arch.apic_attention))
7536                 kvm_lapic_sync_from_vapic(vcpu);
7537 out:
7538         return r;
7539 }
7540
7541 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7542 {
7543         if (!kvm_arch_vcpu_runnable(vcpu) &&
7544             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7545                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7546                 kvm_vcpu_block(vcpu);
7547                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7548
7549                 if (kvm_x86_ops->post_block)
7550                         kvm_x86_ops->post_block(vcpu);
7551
7552                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7553                         return 1;
7554         }
7555
7556         kvm_apic_accept_events(vcpu);
7557         switch(vcpu->arch.mp_state) {
7558         case KVM_MP_STATE_HALTED:
7559                 vcpu->arch.pv.pv_unhalted = false;
7560                 vcpu->arch.mp_state =
7561                         KVM_MP_STATE_RUNNABLE;
7562         case KVM_MP_STATE_RUNNABLE:
7563                 vcpu->arch.apf.halted = false;
7564                 break;
7565         case KVM_MP_STATE_INIT_RECEIVED:
7566                 break;
7567         default:
7568                 return -EINTR;
7569                 break;
7570         }
7571         return 1;
7572 }
7573
7574 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7575 {
7576         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7577                 kvm_x86_ops->check_nested_events(vcpu, false);
7578
7579         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7580                 !vcpu->arch.apf.halted);
7581 }
7582
7583 static int vcpu_run(struct kvm_vcpu *vcpu)
7584 {
7585         int r;
7586         struct kvm *kvm = vcpu->kvm;
7587
7588         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7589
7590         for (;;) {
7591                 if (kvm_vcpu_running(vcpu)) {
7592                         r = vcpu_enter_guest(vcpu);
7593                 } else {
7594                         r = vcpu_block(kvm, vcpu);
7595                 }
7596
7597                 if (r <= 0)
7598                         break;
7599
7600                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7601                 if (kvm_cpu_has_pending_timer(vcpu))
7602                         kvm_inject_pending_timer_irqs(vcpu);
7603
7604                 if (dm_request_for_irq_injection(vcpu) &&
7605                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7606                         r = 0;
7607                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7608                         ++vcpu->stat.request_irq_exits;
7609                         break;
7610                 }
7611
7612                 kvm_check_async_pf_completion(vcpu);
7613
7614                 if (signal_pending(current)) {
7615                         r = -EINTR;
7616                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7617                         ++vcpu->stat.signal_exits;
7618                         break;
7619                 }
7620                 if (need_resched()) {
7621                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7622                         cond_resched();
7623                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7624                 }
7625         }
7626
7627         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7628
7629         return r;
7630 }
7631
7632 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7633 {
7634         int r;
7635         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7636         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7637         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7638         if (r != EMULATE_DONE)
7639                 return 0;
7640         return 1;
7641 }
7642
7643 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7644 {
7645         BUG_ON(!vcpu->arch.pio.count);
7646
7647         return complete_emulated_io(vcpu);
7648 }
7649
7650 /*
7651  * Implements the following, as a state machine:
7652  *
7653  * read:
7654  *   for each fragment
7655  *     for each mmio piece in the fragment
7656  *       write gpa, len
7657  *       exit
7658  *       copy data
7659  *   execute insn
7660  *
7661  * write:
7662  *   for each fragment
7663  *     for each mmio piece in the fragment
7664  *       write gpa, len
7665  *       copy data
7666  *       exit
7667  */
7668 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7669 {
7670         struct kvm_run *run = vcpu->run;
7671         struct kvm_mmio_fragment *frag;
7672         unsigned len;
7673
7674         BUG_ON(!vcpu->mmio_needed);
7675
7676         /* Complete previous fragment */
7677         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7678         len = min(8u, frag->len);
7679         if (!vcpu->mmio_is_write)
7680                 memcpy(frag->data, run->mmio.data, len);
7681
7682         if (frag->len <= 8) {
7683                 /* Switch to the next fragment. */
7684                 frag++;
7685                 vcpu->mmio_cur_fragment++;
7686         } else {
7687                 /* Go forward to the next mmio piece. */
7688                 frag->data += len;
7689                 frag->gpa += len;
7690                 frag->len -= len;
7691         }
7692
7693         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7694                 vcpu->mmio_needed = 0;
7695
7696                 /* FIXME: return into emulator if single-stepping.  */
7697                 if (vcpu->mmio_is_write)
7698                         return 1;
7699                 vcpu->mmio_read_completed = 1;
7700                 return complete_emulated_io(vcpu);
7701         }
7702
7703         run->exit_reason = KVM_EXIT_MMIO;
7704         run->mmio.phys_addr = frag->gpa;
7705         if (vcpu->mmio_is_write)
7706                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7707         run->mmio.len = min(8u, frag->len);
7708         run->mmio.is_write = vcpu->mmio_is_write;
7709         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7710         return 0;
7711 }
7712
7713 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7714 {
7715         int r;
7716
7717         vcpu_load(vcpu);
7718         kvm_sigset_activate(vcpu);
7719         kvm_load_guest_fpu(vcpu);
7720
7721         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7722                 if (kvm_run->immediate_exit) {
7723                         r = -EINTR;
7724                         goto out;
7725                 }
7726                 kvm_vcpu_block(vcpu);
7727                 kvm_apic_accept_events(vcpu);
7728                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7729                 r = -EAGAIN;
7730                 if (signal_pending(current)) {
7731                         r = -EINTR;
7732                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7733                         ++vcpu->stat.signal_exits;
7734                 }
7735                 goto out;
7736         }
7737
7738         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7739                 r = -EINVAL;
7740                 goto out;
7741         }
7742
7743         if (vcpu->run->kvm_dirty_regs) {
7744                 r = sync_regs(vcpu);
7745                 if (r != 0)
7746                         goto out;
7747         }
7748
7749         /* re-sync apic's tpr */
7750         if (!lapic_in_kernel(vcpu)) {
7751                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7752                         r = -EINVAL;
7753                         goto out;
7754                 }
7755         }
7756
7757         if (unlikely(vcpu->arch.complete_userspace_io)) {
7758                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7759                 vcpu->arch.complete_userspace_io = NULL;
7760                 r = cui(vcpu);
7761                 if (r <= 0)
7762                         goto out;
7763         } else
7764                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7765
7766         if (kvm_run->immediate_exit)
7767                 r = -EINTR;
7768         else
7769                 r = vcpu_run(vcpu);
7770
7771 out:
7772         kvm_put_guest_fpu(vcpu);
7773         if (vcpu->run->kvm_valid_regs)
7774                 store_regs(vcpu);
7775         post_kvm_run_save(vcpu);
7776         kvm_sigset_deactivate(vcpu);
7777
7778         vcpu_put(vcpu);
7779         return r;
7780 }
7781
7782 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7783 {
7784         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7785                 /*
7786                  * We are here if userspace calls get_regs() in the middle of
7787                  * instruction emulation. Registers state needs to be copied
7788                  * back from emulation context to vcpu. Userspace shouldn't do
7789                  * that usually, but some bad designed PV devices (vmware
7790                  * backdoor interface) need this to work
7791                  */
7792                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7793                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7794         }
7795         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7796         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7797         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7798         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7799         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7800         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7801         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7802         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7803 #ifdef CONFIG_X86_64
7804         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7805         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7806         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7807         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7808         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7809         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7810         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7811         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7812 #endif
7813
7814         regs->rip = kvm_rip_read(vcpu);
7815         regs->rflags = kvm_get_rflags(vcpu);
7816 }
7817
7818 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7819 {
7820         vcpu_load(vcpu);
7821         __get_regs(vcpu, regs);
7822         vcpu_put(vcpu);
7823         return 0;
7824 }
7825
7826 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7827 {
7828         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7829         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7830
7831         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7832         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7833         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7834         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7835         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7836         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7837         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7838         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7839 #ifdef CONFIG_X86_64
7840         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7841         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7842         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7843         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7844         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7845         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7846         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7847         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7848 #endif
7849
7850         kvm_rip_write(vcpu, regs->rip);
7851         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7852
7853         vcpu->arch.exception.pending = false;
7854
7855         kvm_make_request(KVM_REQ_EVENT, vcpu);
7856 }
7857
7858 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7859 {
7860         vcpu_load(vcpu);
7861         __set_regs(vcpu, regs);
7862         vcpu_put(vcpu);
7863         return 0;
7864 }
7865
7866 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7867 {
7868         struct kvm_segment cs;
7869
7870         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7871         *db = cs.db;
7872         *l = cs.l;
7873 }
7874 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7875
7876 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7877 {
7878         struct desc_ptr dt;
7879
7880         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7881         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7882         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7883         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7884         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7885         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7886
7887         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7888         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7889
7890         kvm_x86_ops->get_idt(vcpu, &dt);
7891         sregs->idt.limit = dt.size;
7892         sregs->idt.base = dt.address;
7893         kvm_x86_ops->get_gdt(vcpu, &dt);
7894         sregs->gdt.limit = dt.size;
7895         sregs->gdt.base = dt.address;
7896
7897         sregs->cr0 = kvm_read_cr0(vcpu);
7898         sregs->cr2 = vcpu->arch.cr2;
7899         sregs->cr3 = kvm_read_cr3(vcpu);
7900         sregs->cr4 = kvm_read_cr4(vcpu);
7901         sregs->cr8 = kvm_get_cr8(vcpu);
7902         sregs->efer = vcpu->arch.efer;
7903         sregs->apic_base = kvm_get_apic_base(vcpu);
7904
7905         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7906
7907         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7908                 set_bit(vcpu->arch.interrupt.nr,
7909                         (unsigned long *)sregs->interrupt_bitmap);
7910 }
7911
7912 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7913                                   struct kvm_sregs *sregs)
7914 {
7915         vcpu_load(vcpu);
7916         __get_sregs(vcpu, sregs);
7917         vcpu_put(vcpu);
7918         return 0;
7919 }
7920
7921 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7922                                     struct kvm_mp_state *mp_state)
7923 {
7924         vcpu_load(vcpu);
7925
7926         kvm_apic_accept_events(vcpu);
7927         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7928                                         vcpu->arch.pv.pv_unhalted)
7929                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7930         else
7931                 mp_state->mp_state = vcpu->arch.mp_state;
7932
7933         vcpu_put(vcpu);
7934         return 0;
7935 }
7936
7937 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7938                                     struct kvm_mp_state *mp_state)
7939 {
7940         int ret = -EINVAL;
7941
7942         vcpu_load(vcpu);
7943
7944         if (!lapic_in_kernel(vcpu) &&
7945             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7946                 goto out;
7947
7948         /* INITs are latched while in SMM */
7949         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7950             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7951              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7952                 goto out;
7953
7954         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7955                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7956                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7957         } else
7958                 vcpu->arch.mp_state = mp_state->mp_state;
7959         kvm_make_request(KVM_REQ_EVENT, vcpu);
7960
7961         ret = 0;
7962 out:
7963         vcpu_put(vcpu);
7964         return ret;
7965 }
7966
7967 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7968                     int reason, bool has_error_code, u32 error_code)
7969 {
7970         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7971         int ret;
7972
7973         init_emulate_ctxt(vcpu);
7974
7975         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7976                                    has_error_code, error_code);
7977
7978         if (ret)
7979                 return EMULATE_FAIL;
7980
7981         kvm_rip_write(vcpu, ctxt->eip);
7982         kvm_set_rflags(vcpu, ctxt->eflags);
7983         kvm_make_request(KVM_REQ_EVENT, vcpu);
7984         return EMULATE_DONE;
7985 }
7986 EXPORT_SYMBOL_GPL(kvm_task_switch);
7987
7988 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7989 {
7990         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7991                 /*
7992                  * When EFER.LME and CR0.PG are set, the processor is in
7993                  * 64-bit mode (though maybe in a 32-bit code segment).
7994                  * CR4.PAE and EFER.LMA must be set.
7995                  */
7996                 if (!(sregs->cr4 & X86_CR4_PAE)
7997                     || !(sregs->efer & EFER_LMA))
7998                         return -EINVAL;
7999         } else {
8000                 /*
8001                  * Not in 64-bit mode: EFER.LMA is clear and the code
8002                  * segment cannot be 64-bit.
8003                  */
8004                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8005                         return -EINVAL;
8006         }
8007
8008         return 0;
8009 }
8010
8011 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8012 {
8013         struct msr_data apic_base_msr;
8014         int mmu_reset_needed = 0;
8015         int cpuid_update_needed = 0;
8016         int pending_vec, max_bits, idx;
8017         struct desc_ptr dt;
8018         int ret = -EINVAL;
8019
8020         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8021                         (sregs->cr4 & X86_CR4_OSXSAVE))
8022                 goto out;
8023
8024         if (kvm_valid_sregs(vcpu, sregs))
8025                 goto out;
8026
8027         apic_base_msr.data = sregs->apic_base;
8028         apic_base_msr.host_initiated = true;
8029         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8030                 goto out;
8031
8032         dt.size = sregs->idt.limit;
8033         dt.address = sregs->idt.base;
8034         kvm_x86_ops->set_idt(vcpu, &dt);
8035         dt.size = sregs->gdt.limit;
8036         dt.address = sregs->gdt.base;
8037         kvm_x86_ops->set_gdt(vcpu, &dt);
8038
8039         vcpu->arch.cr2 = sregs->cr2;
8040         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8041         vcpu->arch.cr3 = sregs->cr3;
8042         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8043
8044         kvm_set_cr8(vcpu, sregs->cr8);
8045
8046         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8047         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8048
8049         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8050         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8051         vcpu->arch.cr0 = sregs->cr0;
8052
8053         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8054         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8055                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8056         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8057         if (cpuid_update_needed)
8058                 kvm_update_cpuid(vcpu);
8059
8060         idx = srcu_read_lock(&vcpu->kvm->srcu);
8061         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8062                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8063                 mmu_reset_needed = 1;
8064         }
8065         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8066
8067         if (mmu_reset_needed)
8068                 kvm_mmu_reset_context(vcpu);
8069
8070         max_bits = KVM_NR_INTERRUPTS;
8071         pending_vec = find_first_bit(
8072                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8073         if (pending_vec < max_bits) {
8074                 kvm_queue_interrupt(vcpu, pending_vec, false);
8075                 pr_debug("Set back pending irq %d\n", pending_vec);
8076         }
8077
8078         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8079         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8080         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8081         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8082         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8083         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8084
8085         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8086         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8087
8088         update_cr8_intercept(vcpu);
8089
8090         /* Older userspace won't unhalt the vcpu on reset. */
8091         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8092             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8093             !is_protmode(vcpu))
8094                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8095
8096         kvm_make_request(KVM_REQ_EVENT, vcpu);
8097
8098         ret = 0;
8099 out:
8100         return ret;
8101 }
8102
8103 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8104                                   struct kvm_sregs *sregs)
8105 {
8106         int ret;
8107
8108         vcpu_load(vcpu);
8109         ret = __set_sregs(vcpu, sregs);
8110         vcpu_put(vcpu);
8111         return ret;
8112 }
8113
8114 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8115                                         struct kvm_guest_debug *dbg)
8116 {
8117         unsigned long rflags;
8118         int i, r;
8119
8120         vcpu_load(vcpu);
8121
8122         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8123                 r = -EBUSY;
8124                 if (vcpu->arch.exception.pending)
8125                         goto out;
8126                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8127                         kvm_queue_exception(vcpu, DB_VECTOR);
8128                 else
8129                         kvm_queue_exception(vcpu, BP_VECTOR);
8130         }
8131
8132         /*
8133          * Read rflags as long as potentially injected trace flags are still
8134          * filtered out.
8135          */
8136         rflags = kvm_get_rflags(vcpu);
8137
8138         vcpu->guest_debug = dbg->control;
8139         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8140                 vcpu->guest_debug = 0;
8141
8142         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8143                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8144                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8145                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8146         } else {
8147                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8148                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8149         }
8150         kvm_update_dr7(vcpu);
8151
8152         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8153                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8154                         get_segment_base(vcpu, VCPU_SREG_CS);
8155
8156         /*
8157          * Trigger an rflags update that will inject or remove the trace
8158          * flags.
8159          */
8160         kvm_set_rflags(vcpu, rflags);
8161
8162         kvm_x86_ops->update_bp_intercept(vcpu);
8163
8164         r = 0;
8165
8166 out:
8167         vcpu_put(vcpu);
8168         return r;
8169 }
8170
8171 /*
8172  * Translate a guest virtual address to a guest physical address.
8173  */
8174 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8175                                     struct kvm_translation *tr)
8176 {
8177         unsigned long vaddr = tr->linear_address;
8178         gpa_t gpa;
8179         int idx;
8180
8181         vcpu_load(vcpu);
8182
8183         idx = srcu_read_lock(&vcpu->kvm->srcu);
8184         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8185         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8186         tr->physical_address = gpa;
8187         tr->valid = gpa != UNMAPPED_GVA;
8188         tr->writeable = 1;
8189         tr->usermode = 0;
8190
8191         vcpu_put(vcpu);
8192         return 0;
8193 }
8194
8195 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8196 {
8197         struct fxregs_state *fxsave;
8198
8199         vcpu_load(vcpu);
8200
8201         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8202         memcpy(fpu->fpr, fxsave->st_space, 128);
8203         fpu->fcw = fxsave->cwd;
8204         fpu->fsw = fxsave->swd;
8205         fpu->ftwx = fxsave->twd;
8206         fpu->last_opcode = fxsave->fop;
8207         fpu->last_ip = fxsave->rip;
8208         fpu->last_dp = fxsave->rdp;
8209         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8210
8211         vcpu_put(vcpu);
8212         return 0;
8213 }
8214
8215 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8216 {
8217         struct fxregs_state *fxsave;
8218
8219         vcpu_load(vcpu);
8220
8221         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8222
8223         memcpy(fxsave->st_space, fpu->fpr, 128);
8224         fxsave->cwd = fpu->fcw;
8225         fxsave->swd = fpu->fsw;
8226         fxsave->twd = fpu->ftwx;
8227         fxsave->fop = fpu->last_opcode;
8228         fxsave->rip = fpu->last_ip;
8229         fxsave->rdp = fpu->last_dp;
8230         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8231
8232         vcpu_put(vcpu);
8233         return 0;
8234 }
8235
8236 static void store_regs(struct kvm_vcpu *vcpu)
8237 {
8238         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8239
8240         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8241                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8242
8243         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8244                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8245
8246         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8247                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8248                                 vcpu, &vcpu->run->s.regs.events);
8249 }
8250
8251 static int sync_regs(struct kvm_vcpu *vcpu)
8252 {
8253         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8254                 return -EINVAL;
8255
8256         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8257                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8258                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8259         }
8260         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8261                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8262                         return -EINVAL;
8263                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8264         }
8265         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8266                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8267                                 vcpu, &vcpu->run->s.regs.events))
8268                         return -EINVAL;
8269                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8270         }
8271
8272         return 0;
8273 }
8274
8275 static void fx_init(struct kvm_vcpu *vcpu)
8276 {
8277         fpstate_init(&vcpu->arch.guest_fpu.state);
8278         if (boot_cpu_has(X86_FEATURE_XSAVES))
8279                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8280                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8281
8282         /*
8283          * Ensure guest xcr0 is valid for loading
8284          */
8285         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8286
8287         vcpu->arch.cr0 |= X86_CR0_ET;
8288 }
8289
8290 /* Swap (qemu) user FPU context for the guest FPU context. */
8291 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8292 {
8293         preempt_disable();
8294         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8295         /* PKRU is separately restored in kvm_x86_ops->run.  */
8296         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8297                                 ~XFEATURE_MASK_PKRU);
8298         preempt_enable();
8299         trace_kvm_fpu(1);
8300 }
8301
8302 /* When vcpu_run ends, restore user space FPU context. */
8303 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8304 {
8305         preempt_disable();
8306         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8307         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8308         preempt_enable();
8309         ++vcpu->stat.fpu_reload;
8310         trace_kvm_fpu(0);
8311 }
8312
8313 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8314 {
8315         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8316
8317         kvmclock_reset(vcpu);
8318
8319         kvm_x86_ops->vcpu_free(vcpu);
8320         free_cpumask_var(wbinvd_dirty_mask);
8321 }
8322
8323 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8324                                                 unsigned int id)
8325 {
8326         struct kvm_vcpu *vcpu;
8327
8328         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8329                 printk_once(KERN_WARNING
8330                 "kvm: SMP vm created on host with unstable TSC; "
8331                 "guest TSC will not be reliable\n");
8332
8333         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8334
8335         return vcpu;
8336 }
8337
8338 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8339 {
8340         kvm_vcpu_mtrr_init(vcpu);
8341         vcpu_load(vcpu);
8342         kvm_vcpu_reset(vcpu, false);
8343         kvm_mmu_setup(vcpu);
8344         vcpu_put(vcpu);
8345         return 0;
8346 }
8347
8348 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8349 {
8350         struct msr_data msr;
8351         struct kvm *kvm = vcpu->kvm;
8352
8353         kvm_hv_vcpu_postcreate(vcpu);
8354
8355         if (mutex_lock_killable(&vcpu->mutex))
8356                 return;
8357         vcpu_load(vcpu);
8358         msr.data = 0x0;
8359         msr.index = MSR_IA32_TSC;
8360         msr.host_initiated = true;
8361         kvm_write_tsc(vcpu, &msr);
8362         vcpu_put(vcpu);
8363         mutex_unlock(&vcpu->mutex);
8364
8365         if (!kvmclock_periodic_sync)
8366                 return;
8367
8368         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8369                                         KVMCLOCK_SYNC_PERIOD);
8370 }
8371
8372 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8373 {
8374         vcpu->arch.apf.msr_val = 0;
8375
8376         vcpu_load(vcpu);
8377         kvm_mmu_unload(vcpu);
8378         vcpu_put(vcpu);
8379
8380         kvm_x86_ops->vcpu_free(vcpu);
8381 }
8382
8383 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8384 {
8385         kvm_lapic_reset(vcpu, init_event);
8386
8387         vcpu->arch.hflags = 0;
8388
8389         vcpu->arch.smi_pending = 0;
8390         vcpu->arch.smi_count = 0;
8391         atomic_set(&vcpu->arch.nmi_queued, 0);
8392         vcpu->arch.nmi_pending = 0;
8393         vcpu->arch.nmi_injected = false;
8394         kvm_clear_interrupt_queue(vcpu);
8395         kvm_clear_exception_queue(vcpu);
8396         vcpu->arch.exception.pending = false;
8397
8398         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8399         kvm_update_dr0123(vcpu);
8400         vcpu->arch.dr6 = DR6_INIT;
8401         kvm_update_dr6(vcpu);
8402         vcpu->arch.dr7 = DR7_FIXED_1;
8403         kvm_update_dr7(vcpu);
8404
8405         vcpu->arch.cr2 = 0;
8406
8407         kvm_make_request(KVM_REQ_EVENT, vcpu);
8408         vcpu->arch.apf.msr_val = 0;
8409         vcpu->arch.st.msr_val = 0;
8410
8411         kvmclock_reset(vcpu);
8412
8413         kvm_clear_async_pf_completion_queue(vcpu);
8414         kvm_async_pf_hash_reset(vcpu);
8415         vcpu->arch.apf.halted = false;
8416
8417         if (kvm_mpx_supported()) {
8418                 void *mpx_state_buffer;
8419
8420                 /*
8421                  * To avoid have the INIT path from kvm_apic_has_events() that be
8422                  * called with loaded FPU and does not let userspace fix the state.
8423                  */
8424                 if (init_event)
8425                         kvm_put_guest_fpu(vcpu);
8426                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8427                                         XFEATURE_MASK_BNDREGS);
8428                 if (mpx_state_buffer)
8429                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8430                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8431                                         XFEATURE_MASK_BNDCSR);
8432                 if (mpx_state_buffer)
8433                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8434                 if (init_event)
8435                         kvm_load_guest_fpu(vcpu);
8436         }
8437
8438         if (!init_event) {
8439                 kvm_pmu_reset(vcpu);
8440                 vcpu->arch.smbase = 0x30000;
8441
8442                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8443                 vcpu->arch.msr_misc_features_enables = 0;
8444
8445                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8446         }
8447
8448         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8449         vcpu->arch.regs_avail = ~0;
8450         vcpu->arch.regs_dirty = ~0;
8451
8452         vcpu->arch.ia32_xss = 0;
8453
8454         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8455 }
8456
8457 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8458 {
8459         struct kvm_segment cs;
8460
8461         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8462         cs.selector = vector << 8;
8463         cs.base = vector << 12;
8464         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8465         kvm_rip_write(vcpu, 0);
8466 }
8467
8468 int kvm_arch_hardware_enable(void)
8469 {
8470         struct kvm *kvm;
8471         struct kvm_vcpu *vcpu;
8472         int i;
8473         int ret;
8474         u64 local_tsc;
8475         u64 max_tsc = 0;
8476         bool stable, backwards_tsc = false;
8477
8478         kvm_shared_msr_cpu_online();
8479         ret = kvm_x86_ops->hardware_enable();
8480         if (ret != 0)
8481                 return ret;
8482
8483         local_tsc = rdtsc();
8484         stable = !kvm_check_tsc_unstable();
8485         list_for_each_entry(kvm, &vm_list, vm_list) {
8486                 kvm_for_each_vcpu(i, vcpu, kvm) {
8487                         if (!stable && vcpu->cpu == smp_processor_id())
8488                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8489                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8490                                 backwards_tsc = true;
8491                                 if (vcpu->arch.last_host_tsc > max_tsc)
8492                                         max_tsc = vcpu->arch.last_host_tsc;
8493                         }
8494                 }
8495         }
8496
8497         /*
8498          * Sometimes, even reliable TSCs go backwards.  This happens on
8499          * platforms that reset TSC during suspend or hibernate actions, but
8500          * maintain synchronization.  We must compensate.  Fortunately, we can
8501          * detect that condition here, which happens early in CPU bringup,
8502          * before any KVM threads can be running.  Unfortunately, we can't
8503          * bring the TSCs fully up to date with real time, as we aren't yet far
8504          * enough into CPU bringup that we know how much real time has actually
8505          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8506          * variables that haven't been updated yet.
8507          *
8508          * So we simply find the maximum observed TSC above, then record the
8509          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8510          * the adjustment will be applied.  Note that we accumulate
8511          * adjustments, in case multiple suspend cycles happen before some VCPU
8512          * gets a chance to run again.  In the event that no KVM threads get a
8513          * chance to run, we will miss the entire elapsed period, as we'll have
8514          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8515          * loose cycle time.  This isn't too big a deal, since the loss will be
8516          * uniform across all VCPUs (not to mention the scenario is extremely
8517          * unlikely). It is possible that a second hibernate recovery happens
8518          * much faster than a first, causing the observed TSC here to be
8519          * smaller; this would require additional padding adjustment, which is
8520          * why we set last_host_tsc to the local tsc observed here.
8521          *
8522          * N.B. - this code below runs only on platforms with reliable TSC,
8523          * as that is the only way backwards_tsc is set above.  Also note
8524          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8525          * have the same delta_cyc adjustment applied if backwards_tsc
8526          * is detected.  Note further, this adjustment is only done once,
8527          * as we reset last_host_tsc on all VCPUs to stop this from being
8528          * called multiple times (one for each physical CPU bringup).
8529          *
8530          * Platforms with unreliable TSCs don't have to deal with this, they
8531          * will be compensated by the logic in vcpu_load, which sets the TSC to
8532          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8533          * guarantee that they stay in perfect synchronization.
8534          */
8535         if (backwards_tsc) {
8536                 u64 delta_cyc = max_tsc - local_tsc;
8537                 list_for_each_entry(kvm, &vm_list, vm_list) {
8538                         kvm->arch.backwards_tsc_observed = true;
8539                         kvm_for_each_vcpu(i, vcpu, kvm) {
8540                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8541                                 vcpu->arch.last_host_tsc = local_tsc;
8542                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8543                         }
8544
8545                         /*
8546                          * We have to disable TSC offset matching.. if you were
8547                          * booting a VM while issuing an S4 host suspend....
8548                          * you may have some problem.  Solving this issue is
8549                          * left as an exercise to the reader.
8550                          */
8551                         kvm->arch.last_tsc_nsec = 0;
8552                         kvm->arch.last_tsc_write = 0;
8553                 }
8554
8555         }
8556         return 0;
8557 }
8558
8559 void kvm_arch_hardware_disable(void)
8560 {
8561         kvm_x86_ops->hardware_disable();
8562         drop_user_return_notifiers();
8563 }
8564
8565 int kvm_arch_hardware_setup(void)
8566 {
8567         int r;
8568
8569         r = kvm_x86_ops->hardware_setup();
8570         if (r != 0)
8571                 return r;
8572
8573         if (kvm_has_tsc_control) {
8574                 /*
8575                  * Make sure the user can only configure tsc_khz values that
8576                  * fit into a signed integer.
8577                  * A min value is not calculated because it will always
8578                  * be 1 on all machines.
8579                  */
8580                 u64 max = min(0x7fffffffULL,
8581                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8582                 kvm_max_guest_tsc_khz = max;
8583
8584                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8585         }
8586
8587         kvm_init_msr_list();
8588         return 0;
8589 }
8590
8591 void kvm_arch_hardware_unsetup(void)
8592 {
8593         kvm_x86_ops->hardware_unsetup();
8594 }
8595
8596 void kvm_arch_check_processor_compat(void *rtn)
8597 {
8598         kvm_x86_ops->check_processor_compatibility(rtn);
8599 }
8600
8601 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8602 {
8603         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8606
8607 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8608 {
8609         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8610 }
8611
8612 struct static_key kvm_no_apic_vcpu __read_mostly;
8613 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8614
8615 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8616 {
8617         struct page *page;
8618         int r;
8619
8620         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8621         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8622         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8623                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8624         else
8625                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8626
8627         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8628         if (!page) {
8629                 r = -ENOMEM;
8630                 goto fail;
8631         }
8632         vcpu->arch.pio_data = page_address(page);
8633
8634         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8635
8636         r = kvm_mmu_create(vcpu);
8637         if (r < 0)
8638                 goto fail_free_pio_data;
8639
8640         if (irqchip_in_kernel(vcpu->kvm)) {
8641                 r = kvm_create_lapic(vcpu);
8642                 if (r < 0)
8643                         goto fail_mmu_destroy;
8644         } else
8645                 static_key_slow_inc(&kvm_no_apic_vcpu);
8646
8647         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8648                                        GFP_KERNEL);
8649         if (!vcpu->arch.mce_banks) {
8650                 r = -ENOMEM;
8651                 goto fail_free_lapic;
8652         }
8653         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8654
8655         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8656                 r = -ENOMEM;
8657                 goto fail_free_mce_banks;
8658         }
8659
8660         fx_init(vcpu);
8661
8662         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8663
8664         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8665
8666         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8667
8668         kvm_async_pf_hash_reset(vcpu);
8669         kvm_pmu_init(vcpu);
8670
8671         vcpu->arch.pending_external_vector = -1;
8672         vcpu->arch.preempted_in_kernel = false;
8673
8674         kvm_hv_vcpu_init(vcpu);
8675
8676         return 0;
8677
8678 fail_free_mce_banks:
8679         kfree(vcpu->arch.mce_banks);
8680 fail_free_lapic:
8681         kvm_free_lapic(vcpu);
8682 fail_mmu_destroy:
8683         kvm_mmu_destroy(vcpu);
8684 fail_free_pio_data:
8685         free_page((unsigned long)vcpu->arch.pio_data);
8686 fail:
8687         return r;
8688 }
8689
8690 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8691 {
8692         int idx;
8693
8694         kvm_hv_vcpu_uninit(vcpu);
8695         kvm_pmu_destroy(vcpu);
8696         kfree(vcpu->arch.mce_banks);
8697         kvm_free_lapic(vcpu);
8698         idx = srcu_read_lock(&vcpu->kvm->srcu);
8699         kvm_mmu_destroy(vcpu);
8700         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8701         free_page((unsigned long)vcpu->arch.pio_data);
8702         if (!lapic_in_kernel(vcpu))
8703                 static_key_slow_dec(&kvm_no_apic_vcpu);
8704 }
8705
8706 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8707 {
8708         kvm_x86_ops->sched_in(vcpu, cpu);
8709 }
8710
8711 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8712 {
8713         if (type)
8714                 return -EINVAL;
8715
8716         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8717         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8718         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8719         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8720         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8721
8722         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8723         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8724         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8725         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8726                 &kvm->arch.irq_sources_bitmap);
8727
8728         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8729         mutex_init(&kvm->arch.apic_map_lock);
8730         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8731
8732         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8733         pvclock_update_vm_gtod_copy(kvm);
8734
8735         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8736         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8737
8738         kvm_hv_init_vm(kvm);
8739         kvm_page_track_init(kvm);
8740         kvm_mmu_init_vm(kvm);
8741
8742         if (kvm_x86_ops->vm_init)
8743                 return kvm_x86_ops->vm_init(kvm);
8744
8745         return 0;
8746 }
8747
8748 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8749 {
8750         vcpu_load(vcpu);
8751         kvm_mmu_unload(vcpu);
8752         vcpu_put(vcpu);
8753 }
8754
8755 static void kvm_free_vcpus(struct kvm *kvm)
8756 {
8757         unsigned int i;
8758         struct kvm_vcpu *vcpu;
8759
8760         /*
8761          * Unpin any mmu pages first.
8762          */
8763         kvm_for_each_vcpu(i, vcpu, kvm) {
8764                 kvm_clear_async_pf_completion_queue(vcpu);
8765                 kvm_unload_vcpu_mmu(vcpu);
8766         }
8767         kvm_for_each_vcpu(i, vcpu, kvm)
8768                 kvm_arch_vcpu_free(vcpu);
8769
8770         mutex_lock(&kvm->lock);
8771         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8772                 kvm->vcpus[i] = NULL;
8773
8774         atomic_set(&kvm->online_vcpus, 0);
8775         mutex_unlock(&kvm->lock);
8776 }
8777
8778 void kvm_arch_sync_events(struct kvm *kvm)
8779 {
8780         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8781         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8782         kvm_free_pit(kvm);
8783 }
8784
8785 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8786 {
8787         int i, r;
8788         unsigned long hva;
8789         struct kvm_memslots *slots = kvm_memslots(kvm);
8790         struct kvm_memory_slot *slot, old;
8791
8792         /* Called with kvm->slots_lock held.  */
8793         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8794                 return -EINVAL;
8795
8796         slot = id_to_memslot(slots, id);
8797         if (size) {
8798                 if (slot->npages)
8799                         return -EEXIST;
8800
8801                 /*
8802                  * MAP_SHARED to prevent internal slot pages from being moved
8803                  * by fork()/COW.
8804                  */
8805                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8806                               MAP_SHARED | MAP_ANONYMOUS, 0);
8807                 if (IS_ERR((void *)hva))
8808                         return PTR_ERR((void *)hva);
8809         } else {
8810                 if (!slot->npages)
8811                         return 0;
8812
8813                 hva = 0;
8814         }
8815
8816         old = *slot;
8817         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8818                 struct kvm_userspace_memory_region m;
8819
8820                 m.slot = id | (i << 16);
8821                 m.flags = 0;
8822                 m.guest_phys_addr = gpa;
8823                 m.userspace_addr = hva;
8824                 m.memory_size = size;
8825                 r = __kvm_set_memory_region(kvm, &m);
8826                 if (r < 0)
8827                         return r;
8828         }
8829
8830         if (!size)
8831                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8832
8833         return 0;
8834 }
8835 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8836
8837 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8838 {
8839         int r;
8840
8841         mutex_lock(&kvm->slots_lock);
8842         r = __x86_set_memory_region(kvm, id, gpa, size);
8843         mutex_unlock(&kvm->slots_lock);
8844
8845         return r;
8846 }
8847 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8848
8849 void kvm_arch_destroy_vm(struct kvm *kvm)
8850 {
8851         if (current->mm == kvm->mm) {
8852                 /*
8853                  * Free memory regions allocated on behalf of userspace,
8854                  * unless the the memory map has changed due to process exit
8855                  * or fd copying.
8856                  */
8857                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8858                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8859                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8860         }
8861         if (kvm_x86_ops->vm_destroy)
8862                 kvm_x86_ops->vm_destroy(kvm);
8863         kvm_pic_destroy(kvm);
8864         kvm_ioapic_destroy(kvm);
8865         kvm_free_vcpus(kvm);
8866         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8867         kvm_mmu_uninit_vm(kvm);
8868         kvm_page_track_cleanup(kvm);
8869         kvm_hv_destroy_vm(kvm);
8870 }
8871
8872 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8873                            struct kvm_memory_slot *dont)
8874 {
8875         int i;
8876
8877         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8878                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8879                         kvfree(free->arch.rmap[i]);
8880                         free->arch.rmap[i] = NULL;
8881                 }
8882                 if (i == 0)
8883                         continue;
8884
8885                 if (!dont || free->arch.lpage_info[i - 1] !=
8886                              dont->arch.lpage_info[i - 1]) {
8887                         kvfree(free->arch.lpage_info[i - 1]);
8888                         free->arch.lpage_info[i - 1] = NULL;
8889                 }
8890         }
8891
8892         kvm_page_track_free_memslot(free, dont);
8893 }
8894
8895 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8896                             unsigned long npages)
8897 {
8898         int i;
8899
8900         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8901                 struct kvm_lpage_info *linfo;
8902                 unsigned long ugfn;
8903                 int lpages;
8904                 int level = i + 1;
8905
8906                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8907                                       slot->base_gfn, level) + 1;
8908
8909                 slot->arch.rmap[i] =
8910                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
8911                                  GFP_KERNEL);
8912                 if (!slot->arch.rmap[i])
8913                         goto out_free;
8914                 if (i == 0)
8915                         continue;
8916
8917                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
8918                 if (!linfo)
8919                         goto out_free;
8920
8921                 slot->arch.lpage_info[i - 1] = linfo;
8922
8923                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8924                         linfo[0].disallow_lpage = 1;
8925                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8926                         linfo[lpages - 1].disallow_lpage = 1;
8927                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8928                 /*
8929                  * If the gfn and userspace address are not aligned wrt each
8930                  * other, or if explicitly asked to, disable large page
8931                  * support for this slot
8932                  */
8933                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8934                     !kvm_largepages_enabled()) {
8935                         unsigned long j;
8936
8937                         for (j = 0; j < lpages; ++j)
8938                                 linfo[j].disallow_lpage = 1;
8939                 }
8940         }
8941
8942         if (kvm_page_track_create_memslot(slot, npages))
8943                 goto out_free;
8944
8945         return 0;
8946
8947 out_free:
8948         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8949                 kvfree(slot->arch.rmap[i]);
8950                 slot->arch.rmap[i] = NULL;
8951                 if (i == 0)
8952                         continue;
8953
8954                 kvfree(slot->arch.lpage_info[i - 1]);
8955                 slot->arch.lpage_info[i - 1] = NULL;
8956         }
8957         return -ENOMEM;
8958 }
8959
8960 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8961 {
8962         /*
8963          * memslots->generation has been incremented.
8964          * mmio generation may have reached its maximum value.
8965          */
8966         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8967 }
8968
8969 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8970                                 struct kvm_memory_slot *memslot,
8971                                 const struct kvm_userspace_memory_region *mem,
8972                                 enum kvm_mr_change change)
8973 {
8974         return 0;
8975 }
8976
8977 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8978                                      struct kvm_memory_slot *new)
8979 {
8980         /* Still write protect RO slot */
8981         if (new->flags & KVM_MEM_READONLY) {
8982                 kvm_mmu_slot_remove_write_access(kvm, new);
8983                 return;
8984         }
8985
8986         /*
8987          * Call kvm_x86_ops dirty logging hooks when they are valid.
8988          *
8989          * kvm_x86_ops->slot_disable_log_dirty is called when:
8990          *
8991          *  - KVM_MR_CREATE with dirty logging is disabled
8992          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8993          *
8994          * The reason is, in case of PML, we need to set D-bit for any slots
8995          * with dirty logging disabled in order to eliminate unnecessary GPA
8996          * logging in PML buffer (and potential PML buffer full VMEXT). This
8997          * guarantees leaving PML enabled during guest's lifetime won't have
8998          * any additonal overhead from PML when guest is running with dirty
8999          * logging disabled for memory slots.
9000          *
9001          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9002          * to dirty logging mode.
9003          *
9004          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9005          *
9006          * In case of write protect:
9007          *
9008          * Write protect all pages for dirty logging.
9009          *
9010          * All the sptes including the large sptes which point to this
9011          * slot are set to readonly. We can not create any new large
9012          * spte on this slot until the end of the logging.
9013          *
9014          * See the comments in fast_page_fault().
9015          */
9016         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9017                 if (kvm_x86_ops->slot_enable_log_dirty)
9018                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9019                 else
9020                         kvm_mmu_slot_remove_write_access(kvm, new);
9021         } else {
9022                 if (kvm_x86_ops->slot_disable_log_dirty)
9023                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9024         }
9025 }
9026
9027 void kvm_arch_commit_memory_region(struct kvm *kvm,
9028                                 const struct kvm_userspace_memory_region *mem,
9029                                 const struct kvm_memory_slot *old,
9030                                 const struct kvm_memory_slot *new,
9031                                 enum kvm_mr_change change)
9032 {
9033         int nr_mmu_pages = 0;
9034
9035         if (!kvm->arch.n_requested_mmu_pages)
9036                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9037
9038         if (nr_mmu_pages)
9039                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9040
9041         /*
9042          * Dirty logging tracks sptes in 4k granularity, meaning that large
9043          * sptes have to be split.  If live migration is successful, the guest
9044          * in the source machine will be destroyed and large sptes will be
9045          * created in the destination. However, if the guest continues to run
9046          * in the source machine (for example if live migration fails), small
9047          * sptes will remain around and cause bad performance.
9048          *
9049          * Scan sptes if dirty logging has been stopped, dropping those
9050          * which can be collapsed into a single large-page spte.  Later
9051          * page faults will create the large-page sptes.
9052          */
9053         if ((change != KVM_MR_DELETE) &&
9054                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9055                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9056                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9057
9058         /*
9059          * Set up write protection and/or dirty logging for the new slot.
9060          *
9061          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9062          * been zapped so no dirty logging staff is needed for old slot. For
9063          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9064          * new and it's also covered when dealing with the new slot.
9065          *
9066          * FIXME: const-ify all uses of struct kvm_memory_slot.
9067          */
9068         if (change != KVM_MR_DELETE)
9069                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9070 }
9071
9072 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9073 {
9074         kvm_mmu_invalidate_zap_all_pages(kvm);
9075 }
9076
9077 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9078                                    struct kvm_memory_slot *slot)
9079 {
9080         kvm_page_track_flush_slot(kvm, slot);
9081 }
9082
9083 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9084 {
9085         if (!list_empty_careful(&vcpu->async_pf.done))
9086                 return true;
9087
9088         if (kvm_apic_has_events(vcpu))
9089                 return true;
9090
9091         if (vcpu->arch.pv.pv_unhalted)
9092                 return true;
9093
9094         if (vcpu->arch.exception.pending)
9095                 return true;
9096
9097         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9098             (vcpu->arch.nmi_pending &&
9099              kvm_x86_ops->nmi_allowed(vcpu)))
9100                 return true;
9101
9102         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9103             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9104                 return true;
9105
9106         if (kvm_arch_interrupt_allowed(vcpu) &&
9107             kvm_cpu_has_interrupt(vcpu))
9108                 return true;
9109
9110         if (kvm_hv_has_stimer_pending(vcpu))
9111                 return true;
9112
9113         return false;
9114 }
9115
9116 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9117 {
9118         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9119 }
9120
9121 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9122 {
9123         return vcpu->arch.preempted_in_kernel;
9124 }
9125
9126 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9127 {
9128         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9129 }
9130
9131 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9132 {
9133         return kvm_x86_ops->interrupt_allowed(vcpu);
9134 }
9135
9136 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9137 {
9138         if (is_64_bit_mode(vcpu))
9139                 return kvm_rip_read(vcpu);
9140         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9141                      kvm_rip_read(vcpu));
9142 }
9143 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9144
9145 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9146 {
9147         return kvm_get_linear_rip(vcpu) == linear_rip;
9148 }
9149 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9150
9151 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9152 {
9153         unsigned long rflags;
9154
9155         rflags = kvm_x86_ops->get_rflags(vcpu);
9156         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9157                 rflags &= ~X86_EFLAGS_TF;
9158         return rflags;
9159 }
9160 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9161
9162 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9163 {
9164         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9165             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9166                 rflags |= X86_EFLAGS_TF;
9167         kvm_x86_ops->set_rflags(vcpu, rflags);
9168 }
9169
9170 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9171 {
9172         __kvm_set_rflags(vcpu, rflags);
9173         kvm_make_request(KVM_REQ_EVENT, vcpu);
9174 }
9175 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9176
9177 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9178 {
9179         int r;
9180
9181         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9182               work->wakeup_all)
9183                 return;
9184
9185         r = kvm_mmu_reload(vcpu);
9186         if (unlikely(r))
9187                 return;
9188
9189         if (!vcpu->arch.mmu.direct_map &&
9190               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9191                 return;
9192
9193         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9194 }
9195
9196 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9197 {
9198         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9199 }
9200
9201 static inline u32 kvm_async_pf_next_probe(u32 key)
9202 {
9203         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9204 }
9205
9206 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9207 {
9208         u32 key = kvm_async_pf_hash_fn(gfn);
9209
9210         while (vcpu->arch.apf.gfns[key] != ~0)
9211                 key = kvm_async_pf_next_probe(key);
9212
9213         vcpu->arch.apf.gfns[key] = gfn;
9214 }
9215
9216 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9217 {
9218         int i;
9219         u32 key = kvm_async_pf_hash_fn(gfn);
9220
9221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9222                      (vcpu->arch.apf.gfns[key] != gfn &&
9223                       vcpu->arch.apf.gfns[key] != ~0); i++)
9224                 key = kvm_async_pf_next_probe(key);
9225
9226         return key;
9227 }
9228
9229 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9230 {
9231         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9232 }
9233
9234 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9235 {
9236         u32 i, j, k;
9237
9238         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9239         while (true) {
9240                 vcpu->arch.apf.gfns[i] = ~0;
9241                 do {
9242                         j = kvm_async_pf_next_probe(j);
9243                         if (vcpu->arch.apf.gfns[j] == ~0)
9244                                 return;
9245                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9246                         /*
9247                          * k lies cyclically in ]i,j]
9248                          * |    i.k.j |
9249                          * |....j i.k.| or  |.k..j i...|
9250                          */
9251                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9252                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9253                 i = j;
9254         }
9255 }
9256
9257 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9258 {
9259
9260         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9261                                       sizeof(val));
9262 }
9263
9264 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9265 {
9266
9267         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9268                                       sizeof(u32));
9269 }
9270
9271 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9272                                      struct kvm_async_pf *work)
9273 {
9274         struct x86_exception fault;
9275
9276         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9277         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9278
9279         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9280             (vcpu->arch.apf.send_user_only &&
9281              kvm_x86_ops->get_cpl(vcpu) == 0))
9282                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9283         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9284                 fault.vector = PF_VECTOR;
9285                 fault.error_code_valid = true;
9286                 fault.error_code = 0;
9287                 fault.nested_page_fault = false;
9288                 fault.address = work->arch.token;
9289                 fault.async_page_fault = true;
9290                 kvm_inject_page_fault(vcpu, &fault);
9291         }
9292 }
9293
9294 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9295                                  struct kvm_async_pf *work)
9296 {
9297         struct x86_exception fault;
9298         u32 val;
9299
9300         if (work->wakeup_all)
9301                 work->arch.token = ~0; /* broadcast wakeup */
9302         else
9303                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9304         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9305
9306         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9307             !apf_get_user(vcpu, &val)) {
9308                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9309                     vcpu->arch.exception.pending &&
9310                     vcpu->arch.exception.nr == PF_VECTOR &&
9311                     !apf_put_user(vcpu, 0)) {
9312                         vcpu->arch.exception.injected = false;
9313                         vcpu->arch.exception.pending = false;
9314                         vcpu->arch.exception.nr = 0;
9315                         vcpu->arch.exception.has_error_code = false;
9316                         vcpu->arch.exception.error_code = 0;
9317                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9318                         fault.vector = PF_VECTOR;
9319                         fault.error_code_valid = true;
9320                         fault.error_code = 0;
9321                         fault.nested_page_fault = false;
9322                         fault.address = work->arch.token;
9323                         fault.async_page_fault = true;
9324                         kvm_inject_page_fault(vcpu, &fault);
9325                 }
9326         }
9327         vcpu->arch.apf.halted = false;
9328         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9329 }
9330
9331 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9332 {
9333         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9334                 return true;
9335         else
9336                 return kvm_can_do_async_pf(vcpu);
9337 }
9338
9339 void kvm_arch_start_assignment(struct kvm *kvm)
9340 {
9341         atomic_inc(&kvm->arch.assigned_device_count);
9342 }
9343 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9344
9345 void kvm_arch_end_assignment(struct kvm *kvm)
9346 {
9347         atomic_dec(&kvm->arch.assigned_device_count);
9348 }
9349 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9350
9351 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9352 {
9353         return atomic_read(&kvm->arch.assigned_device_count);
9354 }
9355 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9356
9357 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9358 {
9359         atomic_inc(&kvm->arch.noncoherent_dma_count);
9360 }
9361 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9362
9363 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9364 {
9365         atomic_dec(&kvm->arch.noncoherent_dma_count);
9366 }
9367 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9368
9369 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9370 {
9371         return atomic_read(&kvm->arch.noncoherent_dma_count);
9372 }
9373 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9374
9375 bool kvm_arch_has_irq_bypass(void)
9376 {
9377         return kvm_x86_ops->update_pi_irte != NULL;
9378 }
9379
9380 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9381                                       struct irq_bypass_producer *prod)
9382 {
9383         struct kvm_kernel_irqfd *irqfd =
9384                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9385
9386         irqfd->producer = prod;
9387
9388         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9389                                            prod->irq, irqfd->gsi, 1);
9390 }
9391
9392 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9393                                       struct irq_bypass_producer *prod)
9394 {
9395         int ret;
9396         struct kvm_kernel_irqfd *irqfd =
9397                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9398
9399         WARN_ON(irqfd->producer != prod);
9400         irqfd->producer = NULL;
9401
9402         /*
9403          * When producer of consumer is unregistered, we change back to
9404          * remapped mode, so we can re-use the current implementation
9405          * when the irq is masked/disabled or the consumer side (KVM
9406          * int this case doesn't want to receive the interrupts.
9407         */
9408         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9409         if (ret)
9410                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9411                        " fails: %d\n", irqfd->consumer.token, ret);
9412 }
9413
9414 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9415                                    uint32_t guest_irq, bool set)
9416 {
9417         if (!kvm_x86_ops->update_pi_irte)
9418                 return -EINVAL;
9419
9420         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9421 }
9422
9423 bool kvm_vector_hashing_enabled(void)
9424 {
9425         return vector_hashing;
9426 }
9427 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9428
9429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);