docs: Fix empty parallelism argument
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 #include "lapic.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/export.h>
37 #include <linux/moduleparam.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <linux/kvm_irqfd.h>
53 #include <linux/irqbypass.h>
54 #include <linux/sched/stat.h>
55 #include <linux/sched/isolation.h>
56 #include <linux/mem_encrypt.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69 #include <asm/mshyperv.h>
70 #include <asm/hypervisor.h>
71 #include <asm/intel_pt.h>
72 #include <asm/emulate_prefix.h>
73 #include <clocksource/hyperv_timer.h>
74
75 #define CREATE_TRACE_POINTS
76 #include "trace.h"
77
78 #define MAX_IO_MSRS 256
79 #define KVM_MAX_MCE_BANKS 32
80 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
81 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82
83 #define emul_to_vcpu(ctxt) \
84         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85
86 /* EFER defaults:
87  * - enable syscall per default because its emulated by KVM
88  * - enable LME and LMA per default on 64 bit KVM
89  */
90 #ifdef CONFIG_X86_64
91 static
92 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 #else
94 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
95 #endif
96
97 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
98
99 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
100 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
101
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111
112 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163
164 #define KVM_NR_SHARED_MSRS 16
165
166 struct kvm_shared_msrs_global {
167         int nr;
168         u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170
171 struct kvm_shared_msrs {
172         struct user_return_notifier urn;
173         bool registered;
174         struct kvm_shared_msr_values {
175                 u64 host;
176                 u64 curr;
177         } values[KVM_NR_SHARED_MSRS];
178 };
179
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182
183 static u64 __read_mostly host_xss;
184
185 struct kvm_stats_debugfs_item debugfs_entries[] = {
186         { "pf_fixed", VCPU_STAT(pf_fixed) },
187         { "pf_guest", VCPU_STAT(pf_guest) },
188         { "tlb_flush", VCPU_STAT(tlb_flush) },
189         { "invlpg", VCPU_STAT(invlpg) },
190         { "exits", VCPU_STAT(exits) },
191         { "io_exits", VCPU_STAT(io_exits) },
192         { "mmio_exits", VCPU_STAT(mmio_exits) },
193         { "signal_exits", VCPU_STAT(signal_exits) },
194         { "irq_window", VCPU_STAT(irq_window_exits) },
195         { "nmi_window", VCPU_STAT(nmi_window_exits) },
196         { "halt_exits", VCPU_STAT(halt_exits) },
197         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
198         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
199         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
200         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
201         { "hypercalls", VCPU_STAT(hypercalls) },
202         { "request_irq", VCPU_STAT(request_irq_exits) },
203         { "irq_exits", VCPU_STAT(irq_exits) },
204         { "host_state_reload", VCPU_STAT(host_state_reload) },
205         { "fpu_reload", VCPU_STAT(fpu_reload) },
206         { "insn_emulation", VCPU_STAT(insn_emulation) },
207         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
208         { "irq_injections", VCPU_STAT(irq_injections) },
209         { "nmi_injections", VCPU_STAT(nmi_injections) },
210         { "req_event", VCPU_STAT(req_event) },
211         { "l1d_flush", VCPU_STAT(l1d_flush) },
212         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
213         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
214         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
215         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
216         { "mmu_flooded", VM_STAT(mmu_flooded) },
217         { "mmu_recycled", VM_STAT(mmu_recycled) },
218         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
219         { "mmu_unsync", VM_STAT(mmu_unsync) },
220         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
221         { "largepages", VM_STAT(lpages, .mode = 0444) },
222         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
223         { "max_mmu_page_hash_collisions",
224                 VM_STAT(max_mmu_page_hash_collisions) },
225         { NULL }
226 };
227
228 u64 __read_mostly host_xcr0;
229
230 struct kmem_cache *x86_fpu_cache;
231 EXPORT_SYMBOL_GPL(x86_fpu_cache);
232
233 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
234
235 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
236 {
237         int i;
238         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
239                 vcpu->arch.apf.gfns[i] = ~0;
240 }
241
242 static void kvm_on_user_return(struct user_return_notifier *urn)
243 {
244         unsigned slot;
245         struct kvm_shared_msrs *locals
246                 = container_of(urn, struct kvm_shared_msrs, urn);
247         struct kvm_shared_msr_values *values;
248         unsigned long flags;
249
250         /*
251          * Disabling irqs at this point since the following code could be
252          * interrupted and executed through kvm_arch_hardware_disable()
253          */
254         local_irq_save(flags);
255         if (locals->registered) {
256                 locals->registered = false;
257                 user_return_notifier_unregister(urn);
258         }
259         local_irq_restore(flags);
260         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
261                 values = &locals->values[slot];
262                 if (values->host != values->curr) {
263                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
264                         values->curr = values->host;
265                 }
266         }
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280         unsigned int cpu = smp_processor_id();
281         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
282         u64 value;
283         int i;
284
285         for (i = 0; i < shared_msrs_global.nr; ++i) {
286                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
287                 smsr->values[i].host = value;
288                 smsr->values[i].curr = value;
289         }
290 }
291
292 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296         int err;
297
298         value = (value & mask) | (smsr->values[slot].host & ~mask);
299         if (value == smsr->values[slot].curr)
300                 return 0;
301         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
302         if (err)
303                 return 1;
304
305         smsr->values[slot].curr = value;
306         if (!smsr->registered) {
307                 smsr->urn.on_user_return = kvm_on_user_return;
308                 user_return_notifier_register(&smsr->urn);
309                 smsr->registered = true;
310         }
311         return 0;
312 }
313 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
314
315 static void drop_user_return_notifiers(void)
316 {
317         unsigned int cpu = smp_processor_id();
318         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
319
320         if (smsr->registered)
321                 kvm_on_user_return(&smsr->urn);
322 }
323
324 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
325 {
326         return vcpu->arch.apic_base;
327 }
328 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
329
330 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
331 {
332         return kvm_apic_mode(kvm_get_apic_base(vcpu));
333 }
334 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
335
336 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
337 {
338         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
339         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
340         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
341                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
342
343         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
344                 return 1;
345         if (!msr_info->host_initiated) {
346                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
347                         return 1;
348                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
349                         return 1;
350         }
351
352         kvm_lapic_set_base(vcpu, msr_info->data);
353         return 0;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
356
357 asmlinkage __visible void kvm_spurious_fault(void)
358 {
359         /* Fault while not rebooting.  We want the trace. */
360         BUG_ON(!kvm_rebooting);
361 }
362 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
363
364 #define EXCPT_BENIGN            0
365 #define EXCPT_CONTRIBUTORY      1
366 #define EXCPT_PF                2
367
368 static int exception_class(int vector)
369 {
370         switch (vector) {
371         case PF_VECTOR:
372                 return EXCPT_PF;
373         case DE_VECTOR:
374         case TS_VECTOR:
375         case NP_VECTOR:
376         case SS_VECTOR:
377         case GP_VECTOR:
378                 return EXCPT_CONTRIBUTORY;
379         default:
380                 break;
381         }
382         return EXCPT_BENIGN;
383 }
384
385 #define EXCPT_FAULT             0
386 #define EXCPT_TRAP              1
387 #define EXCPT_ABORT             2
388 #define EXCPT_INTERRUPT         3
389
390 static int exception_type(int vector)
391 {
392         unsigned int mask;
393
394         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
395                 return EXCPT_INTERRUPT;
396
397         mask = 1 << vector;
398
399         /* #DB is trap, as instruction watchpoints are handled elsewhere */
400         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
401                 return EXCPT_TRAP;
402
403         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
404                 return EXCPT_ABORT;
405
406         /* Reserved exceptions will result in fault */
407         return EXCPT_FAULT;
408 }
409
410 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
411 {
412         unsigned nr = vcpu->arch.exception.nr;
413         bool has_payload = vcpu->arch.exception.has_payload;
414         unsigned long payload = vcpu->arch.exception.payload;
415
416         if (!has_payload)
417                 return;
418
419         switch (nr) {
420         case DB_VECTOR:
421                 /*
422                  * "Certain debug exceptions may clear bit 0-3.  The
423                  * remaining contents of the DR6 register are never
424                  * cleared by the processor".
425                  */
426                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
427                 /*
428                  * DR6.RTM is set by all #DB exceptions that don't clear it.
429                  */
430                 vcpu->arch.dr6 |= DR6_RTM;
431                 vcpu->arch.dr6 |= payload;
432                 /*
433                  * Bit 16 should be set in the payload whenever the #DB
434                  * exception should clear DR6.RTM. This makes the payload
435                  * compatible with the pending debug exceptions under VMX.
436                  * Though not currently documented in the SDM, this also
437                  * makes the payload compatible with the exit qualification
438                  * for #DB exceptions under VMX.
439                  */
440                 vcpu->arch.dr6 ^= payload & DR6_RTM;
441                 break;
442         case PF_VECTOR:
443                 vcpu->arch.cr2 = payload;
444                 break;
445         }
446
447         vcpu->arch.exception.has_payload = false;
448         vcpu->arch.exception.payload = 0;
449 }
450 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
451
452 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
453                 unsigned nr, bool has_error, u32 error_code,
454                 bool has_payload, unsigned long payload, bool reinject)
455 {
456         u32 prev_nr;
457         int class1, class2;
458
459         kvm_make_request(KVM_REQ_EVENT, vcpu);
460
461         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
462         queue:
463                 if (has_error && !is_protmode(vcpu))
464                         has_error = false;
465                 if (reinject) {
466                         /*
467                          * On vmentry, vcpu->arch.exception.pending is only
468                          * true if an event injection was blocked by
469                          * nested_run_pending.  In that case, however,
470                          * vcpu_enter_guest requests an immediate exit,
471                          * and the guest shouldn't proceed far enough to
472                          * need reinjection.
473                          */
474                         WARN_ON_ONCE(vcpu->arch.exception.pending);
475                         vcpu->arch.exception.injected = true;
476                         if (WARN_ON_ONCE(has_payload)) {
477                                 /*
478                                  * A reinjected event has already
479                                  * delivered its payload.
480                                  */
481                                 has_payload = false;
482                                 payload = 0;
483                         }
484                 } else {
485                         vcpu->arch.exception.pending = true;
486                         vcpu->arch.exception.injected = false;
487                 }
488                 vcpu->arch.exception.has_error_code = has_error;
489                 vcpu->arch.exception.nr = nr;
490                 vcpu->arch.exception.error_code = error_code;
491                 vcpu->arch.exception.has_payload = has_payload;
492                 vcpu->arch.exception.payload = payload;
493                 /*
494                  * In guest mode, payload delivery should be deferred,
495                  * so that the L1 hypervisor can intercept #PF before
496                  * CR2 is modified (or intercept #DB before DR6 is
497                  * modified under nVMX).  However, for ABI
498                  * compatibility with KVM_GET_VCPU_EVENTS and
499                  * KVM_SET_VCPU_EVENTS, we can't delay payload
500                  * delivery unless userspace has enabled this
501                  * functionality via the per-VM capability,
502                  * KVM_CAP_EXCEPTION_PAYLOAD.
503                  */
504                 if (!vcpu->kvm->arch.exception_payload_enabled ||
505                     !is_guest_mode(vcpu))
506                         kvm_deliver_exception_payload(vcpu);
507                 return;
508         }
509
510         /* to check exception */
511         prev_nr = vcpu->arch.exception.nr;
512         if (prev_nr == DF_VECTOR) {
513                 /* triple fault -> shutdown */
514                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
515                 return;
516         }
517         class1 = exception_class(prev_nr);
518         class2 = exception_class(nr);
519         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
520                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
521                 /*
522                  * Generate double fault per SDM Table 5-5.  Set
523                  * exception.pending = true so that the double fault
524                  * can trigger a nested vmexit.
525                  */
526                 vcpu->arch.exception.pending = true;
527                 vcpu->arch.exception.injected = false;
528                 vcpu->arch.exception.has_error_code = true;
529                 vcpu->arch.exception.nr = DF_VECTOR;
530                 vcpu->arch.exception.error_code = 0;
531                 vcpu->arch.exception.has_payload = false;
532                 vcpu->arch.exception.payload = 0;
533         } else
534                 /* replace previous exception with a new one in a hope
535                    that instruction re-execution will regenerate lost
536                    exception */
537                 goto queue;
538 }
539
540 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
541 {
542         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
543 }
544 EXPORT_SYMBOL_GPL(kvm_queue_exception);
545
546 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
547 {
548         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
549 }
550 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
551
552 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
553                                   unsigned long payload)
554 {
555         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
556 }
557
558 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
559                                     u32 error_code, unsigned long payload)
560 {
561         kvm_multiple_exception(vcpu, nr, true, error_code,
562                                true, payload, false);
563 }
564
565 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
566 {
567         if (err)
568                 kvm_inject_gp(vcpu, 0);
569         else
570                 return kvm_skip_emulated_instruction(vcpu);
571
572         return 1;
573 }
574 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
575
576 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
577 {
578         ++vcpu->stat.pf_guest;
579         vcpu->arch.exception.nested_apf =
580                 is_guest_mode(vcpu) && fault->async_page_fault;
581         if (vcpu->arch.exception.nested_apf) {
582                 vcpu->arch.apf.nested_apf_token = fault->address;
583                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
584         } else {
585                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
586                                         fault->address);
587         }
588 }
589 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
590
591 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
592 {
593         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
594                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
595         else
596                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
597
598         return fault->nested_page_fault;
599 }
600
601 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
602 {
603         atomic_inc(&vcpu->arch.nmi_queued);
604         kvm_make_request(KVM_REQ_NMI, vcpu);
605 }
606 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
607
608 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
609 {
610         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
611 }
612 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
613
614 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
615 {
616         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
617 }
618 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
619
620 /*
621  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
622  * a #GP and return false.
623  */
624 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
625 {
626         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
627                 return true;
628         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
629         return false;
630 }
631 EXPORT_SYMBOL_GPL(kvm_require_cpl);
632
633 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
634 {
635         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
636                 return true;
637
638         kvm_queue_exception(vcpu, UD_VECTOR);
639         return false;
640 }
641 EXPORT_SYMBOL_GPL(kvm_require_dr);
642
643 /*
644  * This function will be used to read from the physical memory of the currently
645  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
646  * can read from guest physical or from the guest's guest physical memory.
647  */
648 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
649                             gfn_t ngfn, void *data, int offset, int len,
650                             u32 access)
651 {
652         struct x86_exception exception;
653         gfn_t real_gfn;
654         gpa_t ngpa;
655
656         ngpa     = gfn_to_gpa(ngfn);
657         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
658         if (real_gfn == UNMAPPED_GVA)
659                 return -EFAULT;
660
661         real_gfn = gpa_to_gfn(real_gfn);
662
663         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
664 }
665 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
666
667 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
668                                void *data, int offset, int len, u32 access)
669 {
670         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
671                                        data, offset, len, access);
672 }
673
674 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
675 {
676         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
677                rsvd_bits(1, 2);
678 }
679
680 /*
681  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
682  */
683 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
684 {
685         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
686         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
687         int i;
688         int ret;
689         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
690
691         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
692                                       offset * sizeof(u64), sizeof(pdpte),
693                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
694         if (ret < 0) {
695                 ret = 0;
696                 goto out;
697         }
698         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
699                 if ((pdpte[i] & PT_PRESENT_MASK) &&
700                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
701                         ret = 0;
702                         goto out;
703                 }
704         }
705         ret = 1;
706
707         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
708         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
709
710 out:
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719         int offset;
720         gfn_t gfn;
721         int r;
722
723         if (!is_pae_paging(vcpu))
724                 return false;
725
726         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
727                 return true;
728
729         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
733         if (r < 0)
734                 return true;
735
736         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
737 }
738 EXPORT_SYMBOL_GPL(pdptrs_changed);
739
740 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
741 {
742         unsigned long old_cr0 = kvm_read_cr0(vcpu);
743         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
744
745         cr0 |= X86_CR0_ET;
746
747 #ifdef CONFIG_X86_64
748         if (cr0 & 0xffffffff00000000UL)
749                 return 1;
750 #endif
751
752         cr0 &= ~CR0_RESERVED_BITS;
753
754         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
755                 return 1;
756
757         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
758                 return 1;
759
760         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
761 #ifdef CONFIG_X86_64
762                 if ((vcpu->arch.efer & EFER_LME)) {
763                         int cs_db, cs_l;
764
765                         if (!is_pae(vcpu))
766                                 return 1;
767                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
768                         if (cs_l)
769                                 return 1;
770                 } else
771 #endif
772                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
773                                                  kvm_read_cr3(vcpu)))
774                         return 1;
775         }
776
777         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
778                 return 1;
779
780         kvm_x86_ops->set_cr0(vcpu, cr0);
781
782         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
783                 kvm_clear_async_pf_completion_queue(vcpu);
784                 kvm_async_pf_hash_reset(vcpu);
785         }
786
787         if ((cr0 ^ old_cr0) & update_bits)
788                 kvm_mmu_reset_context(vcpu);
789
790         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
791             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
792             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
793                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
794
795         return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr0);
798
799 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
800 {
801         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
802 }
803 EXPORT_SYMBOL_GPL(kvm_lmsw);
804
805 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
806 {
807         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
808
809                 if (vcpu->arch.xcr0 != host_xcr0)
810                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
811
812                 if (vcpu->arch.xsaves_enabled &&
813                     vcpu->arch.ia32_xss != host_xss)
814                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
815         }
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
818
819 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
820 {
821         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
822
823                 if (vcpu->arch.xcr0 != host_xcr0)
824                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
825
826                 if (vcpu->arch.xsaves_enabled &&
827                     vcpu->arch.ia32_xss != host_xss)
828                         wrmsrl(MSR_IA32_XSS, host_xss);
829         }
830
831 }
832 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
833
834 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
835 {
836         u64 xcr0 = xcr;
837         u64 old_xcr0 = vcpu->arch.xcr0;
838         u64 valid_bits;
839
840         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
841         if (index != XCR_XFEATURE_ENABLED_MASK)
842                 return 1;
843         if (!(xcr0 & XFEATURE_MASK_FP))
844                 return 1;
845         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
846                 return 1;
847
848         /*
849          * Do not allow the guest to set bits that we do not support
850          * saving.  However, xcr0 bit 0 is always set, even if the
851          * emulated CPU does not support XSAVE (see fx_init).
852          */
853         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
854         if (xcr0 & ~valid_bits)
855                 return 1;
856
857         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
858             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
859                 return 1;
860
861         if (xcr0 & XFEATURE_MASK_AVX512) {
862                 if (!(xcr0 & XFEATURE_MASK_YMM))
863                         return 1;
864                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
865                         return 1;
866         }
867         vcpu->arch.xcr0 = xcr0;
868
869         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
870                 kvm_update_cpuid(vcpu);
871         return 0;
872 }
873
874 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
875 {
876         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
877             __kvm_set_xcr(vcpu, index, xcr)) {
878                 kvm_inject_gp(vcpu, 0);
879                 return 1;
880         }
881         return 0;
882 }
883 EXPORT_SYMBOL_GPL(kvm_set_xcr);
884
885 #define __cr4_reserved_bits(__cpu_has, __c)             \
886 ({                                                      \
887         u64 __reserved_bits = CR4_RESERVED_BITS;        \
888                                                         \
889         if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
890                 __reserved_bits |= X86_CR4_OSXSAVE;     \
891         if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
892                 __reserved_bits |= X86_CR4_SMEP;        \
893         if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
894                 __reserved_bits |= X86_CR4_SMAP;        \
895         if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
896                 __reserved_bits |= X86_CR4_FSGSBASE;    \
897         if (!__cpu_has(__c, X86_FEATURE_PKU))           \
898                 __reserved_bits |= X86_CR4_PKE;         \
899         if (!__cpu_has(__c, X86_FEATURE_LA57))          \
900                 __reserved_bits |= X86_CR4_LA57;        \
901         if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
902                 __reserved_bits |= X86_CR4_UMIP;        \
903         __reserved_bits;                                \
904 })
905
906 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
907 {
908         u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
909
910         if (cpuid_ecx(0x7) & feature_bit(LA57))
911                 reserved_bits &= ~X86_CR4_LA57;
912
913         if (kvm_x86_ops->umip_emulated())
914                 reserved_bits &= ~X86_CR4_UMIP;
915
916         return reserved_bits;
917 }
918
919 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
920 {
921         if (cr4 & cr4_reserved_bits)
922                 return -EINVAL;
923
924         if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
925                 return -EINVAL;
926
927         return 0;
928 }
929
930 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
931 {
932         unsigned long old_cr4 = kvm_read_cr4(vcpu);
933         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
934                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
935
936         if (kvm_valid_cr4(vcpu, cr4))
937                 return 1;
938
939         if (is_long_mode(vcpu)) {
940                 if (!(cr4 & X86_CR4_PAE))
941                         return 1;
942         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
943                    && ((cr4 ^ old_cr4) & pdptr_bits)
944                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
945                                    kvm_read_cr3(vcpu)))
946                 return 1;
947
948         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
949                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
950                         return 1;
951
952                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
953                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
954                         return 1;
955         }
956
957         if (kvm_x86_ops->set_cr4(vcpu, cr4))
958                 return 1;
959
960         if (((cr4 ^ old_cr4) & pdptr_bits) ||
961             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
962                 kvm_mmu_reset_context(vcpu);
963
964         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
965                 kvm_update_cpuid(vcpu);
966
967         return 0;
968 }
969 EXPORT_SYMBOL_GPL(kvm_set_cr4);
970
971 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
972 {
973         bool skip_tlb_flush = false;
974 #ifdef CONFIG_X86_64
975         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
976
977         if (pcid_enabled) {
978                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
979                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
980         }
981 #endif
982
983         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
984                 if (!skip_tlb_flush) {
985                         kvm_mmu_sync_roots(vcpu);
986                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
987                 }
988                 return 0;
989         }
990
991         if (is_long_mode(vcpu) &&
992             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
993                 return 1;
994         else if (is_pae_paging(vcpu) &&
995                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
996                 return 1;
997
998         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
999         vcpu->arch.cr3 = cr3;
1000         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1001
1002         return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1005
1006 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1007 {
1008         if (cr8 & CR8_RESERVED_BITS)
1009                 return 1;
1010         if (lapic_in_kernel(vcpu))
1011                 kvm_lapic_set_tpr(vcpu, cr8);
1012         else
1013                 vcpu->arch.cr8 = cr8;
1014         return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1017
1018 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1019 {
1020         if (lapic_in_kernel(vcpu))
1021                 return kvm_lapic_get_cr8(vcpu);
1022         else
1023                 return vcpu->arch.cr8;
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1026
1027 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1028 {
1029         int i;
1030
1031         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1032                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1033                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1034                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1035         }
1036 }
1037
1038 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1039 {
1040         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1041                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1042 }
1043
1044 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1045 {
1046         unsigned long dr7;
1047
1048         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1049                 dr7 = vcpu->arch.guest_debug_dr7;
1050         else
1051                 dr7 = vcpu->arch.dr7;
1052         kvm_x86_ops->set_dr7(vcpu, dr7);
1053         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1054         if (dr7 & DR7_BP_EN_MASK)
1055                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1056 }
1057
1058 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1059 {
1060         u64 fixed = DR6_FIXED_1;
1061
1062         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1063                 fixed |= DR6_RTM;
1064         return fixed;
1065 }
1066
1067 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069         size_t size = ARRAY_SIZE(vcpu->arch.db);
1070
1071         switch (dr) {
1072         case 0 ... 3:
1073                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1074                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1075                         vcpu->arch.eff_db[dr] = val;
1076                 break;
1077         case 4:
1078                 /* fall through */
1079         case 6:
1080                 if (val & 0xffffffff00000000ULL)
1081                         return -1; /* #GP */
1082                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1083                 kvm_update_dr6(vcpu);
1084                 break;
1085         case 5:
1086                 /* fall through */
1087         default: /* 7 */
1088                 if (!kvm_dr7_valid(val))
1089                         return -1; /* #GP */
1090                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1091                 kvm_update_dr7(vcpu);
1092                 break;
1093         }
1094
1095         return 0;
1096 }
1097
1098 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1099 {
1100         if (__kvm_set_dr(vcpu, dr, val)) {
1101                 kvm_inject_gp(vcpu, 0);
1102                 return 1;
1103         }
1104         return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_set_dr);
1107
1108 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1109 {
1110         size_t size = ARRAY_SIZE(vcpu->arch.db);
1111
1112         switch (dr) {
1113         case 0 ... 3:
1114                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1115                 break;
1116         case 4:
1117                 /* fall through */
1118         case 6:
1119                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120                         *val = vcpu->arch.dr6;
1121                 else
1122                         *val = kvm_x86_ops->get_dr6(vcpu);
1123                 break;
1124         case 5:
1125                 /* fall through */
1126         default: /* 7 */
1127                 *val = vcpu->arch.dr7;
1128                 break;
1129         }
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dr);
1133
1134 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1135 {
1136         u32 ecx = kvm_rcx_read(vcpu);
1137         u64 data;
1138         int err;
1139
1140         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1141         if (err)
1142                 return err;
1143         kvm_rax_write(vcpu, (u32)data);
1144         kvm_rdx_write(vcpu, data >> 32);
1145         return err;
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1148
1149 /*
1150  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1151  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1152  *
1153  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1154  * extract the supported MSRs from the related const lists.
1155  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1156  * capabilities of the host cpu. This capabilities test skips MSRs that are
1157  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1158  * may depend on host virtualization features rather than host cpu features.
1159  */
1160
1161 static const u32 msrs_to_save_all[] = {
1162         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1163         MSR_STAR,
1164 #ifdef CONFIG_X86_64
1165         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1166 #endif
1167         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1168         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1169         MSR_IA32_SPEC_CTRL,
1170         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1171         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1172         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1173         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1174         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1175         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1176         MSR_IA32_UMWAIT_CONTROL,
1177
1178         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1179         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1180         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1181         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1182         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1183         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1184         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1185         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1186         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1187         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1188         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1189         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1190         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1191         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1192         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1193         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1194         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1195         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1196         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1197         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1198         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1199         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1200 };
1201
1202 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1203 static unsigned num_msrs_to_save;
1204
1205 static const u32 emulated_msrs_all[] = {
1206         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1207         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1208         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1209         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1210         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1211         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1212         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1213         HV_X64_MSR_RESET,
1214         HV_X64_MSR_VP_INDEX,
1215         HV_X64_MSR_VP_RUNTIME,
1216         HV_X64_MSR_SCONTROL,
1217         HV_X64_MSR_STIMER0_CONFIG,
1218         HV_X64_MSR_VP_ASSIST_PAGE,
1219         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1220         HV_X64_MSR_TSC_EMULATION_STATUS,
1221
1222         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1223         MSR_KVM_PV_EOI_EN,
1224
1225         MSR_IA32_TSC_ADJUST,
1226         MSR_IA32_TSCDEADLINE,
1227         MSR_IA32_ARCH_CAPABILITIES,
1228         MSR_IA32_MISC_ENABLE,
1229         MSR_IA32_MCG_STATUS,
1230         MSR_IA32_MCG_CTL,
1231         MSR_IA32_MCG_EXT_CTL,
1232         MSR_IA32_SMBASE,
1233         MSR_SMI_COUNT,
1234         MSR_PLATFORM_INFO,
1235         MSR_MISC_FEATURES_ENABLES,
1236         MSR_AMD64_VIRT_SPEC_CTRL,
1237         MSR_IA32_POWER_CTL,
1238         MSR_IA32_UCODE_REV,
1239
1240         /*
1241          * The following list leaves out MSRs whose values are determined
1242          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1243          * We always support the "true" VMX control MSRs, even if the host
1244          * processor does not, so I am putting these registers here rather
1245          * than in msrs_to_save_all.
1246          */
1247         MSR_IA32_VMX_BASIC,
1248         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1249         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1250         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1251         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1252         MSR_IA32_VMX_MISC,
1253         MSR_IA32_VMX_CR0_FIXED0,
1254         MSR_IA32_VMX_CR4_FIXED0,
1255         MSR_IA32_VMX_VMCS_ENUM,
1256         MSR_IA32_VMX_PROCBASED_CTLS2,
1257         MSR_IA32_VMX_EPT_VPID_CAP,
1258         MSR_IA32_VMX_VMFUNC,
1259
1260         MSR_K7_HWCR,
1261         MSR_KVM_POLL_CONTROL,
1262 };
1263
1264 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1265 static unsigned num_emulated_msrs;
1266
1267 /*
1268  * List of msr numbers which are used to expose MSR-based features that
1269  * can be used by a hypervisor to validate requested CPU features.
1270  */
1271 static const u32 msr_based_features_all[] = {
1272         MSR_IA32_VMX_BASIC,
1273         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1274         MSR_IA32_VMX_PINBASED_CTLS,
1275         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1276         MSR_IA32_VMX_PROCBASED_CTLS,
1277         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1278         MSR_IA32_VMX_EXIT_CTLS,
1279         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1280         MSR_IA32_VMX_ENTRY_CTLS,
1281         MSR_IA32_VMX_MISC,
1282         MSR_IA32_VMX_CR0_FIXED0,
1283         MSR_IA32_VMX_CR0_FIXED1,
1284         MSR_IA32_VMX_CR4_FIXED0,
1285         MSR_IA32_VMX_CR4_FIXED1,
1286         MSR_IA32_VMX_VMCS_ENUM,
1287         MSR_IA32_VMX_PROCBASED_CTLS2,
1288         MSR_IA32_VMX_EPT_VPID_CAP,
1289         MSR_IA32_VMX_VMFUNC,
1290
1291         MSR_F10H_DECFG,
1292         MSR_IA32_UCODE_REV,
1293         MSR_IA32_ARCH_CAPABILITIES,
1294 };
1295
1296 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1297 static unsigned int num_msr_based_features;
1298
1299 static u64 kvm_get_arch_capabilities(void)
1300 {
1301         u64 data = 0;
1302
1303         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1304                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1305
1306         /*
1307          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1308          * the nested hypervisor runs with NX huge pages.  If it is not,
1309          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1310          * L1 guests, so it need not worry about its own (L2) guests.
1311          */
1312         data |= ARCH_CAP_PSCHANGE_MC_NO;
1313
1314         /*
1315          * If we're doing cache flushes (either "always" or "cond")
1316          * we will do one whenever the guest does a vmlaunch/vmresume.
1317          * If an outer hypervisor is doing the cache flush for us
1318          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1319          * capability to the guest too, and if EPT is disabled we're not
1320          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1321          * require a nested hypervisor to do a flush of its own.
1322          */
1323         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1324                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1325
1326         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1327                 data |= ARCH_CAP_RDCL_NO;
1328         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1329                 data |= ARCH_CAP_SSB_NO;
1330         if (!boot_cpu_has_bug(X86_BUG_MDS))
1331                 data |= ARCH_CAP_MDS_NO;
1332
1333         /*
1334          * On TAA affected systems:
1335          *      - nothing to do if TSX is disabled on the host.
1336          *      - we emulate TSX_CTRL if present on the host.
1337          *        This lets the guest use VERW to clear CPU buffers.
1338          */
1339         if (!boot_cpu_has(X86_FEATURE_RTM))
1340                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1341         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1342                 data |= ARCH_CAP_TAA_NO;
1343
1344         return data;
1345 }
1346
1347 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1348 {
1349         switch (msr->index) {
1350         case MSR_IA32_ARCH_CAPABILITIES:
1351                 msr->data = kvm_get_arch_capabilities();
1352                 break;
1353         case MSR_IA32_UCODE_REV:
1354                 rdmsrl_safe(msr->index, &msr->data);
1355                 break;
1356         default:
1357                 if (kvm_x86_ops->get_msr_feature(msr))
1358                         return 1;
1359         }
1360         return 0;
1361 }
1362
1363 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1364 {
1365         struct kvm_msr_entry msr;
1366         int r;
1367
1368         msr.index = index;
1369         r = kvm_get_msr_feature(&msr);
1370         if (r)
1371                 return r;
1372
1373         *data = msr.data;
1374
1375         return 0;
1376 }
1377
1378 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1379 {
1380         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1381                 return false;
1382
1383         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1384                 return false;
1385
1386         if (efer & (EFER_LME | EFER_LMA) &&
1387             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1388                 return false;
1389
1390         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1391                 return false;
1392
1393         return true;
1394
1395 }
1396 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1397 {
1398         if (efer & efer_reserved_bits)
1399                 return false;
1400
1401         return __kvm_valid_efer(vcpu, efer);
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1404
1405 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1406 {
1407         u64 old_efer = vcpu->arch.efer;
1408         u64 efer = msr_info->data;
1409
1410         if (efer & efer_reserved_bits)
1411                 return 1;
1412
1413         if (!msr_info->host_initiated) {
1414                 if (!__kvm_valid_efer(vcpu, efer))
1415                         return 1;
1416
1417                 if (is_paging(vcpu) &&
1418                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1419                         return 1;
1420         }
1421
1422         efer &= ~EFER_LMA;
1423         efer |= vcpu->arch.efer & EFER_LMA;
1424
1425         kvm_x86_ops->set_efer(vcpu, efer);
1426
1427         /* Update reserved bits */
1428         if ((efer ^ old_efer) & EFER_NX)
1429                 kvm_mmu_reset_context(vcpu);
1430
1431         return 0;
1432 }
1433
1434 void kvm_enable_efer_bits(u64 mask)
1435 {
1436        efer_reserved_bits &= ~mask;
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1439
1440 /*
1441  * Write @data into the MSR specified by @index.  Select MSR specific fault
1442  * checks are bypassed if @host_initiated is %true.
1443  * Returns 0 on success, non-0 otherwise.
1444  * Assumes vcpu_load() was already called.
1445  */
1446 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1447                          bool host_initiated)
1448 {
1449         struct msr_data msr;
1450
1451         switch (index) {
1452         case MSR_FS_BASE:
1453         case MSR_GS_BASE:
1454         case MSR_KERNEL_GS_BASE:
1455         case MSR_CSTAR:
1456         case MSR_LSTAR:
1457                 if (is_noncanonical_address(data, vcpu))
1458                         return 1;
1459                 break;
1460         case MSR_IA32_SYSENTER_EIP:
1461         case MSR_IA32_SYSENTER_ESP:
1462                 /*
1463                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1464                  * non-canonical address is written on Intel but not on
1465                  * AMD (which ignores the top 32-bits, because it does
1466                  * not implement 64-bit SYSENTER).
1467                  *
1468                  * 64-bit code should hence be able to write a non-canonical
1469                  * value on AMD.  Making the address canonical ensures that
1470                  * vmentry does not fail on Intel after writing a non-canonical
1471                  * value, and that something deterministic happens if the guest
1472                  * invokes 64-bit SYSENTER.
1473                  */
1474                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1475         }
1476
1477         msr.data = data;
1478         msr.index = index;
1479         msr.host_initiated = host_initiated;
1480
1481         return kvm_x86_ops->set_msr(vcpu, &msr);
1482 }
1483
1484 /*
1485  * Read the MSR specified by @index into @data.  Select MSR specific fault
1486  * checks are bypassed if @host_initiated is %true.
1487  * Returns 0 on success, non-0 otherwise.
1488  * Assumes vcpu_load() was already called.
1489  */
1490 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1491                   bool host_initiated)
1492 {
1493         struct msr_data msr;
1494         int ret;
1495
1496         msr.index = index;
1497         msr.host_initiated = host_initiated;
1498
1499         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1500         if (!ret)
1501                 *data = msr.data;
1502         return ret;
1503 }
1504
1505 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1506 {
1507         return __kvm_get_msr(vcpu, index, data, false);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_get_msr);
1510
1511 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1512 {
1513         return __kvm_set_msr(vcpu, index, data, false);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_set_msr);
1516
1517 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1518 {
1519         u32 ecx = kvm_rcx_read(vcpu);
1520         u64 data;
1521
1522         if (kvm_get_msr(vcpu, ecx, &data)) {
1523                 trace_kvm_msr_read_ex(ecx);
1524                 kvm_inject_gp(vcpu, 0);
1525                 return 1;
1526         }
1527
1528         trace_kvm_msr_read(ecx, data);
1529
1530         kvm_rax_write(vcpu, data & -1u);
1531         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1532         return kvm_skip_emulated_instruction(vcpu);
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1535
1536 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1537 {
1538         u32 ecx = kvm_rcx_read(vcpu);
1539         u64 data = kvm_read_edx_eax(vcpu);
1540
1541         if (kvm_set_msr(vcpu, ecx, data)) {
1542                 trace_kvm_msr_write_ex(ecx, data);
1543                 kvm_inject_gp(vcpu, 0);
1544                 return 1;
1545         }
1546
1547         trace_kvm_msr_write(ecx, data);
1548         return kvm_skip_emulated_instruction(vcpu);
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1551
1552 /*
1553  * The fast path for frequent and performance sensitive wrmsr emulation,
1554  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1555  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1556  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1557  * other cases which must be called after interrupts are enabled on the host.
1558  */
1559 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561         if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1562                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1563                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1564
1565                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1566                 return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data);
1567         }
1568
1569         return 1;
1570 }
1571
1572 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1573 {
1574         u32 msr = kvm_rcx_read(vcpu);
1575         u64 data = kvm_read_edx_eax(vcpu);
1576         int ret = 0;
1577
1578         switch (msr) {
1579         case APIC_BASE_MSR + (APIC_ICR >> 4):
1580                 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1581                 break;
1582         default:
1583                 return EXIT_FASTPATH_NONE;
1584         }
1585
1586         if (!ret) {
1587                 trace_kvm_msr_write(msr, data);
1588                 return EXIT_FASTPATH_SKIP_EMUL_INS;
1589         }
1590
1591         return EXIT_FASTPATH_NONE;
1592 }
1593 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1594
1595 /*
1596  * Adapt set_msr() to msr_io()'s calling convention
1597  */
1598 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1599 {
1600         return __kvm_get_msr(vcpu, index, data, true);
1601 }
1602
1603 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1604 {
1605         return __kvm_set_msr(vcpu, index, *data, true);
1606 }
1607
1608 #ifdef CONFIG_X86_64
1609 struct pvclock_clock {
1610         int vclock_mode;
1611         u64 cycle_last;
1612         u64 mask;
1613         u32 mult;
1614         u32 shift;
1615         u64 base_cycles;
1616         u64 offset;
1617 };
1618
1619 struct pvclock_gtod_data {
1620         seqcount_t      seq;
1621
1622         struct pvclock_clock clock; /* extract of a clocksource struct */
1623         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1624
1625         ktime_t         offs_boot;
1626         u64             wall_time_sec;
1627 };
1628
1629 static struct pvclock_gtod_data pvclock_gtod_data;
1630
1631 static void update_pvclock_gtod(struct timekeeper *tk)
1632 {
1633         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1634
1635         write_seqcount_begin(&vdata->seq);
1636
1637         /* copy pvclock gtod data */
1638         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1639         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1640         vdata->clock.mask               = tk->tkr_mono.mask;
1641         vdata->clock.mult               = tk->tkr_mono.mult;
1642         vdata->clock.shift              = tk->tkr_mono.shift;
1643         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1644         vdata->clock.offset             = tk->tkr_mono.base;
1645
1646         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->archdata.vclock_mode;
1647         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1648         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1649         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1650         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1651         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1652         vdata->raw_clock.offset         = tk->tkr_raw.base;
1653
1654         vdata->wall_time_sec            = tk->xtime_sec;
1655
1656         vdata->offs_boot                = tk->offs_boot;
1657
1658         write_seqcount_end(&vdata->seq);
1659 }
1660
1661 static s64 get_kvmclock_base_ns(void)
1662 {
1663         /* Count up from boot time, but with the frequency of the raw clock.  */
1664         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1665 }
1666 #else
1667 static s64 get_kvmclock_base_ns(void)
1668 {
1669         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1670         return ktime_get_boottime_ns();
1671 }
1672 #endif
1673
1674 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1675 {
1676         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1677         kvm_vcpu_kick(vcpu);
1678 }
1679
1680 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1681 {
1682         int version;
1683         int r;
1684         struct pvclock_wall_clock wc;
1685         u64 wall_nsec;
1686
1687         if (!wall_clock)
1688                 return;
1689
1690         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1691         if (r)
1692                 return;
1693
1694         if (version & 1)
1695                 ++version;  /* first time write, random junk */
1696
1697         ++version;
1698
1699         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1700                 return;
1701
1702         /*
1703          * The guest calculates current wall clock time by adding
1704          * system time (updated by kvm_guest_time_update below) to the
1705          * wall clock specified here.  We do the reverse here.
1706          */
1707         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1708
1709         wc.nsec = do_div(wall_nsec, 1000000000);
1710         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1711         wc.version = version;
1712
1713         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1714
1715         version++;
1716         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1717 }
1718
1719 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1720 {
1721         do_shl32_div32(dividend, divisor);
1722         return dividend;
1723 }
1724
1725 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1726                                s8 *pshift, u32 *pmultiplier)
1727 {
1728         uint64_t scaled64;
1729         int32_t  shift = 0;
1730         uint64_t tps64;
1731         uint32_t tps32;
1732
1733         tps64 = base_hz;
1734         scaled64 = scaled_hz;
1735         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1736                 tps64 >>= 1;
1737                 shift--;
1738         }
1739
1740         tps32 = (uint32_t)tps64;
1741         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1742                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1743                         scaled64 >>= 1;
1744                 else
1745                         tps32 <<= 1;
1746                 shift++;
1747         }
1748
1749         *pshift = shift;
1750         *pmultiplier = div_frac(scaled64, tps32);
1751 }
1752
1753 #ifdef CONFIG_X86_64
1754 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1755 #endif
1756
1757 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1758 static unsigned long max_tsc_khz;
1759
1760 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1761 {
1762         u64 v = (u64)khz * (1000000 + ppm);
1763         do_div(v, 1000000);
1764         return v;
1765 }
1766
1767 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1768 {
1769         u64 ratio;
1770
1771         /* Guest TSC same frequency as host TSC? */
1772         if (!scale) {
1773                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1774                 return 0;
1775         }
1776
1777         /* TSC scaling supported? */
1778         if (!kvm_has_tsc_control) {
1779                 if (user_tsc_khz > tsc_khz) {
1780                         vcpu->arch.tsc_catchup = 1;
1781                         vcpu->arch.tsc_always_catchup = 1;
1782                         return 0;
1783                 } else {
1784                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1785                         return -1;
1786                 }
1787         }
1788
1789         /* TSC scaling required  - calculate ratio */
1790         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1791                                 user_tsc_khz, tsc_khz);
1792
1793         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1794                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1795                                     user_tsc_khz);
1796                 return -1;
1797         }
1798
1799         vcpu->arch.tsc_scaling_ratio = ratio;
1800         return 0;
1801 }
1802
1803 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1804 {
1805         u32 thresh_lo, thresh_hi;
1806         int use_scaling = 0;
1807
1808         /* tsc_khz can be zero if TSC calibration fails */
1809         if (user_tsc_khz == 0) {
1810                 /* set tsc_scaling_ratio to a safe value */
1811                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1812                 return -1;
1813         }
1814
1815         /* Compute a scale to convert nanoseconds in TSC cycles */
1816         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1817                            &vcpu->arch.virtual_tsc_shift,
1818                            &vcpu->arch.virtual_tsc_mult);
1819         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1820
1821         /*
1822          * Compute the variation in TSC rate which is acceptable
1823          * within the range of tolerance and decide if the
1824          * rate being applied is within that bounds of the hardware
1825          * rate.  If so, no scaling or compensation need be done.
1826          */
1827         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1828         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1829         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1830                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1831                 use_scaling = 1;
1832         }
1833         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1834 }
1835
1836 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1837 {
1838         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1839                                       vcpu->arch.virtual_tsc_mult,
1840                                       vcpu->arch.virtual_tsc_shift);
1841         tsc += vcpu->arch.this_tsc_write;
1842         return tsc;
1843 }
1844
1845 static inline int gtod_is_based_on_tsc(int mode)
1846 {
1847         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1848 }
1849
1850 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1851 {
1852 #ifdef CONFIG_X86_64
1853         bool vcpus_matched;
1854         struct kvm_arch *ka = &vcpu->kvm->arch;
1855         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1856
1857         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1858                          atomic_read(&vcpu->kvm->online_vcpus));
1859
1860         /*
1861          * Once the masterclock is enabled, always perform request in
1862          * order to update it.
1863          *
1864          * In order to enable masterclock, the host clocksource must be TSC
1865          * and the vcpus need to have matched TSCs.  When that happens,
1866          * perform request to enable masterclock.
1867          */
1868         if (ka->use_master_clock ||
1869             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1870                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1871
1872         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1873                             atomic_read(&vcpu->kvm->online_vcpus),
1874                             ka->use_master_clock, gtod->clock.vclock_mode);
1875 #endif
1876 }
1877
1878 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1879 {
1880         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1881         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1882 }
1883
1884 /*
1885  * Multiply tsc by a fixed point number represented by ratio.
1886  *
1887  * The most significant 64-N bits (mult) of ratio represent the
1888  * integral part of the fixed point number; the remaining N bits
1889  * (frac) represent the fractional part, ie. ratio represents a fixed
1890  * point number (mult + frac * 2^(-N)).
1891  *
1892  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1893  */
1894 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1895 {
1896         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1897 }
1898
1899 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1900 {
1901         u64 _tsc = tsc;
1902         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1903
1904         if (ratio != kvm_default_tsc_scaling_ratio)
1905                 _tsc = __scale_tsc(ratio, tsc);
1906
1907         return _tsc;
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1910
1911 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1912 {
1913         u64 tsc;
1914
1915         tsc = kvm_scale_tsc(vcpu, rdtsc());
1916
1917         return target_tsc - tsc;
1918 }
1919
1920 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1921 {
1922         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1923
1924         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1927
1928 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1929 {
1930         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1931 }
1932
1933 static inline bool kvm_check_tsc_unstable(void)
1934 {
1935 #ifdef CONFIG_X86_64
1936         /*
1937          * TSC is marked unstable when we're running on Hyper-V,
1938          * 'TSC page' clocksource is good.
1939          */
1940         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1941                 return false;
1942 #endif
1943         return check_tsc_unstable();
1944 }
1945
1946 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1947 {
1948         struct kvm *kvm = vcpu->kvm;
1949         u64 offset, ns, elapsed;
1950         unsigned long flags;
1951         bool matched;
1952         bool already_matched;
1953         u64 data = msr->data;
1954         bool synchronizing = false;
1955
1956         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1957         offset = kvm_compute_tsc_offset(vcpu, data);
1958         ns = get_kvmclock_base_ns();
1959         elapsed = ns - kvm->arch.last_tsc_nsec;
1960
1961         if (vcpu->arch.virtual_tsc_khz) {
1962                 if (data == 0 && msr->host_initiated) {
1963                         /*
1964                          * detection of vcpu initialization -- need to sync
1965                          * with other vCPUs. This particularly helps to keep
1966                          * kvm_clock stable after CPU hotplug
1967                          */
1968                         synchronizing = true;
1969                 } else {
1970                         u64 tsc_exp = kvm->arch.last_tsc_write +
1971                                                 nsec_to_cycles(vcpu, elapsed);
1972                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1973                         /*
1974                          * Special case: TSC write with a small delta (1 second)
1975                          * of virtual cycle time against real time is
1976                          * interpreted as an attempt to synchronize the CPU.
1977                          */
1978                         synchronizing = data < tsc_exp + tsc_hz &&
1979                                         data + tsc_hz > tsc_exp;
1980                 }
1981         }
1982
1983         /*
1984          * For a reliable TSC, we can match TSC offsets, and for an unstable
1985          * TSC, we add elapsed time in this computation.  We could let the
1986          * compensation code attempt to catch up if we fall behind, but
1987          * it's better to try to match offsets from the beginning.
1988          */
1989         if (synchronizing &&
1990             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1991                 if (!kvm_check_tsc_unstable()) {
1992                         offset = kvm->arch.cur_tsc_offset;
1993                 } else {
1994                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1995                         data += delta;
1996                         offset = kvm_compute_tsc_offset(vcpu, data);
1997                 }
1998                 matched = true;
1999                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2000         } else {
2001                 /*
2002                  * We split periods of matched TSC writes into generations.
2003                  * For each generation, we track the original measured
2004                  * nanosecond time, offset, and write, so if TSCs are in
2005                  * sync, we can match exact offset, and if not, we can match
2006                  * exact software computation in compute_guest_tsc()
2007                  *
2008                  * These values are tracked in kvm->arch.cur_xxx variables.
2009                  */
2010                 kvm->arch.cur_tsc_generation++;
2011                 kvm->arch.cur_tsc_nsec = ns;
2012                 kvm->arch.cur_tsc_write = data;
2013                 kvm->arch.cur_tsc_offset = offset;
2014                 matched = false;
2015         }
2016
2017         /*
2018          * We also track th most recent recorded KHZ, write and time to
2019          * allow the matching interval to be extended at each write.
2020          */
2021         kvm->arch.last_tsc_nsec = ns;
2022         kvm->arch.last_tsc_write = data;
2023         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2024
2025         vcpu->arch.last_guest_tsc = data;
2026
2027         /* Keep track of which generation this VCPU has synchronized to */
2028         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2029         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2030         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2031
2032         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2033                 update_ia32_tsc_adjust_msr(vcpu, offset);
2034
2035         kvm_vcpu_write_tsc_offset(vcpu, offset);
2036         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2037
2038         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2039         if (!matched) {
2040                 kvm->arch.nr_vcpus_matched_tsc = 0;
2041         } else if (!already_matched) {
2042                 kvm->arch.nr_vcpus_matched_tsc++;
2043         }
2044
2045         kvm_track_tsc_matching(vcpu);
2046         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2047 }
2048
2049 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2050
2051 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2052                                            s64 adjustment)
2053 {
2054         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2055         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2056 }
2057
2058 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2059 {
2060         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2061                 WARN_ON(adjustment < 0);
2062         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2063         adjust_tsc_offset_guest(vcpu, adjustment);
2064 }
2065
2066 #ifdef CONFIG_X86_64
2067
2068 static u64 read_tsc(void)
2069 {
2070         u64 ret = (u64)rdtsc_ordered();
2071         u64 last = pvclock_gtod_data.clock.cycle_last;
2072
2073         if (likely(ret >= last))
2074                 return ret;
2075
2076         /*
2077          * GCC likes to generate cmov here, but this branch is extremely
2078          * predictable (it's just a function of time and the likely is
2079          * very likely) and there's a data dependence, so force GCC
2080          * to generate a branch instead.  I don't barrier() because
2081          * we don't actually need a barrier, and if this function
2082          * ever gets inlined it will generate worse code.
2083          */
2084         asm volatile ("");
2085         return last;
2086 }
2087
2088 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2089                           int *mode)
2090 {
2091         long v;
2092         u64 tsc_pg_val;
2093
2094         switch (clock->vclock_mode) {
2095         case VCLOCK_HVCLOCK:
2096                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2097                                                   tsc_timestamp);
2098                 if (tsc_pg_val != U64_MAX) {
2099                         /* TSC page valid */
2100                         *mode = VCLOCK_HVCLOCK;
2101                         v = (tsc_pg_val - clock->cycle_last) &
2102                                 clock->mask;
2103                 } else {
2104                         /* TSC page invalid */
2105                         *mode = VCLOCK_NONE;
2106                 }
2107                 break;
2108         case VCLOCK_TSC:
2109                 *mode = VCLOCK_TSC;
2110                 *tsc_timestamp = read_tsc();
2111                 v = (*tsc_timestamp - clock->cycle_last) &
2112                         clock->mask;
2113                 break;
2114         default:
2115                 *mode = VCLOCK_NONE;
2116         }
2117
2118         if (*mode == VCLOCK_NONE)
2119                 *tsc_timestamp = v = 0;
2120
2121         return v * clock->mult;
2122 }
2123
2124 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2125 {
2126         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2127         unsigned long seq;
2128         int mode;
2129         u64 ns;
2130
2131         do {
2132                 seq = read_seqcount_begin(&gtod->seq);
2133                 ns = gtod->raw_clock.base_cycles;
2134                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2135                 ns >>= gtod->raw_clock.shift;
2136                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2137         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2138         *t = ns;
2139
2140         return mode;
2141 }
2142
2143 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2144 {
2145         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2146         unsigned long seq;
2147         int mode;
2148         u64 ns;
2149
2150         do {
2151                 seq = read_seqcount_begin(&gtod->seq);
2152                 ts->tv_sec = gtod->wall_time_sec;
2153                 ns = gtod->clock.base_cycles;
2154                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2155                 ns >>= gtod->clock.shift;
2156         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2157
2158         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2159         ts->tv_nsec = ns;
2160
2161         return mode;
2162 }
2163
2164 /* returns true if host is using TSC based clocksource */
2165 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2166 {
2167         /* checked again under seqlock below */
2168         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2169                 return false;
2170
2171         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2172                                                       tsc_timestamp));
2173 }
2174
2175 /* returns true if host is using TSC based clocksource */
2176 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2177                                            u64 *tsc_timestamp)
2178 {
2179         /* checked again under seqlock below */
2180         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2181                 return false;
2182
2183         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2184 }
2185 #endif
2186
2187 /*
2188  *
2189  * Assuming a stable TSC across physical CPUS, and a stable TSC
2190  * across virtual CPUs, the following condition is possible.
2191  * Each numbered line represents an event visible to both
2192  * CPUs at the next numbered event.
2193  *
2194  * "timespecX" represents host monotonic time. "tscX" represents
2195  * RDTSC value.
2196  *
2197  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2198  *
2199  * 1.  read timespec0,tsc0
2200  * 2.                                   | timespec1 = timespec0 + N
2201  *                                      | tsc1 = tsc0 + M
2202  * 3. transition to guest               | transition to guest
2203  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2204  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2205  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2206  *
2207  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2208  *
2209  *      - ret0 < ret1
2210  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2211  *              ...
2212  *      - 0 < N - M => M < N
2213  *
2214  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2215  * always the case (the difference between two distinct xtime instances
2216  * might be smaller then the difference between corresponding TSC reads,
2217  * when updating guest vcpus pvclock areas).
2218  *
2219  * To avoid that problem, do not allow visibility of distinct
2220  * system_timestamp/tsc_timestamp values simultaneously: use a master
2221  * copy of host monotonic time values. Update that master copy
2222  * in lockstep.
2223  *
2224  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2225  *
2226  */
2227
2228 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2229 {
2230 #ifdef CONFIG_X86_64
2231         struct kvm_arch *ka = &kvm->arch;
2232         int vclock_mode;
2233         bool host_tsc_clocksource, vcpus_matched;
2234
2235         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2236                         atomic_read(&kvm->online_vcpus));
2237
2238         /*
2239          * If the host uses TSC clock, then passthrough TSC as stable
2240          * to the guest.
2241          */
2242         host_tsc_clocksource = kvm_get_time_and_clockread(
2243                                         &ka->master_kernel_ns,
2244                                         &ka->master_cycle_now);
2245
2246         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2247                                 && !ka->backwards_tsc_observed
2248                                 && !ka->boot_vcpu_runs_old_kvmclock;
2249
2250         if (ka->use_master_clock)
2251                 atomic_set(&kvm_guest_has_master_clock, 1);
2252
2253         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2254         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2255                                         vcpus_matched);
2256 #endif
2257 }
2258
2259 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2260 {
2261         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2262 }
2263
2264 static void kvm_gen_update_masterclock(struct kvm *kvm)
2265 {
2266 #ifdef CONFIG_X86_64
2267         int i;
2268         struct kvm_vcpu *vcpu;
2269         struct kvm_arch *ka = &kvm->arch;
2270
2271         spin_lock(&ka->pvclock_gtod_sync_lock);
2272         kvm_make_mclock_inprogress_request(kvm);
2273         /* no guest entries from this point */
2274         pvclock_update_vm_gtod_copy(kvm);
2275
2276         kvm_for_each_vcpu(i, vcpu, kvm)
2277                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2278
2279         /* guest entries allowed */
2280         kvm_for_each_vcpu(i, vcpu, kvm)
2281                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2282
2283         spin_unlock(&ka->pvclock_gtod_sync_lock);
2284 #endif
2285 }
2286
2287 u64 get_kvmclock_ns(struct kvm *kvm)
2288 {
2289         struct kvm_arch *ka = &kvm->arch;
2290         struct pvclock_vcpu_time_info hv_clock;
2291         u64 ret;
2292
2293         spin_lock(&ka->pvclock_gtod_sync_lock);
2294         if (!ka->use_master_clock) {
2295                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2296                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2297         }
2298
2299         hv_clock.tsc_timestamp = ka->master_cycle_now;
2300         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2301         spin_unlock(&ka->pvclock_gtod_sync_lock);
2302
2303         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2304         get_cpu();
2305
2306         if (__this_cpu_read(cpu_tsc_khz)) {
2307                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2308                                    &hv_clock.tsc_shift,
2309                                    &hv_clock.tsc_to_system_mul);
2310                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2311         } else
2312                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2313
2314         put_cpu();
2315
2316         return ret;
2317 }
2318
2319 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2320 {
2321         struct kvm_vcpu_arch *vcpu = &v->arch;
2322         struct pvclock_vcpu_time_info guest_hv_clock;
2323
2324         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2325                 &guest_hv_clock, sizeof(guest_hv_clock))))
2326                 return;
2327
2328         /* This VCPU is paused, but it's legal for a guest to read another
2329          * VCPU's kvmclock, so we really have to follow the specification where
2330          * it says that version is odd if data is being modified, and even after
2331          * it is consistent.
2332          *
2333          * Version field updates must be kept separate.  This is because
2334          * kvm_write_guest_cached might use a "rep movs" instruction, and
2335          * writes within a string instruction are weakly ordered.  So there
2336          * are three writes overall.
2337          *
2338          * As a small optimization, only write the version field in the first
2339          * and third write.  The vcpu->pv_time cache is still valid, because the
2340          * version field is the first in the struct.
2341          */
2342         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2343
2344         if (guest_hv_clock.version & 1)
2345                 ++guest_hv_clock.version;  /* first time write, random junk */
2346
2347         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2348         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2349                                 &vcpu->hv_clock,
2350                                 sizeof(vcpu->hv_clock.version));
2351
2352         smp_wmb();
2353
2354         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2355         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2356
2357         if (vcpu->pvclock_set_guest_stopped_request) {
2358                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2359                 vcpu->pvclock_set_guest_stopped_request = false;
2360         }
2361
2362         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2363
2364         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2365                                 &vcpu->hv_clock,
2366                                 sizeof(vcpu->hv_clock));
2367
2368         smp_wmb();
2369
2370         vcpu->hv_clock.version++;
2371         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2372                                 &vcpu->hv_clock,
2373                                 sizeof(vcpu->hv_clock.version));
2374 }
2375
2376 static int kvm_guest_time_update(struct kvm_vcpu *v)
2377 {
2378         unsigned long flags, tgt_tsc_khz;
2379         struct kvm_vcpu_arch *vcpu = &v->arch;
2380         struct kvm_arch *ka = &v->kvm->arch;
2381         s64 kernel_ns;
2382         u64 tsc_timestamp, host_tsc;
2383         u8 pvclock_flags;
2384         bool use_master_clock;
2385
2386         kernel_ns = 0;
2387         host_tsc = 0;
2388
2389         /*
2390          * If the host uses TSC clock, then passthrough TSC as stable
2391          * to the guest.
2392          */
2393         spin_lock(&ka->pvclock_gtod_sync_lock);
2394         use_master_clock = ka->use_master_clock;
2395         if (use_master_clock) {
2396                 host_tsc = ka->master_cycle_now;
2397                 kernel_ns = ka->master_kernel_ns;
2398         }
2399         spin_unlock(&ka->pvclock_gtod_sync_lock);
2400
2401         /* Keep irq disabled to prevent changes to the clock */
2402         local_irq_save(flags);
2403         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2404         if (unlikely(tgt_tsc_khz == 0)) {
2405                 local_irq_restore(flags);
2406                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2407                 return 1;
2408         }
2409         if (!use_master_clock) {
2410                 host_tsc = rdtsc();
2411                 kernel_ns = get_kvmclock_base_ns();
2412         }
2413
2414         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2415
2416         /*
2417          * We may have to catch up the TSC to match elapsed wall clock
2418          * time for two reasons, even if kvmclock is used.
2419          *   1) CPU could have been running below the maximum TSC rate
2420          *   2) Broken TSC compensation resets the base at each VCPU
2421          *      entry to avoid unknown leaps of TSC even when running
2422          *      again on the same CPU.  This may cause apparent elapsed
2423          *      time to disappear, and the guest to stand still or run
2424          *      very slowly.
2425          */
2426         if (vcpu->tsc_catchup) {
2427                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2428                 if (tsc > tsc_timestamp) {
2429                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2430                         tsc_timestamp = tsc;
2431                 }
2432         }
2433
2434         local_irq_restore(flags);
2435
2436         /* With all the info we got, fill in the values */
2437
2438         if (kvm_has_tsc_control)
2439                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2440
2441         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2442                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2443                                    &vcpu->hv_clock.tsc_shift,
2444                                    &vcpu->hv_clock.tsc_to_system_mul);
2445                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2446         }
2447
2448         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2449         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2450         vcpu->last_guest_tsc = tsc_timestamp;
2451         WARN_ON(vcpu->hv_clock.system_time < 0);
2452
2453         /* If the host uses TSC clocksource, then it is stable */
2454         pvclock_flags = 0;
2455         if (use_master_clock)
2456                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2457
2458         vcpu->hv_clock.flags = pvclock_flags;
2459
2460         if (vcpu->pv_time_enabled)
2461                 kvm_setup_pvclock_page(v);
2462         if (v == kvm_get_vcpu(v->kvm, 0))
2463                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2464         return 0;
2465 }
2466
2467 /*
2468  * kvmclock updates which are isolated to a given vcpu, such as
2469  * vcpu->cpu migration, should not allow system_timestamp from
2470  * the rest of the vcpus to remain static. Otherwise ntp frequency
2471  * correction applies to one vcpu's system_timestamp but not
2472  * the others.
2473  *
2474  * So in those cases, request a kvmclock update for all vcpus.
2475  * We need to rate-limit these requests though, as they can
2476  * considerably slow guests that have a large number of vcpus.
2477  * The time for a remote vcpu to update its kvmclock is bound
2478  * by the delay we use to rate-limit the updates.
2479  */
2480
2481 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2482
2483 static void kvmclock_update_fn(struct work_struct *work)
2484 {
2485         int i;
2486         struct delayed_work *dwork = to_delayed_work(work);
2487         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2488                                            kvmclock_update_work);
2489         struct kvm *kvm = container_of(ka, struct kvm, arch);
2490         struct kvm_vcpu *vcpu;
2491
2492         kvm_for_each_vcpu(i, vcpu, kvm) {
2493                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2494                 kvm_vcpu_kick(vcpu);
2495         }
2496 }
2497
2498 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2499 {
2500         struct kvm *kvm = v->kvm;
2501
2502         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2503         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2504                                         KVMCLOCK_UPDATE_DELAY);
2505 }
2506
2507 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2508
2509 static void kvmclock_sync_fn(struct work_struct *work)
2510 {
2511         struct delayed_work *dwork = to_delayed_work(work);
2512         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2513                                            kvmclock_sync_work);
2514         struct kvm *kvm = container_of(ka, struct kvm, arch);
2515
2516         if (!kvmclock_periodic_sync)
2517                 return;
2518
2519         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2520         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2521                                         KVMCLOCK_SYNC_PERIOD);
2522 }
2523
2524 /*
2525  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2526  */
2527 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2528 {
2529         /* McStatusWrEn enabled? */
2530         if (guest_cpuid_is_amd(vcpu))
2531                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2532
2533         return false;
2534 }
2535
2536 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2537 {
2538         u64 mcg_cap = vcpu->arch.mcg_cap;
2539         unsigned bank_num = mcg_cap & 0xff;
2540         u32 msr = msr_info->index;
2541         u64 data = msr_info->data;
2542
2543         switch (msr) {
2544         case MSR_IA32_MCG_STATUS:
2545                 vcpu->arch.mcg_status = data;
2546                 break;
2547         case MSR_IA32_MCG_CTL:
2548                 if (!(mcg_cap & MCG_CTL_P) &&
2549                     (data || !msr_info->host_initiated))
2550                         return 1;
2551                 if (data != 0 && data != ~(u64)0)
2552                         return 1;
2553                 vcpu->arch.mcg_ctl = data;
2554                 break;
2555         default:
2556                 if (msr >= MSR_IA32_MC0_CTL &&
2557                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2558                         u32 offset = array_index_nospec(
2559                                 msr - MSR_IA32_MC0_CTL,
2560                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2561
2562                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2563                          * some Linux kernels though clear bit 10 in bank 4 to
2564                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2565                          * this to avoid an uncatched #GP in the guest
2566                          */
2567                         if ((offset & 0x3) == 0 &&
2568                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2569                                 return -1;
2570
2571                         /* MCi_STATUS */
2572                         if (!msr_info->host_initiated &&
2573                             (offset & 0x3) == 1 && data != 0) {
2574                                 if (!can_set_mci_status(vcpu))
2575                                         return -1;
2576                         }
2577
2578                         vcpu->arch.mce_banks[offset] = data;
2579                         break;
2580                 }
2581                 return 1;
2582         }
2583         return 0;
2584 }
2585
2586 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2587 {
2588         struct kvm *kvm = vcpu->kvm;
2589         int lm = is_long_mode(vcpu);
2590         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2591                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2592         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2593                 : kvm->arch.xen_hvm_config.blob_size_32;
2594         u32 page_num = data & ~PAGE_MASK;
2595         u64 page_addr = data & PAGE_MASK;
2596         u8 *page;
2597         int r;
2598
2599         r = -E2BIG;
2600         if (page_num >= blob_size)
2601                 goto out;
2602         r = -ENOMEM;
2603         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2604         if (IS_ERR(page)) {
2605                 r = PTR_ERR(page);
2606                 goto out;
2607         }
2608         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2609                 goto out_free;
2610         r = 0;
2611 out_free:
2612         kfree(page);
2613 out:
2614         return r;
2615 }
2616
2617 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2618 {
2619         gpa_t gpa = data & ~0x3f;
2620
2621         /* Bits 3:5 are reserved, Should be zero */
2622         if (data & 0x38)
2623                 return 1;
2624
2625         vcpu->arch.apf.msr_val = data;
2626
2627         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2628                 kvm_clear_async_pf_completion_queue(vcpu);
2629                 kvm_async_pf_hash_reset(vcpu);
2630                 return 0;
2631         }
2632
2633         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2634                                         sizeof(u32)))
2635                 return 1;
2636
2637         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2638         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2639         kvm_async_pf_wakeup_all(vcpu);
2640         return 0;
2641 }
2642
2643 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2644 {
2645         vcpu->arch.pv_time_enabled = false;
2646         vcpu->arch.time = 0;
2647 }
2648
2649 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2650 {
2651         ++vcpu->stat.tlb_flush;
2652         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2653 }
2654
2655 static void record_steal_time(struct kvm_vcpu *vcpu)
2656 {
2657         struct kvm_host_map map;
2658         struct kvm_steal_time *st;
2659
2660         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2661                 return;
2662
2663         /* -EAGAIN is returned in atomic context so we can just return. */
2664         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2665                         &map, &vcpu->arch.st.cache, false))
2666                 return;
2667
2668         st = map.hva +
2669                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2670
2671         /*
2672          * Doing a TLB flush here, on the guest's behalf, can avoid
2673          * expensive IPIs.
2674          */
2675         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2676                 st->preempted & KVM_VCPU_FLUSH_TLB);
2677         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2678                 kvm_vcpu_flush_tlb(vcpu, false);
2679
2680         vcpu->arch.st.preempted = 0;
2681
2682         if (st->version & 1)
2683                 st->version += 1;  /* first time write, random junk */
2684
2685         st->version += 1;
2686
2687         smp_wmb();
2688
2689         st->steal += current->sched_info.run_delay -
2690                 vcpu->arch.st.last_steal;
2691         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2692
2693         smp_wmb();
2694
2695         st->version += 1;
2696
2697         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2698 }
2699
2700 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2701 {
2702         bool pr = false;
2703         u32 msr = msr_info->index;
2704         u64 data = msr_info->data;
2705
2706         switch (msr) {
2707         case MSR_AMD64_NB_CFG:
2708         case MSR_IA32_UCODE_WRITE:
2709         case MSR_VM_HSAVE_PA:
2710         case MSR_AMD64_PATCH_LOADER:
2711         case MSR_AMD64_BU_CFG2:
2712         case MSR_AMD64_DC_CFG:
2713         case MSR_F15H_EX_CFG:
2714                 break;
2715
2716         case MSR_IA32_UCODE_REV:
2717                 if (msr_info->host_initiated)
2718                         vcpu->arch.microcode_version = data;
2719                 break;
2720         case MSR_IA32_ARCH_CAPABILITIES:
2721                 if (!msr_info->host_initiated)
2722                         return 1;
2723                 vcpu->arch.arch_capabilities = data;
2724                 break;
2725         case MSR_EFER:
2726                 return set_efer(vcpu, msr_info);
2727         case MSR_K7_HWCR:
2728                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2729                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2730                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2731
2732                 /* Handle McStatusWrEn */
2733                 if (data == BIT_ULL(18)) {
2734                         vcpu->arch.msr_hwcr = data;
2735                 } else if (data != 0) {
2736                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2737                                     data);
2738                         return 1;
2739                 }
2740                 break;
2741         case MSR_FAM10H_MMIO_CONF_BASE:
2742                 if (data != 0) {
2743                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2744                                     "0x%llx\n", data);
2745                         return 1;
2746                 }
2747                 break;
2748         case MSR_IA32_DEBUGCTLMSR:
2749                 if (!data) {
2750                         /* We support the non-activated case already */
2751                         break;
2752                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2753                         /* Values other than LBR and BTF are vendor-specific,
2754                            thus reserved and should throw a #GP */
2755                         return 1;
2756                 }
2757                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2758                             __func__, data);
2759                 break;
2760         case 0x200 ... 0x2ff:
2761                 return kvm_mtrr_set_msr(vcpu, msr, data);
2762         case MSR_IA32_APICBASE:
2763                 return kvm_set_apic_base(vcpu, msr_info);
2764         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765                 return kvm_x2apic_msr_write(vcpu, msr, data);
2766         case MSR_IA32_TSCDEADLINE:
2767                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2768                 break;
2769         case MSR_IA32_TSC_ADJUST:
2770                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2771                         if (!msr_info->host_initiated) {
2772                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2773                                 adjust_tsc_offset_guest(vcpu, adj);
2774                         }
2775                         vcpu->arch.ia32_tsc_adjust_msr = data;
2776                 }
2777                 break;
2778         case MSR_IA32_MISC_ENABLE:
2779                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2780                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2781                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2782                                 return 1;
2783                         vcpu->arch.ia32_misc_enable_msr = data;
2784                         kvm_update_cpuid(vcpu);
2785                 } else {
2786                         vcpu->arch.ia32_misc_enable_msr = data;
2787                 }
2788                 break;
2789         case MSR_IA32_SMBASE:
2790                 if (!msr_info->host_initiated)
2791                         return 1;
2792                 vcpu->arch.smbase = data;
2793                 break;
2794         case MSR_IA32_POWER_CTL:
2795                 vcpu->arch.msr_ia32_power_ctl = data;
2796                 break;
2797         case MSR_IA32_TSC:
2798                 kvm_write_tsc(vcpu, msr_info);
2799                 break;
2800         case MSR_IA32_XSS:
2801                 if (!msr_info->host_initiated &&
2802                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2803                         return 1;
2804                 /*
2805                  * We do support PT if kvm_x86_ops->pt_supported(), but we do
2806                  * not support IA32_XSS[bit 8]. Guests will have to use
2807                  * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2808                  * MSRs.
2809                  */
2810                 if (data != 0)
2811                         return 1;
2812                 vcpu->arch.ia32_xss = data;
2813                 break;
2814         case MSR_SMI_COUNT:
2815                 if (!msr_info->host_initiated)
2816                         return 1;
2817                 vcpu->arch.smi_count = data;
2818                 break;
2819         case MSR_KVM_WALL_CLOCK_NEW:
2820         case MSR_KVM_WALL_CLOCK:
2821                 vcpu->kvm->arch.wall_clock = data;
2822                 kvm_write_wall_clock(vcpu->kvm, data);
2823                 break;
2824         case MSR_KVM_SYSTEM_TIME_NEW:
2825         case MSR_KVM_SYSTEM_TIME: {
2826                 struct kvm_arch *ka = &vcpu->kvm->arch;
2827
2828                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2829                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2830
2831                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2832                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2833
2834                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2835                 }
2836
2837                 vcpu->arch.time = data;
2838                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2839
2840                 /* we verify if the enable bit is set... */
2841                 vcpu->arch.pv_time_enabled = false;
2842                 if (!(data & 1))
2843                         break;
2844
2845                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2846                      &vcpu->arch.pv_time, data & ~1ULL,
2847                      sizeof(struct pvclock_vcpu_time_info)))
2848                         vcpu->arch.pv_time_enabled = true;
2849
2850                 break;
2851         }
2852         case MSR_KVM_ASYNC_PF_EN:
2853                 if (kvm_pv_enable_async_pf(vcpu, data))
2854                         return 1;
2855                 break;
2856         case MSR_KVM_STEAL_TIME:
2857
2858                 if (unlikely(!sched_info_on()))
2859                         return 1;
2860
2861                 if (data & KVM_STEAL_RESERVED_MASK)
2862                         return 1;
2863
2864                 vcpu->arch.st.msr_val = data;
2865
2866                 if (!(data & KVM_MSR_ENABLED))
2867                         break;
2868
2869                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2870
2871                 break;
2872         case MSR_KVM_PV_EOI_EN:
2873                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2874                         return 1;
2875                 break;
2876
2877         case MSR_KVM_POLL_CONTROL:
2878                 /* only enable bit supported */
2879                 if (data & (-1ULL << 1))
2880                         return 1;
2881
2882                 vcpu->arch.msr_kvm_poll_control = data;
2883                 break;
2884
2885         case MSR_IA32_MCG_CTL:
2886         case MSR_IA32_MCG_STATUS:
2887         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2888                 return set_msr_mce(vcpu, msr_info);
2889
2890         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2891         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2892                 pr = true; /* fall through */
2893         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2894         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2895                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2896                         return kvm_pmu_set_msr(vcpu, msr_info);
2897
2898                 if (pr || data != 0)
2899                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2900                                     "0x%x data 0x%llx\n", msr, data);
2901                 break;
2902         case MSR_K7_CLK_CTL:
2903                 /*
2904                  * Ignore all writes to this no longer documented MSR.
2905                  * Writes are only relevant for old K7 processors,
2906                  * all pre-dating SVM, but a recommended workaround from
2907                  * AMD for these chips. It is possible to specify the
2908                  * affected processor models on the command line, hence
2909                  * the need to ignore the workaround.
2910                  */
2911                 break;
2912         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2913         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2914         case HV_X64_MSR_CRASH_CTL:
2915         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2916         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2917         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2918         case HV_X64_MSR_TSC_EMULATION_STATUS:
2919                 return kvm_hv_set_msr_common(vcpu, msr, data,
2920                                              msr_info->host_initiated);
2921         case MSR_IA32_BBL_CR_CTL3:
2922                 /* Drop writes to this legacy MSR -- see rdmsr
2923                  * counterpart for further detail.
2924                  */
2925                 if (report_ignored_msrs)
2926                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2927                                 msr, data);
2928                 break;
2929         case MSR_AMD64_OSVW_ID_LENGTH:
2930                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2931                         return 1;
2932                 vcpu->arch.osvw.length = data;
2933                 break;
2934         case MSR_AMD64_OSVW_STATUS:
2935                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2936                         return 1;
2937                 vcpu->arch.osvw.status = data;
2938                 break;
2939         case MSR_PLATFORM_INFO:
2940                 if (!msr_info->host_initiated ||
2941                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2942                      cpuid_fault_enabled(vcpu)))
2943                         return 1;
2944                 vcpu->arch.msr_platform_info = data;
2945                 break;
2946         case MSR_MISC_FEATURES_ENABLES:
2947                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2948                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2949                      !supports_cpuid_fault(vcpu)))
2950                         return 1;
2951                 vcpu->arch.msr_misc_features_enables = data;
2952                 break;
2953         default:
2954                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2955                         return xen_hvm_config(vcpu, data);
2956                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2957                         return kvm_pmu_set_msr(vcpu, msr_info);
2958                 if (!ignore_msrs) {
2959                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2960                                     msr, data);
2961                         return 1;
2962                 } else {
2963                         if (report_ignored_msrs)
2964                                 vcpu_unimpl(vcpu,
2965                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2966                                         msr, data);
2967                         break;
2968                 }
2969         }
2970         return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2973
2974 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2975 {
2976         u64 data;
2977         u64 mcg_cap = vcpu->arch.mcg_cap;
2978         unsigned bank_num = mcg_cap & 0xff;
2979
2980         switch (msr) {
2981         case MSR_IA32_P5_MC_ADDR:
2982         case MSR_IA32_P5_MC_TYPE:
2983                 data = 0;
2984                 break;
2985         case MSR_IA32_MCG_CAP:
2986                 data = vcpu->arch.mcg_cap;
2987                 break;
2988         case MSR_IA32_MCG_CTL:
2989                 if (!(mcg_cap & MCG_CTL_P) && !host)
2990                         return 1;
2991                 data = vcpu->arch.mcg_ctl;
2992                 break;
2993         case MSR_IA32_MCG_STATUS:
2994                 data = vcpu->arch.mcg_status;
2995                 break;
2996         default:
2997                 if (msr >= MSR_IA32_MC0_CTL &&
2998                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2999                         u32 offset = array_index_nospec(
3000                                 msr - MSR_IA32_MC0_CTL,
3001                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3002
3003                         data = vcpu->arch.mce_banks[offset];
3004                         break;
3005                 }
3006                 return 1;
3007         }
3008         *pdata = data;
3009         return 0;
3010 }
3011
3012 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3013 {
3014         switch (msr_info->index) {
3015         case MSR_IA32_PLATFORM_ID:
3016         case MSR_IA32_EBL_CR_POWERON:
3017         case MSR_IA32_DEBUGCTLMSR:
3018         case MSR_IA32_LASTBRANCHFROMIP:
3019         case MSR_IA32_LASTBRANCHTOIP:
3020         case MSR_IA32_LASTINTFROMIP:
3021         case MSR_IA32_LASTINTTOIP:
3022         case MSR_K8_SYSCFG:
3023         case MSR_K8_TSEG_ADDR:
3024         case MSR_K8_TSEG_MASK:
3025         case MSR_VM_HSAVE_PA:
3026         case MSR_K8_INT_PENDING_MSG:
3027         case MSR_AMD64_NB_CFG:
3028         case MSR_FAM10H_MMIO_CONF_BASE:
3029         case MSR_AMD64_BU_CFG2:
3030         case MSR_IA32_PERF_CTL:
3031         case MSR_AMD64_DC_CFG:
3032         case MSR_F15H_EX_CFG:
3033                 msr_info->data = 0;
3034                 break;
3035         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3036         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3037         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3038         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3039         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3040                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3041                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3042                 msr_info->data = 0;
3043                 break;
3044         case MSR_IA32_UCODE_REV:
3045                 msr_info->data = vcpu->arch.microcode_version;
3046                 break;
3047         case MSR_IA32_ARCH_CAPABILITIES:
3048                 if (!msr_info->host_initiated &&
3049                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3050                         return 1;
3051                 msr_info->data = vcpu->arch.arch_capabilities;
3052                 break;
3053         case MSR_IA32_POWER_CTL:
3054                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3055                 break;
3056         case MSR_IA32_TSC:
3057                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3058                 break;
3059         case MSR_MTRRcap:
3060         case 0x200 ... 0x2ff:
3061                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3062         case 0xcd: /* fsb frequency */
3063                 msr_info->data = 3;
3064                 break;
3065                 /*
3066                  * MSR_EBC_FREQUENCY_ID
3067                  * Conservative value valid for even the basic CPU models.
3068                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3069                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3070                  * and 266MHz for model 3, or 4. Set Core Clock
3071                  * Frequency to System Bus Frequency Ratio to 1 (bits
3072                  * 31:24) even though these are only valid for CPU
3073                  * models > 2, however guests may end up dividing or
3074                  * multiplying by zero otherwise.
3075                  */
3076         case MSR_EBC_FREQUENCY_ID:
3077                 msr_info->data = 1 << 24;
3078                 break;
3079         case MSR_IA32_APICBASE:
3080                 msr_info->data = kvm_get_apic_base(vcpu);
3081                 break;
3082         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3083                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3084                 break;
3085         case MSR_IA32_TSCDEADLINE:
3086                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3087                 break;
3088         case MSR_IA32_TSC_ADJUST:
3089                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3090                 break;
3091         case MSR_IA32_MISC_ENABLE:
3092                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3093                 break;
3094         case MSR_IA32_SMBASE:
3095                 if (!msr_info->host_initiated)
3096                         return 1;
3097                 msr_info->data = vcpu->arch.smbase;
3098                 break;
3099         case MSR_SMI_COUNT:
3100                 msr_info->data = vcpu->arch.smi_count;
3101                 break;
3102         case MSR_IA32_PERF_STATUS:
3103                 /* TSC increment by tick */
3104                 msr_info->data = 1000ULL;
3105                 /* CPU multiplier */
3106                 msr_info->data |= (((uint64_t)4ULL) << 40);
3107                 break;
3108         case MSR_EFER:
3109                 msr_info->data = vcpu->arch.efer;
3110                 break;
3111         case MSR_KVM_WALL_CLOCK:
3112         case MSR_KVM_WALL_CLOCK_NEW:
3113                 msr_info->data = vcpu->kvm->arch.wall_clock;
3114                 break;
3115         case MSR_KVM_SYSTEM_TIME:
3116         case MSR_KVM_SYSTEM_TIME_NEW:
3117                 msr_info->data = vcpu->arch.time;
3118                 break;
3119         case MSR_KVM_ASYNC_PF_EN:
3120                 msr_info->data = vcpu->arch.apf.msr_val;
3121                 break;
3122         case MSR_KVM_STEAL_TIME:
3123                 msr_info->data = vcpu->arch.st.msr_val;
3124                 break;
3125         case MSR_KVM_PV_EOI_EN:
3126                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3127                 break;
3128         case MSR_KVM_POLL_CONTROL:
3129                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3130                 break;
3131         case MSR_IA32_P5_MC_ADDR:
3132         case MSR_IA32_P5_MC_TYPE:
3133         case MSR_IA32_MCG_CAP:
3134         case MSR_IA32_MCG_CTL:
3135         case MSR_IA32_MCG_STATUS:
3136         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3137                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3138                                    msr_info->host_initiated);
3139         case MSR_IA32_XSS:
3140                 if (!msr_info->host_initiated &&
3141                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3142                         return 1;
3143                 msr_info->data = vcpu->arch.ia32_xss;
3144                 break;
3145         case MSR_K7_CLK_CTL:
3146                 /*
3147                  * Provide expected ramp-up count for K7. All other
3148                  * are set to zero, indicating minimum divisors for
3149                  * every field.
3150                  *
3151                  * This prevents guest kernels on AMD host with CPU
3152                  * type 6, model 8 and higher from exploding due to
3153                  * the rdmsr failing.
3154                  */
3155                 msr_info->data = 0x20000000;
3156                 break;
3157         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3158         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3159         case HV_X64_MSR_CRASH_CTL:
3160         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3161         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3162         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3163         case HV_X64_MSR_TSC_EMULATION_STATUS:
3164                 return kvm_hv_get_msr_common(vcpu,
3165                                              msr_info->index, &msr_info->data,
3166                                              msr_info->host_initiated);
3167                 break;
3168         case MSR_IA32_BBL_CR_CTL3:
3169                 /* This legacy MSR exists but isn't fully documented in current
3170                  * silicon.  It is however accessed by winxp in very narrow
3171                  * scenarios where it sets bit #19, itself documented as
3172                  * a "reserved" bit.  Best effort attempt to source coherent
3173                  * read data here should the balance of the register be
3174                  * interpreted by the guest:
3175                  *
3176                  * L2 cache control register 3: 64GB range, 256KB size,
3177                  * enabled, latency 0x1, configured
3178                  */
3179                 msr_info->data = 0xbe702111;
3180                 break;
3181         case MSR_AMD64_OSVW_ID_LENGTH:
3182                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3183                         return 1;
3184                 msr_info->data = vcpu->arch.osvw.length;
3185                 break;
3186         case MSR_AMD64_OSVW_STATUS:
3187                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3188                         return 1;
3189                 msr_info->data = vcpu->arch.osvw.status;
3190                 break;
3191         case MSR_PLATFORM_INFO:
3192                 if (!msr_info->host_initiated &&
3193                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3194                         return 1;
3195                 msr_info->data = vcpu->arch.msr_platform_info;
3196                 break;
3197         case MSR_MISC_FEATURES_ENABLES:
3198                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3199                 break;
3200         case MSR_K7_HWCR:
3201                 msr_info->data = vcpu->arch.msr_hwcr;
3202                 break;
3203         default:
3204                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3205                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3206                 if (!ignore_msrs) {
3207                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3208                                                msr_info->index);
3209                         return 1;
3210                 } else {
3211                         if (report_ignored_msrs)
3212                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3213                                         msr_info->index);
3214                         msr_info->data = 0;
3215                 }
3216                 break;
3217         }
3218         return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3221
3222 /*
3223  * Read or write a bunch of msrs. All parameters are kernel addresses.
3224  *
3225  * @return number of msrs set successfully.
3226  */
3227 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3228                     struct kvm_msr_entry *entries,
3229                     int (*do_msr)(struct kvm_vcpu *vcpu,
3230                                   unsigned index, u64 *data))
3231 {
3232         int i;
3233
3234         for (i = 0; i < msrs->nmsrs; ++i)
3235                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3236                         break;
3237
3238         return i;
3239 }
3240
3241 /*
3242  * Read or write a bunch of msrs. Parameters are user addresses.
3243  *
3244  * @return number of msrs set successfully.
3245  */
3246 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3247                   int (*do_msr)(struct kvm_vcpu *vcpu,
3248                                 unsigned index, u64 *data),
3249                   int writeback)
3250 {
3251         struct kvm_msrs msrs;
3252         struct kvm_msr_entry *entries;
3253         int r, n;
3254         unsigned size;
3255
3256         r = -EFAULT;
3257         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3258                 goto out;
3259
3260         r = -E2BIG;
3261         if (msrs.nmsrs >= MAX_IO_MSRS)
3262                 goto out;
3263
3264         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3265         entries = memdup_user(user_msrs->entries, size);
3266         if (IS_ERR(entries)) {
3267                 r = PTR_ERR(entries);
3268                 goto out;
3269         }
3270
3271         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3272         if (r < 0)
3273                 goto out_free;
3274
3275         r = -EFAULT;
3276         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3277                 goto out_free;
3278
3279         r = n;
3280
3281 out_free:
3282         kfree(entries);
3283 out:
3284         return r;
3285 }
3286
3287 static inline bool kvm_can_mwait_in_guest(void)
3288 {
3289         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3290                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3291                 boot_cpu_has(X86_FEATURE_ARAT);
3292 }
3293
3294 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3295 {
3296         int r = 0;
3297
3298         switch (ext) {
3299         case KVM_CAP_IRQCHIP:
3300         case KVM_CAP_HLT:
3301         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3302         case KVM_CAP_SET_TSS_ADDR:
3303         case KVM_CAP_EXT_CPUID:
3304         case KVM_CAP_EXT_EMUL_CPUID:
3305         case KVM_CAP_CLOCKSOURCE:
3306         case KVM_CAP_PIT:
3307         case KVM_CAP_NOP_IO_DELAY:
3308         case KVM_CAP_MP_STATE:
3309         case KVM_CAP_SYNC_MMU:
3310         case KVM_CAP_USER_NMI:
3311         case KVM_CAP_REINJECT_CONTROL:
3312         case KVM_CAP_IRQ_INJECT_STATUS:
3313         case KVM_CAP_IOEVENTFD:
3314         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3315         case KVM_CAP_PIT2:
3316         case KVM_CAP_PIT_STATE2:
3317         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3318         case KVM_CAP_XEN_HVM:
3319         case KVM_CAP_VCPU_EVENTS:
3320         case KVM_CAP_HYPERV:
3321         case KVM_CAP_HYPERV_VAPIC:
3322         case KVM_CAP_HYPERV_SPIN:
3323         case KVM_CAP_HYPERV_SYNIC:
3324         case KVM_CAP_HYPERV_SYNIC2:
3325         case KVM_CAP_HYPERV_VP_INDEX:
3326         case KVM_CAP_HYPERV_EVENTFD:
3327         case KVM_CAP_HYPERV_TLBFLUSH:
3328         case KVM_CAP_HYPERV_SEND_IPI:
3329         case KVM_CAP_HYPERV_CPUID:
3330         case KVM_CAP_PCI_SEGMENT:
3331         case KVM_CAP_DEBUGREGS:
3332         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3333         case KVM_CAP_XSAVE:
3334         case KVM_CAP_ASYNC_PF:
3335         case KVM_CAP_GET_TSC_KHZ:
3336         case KVM_CAP_KVMCLOCK_CTRL:
3337         case KVM_CAP_READONLY_MEM:
3338         case KVM_CAP_HYPERV_TIME:
3339         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3340         case KVM_CAP_TSC_DEADLINE_TIMER:
3341         case KVM_CAP_DISABLE_QUIRKS:
3342         case KVM_CAP_SET_BOOT_CPU_ID:
3343         case KVM_CAP_SPLIT_IRQCHIP:
3344         case KVM_CAP_IMMEDIATE_EXIT:
3345         case KVM_CAP_PMU_EVENT_FILTER:
3346         case KVM_CAP_GET_MSR_FEATURES:
3347         case KVM_CAP_MSR_PLATFORM_INFO:
3348         case KVM_CAP_EXCEPTION_PAYLOAD:
3349                 r = 1;
3350                 break;
3351         case KVM_CAP_SYNC_REGS:
3352                 r = KVM_SYNC_X86_VALID_FIELDS;
3353                 break;
3354         case KVM_CAP_ADJUST_CLOCK:
3355                 r = KVM_CLOCK_TSC_STABLE;
3356                 break;
3357         case KVM_CAP_X86_DISABLE_EXITS:
3358                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3359                       KVM_X86_DISABLE_EXITS_CSTATE;
3360                 if(kvm_can_mwait_in_guest())
3361                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3362                 break;
3363         case KVM_CAP_X86_SMM:
3364                 /* SMBASE is usually relocated above 1M on modern chipsets,
3365                  * and SMM handlers might indeed rely on 4G segment limits,
3366                  * so do not report SMM to be available if real mode is
3367                  * emulated via vm86 mode.  Still, do not go to great lengths
3368                  * to avoid userspace's usage of the feature, because it is a
3369                  * fringe case that is not enabled except via specific settings
3370                  * of the module parameters.
3371                  */
3372                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3373                 break;
3374         case KVM_CAP_VAPIC:
3375                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3376                 break;
3377         case KVM_CAP_NR_VCPUS:
3378                 r = KVM_SOFT_MAX_VCPUS;
3379                 break;
3380         case KVM_CAP_MAX_VCPUS:
3381                 r = KVM_MAX_VCPUS;
3382                 break;
3383         case KVM_CAP_MAX_VCPU_ID:
3384                 r = KVM_MAX_VCPU_ID;
3385                 break;
3386         case KVM_CAP_PV_MMU:    /* obsolete */
3387                 r = 0;
3388                 break;
3389         case KVM_CAP_MCE:
3390                 r = KVM_MAX_MCE_BANKS;
3391                 break;
3392         case KVM_CAP_XCRS:
3393                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3394                 break;
3395         case KVM_CAP_TSC_CONTROL:
3396                 r = kvm_has_tsc_control;
3397                 break;
3398         case KVM_CAP_X2APIC_API:
3399                 r = KVM_X2APIC_API_VALID_FLAGS;
3400                 break;
3401         case KVM_CAP_NESTED_STATE:
3402                 r = kvm_x86_ops->get_nested_state ?
3403                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3404                 break;
3405         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3406                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3407                 break;
3408         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3409                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3410                 break;
3411         default:
3412                 break;
3413         }
3414         return r;
3415
3416 }
3417
3418 long kvm_arch_dev_ioctl(struct file *filp,
3419                         unsigned int ioctl, unsigned long arg)
3420 {
3421         void __user *argp = (void __user *)arg;
3422         long r;
3423
3424         switch (ioctl) {
3425         case KVM_GET_MSR_INDEX_LIST: {
3426                 struct kvm_msr_list __user *user_msr_list = argp;
3427                 struct kvm_msr_list msr_list;
3428                 unsigned n;
3429
3430                 r = -EFAULT;
3431                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3432                         goto out;
3433                 n = msr_list.nmsrs;
3434                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3435                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3436                         goto out;
3437                 r = -E2BIG;
3438                 if (n < msr_list.nmsrs)
3439                         goto out;
3440                 r = -EFAULT;
3441                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3442                                  num_msrs_to_save * sizeof(u32)))
3443                         goto out;
3444                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3445                                  &emulated_msrs,
3446                                  num_emulated_msrs * sizeof(u32)))
3447                         goto out;
3448                 r = 0;
3449                 break;
3450         }
3451         case KVM_GET_SUPPORTED_CPUID:
3452         case KVM_GET_EMULATED_CPUID: {
3453                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3454                 struct kvm_cpuid2 cpuid;
3455
3456                 r = -EFAULT;
3457                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3458                         goto out;
3459
3460                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3461                                             ioctl);
3462                 if (r)
3463                         goto out;
3464
3465                 r = -EFAULT;
3466                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3467                         goto out;
3468                 r = 0;
3469                 break;
3470         }
3471         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3472                 r = -EFAULT;
3473                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3474                                  sizeof(kvm_mce_cap_supported)))
3475                         goto out;
3476                 r = 0;
3477                 break;
3478         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3479                 struct kvm_msr_list __user *user_msr_list = argp;
3480                 struct kvm_msr_list msr_list;
3481                 unsigned int n;
3482
3483                 r = -EFAULT;
3484                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3485                         goto out;
3486                 n = msr_list.nmsrs;
3487                 msr_list.nmsrs = num_msr_based_features;
3488                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3489                         goto out;
3490                 r = -E2BIG;
3491                 if (n < msr_list.nmsrs)
3492                         goto out;
3493                 r = -EFAULT;
3494                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3495                                  num_msr_based_features * sizeof(u32)))
3496                         goto out;
3497                 r = 0;
3498                 break;
3499         }
3500         case KVM_GET_MSRS:
3501                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3502                 break;
3503         }
3504         default:
3505                 r = -EINVAL;
3506         }
3507 out:
3508         return r;
3509 }
3510
3511 static void wbinvd_ipi(void *garbage)
3512 {
3513         wbinvd();
3514 }
3515
3516 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3517 {
3518         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3519 }
3520
3521 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3522 {
3523         /* Address WBINVD may be executed by guest */
3524         if (need_emulate_wbinvd(vcpu)) {
3525                 if (kvm_x86_ops->has_wbinvd_exit())
3526                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3527                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3528                         smp_call_function_single(vcpu->cpu,
3529                                         wbinvd_ipi, NULL, 1);
3530         }
3531
3532         kvm_x86_ops->vcpu_load(vcpu, cpu);
3533
3534         /* Apply any externally detected TSC adjustments (due to suspend) */
3535         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3536                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3537                 vcpu->arch.tsc_offset_adjustment = 0;
3538                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3539         }
3540
3541         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3542                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3543                                 rdtsc() - vcpu->arch.last_host_tsc;
3544                 if (tsc_delta < 0)
3545                         mark_tsc_unstable("KVM discovered backwards TSC");
3546
3547                 if (kvm_check_tsc_unstable()) {
3548                         u64 offset = kvm_compute_tsc_offset(vcpu,
3549                                                 vcpu->arch.last_guest_tsc);
3550                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3551                         vcpu->arch.tsc_catchup = 1;
3552                 }
3553
3554                 if (kvm_lapic_hv_timer_in_use(vcpu))
3555                         kvm_lapic_restart_hv_timer(vcpu);
3556
3557                 /*
3558                  * On a host with synchronized TSC, there is no need to update
3559                  * kvmclock on vcpu->cpu migration
3560                  */
3561                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3562                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3563                 if (vcpu->cpu != cpu)
3564                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3565                 vcpu->cpu = cpu;
3566         }
3567
3568         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3569 }
3570
3571 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3572 {
3573         struct kvm_host_map map;
3574         struct kvm_steal_time *st;
3575
3576         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3577                 return;
3578
3579         if (vcpu->arch.st.preempted)
3580                 return;
3581
3582         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3583                         &vcpu->arch.st.cache, true))
3584                 return;
3585
3586         st = map.hva +
3587                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3588
3589         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3590
3591         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3592 }
3593
3594 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3595 {
3596         int idx;
3597
3598         if (vcpu->preempted)
3599                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3600
3601         /*
3602          * Disable page faults because we're in atomic context here.
3603          * kvm_write_guest_offset_cached() would call might_fault()
3604          * that relies on pagefault_disable() to tell if there's a
3605          * bug. NOTE: the write to guest memory may not go through if
3606          * during postcopy live migration or if there's heavy guest
3607          * paging.
3608          */
3609         pagefault_disable();
3610         /*
3611          * kvm_memslots() will be called by
3612          * kvm_write_guest_offset_cached() so take the srcu lock.
3613          */
3614         idx = srcu_read_lock(&vcpu->kvm->srcu);
3615         kvm_steal_time_set_preempted(vcpu);
3616         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3617         pagefault_enable();
3618         kvm_x86_ops->vcpu_put(vcpu);
3619         vcpu->arch.last_host_tsc = rdtsc();
3620         /*
3621          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3622          * on every vmexit, but if not, we might have a stale dr6 from the
3623          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3624          */
3625         set_debugreg(0, 6);
3626 }
3627
3628 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3629                                     struct kvm_lapic_state *s)
3630 {
3631         if (vcpu->arch.apicv_active)
3632                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3633
3634         return kvm_apic_get_state(vcpu, s);
3635 }
3636
3637 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3638                                     struct kvm_lapic_state *s)
3639 {
3640         int r;
3641
3642         r = kvm_apic_set_state(vcpu, s);
3643         if (r)
3644                 return r;
3645         update_cr8_intercept(vcpu);
3646
3647         return 0;
3648 }
3649
3650 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3651 {
3652         return (!lapic_in_kernel(vcpu) ||
3653                 kvm_apic_accept_pic_intr(vcpu));
3654 }
3655
3656 /*
3657  * if userspace requested an interrupt window, check that the
3658  * interrupt window is open.
3659  *
3660  * No need to exit to userspace if we already have an interrupt queued.
3661  */
3662 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3663 {
3664         return kvm_arch_interrupt_allowed(vcpu) &&
3665                 !kvm_cpu_has_interrupt(vcpu) &&
3666                 !kvm_event_needs_reinjection(vcpu) &&
3667                 kvm_cpu_accept_dm_intr(vcpu);
3668 }
3669
3670 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3671                                     struct kvm_interrupt *irq)
3672 {
3673         if (irq->irq >= KVM_NR_INTERRUPTS)
3674                 return -EINVAL;
3675
3676         if (!irqchip_in_kernel(vcpu->kvm)) {
3677                 kvm_queue_interrupt(vcpu, irq->irq, false);
3678                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3679                 return 0;
3680         }
3681
3682         /*
3683          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3684          * fail for in-kernel 8259.
3685          */
3686         if (pic_in_kernel(vcpu->kvm))
3687                 return -ENXIO;
3688
3689         if (vcpu->arch.pending_external_vector != -1)
3690                 return -EEXIST;
3691
3692         vcpu->arch.pending_external_vector = irq->irq;
3693         kvm_make_request(KVM_REQ_EVENT, vcpu);
3694         return 0;
3695 }
3696
3697 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3698 {
3699         kvm_inject_nmi(vcpu);
3700
3701         return 0;
3702 }
3703
3704 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3705 {
3706         kvm_make_request(KVM_REQ_SMI, vcpu);
3707
3708         return 0;
3709 }
3710
3711 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3712                                            struct kvm_tpr_access_ctl *tac)
3713 {
3714         if (tac->flags)
3715                 return -EINVAL;
3716         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3717         return 0;
3718 }
3719
3720 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3721                                         u64 mcg_cap)
3722 {
3723         int r;
3724         unsigned bank_num = mcg_cap & 0xff, bank;
3725
3726         r = -EINVAL;
3727         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3728                 goto out;
3729         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3730                 goto out;
3731         r = 0;
3732         vcpu->arch.mcg_cap = mcg_cap;
3733         /* Init IA32_MCG_CTL to all 1s */
3734         if (mcg_cap & MCG_CTL_P)
3735                 vcpu->arch.mcg_ctl = ~(u64)0;
3736         /* Init IA32_MCi_CTL to all 1s */
3737         for (bank = 0; bank < bank_num; bank++)
3738                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3739
3740         kvm_x86_ops->setup_mce(vcpu);
3741 out:
3742         return r;
3743 }
3744
3745 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3746                                       struct kvm_x86_mce *mce)
3747 {
3748         u64 mcg_cap = vcpu->arch.mcg_cap;
3749         unsigned bank_num = mcg_cap & 0xff;
3750         u64 *banks = vcpu->arch.mce_banks;
3751
3752         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3753                 return -EINVAL;
3754         /*
3755          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3756          * reporting is disabled
3757          */
3758         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3759             vcpu->arch.mcg_ctl != ~(u64)0)
3760                 return 0;
3761         banks += 4 * mce->bank;
3762         /*
3763          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3764          * reporting is disabled for the bank
3765          */
3766         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3767                 return 0;
3768         if (mce->status & MCI_STATUS_UC) {
3769                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3770                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3771                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3772                         return 0;
3773                 }
3774                 if (banks[1] & MCI_STATUS_VAL)
3775                         mce->status |= MCI_STATUS_OVER;
3776                 banks[2] = mce->addr;
3777                 banks[3] = mce->misc;
3778                 vcpu->arch.mcg_status = mce->mcg_status;
3779                 banks[1] = mce->status;
3780                 kvm_queue_exception(vcpu, MC_VECTOR);
3781         } else if (!(banks[1] & MCI_STATUS_VAL)
3782                    || !(banks[1] & MCI_STATUS_UC)) {
3783                 if (banks[1] & MCI_STATUS_VAL)
3784                         mce->status |= MCI_STATUS_OVER;
3785                 banks[2] = mce->addr;
3786                 banks[3] = mce->misc;
3787                 banks[1] = mce->status;
3788         } else
3789                 banks[1] |= MCI_STATUS_OVER;
3790         return 0;
3791 }
3792
3793 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3794                                                struct kvm_vcpu_events *events)
3795 {
3796         process_nmi(vcpu);
3797
3798         /*
3799          * The API doesn't provide the instruction length for software
3800          * exceptions, so don't report them. As long as the guest RIP
3801          * isn't advanced, we should expect to encounter the exception
3802          * again.
3803          */
3804         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3805                 events->exception.injected = 0;
3806                 events->exception.pending = 0;
3807         } else {
3808                 events->exception.injected = vcpu->arch.exception.injected;
3809                 events->exception.pending = vcpu->arch.exception.pending;
3810                 /*
3811                  * For ABI compatibility, deliberately conflate
3812                  * pending and injected exceptions when
3813                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3814                  */
3815                 if (!vcpu->kvm->arch.exception_payload_enabled)
3816                         events->exception.injected |=
3817                                 vcpu->arch.exception.pending;
3818         }
3819         events->exception.nr = vcpu->arch.exception.nr;
3820         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3821         events->exception.error_code = vcpu->arch.exception.error_code;
3822         events->exception_has_payload = vcpu->arch.exception.has_payload;
3823         events->exception_payload = vcpu->arch.exception.payload;
3824
3825         events->interrupt.injected =
3826                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3827         events->interrupt.nr = vcpu->arch.interrupt.nr;
3828         events->interrupt.soft = 0;
3829         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3830
3831         events->nmi.injected = vcpu->arch.nmi_injected;
3832         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3833         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3834         events->nmi.pad = 0;
3835
3836         events->sipi_vector = 0; /* never valid when reporting to user space */
3837
3838         events->smi.smm = is_smm(vcpu);
3839         events->smi.pending = vcpu->arch.smi_pending;
3840         events->smi.smm_inside_nmi =
3841                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3842         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3843
3844         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3845                          | KVM_VCPUEVENT_VALID_SHADOW
3846                          | KVM_VCPUEVENT_VALID_SMM);
3847         if (vcpu->kvm->arch.exception_payload_enabled)
3848                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3849
3850         memset(&events->reserved, 0, sizeof(events->reserved));
3851 }
3852
3853 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3854
3855 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3856                                               struct kvm_vcpu_events *events)
3857 {
3858         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3859                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3860                               | KVM_VCPUEVENT_VALID_SHADOW
3861                               | KVM_VCPUEVENT_VALID_SMM
3862                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3863                 return -EINVAL;
3864
3865         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3866                 if (!vcpu->kvm->arch.exception_payload_enabled)
3867                         return -EINVAL;
3868                 if (events->exception.pending)
3869                         events->exception.injected = 0;
3870                 else
3871                         events->exception_has_payload = 0;
3872         } else {
3873                 events->exception.pending = 0;
3874                 events->exception_has_payload = 0;
3875         }
3876
3877         if ((events->exception.injected || events->exception.pending) &&
3878             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3879                 return -EINVAL;
3880
3881         /* INITs are latched while in SMM */
3882         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3883             (events->smi.smm || events->smi.pending) &&
3884             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3885                 return -EINVAL;
3886
3887         process_nmi(vcpu);
3888         vcpu->arch.exception.injected = events->exception.injected;
3889         vcpu->arch.exception.pending = events->exception.pending;
3890         vcpu->arch.exception.nr = events->exception.nr;
3891         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3892         vcpu->arch.exception.error_code = events->exception.error_code;
3893         vcpu->arch.exception.has_payload = events->exception_has_payload;
3894         vcpu->arch.exception.payload = events->exception_payload;
3895
3896         vcpu->arch.interrupt.injected = events->interrupt.injected;
3897         vcpu->arch.interrupt.nr = events->interrupt.nr;
3898         vcpu->arch.interrupt.soft = events->interrupt.soft;
3899         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3900                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3901                                                   events->interrupt.shadow);
3902
3903         vcpu->arch.nmi_injected = events->nmi.injected;
3904         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3905                 vcpu->arch.nmi_pending = events->nmi.pending;
3906         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3907
3908         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3909             lapic_in_kernel(vcpu))
3910                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3911
3912         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3913                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3914                         if (events->smi.smm)
3915                                 vcpu->arch.hflags |= HF_SMM_MASK;
3916                         else
3917                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3918                         kvm_smm_changed(vcpu);
3919                 }
3920
3921                 vcpu->arch.smi_pending = events->smi.pending;
3922
3923                 if (events->smi.smm) {
3924                         if (events->smi.smm_inside_nmi)
3925                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3926                         else
3927                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3928                 }
3929
3930                 if (lapic_in_kernel(vcpu)) {
3931                         if (events->smi.latched_init)
3932                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3933                         else
3934                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3935                 }
3936         }
3937
3938         kvm_make_request(KVM_REQ_EVENT, vcpu);
3939
3940         return 0;
3941 }
3942
3943 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3944                                              struct kvm_debugregs *dbgregs)
3945 {
3946         unsigned long val;
3947
3948         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3949         kvm_get_dr(vcpu, 6, &val);
3950         dbgregs->dr6 = val;
3951         dbgregs->dr7 = vcpu->arch.dr7;
3952         dbgregs->flags = 0;
3953         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3954 }
3955
3956 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3957                                             struct kvm_debugregs *dbgregs)
3958 {
3959         if (dbgregs->flags)
3960                 return -EINVAL;
3961
3962         if (dbgregs->dr6 & ~0xffffffffull)
3963                 return -EINVAL;
3964         if (dbgregs->dr7 & ~0xffffffffull)
3965                 return -EINVAL;
3966
3967         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3968         kvm_update_dr0123(vcpu);
3969         vcpu->arch.dr6 = dbgregs->dr6;
3970         kvm_update_dr6(vcpu);
3971         vcpu->arch.dr7 = dbgregs->dr7;
3972         kvm_update_dr7(vcpu);
3973
3974         return 0;
3975 }
3976
3977 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3978
3979 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3980 {
3981         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3982         u64 xstate_bv = xsave->header.xfeatures;
3983         u64 valid;
3984
3985         /*
3986          * Copy legacy XSAVE area, to avoid complications with CPUID
3987          * leaves 0 and 1 in the loop below.
3988          */
3989         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3990
3991         /* Set XSTATE_BV */
3992         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3993         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3994
3995         /*
3996          * Copy each region from the possibly compacted offset to the
3997          * non-compacted offset.
3998          */
3999         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4000         while (valid) {
4001                 u64 xfeature_mask = valid & -valid;
4002                 int xfeature_nr = fls64(xfeature_mask) - 1;
4003                 void *src = get_xsave_addr(xsave, xfeature_nr);
4004
4005                 if (src) {
4006                         u32 size, offset, ecx, edx;
4007                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4008                                     &size, &offset, &ecx, &edx);
4009                         if (xfeature_nr == XFEATURE_PKRU)
4010                                 memcpy(dest + offset, &vcpu->arch.pkru,
4011                                        sizeof(vcpu->arch.pkru));
4012                         else
4013                                 memcpy(dest + offset, src, size);
4014
4015                 }
4016
4017                 valid -= xfeature_mask;
4018         }
4019 }
4020
4021 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4022 {
4023         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4024         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4025         u64 valid;
4026
4027         /*
4028          * Copy legacy XSAVE area, to avoid complications with CPUID
4029          * leaves 0 and 1 in the loop below.
4030          */
4031         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4032
4033         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4034         xsave->header.xfeatures = xstate_bv;
4035         if (boot_cpu_has(X86_FEATURE_XSAVES))
4036                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4037
4038         /*
4039          * Copy each region from the non-compacted offset to the
4040          * possibly compacted offset.
4041          */
4042         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4043         while (valid) {
4044                 u64 xfeature_mask = valid & -valid;
4045                 int xfeature_nr = fls64(xfeature_mask) - 1;
4046                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4047
4048                 if (dest) {
4049                         u32 size, offset, ecx, edx;
4050                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4051                                     &size, &offset, &ecx, &edx);
4052                         if (xfeature_nr == XFEATURE_PKRU)
4053                                 memcpy(&vcpu->arch.pkru, src + offset,
4054                                        sizeof(vcpu->arch.pkru));
4055                         else
4056                                 memcpy(dest, src + offset, size);
4057                 }
4058
4059                 valid -= xfeature_mask;
4060         }
4061 }
4062
4063 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4064                                          struct kvm_xsave *guest_xsave)
4065 {
4066         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4067                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4068                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4069         } else {
4070                 memcpy(guest_xsave->region,
4071                         &vcpu->arch.guest_fpu->state.fxsave,
4072                         sizeof(struct fxregs_state));
4073                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4074                         XFEATURE_MASK_FPSSE;
4075         }
4076 }
4077
4078 #define XSAVE_MXCSR_OFFSET 24
4079
4080 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4081                                         struct kvm_xsave *guest_xsave)
4082 {
4083         u64 xstate_bv =
4084                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4085         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4086
4087         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4088                 /*
4089                  * Here we allow setting states that are not present in
4090                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4091                  * with old userspace.
4092                  */
4093                 if (xstate_bv & ~kvm_supported_xcr0() ||
4094                         mxcsr & ~mxcsr_feature_mask)
4095                         return -EINVAL;
4096                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4097         } else {
4098                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4099                         mxcsr & ~mxcsr_feature_mask)
4100                         return -EINVAL;
4101                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4102                         guest_xsave->region, sizeof(struct fxregs_state));
4103         }
4104         return 0;
4105 }
4106
4107 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4108                                         struct kvm_xcrs *guest_xcrs)
4109 {
4110         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4111                 guest_xcrs->nr_xcrs = 0;
4112                 return;
4113         }
4114
4115         guest_xcrs->nr_xcrs = 1;
4116         guest_xcrs->flags = 0;
4117         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4118         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4119 }
4120
4121 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4122                                        struct kvm_xcrs *guest_xcrs)
4123 {
4124         int i, r = 0;
4125
4126         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4127                 return -EINVAL;
4128
4129         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4130                 return -EINVAL;
4131
4132         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4133                 /* Only support XCR0 currently */
4134                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4135                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4136                                 guest_xcrs->xcrs[i].value);
4137                         break;
4138                 }
4139         if (r)
4140                 r = -EINVAL;
4141         return r;
4142 }
4143
4144 /*
4145  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4146  * stopped by the hypervisor.  This function will be called from the host only.
4147  * EINVAL is returned when the host attempts to set the flag for a guest that
4148  * does not support pv clocks.
4149  */
4150 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4151 {
4152         if (!vcpu->arch.pv_time_enabled)
4153                 return -EINVAL;
4154         vcpu->arch.pvclock_set_guest_stopped_request = true;
4155         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4156         return 0;
4157 }
4158
4159 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4160                                      struct kvm_enable_cap *cap)
4161 {
4162         int r;
4163         uint16_t vmcs_version;
4164         void __user *user_ptr;
4165
4166         if (cap->flags)
4167                 return -EINVAL;
4168
4169         switch (cap->cap) {
4170         case KVM_CAP_HYPERV_SYNIC2:
4171                 if (cap->args[0])
4172                         return -EINVAL;
4173                 /* fall through */
4174
4175         case KVM_CAP_HYPERV_SYNIC:
4176                 if (!irqchip_in_kernel(vcpu->kvm))
4177                         return -EINVAL;
4178                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4179                                              KVM_CAP_HYPERV_SYNIC2);
4180         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4181                 if (!kvm_x86_ops->nested_enable_evmcs)
4182                         return -ENOTTY;
4183                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4184                 if (!r) {
4185                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4186                         if (copy_to_user(user_ptr, &vmcs_version,
4187                                          sizeof(vmcs_version)))
4188                                 r = -EFAULT;
4189                 }
4190                 return r;
4191         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4192                 if (!kvm_x86_ops->enable_direct_tlbflush)
4193                         return -ENOTTY;
4194
4195                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4196
4197         default:
4198                 return -EINVAL;
4199         }
4200 }
4201
4202 long kvm_arch_vcpu_ioctl(struct file *filp,
4203                          unsigned int ioctl, unsigned long arg)
4204 {
4205         struct kvm_vcpu *vcpu = filp->private_data;
4206         void __user *argp = (void __user *)arg;
4207         int r;
4208         union {
4209                 struct kvm_lapic_state *lapic;
4210                 struct kvm_xsave *xsave;
4211                 struct kvm_xcrs *xcrs;
4212                 void *buffer;
4213         } u;
4214
4215         vcpu_load(vcpu);
4216
4217         u.buffer = NULL;
4218         switch (ioctl) {
4219         case KVM_GET_LAPIC: {
4220                 r = -EINVAL;
4221                 if (!lapic_in_kernel(vcpu))
4222                         goto out;
4223                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4224                                 GFP_KERNEL_ACCOUNT);
4225
4226                 r = -ENOMEM;
4227                 if (!u.lapic)
4228                         goto out;
4229                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4230                 if (r)
4231                         goto out;
4232                 r = -EFAULT;
4233                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4234                         goto out;
4235                 r = 0;
4236                 break;
4237         }
4238         case KVM_SET_LAPIC: {
4239                 r = -EINVAL;
4240                 if (!lapic_in_kernel(vcpu))
4241                         goto out;
4242                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4243                 if (IS_ERR(u.lapic)) {
4244                         r = PTR_ERR(u.lapic);
4245                         goto out_nofree;
4246                 }
4247
4248                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4249                 break;
4250         }
4251         case KVM_INTERRUPT: {
4252                 struct kvm_interrupt irq;
4253
4254                 r = -EFAULT;
4255                 if (copy_from_user(&irq, argp, sizeof(irq)))
4256                         goto out;
4257                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4258                 break;
4259         }
4260         case KVM_NMI: {
4261                 r = kvm_vcpu_ioctl_nmi(vcpu);
4262                 break;
4263         }
4264         case KVM_SMI: {
4265                 r = kvm_vcpu_ioctl_smi(vcpu);
4266                 break;
4267         }
4268         case KVM_SET_CPUID: {
4269                 struct kvm_cpuid __user *cpuid_arg = argp;
4270                 struct kvm_cpuid cpuid;
4271
4272                 r = -EFAULT;
4273                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4274                         goto out;
4275                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4276                 break;
4277         }
4278         case KVM_SET_CPUID2: {
4279                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4280                 struct kvm_cpuid2 cpuid;
4281
4282                 r = -EFAULT;
4283                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4284                         goto out;
4285                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4286                                               cpuid_arg->entries);
4287                 break;
4288         }
4289         case KVM_GET_CPUID2: {
4290                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4291                 struct kvm_cpuid2 cpuid;
4292
4293                 r = -EFAULT;
4294                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4295                         goto out;
4296                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4297                                               cpuid_arg->entries);
4298                 if (r)
4299                         goto out;
4300                 r = -EFAULT;
4301                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4302                         goto out;
4303                 r = 0;
4304                 break;
4305         }
4306         case KVM_GET_MSRS: {
4307                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4308                 r = msr_io(vcpu, argp, do_get_msr, 1);
4309                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4310                 break;
4311         }
4312         case KVM_SET_MSRS: {
4313                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4314                 r = msr_io(vcpu, argp, do_set_msr, 0);
4315                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4316                 break;
4317         }
4318         case KVM_TPR_ACCESS_REPORTING: {
4319                 struct kvm_tpr_access_ctl tac;
4320
4321                 r = -EFAULT;
4322                 if (copy_from_user(&tac, argp, sizeof(tac)))
4323                         goto out;
4324                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4325                 if (r)
4326                         goto out;
4327                 r = -EFAULT;
4328                 if (copy_to_user(argp, &tac, sizeof(tac)))
4329                         goto out;
4330                 r = 0;
4331                 break;
4332         };
4333         case KVM_SET_VAPIC_ADDR: {
4334                 struct kvm_vapic_addr va;
4335                 int idx;
4336
4337                 r = -EINVAL;
4338                 if (!lapic_in_kernel(vcpu))
4339                         goto out;
4340                 r = -EFAULT;
4341                 if (copy_from_user(&va, argp, sizeof(va)))
4342                         goto out;
4343                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4344                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4345                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4346                 break;
4347         }
4348         case KVM_X86_SETUP_MCE: {
4349                 u64 mcg_cap;
4350
4351                 r = -EFAULT;
4352                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4353                         goto out;
4354                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4355                 break;
4356         }
4357         case KVM_X86_SET_MCE: {
4358                 struct kvm_x86_mce mce;
4359
4360                 r = -EFAULT;
4361                 if (copy_from_user(&mce, argp, sizeof(mce)))
4362                         goto out;
4363                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4364                 break;
4365         }
4366         case KVM_GET_VCPU_EVENTS: {
4367                 struct kvm_vcpu_events events;
4368
4369                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4370
4371                 r = -EFAULT;
4372                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4373                         break;
4374                 r = 0;
4375                 break;
4376         }
4377         case KVM_SET_VCPU_EVENTS: {
4378                 struct kvm_vcpu_events events;
4379
4380                 r = -EFAULT;
4381                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4382                         break;
4383
4384                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4385                 break;
4386         }
4387         case KVM_GET_DEBUGREGS: {
4388                 struct kvm_debugregs dbgregs;
4389
4390                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4391
4392                 r = -EFAULT;
4393                 if (copy_to_user(argp, &dbgregs,
4394                                  sizeof(struct kvm_debugregs)))
4395                         break;
4396                 r = 0;
4397                 break;
4398         }
4399         case KVM_SET_DEBUGREGS: {
4400                 struct kvm_debugregs dbgregs;
4401
4402                 r = -EFAULT;
4403                 if (copy_from_user(&dbgregs, argp,
4404                                    sizeof(struct kvm_debugregs)))
4405                         break;
4406
4407                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4408                 break;
4409         }
4410         case KVM_GET_XSAVE: {
4411                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4412                 r = -ENOMEM;
4413                 if (!u.xsave)
4414                         break;
4415
4416                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4417
4418                 r = -EFAULT;
4419                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4420                         break;
4421                 r = 0;
4422                 break;
4423         }
4424         case KVM_SET_XSAVE: {
4425                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4426                 if (IS_ERR(u.xsave)) {
4427                         r = PTR_ERR(u.xsave);
4428                         goto out_nofree;
4429                 }
4430
4431                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4432                 break;
4433         }
4434         case KVM_GET_XCRS: {
4435                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4436                 r = -ENOMEM;
4437                 if (!u.xcrs)
4438                         break;
4439
4440                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4441
4442                 r = -EFAULT;
4443                 if (copy_to_user(argp, u.xcrs,
4444                                  sizeof(struct kvm_xcrs)))
4445                         break;
4446                 r = 0;
4447                 break;
4448         }
4449         case KVM_SET_XCRS: {
4450                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4451                 if (IS_ERR(u.xcrs)) {
4452                         r = PTR_ERR(u.xcrs);
4453                         goto out_nofree;
4454                 }
4455
4456                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4457                 break;
4458         }
4459         case KVM_SET_TSC_KHZ: {
4460                 u32 user_tsc_khz;
4461
4462                 r = -EINVAL;
4463                 user_tsc_khz = (u32)arg;
4464
4465                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4466                         goto out;
4467
4468                 if (user_tsc_khz == 0)
4469                         user_tsc_khz = tsc_khz;
4470
4471                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4472                         r = 0;
4473
4474                 goto out;
4475         }
4476         case KVM_GET_TSC_KHZ: {
4477                 r = vcpu->arch.virtual_tsc_khz;
4478                 goto out;
4479         }
4480         case KVM_KVMCLOCK_CTRL: {
4481                 r = kvm_set_guest_paused(vcpu);
4482                 goto out;
4483         }
4484         case KVM_ENABLE_CAP: {
4485                 struct kvm_enable_cap cap;
4486
4487                 r = -EFAULT;
4488                 if (copy_from_user(&cap, argp, sizeof(cap)))
4489                         goto out;
4490                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4491                 break;
4492         }
4493         case KVM_GET_NESTED_STATE: {
4494                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4495                 u32 user_data_size;
4496
4497                 r = -EINVAL;
4498                 if (!kvm_x86_ops->get_nested_state)
4499                         break;
4500
4501                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4502                 r = -EFAULT;
4503                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4504                         break;
4505
4506                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4507                                                   user_data_size);
4508                 if (r < 0)
4509                         break;
4510
4511                 if (r > user_data_size) {
4512                         if (put_user(r, &user_kvm_nested_state->size))
4513                                 r = -EFAULT;
4514                         else
4515                                 r = -E2BIG;
4516                         break;
4517                 }
4518
4519                 r = 0;
4520                 break;
4521         }
4522         case KVM_SET_NESTED_STATE: {
4523                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4524                 struct kvm_nested_state kvm_state;
4525                 int idx;
4526
4527                 r = -EINVAL;
4528                 if (!kvm_x86_ops->set_nested_state)
4529                         break;
4530
4531                 r = -EFAULT;
4532                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4533                         break;
4534
4535                 r = -EINVAL;
4536                 if (kvm_state.size < sizeof(kvm_state))
4537                         break;
4538
4539                 if (kvm_state.flags &
4540                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4541                       | KVM_STATE_NESTED_EVMCS))
4542                         break;
4543
4544                 /* nested_run_pending implies guest_mode.  */
4545                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4546                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4547                         break;
4548
4549                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4550                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4551                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4552                 break;
4553         }
4554         case KVM_GET_SUPPORTED_HV_CPUID: {
4555                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4556                 struct kvm_cpuid2 cpuid;
4557
4558                 r = -EFAULT;
4559                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4560                         goto out;
4561
4562                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4563                                                 cpuid_arg->entries);
4564                 if (r)
4565                         goto out;
4566
4567                 r = -EFAULT;
4568                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4569                         goto out;
4570                 r = 0;
4571                 break;
4572         }
4573         default:
4574                 r = -EINVAL;
4575         }
4576 out:
4577         kfree(u.buffer);
4578 out_nofree:
4579         vcpu_put(vcpu);
4580         return r;
4581 }
4582
4583 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4584 {
4585         return VM_FAULT_SIGBUS;
4586 }
4587
4588 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4589 {
4590         int ret;
4591
4592         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4593                 return -EINVAL;
4594         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4595         return ret;
4596 }
4597
4598 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4599                                               u64 ident_addr)
4600 {
4601         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4602 }
4603
4604 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4605                                          unsigned long kvm_nr_mmu_pages)
4606 {
4607         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4608                 return -EINVAL;
4609
4610         mutex_lock(&kvm->slots_lock);
4611
4612         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4613         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4614
4615         mutex_unlock(&kvm->slots_lock);
4616         return 0;
4617 }
4618
4619 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4620 {
4621         return kvm->arch.n_max_mmu_pages;
4622 }
4623
4624 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4625 {
4626         struct kvm_pic *pic = kvm->arch.vpic;
4627         int r;
4628
4629         r = 0;
4630         switch (chip->chip_id) {
4631         case KVM_IRQCHIP_PIC_MASTER:
4632                 memcpy(&chip->chip.pic, &pic->pics[0],
4633                         sizeof(struct kvm_pic_state));
4634                 break;
4635         case KVM_IRQCHIP_PIC_SLAVE:
4636                 memcpy(&chip->chip.pic, &pic->pics[1],
4637                         sizeof(struct kvm_pic_state));
4638                 break;
4639         case KVM_IRQCHIP_IOAPIC:
4640                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4641                 break;
4642         default:
4643                 r = -EINVAL;
4644                 break;
4645         }
4646         return r;
4647 }
4648
4649 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4650 {
4651         struct kvm_pic *pic = kvm->arch.vpic;
4652         int r;
4653
4654         r = 0;
4655         switch (chip->chip_id) {
4656         case KVM_IRQCHIP_PIC_MASTER:
4657                 spin_lock(&pic->lock);
4658                 memcpy(&pic->pics[0], &chip->chip.pic,
4659                         sizeof(struct kvm_pic_state));
4660                 spin_unlock(&pic->lock);
4661                 break;
4662         case KVM_IRQCHIP_PIC_SLAVE:
4663                 spin_lock(&pic->lock);
4664                 memcpy(&pic->pics[1], &chip->chip.pic,
4665                         sizeof(struct kvm_pic_state));
4666                 spin_unlock(&pic->lock);
4667                 break;
4668         case KVM_IRQCHIP_IOAPIC:
4669                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4670                 break;
4671         default:
4672                 r = -EINVAL;
4673                 break;
4674         }
4675         kvm_pic_update_irq(pic);
4676         return r;
4677 }
4678
4679 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4680 {
4681         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4682
4683         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4684
4685         mutex_lock(&kps->lock);
4686         memcpy(ps, &kps->channels, sizeof(*ps));
4687         mutex_unlock(&kps->lock);
4688         return 0;
4689 }
4690
4691 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4692 {
4693         int i;
4694         struct kvm_pit *pit = kvm->arch.vpit;
4695
4696         mutex_lock(&pit->pit_state.lock);
4697         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4698         for (i = 0; i < 3; i++)
4699                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4700         mutex_unlock(&pit->pit_state.lock);
4701         return 0;
4702 }
4703
4704 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4705 {
4706         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4707         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4708                 sizeof(ps->channels));
4709         ps->flags = kvm->arch.vpit->pit_state.flags;
4710         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4711         memset(&ps->reserved, 0, sizeof(ps->reserved));
4712         return 0;
4713 }
4714
4715 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4716 {
4717         int start = 0;
4718         int i;
4719         u32 prev_legacy, cur_legacy;
4720         struct kvm_pit *pit = kvm->arch.vpit;
4721
4722         mutex_lock(&pit->pit_state.lock);
4723         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4724         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4725         if (!prev_legacy && cur_legacy)
4726                 start = 1;
4727         memcpy(&pit->pit_state.channels, &ps->channels,
4728                sizeof(pit->pit_state.channels));
4729         pit->pit_state.flags = ps->flags;
4730         for (i = 0; i < 3; i++)
4731                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4732                                    start && i == 0);
4733         mutex_unlock(&pit->pit_state.lock);
4734         return 0;
4735 }
4736
4737 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4738                                  struct kvm_reinject_control *control)
4739 {
4740         struct kvm_pit *pit = kvm->arch.vpit;
4741
4742         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4743          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4744          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4745          */
4746         mutex_lock(&pit->pit_state.lock);
4747         kvm_pit_set_reinject(pit, control->pit_reinject);
4748         mutex_unlock(&pit->pit_state.lock);
4749
4750         return 0;
4751 }
4752
4753 /**
4754  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4755  * @kvm: kvm instance
4756  * @log: slot id and address to which we copy the log
4757  *
4758  * Steps 1-4 below provide general overview of dirty page logging. See
4759  * kvm_get_dirty_log_protect() function description for additional details.
4760  *
4761  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4762  * always flush the TLB (step 4) even if previous step failed  and the dirty
4763  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4764  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4765  * writes will be marked dirty for next log read.
4766  *
4767  *   1. Take a snapshot of the bit and clear it if needed.
4768  *   2. Write protect the corresponding page.
4769  *   3. Copy the snapshot to the userspace.
4770  *   4. Flush TLB's if needed.
4771  */
4772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4773 {
4774         bool flush = false;
4775         int r;
4776
4777         mutex_lock(&kvm->slots_lock);
4778
4779         /*
4780          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4781          */
4782         if (kvm_x86_ops->flush_log_dirty)
4783                 kvm_x86_ops->flush_log_dirty(kvm);
4784
4785         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4786
4787         /*
4788          * All the TLBs can be flushed out of mmu lock, see the comments in
4789          * kvm_mmu_slot_remove_write_access().
4790          */
4791         lockdep_assert_held(&kvm->slots_lock);
4792         if (flush)
4793                 kvm_flush_remote_tlbs(kvm);
4794
4795         mutex_unlock(&kvm->slots_lock);
4796         return r;
4797 }
4798
4799 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4800 {
4801         bool flush = false;
4802         int r;
4803
4804         mutex_lock(&kvm->slots_lock);
4805
4806         /*
4807          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4808          */
4809         if (kvm_x86_ops->flush_log_dirty)
4810                 kvm_x86_ops->flush_log_dirty(kvm);
4811
4812         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4813
4814         /*
4815          * All the TLBs can be flushed out of mmu lock, see the comments in
4816          * kvm_mmu_slot_remove_write_access().
4817          */
4818         lockdep_assert_held(&kvm->slots_lock);
4819         if (flush)
4820                 kvm_flush_remote_tlbs(kvm);
4821
4822         mutex_unlock(&kvm->slots_lock);
4823         return r;
4824 }
4825
4826 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4827                         bool line_status)
4828 {
4829         if (!irqchip_in_kernel(kvm))
4830                 return -ENXIO;
4831
4832         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4833                                         irq_event->irq, irq_event->level,
4834                                         line_status);
4835         return 0;
4836 }
4837
4838 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4839                             struct kvm_enable_cap *cap)
4840 {
4841         int r;
4842
4843         if (cap->flags)
4844                 return -EINVAL;
4845
4846         switch (cap->cap) {
4847         case KVM_CAP_DISABLE_QUIRKS:
4848                 kvm->arch.disabled_quirks = cap->args[0];
4849                 r = 0;
4850                 break;
4851         case KVM_CAP_SPLIT_IRQCHIP: {
4852                 mutex_lock(&kvm->lock);
4853                 r = -EINVAL;
4854                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4855                         goto split_irqchip_unlock;
4856                 r = -EEXIST;
4857                 if (irqchip_in_kernel(kvm))
4858                         goto split_irqchip_unlock;
4859                 if (kvm->created_vcpus)
4860                         goto split_irqchip_unlock;
4861                 r = kvm_setup_empty_irq_routing(kvm);
4862                 if (r)
4863                         goto split_irqchip_unlock;
4864                 /* Pairs with irqchip_in_kernel. */
4865                 smp_wmb();
4866                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4867                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4868                 r = 0;
4869 split_irqchip_unlock:
4870                 mutex_unlock(&kvm->lock);
4871                 break;
4872         }
4873         case KVM_CAP_X2APIC_API:
4874                 r = -EINVAL;
4875                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4876                         break;
4877
4878                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4879                         kvm->arch.x2apic_format = true;
4880                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4881                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4882
4883                 r = 0;
4884                 break;
4885         case KVM_CAP_X86_DISABLE_EXITS:
4886                 r = -EINVAL;
4887                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4888                         break;
4889
4890                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4891                         kvm_can_mwait_in_guest())
4892                         kvm->arch.mwait_in_guest = true;
4893                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4894                         kvm->arch.hlt_in_guest = true;
4895                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4896                         kvm->arch.pause_in_guest = true;
4897                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4898                         kvm->arch.cstate_in_guest = true;
4899                 r = 0;
4900                 break;
4901         case KVM_CAP_MSR_PLATFORM_INFO:
4902                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4903                 r = 0;
4904                 break;
4905         case KVM_CAP_EXCEPTION_PAYLOAD:
4906                 kvm->arch.exception_payload_enabled = cap->args[0];
4907                 r = 0;
4908                 break;
4909         default:
4910                 r = -EINVAL;
4911                 break;
4912         }
4913         return r;
4914 }
4915
4916 long kvm_arch_vm_ioctl(struct file *filp,
4917                        unsigned int ioctl, unsigned long arg)
4918 {
4919         struct kvm *kvm = filp->private_data;
4920         void __user *argp = (void __user *)arg;
4921         int r = -ENOTTY;
4922         /*
4923          * This union makes it completely explicit to gcc-3.x
4924          * that these two variables' stack usage should be
4925          * combined, not added together.
4926          */
4927         union {
4928                 struct kvm_pit_state ps;
4929                 struct kvm_pit_state2 ps2;
4930                 struct kvm_pit_config pit_config;
4931         } u;
4932
4933         switch (ioctl) {
4934         case KVM_SET_TSS_ADDR:
4935                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4936                 break;
4937         case KVM_SET_IDENTITY_MAP_ADDR: {
4938                 u64 ident_addr;
4939
4940                 mutex_lock(&kvm->lock);
4941                 r = -EINVAL;
4942                 if (kvm->created_vcpus)
4943                         goto set_identity_unlock;
4944                 r = -EFAULT;
4945                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4946                         goto set_identity_unlock;
4947                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4948 set_identity_unlock:
4949                 mutex_unlock(&kvm->lock);
4950                 break;
4951         }
4952         case KVM_SET_NR_MMU_PAGES:
4953                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4954                 break;
4955         case KVM_GET_NR_MMU_PAGES:
4956                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4957                 break;
4958         case KVM_CREATE_IRQCHIP: {
4959                 mutex_lock(&kvm->lock);
4960
4961                 r = -EEXIST;
4962                 if (irqchip_in_kernel(kvm))
4963                         goto create_irqchip_unlock;
4964
4965                 r = -EINVAL;
4966                 if (kvm->created_vcpus)
4967                         goto create_irqchip_unlock;
4968
4969                 r = kvm_pic_init(kvm);
4970                 if (r)
4971                         goto create_irqchip_unlock;
4972
4973                 r = kvm_ioapic_init(kvm);
4974                 if (r) {
4975                         kvm_pic_destroy(kvm);
4976                         goto create_irqchip_unlock;
4977                 }
4978
4979                 r = kvm_setup_default_irq_routing(kvm);
4980                 if (r) {
4981                         kvm_ioapic_destroy(kvm);
4982                         kvm_pic_destroy(kvm);
4983                         goto create_irqchip_unlock;
4984                 }
4985                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4986                 smp_wmb();
4987                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4988         create_irqchip_unlock:
4989                 mutex_unlock(&kvm->lock);
4990                 break;
4991         }
4992         case KVM_CREATE_PIT:
4993                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4994                 goto create_pit;
4995         case KVM_CREATE_PIT2:
4996                 r = -EFAULT;
4997                 if (copy_from_user(&u.pit_config, argp,
4998                                    sizeof(struct kvm_pit_config)))
4999                         goto out;
5000         create_pit:
5001                 mutex_lock(&kvm->lock);
5002                 r = -EEXIST;
5003                 if (kvm->arch.vpit)
5004                         goto create_pit_unlock;
5005                 r = -ENOMEM;
5006                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5007                 if (kvm->arch.vpit)
5008                         r = 0;
5009         create_pit_unlock:
5010                 mutex_unlock(&kvm->lock);
5011                 break;
5012         case KVM_GET_IRQCHIP: {
5013                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5014                 struct kvm_irqchip *chip;
5015
5016                 chip = memdup_user(argp, sizeof(*chip));
5017                 if (IS_ERR(chip)) {
5018                         r = PTR_ERR(chip);
5019                         goto out;
5020                 }
5021
5022                 r = -ENXIO;
5023                 if (!irqchip_kernel(kvm))
5024                         goto get_irqchip_out;
5025                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5026                 if (r)
5027                         goto get_irqchip_out;
5028                 r = -EFAULT;
5029                 if (copy_to_user(argp, chip, sizeof(*chip)))
5030                         goto get_irqchip_out;
5031                 r = 0;
5032         get_irqchip_out:
5033                 kfree(chip);
5034                 break;
5035         }
5036         case KVM_SET_IRQCHIP: {
5037                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5038                 struct kvm_irqchip *chip;
5039
5040                 chip = memdup_user(argp, sizeof(*chip));
5041                 if (IS_ERR(chip)) {
5042                         r = PTR_ERR(chip);
5043                         goto out;
5044                 }
5045
5046                 r = -ENXIO;
5047                 if (!irqchip_kernel(kvm))
5048                         goto set_irqchip_out;
5049                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5050         set_irqchip_out:
5051                 kfree(chip);
5052                 break;
5053         }
5054         case KVM_GET_PIT: {
5055                 r = -EFAULT;
5056                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5057                         goto out;
5058                 r = -ENXIO;
5059                 if (!kvm->arch.vpit)
5060                         goto out;
5061                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5062                 if (r)
5063                         goto out;
5064                 r = -EFAULT;
5065                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5066                         goto out;
5067                 r = 0;
5068                 break;
5069         }
5070         case KVM_SET_PIT: {
5071                 r = -EFAULT;
5072                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5073                         goto out;
5074                 r = -ENXIO;
5075                 if (!kvm->arch.vpit)
5076                         goto out;
5077                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5078                 break;
5079         }
5080         case KVM_GET_PIT2: {
5081                 r = -ENXIO;
5082                 if (!kvm->arch.vpit)
5083                         goto out;
5084                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5085                 if (r)
5086                         goto out;
5087                 r = -EFAULT;
5088                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5089                         goto out;
5090                 r = 0;
5091                 break;
5092         }
5093         case KVM_SET_PIT2: {
5094                 r = -EFAULT;
5095                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5096                         goto out;
5097                 r = -ENXIO;
5098                 if (!kvm->arch.vpit)
5099                         goto out;
5100                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5101                 break;
5102         }
5103         case KVM_REINJECT_CONTROL: {
5104                 struct kvm_reinject_control control;
5105                 r =  -EFAULT;
5106                 if (copy_from_user(&control, argp, sizeof(control)))
5107                         goto out;
5108                 r = -ENXIO;
5109                 if (!kvm->arch.vpit)
5110                         goto out;
5111                 r = kvm_vm_ioctl_reinject(kvm, &control);
5112                 break;
5113         }
5114         case KVM_SET_BOOT_CPU_ID:
5115                 r = 0;
5116                 mutex_lock(&kvm->lock);
5117                 if (kvm->created_vcpus)
5118                         r = -EBUSY;
5119                 else
5120                         kvm->arch.bsp_vcpu_id = arg;
5121                 mutex_unlock(&kvm->lock);
5122                 break;
5123         case KVM_XEN_HVM_CONFIG: {
5124                 struct kvm_xen_hvm_config xhc;
5125                 r = -EFAULT;
5126                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5127                         goto out;
5128                 r = -EINVAL;
5129                 if (xhc.flags)
5130                         goto out;
5131                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5132                 r = 0;
5133                 break;
5134         }
5135         case KVM_SET_CLOCK: {
5136                 struct kvm_clock_data user_ns;
5137                 u64 now_ns;
5138
5139                 r = -EFAULT;
5140                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5141                         goto out;
5142
5143                 r = -EINVAL;
5144                 if (user_ns.flags)
5145                         goto out;
5146
5147                 r = 0;
5148                 /*
5149                  * TODO: userspace has to take care of races with VCPU_RUN, so
5150                  * kvm_gen_update_masterclock() can be cut down to locked
5151                  * pvclock_update_vm_gtod_copy().
5152                  */
5153                 kvm_gen_update_masterclock(kvm);
5154                 now_ns = get_kvmclock_ns(kvm);
5155                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5156                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5157                 break;
5158         }
5159         case KVM_GET_CLOCK: {
5160                 struct kvm_clock_data user_ns;
5161                 u64 now_ns;
5162
5163                 now_ns = get_kvmclock_ns(kvm);
5164                 user_ns.clock = now_ns;
5165                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5166                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5167
5168                 r = -EFAULT;
5169                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5170                         goto out;
5171                 r = 0;
5172                 break;
5173         }
5174         case KVM_MEMORY_ENCRYPT_OP: {
5175                 r = -ENOTTY;
5176                 if (kvm_x86_ops->mem_enc_op)
5177                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5178                 break;
5179         }
5180         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5181                 struct kvm_enc_region region;
5182
5183                 r = -EFAULT;
5184                 if (copy_from_user(&region, argp, sizeof(region)))
5185                         goto out;
5186
5187                 r = -ENOTTY;
5188                 if (kvm_x86_ops->mem_enc_reg_region)
5189                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5190                 break;
5191         }
5192         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5193                 struct kvm_enc_region region;
5194
5195                 r = -EFAULT;
5196                 if (copy_from_user(&region, argp, sizeof(region)))
5197                         goto out;
5198
5199                 r = -ENOTTY;
5200                 if (kvm_x86_ops->mem_enc_unreg_region)
5201                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5202                 break;
5203         }
5204         case KVM_HYPERV_EVENTFD: {
5205                 struct kvm_hyperv_eventfd hvevfd;
5206
5207                 r = -EFAULT;
5208                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5209                         goto out;
5210                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5211                 break;
5212         }
5213         case KVM_SET_PMU_EVENT_FILTER:
5214                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5215                 break;
5216         default:
5217                 r = -ENOTTY;
5218         }
5219 out:
5220         return r;
5221 }
5222
5223 static void kvm_init_msr_list(void)
5224 {
5225         struct x86_pmu_capability x86_pmu;
5226         u32 dummy[2];
5227         unsigned i;
5228
5229         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5230                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5231
5232         perf_get_x86_pmu_capability(&x86_pmu);
5233
5234         num_msrs_to_save = 0;
5235         num_emulated_msrs = 0;
5236         num_msr_based_features = 0;
5237
5238         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5239                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5240                         continue;
5241
5242                 /*
5243                  * Even MSRs that are valid in the host may not be exposed
5244                  * to the guests in some cases.
5245                  */
5246                 switch (msrs_to_save_all[i]) {
5247                 case MSR_IA32_BNDCFGS:
5248                         if (!kvm_mpx_supported())
5249                                 continue;
5250                         break;
5251                 case MSR_TSC_AUX:
5252                         if (!kvm_x86_ops->rdtscp_supported())
5253                                 continue;
5254                         break;
5255                 case MSR_IA32_RTIT_CTL:
5256                 case MSR_IA32_RTIT_STATUS:
5257                         if (!kvm_x86_ops->pt_supported())
5258                                 continue;
5259                         break;
5260                 case MSR_IA32_RTIT_CR3_MATCH:
5261                         if (!kvm_x86_ops->pt_supported() ||
5262                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5263                                 continue;
5264                         break;
5265                 case MSR_IA32_RTIT_OUTPUT_BASE:
5266                 case MSR_IA32_RTIT_OUTPUT_MASK:
5267                         if (!kvm_x86_ops->pt_supported() ||
5268                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5269                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5270                                 continue;
5271                         break;
5272                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5273                         if (!kvm_x86_ops->pt_supported() ||
5274                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5275                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5276                                 continue;
5277                         break;
5278                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5279                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5280                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5281                                 continue;
5282                         break;
5283                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5284                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5285                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5286                                 continue;
5287                 }
5288                 default:
5289                         break;
5290                 }
5291
5292                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5293         }
5294
5295         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5296                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5297                         continue;
5298
5299                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5300         }
5301
5302         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5303                 struct kvm_msr_entry msr;
5304
5305                 msr.index = msr_based_features_all[i];
5306                 if (kvm_get_msr_feature(&msr))
5307                         continue;
5308
5309                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5310         }
5311 }
5312
5313 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5314                            const void *v)
5315 {
5316         int handled = 0;
5317         int n;
5318
5319         do {
5320                 n = min(len, 8);
5321                 if (!(lapic_in_kernel(vcpu) &&
5322                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5323                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5324                         break;
5325                 handled += n;
5326                 addr += n;
5327                 len -= n;
5328                 v += n;
5329         } while (len);
5330
5331         return handled;
5332 }
5333
5334 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5335 {
5336         int handled = 0;
5337         int n;
5338
5339         do {
5340                 n = min(len, 8);
5341                 if (!(lapic_in_kernel(vcpu) &&
5342                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5343                                          addr, n, v))
5344                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5345                         break;
5346                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5347                 handled += n;
5348                 addr += n;
5349                 len -= n;
5350                 v += n;
5351         } while (len);
5352
5353         return handled;
5354 }
5355
5356 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5357                         struct kvm_segment *var, int seg)
5358 {
5359         kvm_x86_ops->set_segment(vcpu, var, seg);
5360 }
5361
5362 void kvm_get_segment(struct kvm_vcpu *vcpu,
5363                      struct kvm_segment *var, int seg)
5364 {
5365         kvm_x86_ops->get_segment(vcpu, var, seg);
5366 }
5367
5368 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5369                            struct x86_exception *exception)
5370 {
5371         gpa_t t_gpa;
5372
5373         BUG_ON(!mmu_is_nested(vcpu));
5374
5375         /* NPT walks are always user-walks */
5376         access |= PFERR_USER_MASK;
5377         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5378
5379         return t_gpa;
5380 }
5381
5382 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5383                               struct x86_exception *exception)
5384 {
5385         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5386         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5387 }
5388
5389  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5390                                 struct x86_exception *exception)
5391 {
5392         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5393         access |= PFERR_FETCH_MASK;
5394         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5395 }
5396
5397 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5398                                struct x86_exception *exception)
5399 {
5400         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5401         access |= PFERR_WRITE_MASK;
5402         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5403 }
5404
5405 /* uses this to access any guest's mapped memory without checking CPL */
5406 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5407                                 struct x86_exception *exception)
5408 {
5409         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5410 }
5411
5412 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5413                                       struct kvm_vcpu *vcpu, u32 access,
5414                                       struct x86_exception *exception)
5415 {
5416         void *data = val;
5417         int r = X86EMUL_CONTINUE;
5418
5419         while (bytes) {
5420                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5421                                                             exception);
5422                 unsigned offset = addr & (PAGE_SIZE-1);
5423                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5424                 int ret;
5425
5426                 if (gpa == UNMAPPED_GVA)
5427                         return X86EMUL_PROPAGATE_FAULT;
5428                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5429                                                offset, toread);
5430                 if (ret < 0) {
5431                         r = X86EMUL_IO_NEEDED;
5432                         goto out;
5433                 }
5434
5435                 bytes -= toread;
5436                 data += toread;
5437                 addr += toread;
5438         }
5439 out:
5440         return r;
5441 }
5442
5443 /* used for instruction fetching */
5444 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5445                                 gva_t addr, void *val, unsigned int bytes,
5446                                 struct x86_exception *exception)
5447 {
5448         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5449         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5450         unsigned offset;
5451         int ret;
5452
5453         /* Inline kvm_read_guest_virt_helper for speed.  */
5454         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5455                                                     exception);
5456         if (unlikely(gpa == UNMAPPED_GVA))
5457                 return X86EMUL_PROPAGATE_FAULT;
5458
5459         offset = addr & (PAGE_SIZE-1);
5460         if (WARN_ON(offset + bytes > PAGE_SIZE))
5461                 bytes = (unsigned)PAGE_SIZE - offset;
5462         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5463                                        offset, bytes);
5464         if (unlikely(ret < 0))
5465                 return X86EMUL_IO_NEEDED;
5466
5467         return X86EMUL_CONTINUE;
5468 }
5469
5470 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5471                                gva_t addr, void *val, unsigned int bytes,
5472                                struct x86_exception *exception)
5473 {
5474         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5475
5476         /*
5477          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5478          * is returned, but our callers are not ready for that and they blindly
5479          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5480          * uninitialized kernel stack memory into cr2 and error code.
5481          */
5482         memset(exception, 0, sizeof(*exception));
5483         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5484                                           exception);
5485 }
5486 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5487
5488 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5489                              gva_t addr, void *val, unsigned int bytes,
5490                              struct x86_exception *exception, bool system)
5491 {
5492         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5493         u32 access = 0;
5494
5495         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5496                 access |= PFERR_USER_MASK;
5497
5498         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5499 }
5500
5501 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5502                 unsigned long addr, void *val, unsigned int bytes)
5503 {
5504         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5505         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5506
5507         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5508 }
5509
5510 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5511                                       struct kvm_vcpu *vcpu, u32 access,
5512                                       struct x86_exception *exception)
5513 {
5514         void *data = val;
5515         int r = X86EMUL_CONTINUE;
5516
5517         while (bytes) {
5518                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5519                                                              access,
5520                                                              exception);
5521                 unsigned offset = addr & (PAGE_SIZE-1);
5522                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5523                 int ret;
5524
5525                 if (gpa == UNMAPPED_GVA)
5526                         return X86EMUL_PROPAGATE_FAULT;
5527                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5528                 if (ret < 0) {
5529                         r = X86EMUL_IO_NEEDED;
5530                         goto out;
5531                 }
5532
5533                 bytes -= towrite;
5534                 data += towrite;
5535                 addr += towrite;
5536         }
5537 out:
5538         return r;
5539 }
5540
5541 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5542                               unsigned int bytes, struct x86_exception *exception,
5543                               bool system)
5544 {
5545         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5546         u32 access = PFERR_WRITE_MASK;
5547
5548         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5549                 access |= PFERR_USER_MASK;
5550
5551         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5552                                            access, exception);
5553 }
5554
5555 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5556                                 unsigned int bytes, struct x86_exception *exception)
5557 {
5558         /* kvm_write_guest_virt_system can pull in tons of pages. */
5559         vcpu->arch.l1tf_flush_l1d = true;
5560
5561         /*
5562          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5563          * is returned, but our callers are not ready for that and they blindly
5564          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5565          * uninitialized kernel stack memory into cr2 and error code.
5566          */
5567         memset(exception, 0, sizeof(*exception));
5568         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5569                                            PFERR_WRITE_MASK, exception);
5570 }
5571 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5572
5573 int handle_ud(struct kvm_vcpu *vcpu)
5574 {
5575         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5576         int emul_type = EMULTYPE_TRAP_UD;
5577         char sig[5]; /* ud2; .ascii "kvm" */
5578         struct x86_exception e;
5579
5580         if (force_emulation_prefix &&
5581             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5582                                 sig, sizeof(sig), &e) == 0 &&
5583             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5584                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5585                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5586         }
5587
5588         return kvm_emulate_instruction(vcpu, emul_type);
5589 }
5590 EXPORT_SYMBOL_GPL(handle_ud);
5591
5592 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5593                             gpa_t gpa, bool write)
5594 {
5595         /* For APIC access vmexit */
5596         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5597                 return 1;
5598
5599         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5600                 trace_vcpu_match_mmio(gva, gpa, write, true);
5601                 return 1;
5602         }
5603
5604         return 0;
5605 }
5606
5607 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5608                                 gpa_t *gpa, struct x86_exception *exception,
5609                                 bool write)
5610 {
5611         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5612                 | (write ? PFERR_WRITE_MASK : 0);
5613
5614         /*
5615          * currently PKRU is only applied to ept enabled guest so
5616          * there is no pkey in EPT page table for L1 guest or EPT
5617          * shadow page table for L2 guest.
5618          */
5619         if (vcpu_match_mmio_gva(vcpu, gva)
5620             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5621                                  vcpu->arch.mmio_access, 0, access)) {
5622                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5623                                         (gva & (PAGE_SIZE - 1));
5624                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5625                 return 1;
5626         }
5627
5628         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5629
5630         if (*gpa == UNMAPPED_GVA)
5631                 return -1;
5632
5633         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5634 }
5635
5636 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5637                         const void *val, int bytes)
5638 {
5639         int ret;
5640
5641         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5642         if (ret < 0)
5643                 return 0;
5644         kvm_page_track_write(vcpu, gpa, val, bytes);
5645         return 1;
5646 }
5647
5648 struct read_write_emulator_ops {
5649         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5650                                   int bytes);
5651         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5652                                   void *val, int bytes);
5653         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5654                                int bytes, void *val);
5655         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5656                                     void *val, int bytes);
5657         bool write;
5658 };
5659
5660 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5661 {
5662         if (vcpu->mmio_read_completed) {
5663                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5664                                vcpu->mmio_fragments[0].gpa, val);
5665                 vcpu->mmio_read_completed = 0;
5666                 return 1;
5667         }
5668
5669         return 0;
5670 }
5671
5672 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5673                         void *val, int bytes)
5674 {
5675         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5676 }
5677
5678 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5679                          void *val, int bytes)
5680 {
5681         return emulator_write_phys(vcpu, gpa, val, bytes);
5682 }
5683
5684 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5685 {
5686         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5687         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5688 }
5689
5690 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5691                           void *val, int bytes)
5692 {
5693         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5694         return X86EMUL_IO_NEEDED;
5695 }
5696
5697 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5698                            void *val, int bytes)
5699 {
5700         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5701
5702         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5703         return X86EMUL_CONTINUE;
5704 }
5705
5706 static const struct read_write_emulator_ops read_emultor = {
5707         .read_write_prepare = read_prepare,
5708         .read_write_emulate = read_emulate,
5709         .read_write_mmio = vcpu_mmio_read,
5710         .read_write_exit_mmio = read_exit_mmio,
5711 };
5712
5713 static const struct read_write_emulator_ops write_emultor = {
5714         .read_write_emulate = write_emulate,
5715         .read_write_mmio = write_mmio,
5716         .read_write_exit_mmio = write_exit_mmio,
5717         .write = true,
5718 };
5719
5720 static int emulator_read_write_onepage(unsigned long addr, void *val,
5721                                        unsigned int bytes,
5722                                        struct x86_exception *exception,
5723                                        struct kvm_vcpu *vcpu,
5724                                        const struct read_write_emulator_ops *ops)
5725 {
5726         gpa_t gpa;
5727         int handled, ret;
5728         bool write = ops->write;
5729         struct kvm_mmio_fragment *frag;
5730         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5731
5732         /*
5733          * If the exit was due to a NPF we may already have a GPA.
5734          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5735          * Note, this cannot be used on string operations since string
5736          * operation using rep will only have the initial GPA from the NPF
5737          * occurred.
5738          */
5739         if (vcpu->arch.gpa_available &&
5740             emulator_can_use_gpa(ctxt) &&
5741             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5742                 gpa = vcpu->arch.gpa_val;
5743                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5744         } else {
5745                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5746                 if (ret < 0)
5747                         return X86EMUL_PROPAGATE_FAULT;
5748         }
5749
5750         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5751                 return X86EMUL_CONTINUE;
5752
5753         /*
5754          * Is this MMIO handled locally?
5755          */
5756         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5757         if (handled == bytes)
5758                 return X86EMUL_CONTINUE;
5759
5760         gpa += handled;
5761         bytes -= handled;
5762         val += handled;
5763
5764         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5765         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5766         frag->gpa = gpa;
5767         frag->data = val;
5768         frag->len = bytes;
5769         return X86EMUL_CONTINUE;
5770 }
5771
5772 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5773                         unsigned long addr,
5774                         void *val, unsigned int bytes,
5775                         struct x86_exception *exception,
5776                         const struct read_write_emulator_ops *ops)
5777 {
5778         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5779         gpa_t gpa;
5780         int rc;
5781
5782         if (ops->read_write_prepare &&
5783                   ops->read_write_prepare(vcpu, val, bytes))
5784                 return X86EMUL_CONTINUE;
5785
5786         vcpu->mmio_nr_fragments = 0;
5787
5788         /* Crossing a page boundary? */
5789         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5790                 int now;
5791
5792                 now = -addr & ~PAGE_MASK;
5793                 rc = emulator_read_write_onepage(addr, val, now, exception,
5794                                                  vcpu, ops);
5795
5796                 if (rc != X86EMUL_CONTINUE)
5797                         return rc;
5798                 addr += now;
5799                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5800                         addr = (u32)addr;
5801                 val += now;
5802                 bytes -= now;
5803         }
5804
5805         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5806                                          vcpu, ops);
5807         if (rc != X86EMUL_CONTINUE)
5808                 return rc;
5809
5810         if (!vcpu->mmio_nr_fragments)
5811                 return rc;
5812
5813         gpa = vcpu->mmio_fragments[0].gpa;
5814
5815         vcpu->mmio_needed = 1;
5816         vcpu->mmio_cur_fragment = 0;
5817
5818         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5819         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5820         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5821         vcpu->run->mmio.phys_addr = gpa;
5822
5823         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5824 }
5825
5826 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5827                                   unsigned long addr,
5828                                   void *val,
5829                                   unsigned int bytes,
5830                                   struct x86_exception *exception)
5831 {
5832         return emulator_read_write(ctxt, addr, val, bytes,
5833                                    exception, &read_emultor);
5834 }
5835
5836 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5837                             unsigned long addr,
5838                             const void *val,
5839                             unsigned int bytes,
5840                             struct x86_exception *exception)
5841 {
5842         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5843                                    exception, &write_emultor);
5844 }
5845
5846 #define CMPXCHG_TYPE(t, ptr, old, new) \
5847         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5848
5849 #ifdef CONFIG_X86_64
5850 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5851 #else
5852 #  define CMPXCHG64(ptr, old, new) \
5853         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5854 #endif
5855
5856 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5857                                      unsigned long addr,
5858                                      const void *old,
5859                                      const void *new,
5860                                      unsigned int bytes,
5861                                      struct x86_exception *exception)
5862 {
5863         struct kvm_host_map map;
5864         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5865         gpa_t gpa;
5866         char *kaddr;
5867         bool exchanged;
5868
5869         /* guests cmpxchg8b have to be emulated atomically */
5870         if (bytes > 8 || (bytes & (bytes - 1)))
5871                 goto emul_write;
5872
5873         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5874
5875         if (gpa == UNMAPPED_GVA ||
5876             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5877                 goto emul_write;
5878
5879         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5880                 goto emul_write;
5881
5882         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5883                 goto emul_write;
5884
5885         kaddr = map.hva + offset_in_page(gpa);
5886
5887         switch (bytes) {
5888         case 1:
5889                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5890                 break;
5891         case 2:
5892                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5893                 break;
5894         case 4:
5895                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5896                 break;
5897         case 8:
5898                 exchanged = CMPXCHG64(kaddr, old, new);
5899                 break;
5900         default:
5901                 BUG();
5902         }
5903
5904         kvm_vcpu_unmap(vcpu, &map, true);
5905
5906         if (!exchanged)
5907                 return X86EMUL_CMPXCHG_FAILED;
5908
5909         kvm_page_track_write(vcpu, gpa, new, bytes);
5910
5911         return X86EMUL_CONTINUE;
5912
5913 emul_write:
5914         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5915
5916         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5917 }
5918
5919 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5920 {
5921         int r = 0, i;
5922
5923         for (i = 0; i < vcpu->arch.pio.count; i++) {
5924                 if (vcpu->arch.pio.in)
5925                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5926                                             vcpu->arch.pio.size, pd);
5927                 else
5928                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5929                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5930                                              pd);
5931                 if (r)
5932                         break;
5933                 pd += vcpu->arch.pio.size;
5934         }
5935         return r;
5936 }
5937
5938 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5939                                unsigned short port, void *val,
5940                                unsigned int count, bool in)
5941 {
5942         vcpu->arch.pio.port = port;
5943         vcpu->arch.pio.in = in;
5944         vcpu->arch.pio.count  = count;
5945         vcpu->arch.pio.size = size;
5946
5947         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5948                 vcpu->arch.pio.count = 0;
5949                 return 1;
5950         }
5951
5952         vcpu->run->exit_reason = KVM_EXIT_IO;
5953         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5954         vcpu->run->io.size = size;
5955         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5956         vcpu->run->io.count = count;
5957         vcpu->run->io.port = port;
5958
5959         return 0;
5960 }
5961
5962 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5963                                     int size, unsigned short port, void *val,
5964                                     unsigned int count)
5965 {
5966         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5967         int ret;
5968
5969         if (vcpu->arch.pio.count)
5970                 goto data_avail;
5971
5972         memset(vcpu->arch.pio_data, 0, size * count);
5973
5974         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5975         if (ret) {
5976 data_avail:
5977                 memcpy(val, vcpu->arch.pio_data, size * count);
5978                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5979                 vcpu->arch.pio.count = 0;
5980                 return 1;
5981         }
5982
5983         return 0;
5984 }
5985
5986 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5987                                      int size, unsigned short port,
5988                                      const void *val, unsigned int count)
5989 {
5990         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5991
5992         memcpy(vcpu->arch.pio_data, val, size * count);
5993         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5994         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5995 }
5996
5997 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5998 {
5999         return kvm_x86_ops->get_segment_base(vcpu, seg);
6000 }
6001
6002 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6003 {
6004         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6005 }
6006
6007 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6008 {
6009         if (!need_emulate_wbinvd(vcpu))
6010                 return X86EMUL_CONTINUE;
6011
6012         if (kvm_x86_ops->has_wbinvd_exit()) {
6013                 int cpu = get_cpu();
6014
6015                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6016                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6017                                 wbinvd_ipi, NULL, 1);
6018                 put_cpu();
6019                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6020         } else
6021                 wbinvd();
6022         return X86EMUL_CONTINUE;
6023 }
6024
6025 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6026 {
6027         kvm_emulate_wbinvd_noskip(vcpu);
6028         return kvm_skip_emulated_instruction(vcpu);
6029 }
6030 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6031
6032
6033
6034 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6035 {
6036         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6037 }
6038
6039 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6040                            unsigned long *dest)
6041 {
6042         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6043 }
6044
6045 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6046                            unsigned long value)
6047 {
6048
6049         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6050 }
6051
6052 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6053 {
6054         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6055 }
6056
6057 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6058 {
6059         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6060         unsigned long value;
6061
6062         switch (cr) {
6063         case 0:
6064                 value = kvm_read_cr0(vcpu);
6065                 break;
6066         case 2:
6067                 value = vcpu->arch.cr2;
6068                 break;
6069         case 3:
6070                 value = kvm_read_cr3(vcpu);
6071                 break;
6072         case 4:
6073                 value = kvm_read_cr4(vcpu);
6074                 break;
6075         case 8:
6076                 value = kvm_get_cr8(vcpu);
6077                 break;
6078         default:
6079                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6080                 return 0;
6081         }
6082
6083         return value;
6084 }
6085
6086 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6087 {
6088         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6089         int res = 0;
6090
6091         switch (cr) {
6092         case 0:
6093                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6094                 break;
6095         case 2:
6096                 vcpu->arch.cr2 = val;
6097                 break;
6098         case 3:
6099                 res = kvm_set_cr3(vcpu, val);
6100                 break;
6101         case 4:
6102                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6103                 break;
6104         case 8:
6105                 res = kvm_set_cr8(vcpu, val);
6106                 break;
6107         default:
6108                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6109                 res = -1;
6110         }
6111
6112         return res;
6113 }
6114
6115 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6116 {
6117         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6118 }
6119
6120 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6121 {
6122         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6123 }
6124
6125 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6126 {
6127         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6128 }
6129
6130 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6131 {
6132         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6133 }
6134
6135 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6136 {
6137         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6138 }
6139
6140 static unsigned long emulator_get_cached_segment_base(
6141         struct x86_emulate_ctxt *ctxt, int seg)
6142 {
6143         return get_segment_base(emul_to_vcpu(ctxt), seg);
6144 }
6145
6146 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6147                                  struct desc_struct *desc, u32 *base3,
6148                                  int seg)
6149 {
6150         struct kvm_segment var;
6151
6152         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6153         *selector = var.selector;
6154
6155         if (var.unusable) {
6156                 memset(desc, 0, sizeof(*desc));
6157                 if (base3)
6158                         *base3 = 0;
6159                 return false;
6160         }
6161
6162         if (var.g)
6163                 var.limit >>= 12;
6164         set_desc_limit(desc, var.limit);
6165         set_desc_base(desc, (unsigned long)var.base);
6166 #ifdef CONFIG_X86_64
6167         if (base3)
6168                 *base3 = var.base >> 32;
6169 #endif
6170         desc->type = var.type;
6171         desc->s = var.s;
6172         desc->dpl = var.dpl;
6173         desc->p = var.present;
6174         desc->avl = var.avl;
6175         desc->l = var.l;
6176         desc->d = var.db;
6177         desc->g = var.g;
6178
6179         return true;
6180 }
6181
6182 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6183                                  struct desc_struct *desc, u32 base3,
6184                                  int seg)
6185 {
6186         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6187         struct kvm_segment var;
6188
6189         var.selector = selector;
6190         var.base = get_desc_base(desc);
6191 #ifdef CONFIG_X86_64
6192         var.base |= ((u64)base3) << 32;
6193 #endif
6194         var.limit = get_desc_limit(desc);
6195         if (desc->g)
6196                 var.limit = (var.limit << 12) | 0xfff;
6197         var.type = desc->type;
6198         var.dpl = desc->dpl;
6199         var.db = desc->d;
6200         var.s = desc->s;
6201         var.l = desc->l;
6202         var.g = desc->g;
6203         var.avl = desc->avl;
6204         var.present = desc->p;
6205         var.unusable = !var.present;
6206         var.padding = 0;
6207
6208         kvm_set_segment(vcpu, &var, seg);
6209         return;
6210 }
6211
6212 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6213                             u32 msr_index, u64 *pdata)
6214 {
6215         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6216 }
6217
6218 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6219                             u32 msr_index, u64 data)
6220 {
6221         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6222 }
6223
6224 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6225 {
6226         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6227
6228         return vcpu->arch.smbase;
6229 }
6230
6231 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6232 {
6233         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6234
6235         vcpu->arch.smbase = smbase;
6236 }
6237
6238 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6239                               u32 pmc)
6240 {
6241         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6242 }
6243
6244 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6245                              u32 pmc, u64 *pdata)
6246 {
6247         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6248 }
6249
6250 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6251 {
6252         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6253 }
6254
6255 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6256                               struct x86_instruction_info *info,
6257                               enum x86_intercept_stage stage)
6258 {
6259         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6260 }
6261
6262 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6263                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6264 {
6265         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6266 }
6267
6268 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6269 {
6270         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6271 }
6272
6273 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6274 {
6275         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6276 }
6277
6278 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6279 {
6280         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6281 }
6282
6283 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6284 {
6285         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6286 }
6287
6288 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6289 {
6290         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6291 }
6292
6293 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6294 {
6295         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6296 }
6297
6298 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6299 {
6300         return emul_to_vcpu(ctxt)->arch.hflags;
6301 }
6302
6303 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6304 {
6305         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6306 }
6307
6308 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6309                                   const char *smstate)
6310 {
6311         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6312 }
6313
6314 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6315 {
6316         kvm_smm_changed(emul_to_vcpu(ctxt));
6317 }
6318
6319 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6320 {
6321         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6322 }
6323
6324 static const struct x86_emulate_ops emulate_ops = {
6325         .read_gpr            = emulator_read_gpr,
6326         .write_gpr           = emulator_write_gpr,
6327         .read_std            = emulator_read_std,
6328         .write_std           = emulator_write_std,
6329         .read_phys           = kvm_read_guest_phys_system,
6330         .fetch               = kvm_fetch_guest_virt,
6331         .read_emulated       = emulator_read_emulated,
6332         .write_emulated      = emulator_write_emulated,
6333         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6334         .invlpg              = emulator_invlpg,
6335         .pio_in_emulated     = emulator_pio_in_emulated,
6336         .pio_out_emulated    = emulator_pio_out_emulated,
6337         .get_segment         = emulator_get_segment,
6338         .set_segment         = emulator_set_segment,
6339         .get_cached_segment_base = emulator_get_cached_segment_base,
6340         .get_gdt             = emulator_get_gdt,
6341         .get_idt             = emulator_get_idt,
6342         .set_gdt             = emulator_set_gdt,
6343         .set_idt             = emulator_set_idt,
6344         .get_cr              = emulator_get_cr,
6345         .set_cr              = emulator_set_cr,
6346         .cpl                 = emulator_get_cpl,
6347         .get_dr              = emulator_get_dr,
6348         .set_dr              = emulator_set_dr,
6349         .get_smbase          = emulator_get_smbase,
6350         .set_smbase          = emulator_set_smbase,
6351         .set_msr             = emulator_set_msr,
6352         .get_msr             = emulator_get_msr,
6353         .check_pmc           = emulator_check_pmc,
6354         .read_pmc            = emulator_read_pmc,
6355         .halt                = emulator_halt,
6356         .wbinvd              = emulator_wbinvd,
6357         .fix_hypercall       = emulator_fix_hypercall,
6358         .intercept           = emulator_intercept,
6359         .get_cpuid           = emulator_get_cpuid,
6360         .guest_has_long_mode = emulator_guest_has_long_mode,
6361         .guest_has_movbe     = emulator_guest_has_movbe,
6362         .guest_has_fxsr      = emulator_guest_has_fxsr,
6363         .set_nmi_mask        = emulator_set_nmi_mask,
6364         .get_hflags          = emulator_get_hflags,
6365         .set_hflags          = emulator_set_hflags,
6366         .pre_leave_smm       = emulator_pre_leave_smm,
6367         .post_leave_smm      = emulator_post_leave_smm,
6368         .set_xcr             = emulator_set_xcr,
6369 };
6370
6371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6372 {
6373         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6374         /*
6375          * an sti; sti; sequence only disable interrupts for the first
6376          * instruction. So, if the last instruction, be it emulated or
6377          * not, left the system with the INT_STI flag enabled, it
6378          * means that the last instruction is an sti. We should not
6379          * leave the flag on in this case. The same goes for mov ss
6380          */
6381         if (int_shadow & mask)
6382                 mask = 0;
6383         if (unlikely(int_shadow || mask)) {
6384                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6385                 if (!mask)
6386                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6387         }
6388 }
6389
6390 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6391 {
6392         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6393         if (ctxt->exception.vector == PF_VECTOR)
6394                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6395
6396         if (ctxt->exception.error_code_valid)
6397                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6398                                       ctxt->exception.error_code);
6399         else
6400                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6401         return false;
6402 }
6403
6404 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6405 {
6406         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6407         int cs_db, cs_l;
6408
6409         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6410
6411         ctxt->eflags = kvm_get_rflags(vcpu);
6412         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6413
6414         ctxt->eip = kvm_rip_read(vcpu);
6415         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6416                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6417                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6418                      cs_db                              ? X86EMUL_MODE_PROT32 :
6419                                                           X86EMUL_MODE_PROT16;
6420         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6421         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6422         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6423
6424         init_decode_cache(ctxt);
6425         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6426 }
6427
6428 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6429 {
6430         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6431         int ret;
6432
6433         init_emulate_ctxt(vcpu);
6434
6435         ctxt->op_bytes = 2;
6436         ctxt->ad_bytes = 2;
6437         ctxt->_eip = ctxt->eip + inc_eip;
6438         ret = emulate_int_real(ctxt, irq);
6439
6440         if (ret != X86EMUL_CONTINUE) {
6441                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6442         } else {
6443                 ctxt->eip = ctxt->_eip;
6444                 kvm_rip_write(vcpu, ctxt->eip);
6445                 kvm_set_rflags(vcpu, ctxt->eflags);
6446         }
6447 }
6448 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6449
6450 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6451 {
6452         ++vcpu->stat.insn_emulation_fail;
6453         trace_kvm_emulate_insn_failed(vcpu);
6454
6455         if (emulation_type & EMULTYPE_VMWARE_GP) {
6456                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6457                 return 1;
6458         }
6459
6460         if (emulation_type & EMULTYPE_SKIP) {
6461                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6462                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6463                 vcpu->run->internal.ndata = 0;
6464                 return 0;
6465         }
6466
6467         kvm_queue_exception(vcpu, UD_VECTOR);
6468
6469         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6470                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6471                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6472                 vcpu->run->internal.ndata = 0;
6473                 return 0;
6474         }
6475
6476         return 1;
6477 }
6478
6479 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6480                                   bool write_fault_to_shadow_pgtable,
6481                                   int emulation_type)
6482 {
6483         gpa_t gpa = cr2_or_gpa;
6484         kvm_pfn_t pfn;
6485
6486         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6487                 return false;
6488
6489         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6490                 return false;
6491
6492         if (!vcpu->arch.mmu->direct_map) {
6493                 /*
6494                  * Write permission should be allowed since only
6495                  * write access need to be emulated.
6496                  */
6497                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6498
6499                 /*
6500                  * If the mapping is invalid in guest, let cpu retry
6501                  * it to generate fault.
6502                  */
6503                 if (gpa == UNMAPPED_GVA)
6504                         return true;
6505         }
6506
6507         /*
6508          * Do not retry the unhandleable instruction if it faults on the
6509          * readonly host memory, otherwise it will goto a infinite loop:
6510          * retry instruction -> write #PF -> emulation fail -> retry
6511          * instruction -> ...
6512          */
6513         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6514
6515         /*
6516          * If the instruction failed on the error pfn, it can not be fixed,
6517          * report the error to userspace.
6518          */
6519         if (is_error_noslot_pfn(pfn))
6520                 return false;
6521
6522         kvm_release_pfn_clean(pfn);
6523
6524         /* The instructions are well-emulated on direct mmu. */
6525         if (vcpu->arch.mmu->direct_map) {
6526                 unsigned int indirect_shadow_pages;
6527
6528                 spin_lock(&vcpu->kvm->mmu_lock);
6529                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6530                 spin_unlock(&vcpu->kvm->mmu_lock);
6531
6532                 if (indirect_shadow_pages)
6533                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6534
6535                 return true;
6536         }
6537
6538         /*
6539          * if emulation was due to access to shadowed page table
6540          * and it failed try to unshadow page and re-enter the
6541          * guest to let CPU execute the instruction.
6542          */
6543         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6544
6545         /*
6546          * If the access faults on its page table, it can not
6547          * be fixed by unprotecting shadow page and it should
6548          * be reported to userspace.
6549          */
6550         return !write_fault_to_shadow_pgtable;
6551 }
6552
6553 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6554                               gpa_t cr2_or_gpa,  int emulation_type)
6555 {
6556         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6557         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6558
6559         last_retry_eip = vcpu->arch.last_retry_eip;
6560         last_retry_addr = vcpu->arch.last_retry_addr;
6561
6562         /*
6563          * If the emulation is caused by #PF and it is non-page_table
6564          * writing instruction, it means the VM-EXIT is caused by shadow
6565          * page protected, we can zap the shadow page and retry this
6566          * instruction directly.
6567          *
6568          * Note: if the guest uses a non-page-table modifying instruction
6569          * on the PDE that points to the instruction, then we will unmap
6570          * the instruction and go to an infinite loop. So, we cache the
6571          * last retried eip and the last fault address, if we meet the eip
6572          * and the address again, we can break out of the potential infinite
6573          * loop.
6574          */
6575         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6576
6577         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6578                 return false;
6579
6580         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6581                 return false;
6582
6583         if (x86_page_table_writing_insn(ctxt))
6584                 return false;
6585
6586         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6587                 return false;
6588
6589         vcpu->arch.last_retry_eip = ctxt->eip;
6590         vcpu->arch.last_retry_addr = cr2_or_gpa;
6591
6592         if (!vcpu->arch.mmu->direct_map)
6593                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6594
6595         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6596
6597         return true;
6598 }
6599
6600 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6601 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6602
6603 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6604 {
6605         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6606                 /* This is a good place to trace that we are exiting SMM.  */
6607                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6608
6609                 /* Process a latched INIT or SMI, if any.  */
6610                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6611         }
6612
6613         kvm_mmu_reset_context(vcpu);
6614 }
6615
6616 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6617                                 unsigned long *db)
6618 {
6619         u32 dr6 = 0;
6620         int i;
6621         u32 enable, rwlen;
6622
6623         enable = dr7;
6624         rwlen = dr7 >> 16;
6625         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6626                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6627                         dr6 |= (1 << i);
6628         return dr6;
6629 }
6630
6631 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6632 {
6633         struct kvm_run *kvm_run = vcpu->run;
6634
6635         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6636                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6637                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6638                 kvm_run->debug.arch.exception = DB_VECTOR;
6639                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6640                 return 0;
6641         }
6642         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6643         return 1;
6644 }
6645
6646 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6647 {
6648         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6649         int r;
6650
6651         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6652         if (unlikely(!r))
6653                 return 0;
6654
6655         /*
6656          * rflags is the old, "raw" value of the flags.  The new value has
6657          * not been saved yet.
6658          *
6659          * This is correct even for TF set by the guest, because "the
6660          * processor will not generate this exception after the instruction
6661          * that sets the TF flag".
6662          */
6663         if (unlikely(rflags & X86_EFLAGS_TF))
6664                 r = kvm_vcpu_do_singlestep(vcpu);
6665         return r;
6666 }
6667 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6668
6669 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6670 {
6671         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6672             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6673                 struct kvm_run *kvm_run = vcpu->run;
6674                 unsigned long eip = kvm_get_linear_rip(vcpu);
6675                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6676                                            vcpu->arch.guest_debug_dr7,
6677                                            vcpu->arch.eff_db);
6678
6679                 if (dr6 != 0) {
6680                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6681                         kvm_run->debug.arch.pc = eip;
6682                         kvm_run->debug.arch.exception = DB_VECTOR;
6683                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6684                         *r = 0;
6685                         return true;
6686                 }
6687         }
6688
6689         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6690             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6691                 unsigned long eip = kvm_get_linear_rip(vcpu);
6692                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6693                                            vcpu->arch.dr7,
6694                                            vcpu->arch.db);
6695
6696                 if (dr6 != 0) {
6697                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6698                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6699                         kvm_queue_exception(vcpu, DB_VECTOR);
6700                         *r = 1;
6701                         return true;
6702                 }
6703         }
6704
6705         return false;
6706 }
6707
6708 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6709 {
6710         switch (ctxt->opcode_len) {
6711         case 1:
6712                 switch (ctxt->b) {
6713                 case 0xe4:      /* IN */
6714                 case 0xe5:
6715                 case 0xec:
6716                 case 0xed:
6717                 case 0xe6:      /* OUT */
6718                 case 0xe7:
6719                 case 0xee:
6720                 case 0xef:
6721                 case 0x6c:      /* INS */
6722                 case 0x6d:
6723                 case 0x6e:      /* OUTS */
6724                 case 0x6f:
6725                         return true;
6726                 }
6727                 break;
6728         case 2:
6729                 switch (ctxt->b) {
6730                 case 0x33:      /* RDPMC */
6731                         return true;
6732                 }
6733                 break;
6734         }
6735
6736         return false;
6737 }
6738
6739 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6740                             int emulation_type, void *insn, int insn_len)
6741 {
6742         int r;
6743         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6744         bool writeback = true;
6745         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6746
6747         vcpu->arch.l1tf_flush_l1d = true;
6748
6749         /*
6750          * Clear write_fault_to_shadow_pgtable here to ensure it is
6751          * never reused.
6752          */
6753         vcpu->arch.write_fault_to_shadow_pgtable = false;
6754         kvm_clear_exception_queue(vcpu);
6755
6756         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6757                 init_emulate_ctxt(vcpu);
6758
6759                 /*
6760                  * We will reenter on the same instruction since
6761                  * we do not set complete_userspace_io.  This does not
6762                  * handle watchpoints yet, those would be handled in
6763                  * the emulate_ops.
6764                  */
6765                 if (!(emulation_type & EMULTYPE_SKIP) &&
6766                     kvm_vcpu_check_breakpoint(vcpu, &r))
6767                         return r;
6768
6769                 ctxt->interruptibility = 0;
6770                 ctxt->have_exception = false;
6771                 ctxt->exception.vector = -1;
6772                 ctxt->perm_ok = false;
6773
6774                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6775
6776                 r = x86_decode_insn(ctxt, insn, insn_len);
6777
6778                 trace_kvm_emulate_insn_start(vcpu);
6779                 ++vcpu->stat.insn_emulation;
6780                 if (r != EMULATION_OK)  {
6781                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6782                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6783                                 kvm_queue_exception(vcpu, UD_VECTOR);
6784                                 return 1;
6785                         }
6786                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6787                                                   write_fault_to_spt,
6788                                                   emulation_type))
6789                                 return 1;
6790                         if (ctxt->have_exception) {
6791                                 /*
6792                                  * #UD should result in just EMULATION_FAILED, and trap-like
6793                                  * exception should not be encountered during decode.
6794                                  */
6795                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6796                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6797                                 inject_emulated_exception(vcpu);
6798                                 return 1;
6799                         }
6800                         return handle_emulation_failure(vcpu, emulation_type);
6801                 }
6802         }
6803
6804         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6805             !is_vmware_backdoor_opcode(ctxt)) {
6806                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6807                 return 1;
6808         }
6809
6810         /*
6811          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6812          * for kvm_skip_emulated_instruction().  The caller is responsible for
6813          * updating interruptibility state and injecting single-step #DBs.
6814          */
6815         if (emulation_type & EMULTYPE_SKIP) {
6816                 kvm_rip_write(vcpu, ctxt->_eip);
6817                 if (ctxt->eflags & X86_EFLAGS_RF)
6818                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6819                 return 1;
6820         }
6821
6822         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6823                 return 1;
6824
6825         /* this is needed for vmware backdoor interface to work since it
6826            changes registers values  during IO operation */
6827         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6828                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6829                 emulator_invalidate_register_cache(ctxt);
6830         }
6831
6832 restart:
6833         /* Save the faulting GPA (cr2) in the address field */
6834         ctxt->exception.address = cr2_or_gpa;
6835
6836         r = x86_emulate_insn(ctxt);
6837
6838         if (r == EMULATION_INTERCEPTED)
6839                 return 1;
6840
6841         if (r == EMULATION_FAILED) {
6842                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6843                                         emulation_type))
6844                         return 1;
6845
6846                 return handle_emulation_failure(vcpu, emulation_type);
6847         }
6848
6849         if (ctxt->have_exception) {
6850                 r = 1;
6851                 if (inject_emulated_exception(vcpu))
6852                         return r;
6853         } else if (vcpu->arch.pio.count) {
6854                 if (!vcpu->arch.pio.in) {
6855                         /* FIXME: return into emulator if single-stepping.  */
6856                         vcpu->arch.pio.count = 0;
6857                 } else {
6858                         writeback = false;
6859                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6860                 }
6861                 r = 0;
6862         } else if (vcpu->mmio_needed) {
6863                 ++vcpu->stat.mmio_exits;
6864
6865                 if (!vcpu->mmio_is_write)
6866                         writeback = false;
6867                 r = 0;
6868                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6869         } else if (r == EMULATION_RESTART)
6870                 goto restart;
6871         else
6872                 r = 1;
6873
6874         if (writeback) {
6875                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6876                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6877                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6878                 if (!ctxt->have_exception ||
6879                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6880                         kvm_rip_write(vcpu, ctxt->eip);
6881                         if (r && ctxt->tf)
6882                                 r = kvm_vcpu_do_singlestep(vcpu);
6883                         __kvm_set_rflags(vcpu, ctxt->eflags);
6884                 }
6885
6886                 /*
6887                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6888                  * do nothing, and it will be requested again as soon as
6889                  * the shadow expires.  But we still need to check here,
6890                  * because POPF has no interrupt shadow.
6891                  */
6892                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6893                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6894         } else
6895                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6896
6897         return r;
6898 }
6899
6900 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6901 {
6902         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6903 }
6904 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6905
6906 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6907                                         void *insn, int insn_len)
6908 {
6909         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6910 }
6911 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6912
6913 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6914 {
6915         vcpu->arch.pio.count = 0;
6916         return 1;
6917 }
6918
6919 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6920 {
6921         vcpu->arch.pio.count = 0;
6922
6923         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6924                 return 1;
6925
6926         return kvm_skip_emulated_instruction(vcpu);
6927 }
6928
6929 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6930                             unsigned short port)
6931 {
6932         unsigned long val = kvm_rax_read(vcpu);
6933         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6934                                             size, port, &val, 1);
6935         if (ret)
6936                 return ret;
6937
6938         /*
6939          * Workaround userspace that relies on old KVM behavior of %rip being
6940          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6941          */
6942         if (port == 0x7e &&
6943             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6944                 vcpu->arch.complete_userspace_io =
6945                         complete_fast_pio_out_port_0x7e;
6946                 kvm_skip_emulated_instruction(vcpu);
6947         } else {
6948                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6949                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6950         }
6951         return 0;
6952 }
6953
6954 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6955 {
6956         unsigned long val;
6957
6958         /* We should only ever be called with arch.pio.count equal to 1 */
6959         BUG_ON(vcpu->arch.pio.count != 1);
6960
6961         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6962                 vcpu->arch.pio.count = 0;
6963                 return 1;
6964         }
6965
6966         /* For size less than 4 we merge, else we zero extend */
6967         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6968
6969         /*
6970          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6971          * the copy and tracing
6972          */
6973         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6974                                  vcpu->arch.pio.port, &val, 1);
6975         kvm_rax_write(vcpu, val);
6976
6977         return kvm_skip_emulated_instruction(vcpu);
6978 }
6979
6980 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6981                            unsigned short port)
6982 {
6983         unsigned long val;
6984         int ret;
6985
6986         /* For size less than 4 we merge, else we zero extend */
6987         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6988
6989         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6990                                        &val, 1);
6991         if (ret) {
6992                 kvm_rax_write(vcpu, val);
6993                 return ret;
6994         }
6995
6996         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6997         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6998
6999         return 0;
7000 }
7001
7002 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7003 {
7004         int ret;
7005
7006         if (in)
7007                 ret = kvm_fast_pio_in(vcpu, size, port);
7008         else
7009                 ret = kvm_fast_pio_out(vcpu, size, port);
7010         return ret && kvm_skip_emulated_instruction(vcpu);
7011 }
7012 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7013
7014 static int kvmclock_cpu_down_prep(unsigned int cpu)
7015 {
7016         __this_cpu_write(cpu_tsc_khz, 0);
7017         return 0;
7018 }
7019
7020 static void tsc_khz_changed(void *data)
7021 {
7022         struct cpufreq_freqs *freq = data;
7023         unsigned long khz = 0;
7024
7025         if (data)
7026                 khz = freq->new;
7027         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7028                 khz = cpufreq_quick_get(raw_smp_processor_id());
7029         if (!khz)
7030                 khz = tsc_khz;
7031         __this_cpu_write(cpu_tsc_khz, khz);
7032 }
7033
7034 #ifdef CONFIG_X86_64
7035 static void kvm_hyperv_tsc_notifier(void)
7036 {
7037         struct kvm *kvm;
7038         struct kvm_vcpu *vcpu;
7039         int cpu;
7040
7041         mutex_lock(&kvm_lock);
7042         list_for_each_entry(kvm, &vm_list, vm_list)
7043                 kvm_make_mclock_inprogress_request(kvm);
7044
7045         hyperv_stop_tsc_emulation();
7046
7047         /* TSC frequency always matches when on Hyper-V */
7048         for_each_present_cpu(cpu)
7049                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7050         kvm_max_guest_tsc_khz = tsc_khz;
7051
7052         list_for_each_entry(kvm, &vm_list, vm_list) {
7053                 struct kvm_arch *ka = &kvm->arch;
7054
7055                 spin_lock(&ka->pvclock_gtod_sync_lock);
7056
7057                 pvclock_update_vm_gtod_copy(kvm);
7058
7059                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7060                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7061
7062                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7063                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7064
7065                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7066         }
7067         mutex_unlock(&kvm_lock);
7068 }
7069 #endif
7070
7071 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7072 {
7073         struct kvm *kvm;
7074         struct kvm_vcpu *vcpu;
7075         int i, send_ipi = 0;
7076
7077         /*
7078          * We allow guests to temporarily run on slowing clocks,
7079          * provided we notify them after, or to run on accelerating
7080          * clocks, provided we notify them before.  Thus time never
7081          * goes backwards.
7082          *
7083          * However, we have a problem.  We can't atomically update
7084          * the frequency of a given CPU from this function; it is
7085          * merely a notifier, which can be called from any CPU.
7086          * Changing the TSC frequency at arbitrary points in time
7087          * requires a recomputation of local variables related to
7088          * the TSC for each VCPU.  We must flag these local variables
7089          * to be updated and be sure the update takes place with the
7090          * new frequency before any guests proceed.
7091          *
7092          * Unfortunately, the combination of hotplug CPU and frequency
7093          * change creates an intractable locking scenario; the order
7094          * of when these callouts happen is undefined with respect to
7095          * CPU hotplug, and they can race with each other.  As such,
7096          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7097          * undefined; you can actually have a CPU frequency change take
7098          * place in between the computation of X and the setting of the
7099          * variable.  To protect against this problem, all updates of
7100          * the per_cpu tsc_khz variable are done in an interrupt
7101          * protected IPI, and all callers wishing to update the value
7102          * must wait for a synchronous IPI to complete (which is trivial
7103          * if the caller is on the CPU already).  This establishes the
7104          * necessary total order on variable updates.
7105          *
7106          * Note that because a guest time update may take place
7107          * anytime after the setting of the VCPU's request bit, the
7108          * correct TSC value must be set before the request.  However,
7109          * to ensure the update actually makes it to any guest which
7110          * starts running in hardware virtualization between the set
7111          * and the acquisition of the spinlock, we must also ping the
7112          * CPU after setting the request bit.
7113          *
7114          */
7115
7116         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7117
7118         mutex_lock(&kvm_lock);
7119         list_for_each_entry(kvm, &vm_list, vm_list) {
7120                 kvm_for_each_vcpu(i, vcpu, kvm) {
7121                         if (vcpu->cpu != cpu)
7122                                 continue;
7123                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7124                         if (vcpu->cpu != raw_smp_processor_id())
7125                                 send_ipi = 1;
7126                 }
7127         }
7128         mutex_unlock(&kvm_lock);
7129
7130         if (freq->old < freq->new && send_ipi) {
7131                 /*
7132                  * We upscale the frequency.  Must make the guest
7133                  * doesn't see old kvmclock values while running with
7134                  * the new frequency, otherwise we risk the guest sees
7135                  * time go backwards.
7136                  *
7137                  * In case we update the frequency for another cpu
7138                  * (which might be in guest context) send an interrupt
7139                  * to kick the cpu out of guest context.  Next time
7140                  * guest context is entered kvmclock will be updated,
7141                  * so the guest will not see stale values.
7142                  */
7143                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7144         }
7145 }
7146
7147 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7148                                      void *data)
7149 {
7150         struct cpufreq_freqs *freq = data;
7151         int cpu;
7152
7153         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7154                 return 0;
7155         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7156                 return 0;
7157
7158         for_each_cpu(cpu, freq->policy->cpus)
7159                 __kvmclock_cpufreq_notifier(freq, cpu);
7160
7161         return 0;
7162 }
7163
7164 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7165         .notifier_call  = kvmclock_cpufreq_notifier
7166 };
7167
7168 static int kvmclock_cpu_online(unsigned int cpu)
7169 {
7170         tsc_khz_changed(NULL);
7171         return 0;
7172 }
7173
7174 static void kvm_timer_init(void)
7175 {
7176         max_tsc_khz = tsc_khz;
7177
7178         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7179 #ifdef CONFIG_CPU_FREQ
7180                 struct cpufreq_policy policy;
7181                 int cpu;
7182
7183                 memset(&policy, 0, sizeof(policy));
7184                 cpu = get_cpu();
7185                 cpufreq_get_policy(&policy, cpu);
7186                 if (policy.cpuinfo.max_freq)
7187                         max_tsc_khz = policy.cpuinfo.max_freq;
7188                 put_cpu();
7189 #endif
7190                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7191                                           CPUFREQ_TRANSITION_NOTIFIER);
7192         }
7193
7194         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7195                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7196 }
7197
7198 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7199 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7200
7201 int kvm_is_in_guest(void)
7202 {
7203         return __this_cpu_read(current_vcpu) != NULL;
7204 }
7205
7206 static int kvm_is_user_mode(void)
7207 {
7208         int user_mode = 3;
7209
7210         if (__this_cpu_read(current_vcpu))
7211                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7212
7213         return user_mode != 0;
7214 }
7215
7216 static unsigned long kvm_get_guest_ip(void)
7217 {
7218         unsigned long ip = 0;
7219
7220         if (__this_cpu_read(current_vcpu))
7221                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7222
7223         return ip;
7224 }
7225
7226 static void kvm_handle_intel_pt_intr(void)
7227 {
7228         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7229
7230         kvm_make_request(KVM_REQ_PMI, vcpu);
7231         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7232                         (unsigned long *)&vcpu->arch.pmu.global_status);
7233 }
7234
7235 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7236         .is_in_guest            = kvm_is_in_guest,
7237         .is_user_mode           = kvm_is_user_mode,
7238         .get_guest_ip           = kvm_get_guest_ip,
7239         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7240 };
7241
7242 #ifdef CONFIG_X86_64
7243 static void pvclock_gtod_update_fn(struct work_struct *work)
7244 {
7245         struct kvm *kvm;
7246
7247         struct kvm_vcpu *vcpu;
7248         int i;
7249
7250         mutex_lock(&kvm_lock);
7251         list_for_each_entry(kvm, &vm_list, vm_list)
7252                 kvm_for_each_vcpu(i, vcpu, kvm)
7253                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7254         atomic_set(&kvm_guest_has_master_clock, 0);
7255         mutex_unlock(&kvm_lock);
7256 }
7257
7258 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7259
7260 /*
7261  * Notification about pvclock gtod data update.
7262  */
7263 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7264                                void *priv)
7265 {
7266         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7267         struct timekeeper *tk = priv;
7268
7269         update_pvclock_gtod(tk);
7270
7271         /* disable master clock if host does not trust, or does not
7272          * use, TSC based clocksource.
7273          */
7274         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7275             atomic_read(&kvm_guest_has_master_clock) != 0)
7276                 queue_work(system_long_wq, &pvclock_gtod_work);
7277
7278         return 0;
7279 }
7280
7281 static struct notifier_block pvclock_gtod_notifier = {
7282         .notifier_call = pvclock_gtod_notify,
7283 };
7284 #endif
7285
7286 int kvm_arch_init(void *opaque)
7287 {
7288         int r;
7289         struct kvm_x86_ops *ops = opaque;
7290
7291         if (kvm_x86_ops) {
7292                 printk(KERN_ERR "kvm: already loaded the other module\n");
7293                 r = -EEXIST;
7294                 goto out;
7295         }
7296
7297         if (!ops->cpu_has_kvm_support()) {
7298                 printk(KERN_ERR "kvm: no hardware support\n");
7299                 r = -EOPNOTSUPP;
7300                 goto out;
7301         }
7302         if (ops->disabled_by_bios()) {
7303                 printk(KERN_ERR "kvm: disabled by bios\n");
7304                 r = -EOPNOTSUPP;
7305                 goto out;
7306         }
7307
7308         /*
7309          * KVM explicitly assumes that the guest has an FPU and
7310          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7311          * vCPU's FPU state as a fxregs_state struct.
7312          */
7313         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7314                 printk(KERN_ERR "kvm: inadequate fpu\n");
7315                 r = -EOPNOTSUPP;
7316                 goto out;
7317         }
7318
7319         r = -ENOMEM;
7320         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7321                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7322                                           NULL);
7323         if (!x86_fpu_cache) {
7324                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7325                 goto out;
7326         }
7327
7328         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7329         if (!shared_msrs) {
7330                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7331                 goto out_free_x86_fpu_cache;
7332         }
7333
7334         r = kvm_mmu_module_init();
7335         if (r)
7336                 goto out_free_percpu;
7337
7338         kvm_x86_ops = ops;
7339
7340         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7341                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7342                         PT_PRESENT_MASK, 0, sme_me_mask);
7343         kvm_timer_init();
7344
7345         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7346
7347         if (boot_cpu_has(X86_FEATURE_XSAVE))
7348                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7349
7350         kvm_lapic_init();
7351         if (pi_inject_timer == -1)
7352                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7353 #ifdef CONFIG_X86_64
7354         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7355
7356         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7357                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7358 #endif
7359
7360         return 0;
7361
7362 out_free_percpu:
7363         free_percpu(shared_msrs);
7364 out_free_x86_fpu_cache:
7365         kmem_cache_destroy(x86_fpu_cache);
7366 out:
7367         return r;
7368 }
7369
7370 void kvm_arch_exit(void)
7371 {
7372 #ifdef CONFIG_X86_64
7373         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7374                 clear_hv_tscchange_cb();
7375 #endif
7376         kvm_lapic_exit();
7377         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7378
7379         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7380                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7381                                             CPUFREQ_TRANSITION_NOTIFIER);
7382         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7383 #ifdef CONFIG_X86_64
7384         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7385 #endif
7386         kvm_x86_ops = NULL;
7387         kvm_mmu_module_exit();
7388         free_percpu(shared_msrs);
7389         kmem_cache_destroy(x86_fpu_cache);
7390 }
7391
7392 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7393 {
7394         ++vcpu->stat.halt_exits;
7395         if (lapic_in_kernel(vcpu)) {
7396                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7397                 return 1;
7398         } else {
7399                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7400                 return 0;
7401         }
7402 }
7403 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7404
7405 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7406 {
7407         int ret = kvm_skip_emulated_instruction(vcpu);
7408         /*
7409          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7410          * KVM_EXIT_DEBUG here.
7411          */
7412         return kvm_vcpu_halt(vcpu) && ret;
7413 }
7414 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7415
7416 #ifdef CONFIG_X86_64
7417 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7418                                 unsigned long clock_type)
7419 {
7420         struct kvm_clock_pairing clock_pairing;
7421         struct timespec64 ts;
7422         u64 cycle;
7423         int ret;
7424
7425         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7426                 return -KVM_EOPNOTSUPP;
7427
7428         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7429                 return -KVM_EOPNOTSUPP;
7430
7431         clock_pairing.sec = ts.tv_sec;
7432         clock_pairing.nsec = ts.tv_nsec;
7433         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7434         clock_pairing.flags = 0;
7435         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7436
7437         ret = 0;
7438         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7439                             sizeof(struct kvm_clock_pairing)))
7440                 ret = -KVM_EFAULT;
7441
7442         return ret;
7443 }
7444 #endif
7445
7446 /*
7447  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7448  *
7449  * @apicid - apicid of vcpu to be kicked.
7450  */
7451 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7452 {
7453         struct kvm_lapic_irq lapic_irq;
7454
7455         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7456         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7457         lapic_irq.level = 0;
7458         lapic_irq.dest_id = apicid;
7459         lapic_irq.msi_redir_hint = false;
7460
7461         lapic_irq.delivery_mode = APIC_DM_REMRD;
7462         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7463 }
7464
7465 bool kvm_apicv_activated(struct kvm *kvm)
7466 {
7467         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7468 }
7469 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7470
7471 void kvm_apicv_init(struct kvm *kvm, bool enable)
7472 {
7473         if (enable)
7474                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7475                           &kvm->arch.apicv_inhibit_reasons);
7476         else
7477                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7478                         &kvm->arch.apicv_inhibit_reasons);
7479 }
7480 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7481
7482 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7483 {
7484         struct kvm_vcpu *target = NULL;
7485         struct kvm_apic_map *map;
7486
7487         rcu_read_lock();
7488         map = rcu_dereference(kvm->arch.apic_map);
7489
7490         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7491                 target = map->phys_map[dest_id]->vcpu;
7492
7493         rcu_read_unlock();
7494
7495         if (target && READ_ONCE(target->ready))
7496                 kvm_vcpu_yield_to(target);
7497 }
7498
7499 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7500 {
7501         unsigned long nr, a0, a1, a2, a3, ret;
7502         int op_64_bit;
7503
7504         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7505                 return kvm_hv_hypercall(vcpu);
7506
7507         nr = kvm_rax_read(vcpu);
7508         a0 = kvm_rbx_read(vcpu);
7509         a1 = kvm_rcx_read(vcpu);
7510         a2 = kvm_rdx_read(vcpu);
7511         a3 = kvm_rsi_read(vcpu);
7512
7513         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7514
7515         op_64_bit = is_64_bit_mode(vcpu);
7516         if (!op_64_bit) {
7517                 nr &= 0xFFFFFFFF;
7518                 a0 &= 0xFFFFFFFF;
7519                 a1 &= 0xFFFFFFFF;
7520                 a2 &= 0xFFFFFFFF;
7521                 a3 &= 0xFFFFFFFF;
7522         }
7523
7524         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7525                 ret = -KVM_EPERM;
7526                 goto out;
7527         }
7528
7529         switch (nr) {
7530         case KVM_HC_VAPIC_POLL_IRQ:
7531                 ret = 0;
7532                 break;
7533         case KVM_HC_KICK_CPU:
7534                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7535                 kvm_sched_yield(vcpu->kvm, a1);
7536                 ret = 0;
7537                 break;
7538 #ifdef CONFIG_X86_64
7539         case KVM_HC_CLOCK_PAIRING:
7540                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7541                 break;
7542 #endif
7543         case KVM_HC_SEND_IPI:
7544                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7545                 break;
7546         case KVM_HC_SCHED_YIELD:
7547                 kvm_sched_yield(vcpu->kvm, a0);
7548                 ret = 0;
7549                 break;
7550         default:
7551                 ret = -KVM_ENOSYS;
7552                 break;
7553         }
7554 out:
7555         if (!op_64_bit)
7556                 ret = (u32)ret;
7557         kvm_rax_write(vcpu, ret);
7558
7559         ++vcpu->stat.hypercalls;
7560         return kvm_skip_emulated_instruction(vcpu);
7561 }
7562 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7563
7564 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7565 {
7566         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7567         char instruction[3];
7568         unsigned long rip = kvm_rip_read(vcpu);
7569
7570         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7571
7572         return emulator_write_emulated(ctxt, rip, instruction, 3,
7573                 &ctxt->exception);
7574 }
7575
7576 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7577 {
7578         return vcpu->run->request_interrupt_window &&
7579                 likely(!pic_in_kernel(vcpu->kvm));
7580 }
7581
7582 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7583 {
7584         struct kvm_run *kvm_run = vcpu->run;
7585
7586         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7587         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7588         kvm_run->cr8 = kvm_get_cr8(vcpu);
7589         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7590         kvm_run->ready_for_interrupt_injection =
7591                 pic_in_kernel(vcpu->kvm) ||
7592                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7593 }
7594
7595 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7596 {
7597         int max_irr, tpr;
7598
7599         if (!kvm_x86_ops->update_cr8_intercept)
7600                 return;
7601
7602         if (!lapic_in_kernel(vcpu))
7603                 return;
7604
7605         if (vcpu->arch.apicv_active)
7606                 return;
7607
7608         if (!vcpu->arch.apic->vapic_addr)
7609                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7610         else
7611                 max_irr = -1;
7612
7613         if (max_irr != -1)
7614                 max_irr >>= 4;
7615
7616         tpr = kvm_lapic_get_cr8(vcpu);
7617
7618         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7619 }
7620
7621 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7622 {
7623         int r;
7624
7625         /* try to reinject previous events if any */
7626
7627         if (vcpu->arch.exception.injected)
7628                 kvm_x86_ops->queue_exception(vcpu);
7629         /*
7630          * Do not inject an NMI or interrupt if there is a pending
7631          * exception.  Exceptions and interrupts are recognized at
7632          * instruction boundaries, i.e. the start of an instruction.
7633          * Trap-like exceptions, e.g. #DB, have higher priority than
7634          * NMIs and interrupts, i.e. traps are recognized before an
7635          * NMI/interrupt that's pending on the same instruction.
7636          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7637          * priority, but are only generated (pended) during instruction
7638          * execution, i.e. a pending fault-like exception means the
7639          * fault occurred on the *previous* instruction and must be
7640          * serviced prior to recognizing any new events in order to
7641          * fully complete the previous instruction.
7642          */
7643         else if (!vcpu->arch.exception.pending) {
7644                 if (vcpu->arch.nmi_injected)
7645                         kvm_x86_ops->set_nmi(vcpu);
7646                 else if (vcpu->arch.interrupt.injected)
7647                         kvm_x86_ops->set_irq(vcpu);
7648         }
7649
7650         /*
7651          * Call check_nested_events() even if we reinjected a previous event
7652          * in order for caller to determine if it should require immediate-exit
7653          * from L2 to L1 due to pending L1 events which require exit
7654          * from L2 to L1.
7655          */
7656         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7657                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7658                 if (r != 0)
7659                         return r;
7660         }
7661
7662         /* try to inject new event if pending */
7663         if (vcpu->arch.exception.pending) {
7664                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7665                                         vcpu->arch.exception.has_error_code,
7666                                         vcpu->arch.exception.error_code);
7667
7668                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7669                 vcpu->arch.exception.pending = false;
7670                 vcpu->arch.exception.injected = true;
7671
7672                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7673                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7674                                              X86_EFLAGS_RF);
7675
7676                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7677                         /*
7678                          * This code assumes that nSVM doesn't use
7679                          * check_nested_events(). If it does, the
7680                          * DR6/DR7 changes should happen before L1
7681                          * gets a #VMEXIT for an intercepted #DB in
7682                          * L2.  (Under VMX, on the other hand, the
7683                          * DR6/DR7 changes should not happen in the
7684                          * event of a VM-exit to L1 for an intercepted
7685                          * #DB in L2.)
7686                          */
7687                         kvm_deliver_exception_payload(vcpu);
7688                         if (vcpu->arch.dr7 & DR7_GD) {
7689                                 vcpu->arch.dr7 &= ~DR7_GD;
7690                                 kvm_update_dr7(vcpu);
7691                         }
7692                 }
7693
7694                 kvm_x86_ops->queue_exception(vcpu);
7695         }
7696
7697         /* Don't consider new event if we re-injected an event */
7698         if (kvm_event_needs_reinjection(vcpu))
7699                 return 0;
7700
7701         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7702             kvm_x86_ops->smi_allowed(vcpu)) {
7703                 vcpu->arch.smi_pending = false;
7704                 ++vcpu->arch.smi_count;
7705                 enter_smm(vcpu);
7706         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7707                 --vcpu->arch.nmi_pending;
7708                 vcpu->arch.nmi_injected = true;
7709                 kvm_x86_ops->set_nmi(vcpu);
7710         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7711                 /*
7712                  * Because interrupts can be injected asynchronously, we are
7713                  * calling check_nested_events again here to avoid a race condition.
7714                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7715                  * proposal and current concerns.  Perhaps we should be setting
7716                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7717                  */
7718                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7719                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7720                         if (r != 0)
7721                                 return r;
7722                 }
7723                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7724                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7725                                             false);
7726                         kvm_x86_ops->set_irq(vcpu);
7727                 }
7728         }
7729
7730         return 0;
7731 }
7732
7733 static void process_nmi(struct kvm_vcpu *vcpu)
7734 {
7735         unsigned limit = 2;
7736
7737         /*
7738          * x86 is limited to one NMI running, and one NMI pending after it.
7739          * If an NMI is already in progress, limit further NMIs to just one.
7740          * Otherwise, allow two (and we'll inject the first one immediately).
7741          */
7742         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7743                 limit = 1;
7744
7745         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7746         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7747         kvm_make_request(KVM_REQ_EVENT, vcpu);
7748 }
7749
7750 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7751 {
7752         u32 flags = 0;
7753         flags |= seg->g       << 23;
7754         flags |= seg->db      << 22;
7755         flags |= seg->l       << 21;
7756         flags |= seg->avl     << 20;
7757         flags |= seg->present << 15;
7758         flags |= seg->dpl     << 13;
7759         flags |= seg->s       << 12;
7760         flags |= seg->type    << 8;
7761         return flags;
7762 }
7763
7764 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7765 {
7766         struct kvm_segment seg;
7767         int offset;
7768
7769         kvm_get_segment(vcpu, &seg, n);
7770         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7771
7772         if (n < 3)
7773                 offset = 0x7f84 + n * 12;
7774         else
7775                 offset = 0x7f2c + (n - 3) * 12;
7776
7777         put_smstate(u32, buf, offset + 8, seg.base);
7778         put_smstate(u32, buf, offset + 4, seg.limit);
7779         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7780 }
7781
7782 #ifdef CONFIG_X86_64
7783 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7784 {
7785         struct kvm_segment seg;
7786         int offset;
7787         u16 flags;
7788
7789         kvm_get_segment(vcpu, &seg, n);
7790         offset = 0x7e00 + n * 16;
7791
7792         flags = enter_smm_get_segment_flags(&seg) >> 8;
7793         put_smstate(u16, buf, offset, seg.selector);
7794         put_smstate(u16, buf, offset + 2, flags);
7795         put_smstate(u32, buf, offset + 4, seg.limit);
7796         put_smstate(u64, buf, offset + 8, seg.base);
7797 }
7798 #endif
7799
7800 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7801 {
7802         struct desc_ptr dt;
7803         struct kvm_segment seg;
7804         unsigned long val;
7805         int i;
7806
7807         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7808         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7809         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7810         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7811
7812         for (i = 0; i < 8; i++)
7813                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7814
7815         kvm_get_dr(vcpu, 6, &val);
7816         put_smstate(u32, buf, 0x7fcc, (u32)val);
7817         kvm_get_dr(vcpu, 7, &val);
7818         put_smstate(u32, buf, 0x7fc8, (u32)val);
7819
7820         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7821         put_smstate(u32, buf, 0x7fc4, seg.selector);
7822         put_smstate(u32, buf, 0x7f64, seg.base);
7823         put_smstate(u32, buf, 0x7f60, seg.limit);
7824         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7825
7826         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7827         put_smstate(u32, buf, 0x7fc0, seg.selector);
7828         put_smstate(u32, buf, 0x7f80, seg.base);
7829         put_smstate(u32, buf, 0x7f7c, seg.limit);
7830         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7831
7832         kvm_x86_ops->get_gdt(vcpu, &dt);
7833         put_smstate(u32, buf, 0x7f74, dt.address);
7834         put_smstate(u32, buf, 0x7f70, dt.size);
7835
7836         kvm_x86_ops->get_idt(vcpu, &dt);
7837         put_smstate(u32, buf, 0x7f58, dt.address);
7838         put_smstate(u32, buf, 0x7f54, dt.size);
7839
7840         for (i = 0; i < 6; i++)
7841                 enter_smm_save_seg_32(vcpu, buf, i);
7842
7843         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7844
7845         /* revision id */
7846         put_smstate(u32, buf, 0x7efc, 0x00020000);
7847         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7848 }
7849
7850 #ifdef CONFIG_X86_64
7851 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7852 {
7853         struct desc_ptr dt;
7854         struct kvm_segment seg;
7855         unsigned long val;
7856         int i;
7857
7858         for (i = 0; i < 16; i++)
7859                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7860
7861         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7862         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7863
7864         kvm_get_dr(vcpu, 6, &val);
7865         put_smstate(u64, buf, 0x7f68, val);
7866         kvm_get_dr(vcpu, 7, &val);
7867         put_smstate(u64, buf, 0x7f60, val);
7868
7869         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7870         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7871         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7872
7873         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7874
7875         /* revision id */
7876         put_smstate(u32, buf, 0x7efc, 0x00020064);
7877
7878         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7879
7880         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7881         put_smstate(u16, buf, 0x7e90, seg.selector);
7882         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7883         put_smstate(u32, buf, 0x7e94, seg.limit);
7884         put_smstate(u64, buf, 0x7e98, seg.base);
7885
7886         kvm_x86_ops->get_idt(vcpu, &dt);
7887         put_smstate(u32, buf, 0x7e84, dt.size);
7888         put_smstate(u64, buf, 0x7e88, dt.address);
7889
7890         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7891         put_smstate(u16, buf, 0x7e70, seg.selector);
7892         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7893         put_smstate(u32, buf, 0x7e74, seg.limit);
7894         put_smstate(u64, buf, 0x7e78, seg.base);
7895
7896         kvm_x86_ops->get_gdt(vcpu, &dt);
7897         put_smstate(u32, buf, 0x7e64, dt.size);
7898         put_smstate(u64, buf, 0x7e68, dt.address);
7899
7900         for (i = 0; i < 6; i++)
7901                 enter_smm_save_seg_64(vcpu, buf, i);
7902 }
7903 #endif
7904
7905 static void enter_smm(struct kvm_vcpu *vcpu)
7906 {
7907         struct kvm_segment cs, ds;
7908         struct desc_ptr dt;
7909         char buf[512];
7910         u32 cr0;
7911
7912         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7913         memset(buf, 0, 512);
7914 #ifdef CONFIG_X86_64
7915         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7916                 enter_smm_save_state_64(vcpu, buf);
7917         else
7918 #endif
7919                 enter_smm_save_state_32(vcpu, buf);
7920
7921         /*
7922          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7923          * vCPU state (e.g. leave guest mode) after we've saved the state into
7924          * the SMM state-save area.
7925          */
7926         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7927
7928         vcpu->arch.hflags |= HF_SMM_MASK;
7929         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7930
7931         if (kvm_x86_ops->get_nmi_mask(vcpu))
7932                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7933         else
7934                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7935
7936         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7937         kvm_rip_write(vcpu, 0x8000);
7938
7939         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7940         kvm_x86_ops->set_cr0(vcpu, cr0);
7941         vcpu->arch.cr0 = cr0;
7942
7943         kvm_x86_ops->set_cr4(vcpu, 0);
7944
7945         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7946         dt.address = dt.size = 0;
7947         kvm_x86_ops->set_idt(vcpu, &dt);
7948
7949         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7950
7951         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7952         cs.base = vcpu->arch.smbase;
7953
7954         ds.selector = 0;
7955         ds.base = 0;
7956
7957         cs.limit    = ds.limit = 0xffffffff;
7958         cs.type     = ds.type = 0x3;
7959         cs.dpl      = ds.dpl = 0;
7960         cs.db       = ds.db = 0;
7961         cs.s        = ds.s = 1;
7962         cs.l        = ds.l = 0;
7963         cs.g        = ds.g = 1;
7964         cs.avl      = ds.avl = 0;
7965         cs.present  = ds.present = 1;
7966         cs.unusable = ds.unusable = 0;
7967         cs.padding  = ds.padding = 0;
7968
7969         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7970         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7971         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7972         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7973         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7974         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7975
7976 #ifdef CONFIG_X86_64
7977         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7978                 kvm_x86_ops->set_efer(vcpu, 0);
7979 #endif
7980
7981         kvm_update_cpuid(vcpu);
7982         kvm_mmu_reset_context(vcpu);
7983 }
7984
7985 static void process_smi(struct kvm_vcpu *vcpu)
7986 {
7987         vcpu->arch.smi_pending = true;
7988         kvm_make_request(KVM_REQ_EVENT, vcpu);
7989 }
7990
7991 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7992                                        unsigned long *vcpu_bitmap)
7993 {
7994         cpumask_var_t cpus;
7995
7996         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7997
7998         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7999                                     vcpu_bitmap, cpus);
8000
8001         free_cpumask_var(cpus);
8002 }
8003
8004 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8005 {
8006         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8007 }
8008
8009 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8010 {
8011         if (!lapic_in_kernel(vcpu))
8012                 return;
8013
8014         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8015         kvm_apic_update_apicv(vcpu);
8016         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8019
8020 /*
8021  * NOTE: Do not hold any lock prior to calling this.
8022  *
8023  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8024  * locked, because it calls __x86_set_memory_region() which does
8025  * synchronize_srcu(&kvm->srcu).
8026  */
8027 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8028 {
8029         if (!kvm_x86_ops->check_apicv_inhibit_reasons ||
8030             !kvm_x86_ops->check_apicv_inhibit_reasons(bit))
8031                 return;
8032
8033         if (activate) {
8034                 if (!test_and_clear_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8035                     !kvm_apicv_activated(kvm))
8036                         return;
8037         } else {
8038                 if (test_and_set_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8039                     kvm_apicv_activated(kvm))
8040                         return;
8041         }
8042
8043         trace_kvm_apicv_update_request(activate, bit);
8044         if (kvm_x86_ops->pre_update_apicv_exec_ctrl)
8045                 kvm_x86_ops->pre_update_apicv_exec_ctrl(kvm, activate);
8046         kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8047 }
8048 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8049
8050 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8051 {
8052         if (!kvm_apic_present(vcpu))
8053                 return;
8054
8055         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8056
8057         if (irqchip_split(vcpu->kvm))
8058                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8059         else {
8060                 if (vcpu->arch.apicv_active)
8061                         kvm_x86_ops->sync_pir_to_irr(vcpu);
8062                 if (ioapic_in_kernel(vcpu->kvm))
8063                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8064         }
8065
8066         if (is_guest_mode(vcpu))
8067                 vcpu->arch.load_eoi_exitmap_pending = true;
8068         else
8069                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8070 }
8071
8072 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8073 {
8074         u64 eoi_exit_bitmap[4];
8075
8076         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8077                 return;
8078
8079         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8080                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8081         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8082 }
8083
8084 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8085                 unsigned long start, unsigned long end,
8086                 bool blockable)
8087 {
8088         unsigned long apic_address;
8089
8090         /*
8091          * The physical address of apic access page is stored in the VMCS.
8092          * Update it when it becomes invalid.
8093          */
8094         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8095         if (start <= apic_address && apic_address < end)
8096                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8097
8098         return 0;
8099 }
8100
8101 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8102 {
8103         struct page *page = NULL;
8104
8105         if (!lapic_in_kernel(vcpu))
8106                 return;
8107
8108         if (!kvm_x86_ops->set_apic_access_page_addr)
8109                 return;
8110
8111         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8112         if (is_error_page(page))
8113                 return;
8114         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8115
8116         /*
8117          * Do not pin apic access page in memory, the MMU notifier
8118          * will call us again if it is migrated or swapped out.
8119          */
8120         put_page(page);
8121 }
8122
8123 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8124 {
8125         smp_send_reschedule(vcpu->cpu);
8126 }
8127 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8128
8129 /*
8130  * Returns 1 to let vcpu_run() continue the guest execution loop without
8131  * exiting to the userspace.  Otherwise, the value will be returned to the
8132  * userspace.
8133  */
8134 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8135 {
8136         int r;
8137         bool req_int_win =
8138                 dm_request_for_irq_injection(vcpu) &&
8139                 kvm_cpu_accept_dm_intr(vcpu);
8140         enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8141
8142         bool req_immediate_exit = false;
8143
8144         if (kvm_request_pending(vcpu)) {
8145                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8146                         if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8147                                 r = 0;
8148                                 goto out;
8149                         }
8150                 }
8151                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8152                         kvm_mmu_unload(vcpu);
8153                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8154                         __kvm_migrate_timers(vcpu);
8155                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8156                         kvm_gen_update_masterclock(vcpu->kvm);
8157                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8158                         kvm_gen_kvmclock_update(vcpu);
8159                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8160                         r = kvm_guest_time_update(vcpu);
8161                         if (unlikely(r))
8162                                 goto out;
8163                 }
8164                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8165                         kvm_mmu_sync_roots(vcpu);
8166                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8167                         kvm_mmu_load_cr3(vcpu);
8168                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8169                         kvm_vcpu_flush_tlb(vcpu, true);
8170                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8171                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8172                         r = 0;
8173                         goto out;
8174                 }
8175                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8176                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8177                         vcpu->mmio_needed = 0;
8178                         r = 0;
8179                         goto out;
8180                 }
8181                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8182                         /* Page is swapped out. Do synthetic halt */
8183                         vcpu->arch.apf.halted = true;
8184                         r = 1;
8185                         goto out;
8186                 }
8187                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8188                         record_steal_time(vcpu);
8189                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8190                         process_smi(vcpu);
8191                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8192                         process_nmi(vcpu);
8193                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8194                         kvm_pmu_handle_event(vcpu);
8195                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8196                         kvm_pmu_deliver_pmi(vcpu);
8197                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8198                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8199                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8200                                      vcpu->arch.ioapic_handled_vectors)) {
8201                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8202                                 vcpu->run->eoi.vector =
8203                                                 vcpu->arch.pending_ioapic_eoi;
8204                                 r = 0;
8205                                 goto out;
8206                         }
8207                 }
8208                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8209                         vcpu_scan_ioapic(vcpu);
8210                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8211                         vcpu_load_eoi_exitmap(vcpu);
8212                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8213                         kvm_vcpu_reload_apic_access_page(vcpu);
8214                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8215                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8216                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8217                         r = 0;
8218                         goto out;
8219                 }
8220                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8221                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8222                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8223                         r = 0;
8224                         goto out;
8225                 }
8226                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8227                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8228                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8229                         r = 0;
8230                         goto out;
8231                 }
8232
8233                 /*
8234                  * KVM_REQ_HV_STIMER has to be processed after
8235                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8236                  * depend on the guest clock being up-to-date
8237                  */
8238                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8239                         kvm_hv_process_stimers(vcpu);
8240                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8241                         kvm_vcpu_update_apicv(vcpu);
8242         }
8243
8244         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8245                 ++vcpu->stat.req_event;
8246                 kvm_apic_accept_events(vcpu);
8247                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8248                         r = 1;
8249                         goto out;
8250                 }
8251
8252                 if (inject_pending_event(vcpu, req_int_win) != 0)
8253                         req_immediate_exit = true;
8254                 else {
8255                         /* Enable SMI/NMI/IRQ window open exits if needed.
8256                          *
8257                          * SMIs have three cases:
8258                          * 1) They can be nested, and then there is nothing to
8259                          *    do here because RSM will cause a vmexit anyway.
8260                          * 2) There is an ISA-specific reason why SMI cannot be
8261                          *    injected, and the moment when this changes can be
8262                          *    intercepted.
8263                          * 3) Or the SMI can be pending because
8264                          *    inject_pending_event has completed the injection
8265                          *    of an IRQ or NMI from the previous vmexit, and
8266                          *    then we request an immediate exit to inject the
8267                          *    SMI.
8268                          */
8269                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8270                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8271                                         req_immediate_exit = true;
8272                         if (vcpu->arch.nmi_pending)
8273                                 kvm_x86_ops->enable_nmi_window(vcpu);
8274                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8275                                 kvm_x86_ops->enable_irq_window(vcpu);
8276                         WARN_ON(vcpu->arch.exception.pending);
8277                 }
8278
8279                 if (kvm_lapic_enabled(vcpu)) {
8280                         update_cr8_intercept(vcpu);
8281                         kvm_lapic_sync_to_vapic(vcpu);
8282                 }
8283         }
8284
8285         r = kvm_mmu_reload(vcpu);
8286         if (unlikely(r)) {
8287                 goto cancel_injection;
8288         }
8289
8290         preempt_disable();
8291
8292         kvm_x86_ops->prepare_guest_switch(vcpu);
8293
8294         /*
8295          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8296          * IPI are then delayed after guest entry, which ensures that they
8297          * result in virtual interrupt delivery.
8298          */
8299         local_irq_disable();
8300         vcpu->mode = IN_GUEST_MODE;
8301
8302         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8303
8304         /*
8305          * 1) We should set ->mode before checking ->requests.  Please see
8306          * the comment in kvm_vcpu_exiting_guest_mode().
8307          *
8308          * 2) For APICv, we should set ->mode before checking PID.ON. This
8309          * pairs with the memory barrier implicit in pi_test_and_set_on
8310          * (see vmx_deliver_posted_interrupt).
8311          *
8312          * 3) This also orders the write to mode from any reads to the page
8313          * tables done while the VCPU is running.  Please see the comment
8314          * in kvm_flush_remote_tlbs.
8315          */
8316         smp_mb__after_srcu_read_unlock();
8317
8318         /*
8319          * This handles the case where a posted interrupt was
8320          * notified with kvm_vcpu_kick.
8321          */
8322         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8323                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8324
8325         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8326             || need_resched() || signal_pending(current)) {
8327                 vcpu->mode = OUTSIDE_GUEST_MODE;
8328                 smp_wmb();
8329                 local_irq_enable();
8330                 preempt_enable();
8331                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8332                 r = 1;
8333                 goto cancel_injection;
8334         }
8335
8336         if (req_immediate_exit) {
8337                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8338                 kvm_x86_ops->request_immediate_exit(vcpu);
8339         }
8340
8341         trace_kvm_entry(vcpu->vcpu_id);
8342         guest_enter_irqoff();
8343
8344         fpregs_assert_state_consistent();
8345         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8346                 switch_fpu_return();
8347
8348         if (unlikely(vcpu->arch.switch_db_regs)) {
8349                 set_debugreg(0, 7);
8350                 set_debugreg(vcpu->arch.eff_db[0], 0);
8351                 set_debugreg(vcpu->arch.eff_db[1], 1);
8352                 set_debugreg(vcpu->arch.eff_db[2], 2);
8353                 set_debugreg(vcpu->arch.eff_db[3], 3);
8354                 set_debugreg(vcpu->arch.dr6, 6);
8355                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8356         }
8357
8358         kvm_x86_ops->run(vcpu);
8359
8360         /*
8361          * Do this here before restoring debug registers on the host.  And
8362          * since we do this before handling the vmexit, a DR access vmexit
8363          * can (a) read the correct value of the debug registers, (b) set
8364          * KVM_DEBUGREG_WONT_EXIT again.
8365          */
8366         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8367                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8368                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8369                 kvm_update_dr0123(vcpu);
8370                 kvm_update_dr6(vcpu);
8371                 kvm_update_dr7(vcpu);
8372                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8373         }
8374
8375         /*
8376          * If the guest has used debug registers, at least dr7
8377          * will be disabled while returning to the host.
8378          * If we don't have active breakpoints in the host, we don't
8379          * care about the messed up debug address registers. But if
8380          * we have some of them active, restore the old state.
8381          */
8382         if (hw_breakpoint_active())
8383                 hw_breakpoint_restore();
8384
8385         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8386
8387         vcpu->mode = OUTSIDE_GUEST_MODE;
8388         smp_wmb();
8389
8390         kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8391
8392         /*
8393          * Consume any pending interrupts, including the possible source of
8394          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8395          * An instruction is required after local_irq_enable() to fully unblock
8396          * interrupts on processors that implement an interrupt shadow, the
8397          * stat.exits increment will do nicely.
8398          */
8399         kvm_before_interrupt(vcpu);
8400         local_irq_enable();
8401         ++vcpu->stat.exits;
8402         local_irq_disable();
8403         kvm_after_interrupt(vcpu);
8404
8405         guest_exit_irqoff();
8406         if (lapic_in_kernel(vcpu)) {
8407                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8408                 if (delta != S64_MIN) {
8409                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8410                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8411                 }
8412         }
8413
8414         local_irq_enable();
8415         preempt_enable();
8416
8417         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8418
8419         /*
8420          * Profile KVM exit RIPs:
8421          */
8422         if (unlikely(prof_on == KVM_PROFILING)) {
8423                 unsigned long rip = kvm_rip_read(vcpu);
8424                 profile_hit(KVM_PROFILING, (void *)rip);
8425         }
8426
8427         if (unlikely(vcpu->arch.tsc_always_catchup))
8428                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8429
8430         if (vcpu->arch.apic_attention)
8431                 kvm_lapic_sync_from_vapic(vcpu);
8432
8433         vcpu->arch.gpa_available = false;
8434         r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8435         return r;
8436
8437 cancel_injection:
8438         kvm_x86_ops->cancel_injection(vcpu);
8439         if (unlikely(vcpu->arch.apic_attention))
8440                 kvm_lapic_sync_from_vapic(vcpu);
8441 out:
8442         return r;
8443 }
8444
8445 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8446 {
8447         if (!kvm_arch_vcpu_runnable(vcpu) &&
8448             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8449                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8450                 kvm_vcpu_block(vcpu);
8451                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8452
8453                 if (kvm_x86_ops->post_block)
8454                         kvm_x86_ops->post_block(vcpu);
8455
8456                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8457                         return 1;
8458         }
8459
8460         kvm_apic_accept_events(vcpu);
8461         switch(vcpu->arch.mp_state) {
8462         case KVM_MP_STATE_HALTED:
8463                 vcpu->arch.pv.pv_unhalted = false;
8464                 vcpu->arch.mp_state =
8465                         KVM_MP_STATE_RUNNABLE;
8466                 /* fall through */
8467         case KVM_MP_STATE_RUNNABLE:
8468                 vcpu->arch.apf.halted = false;
8469                 break;
8470         case KVM_MP_STATE_INIT_RECEIVED:
8471                 break;
8472         default:
8473                 return -EINTR;
8474                 break;
8475         }
8476         return 1;
8477 }
8478
8479 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8480 {
8481         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8482                 kvm_x86_ops->check_nested_events(vcpu, false);
8483
8484         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8485                 !vcpu->arch.apf.halted);
8486 }
8487
8488 static int vcpu_run(struct kvm_vcpu *vcpu)
8489 {
8490         int r;
8491         struct kvm *kvm = vcpu->kvm;
8492
8493         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8494         vcpu->arch.l1tf_flush_l1d = true;
8495
8496         for (;;) {
8497                 if (kvm_vcpu_running(vcpu)) {
8498                         r = vcpu_enter_guest(vcpu);
8499                 } else {
8500                         r = vcpu_block(kvm, vcpu);
8501                 }
8502
8503                 if (r <= 0)
8504                         break;
8505
8506                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8507                 if (kvm_cpu_has_pending_timer(vcpu))
8508                         kvm_inject_pending_timer_irqs(vcpu);
8509
8510                 if (dm_request_for_irq_injection(vcpu) &&
8511                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8512                         r = 0;
8513                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8514                         ++vcpu->stat.request_irq_exits;
8515                         break;
8516                 }
8517
8518                 kvm_check_async_pf_completion(vcpu);
8519
8520                 if (signal_pending(current)) {
8521                         r = -EINTR;
8522                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8523                         ++vcpu->stat.signal_exits;
8524                         break;
8525                 }
8526                 if (need_resched()) {
8527                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8528                         cond_resched();
8529                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8530                 }
8531         }
8532
8533         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8534
8535         return r;
8536 }
8537
8538 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8539 {
8540         int r;
8541
8542         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8543         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8544         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8545         return r;
8546 }
8547
8548 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8549 {
8550         BUG_ON(!vcpu->arch.pio.count);
8551
8552         return complete_emulated_io(vcpu);
8553 }
8554
8555 /*
8556  * Implements the following, as a state machine:
8557  *
8558  * read:
8559  *   for each fragment
8560  *     for each mmio piece in the fragment
8561  *       write gpa, len
8562  *       exit
8563  *       copy data
8564  *   execute insn
8565  *
8566  * write:
8567  *   for each fragment
8568  *     for each mmio piece in the fragment
8569  *       write gpa, len
8570  *       copy data
8571  *       exit
8572  */
8573 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8574 {
8575         struct kvm_run *run = vcpu->run;
8576         struct kvm_mmio_fragment *frag;
8577         unsigned len;
8578
8579         BUG_ON(!vcpu->mmio_needed);
8580
8581         /* Complete previous fragment */
8582         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8583         len = min(8u, frag->len);
8584         if (!vcpu->mmio_is_write)
8585                 memcpy(frag->data, run->mmio.data, len);
8586
8587         if (frag->len <= 8) {
8588                 /* Switch to the next fragment. */
8589                 frag++;
8590                 vcpu->mmio_cur_fragment++;
8591         } else {
8592                 /* Go forward to the next mmio piece. */
8593                 frag->data += len;
8594                 frag->gpa += len;
8595                 frag->len -= len;
8596         }
8597
8598         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8599                 vcpu->mmio_needed = 0;
8600
8601                 /* FIXME: return into emulator if single-stepping.  */
8602                 if (vcpu->mmio_is_write)
8603                         return 1;
8604                 vcpu->mmio_read_completed = 1;
8605                 return complete_emulated_io(vcpu);
8606         }
8607
8608         run->exit_reason = KVM_EXIT_MMIO;
8609         run->mmio.phys_addr = frag->gpa;
8610         if (vcpu->mmio_is_write)
8611                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8612         run->mmio.len = min(8u, frag->len);
8613         run->mmio.is_write = vcpu->mmio_is_write;
8614         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8615         return 0;
8616 }
8617
8618 static void kvm_save_current_fpu(struct fpu *fpu)
8619 {
8620         /*
8621          * If the target FPU state is not resident in the CPU registers, just
8622          * memcpy() from current, else save CPU state directly to the target.
8623          */
8624         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8625                 memcpy(&fpu->state, &current->thread.fpu.state,
8626                        fpu_kernel_xstate_size);
8627         else
8628                 copy_fpregs_to_fpstate(fpu);
8629 }
8630
8631 /* Swap (qemu) user FPU context for the guest FPU context. */
8632 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8633 {
8634         fpregs_lock();
8635
8636         kvm_save_current_fpu(vcpu->arch.user_fpu);
8637
8638         /* PKRU is separately restored in kvm_x86_ops->run.  */
8639         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8640                                 ~XFEATURE_MASK_PKRU);
8641
8642         fpregs_mark_activate();
8643         fpregs_unlock();
8644
8645         trace_kvm_fpu(1);
8646 }
8647
8648 /* When vcpu_run ends, restore user space FPU context. */
8649 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8650 {
8651         fpregs_lock();
8652
8653         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8654
8655         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8656
8657         fpregs_mark_activate();
8658         fpregs_unlock();
8659
8660         ++vcpu->stat.fpu_reload;
8661         trace_kvm_fpu(0);
8662 }
8663
8664 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8665 {
8666         int r;
8667
8668         vcpu_load(vcpu);
8669         kvm_sigset_activate(vcpu);
8670         kvm_load_guest_fpu(vcpu);
8671
8672         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8673                 if (kvm_run->immediate_exit) {
8674                         r = -EINTR;
8675                         goto out;
8676                 }
8677                 kvm_vcpu_block(vcpu);
8678                 kvm_apic_accept_events(vcpu);
8679                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8680                 r = -EAGAIN;
8681                 if (signal_pending(current)) {
8682                         r = -EINTR;
8683                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8684                         ++vcpu->stat.signal_exits;
8685                 }
8686                 goto out;
8687         }
8688
8689         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8690                 r = -EINVAL;
8691                 goto out;
8692         }
8693
8694         if (vcpu->run->kvm_dirty_regs) {
8695                 r = sync_regs(vcpu);
8696                 if (r != 0)
8697                         goto out;
8698         }
8699
8700         /* re-sync apic's tpr */
8701         if (!lapic_in_kernel(vcpu)) {
8702                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8703                         r = -EINVAL;
8704                         goto out;
8705                 }
8706         }
8707
8708         if (unlikely(vcpu->arch.complete_userspace_io)) {
8709                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8710                 vcpu->arch.complete_userspace_io = NULL;
8711                 r = cui(vcpu);
8712                 if (r <= 0)
8713                         goto out;
8714         } else
8715                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8716
8717         if (kvm_run->immediate_exit)
8718                 r = -EINTR;
8719         else
8720                 r = vcpu_run(vcpu);
8721
8722 out:
8723         kvm_put_guest_fpu(vcpu);
8724         if (vcpu->run->kvm_valid_regs)
8725                 store_regs(vcpu);
8726         post_kvm_run_save(vcpu);
8727         kvm_sigset_deactivate(vcpu);
8728
8729         vcpu_put(vcpu);
8730         return r;
8731 }
8732
8733 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8734 {
8735         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8736                 /*
8737                  * We are here if userspace calls get_regs() in the middle of
8738                  * instruction emulation. Registers state needs to be copied
8739                  * back from emulation context to vcpu. Userspace shouldn't do
8740                  * that usually, but some bad designed PV devices (vmware
8741                  * backdoor interface) need this to work
8742                  */
8743                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8744                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8745         }
8746         regs->rax = kvm_rax_read(vcpu);
8747         regs->rbx = kvm_rbx_read(vcpu);
8748         regs->rcx = kvm_rcx_read(vcpu);
8749         regs->rdx = kvm_rdx_read(vcpu);
8750         regs->rsi = kvm_rsi_read(vcpu);
8751         regs->rdi = kvm_rdi_read(vcpu);
8752         regs->rsp = kvm_rsp_read(vcpu);
8753         regs->rbp = kvm_rbp_read(vcpu);
8754 #ifdef CONFIG_X86_64
8755         regs->r8 = kvm_r8_read(vcpu);
8756         regs->r9 = kvm_r9_read(vcpu);
8757         regs->r10 = kvm_r10_read(vcpu);
8758         regs->r11 = kvm_r11_read(vcpu);
8759         regs->r12 = kvm_r12_read(vcpu);
8760         regs->r13 = kvm_r13_read(vcpu);
8761         regs->r14 = kvm_r14_read(vcpu);
8762         regs->r15 = kvm_r15_read(vcpu);
8763 #endif
8764
8765         regs->rip = kvm_rip_read(vcpu);
8766         regs->rflags = kvm_get_rflags(vcpu);
8767 }
8768
8769 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8770 {
8771         vcpu_load(vcpu);
8772         __get_regs(vcpu, regs);
8773         vcpu_put(vcpu);
8774         return 0;
8775 }
8776
8777 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8778 {
8779         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8780         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8781
8782         kvm_rax_write(vcpu, regs->rax);
8783         kvm_rbx_write(vcpu, regs->rbx);
8784         kvm_rcx_write(vcpu, regs->rcx);
8785         kvm_rdx_write(vcpu, regs->rdx);
8786         kvm_rsi_write(vcpu, regs->rsi);
8787         kvm_rdi_write(vcpu, regs->rdi);
8788         kvm_rsp_write(vcpu, regs->rsp);
8789         kvm_rbp_write(vcpu, regs->rbp);
8790 #ifdef CONFIG_X86_64
8791         kvm_r8_write(vcpu, regs->r8);
8792         kvm_r9_write(vcpu, regs->r9);
8793         kvm_r10_write(vcpu, regs->r10);
8794         kvm_r11_write(vcpu, regs->r11);
8795         kvm_r12_write(vcpu, regs->r12);
8796         kvm_r13_write(vcpu, regs->r13);
8797         kvm_r14_write(vcpu, regs->r14);
8798         kvm_r15_write(vcpu, regs->r15);
8799 #endif
8800
8801         kvm_rip_write(vcpu, regs->rip);
8802         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8803
8804         vcpu->arch.exception.pending = false;
8805
8806         kvm_make_request(KVM_REQ_EVENT, vcpu);
8807 }
8808
8809 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8810 {
8811         vcpu_load(vcpu);
8812         __set_regs(vcpu, regs);
8813         vcpu_put(vcpu);
8814         return 0;
8815 }
8816
8817 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8818 {
8819         struct kvm_segment cs;
8820
8821         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8822         *db = cs.db;
8823         *l = cs.l;
8824 }
8825 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8826
8827 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8828 {
8829         struct desc_ptr dt;
8830
8831         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8832         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8833         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8834         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8835         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8836         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8837
8838         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8839         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8840
8841         kvm_x86_ops->get_idt(vcpu, &dt);
8842         sregs->idt.limit = dt.size;
8843         sregs->idt.base = dt.address;
8844         kvm_x86_ops->get_gdt(vcpu, &dt);
8845         sregs->gdt.limit = dt.size;
8846         sregs->gdt.base = dt.address;
8847
8848         sregs->cr0 = kvm_read_cr0(vcpu);
8849         sregs->cr2 = vcpu->arch.cr2;
8850         sregs->cr3 = kvm_read_cr3(vcpu);
8851         sregs->cr4 = kvm_read_cr4(vcpu);
8852         sregs->cr8 = kvm_get_cr8(vcpu);
8853         sregs->efer = vcpu->arch.efer;
8854         sregs->apic_base = kvm_get_apic_base(vcpu);
8855
8856         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8857
8858         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8859                 set_bit(vcpu->arch.interrupt.nr,
8860                         (unsigned long *)sregs->interrupt_bitmap);
8861 }
8862
8863 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8864                                   struct kvm_sregs *sregs)
8865 {
8866         vcpu_load(vcpu);
8867         __get_sregs(vcpu, sregs);
8868         vcpu_put(vcpu);
8869         return 0;
8870 }
8871
8872 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8873                                     struct kvm_mp_state *mp_state)
8874 {
8875         vcpu_load(vcpu);
8876         if (kvm_mpx_supported())
8877                 kvm_load_guest_fpu(vcpu);
8878
8879         kvm_apic_accept_events(vcpu);
8880         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8881                                         vcpu->arch.pv.pv_unhalted)
8882                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8883         else
8884                 mp_state->mp_state = vcpu->arch.mp_state;
8885
8886         if (kvm_mpx_supported())
8887                 kvm_put_guest_fpu(vcpu);
8888         vcpu_put(vcpu);
8889         return 0;
8890 }
8891
8892 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8893                                     struct kvm_mp_state *mp_state)
8894 {
8895         int ret = -EINVAL;
8896
8897         vcpu_load(vcpu);
8898
8899         if (!lapic_in_kernel(vcpu) &&
8900             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8901                 goto out;
8902
8903         /*
8904          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8905          * INIT state; latched init should be reported using
8906          * KVM_SET_VCPU_EVENTS, so reject it here.
8907          */
8908         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8909             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8910              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8911                 goto out;
8912
8913         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8914                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8915                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8916         } else
8917                 vcpu->arch.mp_state = mp_state->mp_state;
8918         kvm_make_request(KVM_REQ_EVENT, vcpu);
8919
8920         ret = 0;
8921 out:
8922         vcpu_put(vcpu);
8923         return ret;
8924 }
8925
8926 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8927                     int reason, bool has_error_code, u32 error_code)
8928 {
8929         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8930         int ret;
8931
8932         init_emulate_ctxt(vcpu);
8933
8934         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8935                                    has_error_code, error_code);
8936         if (ret) {
8937                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8938                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8939                 vcpu->run->internal.ndata = 0;
8940                 return 0;
8941         }
8942
8943         kvm_rip_write(vcpu, ctxt->eip);
8944         kvm_set_rflags(vcpu, ctxt->eflags);
8945         kvm_make_request(KVM_REQ_EVENT, vcpu);
8946         return 1;
8947 }
8948 EXPORT_SYMBOL_GPL(kvm_task_switch);
8949
8950 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8951 {
8952         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8953                 /*
8954                  * When EFER.LME and CR0.PG are set, the processor is in
8955                  * 64-bit mode (though maybe in a 32-bit code segment).
8956                  * CR4.PAE and EFER.LMA must be set.
8957                  */
8958                 if (!(sregs->cr4 & X86_CR4_PAE)
8959                     || !(sregs->efer & EFER_LMA))
8960                         return -EINVAL;
8961         } else {
8962                 /*
8963                  * Not in 64-bit mode: EFER.LMA is clear and the code
8964                  * segment cannot be 64-bit.
8965                  */
8966                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8967                         return -EINVAL;
8968         }
8969
8970         return kvm_valid_cr4(vcpu, sregs->cr4);
8971 }
8972
8973 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8974 {
8975         struct msr_data apic_base_msr;
8976         int mmu_reset_needed = 0;
8977         int cpuid_update_needed = 0;
8978         int pending_vec, max_bits, idx;
8979         struct desc_ptr dt;
8980         int ret = -EINVAL;
8981
8982         if (kvm_valid_sregs(vcpu, sregs))
8983                 goto out;
8984
8985         apic_base_msr.data = sregs->apic_base;
8986         apic_base_msr.host_initiated = true;
8987         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8988                 goto out;
8989
8990         dt.size = sregs->idt.limit;
8991         dt.address = sregs->idt.base;
8992         kvm_x86_ops->set_idt(vcpu, &dt);
8993         dt.size = sregs->gdt.limit;
8994         dt.address = sregs->gdt.base;
8995         kvm_x86_ops->set_gdt(vcpu, &dt);
8996
8997         vcpu->arch.cr2 = sregs->cr2;
8998         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8999         vcpu->arch.cr3 = sregs->cr3;
9000         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9001
9002         kvm_set_cr8(vcpu, sregs->cr8);
9003
9004         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9005         kvm_x86_ops->set_efer(vcpu, sregs->efer);
9006
9007         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9008         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
9009         vcpu->arch.cr0 = sregs->cr0;
9010
9011         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9012         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9013                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9014         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
9015         if (cpuid_update_needed)
9016                 kvm_update_cpuid(vcpu);
9017
9018         idx = srcu_read_lock(&vcpu->kvm->srcu);
9019         if (is_pae_paging(vcpu)) {
9020                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9021                 mmu_reset_needed = 1;
9022         }
9023         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9024
9025         if (mmu_reset_needed)
9026                 kvm_mmu_reset_context(vcpu);
9027
9028         max_bits = KVM_NR_INTERRUPTS;
9029         pending_vec = find_first_bit(
9030                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9031         if (pending_vec < max_bits) {
9032                 kvm_queue_interrupt(vcpu, pending_vec, false);
9033                 pr_debug("Set back pending irq %d\n", pending_vec);
9034         }
9035
9036         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9037         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9038         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9039         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9040         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9041         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9042
9043         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9044         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9045
9046         update_cr8_intercept(vcpu);
9047
9048         /* Older userspace won't unhalt the vcpu on reset. */
9049         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9050             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9051             !is_protmode(vcpu))
9052                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9053
9054         kvm_make_request(KVM_REQ_EVENT, vcpu);
9055
9056         ret = 0;
9057 out:
9058         return ret;
9059 }
9060
9061 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9062                                   struct kvm_sregs *sregs)
9063 {
9064         int ret;
9065
9066         vcpu_load(vcpu);
9067         ret = __set_sregs(vcpu, sregs);
9068         vcpu_put(vcpu);
9069         return ret;
9070 }
9071
9072 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9073                                         struct kvm_guest_debug *dbg)
9074 {
9075         unsigned long rflags;
9076         int i, r;
9077
9078         vcpu_load(vcpu);
9079
9080         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9081                 r = -EBUSY;
9082                 if (vcpu->arch.exception.pending)
9083                         goto out;
9084                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9085                         kvm_queue_exception(vcpu, DB_VECTOR);
9086                 else
9087                         kvm_queue_exception(vcpu, BP_VECTOR);
9088         }
9089
9090         /*
9091          * Read rflags as long as potentially injected trace flags are still
9092          * filtered out.
9093          */
9094         rflags = kvm_get_rflags(vcpu);
9095
9096         vcpu->guest_debug = dbg->control;
9097         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9098                 vcpu->guest_debug = 0;
9099
9100         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9101                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9102                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9103                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9104         } else {
9105                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9106                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9107         }
9108         kvm_update_dr7(vcpu);
9109
9110         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9111                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9112                         get_segment_base(vcpu, VCPU_SREG_CS);
9113
9114         /*
9115          * Trigger an rflags update that will inject or remove the trace
9116          * flags.
9117          */
9118         kvm_set_rflags(vcpu, rflags);
9119
9120         kvm_x86_ops->update_bp_intercept(vcpu);
9121
9122         r = 0;
9123
9124 out:
9125         vcpu_put(vcpu);
9126         return r;
9127 }
9128
9129 /*
9130  * Translate a guest virtual address to a guest physical address.
9131  */
9132 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9133                                     struct kvm_translation *tr)
9134 {
9135         unsigned long vaddr = tr->linear_address;
9136         gpa_t gpa;
9137         int idx;
9138
9139         vcpu_load(vcpu);
9140
9141         idx = srcu_read_lock(&vcpu->kvm->srcu);
9142         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9143         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9144         tr->physical_address = gpa;
9145         tr->valid = gpa != UNMAPPED_GVA;
9146         tr->writeable = 1;
9147         tr->usermode = 0;
9148
9149         vcpu_put(vcpu);
9150         return 0;
9151 }
9152
9153 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9154 {
9155         struct fxregs_state *fxsave;
9156
9157         vcpu_load(vcpu);
9158
9159         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9160         memcpy(fpu->fpr, fxsave->st_space, 128);
9161         fpu->fcw = fxsave->cwd;
9162         fpu->fsw = fxsave->swd;
9163         fpu->ftwx = fxsave->twd;
9164         fpu->last_opcode = fxsave->fop;
9165         fpu->last_ip = fxsave->rip;
9166         fpu->last_dp = fxsave->rdp;
9167         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9168
9169         vcpu_put(vcpu);
9170         return 0;
9171 }
9172
9173 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9174 {
9175         struct fxregs_state *fxsave;
9176
9177         vcpu_load(vcpu);
9178
9179         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9180
9181         memcpy(fxsave->st_space, fpu->fpr, 128);
9182         fxsave->cwd = fpu->fcw;
9183         fxsave->swd = fpu->fsw;
9184         fxsave->twd = fpu->ftwx;
9185         fxsave->fop = fpu->last_opcode;
9186         fxsave->rip = fpu->last_ip;
9187         fxsave->rdp = fpu->last_dp;
9188         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9189
9190         vcpu_put(vcpu);
9191         return 0;
9192 }
9193
9194 static void store_regs(struct kvm_vcpu *vcpu)
9195 {
9196         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9197
9198         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9199                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9200
9201         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9202                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9203
9204         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9205                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9206                                 vcpu, &vcpu->run->s.regs.events);
9207 }
9208
9209 static int sync_regs(struct kvm_vcpu *vcpu)
9210 {
9211         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9212                 return -EINVAL;
9213
9214         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9215                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9216                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9217         }
9218         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9219                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9220                         return -EINVAL;
9221                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9222         }
9223         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9224                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9225                                 vcpu, &vcpu->run->s.regs.events))
9226                         return -EINVAL;
9227                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9228         }
9229
9230         return 0;
9231 }
9232
9233 static void fx_init(struct kvm_vcpu *vcpu)
9234 {
9235         fpstate_init(&vcpu->arch.guest_fpu->state);
9236         if (boot_cpu_has(X86_FEATURE_XSAVES))
9237                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9238                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9239
9240         /*
9241          * Ensure guest xcr0 is valid for loading
9242          */
9243         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9244
9245         vcpu->arch.cr0 |= X86_CR0_ET;
9246 }
9247
9248 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9249 {
9250         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9251                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9252                              "guest TSC will not be reliable\n");
9253
9254         return 0;
9255 }
9256
9257 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9258 {
9259         struct page *page;
9260         int r;
9261
9262         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9263         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9264                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9265         else
9266                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9267
9268         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9269
9270         r = kvm_mmu_create(vcpu);
9271         if (r < 0)
9272                 return r;
9273
9274         if (irqchip_in_kernel(vcpu->kvm)) {
9275                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9276                 if (r < 0)
9277                         goto fail_mmu_destroy;
9278                 if (kvm_apicv_activated(vcpu->kvm))
9279                         vcpu->arch.apicv_active = true;
9280         } else
9281                 static_key_slow_inc(&kvm_no_apic_vcpu);
9282
9283         r = -ENOMEM;
9284
9285         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9286         if (!page)
9287                 goto fail_free_lapic;
9288         vcpu->arch.pio_data = page_address(page);
9289
9290         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9291                                        GFP_KERNEL_ACCOUNT);
9292         if (!vcpu->arch.mce_banks)
9293                 goto fail_free_pio_data;
9294         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9295
9296         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9297                                 GFP_KERNEL_ACCOUNT))
9298                 goto fail_free_mce_banks;
9299
9300         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9301                                                 GFP_KERNEL_ACCOUNT);
9302         if (!vcpu->arch.user_fpu) {
9303                 pr_err("kvm: failed to allocate userspace's fpu\n");
9304                 goto free_wbinvd_dirty_mask;
9305         }
9306
9307         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9308                                                  GFP_KERNEL_ACCOUNT);
9309         if (!vcpu->arch.guest_fpu) {
9310                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9311                 goto free_user_fpu;
9312         }
9313         fx_init(vcpu);
9314
9315         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9316
9317         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9318
9319         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9320
9321         kvm_async_pf_hash_reset(vcpu);
9322         kvm_pmu_init(vcpu);
9323
9324         vcpu->arch.pending_external_vector = -1;
9325         vcpu->arch.preempted_in_kernel = false;
9326
9327         kvm_hv_vcpu_init(vcpu);
9328
9329         r = kvm_x86_ops->vcpu_create(vcpu);
9330         if (r)
9331                 goto free_guest_fpu;
9332
9333         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9334         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9335         kvm_vcpu_mtrr_init(vcpu);
9336         vcpu_load(vcpu);
9337         kvm_vcpu_reset(vcpu, false);
9338         kvm_init_mmu(vcpu, false);
9339         vcpu_put(vcpu);
9340         return 0;
9341
9342 free_guest_fpu:
9343         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9344 free_user_fpu:
9345         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9346 free_wbinvd_dirty_mask:
9347         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9348 fail_free_mce_banks:
9349         kfree(vcpu->arch.mce_banks);
9350 fail_free_pio_data:
9351         free_page((unsigned long)vcpu->arch.pio_data);
9352 fail_free_lapic:
9353         kvm_free_lapic(vcpu);
9354 fail_mmu_destroy:
9355         kvm_mmu_destroy(vcpu);
9356         return r;
9357 }
9358
9359 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9360 {
9361         struct msr_data msr;
9362         struct kvm *kvm = vcpu->kvm;
9363
9364         kvm_hv_vcpu_postcreate(vcpu);
9365
9366         if (mutex_lock_killable(&vcpu->mutex))
9367                 return;
9368         vcpu_load(vcpu);
9369         msr.data = 0x0;
9370         msr.index = MSR_IA32_TSC;
9371         msr.host_initiated = true;
9372         kvm_write_tsc(vcpu, &msr);
9373         vcpu_put(vcpu);
9374
9375         /* poll control enabled by default */
9376         vcpu->arch.msr_kvm_poll_control = 1;
9377
9378         mutex_unlock(&vcpu->mutex);
9379
9380         if (!kvmclock_periodic_sync)
9381                 return;
9382
9383         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9384                                         KVMCLOCK_SYNC_PERIOD);
9385 }
9386
9387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9388 {
9389         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9390         int idx;
9391
9392         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9393
9394         kvmclock_reset(vcpu);
9395
9396         kvm_x86_ops->vcpu_free(vcpu);
9397
9398         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9399         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9400         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9401
9402         kvm_hv_vcpu_uninit(vcpu);
9403         kvm_pmu_destroy(vcpu);
9404         kfree(vcpu->arch.mce_banks);
9405         kvm_free_lapic(vcpu);
9406         idx = srcu_read_lock(&vcpu->kvm->srcu);
9407         kvm_mmu_destroy(vcpu);
9408         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9409         free_page((unsigned long)vcpu->arch.pio_data);
9410         if (!lapic_in_kernel(vcpu))
9411                 static_key_slow_dec(&kvm_no_apic_vcpu);
9412 }
9413
9414 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9415 {
9416         kvm_lapic_reset(vcpu, init_event);
9417
9418         vcpu->arch.hflags = 0;
9419
9420         vcpu->arch.smi_pending = 0;
9421         vcpu->arch.smi_count = 0;
9422         atomic_set(&vcpu->arch.nmi_queued, 0);
9423         vcpu->arch.nmi_pending = 0;
9424         vcpu->arch.nmi_injected = false;
9425         kvm_clear_interrupt_queue(vcpu);
9426         kvm_clear_exception_queue(vcpu);
9427
9428         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9429         kvm_update_dr0123(vcpu);
9430         vcpu->arch.dr6 = DR6_INIT;
9431         kvm_update_dr6(vcpu);
9432         vcpu->arch.dr7 = DR7_FIXED_1;
9433         kvm_update_dr7(vcpu);
9434
9435         vcpu->arch.cr2 = 0;
9436
9437         kvm_make_request(KVM_REQ_EVENT, vcpu);
9438         vcpu->arch.apf.msr_val = 0;
9439         vcpu->arch.st.msr_val = 0;
9440
9441         kvmclock_reset(vcpu);
9442
9443         kvm_clear_async_pf_completion_queue(vcpu);
9444         kvm_async_pf_hash_reset(vcpu);
9445         vcpu->arch.apf.halted = false;
9446
9447         if (kvm_mpx_supported()) {
9448                 void *mpx_state_buffer;
9449
9450                 /*
9451                  * To avoid have the INIT path from kvm_apic_has_events() that be
9452                  * called with loaded FPU and does not let userspace fix the state.
9453                  */
9454                 if (init_event)
9455                         kvm_put_guest_fpu(vcpu);
9456                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9457                                         XFEATURE_BNDREGS);
9458                 if (mpx_state_buffer)
9459                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9460                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9461                                         XFEATURE_BNDCSR);
9462                 if (mpx_state_buffer)
9463                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9464                 if (init_event)
9465                         kvm_load_guest_fpu(vcpu);
9466         }
9467
9468         if (!init_event) {
9469                 kvm_pmu_reset(vcpu);
9470                 vcpu->arch.smbase = 0x30000;
9471
9472                 vcpu->arch.msr_misc_features_enables = 0;
9473
9474                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9475         }
9476
9477         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9478         vcpu->arch.regs_avail = ~0;
9479         vcpu->arch.regs_dirty = ~0;
9480
9481         vcpu->arch.ia32_xss = 0;
9482
9483         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9484 }
9485
9486 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9487 {
9488         struct kvm_segment cs;
9489
9490         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9491         cs.selector = vector << 8;
9492         cs.base = vector << 12;
9493         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9494         kvm_rip_write(vcpu, 0);
9495 }
9496
9497 int kvm_arch_hardware_enable(void)
9498 {
9499         struct kvm *kvm;
9500         struct kvm_vcpu *vcpu;
9501         int i;
9502         int ret;
9503         u64 local_tsc;
9504         u64 max_tsc = 0;
9505         bool stable, backwards_tsc = false;
9506
9507         kvm_shared_msr_cpu_online();
9508         ret = kvm_x86_ops->hardware_enable();
9509         if (ret != 0)
9510                 return ret;
9511
9512         local_tsc = rdtsc();
9513         stable = !kvm_check_tsc_unstable();
9514         list_for_each_entry(kvm, &vm_list, vm_list) {
9515                 kvm_for_each_vcpu(i, vcpu, kvm) {
9516                         if (!stable && vcpu->cpu == smp_processor_id())
9517                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9518                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9519                                 backwards_tsc = true;
9520                                 if (vcpu->arch.last_host_tsc > max_tsc)
9521                                         max_tsc = vcpu->arch.last_host_tsc;
9522                         }
9523                 }
9524         }
9525
9526         /*
9527          * Sometimes, even reliable TSCs go backwards.  This happens on
9528          * platforms that reset TSC during suspend or hibernate actions, but
9529          * maintain synchronization.  We must compensate.  Fortunately, we can
9530          * detect that condition here, which happens early in CPU bringup,
9531          * before any KVM threads can be running.  Unfortunately, we can't
9532          * bring the TSCs fully up to date with real time, as we aren't yet far
9533          * enough into CPU bringup that we know how much real time has actually
9534          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9535          * variables that haven't been updated yet.
9536          *
9537          * So we simply find the maximum observed TSC above, then record the
9538          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9539          * the adjustment will be applied.  Note that we accumulate
9540          * adjustments, in case multiple suspend cycles happen before some VCPU
9541          * gets a chance to run again.  In the event that no KVM threads get a
9542          * chance to run, we will miss the entire elapsed period, as we'll have
9543          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9544          * loose cycle time.  This isn't too big a deal, since the loss will be
9545          * uniform across all VCPUs (not to mention the scenario is extremely
9546          * unlikely). It is possible that a second hibernate recovery happens
9547          * much faster than a first, causing the observed TSC here to be
9548          * smaller; this would require additional padding adjustment, which is
9549          * why we set last_host_tsc to the local tsc observed here.
9550          *
9551          * N.B. - this code below runs only on platforms with reliable TSC,
9552          * as that is the only way backwards_tsc is set above.  Also note
9553          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9554          * have the same delta_cyc adjustment applied if backwards_tsc
9555          * is detected.  Note further, this adjustment is only done once,
9556          * as we reset last_host_tsc on all VCPUs to stop this from being
9557          * called multiple times (one for each physical CPU bringup).
9558          *
9559          * Platforms with unreliable TSCs don't have to deal with this, they
9560          * will be compensated by the logic in vcpu_load, which sets the TSC to
9561          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9562          * guarantee that they stay in perfect synchronization.
9563          */
9564         if (backwards_tsc) {
9565                 u64 delta_cyc = max_tsc - local_tsc;
9566                 list_for_each_entry(kvm, &vm_list, vm_list) {
9567                         kvm->arch.backwards_tsc_observed = true;
9568                         kvm_for_each_vcpu(i, vcpu, kvm) {
9569                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9570                                 vcpu->arch.last_host_tsc = local_tsc;
9571                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9572                         }
9573
9574                         /*
9575                          * We have to disable TSC offset matching.. if you were
9576                          * booting a VM while issuing an S4 host suspend....
9577                          * you may have some problem.  Solving this issue is
9578                          * left as an exercise to the reader.
9579                          */
9580                         kvm->arch.last_tsc_nsec = 0;
9581                         kvm->arch.last_tsc_write = 0;
9582                 }
9583
9584         }
9585         return 0;
9586 }
9587
9588 void kvm_arch_hardware_disable(void)
9589 {
9590         kvm_x86_ops->hardware_disable();
9591         drop_user_return_notifiers();
9592 }
9593
9594 int kvm_arch_hardware_setup(void)
9595 {
9596         int r;
9597
9598         r = kvm_x86_ops->hardware_setup();
9599         if (r != 0)
9600                 return r;
9601
9602         cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9603
9604         if (kvm_has_tsc_control) {
9605                 /*
9606                  * Make sure the user can only configure tsc_khz values that
9607                  * fit into a signed integer.
9608                  * A min value is not calculated because it will always
9609                  * be 1 on all machines.
9610                  */
9611                 u64 max = min(0x7fffffffULL,
9612                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9613                 kvm_max_guest_tsc_khz = max;
9614
9615                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9616         }
9617
9618         if (boot_cpu_has(X86_FEATURE_XSAVES))
9619                 rdmsrl(MSR_IA32_XSS, host_xss);
9620
9621         kvm_init_msr_list();
9622         return 0;
9623 }
9624
9625 void kvm_arch_hardware_unsetup(void)
9626 {
9627         kvm_x86_ops->hardware_unsetup();
9628 }
9629
9630 int kvm_arch_check_processor_compat(void)
9631 {
9632         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9633
9634         WARN_ON(!irqs_disabled());
9635
9636         if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9637                 return -EIO;
9638
9639         return kvm_x86_ops->check_processor_compatibility();
9640 }
9641
9642 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9643 {
9644         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9645 }
9646 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9647
9648 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9649 {
9650         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9651 }
9652
9653 struct static_key kvm_no_apic_vcpu __read_mostly;
9654 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9655
9656 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9657 {
9658         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9659
9660         vcpu->arch.l1tf_flush_l1d = true;
9661         if (pmu->version && unlikely(pmu->event_count)) {
9662                 pmu->need_cleanup = true;
9663                 kvm_make_request(KVM_REQ_PMU, vcpu);
9664         }
9665         kvm_x86_ops->sched_in(vcpu, cpu);
9666 }
9667
9668 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9669 {
9670         if (type)
9671                 return -EINVAL;
9672
9673         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9674         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9675         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9676         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9677         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9678         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9679
9680         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9681         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9682         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9683         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9684                 &kvm->arch.irq_sources_bitmap);
9685
9686         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9687         mutex_init(&kvm->arch.apic_map_lock);
9688         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9689
9690         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9691         pvclock_update_vm_gtod_copy(kvm);
9692
9693         kvm->arch.guest_can_read_msr_platform_info = true;
9694
9695         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9696         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9697
9698         kvm_hv_init_vm(kvm);
9699         kvm_page_track_init(kvm);
9700         kvm_mmu_init_vm(kvm);
9701
9702         return kvm_x86_ops->vm_init(kvm);
9703 }
9704
9705 int kvm_arch_post_init_vm(struct kvm *kvm)
9706 {
9707         return kvm_mmu_post_init_vm(kvm);
9708 }
9709
9710 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9711 {
9712         vcpu_load(vcpu);
9713         kvm_mmu_unload(vcpu);
9714         vcpu_put(vcpu);
9715 }
9716
9717 static void kvm_free_vcpus(struct kvm *kvm)
9718 {
9719         unsigned int i;
9720         struct kvm_vcpu *vcpu;
9721
9722         /*
9723          * Unpin any mmu pages first.
9724          */
9725         kvm_for_each_vcpu(i, vcpu, kvm) {
9726                 kvm_clear_async_pf_completion_queue(vcpu);
9727                 kvm_unload_vcpu_mmu(vcpu);
9728         }
9729         kvm_for_each_vcpu(i, vcpu, kvm)
9730                 kvm_vcpu_destroy(vcpu);
9731
9732         mutex_lock(&kvm->lock);
9733         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9734                 kvm->vcpus[i] = NULL;
9735
9736         atomic_set(&kvm->online_vcpus, 0);
9737         mutex_unlock(&kvm->lock);
9738 }
9739
9740 void kvm_arch_sync_events(struct kvm *kvm)
9741 {
9742         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9743         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9744         kvm_free_pit(kvm);
9745 }
9746
9747 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9748 {
9749         int i, r;
9750         unsigned long hva;
9751         struct kvm_memslots *slots = kvm_memslots(kvm);
9752         struct kvm_memory_slot *slot, old;
9753
9754         /* Called with kvm->slots_lock held.  */
9755         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9756                 return -EINVAL;
9757
9758         slot = id_to_memslot(slots, id);
9759         if (size) {
9760                 if (slot->npages)
9761                         return -EEXIST;
9762
9763                 /*
9764                  * MAP_SHARED to prevent internal slot pages from being moved
9765                  * by fork()/COW.
9766                  */
9767                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9768                               MAP_SHARED | MAP_ANONYMOUS, 0);
9769                 if (IS_ERR((void *)hva))
9770                         return PTR_ERR((void *)hva);
9771         } else {
9772                 if (!slot->npages)
9773                         return 0;
9774
9775                 hva = 0;
9776         }
9777
9778         old = *slot;
9779         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9780                 struct kvm_userspace_memory_region m;
9781
9782                 m.slot = id | (i << 16);
9783                 m.flags = 0;
9784                 m.guest_phys_addr = gpa;
9785                 m.userspace_addr = hva;
9786                 m.memory_size = size;
9787                 r = __kvm_set_memory_region(kvm, &m);
9788                 if (r < 0)
9789                         return r;
9790         }
9791
9792         if (!size)
9793                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9794
9795         return 0;
9796 }
9797 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9798
9799 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9800 {
9801         kvm_mmu_pre_destroy_vm(kvm);
9802 }
9803
9804 void kvm_arch_destroy_vm(struct kvm *kvm)
9805 {
9806         if (current->mm == kvm->mm) {
9807                 /*
9808                  * Free memory regions allocated on behalf of userspace,
9809                  * unless the the memory map has changed due to process exit
9810                  * or fd copying.
9811                  */
9812                 mutex_lock(&kvm->slots_lock);
9813                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9814                                         0, 0);
9815                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9816                                         0, 0);
9817                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9818                 mutex_unlock(&kvm->slots_lock);
9819         }
9820         if (kvm_x86_ops->vm_destroy)
9821                 kvm_x86_ops->vm_destroy(kvm);
9822         kvm_pic_destroy(kvm);
9823         kvm_ioapic_destroy(kvm);
9824         kvm_free_vcpus(kvm);
9825         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9826         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9827         kvm_mmu_uninit_vm(kvm);
9828         kvm_page_track_cleanup(kvm);
9829         kvm_hv_destroy_vm(kvm);
9830 }
9831
9832 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9833                            struct kvm_memory_slot *dont)
9834 {
9835         int i;
9836
9837         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9838                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9839                         kvfree(free->arch.rmap[i]);
9840                         free->arch.rmap[i] = NULL;
9841                 }
9842                 if (i == 0)
9843                         continue;
9844
9845                 if (!dont || free->arch.lpage_info[i - 1] !=
9846                              dont->arch.lpage_info[i - 1]) {
9847                         kvfree(free->arch.lpage_info[i - 1]);
9848                         free->arch.lpage_info[i - 1] = NULL;
9849                 }
9850         }
9851
9852         kvm_page_track_free_memslot(free, dont);
9853 }
9854
9855 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9856                             unsigned long npages)
9857 {
9858         int i;
9859
9860         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9861                 struct kvm_lpage_info *linfo;
9862                 unsigned long ugfn;
9863                 int lpages;
9864                 int level = i + 1;
9865
9866                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9867                                       slot->base_gfn, level) + 1;
9868
9869                 slot->arch.rmap[i] =
9870                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9871                                  GFP_KERNEL_ACCOUNT);
9872                 if (!slot->arch.rmap[i])
9873                         goto out_free;
9874                 if (i == 0)
9875                         continue;
9876
9877                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9878                 if (!linfo)
9879                         goto out_free;
9880
9881                 slot->arch.lpage_info[i - 1] = linfo;
9882
9883                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9884                         linfo[0].disallow_lpage = 1;
9885                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9886                         linfo[lpages - 1].disallow_lpage = 1;
9887                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9888                 /*
9889                  * If the gfn and userspace address are not aligned wrt each
9890                  * other, or if explicitly asked to, disable large page
9891                  * support for this slot
9892                  */
9893                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9894                     !kvm_largepages_enabled()) {
9895                         unsigned long j;
9896
9897                         for (j = 0; j < lpages; ++j)
9898                                 linfo[j].disallow_lpage = 1;
9899                 }
9900         }
9901
9902         if (kvm_page_track_create_memslot(slot, npages))
9903                 goto out_free;
9904
9905         return 0;
9906
9907 out_free:
9908         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9909                 kvfree(slot->arch.rmap[i]);
9910                 slot->arch.rmap[i] = NULL;
9911                 if (i == 0)
9912                         continue;
9913
9914                 kvfree(slot->arch.lpage_info[i - 1]);
9915                 slot->arch.lpage_info[i - 1] = NULL;
9916         }
9917         return -ENOMEM;
9918 }
9919
9920 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9921 {
9922         struct kvm_vcpu *vcpu;
9923         int i;
9924
9925         /*
9926          * memslots->generation has been incremented.
9927          * mmio generation may have reached its maximum value.
9928          */
9929         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9930
9931         /* Force re-initialization of steal_time cache */
9932         kvm_for_each_vcpu(i, vcpu, kvm)
9933                 kvm_vcpu_kick(vcpu);
9934 }
9935
9936 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9937                                 struct kvm_memory_slot *memslot,
9938                                 const struct kvm_userspace_memory_region *mem,
9939                                 enum kvm_mr_change change)
9940 {
9941         return 0;
9942 }
9943
9944 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9945                                      struct kvm_memory_slot *new)
9946 {
9947         /* Still write protect RO slot */
9948         if (new->flags & KVM_MEM_READONLY) {
9949                 kvm_mmu_slot_remove_write_access(kvm, new);
9950                 return;
9951         }
9952
9953         /*
9954          * Call kvm_x86_ops dirty logging hooks when they are valid.
9955          *
9956          * kvm_x86_ops->slot_disable_log_dirty is called when:
9957          *
9958          *  - KVM_MR_CREATE with dirty logging is disabled
9959          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9960          *
9961          * The reason is, in case of PML, we need to set D-bit for any slots
9962          * with dirty logging disabled in order to eliminate unnecessary GPA
9963          * logging in PML buffer (and potential PML buffer full VMEXIT). This
9964          * guarantees leaving PML enabled during guest's lifetime won't have
9965          * any additional overhead from PML when guest is running with dirty
9966          * logging disabled for memory slots.
9967          *
9968          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9969          * to dirty logging mode.
9970          *
9971          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9972          *
9973          * In case of write protect:
9974          *
9975          * Write protect all pages for dirty logging.
9976          *
9977          * All the sptes including the large sptes which point to this
9978          * slot are set to readonly. We can not create any new large
9979          * spte on this slot until the end of the logging.
9980          *
9981          * See the comments in fast_page_fault().
9982          */
9983         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9984                 if (kvm_x86_ops->slot_enable_log_dirty)
9985                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9986                 else
9987                         kvm_mmu_slot_remove_write_access(kvm, new);
9988         } else {
9989                 if (kvm_x86_ops->slot_disable_log_dirty)
9990                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9991         }
9992 }
9993
9994 void kvm_arch_commit_memory_region(struct kvm *kvm,
9995                                 const struct kvm_userspace_memory_region *mem,
9996                                 const struct kvm_memory_slot *old,
9997                                 const struct kvm_memory_slot *new,
9998                                 enum kvm_mr_change change)
9999 {
10000         if (!kvm->arch.n_requested_mmu_pages)
10001                 kvm_mmu_change_mmu_pages(kvm,
10002                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10003
10004         /*
10005          * Dirty logging tracks sptes in 4k granularity, meaning that large
10006          * sptes have to be split.  If live migration is successful, the guest
10007          * in the source machine will be destroyed and large sptes will be
10008          * created in the destination. However, if the guest continues to run
10009          * in the source machine (for example if live migration fails), small
10010          * sptes will remain around and cause bad performance.
10011          *
10012          * Scan sptes if dirty logging has been stopped, dropping those
10013          * which can be collapsed into a single large-page spte.  Later
10014          * page faults will create the large-page sptes.
10015          *
10016          * There is no need to do this in any of the following cases:
10017          * CREATE:      No dirty mappings will already exist.
10018          * MOVE/DELETE: The old mappings will already have been cleaned up by
10019          *              kvm_arch_flush_shadow_memslot()
10020          */
10021         if (change == KVM_MR_FLAGS_ONLY &&
10022                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10023                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10024                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10025
10026         /*
10027          * Set up write protection and/or dirty logging for the new slot.
10028          *
10029          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10030          * been zapped so no dirty logging staff is needed for old slot. For
10031          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10032          * new and it's also covered when dealing with the new slot.
10033          *
10034          * FIXME: const-ify all uses of struct kvm_memory_slot.
10035          */
10036         if (change != KVM_MR_DELETE)
10037                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10038 }
10039
10040 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10041 {
10042         kvm_mmu_zap_all(kvm);
10043 }
10044
10045 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10046                                    struct kvm_memory_slot *slot)
10047 {
10048         kvm_page_track_flush_slot(kvm, slot);
10049 }
10050
10051 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10052 {
10053         return (is_guest_mode(vcpu) &&
10054                         kvm_x86_ops->guest_apic_has_interrupt &&
10055                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
10056 }
10057
10058 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10059 {
10060         if (!list_empty_careful(&vcpu->async_pf.done))
10061                 return true;
10062
10063         if (kvm_apic_has_events(vcpu))
10064                 return true;
10065
10066         if (vcpu->arch.pv.pv_unhalted)
10067                 return true;
10068
10069         if (vcpu->arch.exception.pending)
10070                 return true;
10071
10072         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10073             (vcpu->arch.nmi_pending &&
10074              kvm_x86_ops->nmi_allowed(vcpu)))
10075                 return true;
10076
10077         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10078             (vcpu->arch.smi_pending && !is_smm(vcpu)))
10079                 return true;
10080
10081         if (kvm_arch_interrupt_allowed(vcpu) &&
10082             (kvm_cpu_has_interrupt(vcpu) ||
10083             kvm_guest_apic_has_interrupt(vcpu)))
10084                 return true;
10085
10086         if (kvm_hv_has_stimer_pending(vcpu))
10087                 return true;
10088
10089         return false;
10090 }
10091
10092 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10093 {
10094         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10095 }
10096
10097 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10098 {
10099         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10100                 return true;
10101
10102         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10103                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10104                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10105                 return true;
10106
10107         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10108                 return true;
10109
10110         return false;
10111 }
10112
10113 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10114 {
10115         return vcpu->arch.preempted_in_kernel;
10116 }
10117
10118 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10119 {
10120         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10121 }
10122
10123 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10124 {
10125         return kvm_x86_ops->interrupt_allowed(vcpu);
10126 }
10127
10128 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10129 {
10130         if (is_64_bit_mode(vcpu))
10131                 return kvm_rip_read(vcpu);
10132         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10133                      kvm_rip_read(vcpu));
10134 }
10135 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10136
10137 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10138 {
10139         return kvm_get_linear_rip(vcpu) == linear_rip;
10140 }
10141 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10142
10143 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10144 {
10145         unsigned long rflags;
10146
10147         rflags = kvm_x86_ops->get_rflags(vcpu);
10148         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10149                 rflags &= ~X86_EFLAGS_TF;
10150         return rflags;
10151 }
10152 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10153
10154 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10155 {
10156         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10157             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10158                 rflags |= X86_EFLAGS_TF;
10159         kvm_x86_ops->set_rflags(vcpu, rflags);
10160 }
10161
10162 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10163 {
10164         __kvm_set_rflags(vcpu, rflags);
10165         kvm_make_request(KVM_REQ_EVENT, vcpu);
10166 }
10167 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10168
10169 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10170 {
10171         int r;
10172
10173         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10174               work->wakeup_all)
10175                 return;
10176
10177         r = kvm_mmu_reload(vcpu);
10178         if (unlikely(r))
10179                 return;
10180
10181         if (!vcpu->arch.mmu->direct_map &&
10182               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10183                 return;
10184
10185         vcpu->arch.mmu->page_fault(vcpu, work->cr2_or_gpa, 0, true);
10186 }
10187
10188 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10189 {
10190         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10191 }
10192
10193 static inline u32 kvm_async_pf_next_probe(u32 key)
10194 {
10195         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10196 }
10197
10198 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10199 {
10200         u32 key = kvm_async_pf_hash_fn(gfn);
10201
10202         while (vcpu->arch.apf.gfns[key] != ~0)
10203                 key = kvm_async_pf_next_probe(key);
10204
10205         vcpu->arch.apf.gfns[key] = gfn;
10206 }
10207
10208 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10209 {
10210         int i;
10211         u32 key = kvm_async_pf_hash_fn(gfn);
10212
10213         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10214                      (vcpu->arch.apf.gfns[key] != gfn &&
10215                       vcpu->arch.apf.gfns[key] != ~0); i++)
10216                 key = kvm_async_pf_next_probe(key);
10217
10218         return key;
10219 }
10220
10221 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10222 {
10223         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10224 }
10225
10226 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10227 {
10228         u32 i, j, k;
10229
10230         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10231         while (true) {
10232                 vcpu->arch.apf.gfns[i] = ~0;
10233                 do {
10234                         j = kvm_async_pf_next_probe(j);
10235                         if (vcpu->arch.apf.gfns[j] == ~0)
10236                                 return;
10237                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10238                         /*
10239                          * k lies cyclically in ]i,j]
10240                          * |    i.k.j |
10241                          * |....j i.k.| or  |.k..j i...|
10242                          */
10243                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10244                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10245                 i = j;
10246         }
10247 }
10248
10249 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10250 {
10251
10252         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10253                                       sizeof(val));
10254 }
10255
10256 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10257 {
10258
10259         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10260                                       sizeof(u32));
10261 }
10262
10263 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10264 {
10265         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10266                 return false;
10267
10268         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10269             (vcpu->arch.apf.send_user_only &&
10270              kvm_x86_ops->get_cpl(vcpu) == 0))
10271                 return false;
10272
10273         return true;
10274 }
10275
10276 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10277 {
10278         if (unlikely(!lapic_in_kernel(vcpu) ||
10279                      kvm_event_needs_reinjection(vcpu) ||
10280                      vcpu->arch.exception.pending))
10281                 return false;
10282
10283         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10284                 return false;
10285
10286         /*
10287          * If interrupts are off we cannot even use an artificial
10288          * halt state.
10289          */
10290         return kvm_x86_ops->interrupt_allowed(vcpu);
10291 }
10292
10293 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10294                                      struct kvm_async_pf *work)
10295 {
10296         struct x86_exception fault;
10297
10298         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10299         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10300
10301         if (kvm_can_deliver_async_pf(vcpu) &&
10302             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10303                 fault.vector = PF_VECTOR;
10304                 fault.error_code_valid = true;
10305                 fault.error_code = 0;
10306                 fault.nested_page_fault = false;
10307                 fault.address = work->arch.token;
10308                 fault.async_page_fault = true;
10309                 kvm_inject_page_fault(vcpu, &fault);
10310         } else {
10311                 /*
10312                  * It is not possible to deliver a paravirtualized asynchronous
10313                  * page fault, but putting the guest in an artificial halt state
10314                  * can be beneficial nevertheless: if an interrupt arrives, we
10315                  * can deliver it timely and perhaps the guest will schedule
10316                  * another process.  When the instruction that triggered a page
10317                  * fault is retried, hopefully the page will be ready in the host.
10318                  */
10319                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10320         }
10321 }
10322
10323 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10324                                  struct kvm_async_pf *work)
10325 {
10326         struct x86_exception fault;
10327         u32 val;
10328
10329         if (work->wakeup_all)
10330                 work->arch.token = ~0; /* broadcast wakeup */
10331         else
10332                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10333         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10334
10335         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10336             !apf_get_user(vcpu, &val)) {
10337                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10338                     vcpu->arch.exception.pending &&
10339                     vcpu->arch.exception.nr == PF_VECTOR &&
10340                     !apf_put_user(vcpu, 0)) {
10341                         vcpu->arch.exception.injected = false;
10342                         vcpu->arch.exception.pending = false;
10343                         vcpu->arch.exception.nr = 0;
10344                         vcpu->arch.exception.has_error_code = false;
10345                         vcpu->arch.exception.error_code = 0;
10346                         vcpu->arch.exception.has_payload = false;
10347                         vcpu->arch.exception.payload = 0;
10348                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10349                         fault.vector = PF_VECTOR;
10350                         fault.error_code_valid = true;
10351                         fault.error_code = 0;
10352                         fault.nested_page_fault = false;
10353                         fault.address = work->arch.token;
10354                         fault.async_page_fault = true;
10355                         kvm_inject_page_fault(vcpu, &fault);
10356                 }
10357         }
10358         vcpu->arch.apf.halted = false;
10359         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10360 }
10361
10362 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10363 {
10364         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10365                 return true;
10366         else
10367                 return kvm_can_do_async_pf(vcpu);
10368 }
10369
10370 void kvm_arch_start_assignment(struct kvm *kvm)
10371 {
10372         atomic_inc(&kvm->arch.assigned_device_count);
10373 }
10374 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10375
10376 void kvm_arch_end_assignment(struct kvm *kvm)
10377 {
10378         atomic_dec(&kvm->arch.assigned_device_count);
10379 }
10380 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10381
10382 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10383 {
10384         return atomic_read(&kvm->arch.assigned_device_count);
10385 }
10386 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10387
10388 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10389 {
10390         atomic_inc(&kvm->arch.noncoherent_dma_count);
10391 }
10392 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10393
10394 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10395 {
10396         atomic_dec(&kvm->arch.noncoherent_dma_count);
10397 }
10398 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10399
10400 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10401 {
10402         return atomic_read(&kvm->arch.noncoherent_dma_count);
10403 }
10404 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10405
10406 bool kvm_arch_has_irq_bypass(void)
10407 {
10408         return true;
10409 }
10410
10411 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10412                                       struct irq_bypass_producer *prod)
10413 {
10414         struct kvm_kernel_irqfd *irqfd =
10415                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10416
10417         irqfd->producer = prod;
10418
10419         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10420                                            prod->irq, irqfd->gsi, 1);
10421 }
10422
10423 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10424                                       struct irq_bypass_producer *prod)
10425 {
10426         int ret;
10427         struct kvm_kernel_irqfd *irqfd =
10428                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10429
10430         WARN_ON(irqfd->producer != prod);
10431         irqfd->producer = NULL;
10432
10433         /*
10434          * When producer of consumer is unregistered, we change back to
10435          * remapped mode, so we can re-use the current implementation
10436          * when the irq is masked/disabled or the consumer side (KVM
10437          * int this case doesn't want to receive the interrupts.
10438         */
10439         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10440         if (ret)
10441                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10442                        " fails: %d\n", irqfd->consumer.token, ret);
10443 }
10444
10445 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10446                                    uint32_t guest_irq, bool set)
10447 {
10448         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10449 }
10450
10451 bool kvm_vector_hashing_enabled(void)
10452 {
10453         return vector_hashing;
10454 }
10455
10456 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10457 {
10458         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10459 }
10460 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10461
10462 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10463 {
10464         uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10465
10466         /* The STIBP bit doesn't fault even if it's not advertised */
10467         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10468             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10469                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10470         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10471             !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10472                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10473
10474         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10475             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10476                 bits &= ~SPEC_CTRL_SSBD;
10477         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10478             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10479                 bits &= ~SPEC_CTRL_SSBD;
10480
10481         return bits;
10482 }
10483 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10484
10485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);