kvm/x86: Hyper-V synthetic interrupt controller
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131         int nr;
132         u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136         struct user_return_notifier urn;
137         bool registered;
138         struct kvm_shared_msr_values {
139                 u64 host;
140                 u64 curr;
141         } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148         { "pf_fixed", VCPU_STAT(pf_fixed) },
149         { "pf_guest", VCPU_STAT(pf_guest) },
150         { "tlb_flush", VCPU_STAT(tlb_flush) },
151         { "invlpg", VCPU_STAT(invlpg) },
152         { "exits", VCPU_STAT(exits) },
153         { "io_exits", VCPU_STAT(io_exits) },
154         { "mmio_exits", VCPU_STAT(mmio_exits) },
155         { "signal_exits", VCPU_STAT(signal_exits) },
156         { "irq_window", VCPU_STAT(irq_window_exits) },
157         { "nmi_window", VCPU_STAT(nmi_window_exits) },
158         { "halt_exits", VCPU_STAT(halt_exits) },
159         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162         { "hypercalls", VCPU_STAT(hypercalls) },
163         { "request_irq", VCPU_STAT(request_irq_exits) },
164         { "irq_exits", VCPU_STAT(irq_exits) },
165         { "host_state_reload", VCPU_STAT(host_state_reload) },
166         { "efer_reload", VCPU_STAT(efer_reload) },
167         { "fpu_reload", VCPU_STAT(fpu_reload) },
168         { "insn_emulation", VCPU_STAT(insn_emulation) },
169         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170         { "irq_injections", VCPU_STAT(irq_injections) },
171         { "nmi_injections", VCPU_STAT(nmi_injections) },
172         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176         { "mmu_flooded", VM_STAT(mmu_flooded) },
177         { "mmu_recycled", VM_STAT(mmu_recycled) },
178         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179         { "mmu_unsync", VM_STAT(mmu_unsync) },
180         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181         { "largepages", VM_STAT(lpages) },
182         { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191         int i;
192         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193                 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198         unsigned slot;
199         struct kvm_shared_msrs *locals
200                 = container_of(urn, struct kvm_shared_msrs, urn);
201         struct kvm_shared_msr_values *values;
202
203         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204                 values = &locals->values[slot];
205                 if (values->host != values->curr) {
206                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
207                         values->curr = values->host;
208                 }
209         }
210         locals->registered = false;
211         user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216         u64 value;
217         unsigned int cpu = smp_processor_id();
218         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220         /* only read, and nobody should modify it at this time,
221          * so don't need lock */
222         if (slot >= shared_msrs_global.nr) {
223                 printk(KERN_ERR "kvm: invalid MSR slot!");
224                 return;
225         }
226         rdmsrl_safe(msr, &value);
227         smsr->values[slot].host = value;
228         smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234         shared_msrs_global.msrs[slot] = msr;
235         if (slot >= shared_msrs_global.nr)
236                 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242         unsigned i;
243
244         for (i = 0; i < shared_msrs_global.nr; ++i)
245                 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250         unsigned int cpu = smp_processor_id();
251         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252         int err;
253
254         if (((value ^ smsr->values[slot].curr) & mask) == 0)
255                 return 0;
256         smsr->values[slot].curr = value;
257         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258         if (err)
259                 return 1;
260
261         if (!smsr->registered) {
262                 smsr->urn.on_user_return = kvm_on_user_return;
263                 user_return_notifier_register(&smsr->urn);
264                 smsr->registered = true;
265         }
266         return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275         if (smsr->registered)
276                 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281         return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287         u64 old_state = vcpu->arch.apic_base &
288                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289         u64 new_state = msr_info->data &
290                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294         if (!msr_info->host_initiated &&
295             ((msr_info->data & reserved_bits) != 0 ||
296              new_state == X2APIC_ENABLE ||
297              (new_state == MSR_IA32_APICBASE_ENABLE &&
298               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300               old_state == 0)))
301                 return 1;
302
303         kvm_lapic_set_base(vcpu, msr_info->data);
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310         /* Fault while not rebooting.  We want the trace. */
311         BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN            0
316 #define EXCPT_CONTRIBUTORY      1
317 #define EXCPT_PF                2
318
319 static int exception_class(int vector)
320 {
321         switch (vector) {
322         case PF_VECTOR:
323                 return EXCPT_PF;
324         case DE_VECTOR:
325         case TS_VECTOR:
326         case NP_VECTOR:
327         case SS_VECTOR:
328         case GP_VECTOR:
329                 return EXCPT_CONTRIBUTORY;
330         default:
331                 break;
332         }
333         return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT             0
337 #define EXCPT_TRAP              1
338 #define EXCPT_ABORT             2
339 #define EXCPT_INTERRUPT         3
340
341 static int exception_type(int vector)
342 {
343         unsigned int mask;
344
345         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346                 return EXCPT_INTERRUPT;
347
348         mask = 1 << vector;
349
350         /* #DB is trap, as instruction watchpoints are handled elsewhere */
351         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352                 return EXCPT_TRAP;
353
354         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355                 return EXCPT_ABORT;
356
357         /* Reserved exceptions will result in fault */
358         return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362                 unsigned nr, bool has_error, u32 error_code,
363                 bool reinject)
364 {
365         u32 prev_nr;
366         int class1, class2;
367
368         kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370         if (!vcpu->arch.exception.pending) {
371         queue:
372                 if (has_error && !is_protmode(vcpu))
373                         has_error = false;
374                 vcpu->arch.exception.pending = true;
375                 vcpu->arch.exception.has_error_code = has_error;
376                 vcpu->arch.exception.nr = nr;
377                 vcpu->arch.exception.error_code = error_code;
378                 vcpu->arch.exception.reinject = reinject;
379                 return;
380         }
381
382         /* to check exception */
383         prev_nr = vcpu->arch.exception.nr;
384         if (prev_nr == DF_VECTOR) {
385                 /* triple fault -> shutdown */
386                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387                 return;
388         }
389         class1 = exception_class(prev_nr);
390         class2 = exception_class(nr);
391         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393                 /* generate double fault per SDM Table 5-5 */
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = true;
396                 vcpu->arch.exception.nr = DF_VECTOR;
397                 vcpu->arch.exception.error_code = 0;
398         } else
399                 /* replace previous exception with a new one in a hope
400                    that instruction re-execution will regenerate lost
401                    exception */
402                 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407         kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413         kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419         if (err)
420                 kvm_inject_gp(vcpu, 0);
421         else
422                 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         ++vcpu->stat.pf_guest;
429         vcpu->arch.cr2 = fault->address;
430         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438         else
439                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441         return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446         atomic_inc(&vcpu->arch.nmi_queued);
447         kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453         kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459         kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470                 return true;
471         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479                 return true;
480
481         kvm_queue_exception(vcpu, UD_VECTOR);
482         return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492                             gfn_t ngfn, void *data, int offset, int len,
493                             u32 access)
494 {
495         struct x86_exception exception;
496         gfn_t real_gfn;
497         gpa_t ngpa;
498
499         ngpa     = gfn_to_gpa(ngfn);
500         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501         if (real_gfn == UNMAPPED_GVA)
502                 return -EFAULT;
503
504         real_gfn = gpa_to_gfn(real_gfn);
505
506         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511                                void *data, int offset, int len, u32 access)
512 {
513         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514                                        data, offset, len, access);
515 }
516
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524         int i;
525         int ret;
526         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529                                       offset * sizeof(u64), sizeof(pdpte),
530                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
531         if (ret < 0) {
532                 ret = 0;
533                 goto out;
534         }
535         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536                 if (is_present_gpte(pdpte[i]) &&
537                     (pdpte[i] &
538                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539                         ret = 0;
540                         goto out;
541                 }
542         }
543         ret = 1;
544
545         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546         __set_bit(VCPU_EXREG_PDPTR,
547                   (unsigned long *)&vcpu->arch.regs_avail);
548         __set_bit(VCPU_EXREG_PDPTR,
549                   (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559         bool changed = true;
560         int offset;
561         gfn_t gfn;
562         int r;
563
564         if (is_long_mode(vcpu) || !is_pae(vcpu))
565                 return false;
566
567         if (!test_bit(VCPU_EXREG_PDPTR,
568                       (unsigned long *)&vcpu->arch.regs_avail))
569                 return true;
570
571         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
575         if (r < 0)
576                 goto out;
577         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580         return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585         unsigned long old_cr0 = kvm_read_cr0(vcpu);
586         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588         cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591         if (cr0 & 0xffffffff00000000UL)
592                 return 1;
593 #endif
594
595         cr0 &= ~CR0_RESERVED_BITS;
596
597         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598                 return 1;
599
600         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601                 return 1;
602
603         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605                 if ((vcpu->arch.efer & EFER_LME)) {
606                         int cs_db, cs_l;
607
608                         if (!is_pae(vcpu))
609                                 return 1;
610                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611                         if (cs_l)
612                                 return 1;
613                 } else
614 #endif
615                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616                                                  kvm_read_cr3(vcpu)))
617                         return 1;
618         }
619
620         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621                 return 1;
622
623         kvm_x86_ops->set_cr0(vcpu, cr0);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626                 kvm_clear_async_pf_completion_queue(vcpu);
627                 kvm_async_pf_hash_reset(vcpu);
628         }
629
630         if ((cr0 ^ old_cr0) & update_bits)
631                 kvm_mmu_reset_context(vcpu);
632
633         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638         return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651                         !vcpu->guest_xcr0_loaded) {
652                 /* kvm_set_xcr() also depends on this */
653                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654                 vcpu->guest_xcr0_loaded = 1;
655         }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660         if (vcpu->guest_xcr0_loaded) {
661                 if (vcpu->arch.xcr0 != host_xcr0)
662                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663                 vcpu->guest_xcr0_loaded = 0;
664         }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669         u64 xcr0 = xcr;
670         u64 old_xcr0 = vcpu->arch.xcr0;
671         u64 valid_bits;
672
673         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674         if (index != XCR_XFEATURE_ENABLED_MASK)
675                 return 1;
676         if (!(xcr0 & XFEATURE_MASK_FP))
677                 return 1;
678         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679                 return 1;
680
681         /*
682          * Do not allow the guest to set bits that we do not support
683          * saving.  However, xcr0 bit 0 is always set, even if the
684          * emulated CPU does not support XSAVE (see fx_init).
685          */
686         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687         if (xcr0 & ~valid_bits)
688                 return 1;
689
690         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692                 return 1;
693
694         if (xcr0 & XFEATURE_MASK_AVX512) {
695                 if (!(xcr0 & XFEATURE_MASK_YMM))
696                         return 1;
697                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698                         return 1;
699         }
700         kvm_put_guest_xcr0(vcpu);
701         vcpu->arch.xcr0 = xcr0;
702
703         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704                 kvm_update_cpuid(vcpu);
705         return 0;
706 }
707
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711             __kvm_set_xcr(vcpu, index, xcr)) {
712                 kvm_inject_gp(vcpu, 0);
713                 return 1;
714         }
715         return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721         unsigned long old_cr4 = kvm_read_cr4(vcpu);
722         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723                                    X86_CR4_SMEP | X86_CR4_SMAP;
724
725         if (cr4 & CR4_RESERVED_BITS)
726                 return 1;
727
728         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729                 return 1;
730
731         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732                 return 1;
733
734         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735                 return 1;
736
737         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738                 return 1;
739
740         if (is_long_mode(vcpu)) {
741                 if (!(cr4 & X86_CR4_PAE))
742                         return 1;
743         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744                    && ((cr4 ^ old_cr4) & pdptr_bits)
745                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746                                    kvm_read_cr3(vcpu)))
747                 return 1;
748
749         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750                 if (!guest_cpuid_has_pcid(vcpu))
751                         return 1;
752
753                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755                         return 1;
756         }
757
758         if (kvm_x86_ops->set_cr4(vcpu, cr4))
759                 return 1;
760
761         if (((cr4 ^ old_cr4) & pdptr_bits) ||
762             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763                 kvm_mmu_reset_context(vcpu);
764
765         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766                 kvm_update_cpuid(vcpu);
767
768         return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775         cr3 &= ~CR3_PCID_INVD;
776 #endif
777
778         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779                 kvm_mmu_sync_roots(vcpu);
780                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781                 return 0;
782         }
783
784         if (is_long_mode(vcpu)) {
785                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
786                         return 1;
787         } else if (is_pae(vcpu) && is_paging(vcpu) &&
788                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789                 return 1;
790
791         vcpu->arch.cr3 = cr3;
792         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793         kvm_mmu_new_cr3(vcpu);
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800         if (cr8 & CR8_RESERVED_BITS)
801                 return 1;
802         if (lapic_in_kernel(vcpu))
803                 kvm_lapic_set_tpr(vcpu, cr8);
804         else
805                 vcpu->arch.cr8 = cr8;
806         return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812         if (lapic_in_kernel(vcpu))
813                 return kvm_lapic_get_cr8(vcpu);
814         else
815                 return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821         int i;
822
823         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824                 for (i = 0; i < KVM_NR_DB_REGS; i++)
825                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827         }
828 }
829
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838         unsigned long dr7;
839
840         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841                 dr7 = vcpu->arch.guest_debug_dr7;
842         else
843                 dr7 = vcpu->arch.dr7;
844         kvm_x86_ops->set_dr7(vcpu, dr7);
845         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846         if (dr7 & DR7_BP_EN_MASK)
847                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852         u64 fixed = DR6_FIXED_1;
853
854         if (!guest_cpuid_has_rtm(vcpu))
855                 fixed |= DR6_RTM;
856         return fixed;
857 }
858
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861         switch (dr) {
862         case 0 ... 3:
863                 vcpu->arch.db[dr] = val;
864                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                         vcpu->arch.eff_db[dr] = val;
866                 break;
867         case 4:
868                 /* fall through */
869         case 6:
870                 if (val & 0xffffffff00000000ULL)
871                         return -1; /* #GP */
872                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873                 kvm_update_dr6(vcpu);
874                 break;
875         case 5:
876                 /* fall through */
877         default: /* 7 */
878                 if (val & 0xffffffff00000000ULL)
879                         return -1; /* #GP */
880                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881                 kvm_update_dr7(vcpu);
882                 break;
883         }
884
885         return 0;
886 }
887
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         if (__kvm_set_dr(vcpu, dr, val)) {
891                 kvm_inject_gp(vcpu, 0);
892                 return 1;
893         }
894         return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900         switch (dr) {
901         case 0 ... 3:
902                 *val = vcpu->arch.db[dr];
903                 break;
904         case 4:
905                 /* fall through */
906         case 6:
907                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908                         *val = vcpu->arch.dr6;
909                 else
910                         *val = kvm_x86_ops->get_dr6(vcpu);
911                 break;
912         case 5:
913                 /* fall through */
914         default: /* 7 */
915                 *val = vcpu->arch.dr7;
916                 break;
917         }
918         return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925         u64 data;
926         int err;
927
928         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929         if (err)
930                 return err;
931         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933         return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946
947 static u32 msrs_to_save[] = {
948         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949         MSR_STAR,
950 #ifdef CONFIG_X86_64
951         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
955 };
956
957 static unsigned num_msrs_to_save;
958
959 static u32 emulated_msrs[] = {
960         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966         HV_X64_MSR_RESET,
967         HV_X64_MSR_VP_INDEX,
968         HV_X64_MSR_VP_RUNTIME,
969         HV_X64_MSR_SCONTROL,
970         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
971         MSR_KVM_PV_EOI_EN,
972
973         MSR_IA32_TSC_ADJUST,
974         MSR_IA32_TSCDEADLINE,
975         MSR_IA32_MISC_ENABLE,
976         MSR_IA32_MCG_STATUS,
977         MSR_IA32_MCG_CTL,
978         MSR_IA32_SMBASE,
979 };
980
981 static unsigned num_emulated_msrs;
982
983 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985         if (efer & efer_reserved_bits)
986                 return false;
987
988         if (efer & EFER_FFXSR) {
989                 struct kvm_cpuid_entry2 *feat;
990
991                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
992                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
993                         return false;
994         }
995
996         if (efer & EFER_SVME) {
997                 struct kvm_cpuid_entry2 *feat;
998
999                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1000                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1001                         return false;
1002         }
1003
1004         return true;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1007
1008 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1009 {
1010         u64 old_efer = vcpu->arch.efer;
1011
1012         if (!kvm_valid_efer(vcpu, efer))
1013                 return 1;
1014
1015         if (is_paging(vcpu)
1016             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1017                 return 1;
1018
1019         efer &= ~EFER_LMA;
1020         efer |= vcpu->arch.efer & EFER_LMA;
1021
1022         kvm_x86_ops->set_efer(vcpu, efer);
1023
1024         /* Update reserved bits */
1025         if ((efer ^ old_efer) & EFER_NX)
1026                 kvm_mmu_reset_context(vcpu);
1027
1028         return 0;
1029 }
1030
1031 void kvm_enable_efer_bits(u64 mask)
1032 {
1033        efer_reserved_bits &= ~mask;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1036
1037 /*
1038  * Writes msr value into into the appropriate "register".
1039  * Returns 0 on success, non-0 otherwise.
1040  * Assumes vcpu_load() was already called.
1041  */
1042 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1043 {
1044         switch (msr->index) {
1045         case MSR_FS_BASE:
1046         case MSR_GS_BASE:
1047         case MSR_KERNEL_GS_BASE:
1048         case MSR_CSTAR:
1049         case MSR_LSTAR:
1050                 if (is_noncanonical_address(msr->data))
1051                         return 1;
1052                 break;
1053         case MSR_IA32_SYSENTER_EIP:
1054         case MSR_IA32_SYSENTER_ESP:
1055                 /*
1056                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1057                  * non-canonical address is written on Intel but not on
1058                  * AMD (which ignores the top 32-bits, because it does
1059                  * not implement 64-bit SYSENTER).
1060                  *
1061                  * 64-bit code should hence be able to write a non-canonical
1062                  * value on AMD.  Making the address canonical ensures that
1063                  * vmentry does not fail on Intel after writing a non-canonical
1064                  * value, and that something deterministic happens if the guest
1065                  * invokes 64-bit SYSENTER.
1066                  */
1067                 msr->data = get_canonical(msr->data);
1068         }
1069         return kvm_x86_ops->set_msr(vcpu, msr);
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_msr);
1072
1073 /*
1074  * Adapt set_msr() to msr_io()'s calling convention
1075  */
1076 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1077 {
1078         struct msr_data msr;
1079         int r;
1080
1081         msr.index = index;
1082         msr.host_initiated = true;
1083         r = kvm_get_msr(vcpu, &msr);
1084         if (r)
1085                 return r;
1086
1087         *data = msr.data;
1088         return 0;
1089 }
1090
1091 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093         struct msr_data msr;
1094
1095         msr.data = *data;
1096         msr.index = index;
1097         msr.host_initiated = true;
1098         return kvm_set_msr(vcpu, &msr);
1099 }
1100
1101 #ifdef CONFIG_X86_64
1102 struct pvclock_gtod_data {
1103         seqcount_t      seq;
1104
1105         struct { /* extract of a clocksource struct */
1106                 int vclock_mode;
1107                 cycle_t cycle_last;
1108                 cycle_t mask;
1109                 u32     mult;
1110                 u32     shift;
1111         } clock;
1112
1113         u64             boot_ns;
1114         u64             nsec_base;
1115 };
1116
1117 static struct pvclock_gtod_data pvclock_gtod_data;
1118
1119 static void update_pvclock_gtod(struct timekeeper *tk)
1120 {
1121         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1122         u64 boot_ns;
1123
1124         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1125
1126         write_seqcount_begin(&vdata->seq);
1127
1128         /* copy pvclock gtod data */
1129         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1130         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1131         vdata->clock.mask               = tk->tkr_mono.mask;
1132         vdata->clock.mult               = tk->tkr_mono.mult;
1133         vdata->clock.shift              = tk->tkr_mono.shift;
1134
1135         vdata->boot_ns                  = boot_ns;
1136         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1137
1138         write_seqcount_end(&vdata->seq);
1139 }
1140 #endif
1141
1142 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1143 {
1144         /*
1145          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1146          * vcpu_enter_guest.  This function is only called from
1147          * the physical CPU that is running vcpu.
1148          */
1149         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1150 }
1151
1152 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1153 {
1154         int version;
1155         int r;
1156         struct pvclock_wall_clock wc;
1157         struct timespec boot;
1158
1159         if (!wall_clock)
1160                 return;
1161
1162         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1163         if (r)
1164                 return;
1165
1166         if (version & 1)
1167                 ++version;  /* first time write, random junk */
1168
1169         ++version;
1170
1171         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1172
1173         /*
1174          * The guest calculates current wall clock time by adding
1175          * system time (updated by kvm_guest_time_update below) to the
1176          * wall clock specified here.  guest system time equals host
1177          * system time for us, thus we must fill in host boot time here.
1178          */
1179         getboottime(&boot);
1180
1181         if (kvm->arch.kvmclock_offset) {
1182                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1183                 boot = timespec_sub(boot, ts);
1184         }
1185         wc.sec = boot.tv_sec;
1186         wc.nsec = boot.tv_nsec;
1187         wc.version = version;
1188
1189         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1190
1191         version++;
1192         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1193 }
1194
1195 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1196 {
1197         uint32_t quotient, remainder;
1198
1199         /* Don't try to replace with do_div(), this one calculates
1200          * "(dividend << 32) / divisor" */
1201         __asm__ ( "divl %4"
1202                   : "=a" (quotient), "=d" (remainder)
1203                   : "0" (0), "1" (dividend), "r" (divisor) );
1204         return quotient;
1205 }
1206
1207 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1208                                s8 *pshift, u32 *pmultiplier)
1209 {
1210         uint64_t scaled64;
1211         int32_t  shift = 0;
1212         uint64_t tps64;
1213         uint32_t tps32;
1214
1215         tps64 = base_khz * 1000LL;
1216         scaled64 = scaled_khz * 1000LL;
1217         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1218                 tps64 >>= 1;
1219                 shift--;
1220         }
1221
1222         tps32 = (uint32_t)tps64;
1223         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1224                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1225                         scaled64 >>= 1;
1226                 else
1227                         tps32 <<= 1;
1228                 shift++;
1229         }
1230
1231         *pshift = shift;
1232         *pmultiplier = div_frac(scaled64, tps32);
1233
1234         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1235                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1236 }
1237
1238 #ifdef CONFIG_X86_64
1239 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1240 #endif
1241
1242 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1243 static unsigned long max_tsc_khz;
1244
1245 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1246 {
1247         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1248                                    vcpu->arch.virtual_tsc_shift);
1249 }
1250
1251 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1252 {
1253         u64 v = (u64)khz * (1000000 + ppm);
1254         do_div(v, 1000000);
1255         return v;
1256 }
1257
1258 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1259 {
1260         u64 ratio;
1261
1262         /* Guest TSC same frequency as host TSC? */
1263         if (!scale) {
1264                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1265                 return 0;
1266         }
1267
1268         /* TSC scaling supported? */
1269         if (!kvm_has_tsc_control) {
1270                 if (user_tsc_khz > tsc_khz) {
1271                         vcpu->arch.tsc_catchup = 1;
1272                         vcpu->arch.tsc_always_catchup = 1;
1273                         return 0;
1274                 } else {
1275                         WARN(1, "user requested TSC rate below hardware speed\n");
1276                         return -1;
1277                 }
1278         }
1279
1280         /* TSC scaling required  - calculate ratio */
1281         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1282                                 user_tsc_khz, tsc_khz);
1283
1284         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1285                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1286                           user_tsc_khz);
1287                 return -1;
1288         }
1289
1290         vcpu->arch.tsc_scaling_ratio = ratio;
1291         return 0;
1292 }
1293
1294 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1295 {
1296         u32 thresh_lo, thresh_hi;
1297         int use_scaling = 0;
1298
1299         /* tsc_khz can be zero if TSC calibration fails */
1300         if (this_tsc_khz == 0) {
1301                 /* set tsc_scaling_ratio to a safe value */
1302                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1303                 return -1;
1304         }
1305
1306         /* Compute a scale to convert nanoseconds in TSC cycles */
1307         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1308                            &vcpu->arch.virtual_tsc_shift,
1309                            &vcpu->arch.virtual_tsc_mult);
1310         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1311
1312         /*
1313          * Compute the variation in TSC rate which is acceptable
1314          * within the range of tolerance and decide if the
1315          * rate being applied is within that bounds of the hardware
1316          * rate.  If so, no scaling or compensation need be done.
1317          */
1318         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1319         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1320         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1321                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1322                 use_scaling = 1;
1323         }
1324         return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1325 }
1326
1327 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1328 {
1329         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1330                                       vcpu->arch.virtual_tsc_mult,
1331                                       vcpu->arch.virtual_tsc_shift);
1332         tsc += vcpu->arch.this_tsc_write;
1333         return tsc;
1334 }
1335
1336 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1337 {
1338 #ifdef CONFIG_X86_64
1339         bool vcpus_matched;
1340         struct kvm_arch *ka = &vcpu->kvm->arch;
1341         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1342
1343         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1344                          atomic_read(&vcpu->kvm->online_vcpus));
1345
1346         /*
1347          * Once the masterclock is enabled, always perform request in
1348          * order to update it.
1349          *
1350          * In order to enable masterclock, the host clocksource must be TSC
1351          * and the vcpus need to have matched TSCs.  When that happens,
1352          * perform request to enable masterclock.
1353          */
1354         if (ka->use_master_clock ||
1355             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1356                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1357
1358         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1359                             atomic_read(&vcpu->kvm->online_vcpus),
1360                             ka->use_master_clock, gtod->clock.vclock_mode);
1361 #endif
1362 }
1363
1364 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1365 {
1366         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1367         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1368 }
1369
1370 /*
1371  * Multiply tsc by a fixed point number represented by ratio.
1372  *
1373  * The most significant 64-N bits (mult) of ratio represent the
1374  * integral part of the fixed point number; the remaining N bits
1375  * (frac) represent the fractional part, ie. ratio represents a fixed
1376  * point number (mult + frac * 2^(-N)).
1377  *
1378  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1379  */
1380 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1381 {
1382         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1383 }
1384
1385 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1386 {
1387         u64 _tsc = tsc;
1388         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1389
1390         if (ratio != kvm_default_tsc_scaling_ratio)
1391                 _tsc = __scale_tsc(ratio, tsc);
1392
1393         return _tsc;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1396
1397 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1398 {
1399         u64 tsc;
1400
1401         tsc = kvm_scale_tsc(vcpu, rdtsc());
1402
1403         return target_tsc - tsc;
1404 }
1405
1406 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1407 {
1408         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1411
1412 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1413 {
1414         struct kvm *kvm = vcpu->kvm;
1415         u64 offset, ns, elapsed;
1416         unsigned long flags;
1417         s64 usdiff;
1418         bool matched;
1419         bool already_matched;
1420         u64 data = msr->data;
1421
1422         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1423         offset = kvm_compute_tsc_offset(vcpu, data);
1424         ns = get_kernel_ns();
1425         elapsed = ns - kvm->arch.last_tsc_nsec;
1426
1427         if (vcpu->arch.virtual_tsc_khz) {
1428                 int faulted = 0;
1429
1430                 /* n.b - signed multiplication and division required */
1431                 usdiff = data - kvm->arch.last_tsc_write;
1432 #ifdef CONFIG_X86_64
1433                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1434 #else
1435                 /* do_div() only does unsigned */
1436                 asm("1: idivl %[divisor]\n"
1437                     "2: xor %%edx, %%edx\n"
1438                     "   movl $0, %[faulted]\n"
1439                     "3:\n"
1440                     ".section .fixup,\"ax\"\n"
1441                     "4: movl $1, %[faulted]\n"
1442                     "   jmp  3b\n"
1443                     ".previous\n"
1444
1445                 _ASM_EXTABLE(1b, 4b)
1446
1447                 : "=A"(usdiff), [faulted] "=r" (faulted)
1448                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1449
1450 #endif
1451                 do_div(elapsed, 1000);
1452                 usdiff -= elapsed;
1453                 if (usdiff < 0)
1454                         usdiff = -usdiff;
1455
1456                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1457                 if (faulted)
1458                         usdiff = USEC_PER_SEC;
1459         } else
1460                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1461
1462         /*
1463          * Special case: TSC write with a small delta (1 second) of virtual
1464          * cycle time against real time is interpreted as an attempt to
1465          * synchronize the CPU.
1466          *
1467          * For a reliable TSC, we can match TSC offsets, and for an unstable
1468          * TSC, we add elapsed time in this computation.  We could let the
1469          * compensation code attempt to catch up if we fall behind, but
1470          * it's better to try to match offsets from the beginning.
1471          */
1472         if (usdiff < USEC_PER_SEC &&
1473             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1474                 if (!check_tsc_unstable()) {
1475                         offset = kvm->arch.cur_tsc_offset;
1476                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1477                 } else {
1478                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1479                         data += delta;
1480                         offset = kvm_compute_tsc_offset(vcpu, data);
1481                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1482                 }
1483                 matched = true;
1484                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1485         } else {
1486                 /*
1487                  * We split periods of matched TSC writes into generations.
1488                  * For each generation, we track the original measured
1489                  * nanosecond time, offset, and write, so if TSCs are in
1490                  * sync, we can match exact offset, and if not, we can match
1491                  * exact software computation in compute_guest_tsc()
1492                  *
1493                  * These values are tracked in kvm->arch.cur_xxx variables.
1494                  */
1495                 kvm->arch.cur_tsc_generation++;
1496                 kvm->arch.cur_tsc_nsec = ns;
1497                 kvm->arch.cur_tsc_write = data;
1498                 kvm->arch.cur_tsc_offset = offset;
1499                 matched = false;
1500                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1501                          kvm->arch.cur_tsc_generation, data);
1502         }
1503
1504         /*
1505          * We also track th most recent recorded KHZ, write and time to
1506          * allow the matching interval to be extended at each write.
1507          */
1508         kvm->arch.last_tsc_nsec = ns;
1509         kvm->arch.last_tsc_write = data;
1510         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1511
1512         vcpu->arch.last_guest_tsc = data;
1513
1514         /* Keep track of which generation this VCPU has synchronized to */
1515         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1516         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1517         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1518
1519         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1520                 update_ia32_tsc_adjust_msr(vcpu, offset);
1521         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1522         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1523
1524         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1525         if (!matched) {
1526                 kvm->arch.nr_vcpus_matched_tsc = 0;
1527         } else if (!already_matched) {
1528                 kvm->arch.nr_vcpus_matched_tsc++;
1529         }
1530
1531         kvm_track_tsc_matching(vcpu);
1532         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1533 }
1534
1535 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1536
1537 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1538                                            s64 adjustment)
1539 {
1540         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1541 }
1542
1543 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1544 {
1545         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1546                 WARN_ON(adjustment < 0);
1547         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1548         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1549 }
1550
1551 #ifdef CONFIG_X86_64
1552
1553 static cycle_t read_tsc(void)
1554 {
1555         cycle_t ret = (cycle_t)rdtsc_ordered();
1556         u64 last = pvclock_gtod_data.clock.cycle_last;
1557
1558         if (likely(ret >= last))
1559                 return ret;
1560
1561         /*
1562          * GCC likes to generate cmov here, but this branch is extremely
1563          * predictable (it's just a funciton of time and the likely is
1564          * very likely) and there's a data dependence, so force GCC
1565          * to generate a branch instead.  I don't barrier() because
1566          * we don't actually need a barrier, and if this function
1567          * ever gets inlined it will generate worse code.
1568          */
1569         asm volatile ("");
1570         return last;
1571 }
1572
1573 static inline u64 vgettsc(cycle_t *cycle_now)
1574 {
1575         long v;
1576         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1577
1578         *cycle_now = read_tsc();
1579
1580         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1581         return v * gtod->clock.mult;
1582 }
1583
1584 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1585 {
1586         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1587         unsigned long seq;
1588         int mode;
1589         u64 ns;
1590
1591         do {
1592                 seq = read_seqcount_begin(&gtod->seq);
1593                 mode = gtod->clock.vclock_mode;
1594                 ns = gtod->nsec_base;
1595                 ns += vgettsc(cycle_now);
1596                 ns >>= gtod->clock.shift;
1597                 ns += gtod->boot_ns;
1598         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1599         *t = ns;
1600
1601         return mode;
1602 }
1603
1604 /* returns true if host is using tsc clocksource */
1605 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1606 {
1607         /* checked again under seqlock below */
1608         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1609                 return false;
1610
1611         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1612 }
1613 #endif
1614
1615 /*
1616  *
1617  * Assuming a stable TSC across physical CPUS, and a stable TSC
1618  * across virtual CPUs, the following condition is possible.
1619  * Each numbered line represents an event visible to both
1620  * CPUs at the next numbered event.
1621  *
1622  * "timespecX" represents host monotonic time. "tscX" represents
1623  * RDTSC value.
1624  *
1625  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1626  *
1627  * 1.  read timespec0,tsc0
1628  * 2.                                   | timespec1 = timespec0 + N
1629  *                                      | tsc1 = tsc0 + M
1630  * 3. transition to guest               | transition to guest
1631  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1632  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1633  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1634  *
1635  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1636  *
1637  *      - ret0 < ret1
1638  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1639  *              ...
1640  *      - 0 < N - M => M < N
1641  *
1642  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1643  * always the case (the difference between two distinct xtime instances
1644  * might be smaller then the difference between corresponding TSC reads,
1645  * when updating guest vcpus pvclock areas).
1646  *
1647  * To avoid that problem, do not allow visibility of distinct
1648  * system_timestamp/tsc_timestamp values simultaneously: use a master
1649  * copy of host monotonic time values. Update that master copy
1650  * in lockstep.
1651  *
1652  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1653  *
1654  */
1655
1656 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1657 {
1658 #ifdef CONFIG_X86_64
1659         struct kvm_arch *ka = &kvm->arch;
1660         int vclock_mode;
1661         bool host_tsc_clocksource, vcpus_matched;
1662
1663         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1664                         atomic_read(&kvm->online_vcpus));
1665
1666         /*
1667          * If the host uses TSC clock, then passthrough TSC as stable
1668          * to the guest.
1669          */
1670         host_tsc_clocksource = kvm_get_time_and_clockread(
1671                                         &ka->master_kernel_ns,
1672                                         &ka->master_cycle_now);
1673
1674         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1675                                 && !backwards_tsc_observed
1676                                 && !ka->boot_vcpu_runs_old_kvmclock;
1677
1678         if (ka->use_master_clock)
1679                 atomic_set(&kvm_guest_has_master_clock, 1);
1680
1681         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1682         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1683                                         vcpus_matched);
1684 #endif
1685 }
1686
1687 static void kvm_gen_update_masterclock(struct kvm *kvm)
1688 {
1689 #ifdef CONFIG_X86_64
1690         int i;
1691         struct kvm_vcpu *vcpu;
1692         struct kvm_arch *ka = &kvm->arch;
1693
1694         spin_lock(&ka->pvclock_gtod_sync_lock);
1695         kvm_make_mclock_inprogress_request(kvm);
1696         /* no guest entries from this point */
1697         pvclock_update_vm_gtod_copy(kvm);
1698
1699         kvm_for_each_vcpu(i, vcpu, kvm)
1700                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1701
1702         /* guest entries allowed */
1703         kvm_for_each_vcpu(i, vcpu, kvm)
1704                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1705
1706         spin_unlock(&ka->pvclock_gtod_sync_lock);
1707 #endif
1708 }
1709
1710 static int kvm_guest_time_update(struct kvm_vcpu *v)
1711 {
1712         unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1713         struct kvm_vcpu_arch *vcpu = &v->arch;
1714         struct kvm_arch *ka = &v->kvm->arch;
1715         s64 kernel_ns;
1716         u64 tsc_timestamp, host_tsc;
1717         struct pvclock_vcpu_time_info guest_hv_clock;
1718         u8 pvclock_flags;
1719         bool use_master_clock;
1720
1721         kernel_ns = 0;
1722         host_tsc = 0;
1723
1724         /*
1725          * If the host uses TSC clock, then passthrough TSC as stable
1726          * to the guest.
1727          */
1728         spin_lock(&ka->pvclock_gtod_sync_lock);
1729         use_master_clock = ka->use_master_clock;
1730         if (use_master_clock) {
1731                 host_tsc = ka->master_cycle_now;
1732                 kernel_ns = ka->master_kernel_ns;
1733         }
1734         spin_unlock(&ka->pvclock_gtod_sync_lock);
1735
1736         /* Keep irq disabled to prevent changes to the clock */
1737         local_irq_save(flags);
1738         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1739         if (unlikely(this_tsc_khz == 0)) {
1740                 local_irq_restore(flags);
1741                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1742                 return 1;
1743         }
1744         if (!use_master_clock) {
1745                 host_tsc = rdtsc();
1746                 kernel_ns = get_kernel_ns();
1747         }
1748
1749         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1750
1751         /*
1752          * We may have to catch up the TSC to match elapsed wall clock
1753          * time for two reasons, even if kvmclock is used.
1754          *   1) CPU could have been running below the maximum TSC rate
1755          *   2) Broken TSC compensation resets the base at each VCPU
1756          *      entry to avoid unknown leaps of TSC even when running
1757          *      again on the same CPU.  This may cause apparent elapsed
1758          *      time to disappear, and the guest to stand still or run
1759          *      very slowly.
1760          */
1761         if (vcpu->tsc_catchup) {
1762                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1763                 if (tsc > tsc_timestamp) {
1764                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1765                         tsc_timestamp = tsc;
1766                 }
1767         }
1768
1769         local_irq_restore(flags);
1770
1771         if (!vcpu->pv_time_enabled)
1772                 return 0;
1773
1774         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1775                 tgt_tsc_khz = kvm_has_tsc_control ?
1776                         vcpu->virtual_tsc_khz : this_tsc_khz;
1777                 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1778                                    &vcpu->hv_clock.tsc_shift,
1779                                    &vcpu->hv_clock.tsc_to_system_mul);
1780                 vcpu->hw_tsc_khz = this_tsc_khz;
1781         }
1782
1783         /* With all the info we got, fill in the values */
1784         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1785         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1786         vcpu->last_guest_tsc = tsc_timestamp;
1787
1788         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1789                 &guest_hv_clock, sizeof(guest_hv_clock))))
1790                 return 0;
1791
1792         /* This VCPU is paused, but it's legal for a guest to read another
1793          * VCPU's kvmclock, so we really have to follow the specification where
1794          * it says that version is odd if data is being modified, and even after
1795          * it is consistent.
1796          *
1797          * Version field updates must be kept separate.  This is because
1798          * kvm_write_guest_cached might use a "rep movs" instruction, and
1799          * writes within a string instruction are weakly ordered.  So there
1800          * are three writes overall.
1801          *
1802          * As a small optimization, only write the version field in the first
1803          * and third write.  The vcpu->pv_time cache is still valid, because the
1804          * version field is the first in the struct.
1805          */
1806         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1807
1808         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1809         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1810                                 &vcpu->hv_clock,
1811                                 sizeof(vcpu->hv_clock.version));
1812
1813         smp_wmb();
1814
1815         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1816         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1817
1818         if (vcpu->pvclock_set_guest_stopped_request) {
1819                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1820                 vcpu->pvclock_set_guest_stopped_request = false;
1821         }
1822
1823         /* If the host uses TSC clocksource, then it is stable */
1824         if (use_master_clock)
1825                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1826
1827         vcpu->hv_clock.flags = pvclock_flags;
1828
1829         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1830
1831         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1832                                 &vcpu->hv_clock,
1833                                 sizeof(vcpu->hv_clock));
1834
1835         smp_wmb();
1836
1837         vcpu->hv_clock.version++;
1838         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1839                                 &vcpu->hv_clock,
1840                                 sizeof(vcpu->hv_clock.version));
1841         return 0;
1842 }
1843
1844 /*
1845  * kvmclock updates which are isolated to a given vcpu, such as
1846  * vcpu->cpu migration, should not allow system_timestamp from
1847  * the rest of the vcpus to remain static. Otherwise ntp frequency
1848  * correction applies to one vcpu's system_timestamp but not
1849  * the others.
1850  *
1851  * So in those cases, request a kvmclock update for all vcpus.
1852  * We need to rate-limit these requests though, as they can
1853  * considerably slow guests that have a large number of vcpus.
1854  * The time for a remote vcpu to update its kvmclock is bound
1855  * by the delay we use to rate-limit the updates.
1856  */
1857
1858 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1859
1860 static void kvmclock_update_fn(struct work_struct *work)
1861 {
1862         int i;
1863         struct delayed_work *dwork = to_delayed_work(work);
1864         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1865                                            kvmclock_update_work);
1866         struct kvm *kvm = container_of(ka, struct kvm, arch);
1867         struct kvm_vcpu *vcpu;
1868
1869         kvm_for_each_vcpu(i, vcpu, kvm) {
1870                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1871                 kvm_vcpu_kick(vcpu);
1872         }
1873 }
1874
1875 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1876 {
1877         struct kvm *kvm = v->kvm;
1878
1879         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1880         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1881                                         KVMCLOCK_UPDATE_DELAY);
1882 }
1883
1884 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1885
1886 static void kvmclock_sync_fn(struct work_struct *work)
1887 {
1888         struct delayed_work *dwork = to_delayed_work(work);
1889         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1890                                            kvmclock_sync_work);
1891         struct kvm *kvm = container_of(ka, struct kvm, arch);
1892
1893         if (!kvmclock_periodic_sync)
1894                 return;
1895
1896         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1897         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1898                                         KVMCLOCK_SYNC_PERIOD);
1899 }
1900
1901 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1902 {
1903         u64 mcg_cap = vcpu->arch.mcg_cap;
1904         unsigned bank_num = mcg_cap & 0xff;
1905
1906         switch (msr) {
1907         case MSR_IA32_MCG_STATUS:
1908                 vcpu->arch.mcg_status = data;
1909                 break;
1910         case MSR_IA32_MCG_CTL:
1911                 if (!(mcg_cap & MCG_CTL_P))
1912                         return 1;
1913                 if (data != 0 && data != ~(u64)0)
1914                         return -1;
1915                 vcpu->arch.mcg_ctl = data;
1916                 break;
1917         default:
1918                 if (msr >= MSR_IA32_MC0_CTL &&
1919                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1920                         u32 offset = msr - MSR_IA32_MC0_CTL;
1921                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1922                          * some Linux kernels though clear bit 10 in bank 4 to
1923                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1924                          * this to avoid an uncatched #GP in the guest
1925                          */
1926                         if ((offset & 0x3) == 0 &&
1927                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1928                                 return -1;
1929                         vcpu->arch.mce_banks[offset] = data;
1930                         break;
1931                 }
1932                 return 1;
1933         }
1934         return 0;
1935 }
1936
1937 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1938 {
1939         struct kvm *kvm = vcpu->kvm;
1940         int lm = is_long_mode(vcpu);
1941         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1942                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1943         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1944                 : kvm->arch.xen_hvm_config.blob_size_32;
1945         u32 page_num = data & ~PAGE_MASK;
1946         u64 page_addr = data & PAGE_MASK;
1947         u8 *page;
1948         int r;
1949
1950         r = -E2BIG;
1951         if (page_num >= blob_size)
1952                 goto out;
1953         r = -ENOMEM;
1954         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1955         if (IS_ERR(page)) {
1956                 r = PTR_ERR(page);
1957                 goto out;
1958         }
1959         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1960                 goto out_free;
1961         r = 0;
1962 out_free:
1963         kfree(page);
1964 out:
1965         return r;
1966 }
1967
1968 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1969 {
1970         gpa_t gpa = data & ~0x3f;
1971
1972         /* Bits 2:5 are reserved, Should be zero */
1973         if (data & 0x3c)
1974                 return 1;
1975
1976         vcpu->arch.apf.msr_val = data;
1977
1978         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1979                 kvm_clear_async_pf_completion_queue(vcpu);
1980                 kvm_async_pf_hash_reset(vcpu);
1981                 return 0;
1982         }
1983
1984         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1985                                         sizeof(u32)))
1986                 return 1;
1987
1988         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1989         kvm_async_pf_wakeup_all(vcpu);
1990         return 0;
1991 }
1992
1993 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1994 {
1995         vcpu->arch.pv_time_enabled = false;
1996 }
1997
1998 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1999 {
2000         u64 delta;
2001
2002         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2003                 return;
2004
2005         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2006         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2007         vcpu->arch.st.accum_steal = delta;
2008 }
2009
2010 static void record_steal_time(struct kvm_vcpu *vcpu)
2011 {
2012         accumulate_steal_time(vcpu);
2013
2014         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2015                 return;
2016
2017         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2018                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2019                 return;
2020
2021         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2022         vcpu->arch.st.steal.version += 2;
2023         vcpu->arch.st.accum_steal = 0;
2024
2025         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2026                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2027 }
2028
2029 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2030 {
2031         bool pr = false;
2032         u32 msr = msr_info->index;
2033         u64 data = msr_info->data;
2034
2035         switch (msr) {
2036         case MSR_AMD64_NB_CFG:
2037         case MSR_IA32_UCODE_REV:
2038         case MSR_IA32_UCODE_WRITE:
2039         case MSR_VM_HSAVE_PA:
2040         case MSR_AMD64_PATCH_LOADER:
2041         case MSR_AMD64_BU_CFG2:
2042                 break;
2043
2044         case MSR_EFER:
2045                 return set_efer(vcpu, data);
2046         case MSR_K7_HWCR:
2047                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2048                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2049                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2050                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2051                 if (data != 0) {
2052                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2053                                     data);
2054                         return 1;
2055                 }
2056                 break;
2057         case MSR_FAM10H_MMIO_CONF_BASE:
2058                 if (data != 0) {
2059                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2060                                     "0x%llx\n", data);
2061                         return 1;
2062                 }
2063                 break;
2064         case MSR_IA32_DEBUGCTLMSR:
2065                 if (!data) {
2066                         /* We support the non-activated case already */
2067                         break;
2068                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2069                         /* Values other than LBR and BTF are vendor-specific,
2070                            thus reserved and should throw a #GP */
2071                         return 1;
2072                 }
2073                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2074                             __func__, data);
2075                 break;
2076         case 0x200 ... 0x2ff:
2077                 return kvm_mtrr_set_msr(vcpu, msr, data);
2078         case MSR_IA32_APICBASE:
2079                 return kvm_set_apic_base(vcpu, msr_info);
2080         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2081                 return kvm_x2apic_msr_write(vcpu, msr, data);
2082         case MSR_IA32_TSCDEADLINE:
2083                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2084                 break;
2085         case MSR_IA32_TSC_ADJUST:
2086                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2087                         if (!msr_info->host_initiated) {
2088                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2089                                 adjust_tsc_offset_guest(vcpu, adj);
2090                         }
2091                         vcpu->arch.ia32_tsc_adjust_msr = data;
2092                 }
2093                 break;
2094         case MSR_IA32_MISC_ENABLE:
2095                 vcpu->arch.ia32_misc_enable_msr = data;
2096                 break;
2097         case MSR_IA32_SMBASE:
2098                 if (!msr_info->host_initiated)
2099                         return 1;
2100                 vcpu->arch.smbase = data;
2101                 break;
2102         case MSR_KVM_WALL_CLOCK_NEW:
2103         case MSR_KVM_WALL_CLOCK:
2104                 vcpu->kvm->arch.wall_clock = data;
2105                 kvm_write_wall_clock(vcpu->kvm, data);
2106                 break;
2107         case MSR_KVM_SYSTEM_TIME_NEW:
2108         case MSR_KVM_SYSTEM_TIME: {
2109                 u64 gpa_offset;
2110                 struct kvm_arch *ka = &vcpu->kvm->arch;
2111
2112                 kvmclock_reset(vcpu);
2113
2114                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2115                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2116
2117                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2118                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2119                                         &vcpu->requests);
2120
2121                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2122                 }
2123
2124                 vcpu->arch.time = data;
2125                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2126
2127                 /* we verify if the enable bit is set... */
2128                 if (!(data & 1))
2129                         break;
2130
2131                 gpa_offset = data & ~(PAGE_MASK | 1);
2132
2133                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2134                      &vcpu->arch.pv_time, data & ~1ULL,
2135                      sizeof(struct pvclock_vcpu_time_info)))
2136                         vcpu->arch.pv_time_enabled = false;
2137                 else
2138                         vcpu->arch.pv_time_enabled = true;
2139
2140                 break;
2141         }
2142         case MSR_KVM_ASYNC_PF_EN:
2143                 if (kvm_pv_enable_async_pf(vcpu, data))
2144                         return 1;
2145                 break;
2146         case MSR_KVM_STEAL_TIME:
2147
2148                 if (unlikely(!sched_info_on()))
2149                         return 1;
2150
2151                 if (data & KVM_STEAL_RESERVED_MASK)
2152                         return 1;
2153
2154                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2155                                                 data & KVM_STEAL_VALID_BITS,
2156                                                 sizeof(struct kvm_steal_time)))
2157                         return 1;
2158
2159                 vcpu->arch.st.msr_val = data;
2160
2161                 if (!(data & KVM_MSR_ENABLED))
2162                         break;
2163
2164                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2165
2166                 break;
2167         case MSR_KVM_PV_EOI_EN:
2168                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2169                         return 1;
2170                 break;
2171
2172         case MSR_IA32_MCG_CTL:
2173         case MSR_IA32_MCG_STATUS:
2174         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2175                 return set_msr_mce(vcpu, msr, data);
2176
2177         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2178         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2179                 pr = true; /* fall through */
2180         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2181         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2182                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2183                         return kvm_pmu_set_msr(vcpu, msr_info);
2184
2185                 if (pr || data != 0)
2186                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2187                                     "0x%x data 0x%llx\n", msr, data);
2188                 break;
2189         case MSR_K7_CLK_CTL:
2190                 /*
2191                  * Ignore all writes to this no longer documented MSR.
2192                  * Writes are only relevant for old K7 processors,
2193                  * all pre-dating SVM, but a recommended workaround from
2194                  * AMD for these chips. It is possible to specify the
2195                  * affected processor models on the command line, hence
2196                  * the need to ignore the workaround.
2197                  */
2198                 break;
2199         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2200         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2201         case HV_X64_MSR_CRASH_CTL:
2202                 return kvm_hv_set_msr_common(vcpu, msr, data,
2203                                              msr_info->host_initiated);
2204         case MSR_IA32_BBL_CR_CTL3:
2205                 /* Drop writes to this legacy MSR -- see rdmsr
2206                  * counterpart for further detail.
2207                  */
2208                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2209                 break;
2210         case MSR_AMD64_OSVW_ID_LENGTH:
2211                 if (!guest_cpuid_has_osvw(vcpu))
2212                         return 1;
2213                 vcpu->arch.osvw.length = data;
2214                 break;
2215         case MSR_AMD64_OSVW_STATUS:
2216                 if (!guest_cpuid_has_osvw(vcpu))
2217                         return 1;
2218                 vcpu->arch.osvw.status = data;
2219                 break;
2220         default:
2221                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2222                         return xen_hvm_config(vcpu, data);
2223                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2224                         return kvm_pmu_set_msr(vcpu, msr_info);
2225                 if (!ignore_msrs) {
2226                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2227                                     msr, data);
2228                         return 1;
2229                 } else {
2230                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2231                                     msr, data);
2232                         break;
2233                 }
2234         }
2235         return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2238
2239
2240 /*
2241  * Reads an msr value (of 'msr_index') into 'pdata'.
2242  * Returns 0 on success, non-0 otherwise.
2243  * Assumes vcpu_load() was already called.
2244  */
2245 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2246 {
2247         return kvm_x86_ops->get_msr(vcpu, msr);
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_get_msr);
2250
2251 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2252 {
2253         u64 data;
2254         u64 mcg_cap = vcpu->arch.mcg_cap;
2255         unsigned bank_num = mcg_cap & 0xff;
2256
2257         switch (msr) {
2258         case MSR_IA32_P5_MC_ADDR:
2259         case MSR_IA32_P5_MC_TYPE:
2260                 data = 0;
2261                 break;
2262         case MSR_IA32_MCG_CAP:
2263                 data = vcpu->arch.mcg_cap;
2264                 break;
2265         case MSR_IA32_MCG_CTL:
2266                 if (!(mcg_cap & MCG_CTL_P))
2267                         return 1;
2268                 data = vcpu->arch.mcg_ctl;
2269                 break;
2270         case MSR_IA32_MCG_STATUS:
2271                 data = vcpu->arch.mcg_status;
2272                 break;
2273         default:
2274                 if (msr >= MSR_IA32_MC0_CTL &&
2275                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2276                         u32 offset = msr - MSR_IA32_MC0_CTL;
2277                         data = vcpu->arch.mce_banks[offset];
2278                         break;
2279                 }
2280                 return 1;
2281         }
2282         *pdata = data;
2283         return 0;
2284 }
2285
2286 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2287 {
2288         switch (msr_info->index) {
2289         case MSR_IA32_PLATFORM_ID:
2290         case MSR_IA32_EBL_CR_POWERON:
2291         case MSR_IA32_DEBUGCTLMSR:
2292         case MSR_IA32_LASTBRANCHFROMIP:
2293         case MSR_IA32_LASTBRANCHTOIP:
2294         case MSR_IA32_LASTINTFROMIP:
2295         case MSR_IA32_LASTINTTOIP:
2296         case MSR_K8_SYSCFG:
2297         case MSR_K8_TSEG_ADDR:
2298         case MSR_K8_TSEG_MASK:
2299         case MSR_K7_HWCR:
2300         case MSR_VM_HSAVE_PA:
2301         case MSR_K8_INT_PENDING_MSG:
2302         case MSR_AMD64_NB_CFG:
2303         case MSR_FAM10H_MMIO_CONF_BASE:
2304         case MSR_AMD64_BU_CFG2:
2305                 msr_info->data = 0;
2306                 break;
2307         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2308         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2309         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2310         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2311                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2312                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2313                 msr_info->data = 0;
2314                 break;
2315         case MSR_IA32_UCODE_REV:
2316                 msr_info->data = 0x100000000ULL;
2317                 break;
2318         case MSR_MTRRcap:
2319         case 0x200 ... 0x2ff:
2320                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2321         case 0xcd: /* fsb frequency */
2322                 msr_info->data = 3;
2323                 break;
2324                 /*
2325                  * MSR_EBC_FREQUENCY_ID
2326                  * Conservative value valid for even the basic CPU models.
2327                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2328                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2329                  * and 266MHz for model 3, or 4. Set Core Clock
2330                  * Frequency to System Bus Frequency Ratio to 1 (bits
2331                  * 31:24) even though these are only valid for CPU
2332                  * models > 2, however guests may end up dividing or
2333                  * multiplying by zero otherwise.
2334                  */
2335         case MSR_EBC_FREQUENCY_ID:
2336                 msr_info->data = 1 << 24;
2337                 break;
2338         case MSR_IA32_APICBASE:
2339                 msr_info->data = kvm_get_apic_base(vcpu);
2340                 break;
2341         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2342                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2343                 break;
2344         case MSR_IA32_TSCDEADLINE:
2345                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2346                 break;
2347         case MSR_IA32_TSC_ADJUST:
2348                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2349                 break;
2350         case MSR_IA32_MISC_ENABLE:
2351                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2352                 break;
2353         case MSR_IA32_SMBASE:
2354                 if (!msr_info->host_initiated)
2355                         return 1;
2356                 msr_info->data = vcpu->arch.smbase;
2357                 break;
2358         case MSR_IA32_PERF_STATUS:
2359                 /* TSC increment by tick */
2360                 msr_info->data = 1000ULL;
2361                 /* CPU multiplier */
2362                 msr_info->data |= (((uint64_t)4ULL) << 40);
2363                 break;
2364         case MSR_EFER:
2365                 msr_info->data = vcpu->arch.efer;
2366                 break;
2367         case MSR_KVM_WALL_CLOCK:
2368         case MSR_KVM_WALL_CLOCK_NEW:
2369                 msr_info->data = vcpu->kvm->arch.wall_clock;
2370                 break;
2371         case MSR_KVM_SYSTEM_TIME:
2372         case MSR_KVM_SYSTEM_TIME_NEW:
2373                 msr_info->data = vcpu->arch.time;
2374                 break;
2375         case MSR_KVM_ASYNC_PF_EN:
2376                 msr_info->data = vcpu->arch.apf.msr_val;
2377                 break;
2378         case MSR_KVM_STEAL_TIME:
2379                 msr_info->data = vcpu->arch.st.msr_val;
2380                 break;
2381         case MSR_KVM_PV_EOI_EN:
2382                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2383                 break;
2384         case MSR_IA32_P5_MC_ADDR:
2385         case MSR_IA32_P5_MC_TYPE:
2386         case MSR_IA32_MCG_CAP:
2387         case MSR_IA32_MCG_CTL:
2388         case MSR_IA32_MCG_STATUS:
2389         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2390                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2391         case MSR_K7_CLK_CTL:
2392                 /*
2393                  * Provide expected ramp-up count for K7. All other
2394                  * are set to zero, indicating minimum divisors for
2395                  * every field.
2396                  *
2397                  * This prevents guest kernels on AMD host with CPU
2398                  * type 6, model 8 and higher from exploding due to
2399                  * the rdmsr failing.
2400                  */
2401                 msr_info->data = 0x20000000;
2402                 break;
2403         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2404         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2405         case HV_X64_MSR_CRASH_CTL:
2406                 return kvm_hv_get_msr_common(vcpu,
2407                                              msr_info->index, &msr_info->data);
2408                 break;
2409         case MSR_IA32_BBL_CR_CTL3:
2410                 /* This legacy MSR exists but isn't fully documented in current
2411                  * silicon.  It is however accessed by winxp in very narrow
2412                  * scenarios where it sets bit #19, itself documented as
2413                  * a "reserved" bit.  Best effort attempt to source coherent
2414                  * read data here should the balance of the register be
2415                  * interpreted by the guest:
2416                  *
2417                  * L2 cache control register 3: 64GB range, 256KB size,
2418                  * enabled, latency 0x1, configured
2419                  */
2420                 msr_info->data = 0xbe702111;
2421                 break;
2422         case MSR_AMD64_OSVW_ID_LENGTH:
2423                 if (!guest_cpuid_has_osvw(vcpu))
2424                         return 1;
2425                 msr_info->data = vcpu->arch.osvw.length;
2426                 break;
2427         case MSR_AMD64_OSVW_STATUS:
2428                 if (!guest_cpuid_has_osvw(vcpu))
2429                         return 1;
2430                 msr_info->data = vcpu->arch.osvw.status;
2431                 break;
2432         default:
2433                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2434                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2435                 if (!ignore_msrs) {
2436                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2437                         return 1;
2438                 } else {
2439                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2440                         msr_info->data = 0;
2441                 }
2442                 break;
2443         }
2444         return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2447
2448 /*
2449  * Read or write a bunch of msrs. All parameters are kernel addresses.
2450  *
2451  * @return number of msrs set successfully.
2452  */
2453 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2454                     struct kvm_msr_entry *entries,
2455                     int (*do_msr)(struct kvm_vcpu *vcpu,
2456                                   unsigned index, u64 *data))
2457 {
2458         int i, idx;
2459
2460         idx = srcu_read_lock(&vcpu->kvm->srcu);
2461         for (i = 0; i < msrs->nmsrs; ++i)
2462                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2463                         break;
2464         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2465
2466         return i;
2467 }
2468
2469 /*
2470  * Read or write a bunch of msrs. Parameters are user addresses.
2471  *
2472  * @return number of msrs set successfully.
2473  */
2474 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2475                   int (*do_msr)(struct kvm_vcpu *vcpu,
2476                                 unsigned index, u64 *data),
2477                   int writeback)
2478 {
2479         struct kvm_msrs msrs;
2480         struct kvm_msr_entry *entries;
2481         int r, n;
2482         unsigned size;
2483
2484         r = -EFAULT;
2485         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2486                 goto out;
2487
2488         r = -E2BIG;
2489         if (msrs.nmsrs >= MAX_IO_MSRS)
2490                 goto out;
2491
2492         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2493         entries = memdup_user(user_msrs->entries, size);
2494         if (IS_ERR(entries)) {
2495                 r = PTR_ERR(entries);
2496                 goto out;
2497         }
2498
2499         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2500         if (r < 0)
2501                 goto out_free;
2502
2503         r = -EFAULT;
2504         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2505                 goto out_free;
2506
2507         r = n;
2508
2509 out_free:
2510         kfree(entries);
2511 out:
2512         return r;
2513 }
2514
2515 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2516 {
2517         int r;
2518
2519         switch (ext) {
2520         case KVM_CAP_IRQCHIP:
2521         case KVM_CAP_HLT:
2522         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2523         case KVM_CAP_SET_TSS_ADDR:
2524         case KVM_CAP_EXT_CPUID:
2525         case KVM_CAP_EXT_EMUL_CPUID:
2526         case KVM_CAP_CLOCKSOURCE:
2527         case KVM_CAP_PIT:
2528         case KVM_CAP_NOP_IO_DELAY:
2529         case KVM_CAP_MP_STATE:
2530         case KVM_CAP_SYNC_MMU:
2531         case KVM_CAP_USER_NMI:
2532         case KVM_CAP_REINJECT_CONTROL:
2533         case KVM_CAP_IRQ_INJECT_STATUS:
2534         case KVM_CAP_IOEVENTFD:
2535         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2536         case KVM_CAP_PIT2:
2537         case KVM_CAP_PIT_STATE2:
2538         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2539         case KVM_CAP_XEN_HVM:
2540         case KVM_CAP_ADJUST_CLOCK:
2541         case KVM_CAP_VCPU_EVENTS:
2542         case KVM_CAP_HYPERV:
2543         case KVM_CAP_HYPERV_VAPIC:
2544         case KVM_CAP_HYPERV_SPIN:
2545         case KVM_CAP_HYPERV_SYNIC:
2546         case KVM_CAP_PCI_SEGMENT:
2547         case KVM_CAP_DEBUGREGS:
2548         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2549         case KVM_CAP_XSAVE:
2550         case KVM_CAP_ASYNC_PF:
2551         case KVM_CAP_GET_TSC_KHZ:
2552         case KVM_CAP_KVMCLOCK_CTRL:
2553         case KVM_CAP_READONLY_MEM:
2554         case KVM_CAP_HYPERV_TIME:
2555         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2556         case KVM_CAP_TSC_DEADLINE_TIMER:
2557         case KVM_CAP_ENABLE_CAP_VM:
2558         case KVM_CAP_DISABLE_QUIRKS:
2559         case KVM_CAP_SET_BOOT_CPU_ID:
2560         case KVM_CAP_SPLIT_IRQCHIP:
2561 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2562         case KVM_CAP_ASSIGN_DEV_IRQ:
2563         case KVM_CAP_PCI_2_3:
2564 #endif
2565                 r = 1;
2566                 break;
2567         case KVM_CAP_X86_SMM:
2568                 /* SMBASE is usually relocated above 1M on modern chipsets,
2569                  * and SMM handlers might indeed rely on 4G segment limits,
2570                  * so do not report SMM to be available if real mode is
2571                  * emulated via vm86 mode.  Still, do not go to great lengths
2572                  * to avoid userspace's usage of the feature, because it is a
2573                  * fringe case that is not enabled except via specific settings
2574                  * of the module parameters.
2575                  */
2576                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2577                 break;
2578         case KVM_CAP_COALESCED_MMIO:
2579                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2580                 break;
2581         case KVM_CAP_VAPIC:
2582                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2583                 break;
2584         case KVM_CAP_NR_VCPUS:
2585                 r = KVM_SOFT_MAX_VCPUS;
2586                 break;
2587         case KVM_CAP_MAX_VCPUS:
2588                 r = KVM_MAX_VCPUS;
2589                 break;
2590         case KVM_CAP_NR_MEMSLOTS:
2591                 r = KVM_USER_MEM_SLOTS;
2592                 break;
2593         case KVM_CAP_PV_MMU:    /* obsolete */
2594                 r = 0;
2595                 break;
2596 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2597         case KVM_CAP_IOMMU:
2598                 r = iommu_present(&pci_bus_type);
2599                 break;
2600 #endif
2601         case KVM_CAP_MCE:
2602                 r = KVM_MAX_MCE_BANKS;
2603                 break;
2604         case KVM_CAP_XCRS:
2605                 r = cpu_has_xsave;
2606                 break;
2607         case KVM_CAP_TSC_CONTROL:
2608                 r = kvm_has_tsc_control;
2609                 break;
2610         default:
2611                 r = 0;
2612                 break;
2613         }
2614         return r;
2615
2616 }
2617
2618 long kvm_arch_dev_ioctl(struct file *filp,
2619                         unsigned int ioctl, unsigned long arg)
2620 {
2621         void __user *argp = (void __user *)arg;
2622         long r;
2623
2624         switch (ioctl) {
2625         case KVM_GET_MSR_INDEX_LIST: {
2626                 struct kvm_msr_list __user *user_msr_list = argp;
2627                 struct kvm_msr_list msr_list;
2628                 unsigned n;
2629
2630                 r = -EFAULT;
2631                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2632                         goto out;
2633                 n = msr_list.nmsrs;
2634                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2635                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2636                         goto out;
2637                 r = -E2BIG;
2638                 if (n < msr_list.nmsrs)
2639                         goto out;
2640                 r = -EFAULT;
2641                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2642                                  num_msrs_to_save * sizeof(u32)))
2643                         goto out;
2644                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2645                                  &emulated_msrs,
2646                                  num_emulated_msrs * sizeof(u32)))
2647                         goto out;
2648                 r = 0;
2649                 break;
2650         }
2651         case KVM_GET_SUPPORTED_CPUID:
2652         case KVM_GET_EMULATED_CPUID: {
2653                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2654                 struct kvm_cpuid2 cpuid;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2658                         goto out;
2659
2660                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2661                                             ioctl);
2662                 if (r)
2663                         goto out;
2664
2665                 r = -EFAULT;
2666                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2667                         goto out;
2668                 r = 0;
2669                 break;
2670         }
2671         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2672                 u64 mce_cap;
2673
2674                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2675                 r = -EFAULT;
2676                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2677                         goto out;
2678                 r = 0;
2679                 break;
2680         }
2681         default:
2682                 r = -EINVAL;
2683         }
2684 out:
2685         return r;
2686 }
2687
2688 static void wbinvd_ipi(void *garbage)
2689 {
2690         wbinvd();
2691 }
2692
2693 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2694 {
2695         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2696 }
2697
2698 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2699 {
2700         /* Address WBINVD may be executed by guest */
2701         if (need_emulate_wbinvd(vcpu)) {
2702                 if (kvm_x86_ops->has_wbinvd_exit())
2703                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2704                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2705                         smp_call_function_single(vcpu->cpu,
2706                                         wbinvd_ipi, NULL, 1);
2707         }
2708
2709         kvm_x86_ops->vcpu_load(vcpu, cpu);
2710
2711         /* Apply any externally detected TSC adjustments (due to suspend) */
2712         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2713                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2714                 vcpu->arch.tsc_offset_adjustment = 0;
2715                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2716         }
2717
2718         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2719                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2720                                 rdtsc() - vcpu->arch.last_host_tsc;
2721                 if (tsc_delta < 0)
2722                         mark_tsc_unstable("KVM discovered backwards TSC");
2723                 if (check_tsc_unstable()) {
2724                         u64 offset = kvm_compute_tsc_offset(vcpu,
2725                                                 vcpu->arch.last_guest_tsc);
2726                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2727                         vcpu->arch.tsc_catchup = 1;
2728                 }
2729                 /*
2730                  * On a host with synchronized TSC, there is no need to update
2731                  * kvmclock on vcpu->cpu migration
2732                  */
2733                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2734                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2735                 if (vcpu->cpu != cpu)
2736                         kvm_migrate_timers(vcpu);
2737                 vcpu->cpu = cpu;
2738         }
2739
2740         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2741 }
2742
2743 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2744 {
2745         kvm_x86_ops->vcpu_put(vcpu);
2746         kvm_put_guest_fpu(vcpu);
2747         vcpu->arch.last_host_tsc = rdtsc();
2748 }
2749
2750 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2751                                     struct kvm_lapic_state *s)
2752 {
2753         if (vcpu->arch.apicv_active)
2754                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2755
2756         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2757
2758         return 0;
2759 }
2760
2761 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2762                                     struct kvm_lapic_state *s)
2763 {
2764         kvm_apic_post_state_restore(vcpu, s);
2765         update_cr8_intercept(vcpu);
2766
2767         return 0;
2768 }
2769
2770 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2771 {
2772         return (!lapic_in_kernel(vcpu) ||
2773                 kvm_apic_accept_pic_intr(vcpu));
2774 }
2775
2776 /*
2777  * if userspace requested an interrupt window, check that the
2778  * interrupt window is open.
2779  *
2780  * No need to exit to userspace if we already have an interrupt queued.
2781  */
2782 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2783 {
2784         return kvm_arch_interrupt_allowed(vcpu) &&
2785                 !kvm_cpu_has_interrupt(vcpu) &&
2786                 !kvm_event_needs_reinjection(vcpu) &&
2787                 kvm_cpu_accept_dm_intr(vcpu);
2788 }
2789
2790 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2791                                     struct kvm_interrupt *irq)
2792 {
2793         if (irq->irq >= KVM_NR_INTERRUPTS)
2794                 return -EINVAL;
2795
2796         if (!irqchip_in_kernel(vcpu->kvm)) {
2797                 kvm_queue_interrupt(vcpu, irq->irq, false);
2798                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2799                 return 0;
2800         }
2801
2802         /*
2803          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2804          * fail for in-kernel 8259.
2805          */
2806         if (pic_in_kernel(vcpu->kvm))
2807                 return -ENXIO;
2808
2809         if (vcpu->arch.pending_external_vector != -1)
2810                 return -EEXIST;
2811
2812         vcpu->arch.pending_external_vector = irq->irq;
2813         kvm_make_request(KVM_REQ_EVENT, vcpu);
2814         return 0;
2815 }
2816
2817 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2818 {
2819         kvm_inject_nmi(vcpu);
2820
2821         return 0;
2822 }
2823
2824 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2825 {
2826         kvm_make_request(KVM_REQ_SMI, vcpu);
2827
2828         return 0;
2829 }
2830
2831 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2832                                            struct kvm_tpr_access_ctl *tac)
2833 {
2834         if (tac->flags)
2835                 return -EINVAL;
2836         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2837         return 0;
2838 }
2839
2840 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2841                                         u64 mcg_cap)
2842 {
2843         int r;
2844         unsigned bank_num = mcg_cap & 0xff, bank;
2845
2846         r = -EINVAL;
2847         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2848                 goto out;
2849         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2850                 goto out;
2851         r = 0;
2852         vcpu->arch.mcg_cap = mcg_cap;
2853         /* Init IA32_MCG_CTL to all 1s */
2854         if (mcg_cap & MCG_CTL_P)
2855                 vcpu->arch.mcg_ctl = ~(u64)0;
2856         /* Init IA32_MCi_CTL to all 1s */
2857         for (bank = 0; bank < bank_num; bank++)
2858                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2859 out:
2860         return r;
2861 }
2862
2863 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2864                                       struct kvm_x86_mce *mce)
2865 {
2866         u64 mcg_cap = vcpu->arch.mcg_cap;
2867         unsigned bank_num = mcg_cap & 0xff;
2868         u64 *banks = vcpu->arch.mce_banks;
2869
2870         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2871                 return -EINVAL;
2872         /*
2873          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2874          * reporting is disabled
2875          */
2876         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2877             vcpu->arch.mcg_ctl != ~(u64)0)
2878                 return 0;
2879         banks += 4 * mce->bank;
2880         /*
2881          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2882          * reporting is disabled for the bank
2883          */
2884         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2885                 return 0;
2886         if (mce->status & MCI_STATUS_UC) {
2887                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2888                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2889                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2890                         return 0;
2891                 }
2892                 if (banks[1] & MCI_STATUS_VAL)
2893                         mce->status |= MCI_STATUS_OVER;
2894                 banks[2] = mce->addr;
2895                 banks[3] = mce->misc;
2896                 vcpu->arch.mcg_status = mce->mcg_status;
2897                 banks[1] = mce->status;
2898                 kvm_queue_exception(vcpu, MC_VECTOR);
2899         } else if (!(banks[1] & MCI_STATUS_VAL)
2900                    || !(banks[1] & MCI_STATUS_UC)) {
2901                 if (banks[1] & MCI_STATUS_VAL)
2902                         mce->status |= MCI_STATUS_OVER;
2903                 banks[2] = mce->addr;
2904                 banks[3] = mce->misc;
2905                 banks[1] = mce->status;
2906         } else
2907                 banks[1] |= MCI_STATUS_OVER;
2908         return 0;
2909 }
2910
2911 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2912                                                struct kvm_vcpu_events *events)
2913 {
2914         process_nmi(vcpu);
2915         events->exception.injected =
2916                 vcpu->arch.exception.pending &&
2917                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2918         events->exception.nr = vcpu->arch.exception.nr;
2919         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2920         events->exception.pad = 0;
2921         events->exception.error_code = vcpu->arch.exception.error_code;
2922
2923         events->interrupt.injected =
2924                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2925         events->interrupt.nr = vcpu->arch.interrupt.nr;
2926         events->interrupt.soft = 0;
2927         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2928
2929         events->nmi.injected = vcpu->arch.nmi_injected;
2930         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2931         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2932         events->nmi.pad = 0;
2933
2934         events->sipi_vector = 0; /* never valid when reporting to user space */
2935
2936         events->smi.smm = is_smm(vcpu);
2937         events->smi.pending = vcpu->arch.smi_pending;
2938         events->smi.smm_inside_nmi =
2939                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2940         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2941
2942         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2943                          | KVM_VCPUEVENT_VALID_SHADOW
2944                          | KVM_VCPUEVENT_VALID_SMM);
2945         memset(&events->reserved, 0, sizeof(events->reserved));
2946 }
2947
2948 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2949                                               struct kvm_vcpu_events *events)
2950 {
2951         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2952                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2953                               | KVM_VCPUEVENT_VALID_SHADOW
2954                               | KVM_VCPUEVENT_VALID_SMM))
2955                 return -EINVAL;
2956
2957         process_nmi(vcpu);
2958         vcpu->arch.exception.pending = events->exception.injected;
2959         vcpu->arch.exception.nr = events->exception.nr;
2960         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2961         vcpu->arch.exception.error_code = events->exception.error_code;
2962
2963         vcpu->arch.interrupt.pending = events->interrupt.injected;
2964         vcpu->arch.interrupt.nr = events->interrupt.nr;
2965         vcpu->arch.interrupt.soft = events->interrupt.soft;
2966         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2967                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2968                                                   events->interrupt.shadow);
2969
2970         vcpu->arch.nmi_injected = events->nmi.injected;
2971         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2972                 vcpu->arch.nmi_pending = events->nmi.pending;
2973         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2974
2975         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2976             kvm_vcpu_has_lapic(vcpu))
2977                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2978
2979         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2980                 if (events->smi.smm)
2981                         vcpu->arch.hflags |= HF_SMM_MASK;
2982                 else
2983                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2984                 vcpu->arch.smi_pending = events->smi.pending;
2985                 if (events->smi.smm_inside_nmi)
2986                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2987                 else
2988                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2989                 if (kvm_vcpu_has_lapic(vcpu)) {
2990                         if (events->smi.latched_init)
2991                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2992                         else
2993                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2994                 }
2995         }
2996
2997         kvm_make_request(KVM_REQ_EVENT, vcpu);
2998
2999         return 0;
3000 }
3001
3002 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3003                                              struct kvm_debugregs *dbgregs)
3004 {
3005         unsigned long val;
3006
3007         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3008         kvm_get_dr(vcpu, 6, &val);
3009         dbgregs->dr6 = val;
3010         dbgregs->dr7 = vcpu->arch.dr7;
3011         dbgregs->flags = 0;
3012         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3013 }
3014
3015 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3016                                             struct kvm_debugregs *dbgregs)
3017 {
3018         if (dbgregs->flags)
3019                 return -EINVAL;
3020
3021         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3022         kvm_update_dr0123(vcpu);
3023         vcpu->arch.dr6 = dbgregs->dr6;
3024         kvm_update_dr6(vcpu);
3025         vcpu->arch.dr7 = dbgregs->dr7;
3026         kvm_update_dr7(vcpu);
3027
3028         return 0;
3029 }
3030
3031 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3032
3033 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3034 {
3035         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3036         u64 xstate_bv = xsave->header.xfeatures;
3037         u64 valid;
3038
3039         /*
3040          * Copy legacy XSAVE area, to avoid complications with CPUID
3041          * leaves 0 and 1 in the loop below.
3042          */
3043         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3044
3045         /* Set XSTATE_BV */
3046         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3047
3048         /*
3049          * Copy each region from the possibly compacted offset to the
3050          * non-compacted offset.
3051          */
3052         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3053         while (valid) {
3054                 u64 feature = valid & -valid;
3055                 int index = fls64(feature) - 1;
3056                 void *src = get_xsave_addr(xsave, feature);
3057
3058                 if (src) {
3059                         u32 size, offset, ecx, edx;
3060                         cpuid_count(XSTATE_CPUID, index,
3061                                     &size, &offset, &ecx, &edx);
3062                         memcpy(dest + offset, src, size);
3063                 }
3064
3065                 valid -= feature;
3066         }
3067 }
3068
3069 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3070 {
3071         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3072         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3073         u64 valid;
3074
3075         /*
3076          * Copy legacy XSAVE area, to avoid complications with CPUID
3077          * leaves 0 and 1 in the loop below.
3078          */
3079         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3080
3081         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3082         xsave->header.xfeatures = xstate_bv;
3083         if (cpu_has_xsaves)
3084                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3085
3086         /*
3087          * Copy each region from the non-compacted offset to the
3088          * possibly compacted offset.
3089          */
3090         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3091         while (valid) {
3092                 u64 feature = valid & -valid;
3093                 int index = fls64(feature) - 1;
3094                 void *dest = get_xsave_addr(xsave, feature);
3095
3096                 if (dest) {
3097                         u32 size, offset, ecx, edx;
3098                         cpuid_count(XSTATE_CPUID, index,
3099                                     &size, &offset, &ecx, &edx);
3100                         memcpy(dest, src + offset, size);
3101                 }
3102
3103                 valid -= feature;
3104         }
3105 }
3106
3107 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3108                                          struct kvm_xsave *guest_xsave)
3109 {
3110         if (cpu_has_xsave) {
3111                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3112                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3113         } else {
3114                 memcpy(guest_xsave->region,
3115                         &vcpu->arch.guest_fpu.state.fxsave,
3116                         sizeof(struct fxregs_state));
3117                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3118                         XFEATURE_MASK_FPSSE;
3119         }
3120 }
3121
3122 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3123                                         struct kvm_xsave *guest_xsave)
3124 {
3125         u64 xstate_bv =
3126                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3127
3128         if (cpu_has_xsave) {
3129                 /*
3130                  * Here we allow setting states that are not present in
3131                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3132                  * with old userspace.
3133                  */
3134                 if (xstate_bv & ~kvm_supported_xcr0())
3135                         return -EINVAL;
3136                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3137         } else {
3138                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3139                         return -EINVAL;
3140                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3141                         guest_xsave->region, sizeof(struct fxregs_state));
3142         }
3143         return 0;
3144 }
3145
3146 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3147                                         struct kvm_xcrs *guest_xcrs)
3148 {
3149         if (!cpu_has_xsave) {
3150                 guest_xcrs->nr_xcrs = 0;
3151                 return;
3152         }
3153
3154         guest_xcrs->nr_xcrs = 1;
3155         guest_xcrs->flags = 0;
3156         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3157         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3158 }
3159
3160 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3161                                        struct kvm_xcrs *guest_xcrs)
3162 {
3163         int i, r = 0;
3164
3165         if (!cpu_has_xsave)
3166                 return -EINVAL;
3167
3168         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3169                 return -EINVAL;
3170
3171         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3172                 /* Only support XCR0 currently */
3173                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3174                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3175                                 guest_xcrs->xcrs[i].value);
3176                         break;
3177                 }
3178         if (r)
3179                 r = -EINVAL;
3180         return r;
3181 }
3182
3183 /*
3184  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3185  * stopped by the hypervisor.  This function will be called from the host only.
3186  * EINVAL is returned when the host attempts to set the flag for a guest that
3187  * does not support pv clocks.
3188  */
3189 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3190 {
3191         if (!vcpu->arch.pv_time_enabled)
3192                 return -EINVAL;
3193         vcpu->arch.pvclock_set_guest_stopped_request = true;
3194         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3195         return 0;
3196 }
3197
3198 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3199                                      struct kvm_enable_cap *cap)
3200 {
3201         if (cap->flags)
3202                 return -EINVAL;
3203
3204         switch (cap->cap) {
3205         case KVM_CAP_HYPERV_SYNIC:
3206                 return kvm_hv_activate_synic(vcpu);
3207         default:
3208                 return -EINVAL;
3209         }
3210 }
3211
3212 long kvm_arch_vcpu_ioctl(struct file *filp,
3213                          unsigned int ioctl, unsigned long arg)
3214 {
3215         struct kvm_vcpu *vcpu = filp->private_data;
3216         void __user *argp = (void __user *)arg;
3217         int r;
3218         union {
3219                 struct kvm_lapic_state *lapic;
3220                 struct kvm_xsave *xsave;
3221                 struct kvm_xcrs *xcrs;
3222                 void *buffer;
3223         } u;
3224
3225         u.buffer = NULL;
3226         switch (ioctl) {
3227         case KVM_GET_LAPIC: {
3228                 r = -EINVAL;
3229                 if (!vcpu->arch.apic)
3230                         goto out;
3231                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3232
3233                 r = -ENOMEM;
3234                 if (!u.lapic)
3235                         goto out;
3236                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3237                 if (r)
3238                         goto out;
3239                 r = -EFAULT;
3240                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3241                         goto out;
3242                 r = 0;
3243                 break;
3244         }
3245         case KVM_SET_LAPIC: {
3246                 r = -EINVAL;
3247                 if (!vcpu->arch.apic)
3248                         goto out;
3249                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3250                 if (IS_ERR(u.lapic))
3251                         return PTR_ERR(u.lapic);
3252
3253                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3254                 break;
3255         }
3256         case KVM_INTERRUPT: {
3257                 struct kvm_interrupt irq;
3258
3259                 r = -EFAULT;
3260                 if (copy_from_user(&irq, argp, sizeof irq))
3261                         goto out;
3262                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3263                 break;
3264         }
3265         case KVM_NMI: {
3266                 r = kvm_vcpu_ioctl_nmi(vcpu);
3267                 break;
3268         }
3269         case KVM_SMI: {
3270                 r = kvm_vcpu_ioctl_smi(vcpu);
3271                 break;
3272         }
3273         case KVM_SET_CPUID: {
3274                 struct kvm_cpuid __user *cpuid_arg = argp;
3275                 struct kvm_cpuid cpuid;
3276
3277                 r = -EFAULT;
3278                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3279                         goto out;
3280                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3281                 break;
3282         }
3283         case KVM_SET_CPUID2: {
3284                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3285                 struct kvm_cpuid2 cpuid;
3286
3287                 r = -EFAULT;
3288                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3289                         goto out;
3290                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3291                                               cpuid_arg->entries);
3292                 break;
3293         }
3294         case KVM_GET_CPUID2: {
3295                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3296                 struct kvm_cpuid2 cpuid;
3297
3298                 r = -EFAULT;
3299                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3300                         goto out;
3301                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3302                                               cpuid_arg->entries);
3303                 if (r)
3304                         goto out;
3305                 r = -EFAULT;
3306                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3307                         goto out;
3308                 r = 0;
3309                 break;
3310         }
3311         case KVM_GET_MSRS:
3312                 r = msr_io(vcpu, argp, do_get_msr, 1);
3313                 break;
3314         case KVM_SET_MSRS:
3315                 r = msr_io(vcpu, argp, do_set_msr, 0);
3316                 break;
3317         case KVM_TPR_ACCESS_REPORTING: {
3318                 struct kvm_tpr_access_ctl tac;
3319
3320                 r = -EFAULT;
3321                 if (copy_from_user(&tac, argp, sizeof tac))
3322                         goto out;
3323                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3324                 if (r)
3325                         goto out;
3326                 r = -EFAULT;
3327                 if (copy_to_user(argp, &tac, sizeof tac))
3328                         goto out;
3329                 r = 0;
3330                 break;
3331         };
3332         case KVM_SET_VAPIC_ADDR: {
3333                 struct kvm_vapic_addr va;
3334
3335                 r = -EINVAL;
3336                 if (!lapic_in_kernel(vcpu))
3337                         goto out;
3338                 r = -EFAULT;
3339                 if (copy_from_user(&va, argp, sizeof va))
3340                         goto out;
3341                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3342                 break;
3343         }
3344         case KVM_X86_SETUP_MCE: {
3345                 u64 mcg_cap;
3346
3347                 r = -EFAULT;
3348                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3349                         goto out;
3350                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3351                 break;
3352         }
3353         case KVM_X86_SET_MCE: {
3354                 struct kvm_x86_mce mce;
3355
3356                 r = -EFAULT;
3357                 if (copy_from_user(&mce, argp, sizeof mce))
3358                         goto out;
3359                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3360                 break;
3361         }
3362         case KVM_GET_VCPU_EVENTS: {
3363                 struct kvm_vcpu_events events;
3364
3365                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3366
3367                 r = -EFAULT;
3368                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3369                         break;
3370                 r = 0;
3371                 break;
3372         }
3373         case KVM_SET_VCPU_EVENTS: {
3374                 struct kvm_vcpu_events events;
3375
3376                 r = -EFAULT;
3377                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3378                         break;
3379
3380                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3381                 break;
3382         }
3383         case KVM_GET_DEBUGREGS: {
3384                 struct kvm_debugregs dbgregs;
3385
3386                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3387
3388                 r = -EFAULT;
3389                 if (copy_to_user(argp, &dbgregs,
3390                                  sizeof(struct kvm_debugregs)))
3391                         break;
3392                 r = 0;
3393                 break;
3394         }
3395         case KVM_SET_DEBUGREGS: {
3396                 struct kvm_debugregs dbgregs;
3397
3398                 r = -EFAULT;
3399                 if (copy_from_user(&dbgregs, argp,
3400                                    sizeof(struct kvm_debugregs)))
3401                         break;
3402
3403                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3404                 break;
3405         }
3406         case KVM_GET_XSAVE: {
3407                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3408                 r = -ENOMEM;
3409                 if (!u.xsave)
3410                         break;
3411
3412                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3413
3414                 r = -EFAULT;
3415                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3416                         break;
3417                 r = 0;
3418                 break;
3419         }
3420         case KVM_SET_XSAVE: {
3421                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3422                 if (IS_ERR(u.xsave))
3423                         return PTR_ERR(u.xsave);
3424
3425                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3426                 break;
3427         }
3428         case KVM_GET_XCRS: {
3429                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3430                 r = -ENOMEM;
3431                 if (!u.xcrs)
3432                         break;
3433
3434                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3435
3436                 r = -EFAULT;
3437                 if (copy_to_user(argp, u.xcrs,
3438                                  sizeof(struct kvm_xcrs)))
3439                         break;
3440                 r = 0;
3441                 break;
3442         }
3443         case KVM_SET_XCRS: {
3444                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3445                 if (IS_ERR(u.xcrs))
3446                         return PTR_ERR(u.xcrs);
3447
3448                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3449                 break;
3450         }
3451         case KVM_SET_TSC_KHZ: {
3452                 u32 user_tsc_khz;
3453
3454                 r = -EINVAL;
3455                 user_tsc_khz = (u32)arg;
3456
3457                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3458                         goto out;
3459
3460                 if (user_tsc_khz == 0)
3461                         user_tsc_khz = tsc_khz;
3462
3463                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3464                         r = 0;
3465
3466                 goto out;
3467         }
3468         case KVM_GET_TSC_KHZ: {
3469                 r = vcpu->arch.virtual_tsc_khz;
3470                 goto out;
3471         }
3472         case KVM_KVMCLOCK_CTRL: {
3473                 r = kvm_set_guest_paused(vcpu);
3474                 goto out;
3475         }
3476         case KVM_ENABLE_CAP: {
3477                 struct kvm_enable_cap cap;
3478
3479                 r = -EFAULT;
3480                 if (copy_from_user(&cap, argp, sizeof(cap)))
3481                         goto out;
3482                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3483                 break;
3484         }
3485         default:
3486                 r = -EINVAL;
3487         }
3488 out:
3489         kfree(u.buffer);
3490         return r;
3491 }
3492
3493 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3494 {
3495         return VM_FAULT_SIGBUS;
3496 }
3497
3498 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3499 {
3500         int ret;
3501
3502         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3503                 return -EINVAL;
3504         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3505         return ret;
3506 }
3507
3508 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3509                                               u64 ident_addr)
3510 {
3511         kvm->arch.ept_identity_map_addr = ident_addr;
3512         return 0;
3513 }
3514
3515 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3516                                           u32 kvm_nr_mmu_pages)
3517 {
3518         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3519                 return -EINVAL;
3520
3521         mutex_lock(&kvm->slots_lock);
3522
3523         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3524         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3525
3526         mutex_unlock(&kvm->slots_lock);
3527         return 0;
3528 }
3529
3530 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3531 {
3532         return kvm->arch.n_max_mmu_pages;
3533 }
3534
3535 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3536 {
3537         int r;
3538
3539         r = 0;
3540         switch (chip->chip_id) {
3541         case KVM_IRQCHIP_PIC_MASTER:
3542                 memcpy(&chip->chip.pic,
3543                         &pic_irqchip(kvm)->pics[0],
3544                         sizeof(struct kvm_pic_state));
3545                 break;
3546         case KVM_IRQCHIP_PIC_SLAVE:
3547                 memcpy(&chip->chip.pic,
3548                         &pic_irqchip(kvm)->pics[1],
3549                         sizeof(struct kvm_pic_state));
3550                 break;
3551         case KVM_IRQCHIP_IOAPIC:
3552                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3553                 break;
3554         default:
3555                 r = -EINVAL;
3556                 break;
3557         }
3558         return r;
3559 }
3560
3561 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3562 {
3563         int r;
3564
3565         r = 0;
3566         switch (chip->chip_id) {
3567         case KVM_IRQCHIP_PIC_MASTER:
3568                 spin_lock(&pic_irqchip(kvm)->lock);
3569                 memcpy(&pic_irqchip(kvm)->pics[0],
3570                         &chip->chip.pic,
3571                         sizeof(struct kvm_pic_state));
3572                 spin_unlock(&pic_irqchip(kvm)->lock);
3573                 break;
3574         case KVM_IRQCHIP_PIC_SLAVE:
3575                 spin_lock(&pic_irqchip(kvm)->lock);
3576                 memcpy(&pic_irqchip(kvm)->pics[1],
3577                         &chip->chip.pic,
3578                         sizeof(struct kvm_pic_state));
3579                 spin_unlock(&pic_irqchip(kvm)->lock);
3580                 break;
3581         case KVM_IRQCHIP_IOAPIC:
3582                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3583                 break;
3584         default:
3585                 r = -EINVAL;
3586                 break;
3587         }
3588         kvm_pic_update_irq(pic_irqchip(kvm));
3589         return r;
3590 }
3591
3592 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3593 {
3594         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3595         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3596         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3597         return 0;
3598 }
3599
3600 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3601 {
3602         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3603         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3604         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3605         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3606         return 0;
3607 }
3608
3609 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3610 {
3611         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3612         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3613                 sizeof(ps->channels));
3614         ps->flags = kvm->arch.vpit->pit_state.flags;
3615         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3616         memset(&ps->reserved, 0, sizeof(ps->reserved));
3617         return 0;
3618 }
3619
3620 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3621 {
3622         int start = 0;
3623         u32 prev_legacy, cur_legacy;
3624         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3625         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3626         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3627         if (!prev_legacy && cur_legacy)
3628                 start = 1;
3629         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3630                sizeof(kvm->arch.vpit->pit_state.channels));
3631         kvm->arch.vpit->pit_state.flags = ps->flags;
3632         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3633         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3634         return 0;
3635 }
3636
3637 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3638                                  struct kvm_reinject_control *control)
3639 {
3640         if (!kvm->arch.vpit)
3641                 return -ENXIO;
3642         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3643         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3644         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3645         return 0;
3646 }
3647
3648 /**
3649  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3650  * @kvm: kvm instance
3651  * @log: slot id and address to which we copy the log
3652  *
3653  * Steps 1-4 below provide general overview of dirty page logging. See
3654  * kvm_get_dirty_log_protect() function description for additional details.
3655  *
3656  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3657  * always flush the TLB (step 4) even if previous step failed  and the dirty
3658  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3659  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3660  * writes will be marked dirty for next log read.
3661  *
3662  *   1. Take a snapshot of the bit and clear it if needed.
3663  *   2. Write protect the corresponding page.
3664  *   3. Copy the snapshot to the userspace.
3665  *   4. Flush TLB's if needed.
3666  */
3667 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3668 {
3669         bool is_dirty = false;
3670         int r;
3671
3672         mutex_lock(&kvm->slots_lock);
3673
3674         /*
3675          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3676          */
3677         if (kvm_x86_ops->flush_log_dirty)
3678                 kvm_x86_ops->flush_log_dirty(kvm);
3679
3680         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3681
3682         /*
3683          * All the TLBs can be flushed out of mmu lock, see the comments in
3684          * kvm_mmu_slot_remove_write_access().
3685          */
3686         lockdep_assert_held(&kvm->slots_lock);
3687         if (is_dirty)
3688                 kvm_flush_remote_tlbs(kvm);
3689
3690         mutex_unlock(&kvm->slots_lock);
3691         return r;
3692 }
3693
3694 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3695                         bool line_status)
3696 {
3697         if (!irqchip_in_kernel(kvm))
3698                 return -ENXIO;
3699
3700         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3701                                         irq_event->irq, irq_event->level,
3702                                         line_status);
3703         return 0;
3704 }
3705
3706 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3707                                    struct kvm_enable_cap *cap)
3708 {
3709         int r;
3710
3711         if (cap->flags)
3712                 return -EINVAL;
3713
3714         switch (cap->cap) {
3715         case KVM_CAP_DISABLE_QUIRKS:
3716                 kvm->arch.disabled_quirks = cap->args[0];
3717                 r = 0;
3718                 break;
3719         case KVM_CAP_SPLIT_IRQCHIP: {
3720                 mutex_lock(&kvm->lock);
3721                 r = -EINVAL;
3722                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3723                         goto split_irqchip_unlock;
3724                 r = -EEXIST;
3725                 if (irqchip_in_kernel(kvm))
3726                         goto split_irqchip_unlock;
3727                 if (atomic_read(&kvm->online_vcpus))
3728                         goto split_irqchip_unlock;
3729                 r = kvm_setup_empty_irq_routing(kvm);
3730                 if (r)
3731                         goto split_irqchip_unlock;
3732                 /* Pairs with irqchip_in_kernel. */
3733                 smp_wmb();
3734                 kvm->arch.irqchip_split = true;
3735                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3736                 r = 0;
3737 split_irqchip_unlock:
3738                 mutex_unlock(&kvm->lock);
3739                 break;
3740         }
3741         default:
3742                 r = -EINVAL;
3743                 break;
3744         }
3745         return r;
3746 }
3747
3748 long kvm_arch_vm_ioctl(struct file *filp,
3749                        unsigned int ioctl, unsigned long arg)
3750 {
3751         struct kvm *kvm = filp->private_data;
3752         void __user *argp = (void __user *)arg;
3753         int r = -ENOTTY;
3754         /*
3755          * This union makes it completely explicit to gcc-3.x
3756          * that these two variables' stack usage should be
3757          * combined, not added together.
3758          */
3759         union {
3760                 struct kvm_pit_state ps;
3761                 struct kvm_pit_state2 ps2;
3762                 struct kvm_pit_config pit_config;
3763         } u;
3764
3765         switch (ioctl) {
3766         case KVM_SET_TSS_ADDR:
3767                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3768                 break;
3769         case KVM_SET_IDENTITY_MAP_ADDR: {
3770                 u64 ident_addr;
3771
3772                 r = -EFAULT;
3773                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3774                         goto out;
3775                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3776                 break;
3777         }
3778         case KVM_SET_NR_MMU_PAGES:
3779                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3780                 break;
3781         case KVM_GET_NR_MMU_PAGES:
3782                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3783                 break;
3784         case KVM_CREATE_IRQCHIP: {
3785                 struct kvm_pic *vpic;
3786
3787                 mutex_lock(&kvm->lock);
3788                 r = -EEXIST;
3789                 if (kvm->arch.vpic)
3790                         goto create_irqchip_unlock;
3791                 r = -EINVAL;
3792                 if (atomic_read(&kvm->online_vcpus))
3793                         goto create_irqchip_unlock;
3794                 r = -ENOMEM;
3795                 vpic = kvm_create_pic(kvm);
3796                 if (vpic) {
3797                         r = kvm_ioapic_init(kvm);
3798                         if (r) {
3799                                 mutex_lock(&kvm->slots_lock);
3800                                 kvm_destroy_pic(vpic);
3801                                 mutex_unlock(&kvm->slots_lock);
3802                                 goto create_irqchip_unlock;
3803                         }
3804                 } else
3805                         goto create_irqchip_unlock;
3806                 r = kvm_setup_default_irq_routing(kvm);
3807                 if (r) {
3808                         mutex_lock(&kvm->slots_lock);
3809                         mutex_lock(&kvm->irq_lock);
3810                         kvm_ioapic_destroy(kvm);
3811                         kvm_destroy_pic(vpic);
3812                         mutex_unlock(&kvm->irq_lock);
3813                         mutex_unlock(&kvm->slots_lock);
3814                         goto create_irqchip_unlock;
3815                 }
3816                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3817                 smp_wmb();
3818                 kvm->arch.vpic = vpic;
3819         create_irqchip_unlock:
3820                 mutex_unlock(&kvm->lock);
3821                 break;
3822         }
3823         case KVM_CREATE_PIT:
3824                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3825                 goto create_pit;
3826         case KVM_CREATE_PIT2:
3827                 r = -EFAULT;
3828                 if (copy_from_user(&u.pit_config, argp,
3829                                    sizeof(struct kvm_pit_config)))
3830                         goto out;
3831         create_pit:
3832                 mutex_lock(&kvm->slots_lock);
3833                 r = -EEXIST;
3834                 if (kvm->arch.vpit)
3835                         goto create_pit_unlock;
3836                 r = -ENOMEM;
3837                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3838                 if (kvm->arch.vpit)
3839                         r = 0;
3840         create_pit_unlock:
3841                 mutex_unlock(&kvm->slots_lock);
3842                 break;
3843         case KVM_GET_IRQCHIP: {
3844                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3845                 struct kvm_irqchip *chip;
3846
3847                 chip = memdup_user(argp, sizeof(*chip));
3848                 if (IS_ERR(chip)) {
3849                         r = PTR_ERR(chip);
3850                         goto out;
3851                 }
3852
3853                 r = -ENXIO;
3854                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3855                         goto get_irqchip_out;
3856                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3857                 if (r)
3858                         goto get_irqchip_out;
3859                 r = -EFAULT;
3860                 if (copy_to_user(argp, chip, sizeof *chip))
3861                         goto get_irqchip_out;
3862                 r = 0;
3863         get_irqchip_out:
3864                 kfree(chip);
3865                 break;
3866         }
3867         case KVM_SET_IRQCHIP: {
3868                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3869                 struct kvm_irqchip *chip;
3870
3871                 chip = memdup_user(argp, sizeof(*chip));
3872                 if (IS_ERR(chip)) {
3873                         r = PTR_ERR(chip);
3874                         goto out;
3875                 }
3876
3877                 r = -ENXIO;
3878                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3879                         goto set_irqchip_out;
3880                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3881                 if (r)
3882                         goto set_irqchip_out;
3883                 r = 0;
3884         set_irqchip_out:
3885                 kfree(chip);
3886                 break;
3887         }
3888         case KVM_GET_PIT: {
3889                 r = -EFAULT;
3890                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3891                         goto out;
3892                 r = -ENXIO;
3893                 if (!kvm->arch.vpit)
3894                         goto out;
3895                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3896                 if (r)
3897                         goto out;
3898                 r = -EFAULT;
3899                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3900                         goto out;
3901                 r = 0;
3902                 break;
3903         }
3904         case KVM_SET_PIT: {
3905                 r = -EFAULT;
3906                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3907                         goto out;
3908                 r = -ENXIO;
3909                 if (!kvm->arch.vpit)
3910                         goto out;
3911                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3912                 break;
3913         }
3914         case KVM_GET_PIT2: {
3915                 r = -ENXIO;
3916                 if (!kvm->arch.vpit)
3917                         goto out;
3918                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3919                 if (r)
3920                         goto out;
3921                 r = -EFAULT;
3922                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3923                         goto out;
3924                 r = 0;
3925                 break;
3926         }
3927         case KVM_SET_PIT2: {
3928                 r = -EFAULT;
3929                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3930                         goto out;
3931                 r = -ENXIO;
3932                 if (!kvm->arch.vpit)
3933                         goto out;
3934                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3935                 break;
3936         }
3937         case KVM_REINJECT_CONTROL: {
3938                 struct kvm_reinject_control control;
3939                 r =  -EFAULT;
3940                 if (copy_from_user(&control, argp, sizeof(control)))
3941                         goto out;
3942                 r = kvm_vm_ioctl_reinject(kvm, &control);
3943                 break;
3944         }
3945         case KVM_SET_BOOT_CPU_ID:
3946                 r = 0;
3947                 mutex_lock(&kvm->lock);
3948                 if (atomic_read(&kvm->online_vcpus) != 0)
3949                         r = -EBUSY;
3950                 else
3951                         kvm->arch.bsp_vcpu_id = arg;
3952                 mutex_unlock(&kvm->lock);
3953                 break;
3954         case KVM_XEN_HVM_CONFIG: {
3955                 r = -EFAULT;
3956                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3957                                    sizeof(struct kvm_xen_hvm_config)))
3958                         goto out;
3959                 r = -EINVAL;
3960                 if (kvm->arch.xen_hvm_config.flags)
3961                         goto out;
3962                 r = 0;
3963                 break;
3964         }
3965         case KVM_SET_CLOCK: {
3966                 struct kvm_clock_data user_ns;
3967                 u64 now_ns;
3968                 s64 delta;
3969
3970                 r = -EFAULT;
3971                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3972                         goto out;
3973
3974                 r = -EINVAL;
3975                 if (user_ns.flags)
3976                         goto out;
3977
3978                 r = 0;
3979                 local_irq_disable();
3980                 now_ns = get_kernel_ns();
3981                 delta = user_ns.clock - now_ns;
3982                 local_irq_enable();
3983                 kvm->arch.kvmclock_offset = delta;
3984                 kvm_gen_update_masterclock(kvm);
3985                 break;
3986         }
3987         case KVM_GET_CLOCK: {
3988                 struct kvm_clock_data user_ns;
3989                 u64 now_ns;
3990
3991                 local_irq_disable();
3992                 now_ns = get_kernel_ns();
3993                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3994                 local_irq_enable();
3995                 user_ns.flags = 0;
3996                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3997
3998                 r = -EFAULT;
3999                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4000                         goto out;
4001                 r = 0;
4002                 break;
4003         }
4004         case KVM_ENABLE_CAP: {
4005                 struct kvm_enable_cap cap;
4006
4007                 r = -EFAULT;
4008                 if (copy_from_user(&cap, argp, sizeof(cap)))
4009                         goto out;
4010                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4011                 break;
4012         }
4013         default:
4014                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4015         }
4016 out:
4017         return r;
4018 }
4019
4020 static void kvm_init_msr_list(void)
4021 {
4022         u32 dummy[2];
4023         unsigned i, j;
4024
4025         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4026                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4027                         continue;
4028
4029                 /*
4030                  * Even MSRs that are valid in the host may not be exposed
4031                  * to the guests in some cases.  We could work around this
4032                  * in VMX with the generic MSR save/load machinery, but it
4033                  * is not really worthwhile since it will really only
4034                  * happen with nested virtualization.
4035                  */
4036                 switch (msrs_to_save[i]) {
4037                 case MSR_IA32_BNDCFGS:
4038                         if (!kvm_x86_ops->mpx_supported())
4039                                 continue;
4040                         break;
4041                 default:
4042                         break;
4043                 }
4044
4045                 if (j < i)
4046                         msrs_to_save[j] = msrs_to_save[i];
4047                 j++;
4048         }
4049         num_msrs_to_save = j;
4050
4051         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4052                 switch (emulated_msrs[i]) {
4053                 case MSR_IA32_SMBASE:
4054                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4055                                 continue;
4056                         break;
4057                 default:
4058                         break;
4059                 }
4060
4061                 if (j < i)
4062                         emulated_msrs[j] = emulated_msrs[i];
4063                 j++;
4064         }
4065         num_emulated_msrs = j;
4066 }
4067
4068 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4069                            const void *v)
4070 {
4071         int handled = 0;
4072         int n;
4073
4074         do {
4075                 n = min(len, 8);
4076                 if (!(vcpu->arch.apic &&
4077                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4078                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4079                         break;
4080                 handled += n;
4081                 addr += n;
4082                 len -= n;
4083                 v += n;
4084         } while (len);
4085
4086         return handled;
4087 }
4088
4089 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4090 {
4091         int handled = 0;
4092         int n;
4093
4094         do {
4095                 n = min(len, 8);
4096                 if (!(vcpu->arch.apic &&
4097                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4098                                          addr, n, v))
4099                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4100                         break;
4101                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4102                 handled += n;
4103                 addr += n;
4104                 len -= n;
4105                 v += n;
4106         } while (len);
4107
4108         return handled;
4109 }
4110
4111 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4112                         struct kvm_segment *var, int seg)
4113 {
4114         kvm_x86_ops->set_segment(vcpu, var, seg);
4115 }
4116
4117 void kvm_get_segment(struct kvm_vcpu *vcpu,
4118                      struct kvm_segment *var, int seg)
4119 {
4120         kvm_x86_ops->get_segment(vcpu, var, seg);
4121 }
4122
4123 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4124                            struct x86_exception *exception)
4125 {
4126         gpa_t t_gpa;
4127
4128         BUG_ON(!mmu_is_nested(vcpu));
4129
4130         /* NPT walks are always user-walks */
4131         access |= PFERR_USER_MASK;
4132         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4133
4134         return t_gpa;
4135 }
4136
4137 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4138                               struct x86_exception *exception)
4139 {
4140         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4141         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4142 }
4143
4144  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4145                                 struct x86_exception *exception)
4146 {
4147         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4148         access |= PFERR_FETCH_MASK;
4149         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4150 }
4151
4152 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4153                                struct x86_exception *exception)
4154 {
4155         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4156         access |= PFERR_WRITE_MASK;
4157         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4158 }
4159
4160 /* uses this to access any guest's mapped memory without checking CPL */
4161 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4162                                 struct x86_exception *exception)
4163 {
4164         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4165 }
4166
4167 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4168                                       struct kvm_vcpu *vcpu, u32 access,
4169                                       struct x86_exception *exception)
4170 {
4171         void *data = val;
4172         int r = X86EMUL_CONTINUE;
4173
4174         while (bytes) {
4175                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4176                                                             exception);
4177                 unsigned offset = addr & (PAGE_SIZE-1);
4178                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4179                 int ret;
4180
4181                 if (gpa == UNMAPPED_GVA)
4182                         return X86EMUL_PROPAGATE_FAULT;
4183                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4184                                                offset, toread);
4185                 if (ret < 0) {
4186                         r = X86EMUL_IO_NEEDED;
4187                         goto out;
4188                 }
4189
4190                 bytes -= toread;
4191                 data += toread;
4192                 addr += toread;
4193         }
4194 out:
4195         return r;
4196 }
4197
4198 /* used for instruction fetching */
4199 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4200                                 gva_t addr, void *val, unsigned int bytes,
4201                                 struct x86_exception *exception)
4202 {
4203         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4204         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4205         unsigned offset;
4206         int ret;
4207
4208         /* Inline kvm_read_guest_virt_helper for speed.  */
4209         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4210                                                     exception);
4211         if (unlikely(gpa == UNMAPPED_GVA))
4212                 return X86EMUL_PROPAGATE_FAULT;
4213
4214         offset = addr & (PAGE_SIZE-1);
4215         if (WARN_ON(offset + bytes > PAGE_SIZE))
4216                 bytes = (unsigned)PAGE_SIZE - offset;
4217         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4218                                        offset, bytes);
4219         if (unlikely(ret < 0))
4220                 return X86EMUL_IO_NEEDED;
4221
4222         return X86EMUL_CONTINUE;
4223 }
4224
4225 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4226                                gva_t addr, void *val, unsigned int bytes,
4227                                struct x86_exception *exception)
4228 {
4229         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4230         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231
4232         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4233                                           exception);
4234 }
4235 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4236
4237 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4238                                       gva_t addr, void *val, unsigned int bytes,
4239                                       struct x86_exception *exception)
4240 {
4241         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4242         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4243 }
4244
4245 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4246                 unsigned long addr, void *val, unsigned int bytes)
4247 {
4248         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4250
4251         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4252 }
4253
4254 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4255                                        gva_t addr, void *val,
4256                                        unsigned int bytes,
4257                                        struct x86_exception *exception)
4258 {
4259         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4260         void *data = val;
4261         int r = X86EMUL_CONTINUE;
4262
4263         while (bytes) {
4264                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4265                                                              PFERR_WRITE_MASK,
4266                                                              exception);
4267                 unsigned offset = addr & (PAGE_SIZE-1);
4268                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4269                 int ret;
4270
4271                 if (gpa == UNMAPPED_GVA)
4272                         return X86EMUL_PROPAGATE_FAULT;
4273                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4274                 if (ret < 0) {
4275                         r = X86EMUL_IO_NEEDED;
4276                         goto out;
4277                 }
4278
4279                 bytes -= towrite;
4280                 data += towrite;
4281                 addr += towrite;
4282         }
4283 out:
4284         return r;
4285 }
4286 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4287
4288 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4289                                 gpa_t *gpa, struct x86_exception *exception,
4290                                 bool write)
4291 {
4292         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4293                 | (write ? PFERR_WRITE_MASK : 0);
4294
4295         if (vcpu_match_mmio_gva(vcpu, gva)
4296             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4297                                  vcpu->arch.access, access)) {
4298                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4299                                         (gva & (PAGE_SIZE - 1));
4300                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4301                 return 1;
4302         }
4303
4304         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4305
4306         if (*gpa == UNMAPPED_GVA)
4307                 return -1;
4308
4309         /* For APIC access vmexit */
4310         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4311                 return 1;
4312
4313         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4314                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4315                 return 1;
4316         }
4317
4318         return 0;
4319 }
4320
4321 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4322                         const void *val, int bytes)
4323 {
4324         int ret;
4325
4326         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4327         if (ret < 0)
4328                 return 0;
4329         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4330         return 1;
4331 }
4332
4333 struct read_write_emulator_ops {
4334         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4335                                   int bytes);
4336         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4337                                   void *val, int bytes);
4338         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4339                                int bytes, void *val);
4340         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4341                                     void *val, int bytes);
4342         bool write;
4343 };
4344
4345 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4346 {
4347         if (vcpu->mmio_read_completed) {
4348                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4349                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4350                 vcpu->mmio_read_completed = 0;
4351                 return 1;
4352         }
4353
4354         return 0;
4355 }
4356
4357 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4358                         void *val, int bytes)
4359 {
4360         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4361 }
4362
4363 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4364                          void *val, int bytes)
4365 {
4366         return emulator_write_phys(vcpu, gpa, val, bytes);
4367 }
4368
4369 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4370 {
4371         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4372         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4373 }
4374
4375 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4376                           void *val, int bytes)
4377 {
4378         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4379         return X86EMUL_IO_NEEDED;
4380 }
4381
4382 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4383                            void *val, int bytes)
4384 {
4385         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4386
4387         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4388         return X86EMUL_CONTINUE;
4389 }
4390
4391 static const struct read_write_emulator_ops read_emultor = {
4392         .read_write_prepare = read_prepare,
4393         .read_write_emulate = read_emulate,
4394         .read_write_mmio = vcpu_mmio_read,
4395         .read_write_exit_mmio = read_exit_mmio,
4396 };
4397
4398 static const struct read_write_emulator_ops write_emultor = {
4399         .read_write_emulate = write_emulate,
4400         .read_write_mmio = write_mmio,
4401         .read_write_exit_mmio = write_exit_mmio,
4402         .write = true,
4403 };
4404
4405 static int emulator_read_write_onepage(unsigned long addr, void *val,
4406                                        unsigned int bytes,
4407                                        struct x86_exception *exception,
4408                                        struct kvm_vcpu *vcpu,
4409                                        const struct read_write_emulator_ops *ops)
4410 {
4411         gpa_t gpa;
4412         int handled, ret;
4413         bool write = ops->write;
4414         struct kvm_mmio_fragment *frag;
4415
4416         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4417
4418         if (ret < 0)
4419                 return X86EMUL_PROPAGATE_FAULT;
4420
4421         /* For APIC access vmexit */
4422         if (ret)
4423                 goto mmio;
4424
4425         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4426                 return X86EMUL_CONTINUE;
4427
4428 mmio:
4429         /*
4430          * Is this MMIO handled locally?
4431          */
4432         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4433         if (handled == bytes)
4434                 return X86EMUL_CONTINUE;
4435
4436         gpa += handled;
4437         bytes -= handled;
4438         val += handled;
4439
4440         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4441         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4442         frag->gpa = gpa;
4443         frag->data = val;
4444         frag->len = bytes;
4445         return X86EMUL_CONTINUE;
4446 }
4447
4448 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4449                         unsigned long addr,
4450                         void *val, unsigned int bytes,
4451                         struct x86_exception *exception,
4452                         const struct read_write_emulator_ops *ops)
4453 {
4454         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4455         gpa_t gpa;
4456         int rc;
4457
4458         if (ops->read_write_prepare &&
4459                   ops->read_write_prepare(vcpu, val, bytes))
4460                 return X86EMUL_CONTINUE;
4461
4462         vcpu->mmio_nr_fragments = 0;
4463
4464         /* Crossing a page boundary? */
4465         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4466                 int now;
4467
4468                 now = -addr & ~PAGE_MASK;
4469                 rc = emulator_read_write_onepage(addr, val, now, exception,
4470                                                  vcpu, ops);
4471
4472                 if (rc != X86EMUL_CONTINUE)
4473                         return rc;
4474                 addr += now;
4475                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4476                         addr = (u32)addr;
4477                 val += now;
4478                 bytes -= now;
4479         }
4480
4481         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4482                                          vcpu, ops);
4483         if (rc != X86EMUL_CONTINUE)
4484                 return rc;
4485
4486         if (!vcpu->mmio_nr_fragments)
4487                 return rc;
4488
4489         gpa = vcpu->mmio_fragments[0].gpa;
4490
4491         vcpu->mmio_needed = 1;
4492         vcpu->mmio_cur_fragment = 0;
4493
4494         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4495         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4496         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4497         vcpu->run->mmio.phys_addr = gpa;
4498
4499         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4500 }
4501
4502 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4503                                   unsigned long addr,
4504                                   void *val,
4505                                   unsigned int bytes,
4506                                   struct x86_exception *exception)
4507 {
4508         return emulator_read_write(ctxt, addr, val, bytes,
4509                                    exception, &read_emultor);
4510 }
4511
4512 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4513                             unsigned long addr,
4514                             const void *val,
4515                             unsigned int bytes,
4516                             struct x86_exception *exception)
4517 {
4518         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4519                                    exception, &write_emultor);
4520 }
4521
4522 #define CMPXCHG_TYPE(t, ptr, old, new) \
4523         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4524
4525 #ifdef CONFIG_X86_64
4526 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4527 #else
4528 #  define CMPXCHG64(ptr, old, new) \
4529         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4530 #endif
4531
4532 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4533                                      unsigned long addr,
4534                                      const void *old,
4535                                      const void *new,
4536                                      unsigned int bytes,
4537                                      struct x86_exception *exception)
4538 {
4539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4540         gpa_t gpa;
4541         struct page *page;
4542         char *kaddr;
4543         bool exchanged;
4544
4545         /* guests cmpxchg8b have to be emulated atomically */
4546         if (bytes > 8 || (bytes & (bytes - 1)))
4547                 goto emul_write;
4548
4549         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4550
4551         if (gpa == UNMAPPED_GVA ||
4552             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4553                 goto emul_write;
4554
4555         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4556                 goto emul_write;
4557
4558         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4559         if (is_error_page(page))
4560                 goto emul_write;
4561
4562         kaddr = kmap_atomic(page);
4563         kaddr += offset_in_page(gpa);
4564         switch (bytes) {
4565         case 1:
4566                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4567                 break;
4568         case 2:
4569                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4570                 break;
4571         case 4:
4572                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4573                 break;
4574         case 8:
4575                 exchanged = CMPXCHG64(kaddr, old, new);
4576                 break;
4577         default:
4578                 BUG();
4579         }
4580         kunmap_atomic(kaddr);
4581         kvm_release_page_dirty(page);
4582
4583         if (!exchanged)
4584                 return X86EMUL_CMPXCHG_FAILED;
4585
4586         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4587         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4588
4589         return X86EMUL_CONTINUE;
4590
4591 emul_write:
4592         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4593
4594         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4595 }
4596
4597 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4598 {
4599         /* TODO: String I/O for in kernel device */
4600         int r;
4601
4602         if (vcpu->arch.pio.in)
4603                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4604                                     vcpu->arch.pio.size, pd);
4605         else
4606                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4607                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4608                                      pd);
4609         return r;
4610 }
4611
4612 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4613                                unsigned short port, void *val,
4614                                unsigned int count, bool in)
4615 {
4616         vcpu->arch.pio.port = port;
4617         vcpu->arch.pio.in = in;
4618         vcpu->arch.pio.count  = count;
4619         vcpu->arch.pio.size = size;
4620
4621         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4622                 vcpu->arch.pio.count = 0;
4623                 return 1;
4624         }
4625
4626         vcpu->run->exit_reason = KVM_EXIT_IO;
4627         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4628         vcpu->run->io.size = size;
4629         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4630         vcpu->run->io.count = count;
4631         vcpu->run->io.port = port;
4632
4633         return 0;
4634 }
4635
4636 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4637                                     int size, unsigned short port, void *val,
4638                                     unsigned int count)
4639 {
4640         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4641         int ret;
4642
4643         if (vcpu->arch.pio.count)
4644                 goto data_avail;
4645
4646         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4647         if (ret) {
4648 data_avail:
4649                 memcpy(val, vcpu->arch.pio_data, size * count);
4650                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4651                 vcpu->arch.pio.count = 0;
4652                 return 1;
4653         }
4654
4655         return 0;
4656 }
4657
4658 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4659                                      int size, unsigned short port,
4660                                      const void *val, unsigned int count)
4661 {
4662         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4663
4664         memcpy(vcpu->arch.pio_data, val, size * count);
4665         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4666         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4667 }
4668
4669 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4670 {
4671         return kvm_x86_ops->get_segment_base(vcpu, seg);
4672 }
4673
4674 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4675 {
4676         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4677 }
4678
4679 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4680 {
4681         if (!need_emulate_wbinvd(vcpu))
4682                 return X86EMUL_CONTINUE;
4683
4684         if (kvm_x86_ops->has_wbinvd_exit()) {
4685                 int cpu = get_cpu();
4686
4687                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4688                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4689                                 wbinvd_ipi, NULL, 1);
4690                 put_cpu();
4691                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4692         } else
4693                 wbinvd();
4694         return X86EMUL_CONTINUE;
4695 }
4696
4697 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4698 {
4699         kvm_x86_ops->skip_emulated_instruction(vcpu);
4700         return kvm_emulate_wbinvd_noskip(vcpu);
4701 }
4702 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4703
4704
4705
4706 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4707 {
4708         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4709 }
4710
4711 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4712                            unsigned long *dest)
4713 {
4714         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4715 }
4716
4717 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4718                            unsigned long value)
4719 {
4720
4721         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4722 }
4723
4724 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4725 {
4726         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4727 }
4728
4729 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4730 {
4731         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4732         unsigned long value;
4733
4734         switch (cr) {
4735         case 0:
4736                 value = kvm_read_cr0(vcpu);
4737                 break;
4738         case 2:
4739                 value = vcpu->arch.cr2;
4740                 break;
4741         case 3:
4742                 value = kvm_read_cr3(vcpu);
4743                 break;
4744         case 4:
4745                 value = kvm_read_cr4(vcpu);
4746                 break;
4747         case 8:
4748                 value = kvm_get_cr8(vcpu);
4749                 break;
4750         default:
4751                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4752                 return 0;
4753         }
4754
4755         return value;
4756 }
4757
4758 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4759 {
4760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4761         int res = 0;
4762
4763         switch (cr) {
4764         case 0:
4765                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4766                 break;
4767         case 2:
4768                 vcpu->arch.cr2 = val;
4769                 break;
4770         case 3:
4771                 res = kvm_set_cr3(vcpu, val);
4772                 break;
4773         case 4:
4774                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4775                 break;
4776         case 8:
4777                 res = kvm_set_cr8(vcpu, val);
4778                 break;
4779         default:
4780                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4781                 res = -1;
4782         }
4783
4784         return res;
4785 }
4786
4787 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4788 {
4789         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4790 }
4791
4792 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4793 {
4794         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4795 }
4796
4797 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4798 {
4799         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4800 }
4801
4802 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4803 {
4804         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4805 }
4806
4807 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4808 {
4809         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4810 }
4811
4812 static unsigned long emulator_get_cached_segment_base(
4813         struct x86_emulate_ctxt *ctxt, int seg)
4814 {
4815         return get_segment_base(emul_to_vcpu(ctxt), seg);
4816 }
4817
4818 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4819                                  struct desc_struct *desc, u32 *base3,
4820                                  int seg)
4821 {
4822         struct kvm_segment var;
4823
4824         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4825         *selector = var.selector;
4826
4827         if (var.unusable) {
4828                 memset(desc, 0, sizeof(*desc));
4829                 return false;
4830         }
4831
4832         if (var.g)
4833                 var.limit >>= 12;
4834         set_desc_limit(desc, var.limit);
4835         set_desc_base(desc, (unsigned long)var.base);
4836 #ifdef CONFIG_X86_64
4837         if (base3)
4838                 *base3 = var.base >> 32;
4839 #endif
4840         desc->type = var.type;
4841         desc->s = var.s;
4842         desc->dpl = var.dpl;
4843         desc->p = var.present;
4844         desc->avl = var.avl;
4845         desc->l = var.l;
4846         desc->d = var.db;
4847         desc->g = var.g;
4848
4849         return true;
4850 }
4851
4852 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4853                                  struct desc_struct *desc, u32 base3,
4854                                  int seg)
4855 {
4856         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4857         struct kvm_segment var;
4858
4859         var.selector = selector;
4860         var.base = get_desc_base(desc);
4861 #ifdef CONFIG_X86_64
4862         var.base |= ((u64)base3) << 32;
4863 #endif
4864         var.limit = get_desc_limit(desc);
4865         if (desc->g)
4866                 var.limit = (var.limit << 12) | 0xfff;
4867         var.type = desc->type;
4868         var.dpl = desc->dpl;
4869         var.db = desc->d;
4870         var.s = desc->s;
4871         var.l = desc->l;
4872         var.g = desc->g;
4873         var.avl = desc->avl;
4874         var.present = desc->p;
4875         var.unusable = !var.present;
4876         var.padding = 0;
4877
4878         kvm_set_segment(vcpu, &var, seg);
4879         return;
4880 }
4881
4882 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4883                             u32 msr_index, u64 *pdata)
4884 {
4885         struct msr_data msr;
4886         int r;
4887
4888         msr.index = msr_index;
4889         msr.host_initiated = false;
4890         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4891         if (r)
4892                 return r;
4893
4894         *pdata = msr.data;
4895         return 0;
4896 }
4897
4898 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4899                             u32 msr_index, u64 data)
4900 {
4901         struct msr_data msr;
4902
4903         msr.data = data;
4904         msr.index = msr_index;
4905         msr.host_initiated = false;
4906         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4907 }
4908
4909 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4910 {
4911         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4912
4913         return vcpu->arch.smbase;
4914 }
4915
4916 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4917 {
4918         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4919
4920         vcpu->arch.smbase = smbase;
4921 }
4922
4923 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4924                               u32 pmc)
4925 {
4926         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4927 }
4928
4929 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4930                              u32 pmc, u64 *pdata)
4931 {
4932         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4933 }
4934
4935 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4936 {
4937         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4938 }
4939
4940 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4941 {
4942         preempt_disable();
4943         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4944         /*
4945          * CR0.TS may reference the host fpu state, not the guest fpu state,
4946          * so it may be clear at this point.
4947          */
4948         clts();
4949 }
4950
4951 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4952 {
4953         preempt_enable();
4954 }
4955
4956 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4957                               struct x86_instruction_info *info,
4958                               enum x86_intercept_stage stage)
4959 {
4960         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4961 }
4962
4963 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4964                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4965 {
4966         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4967 }
4968
4969 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4970 {
4971         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4972 }
4973
4974 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4975 {
4976         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4977 }
4978
4979 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4980 {
4981         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4982 }
4983
4984 static const struct x86_emulate_ops emulate_ops = {
4985         .read_gpr            = emulator_read_gpr,
4986         .write_gpr           = emulator_write_gpr,
4987         .read_std            = kvm_read_guest_virt_system,
4988         .write_std           = kvm_write_guest_virt_system,
4989         .read_phys           = kvm_read_guest_phys_system,
4990         .fetch               = kvm_fetch_guest_virt,
4991         .read_emulated       = emulator_read_emulated,
4992         .write_emulated      = emulator_write_emulated,
4993         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4994         .invlpg              = emulator_invlpg,
4995         .pio_in_emulated     = emulator_pio_in_emulated,
4996         .pio_out_emulated    = emulator_pio_out_emulated,
4997         .get_segment         = emulator_get_segment,
4998         .set_segment         = emulator_set_segment,
4999         .get_cached_segment_base = emulator_get_cached_segment_base,
5000         .get_gdt             = emulator_get_gdt,
5001         .get_idt             = emulator_get_idt,
5002         .set_gdt             = emulator_set_gdt,
5003         .set_idt             = emulator_set_idt,
5004         .get_cr              = emulator_get_cr,
5005         .set_cr              = emulator_set_cr,
5006         .cpl                 = emulator_get_cpl,
5007         .get_dr              = emulator_get_dr,
5008         .set_dr              = emulator_set_dr,
5009         .get_smbase          = emulator_get_smbase,
5010         .set_smbase          = emulator_set_smbase,
5011         .set_msr             = emulator_set_msr,
5012         .get_msr             = emulator_get_msr,
5013         .check_pmc           = emulator_check_pmc,
5014         .read_pmc            = emulator_read_pmc,
5015         .halt                = emulator_halt,
5016         .wbinvd              = emulator_wbinvd,
5017         .fix_hypercall       = emulator_fix_hypercall,
5018         .get_fpu             = emulator_get_fpu,
5019         .put_fpu             = emulator_put_fpu,
5020         .intercept           = emulator_intercept,
5021         .get_cpuid           = emulator_get_cpuid,
5022         .set_nmi_mask        = emulator_set_nmi_mask,
5023 };
5024
5025 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5026 {
5027         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5028         /*
5029          * an sti; sti; sequence only disable interrupts for the first
5030          * instruction. So, if the last instruction, be it emulated or
5031          * not, left the system with the INT_STI flag enabled, it
5032          * means that the last instruction is an sti. We should not
5033          * leave the flag on in this case. The same goes for mov ss
5034          */
5035         if (int_shadow & mask)
5036                 mask = 0;
5037         if (unlikely(int_shadow || mask)) {
5038                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5039                 if (!mask)
5040                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5041         }
5042 }
5043
5044 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5045 {
5046         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5047         if (ctxt->exception.vector == PF_VECTOR)
5048                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5049
5050         if (ctxt->exception.error_code_valid)
5051                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5052                                       ctxt->exception.error_code);
5053         else
5054                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5055         return false;
5056 }
5057
5058 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5059 {
5060         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5061         int cs_db, cs_l;
5062
5063         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5064
5065         ctxt->eflags = kvm_get_rflags(vcpu);
5066         ctxt->eip = kvm_rip_read(vcpu);
5067         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5068                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5069                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5070                      cs_db                              ? X86EMUL_MODE_PROT32 :
5071                                                           X86EMUL_MODE_PROT16;
5072         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5073         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5074         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5075         ctxt->emul_flags = vcpu->arch.hflags;
5076
5077         init_decode_cache(ctxt);
5078         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5079 }
5080
5081 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5082 {
5083         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5084         int ret;
5085
5086         init_emulate_ctxt(vcpu);
5087
5088         ctxt->op_bytes = 2;
5089         ctxt->ad_bytes = 2;
5090         ctxt->_eip = ctxt->eip + inc_eip;
5091         ret = emulate_int_real(ctxt, irq);
5092
5093         if (ret != X86EMUL_CONTINUE)
5094                 return EMULATE_FAIL;
5095
5096         ctxt->eip = ctxt->_eip;
5097         kvm_rip_write(vcpu, ctxt->eip);
5098         kvm_set_rflags(vcpu, ctxt->eflags);
5099
5100         if (irq == NMI_VECTOR)
5101                 vcpu->arch.nmi_pending = 0;
5102         else
5103                 vcpu->arch.interrupt.pending = false;
5104
5105         return EMULATE_DONE;
5106 }
5107 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5108
5109 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5110 {
5111         int r = EMULATE_DONE;
5112
5113         ++vcpu->stat.insn_emulation_fail;
5114         trace_kvm_emulate_insn_failed(vcpu);
5115         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5116                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5117                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5118                 vcpu->run->internal.ndata = 0;
5119                 r = EMULATE_FAIL;
5120         }
5121         kvm_queue_exception(vcpu, UD_VECTOR);
5122
5123         return r;
5124 }
5125
5126 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5127                                   bool write_fault_to_shadow_pgtable,
5128                                   int emulation_type)
5129 {
5130         gpa_t gpa = cr2;
5131         pfn_t pfn;
5132
5133         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5134                 return false;
5135
5136         if (!vcpu->arch.mmu.direct_map) {
5137                 /*
5138                  * Write permission should be allowed since only
5139                  * write access need to be emulated.
5140                  */
5141                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5142
5143                 /*
5144                  * If the mapping is invalid in guest, let cpu retry
5145                  * it to generate fault.
5146                  */
5147                 if (gpa == UNMAPPED_GVA)
5148                         return true;
5149         }
5150
5151         /*
5152          * Do not retry the unhandleable instruction if it faults on the
5153          * readonly host memory, otherwise it will goto a infinite loop:
5154          * retry instruction -> write #PF -> emulation fail -> retry
5155          * instruction -> ...
5156          */
5157         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5158
5159         /*
5160          * If the instruction failed on the error pfn, it can not be fixed,
5161          * report the error to userspace.
5162          */
5163         if (is_error_noslot_pfn(pfn))
5164                 return false;
5165
5166         kvm_release_pfn_clean(pfn);
5167
5168         /* The instructions are well-emulated on direct mmu. */
5169         if (vcpu->arch.mmu.direct_map) {
5170                 unsigned int indirect_shadow_pages;
5171
5172                 spin_lock(&vcpu->kvm->mmu_lock);
5173                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5174                 spin_unlock(&vcpu->kvm->mmu_lock);
5175
5176                 if (indirect_shadow_pages)
5177                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5178
5179                 return true;
5180         }
5181
5182         /*
5183          * if emulation was due to access to shadowed page table
5184          * and it failed try to unshadow page and re-enter the
5185          * guest to let CPU execute the instruction.
5186          */
5187         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5188
5189         /*
5190          * If the access faults on its page table, it can not
5191          * be fixed by unprotecting shadow page and it should
5192          * be reported to userspace.
5193          */
5194         return !write_fault_to_shadow_pgtable;
5195 }
5196
5197 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5198                               unsigned long cr2,  int emulation_type)
5199 {
5200         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5201         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5202
5203         last_retry_eip = vcpu->arch.last_retry_eip;
5204         last_retry_addr = vcpu->arch.last_retry_addr;
5205
5206         /*
5207          * If the emulation is caused by #PF and it is non-page_table
5208          * writing instruction, it means the VM-EXIT is caused by shadow
5209          * page protected, we can zap the shadow page and retry this
5210          * instruction directly.
5211          *
5212          * Note: if the guest uses a non-page-table modifying instruction
5213          * on the PDE that points to the instruction, then we will unmap
5214          * the instruction and go to an infinite loop. So, we cache the
5215          * last retried eip and the last fault address, if we meet the eip
5216          * and the address again, we can break out of the potential infinite
5217          * loop.
5218          */
5219         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5220
5221         if (!(emulation_type & EMULTYPE_RETRY))
5222                 return false;
5223
5224         if (x86_page_table_writing_insn(ctxt))
5225                 return false;
5226
5227         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5228                 return false;
5229
5230         vcpu->arch.last_retry_eip = ctxt->eip;
5231         vcpu->arch.last_retry_addr = cr2;
5232
5233         if (!vcpu->arch.mmu.direct_map)
5234                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5235
5236         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5237
5238         return true;
5239 }
5240
5241 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5242 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5243
5244 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5245 {
5246         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5247                 /* This is a good place to trace that we are exiting SMM.  */
5248                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5249
5250                 if (unlikely(vcpu->arch.smi_pending)) {
5251                         kvm_make_request(KVM_REQ_SMI, vcpu);
5252                         vcpu->arch.smi_pending = 0;
5253                 } else {
5254                         /* Process a latched INIT, if any.  */
5255                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5256                 }
5257         }
5258
5259         kvm_mmu_reset_context(vcpu);
5260 }
5261
5262 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5263 {
5264         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5265
5266         vcpu->arch.hflags = emul_flags;
5267
5268         if (changed & HF_SMM_MASK)
5269                 kvm_smm_changed(vcpu);
5270 }
5271
5272 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5273                                 unsigned long *db)
5274 {
5275         u32 dr6 = 0;
5276         int i;
5277         u32 enable, rwlen;
5278
5279         enable = dr7;
5280         rwlen = dr7 >> 16;
5281         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5282                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5283                         dr6 |= (1 << i);
5284         return dr6;
5285 }
5286
5287 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5288 {
5289         struct kvm_run *kvm_run = vcpu->run;
5290
5291         /*
5292          * rflags is the old, "raw" value of the flags.  The new value has
5293          * not been saved yet.
5294          *
5295          * This is correct even for TF set by the guest, because "the
5296          * processor will not generate this exception after the instruction
5297          * that sets the TF flag".
5298          */
5299         if (unlikely(rflags & X86_EFLAGS_TF)) {
5300                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5301                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5302                                                   DR6_RTM;
5303                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5304                         kvm_run->debug.arch.exception = DB_VECTOR;
5305                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5306                         *r = EMULATE_USER_EXIT;
5307                 } else {
5308                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5309                         /*
5310                          * "Certain debug exceptions may clear bit 0-3.  The
5311                          * remaining contents of the DR6 register are never
5312                          * cleared by the processor".
5313                          */
5314                         vcpu->arch.dr6 &= ~15;
5315                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5316                         kvm_queue_exception(vcpu, DB_VECTOR);
5317                 }
5318         }
5319 }
5320
5321 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5322 {
5323         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5324             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5325                 struct kvm_run *kvm_run = vcpu->run;
5326                 unsigned long eip = kvm_get_linear_rip(vcpu);
5327                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5328                                            vcpu->arch.guest_debug_dr7,
5329                                            vcpu->arch.eff_db);
5330
5331                 if (dr6 != 0) {
5332                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5333                         kvm_run->debug.arch.pc = eip;
5334                         kvm_run->debug.arch.exception = DB_VECTOR;
5335                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5336                         *r = EMULATE_USER_EXIT;
5337                         return true;
5338                 }
5339         }
5340
5341         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5342             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5343                 unsigned long eip = kvm_get_linear_rip(vcpu);
5344                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5345                                            vcpu->arch.dr7,
5346                                            vcpu->arch.db);
5347
5348                 if (dr6 != 0) {
5349                         vcpu->arch.dr6 &= ~15;
5350                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5351                         kvm_queue_exception(vcpu, DB_VECTOR);
5352                         *r = EMULATE_DONE;
5353                         return true;
5354                 }
5355         }
5356
5357         return false;
5358 }
5359
5360 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5361                             unsigned long cr2,
5362                             int emulation_type,
5363                             void *insn,
5364                             int insn_len)
5365 {
5366         int r;
5367         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5368         bool writeback = true;
5369         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5370
5371         /*
5372          * Clear write_fault_to_shadow_pgtable here to ensure it is
5373          * never reused.
5374          */
5375         vcpu->arch.write_fault_to_shadow_pgtable = false;
5376         kvm_clear_exception_queue(vcpu);
5377
5378         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5379                 init_emulate_ctxt(vcpu);
5380
5381                 /*
5382                  * We will reenter on the same instruction since
5383                  * we do not set complete_userspace_io.  This does not
5384                  * handle watchpoints yet, those would be handled in
5385                  * the emulate_ops.
5386                  */
5387                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5388                         return r;
5389
5390                 ctxt->interruptibility = 0;
5391                 ctxt->have_exception = false;
5392                 ctxt->exception.vector = -1;
5393                 ctxt->perm_ok = false;
5394
5395                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5396
5397                 r = x86_decode_insn(ctxt, insn, insn_len);
5398
5399                 trace_kvm_emulate_insn_start(vcpu);
5400                 ++vcpu->stat.insn_emulation;
5401                 if (r != EMULATION_OK)  {
5402                         if (emulation_type & EMULTYPE_TRAP_UD)
5403                                 return EMULATE_FAIL;
5404                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5405                                                 emulation_type))
5406                                 return EMULATE_DONE;
5407                         if (emulation_type & EMULTYPE_SKIP)
5408                                 return EMULATE_FAIL;
5409                         return handle_emulation_failure(vcpu);
5410                 }
5411         }
5412
5413         if (emulation_type & EMULTYPE_SKIP) {
5414                 kvm_rip_write(vcpu, ctxt->_eip);
5415                 if (ctxt->eflags & X86_EFLAGS_RF)
5416                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5417                 return EMULATE_DONE;
5418         }
5419
5420         if (retry_instruction(ctxt, cr2, emulation_type))
5421                 return EMULATE_DONE;
5422
5423         /* this is needed for vmware backdoor interface to work since it
5424            changes registers values  during IO operation */
5425         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5426                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5427                 emulator_invalidate_register_cache(ctxt);
5428         }
5429
5430 restart:
5431         r = x86_emulate_insn(ctxt);
5432
5433         if (r == EMULATION_INTERCEPTED)
5434                 return EMULATE_DONE;
5435
5436         if (r == EMULATION_FAILED) {
5437                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5438                                         emulation_type))
5439                         return EMULATE_DONE;
5440
5441                 return handle_emulation_failure(vcpu);
5442         }
5443
5444         if (ctxt->have_exception) {
5445                 r = EMULATE_DONE;
5446                 if (inject_emulated_exception(vcpu))
5447                         return r;
5448         } else if (vcpu->arch.pio.count) {
5449                 if (!vcpu->arch.pio.in) {
5450                         /* FIXME: return into emulator if single-stepping.  */
5451                         vcpu->arch.pio.count = 0;
5452                 } else {
5453                         writeback = false;
5454                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5455                 }
5456                 r = EMULATE_USER_EXIT;
5457         } else if (vcpu->mmio_needed) {
5458                 if (!vcpu->mmio_is_write)
5459                         writeback = false;
5460                 r = EMULATE_USER_EXIT;
5461                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5462         } else if (r == EMULATION_RESTART)
5463                 goto restart;
5464         else
5465                 r = EMULATE_DONE;
5466
5467         if (writeback) {
5468                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5469                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5470                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5471                 if (vcpu->arch.hflags != ctxt->emul_flags)
5472                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5473                 kvm_rip_write(vcpu, ctxt->eip);
5474                 if (r == EMULATE_DONE)
5475                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5476                 if (!ctxt->have_exception ||
5477                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5478                         __kvm_set_rflags(vcpu, ctxt->eflags);
5479
5480                 /*
5481                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5482                  * do nothing, and it will be requested again as soon as
5483                  * the shadow expires.  But we still need to check here,
5484                  * because POPF has no interrupt shadow.
5485                  */
5486                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5487                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5488         } else
5489                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5490
5491         return r;
5492 }
5493 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5494
5495 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5496 {
5497         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5498         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5499                                             size, port, &val, 1);
5500         /* do not return to emulator after return from userspace */
5501         vcpu->arch.pio.count = 0;
5502         return ret;
5503 }
5504 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5505
5506 static void tsc_bad(void *info)
5507 {
5508         __this_cpu_write(cpu_tsc_khz, 0);
5509 }
5510
5511 static void tsc_khz_changed(void *data)
5512 {
5513         struct cpufreq_freqs *freq = data;
5514         unsigned long khz = 0;
5515
5516         if (data)
5517                 khz = freq->new;
5518         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5519                 khz = cpufreq_quick_get(raw_smp_processor_id());
5520         if (!khz)
5521                 khz = tsc_khz;
5522         __this_cpu_write(cpu_tsc_khz, khz);
5523 }
5524
5525 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5526                                      void *data)
5527 {
5528         struct cpufreq_freqs *freq = data;
5529         struct kvm *kvm;
5530         struct kvm_vcpu *vcpu;
5531         int i, send_ipi = 0;
5532
5533         /*
5534          * We allow guests to temporarily run on slowing clocks,
5535          * provided we notify them after, or to run on accelerating
5536          * clocks, provided we notify them before.  Thus time never
5537          * goes backwards.
5538          *
5539          * However, we have a problem.  We can't atomically update
5540          * the frequency of a given CPU from this function; it is
5541          * merely a notifier, which can be called from any CPU.
5542          * Changing the TSC frequency at arbitrary points in time
5543          * requires a recomputation of local variables related to
5544          * the TSC for each VCPU.  We must flag these local variables
5545          * to be updated and be sure the update takes place with the
5546          * new frequency before any guests proceed.
5547          *
5548          * Unfortunately, the combination of hotplug CPU and frequency
5549          * change creates an intractable locking scenario; the order
5550          * of when these callouts happen is undefined with respect to
5551          * CPU hotplug, and they can race with each other.  As such,
5552          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5553          * undefined; you can actually have a CPU frequency change take
5554          * place in between the computation of X and the setting of the
5555          * variable.  To protect against this problem, all updates of
5556          * the per_cpu tsc_khz variable are done in an interrupt
5557          * protected IPI, and all callers wishing to update the value
5558          * must wait for a synchronous IPI to complete (which is trivial
5559          * if the caller is on the CPU already).  This establishes the
5560          * necessary total order on variable updates.
5561          *
5562          * Note that because a guest time update may take place
5563          * anytime after the setting of the VCPU's request bit, the
5564          * correct TSC value must be set before the request.  However,
5565          * to ensure the update actually makes it to any guest which
5566          * starts running in hardware virtualization between the set
5567          * and the acquisition of the spinlock, we must also ping the
5568          * CPU after setting the request bit.
5569          *
5570          */
5571
5572         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5573                 return 0;
5574         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5575                 return 0;
5576
5577         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5578
5579         spin_lock(&kvm_lock);
5580         list_for_each_entry(kvm, &vm_list, vm_list) {
5581                 kvm_for_each_vcpu(i, vcpu, kvm) {
5582                         if (vcpu->cpu != freq->cpu)
5583                                 continue;
5584                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5585                         if (vcpu->cpu != smp_processor_id())
5586                                 send_ipi = 1;
5587                 }
5588         }
5589         spin_unlock(&kvm_lock);
5590
5591         if (freq->old < freq->new && send_ipi) {
5592                 /*
5593                  * We upscale the frequency.  Must make the guest
5594                  * doesn't see old kvmclock values while running with
5595                  * the new frequency, otherwise we risk the guest sees
5596                  * time go backwards.
5597                  *
5598                  * In case we update the frequency for another cpu
5599                  * (which might be in guest context) send an interrupt
5600                  * to kick the cpu out of guest context.  Next time
5601                  * guest context is entered kvmclock will be updated,
5602                  * so the guest will not see stale values.
5603                  */
5604                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5605         }
5606         return 0;
5607 }
5608
5609 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5610         .notifier_call  = kvmclock_cpufreq_notifier
5611 };
5612
5613 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5614                                         unsigned long action, void *hcpu)
5615 {
5616         unsigned int cpu = (unsigned long)hcpu;
5617
5618         switch (action) {
5619                 case CPU_ONLINE:
5620                 case CPU_DOWN_FAILED:
5621                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5622                         break;
5623                 case CPU_DOWN_PREPARE:
5624                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5625                         break;
5626         }
5627         return NOTIFY_OK;
5628 }
5629
5630 static struct notifier_block kvmclock_cpu_notifier_block = {
5631         .notifier_call  = kvmclock_cpu_notifier,
5632         .priority = -INT_MAX
5633 };
5634
5635 static void kvm_timer_init(void)
5636 {
5637         int cpu;
5638
5639         max_tsc_khz = tsc_khz;
5640
5641         cpu_notifier_register_begin();
5642         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5643 #ifdef CONFIG_CPU_FREQ
5644                 struct cpufreq_policy policy;
5645                 memset(&policy, 0, sizeof(policy));
5646                 cpu = get_cpu();
5647                 cpufreq_get_policy(&policy, cpu);
5648                 if (policy.cpuinfo.max_freq)
5649                         max_tsc_khz = policy.cpuinfo.max_freq;
5650                 put_cpu();
5651 #endif
5652                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5653                                           CPUFREQ_TRANSITION_NOTIFIER);
5654         }
5655         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5656         for_each_online_cpu(cpu)
5657                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5658
5659         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5660         cpu_notifier_register_done();
5661
5662 }
5663
5664 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5665
5666 int kvm_is_in_guest(void)
5667 {
5668         return __this_cpu_read(current_vcpu) != NULL;
5669 }
5670
5671 static int kvm_is_user_mode(void)
5672 {
5673         int user_mode = 3;
5674
5675         if (__this_cpu_read(current_vcpu))
5676                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5677
5678         return user_mode != 0;
5679 }
5680
5681 static unsigned long kvm_get_guest_ip(void)
5682 {
5683         unsigned long ip = 0;
5684
5685         if (__this_cpu_read(current_vcpu))
5686                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5687
5688         return ip;
5689 }
5690
5691 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5692         .is_in_guest            = kvm_is_in_guest,
5693         .is_user_mode           = kvm_is_user_mode,
5694         .get_guest_ip           = kvm_get_guest_ip,
5695 };
5696
5697 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5698 {
5699         __this_cpu_write(current_vcpu, vcpu);
5700 }
5701 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5702
5703 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5704 {
5705         __this_cpu_write(current_vcpu, NULL);
5706 }
5707 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5708
5709 static void kvm_set_mmio_spte_mask(void)
5710 {
5711         u64 mask;
5712         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5713
5714         /*
5715          * Set the reserved bits and the present bit of an paging-structure
5716          * entry to generate page fault with PFER.RSV = 1.
5717          */
5718          /* Mask the reserved physical address bits. */
5719         mask = rsvd_bits(maxphyaddr, 51);
5720
5721         /* Bit 62 is always reserved for 32bit host. */
5722         mask |= 0x3ull << 62;
5723
5724         /* Set the present bit. */
5725         mask |= 1ull;
5726
5727 #ifdef CONFIG_X86_64
5728         /*
5729          * If reserved bit is not supported, clear the present bit to disable
5730          * mmio page fault.
5731          */
5732         if (maxphyaddr == 52)
5733                 mask &= ~1ull;
5734 #endif
5735
5736         kvm_mmu_set_mmio_spte_mask(mask);
5737 }
5738
5739 #ifdef CONFIG_X86_64
5740 static void pvclock_gtod_update_fn(struct work_struct *work)
5741 {
5742         struct kvm *kvm;
5743
5744         struct kvm_vcpu *vcpu;
5745         int i;
5746
5747         spin_lock(&kvm_lock);
5748         list_for_each_entry(kvm, &vm_list, vm_list)
5749                 kvm_for_each_vcpu(i, vcpu, kvm)
5750                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5751         atomic_set(&kvm_guest_has_master_clock, 0);
5752         spin_unlock(&kvm_lock);
5753 }
5754
5755 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5756
5757 /*
5758  * Notification about pvclock gtod data update.
5759  */
5760 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5761                                void *priv)
5762 {
5763         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5764         struct timekeeper *tk = priv;
5765
5766         update_pvclock_gtod(tk);
5767
5768         /* disable master clock if host does not trust, or does not
5769          * use, TSC clocksource
5770          */
5771         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5772             atomic_read(&kvm_guest_has_master_clock) != 0)
5773                 queue_work(system_long_wq, &pvclock_gtod_work);
5774
5775         return 0;
5776 }
5777
5778 static struct notifier_block pvclock_gtod_notifier = {
5779         .notifier_call = pvclock_gtod_notify,
5780 };
5781 #endif
5782
5783 int kvm_arch_init(void *opaque)
5784 {
5785         int r;
5786         struct kvm_x86_ops *ops = opaque;
5787
5788         if (kvm_x86_ops) {
5789                 printk(KERN_ERR "kvm: already loaded the other module\n");
5790                 r = -EEXIST;
5791                 goto out;
5792         }
5793
5794         if (!ops->cpu_has_kvm_support()) {
5795                 printk(KERN_ERR "kvm: no hardware support\n");
5796                 r = -EOPNOTSUPP;
5797                 goto out;
5798         }
5799         if (ops->disabled_by_bios()) {
5800                 printk(KERN_ERR "kvm: disabled by bios\n");
5801                 r = -EOPNOTSUPP;
5802                 goto out;
5803         }
5804
5805         r = -ENOMEM;
5806         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5807         if (!shared_msrs) {
5808                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5809                 goto out;
5810         }
5811
5812         r = kvm_mmu_module_init();
5813         if (r)
5814                 goto out_free_percpu;
5815
5816         kvm_set_mmio_spte_mask();
5817
5818         kvm_x86_ops = ops;
5819
5820         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5821                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5822
5823         kvm_timer_init();
5824
5825         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5826
5827         if (cpu_has_xsave)
5828                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5829
5830         kvm_lapic_init();
5831 #ifdef CONFIG_X86_64
5832         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5833 #endif
5834
5835         return 0;
5836
5837 out_free_percpu:
5838         free_percpu(shared_msrs);
5839 out:
5840         return r;
5841 }
5842
5843 void kvm_arch_exit(void)
5844 {
5845         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5846
5847         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5848                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5849                                             CPUFREQ_TRANSITION_NOTIFIER);
5850         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5851 #ifdef CONFIG_X86_64
5852         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5853 #endif
5854         kvm_x86_ops = NULL;
5855         kvm_mmu_module_exit();
5856         free_percpu(shared_msrs);
5857 }
5858
5859 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5860 {
5861         ++vcpu->stat.halt_exits;
5862         if (lapic_in_kernel(vcpu)) {
5863                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5864                 return 1;
5865         } else {
5866                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5867                 return 0;
5868         }
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5871
5872 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5873 {
5874         kvm_x86_ops->skip_emulated_instruction(vcpu);
5875         return kvm_vcpu_halt(vcpu);
5876 }
5877 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5878
5879 /*
5880  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5881  *
5882  * @apicid - apicid of vcpu to be kicked.
5883  */
5884 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5885 {
5886         struct kvm_lapic_irq lapic_irq;
5887
5888         lapic_irq.shorthand = 0;
5889         lapic_irq.dest_mode = 0;
5890         lapic_irq.dest_id = apicid;
5891         lapic_irq.msi_redir_hint = false;
5892
5893         lapic_irq.delivery_mode = APIC_DM_REMRD;
5894         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5895 }
5896
5897 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5898 {
5899         vcpu->arch.apicv_active = false;
5900         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5901 }
5902
5903 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5904 {
5905         unsigned long nr, a0, a1, a2, a3, ret;
5906         int op_64_bit, r = 1;
5907
5908         kvm_x86_ops->skip_emulated_instruction(vcpu);
5909
5910         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5911                 return kvm_hv_hypercall(vcpu);
5912
5913         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5914         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5915         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5916         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5917         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5918
5919         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5920
5921         op_64_bit = is_64_bit_mode(vcpu);
5922         if (!op_64_bit) {
5923                 nr &= 0xFFFFFFFF;
5924                 a0 &= 0xFFFFFFFF;
5925                 a1 &= 0xFFFFFFFF;
5926                 a2 &= 0xFFFFFFFF;
5927                 a3 &= 0xFFFFFFFF;
5928         }
5929
5930         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5931                 ret = -KVM_EPERM;
5932                 goto out;
5933         }
5934
5935         switch (nr) {
5936         case KVM_HC_VAPIC_POLL_IRQ:
5937                 ret = 0;
5938                 break;
5939         case KVM_HC_KICK_CPU:
5940                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5941                 ret = 0;
5942                 break;
5943         default:
5944                 ret = -KVM_ENOSYS;
5945                 break;
5946         }
5947 out:
5948         if (!op_64_bit)
5949                 ret = (u32)ret;
5950         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5951         ++vcpu->stat.hypercalls;
5952         return r;
5953 }
5954 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5955
5956 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5957 {
5958         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5959         char instruction[3];
5960         unsigned long rip = kvm_rip_read(vcpu);
5961
5962         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5963
5964         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5965 }
5966
5967 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5968 {
5969         return vcpu->run->request_interrupt_window &&
5970                 likely(!pic_in_kernel(vcpu->kvm));
5971 }
5972
5973 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5974 {
5975         struct kvm_run *kvm_run = vcpu->run;
5976
5977         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5978         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5979         kvm_run->cr8 = kvm_get_cr8(vcpu);
5980         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5981         kvm_run->ready_for_interrupt_injection =
5982                 pic_in_kernel(vcpu->kvm) ||
5983                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
5984 }
5985
5986 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5987 {
5988         int max_irr, tpr;
5989
5990         if (!kvm_x86_ops->update_cr8_intercept)
5991                 return;
5992
5993         if (!vcpu->arch.apic)
5994                 return;
5995
5996         if (vcpu->arch.apicv_active)
5997                 return;
5998
5999         if (!vcpu->arch.apic->vapic_addr)
6000                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6001         else
6002                 max_irr = -1;
6003
6004         if (max_irr != -1)
6005                 max_irr >>= 4;
6006
6007         tpr = kvm_lapic_get_cr8(vcpu);
6008
6009         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6010 }
6011
6012 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6013 {
6014         int r;
6015
6016         /* try to reinject previous events if any */
6017         if (vcpu->arch.exception.pending) {
6018                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6019                                         vcpu->arch.exception.has_error_code,
6020                                         vcpu->arch.exception.error_code);
6021
6022                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6023                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6024                                              X86_EFLAGS_RF);
6025
6026                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6027                     (vcpu->arch.dr7 & DR7_GD)) {
6028                         vcpu->arch.dr7 &= ~DR7_GD;
6029                         kvm_update_dr7(vcpu);
6030                 }
6031
6032                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6033                                           vcpu->arch.exception.has_error_code,
6034                                           vcpu->arch.exception.error_code,
6035                                           vcpu->arch.exception.reinject);
6036                 return 0;
6037         }
6038
6039         if (vcpu->arch.nmi_injected) {
6040                 kvm_x86_ops->set_nmi(vcpu);
6041                 return 0;
6042         }
6043
6044         if (vcpu->arch.interrupt.pending) {
6045                 kvm_x86_ops->set_irq(vcpu);
6046                 return 0;
6047         }
6048
6049         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6050                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6051                 if (r != 0)
6052                         return r;
6053         }
6054
6055         /* try to inject new event if pending */
6056         if (vcpu->arch.nmi_pending) {
6057                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6058                         --vcpu->arch.nmi_pending;
6059                         vcpu->arch.nmi_injected = true;
6060                         kvm_x86_ops->set_nmi(vcpu);
6061                 }
6062         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6063                 /*
6064                  * Because interrupts can be injected asynchronously, we are
6065                  * calling check_nested_events again here to avoid a race condition.
6066                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6067                  * proposal and current concerns.  Perhaps we should be setting
6068                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6069                  */
6070                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6071                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6072                         if (r != 0)
6073                                 return r;
6074                 }
6075                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6076                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6077                                             false);
6078                         kvm_x86_ops->set_irq(vcpu);
6079                 }
6080         }
6081         return 0;
6082 }
6083
6084 static void process_nmi(struct kvm_vcpu *vcpu)
6085 {
6086         unsigned limit = 2;
6087
6088         /*
6089          * x86 is limited to one NMI running, and one NMI pending after it.
6090          * If an NMI is already in progress, limit further NMIs to just one.
6091          * Otherwise, allow two (and we'll inject the first one immediately).
6092          */
6093         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6094                 limit = 1;
6095
6096         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6097         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6098         kvm_make_request(KVM_REQ_EVENT, vcpu);
6099 }
6100
6101 #define put_smstate(type, buf, offset, val)                       \
6102         *(type *)((buf) + (offset) - 0x7e00) = val
6103
6104 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6105 {
6106         u32 flags = 0;
6107         flags |= seg->g       << 23;
6108         flags |= seg->db      << 22;
6109         flags |= seg->l       << 21;
6110         flags |= seg->avl     << 20;
6111         flags |= seg->present << 15;
6112         flags |= seg->dpl     << 13;
6113         flags |= seg->s       << 12;
6114         flags |= seg->type    << 8;
6115         return flags;
6116 }
6117
6118 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6119 {
6120         struct kvm_segment seg;
6121         int offset;
6122
6123         kvm_get_segment(vcpu, &seg, n);
6124         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6125
6126         if (n < 3)
6127                 offset = 0x7f84 + n * 12;
6128         else
6129                 offset = 0x7f2c + (n - 3) * 12;
6130
6131         put_smstate(u32, buf, offset + 8, seg.base);
6132         put_smstate(u32, buf, offset + 4, seg.limit);
6133         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6134 }
6135
6136 #ifdef CONFIG_X86_64
6137 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6138 {
6139         struct kvm_segment seg;
6140         int offset;
6141         u16 flags;
6142
6143         kvm_get_segment(vcpu, &seg, n);
6144         offset = 0x7e00 + n * 16;
6145
6146         flags = process_smi_get_segment_flags(&seg) >> 8;
6147         put_smstate(u16, buf, offset, seg.selector);
6148         put_smstate(u16, buf, offset + 2, flags);
6149         put_smstate(u32, buf, offset + 4, seg.limit);
6150         put_smstate(u64, buf, offset + 8, seg.base);
6151 }
6152 #endif
6153
6154 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6155 {
6156         struct desc_ptr dt;
6157         struct kvm_segment seg;
6158         unsigned long val;
6159         int i;
6160
6161         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6162         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6163         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6164         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6165
6166         for (i = 0; i < 8; i++)
6167                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6168
6169         kvm_get_dr(vcpu, 6, &val);
6170         put_smstate(u32, buf, 0x7fcc, (u32)val);
6171         kvm_get_dr(vcpu, 7, &val);
6172         put_smstate(u32, buf, 0x7fc8, (u32)val);
6173
6174         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6175         put_smstate(u32, buf, 0x7fc4, seg.selector);
6176         put_smstate(u32, buf, 0x7f64, seg.base);
6177         put_smstate(u32, buf, 0x7f60, seg.limit);
6178         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6179
6180         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6181         put_smstate(u32, buf, 0x7fc0, seg.selector);
6182         put_smstate(u32, buf, 0x7f80, seg.base);
6183         put_smstate(u32, buf, 0x7f7c, seg.limit);
6184         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6185
6186         kvm_x86_ops->get_gdt(vcpu, &dt);
6187         put_smstate(u32, buf, 0x7f74, dt.address);
6188         put_smstate(u32, buf, 0x7f70, dt.size);
6189
6190         kvm_x86_ops->get_idt(vcpu, &dt);
6191         put_smstate(u32, buf, 0x7f58, dt.address);
6192         put_smstate(u32, buf, 0x7f54, dt.size);
6193
6194         for (i = 0; i < 6; i++)
6195                 process_smi_save_seg_32(vcpu, buf, i);
6196
6197         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6198
6199         /* revision id */
6200         put_smstate(u32, buf, 0x7efc, 0x00020000);
6201         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6202 }
6203
6204 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6205 {
6206 #ifdef CONFIG_X86_64
6207         struct desc_ptr dt;
6208         struct kvm_segment seg;
6209         unsigned long val;
6210         int i;
6211
6212         for (i = 0; i < 16; i++)
6213                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6214
6215         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6216         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6217
6218         kvm_get_dr(vcpu, 6, &val);
6219         put_smstate(u64, buf, 0x7f68, val);
6220         kvm_get_dr(vcpu, 7, &val);
6221         put_smstate(u64, buf, 0x7f60, val);
6222
6223         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6224         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6225         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6226
6227         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6228
6229         /* revision id */
6230         put_smstate(u32, buf, 0x7efc, 0x00020064);
6231
6232         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6233
6234         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6235         put_smstate(u16, buf, 0x7e90, seg.selector);
6236         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6237         put_smstate(u32, buf, 0x7e94, seg.limit);
6238         put_smstate(u64, buf, 0x7e98, seg.base);
6239
6240         kvm_x86_ops->get_idt(vcpu, &dt);
6241         put_smstate(u32, buf, 0x7e84, dt.size);
6242         put_smstate(u64, buf, 0x7e88, dt.address);
6243
6244         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6245         put_smstate(u16, buf, 0x7e70, seg.selector);
6246         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6247         put_smstate(u32, buf, 0x7e74, seg.limit);
6248         put_smstate(u64, buf, 0x7e78, seg.base);
6249
6250         kvm_x86_ops->get_gdt(vcpu, &dt);
6251         put_smstate(u32, buf, 0x7e64, dt.size);
6252         put_smstate(u64, buf, 0x7e68, dt.address);
6253
6254         for (i = 0; i < 6; i++)
6255                 process_smi_save_seg_64(vcpu, buf, i);
6256 #else
6257         WARN_ON_ONCE(1);
6258 #endif
6259 }
6260
6261 static void process_smi(struct kvm_vcpu *vcpu)
6262 {
6263         struct kvm_segment cs, ds;
6264         struct desc_ptr dt;
6265         char buf[512];
6266         u32 cr0;
6267
6268         if (is_smm(vcpu)) {
6269                 vcpu->arch.smi_pending = true;
6270                 return;
6271         }
6272
6273         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6274         vcpu->arch.hflags |= HF_SMM_MASK;
6275         memset(buf, 0, 512);
6276         if (guest_cpuid_has_longmode(vcpu))
6277                 process_smi_save_state_64(vcpu, buf);
6278         else
6279                 process_smi_save_state_32(vcpu, buf);
6280
6281         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6282
6283         if (kvm_x86_ops->get_nmi_mask(vcpu))
6284                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6285         else
6286                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6287
6288         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6289         kvm_rip_write(vcpu, 0x8000);
6290
6291         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6292         kvm_x86_ops->set_cr0(vcpu, cr0);
6293         vcpu->arch.cr0 = cr0;
6294
6295         kvm_x86_ops->set_cr4(vcpu, 0);
6296
6297         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6298         dt.address = dt.size = 0;
6299         kvm_x86_ops->set_idt(vcpu, &dt);
6300
6301         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6302
6303         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6304         cs.base = vcpu->arch.smbase;
6305
6306         ds.selector = 0;
6307         ds.base = 0;
6308
6309         cs.limit    = ds.limit = 0xffffffff;
6310         cs.type     = ds.type = 0x3;
6311         cs.dpl      = ds.dpl = 0;
6312         cs.db       = ds.db = 0;
6313         cs.s        = ds.s = 1;
6314         cs.l        = ds.l = 0;
6315         cs.g        = ds.g = 1;
6316         cs.avl      = ds.avl = 0;
6317         cs.present  = ds.present = 1;
6318         cs.unusable = ds.unusable = 0;
6319         cs.padding  = ds.padding = 0;
6320
6321         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6322         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6323         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6324         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6325         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6326         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6327
6328         if (guest_cpuid_has_longmode(vcpu))
6329                 kvm_x86_ops->set_efer(vcpu, 0);
6330
6331         kvm_update_cpuid(vcpu);
6332         kvm_mmu_reset_context(vcpu);
6333 }
6334
6335 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6336 {
6337         u64 eoi_exit_bitmap[4];
6338
6339         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6340                 return;
6341
6342         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6343
6344         if (irqchip_split(vcpu->kvm))
6345                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6346         else {
6347                 if (vcpu->arch.apicv_active)
6348                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6349                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6350         }
6351         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6352                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6353         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6354 }
6355
6356 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6357 {
6358         ++vcpu->stat.tlb_flush;
6359         kvm_x86_ops->tlb_flush(vcpu);
6360 }
6361
6362 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6363 {
6364         struct page *page = NULL;
6365
6366         if (!lapic_in_kernel(vcpu))
6367                 return;
6368
6369         if (!kvm_x86_ops->set_apic_access_page_addr)
6370                 return;
6371
6372         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6373         if (is_error_page(page))
6374                 return;
6375         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6376
6377         /*
6378          * Do not pin apic access page in memory, the MMU notifier
6379          * will call us again if it is migrated or swapped out.
6380          */
6381         put_page(page);
6382 }
6383 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6384
6385 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6386                                            unsigned long address)
6387 {
6388         /*
6389          * The physical address of apic access page is stored in the VMCS.
6390          * Update it when it becomes invalid.
6391          */
6392         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6393                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6394 }
6395
6396 /*
6397  * Returns 1 to let vcpu_run() continue the guest execution loop without
6398  * exiting to the userspace.  Otherwise, the value will be returned to the
6399  * userspace.
6400  */
6401 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6402 {
6403         int r;
6404         bool req_int_win =
6405                 dm_request_for_irq_injection(vcpu) &&
6406                 kvm_cpu_accept_dm_intr(vcpu);
6407
6408         bool req_immediate_exit = false;
6409
6410         if (vcpu->requests) {
6411                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6412                         kvm_mmu_unload(vcpu);
6413                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6414                         __kvm_migrate_timers(vcpu);
6415                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6416                         kvm_gen_update_masterclock(vcpu->kvm);
6417                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6418                         kvm_gen_kvmclock_update(vcpu);
6419                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6420                         r = kvm_guest_time_update(vcpu);
6421                         if (unlikely(r))
6422                                 goto out;
6423                 }
6424                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6425                         kvm_mmu_sync_roots(vcpu);
6426                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6427                         kvm_vcpu_flush_tlb(vcpu);
6428                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6429                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6430                         r = 0;
6431                         goto out;
6432                 }
6433                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6434                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6435                         r = 0;
6436                         goto out;
6437                 }
6438                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6439                         vcpu->fpu_active = 0;
6440                         kvm_x86_ops->fpu_deactivate(vcpu);
6441                 }
6442                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6443                         /* Page is swapped out. Do synthetic halt */
6444                         vcpu->arch.apf.halted = true;
6445                         r = 1;
6446                         goto out;
6447                 }
6448                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6449                         record_steal_time(vcpu);
6450                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6451                         process_smi(vcpu);
6452                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6453                         process_nmi(vcpu);
6454                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6455                         kvm_pmu_handle_event(vcpu);
6456                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6457                         kvm_pmu_deliver_pmi(vcpu);
6458                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6459                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6460                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6461                                      vcpu->arch.ioapic_handled_vectors)) {
6462                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6463                                 vcpu->run->eoi.vector =
6464                                                 vcpu->arch.pending_ioapic_eoi;
6465                                 r = 0;
6466                                 goto out;
6467                         }
6468                 }
6469                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6470                         vcpu_scan_ioapic(vcpu);
6471                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6472                         kvm_vcpu_reload_apic_access_page(vcpu);
6473                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6474                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6475                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6476                         r = 0;
6477                         goto out;
6478                 }
6479                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6480                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6481                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6482                         r = 0;
6483                         goto out;
6484                 }
6485         }
6486
6487         /*
6488          * KVM_REQ_EVENT is not set when posted interrupts are set by
6489          * VT-d hardware, so we have to update RVI unconditionally.
6490          */
6491         if (kvm_lapic_enabled(vcpu)) {
6492                 /*
6493                  * Update architecture specific hints for APIC
6494                  * virtual interrupt delivery.
6495                  */
6496                 if (vcpu->arch.apicv_active)
6497                         kvm_x86_ops->hwapic_irr_update(vcpu,
6498                                 kvm_lapic_find_highest_irr(vcpu));
6499         }
6500
6501         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6502                 kvm_apic_accept_events(vcpu);
6503                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6504                         r = 1;
6505                         goto out;
6506                 }
6507
6508                 if (inject_pending_event(vcpu, req_int_win) != 0)
6509                         req_immediate_exit = true;
6510                 /* enable NMI/IRQ window open exits if needed */
6511                 else if (vcpu->arch.nmi_pending)
6512                         kvm_x86_ops->enable_nmi_window(vcpu);
6513                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6514                         kvm_x86_ops->enable_irq_window(vcpu);
6515
6516                 if (kvm_lapic_enabled(vcpu)) {
6517                         update_cr8_intercept(vcpu);
6518                         kvm_lapic_sync_to_vapic(vcpu);
6519                 }
6520         }
6521
6522         r = kvm_mmu_reload(vcpu);
6523         if (unlikely(r)) {
6524                 goto cancel_injection;
6525         }
6526
6527         preempt_disable();
6528
6529         kvm_x86_ops->prepare_guest_switch(vcpu);
6530         if (vcpu->fpu_active)
6531                 kvm_load_guest_fpu(vcpu);
6532         kvm_load_guest_xcr0(vcpu);
6533
6534         vcpu->mode = IN_GUEST_MODE;
6535
6536         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6537
6538         /* We should set ->mode before check ->requests,
6539          * see the comment in make_all_cpus_request.
6540          */
6541         smp_mb__after_srcu_read_unlock();
6542
6543         local_irq_disable();
6544
6545         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6546             || need_resched() || signal_pending(current)) {
6547                 vcpu->mode = OUTSIDE_GUEST_MODE;
6548                 smp_wmb();
6549                 local_irq_enable();
6550                 preempt_enable();
6551                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6552                 r = 1;
6553                 goto cancel_injection;
6554         }
6555
6556         if (req_immediate_exit)
6557                 smp_send_reschedule(vcpu->cpu);
6558
6559         __kvm_guest_enter();
6560
6561         if (unlikely(vcpu->arch.switch_db_regs)) {
6562                 set_debugreg(0, 7);
6563                 set_debugreg(vcpu->arch.eff_db[0], 0);
6564                 set_debugreg(vcpu->arch.eff_db[1], 1);
6565                 set_debugreg(vcpu->arch.eff_db[2], 2);
6566                 set_debugreg(vcpu->arch.eff_db[3], 3);
6567                 set_debugreg(vcpu->arch.dr6, 6);
6568                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6569         }
6570
6571         trace_kvm_entry(vcpu->vcpu_id);
6572         wait_lapic_expire(vcpu);
6573         kvm_x86_ops->run(vcpu);
6574
6575         /*
6576          * Do this here before restoring debug registers on the host.  And
6577          * since we do this before handling the vmexit, a DR access vmexit
6578          * can (a) read the correct value of the debug registers, (b) set
6579          * KVM_DEBUGREG_WONT_EXIT again.
6580          */
6581         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6582                 int i;
6583
6584                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6585                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6586                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6587                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6588         }
6589
6590         /*
6591          * If the guest has used debug registers, at least dr7
6592          * will be disabled while returning to the host.
6593          * If we don't have active breakpoints in the host, we don't
6594          * care about the messed up debug address registers. But if
6595          * we have some of them active, restore the old state.
6596          */
6597         if (hw_breakpoint_active())
6598                 hw_breakpoint_restore();
6599
6600         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6601
6602         vcpu->mode = OUTSIDE_GUEST_MODE;
6603         smp_wmb();
6604
6605         /* Interrupt is enabled by handle_external_intr() */
6606         kvm_x86_ops->handle_external_intr(vcpu);
6607
6608         ++vcpu->stat.exits;
6609
6610         /*
6611          * We must have an instruction between local_irq_enable() and
6612          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6613          * the interrupt shadow.  The stat.exits increment will do nicely.
6614          * But we need to prevent reordering, hence this barrier():
6615          */
6616         barrier();
6617
6618         kvm_guest_exit();
6619
6620         preempt_enable();
6621
6622         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6623
6624         /*
6625          * Profile KVM exit RIPs:
6626          */
6627         if (unlikely(prof_on == KVM_PROFILING)) {
6628                 unsigned long rip = kvm_rip_read(vcpu);
6629                 profile_hit(KVM_PROFILING, (void *)rip);
6630         }
6631
6632         if (unlikely(vcpu->arch.tsc_always_catchup))
6633                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6634
6635         if (vcpu->arch.apic_attention)
6636                 kvm_lapic_sync_from_vapic(vcpu);
6637
6638         r = kvm_x86_ops->handle_exit(vcpu);
6639         return r;
6640
6641 cancel_injection:
6642         kvm_x86_ops->cancel_injection(vcpu);
6643         if (unlikely(vcpu->arch.apic_attention))
6644                 kvm_lapic_sync_from_vapic(vcpu);
6645 out:
6646         return r;
6647 }
6648
6649 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6650 {
6651         if (!kvm_arch_vcpu_runnable(vcpu) &&
6652             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6653                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6654                 kvm_vcpu_block(vcpu);
6655                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6656
6657                 if (kvm_x86_ops->post_block)
6658                         kvm_x86_ops->post_block(vcpu);
6659
6660                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6661                         return 1;
6662         }
6663
6664         kvm_apic_accept_events(vcpu);
6665         switch(vcpu->arch.mp_state) {
6666         case KVM_MP_STATE_HALTED:
6667                 vcpu->arch.pv.pv_unhalted = false;
6668                 vcpu->arch.mp_state =
6669                         KVM_MP_STATE_RUNNABLE;
6670         case KVM_MP_STATE_RUNNABLE:
6671                 vcpu->arch.apf.halted = false;
6672                 break;
6673         case KVM_MP_STATE_INIT_RECEIVED:
6674                 break;
6675         default:
6676                 return -EINTR;
6677                 break;
6678         }
6679         return 1;
6680 }
6681
6682 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6683 {
6684         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6685                 !vcpu->arch.apf.halted);
6686 }
6687
6688 static int vcpu_run(struct kvm_vcpu *vcpu)
6689 {
6690         int r;
6691         struct kvm *kvm = vcpu->kvm;
6692
6693         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6694
6695         for (;;) {
6696                 if (kvm_vcpu_running(vcpu)) {
6697                         r = vcpu_enter_guest(vcpu);
6698                 } else {
6699                         r = vcpu_block(kvm, vcpu);
6700                 }
6701
6702                 if (r <= 0)
6703                         break;
6704
6705                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6706                 if (kvm_cpu_has_pending_timer(vcpu))
6707                         kvm_inject_pending_timer_irqs(vcpu);
6708
6709                 if (dm_request_for_irq_injection(vcpu) &&
6710                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6711                         r = 0;
6712                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6713                         ++vcpu->stat.request_irq_exits;
6714                         break;
6715                 }
6716
6717                 kvm_check_async_pf_completion(vcpu);
6718
6719                 if (signal_pending(current)) {
6720                         r = -EINTR;
6721                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6722                         ++vcpu->stat.signal_exits;
6723                         break;
6724                 }
6725                 if (need_resched()) {
6726                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6727                         cond_resched();
6728                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6729                 }
6730         }
6731
6732         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6733
6734         return r;
6735 }
6736
6737 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6738 {
6739         int r;
6740         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6741         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6742         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6743         if (r != EMULATE_DONE)
6744                 return 0;
6745         return 1;
6746 }
6747
6748 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6749 {
6750         BUG_ON(!vcpu->arch.pio.count);
6751
6752         return complete_emulated_io(vcpu);
6753 }
6754
6755 /*
6756  * Implements the following, as a state machine:
6757  *
6758  * read:
6759  *   for each fragment
6760  *     for each mmio piece in the fragment
6761  *       write gpa, len
6762  *       exit
6763  *       copy data
6764  *   execute insn
6765  *
6766  * write:
6767  *   for each fragment
6768  *     for each mmio piece in the fragment
6769  *       write gpa, len
6770  *       copy data
6771  *       exit
6772  */
6773 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6774 {
6775         struct kvm_run *run = vcpu->run;
6776         struct kvm_mmio_fragment *frag;
6777         unsigned len;
6778
6779         BUG_ON(!vcpu->mmio_needed);
6780
6781         /* Complete previous fragment */
6782         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6783         len = min(8u, frag->len);
6784         if (!vcpu->mmio_is_write)
6785                 memcpy(frag->data, run->mmio.data, len);
6786
6787         if (frag->len <= 8) {
6788                 /* Switch to the next fragment. */
6789                 frag++;
6790                 vcpu->mmio_cur_fragment++;
6791         } else {
6792                 /* Go forward to the next mmio piece. */
6793                 frag->data += len;
6794                 frag->gpa += len;
6795                 frag->len -= len;
6796         }
6797
6798         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6799                 vcpu->mmio_needed = 0;
6800
6801                 /* FIXME: return into emulator if single-stepping.  */
6802                 if (vcpu->mmio_is_write)
6803                         return 1;
6804                 vcpu->mmio_read_completed = 1;
6805                 return complete_emulated_io(vcpu);
6806         }
6807
6808         run->exit_reason = KVM_EXIT_MMIO;
6809         run->mmio.phys_addr = frag->gpa;
6810         if (vcpu->mmio_is_write)
6811                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6812         run->mmio.len = min(8u, frag->len);
6813         run->mmio.is_write = vcpu->mmio_is_write;
6814         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6815         return 0;
6816 }
6817
6818
6819 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6820 {
6821         struct fpu *fpu = &current->thread.fpu;
6822         int r;
6823         sigset_t sigsaved;
6824
6825         fpu__activate_curr(fpu);
6826
6827         if (vcpu->sigset_active)
6828                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6829
6830         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6831                 kvm_vcpu_block(vcpu);
6832                 kvm_apic_accept_events(vcpu);
6833                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6834                 r = -EAGAIN;
6835                 goto out;
6836         }
6837
6838         /* re-sync apic's tpr */
6839         if (!lapic_in_kernel(vcpu)) {
6840                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6841                         r = -EINVAL;
6842                         goto out;
6843                 }
6844         }
6845
6846         if (unlikely(vcpu->arch.complete_userspace_io)) {
6847                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6848                 vcpu->arch.complete_userspace_io = NULL;
6849                 r = cui(vcpu);
6850                 if (r <= 0)
6851                         goto out;
6852         } else
6853                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6854
6855         r = vcpu_run(vcpu);
6856
6857 out:
6858         post_kvm_run_save(vcpu);
6859         if (vcpu->sigset_active)
6860                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6861
6862         return r;
6863 }
6864
6865 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6866 {
6867         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6868                 /*
6869                  * We are here if userspace calls get_regs() in the middle of
6870                  * instruction emulation. Registers state needs to be copied
6871                  * back from emulation context to vcpu. Userspace shouldn't do
6872                  * that usually, but some bad designed PV devices (vmware
6873                  * backdoor interface) need this to work
6874                  */
6875                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6876                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6877         }
6878         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6879         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6880         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6881         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6882         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6883         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6884         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6885         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6886 #ifdef CONFIG_X86_64
6887         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6888         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6889         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6890         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6891         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6892         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6893         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6894         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6895 #endif
6896
6897         regs->rip = kvm_rip_read(vcpu);
6898         regs->rflags = kvm_get_rflags(vcpu);
6899
6900         return 0;
6901 }
6902
6903 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6904 {
6905         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6906         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6907
6908         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6909         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6910         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6911         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6912         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6913         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6914         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6915         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6916 #ifdef CONFIG_X86_64
6917         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6918         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6919         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6920         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6921         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6922         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6923         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6924         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6925 #endif
6926
6927         kvm_rip_write(vcpu, regs->rip);
6928         kvm_set_rflags(vcpu, regs->rflags);
6929
6930         vcpu->arch.exception.pending = false;
6931
6932         kvm_make_request(KVM_REQ_EVENT, vcpu);
6933
6934         return 0;
6935 }
6936
6937 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6938 {
6939         struct kvm_segment cs;
6940
6941         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6942         *db = cs.db;
6943         *l = cs.l;
6944 }
6945 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6946
6947 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6948                                   struct kvm_sregs *sregs)
6949 {
6950         struct desc_ptr dt;
6951
6952         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6953         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6954         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6955         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6956         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6957         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6958
6959         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6960         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6961
6962         kvm_x86_ops->get_idt(vcpu, &dt);
6963         sregs->idt.limit = dt.size;
6964         sregs->idt.base = dt.address;
6965         kvm_x86_ops->get_gdt(vcpu, &dt);
6966         sregs->gdt.limit = dt.size;
6967         sregs->gdt.base = dt.address;
6968
6969         sregs->cr0 = kvm_read_cr0(vcpu);
6970         sregs->cr2 = vcpu->arch.cr2;
6971         sregs->cr3 = kvm_read_cr3(vcpu);
6972         sregs->cr4 = kvm_read_cr4(vcpu);
6973         sregs->cr8 = kvm_get_cr8(vcpu);
6974         sregs->efer = vcpu->arch.efer;
6975         sregs->apic_base = kvm_get_apic_base(vcpu);
6976
6977         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6978
6979         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6980                 set_bit(vcpu->arch.interrupt.nr,
6981                         (unsigned long *)sregs->interrupt_bitmap);
6982
6983         return 0;
6984 }
6985
6986 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6987                                     struct kvm_mp_state *mp_state)
6988 {
6989         kvm_apic_accept_events(vcpu);
6990         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6991                                         vcpu->arch.pv.pv_unhalted)
6992                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6993         else
6994                 mp_state->mp_state = vcpu->arch.mp_state;
6995
6996         return 0;
6997 }
6998
6999 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7000                                     struct kvm_mp_state *mp_state)
7001 {
7002         if (!kvm_vcpu_has_lapic(vcpu) &&
7003             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7004                 return -EINVAL;
7005
7006         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7007                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7008                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7009         } else
7010                 vcpu->arch.mp_state = mp_state->mp_state;
7011         kvm_make_request(KVM_REQ_EVENT, vcpu);
7012         return 0;
7013 }
7014
7015 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7016                     int reason, bool has_error_code, u32 error_code)
7017 {
7018         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7019         int ret;
7020
7021         init_emulate_ctxt(vcpu);
7022
7023         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7024                                    has_error_code, error_code);
7025
7026         if (ret)
7027                 return EMULATE_FAIL;
7028
7029         kvm_rip_write(vcpu, ctxt->eip);
7030         kvm_set_rflags(vcpu, ctxt->eflags);
7031         kvm_make_request(KVM_REQ_EVENT, vcpu);
7032         return EMULATE_DONE;
7033 }
7034 EXPORT_SYMBOL_GPL(kvm_task_switch);
7035
7036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7037                                   struct kvm_sregs *sregs)
7038 {
7039         struct msr_data apic_base_msr;
7040         int mmu_reset_needed = 0;
7041         int pending_vec, max_bits, idx;
7042         struct desc_ptr dt;
7043
7044         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7045                 return -EINVAL;
7046
7047         dt.size = sregs->idt.limit;
7048         dt.address = sregs->idt.base;
7049         kvm_x86_ops->set_idt(vcpu, &dt);
7050         dt.size = sregs->gdt.limit;
7051         dt.address = sregs->gdt.base;
7052         kvm_x86_ops->set_gdt(vcpu, &dt);
7053
7054         vcpu->arch.cr2 = sregs->cr2;
7055         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7056         vcpu->arch.cr3 = sregs->cr3;
7057         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7058
7059         kvm_set_cr8(vcpu, sregs->cr8);
7060
7061         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7062         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7063         apic_base_msr.data = sregs->apic_base;
7064         apic_base_msr.host_initiated = true;
7065         kvm_set_apic_base(vcpu, &apic_base_msr);
7066
7067         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7068         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7069         vcpu->arch.cr0 = sregs->cr0;
7070
7071         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7072         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7073         if (sregs->cr4 & X86_CR4_OSXSAVE)
7074                 kvm_update_cpuid(vcpu);
7075
7076         idx = srcu_read_lock(&vcpu->kvm->srcu);
7077         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7078                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7079                 mmu_reset_needed = 1;
7080         }
7081         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7082
7083         if (mmu_reset_needed)
7084                 kvm_mmu_reset_context(vcpu);
7085
7086         max_bits = KVM_NR_INTERRUPTS;
7087         pending_vec = find_first_bit(
7088                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7089         if (pending_vec < max_bits) {
7090                 kvm_queue_interrupt(vcpu, pending_vec, false);
7091                 pr_debug("Set back pending irq %d\n", pending_vec);
7092         }
7093
7094         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7095         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7096         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7097         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7098         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7099         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7100
7101         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7102         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7103
7104         update_cr8_intercept(vcpu);
7105
7106         /* Older userspace won't unhalt the vcpu on reset. */
7107         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7108             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7109             !is_protmode(vcpu))
7110                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7111
7112         kvm_make_request(KVM_REQ_EVENT, vcpu);
7113
7114         return 0;
7115 }
7116
7117 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7118                                         struct kvm_guest_debug *dbg)
7119 {
7120         unsigned long rflags;
7121         int i, r;
7122
7123         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7124                 r = -EBUSY;
7125                 if (vcpu->arch.exception.pending)
7126                         goto out;
7127                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7128                         kvm_queue_exception(vcpu, DB_VECTOR);
7129                 else
7130                         kvm_queue_exception(vcpu, BP_VECTOR);
7131         }
7132
7133         /*
7134          * Read rflags as long as potentially injected trace flags are still
7135          * filtered out.
7136          */
7137         rflags = kvm_get_rflags(vcpu);
7138
7139         vcpu->guest_debug = dbg->control;
7140         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7141                 vcpu->guest_debug = 0;
7142
7143         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7144                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7145                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7146                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7147         } else {
7148                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7149                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7150         }
7151         kvm_update_dr7(vcpu);
7152
7153         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7154                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7155                         get_segment_base(vcpu, VCPU_SREG_CS);
7156
7157         /*
7158          * Trigger an rflags update that will inject or remove the trace
7159          * flags.
7160          */
7161         kvm_set_rflags(vcpu, rflags);
7162
7163         kvm_x86_ops->update_bp_intercept(vcpu);
7164
7165         r = 0;
7166
7167 out:
7168
7169         return r;
7170 }
7171
7172 /*
7173  * Translate a guest virtual address to a guest physical address.
7174  */
7175 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7176                                     struct kvm_translation *tr)
7177 {
7178         unsigned long vaddr = tr->linear_address;
7179         gpa_t gpa;
7180         int idx;
7181
7182         idx = srcu_read_lock(&vcpu->kvm->srcu);
7183         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7184         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7185         tr->physical_address = gpa;
7186         tr->valid = gpa != UNMAPPED_GVA;
7187         tr->writeable = 1;
7188         tr->usermode = 0;
7189
7190         return 0;
7191 }
7192
7193 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7194 {
7195         struct fxregs_state *fxsave =
7196                         &vcpu->arch.guest_fpu.state.fxsave;
7197
7198         memcpy(fpu->fpr, fxsave->st_space, 128);
7199         fpu->fcw = fxsave->cwd;
7200         fpu->fsw = fxsave->swd;
7201         fpu->ftwx = fxsave->twd;
7202         fpu->last_opcode = fxsave->fop;
7203         fpu->last_ip = fxsave->rip;
7204         fpu->last_dp = fxsave->rdp;
7205         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7206
7207         return 0;
7208 }
7209
7210 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7211 {
7212         struct fxregs_state *fxsave =
7213                         &vcpu->arch.guest_fpu.state.fxsave;
7214
7215         memcpy(fxsave->st_space, fpu->fpr, 128);
7216         fxsave->cwd = fpu->fcw;
7217         fxsave->swd = fpu->fsw;
7218         fxsave->twd = fpu->ftwx;
7219         fxsave->fop = fpu->last_opcode;
7220         fxsave->rip = fpu->last_ip;
7221         fxsave->rdp = fpu->last_dp;
7222         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7223
7224         return 0;
7225 }
7226
7227 static void fx_init(struct kvm_vcpu *vcpu)
7228 {
7229         fpstate_init(&vcpu->arch.guest_fpu.state);
7230         if (cpu_has_xsaves)
7231                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7232                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7233
7234         /*
7235          * Ensure guest xcr0 is valid for loading
7236          */
7237         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7238
7239         vcpu->arch.cr0 |= X86_CR0_ET;
7240 }
7241
7242 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7243 {
7244         if (vcpu->guest_fpu_loaded)
7245                 return;
7246
7247         /*
7248          * Restore all possible states in the guest,
7249          * and assume host would use all available bits.
7250          * Guest xcr0 would be loaded later.
7251          */
7252         kvm_put_guest_xcr0(vcpu);
7253         vcpu->guest_fpu_loaded = 1;
7254         __kernel_fpu_begin();
7255         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7256         trace_kvm_fpu(1);
7257 }
7258
7259 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7260 {
7261         kvm_put_guest_xcr0(vcpu);
7262
7263         if (!vcpu->guest_fpu_loaded) {
7264                 vcpu->fpu_counter = 0;
7265                 return;
7266         }
7267
7268         vcpu->guest_fpu_loaded = 0;
7269         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7270         __kernel_fpu_end();
7271         ++vcpu->stat.fpu_reload;
7272         /*
7273          * If using eager FPU mode, or if the guest is a frequent user
7274          * of the FPU, just leave the FPU active for next time.
7275          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7276          * the FPU in bursts will revert to loading it on demand.
7277          */
7278         if (!vcpu->arch.eager_fpu) {
7279                 if (++vcpu->fpu_counter < 5)
7280                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7281         }
7282         trace_kvm_fpu(0);
7283 }
7284
7285 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7286 {
7287         kvmclock_reset(vcpu);
7288
7289         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7290         kvm_x86_ops->vcpu_free(vcpu);
7291 }
7292
7293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7294                                                 unsigned int id)
7295 {
7296         struct kvm_vcpu *vcpu;
7297
7298         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7299                 printk_once(KERN_WARNING
7300                 "kvm: SMP vm created on host with unstable TSC; "
7301                 "guest TSC will not be reliable\n");
7302
7303         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7304
7305         return vcpu;
7306 }
7307
7308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7309 {
7310         int r;
7311
7312         kvm_vcpu_mtrr_init(vcpu);
7313         r = vcpu_load(vcpu);
7314         if (r)
7315                 return r;
7316         kvm_vcpu_reset(vcpu, false);
7317         kvm_mmu_setup(vcpu);
7318         vcpu_put(vcpu);
7319         return r;
7320 }
7321
7322 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7323 {
7324         struct msr_data msr;
7325         struct kvm *kvm = vcpu->kvm;
7326
7327         if (vcpu_load(vcpu))
7328                 return;
7329         msr.data = 0x0;
7330         msr.index = MSR_IA32_TSC;
7331         msr.host_initiated = true;
7332         kvm_write_tsc(vcpu, &msr);
7333         vcpu_put(vcpu);
7334
7335         if (!kvmclock_periodic_sync)
7336                 return;
7337
7338         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7339                                         KVMCLOCK_SYNC_PERIOD);
7340 }
7341
7342 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7343 {
7344         int r;
7345         vcpu->arch.apf.msr_val = 0;
7346
7347         r = vcpu_load(vcpu);
7348         BUG_ON(r);
7349         kvm_mmu_unload(vcpu);
7350         vcpu_put(vcpu);
7351
7352         kvm_x86_ops->vcpu_free(vcpu);
7353 }
7354
7355 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7356 {
7357         vcpu->arch.hflags = 0;
7358
7359         atomic_set(&vcpu->arch.nmi_queued, 0);
7360         vcpu->arch.nmi_pending = 0;
7361         vcpu->arch.nmi_injected = false;
7362         kvm_clear_interrupt_queue(vcpu);
7363         kvm_clear_exception_queue(vcpu);
7364
7365         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7366         kvm_update_dr0123(vcpu);
7367         vcpu->arch.dr6 = DR6_INIT;
7368         kvm_update_dr6(vcpu);
7369         vcpu->arch.dr7 = DR7_FIXED_1;
7370         kvm_update_dr7(vcpu);
7371
7372         vcpu->arch.cr2 = 0;
7373
7374         kvm_make_request(KVM_REQ_EVENT, vcpu);
7375         vcpu->arch.apf.msr_val = 0;
7376         vcpu->arch.st.msr_val = 0;
7377
7378         kvmclock_reset(vcpu);
7379
7380         kvm_clear_async_pf_completion_queue(vcpu);
7381         kvm_async_pf_hash_reset(vcpu);
7382         vcpu->arch.apf.halted = false;
7383
7384         if (!init_event) {
7385                 kvm_pmu_reset(vcpu);
7386                 vcpu->arch.smbase = 0x30000;
7387         }
7388
7389         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7390         vcpu->arch.regs_avail = ~0;
7391         vcpu->arch.regs_dirty = ~0;
7392
7393         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7394 }
7395
7396 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7397 {
7398         struct kvm_segment cs;
7399
7400         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7401         cs.selector = vector << 8;
7402         cs.base = vector << 12;
7403         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7404         kvm_rip_write(vcpu, 0);
7405 }
7406
7407 int kvm_arch_hardware_enable(void)
7408 {
7409         struct kvm *kvm;
7410         struct kvm_vcpu *vcpu;
7411         int i;
7412         int ret;
7413         u64 local_tsc;
7414         u64 max_tsc = 0;
7415         bool stable, backwards_tsc = false;
7416
7417         kvm_shared_msr_cpu_online();
7418         ret = kvm_x86_ops->hardware_enable();
7419         if (ret != 0)
7420                 return ret;
7421
7422         local_tsc = rdtsc();
7423         stable = !check_tsc_unstable();
7424         list_for_each_entry(kvm, &vm_list, vm_list) {
7425                 kvm_for_each_vcpu(i, vcpu, kvm) {
7426                         if (!stable && vcpu->cpu == smp_processor_id())
7427                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7428                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7429                                 backwards_tsc = true;
7430                                 if (vcpu->arch.last_host_tsc > max_tsc)
7431                                         max_tsc = vcpu->arch.last_host_tsc;
7432                         }
7433                 }
7434         }
7435
7436         /*
7437          * Sometimes, even reliable TSCs go backwards.  This happens on
7438          * platforms that reset TSC during suspend or hibernate actions, but
7439          * maintain synchronization.  We must compensate.  Fortunately, we can
7440          * detect that condition here, which happens early in CPU bringup,
7441          * before any KVM threads can be running.  Unfortunately, we can't
7442          * bring the TSCs fully up to date with real time, as we aren't yet far
7443          * enough into CPU bringup that we know how much real time has actually
7444          * elapsed; our helper function, get_kernel_ns() will be using boot
7445          * variables that haven't been updated yet.
7446          *
7447          * So we simply find the maximum observed TSC above, then record the
7448          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7449          * the adjustment will be applied.  Note that we accumulate
7450          * adjustments, in case multiple suspend cycles happen before some VCPU
7451          * gets a chance to run again.  In the event that no KVM threads get a
7452          * chance to run, we will miss the entire elapsed period, as we'll have
7453          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7454          * loose cycle time.  This isn't too big a deal, since the loss will be
7455          * uniform across all VCPUs (not to mention the scenario is extremely
7456          * unlikely). It is possible that a second hibernate recovery happens
7457          * much faster than a first, causing the observed TSC here to be
7458          * smaller; this would require additional padding adjustment, which is
7459          * why we set last_host_tsc to the local tsc observed here.
7460          *
7461          * N.B. - this code below runs only on platforms with reliable TSC,
7462          * as that is the only way backwards_tsc is set above.  Also note
7463          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7464          * have the same delta_cyc adjustment applied if backwards_tsc
7465          * is detected.  Note further, this adjustment is only done once,
7466          * as we reset last_host_tsc on all VCPUs to stop this from being
7467          * called multiple times (one for each physical CPU bringup).
7468          *
7469          * Platforms with unreliable TSCs don't have to deal with this, they
7470          * will be compensated by the logic in vcpu_load, which sets the TSC to
7471          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7472          * guarantee that they stay in perfect synchronization.
7473          */
7474         if (backwards_tsc) {
7475                 u64 delta_cyc = max_tsc - local_tsc;
7476                 backwards_tsc_observed = true;
7477                 list_for_each_entry(kvm, &vm_list, vm_list) {
7478                         kvm_for_each_vcpu(i, vcpu, kvm) {
7479                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7480                                 vcpu->arch.last_host_tsc = local_tsc;
7481                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7482                         }
7483
7484                         /*
7485                          * We have to disable TSC offset matching.. if you were
7486                          * booting a VM while issuing an S4 host suspend....
7487                          * you may have some problem.  Solving this issue is
7488                          * left as an exercise to the reader.
7489                          */
7490                         kvm->arch.last_tsc_nsec = 0;
7491                         kvm->arch.last_tsc_write = 0;
7492                 }
7493
7494         }
7495         return 0;
7496 }
7497
7498 void kvm_arch_hardware_disable(void)
7499 {
7500         kvm_x86_ops->hardware_disable();
7501         drop_user_return_notifiers();
7502 }
7503
7504 int kvm_arch_hardware_setup(void)
7505 {
7506         int r;
7507
7508         r = kvm_x86_ops->hardware_setup();
7509         if (r != 0)
7510                 return r;
7511
7512         if (kvm_has_tsc_control) {
7513                 /*
7514                  * Make sure the user can only configure tsc_khz values that
7515                  * fit into a signed integer.
7516                  * A min value is not calculated needed because it will always
7517                  * be 1 on all machines.
7518                  */
7519                 u64 max = min(0x7fffffffULL,
7520                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7521                 kvm_max_guest_tsc_khz = max;
7522
7523                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7524         }
7525
7526         kvm_init_msr_list();
7527         return 0;
7528 }
7529
7530 void kvm_arch_hardware_unsetup(void)
7531 {
7532         kvm_x86_ops->hardware_unsetup();
7533 }
7534
7535 void kvm_arch_check_processor_compat(void *rtn)
7536 {
7537         kvm_x86_ops->check_processor_compatibility(rtn);
7538 }
7539
7540 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7541 {
7542         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7543 }
7544 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7545
7546 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7547 {
7548         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7549 }
7550
7551 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7552 {
7553         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7554 }
7555
7556 struct static_key kvm_no_apic_vcpu __read_mostly;
7557
7558 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7559 {
7560         struct page *page;
7561         struct kvm *kvm;
7562         int r;
7563
7564         BUG_ON(vcpu->kvm == NULL);
7565         kvm = vcpu->kvm;
7566
7567         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7568         vcpu->arch.pv.pv_unhalted = false;
7569         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7570         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7571                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7572         else
7573                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7574
7575         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7576         if (!page) {
7577                 r = -ENOMEM;
7578                 goto fail;
7579         }
7580         vcpu->arch.pio_data = page_address(page);
7581
7582         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7583
7584         r = kvm_mmu_create(vcpu);
7585         if (r < 0)
7586                 goto fail_free_pio_data;
7587
7588         if (irqchip_in_kernel(kvm)) {
7589                 r = kvm_create_lapic(vcpu);
7590                 if (r < 0)
7591                         goto fail_mmu_destroy;
7592         } else
7593                 static_key_slow_inc(&kvm_no_apic_vcpu);
7594
7595         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7596                                        GFP_KERNEL);
7597         if (!vcpu->arch.mce_banks) {
7598                 r = -ENOMEM;
7599                 goto fail_free_lapic;
7600         }
7601         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7602
7603         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7604                 r = -ENOMEM;
7605                 goto fail_free_mce_banks;
7606         }
7607
7608         fx_init(vcpu);
7609
7610         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7611         vcpu->arch.pv_time_enabled = false;
7612
7613         vcpu->arch.guest_supported_xcr0 = 0;
7614         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7615
7616         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7617
7618         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7619
7620         kvm_async_pf_hash_reset(vcpu);
7621         kvm_pmu_init(vcpu);
7622
7623         vcpu->arch.pending_external_vector = -1;
7624
7625         kvm_hv_vcpu_init(vcpu);
7626
7627         return 0;
7628
7629 fail_free_mce_banks:
7630         kfree(vcpu->arch.mce_banks);
7631 fail_free_lapic:
7632         kvm_free_lapic(vcpu);
7633 fail_mmu_destroy:
7634         kvm_mmu_destroy(vcpu);
7635 fail_free_pio_data:
7636         free_page((unsigned long)vcpu->arch.pio_data);
7637 fail:
7638         return r;
7639 }
7640
7641 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7642 {
7643         int idx;
7644
7645         kvm_pmu_destroy(vcpu);
7646         kfree(vcpu->arch.mce_banks);
7647         kvm_free_lapic(vcpu);
7648         idx = srcu_read_lock(&vcpu->kvm->srcu);
7649         kvm_mmu_destroy(vcpu);
7650         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7651         free_page((unsigned long)vcpu->arch.pio_data);
7652         if (!lapic_in_kernel(vcpu))
7653                 static_key_slow_dec(&kvm_no_apic_vcpu);
7654 }
7655
7656 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7657 {
7658         kvm_x86_ops->sched_in(vcpu, cpu);
7659 }
7660
7661 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7662 {
7663         if (type)
7664                 return -EINVAL;
7665
7666         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7667         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7668         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7669         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7670         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7671
7672         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7673         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7674         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7675         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7676                 &kvm->arch.irq_sources_bitmap);
7677
7678         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7679         mutex_init(&kvm->arch.apic_map_lock);
7680         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7681
7682         pvclock_update_vm_gtod_copy(kvm);
7683
7684         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7685         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7686
7687         return 0;
7688 }
7689
7690 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7691 {
7692         int r;
7693         r = vcpu_load(vcpu);
7694         BUG_ON(r);
7695         kvm_mmu_unload(vcpu);
7696         vcpu_put(vcpu);
7697 }
7698
7699 static void kvm_free_vcpus(struct kvm *kvm)
7700 {
7701         unsigned int i;
7702         struct kvm_vcpu *vcpu;
7703
7704         /*
7705          * Unpin any mmu pages first.
7706          */
7707         kvm_for_each_vcpu(i, vcpu, kvm) {
7708                 kvm_clear_async_pf_completion_queue(vcpu);
7709                 kvm_unload_vcpu_mmu(vcpu);
7710         }
7711         kvm_for_each_vcpu(i, vcpu, kvm)
7712                 kvm_arch_vcpu_free(vcpu);
7713
7714         mutex_lock(&kvm->lock);
7715         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7716                 kvm->vcpus[i] = NULL;
7717
7718         atomic_set(&kvm->online_vcpus, 0);
7719         mutex_unlock(&kvm->lock);
7720 }
7721
7722 void kvm_arch_sync_events(struct kvm *kvm)
7723 {
7724         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7725         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7726         kvm_free_all_assigned_devices(kvm);
7727         kvm_free_pit(kvm);
7728 }
7729
7730 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7731 {
7732         int i, r;
7733         unsigned long hva;
7734         struct kvm_memslots *slots = kvm_memslots(kvm);
7735         struct kvm_memory_slot *slot, old;
7736
7737         /* Called with kvm->slots_lock held.  */
7738         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7739                 return -EINVAL;
7740
7741         slot = id_to_memslot(slots, id);
7742         if (size) {
7743                 if (WARN_ON(slot->npages))
7744                         return -EEXIST;
7745
7746                 /*
7747                  * MAP_SHARED to prevent internal slot pages from being moved
7748                  * by fork()/COW.
7749                  */
7750                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7751                               MAP_SHARED | MAP_ANONYMOUS, 0);
7752                 if (IS_ERR((void *)hva))
7753                         return PTR_ERR((void *)hva);
7754         } else {
7755                 if (!slot->npages)
7756                         return 0;
7757
7758                 hva = 0;
7759         }
7760
7761         old = *slot;
7762         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7763                 struct kvm_userspace_memory_region m;
7764
7765                 m.slot = id | (i << 16);
7766                 m.flags = 0;
7767                 m.guest_phys_addr = gpa;
7768                 m.userspace_addr = hva;
7769                 m.memory_size = size;
7770                 r = __kvm_set_memory_region(kvm, &m);
7771                 if (r < 0)
7772                         return r;
7773         }
7774
7775         if (!size) {
7776                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7777                 WARN_ON(r < 0);
7778         }
7779
7780         return 0;
7781 }
7782 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7783
7784 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7785 {
7786         int r;
7787
7788         mutex_lock(&kvm->slots_lock);
7789         r = __x86_set_memory_region(kvm, id, gpa, size);
7790         mutex_unlock(&kvm->slots_lock);
7791
7792         return r;
7793 }
7794 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7795
7796 void kvm_arch_destroy_vm(struct kvm *kvm)
7797 {
7798         if (current->mm == kvm->mm) {
7799                 /*
7800                  * Free memory regions allocated on behalf of userspace,
7801                  * unless the the memory map has changed due to process exit
7802                  * or fd copying.
7803                  */
7804                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7805                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7806                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7807         }
7808         kvm_iommu_unmap_guest(kvm);
7809         kfree(kvm->arch.vpic);
7810         kfree(kvm->arch.vioapic);
7811         kvm_free_vcpus(kvm);
7812         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7813 }
7814
7815 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7816                            struct kvm_memory_slot *dont)
7817 {
7818         int i;
7819
7820         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7821                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7822                         kvfree(free->arch.rmap[i]);
7823                         free->arch.rmap[i] = NULL;
7824                 }
7825                 if (i == 0)
7826                         continue;
7827
7828                 if (!dont || free->arch.lpage_info[i - 1] !=
7829                              dont->arch.lpage_info[i - 1]) {
7830                         kvfree(free->arch.lpage_info[i - 1]);
7831                         free->arch.lpage_info[i - 1] = NULL;
7832                 }
7833         }
7834 }
7835
7836 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7837                             unsigned long npages)
7838 {
7839         int i;
7840
7841         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7842                 unsigned long ugfn;
7843                 int lpages;
7844                 int level = i + 1;
7845
7846                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7847                                       slot->base_gfn, level) + 1;
7848
7849                 slot->arch.rmap[i] =
7850                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7851                 if (!slot->arch.rmap[i])
7852                         goto out_free;
7853                 if (i == 0)
7854                         continue;
7855
7856                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7857                                         sizeof(*slot->arch.lpage_info[i - 1]));
7858                 if (!slot->arch.lpage_info[i - 1])
7859                         goto out_free;
7860
7861                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7862                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7863                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7864                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7865                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7866                 /*
7867                  * If the gfn and userspace address are not aligned wrt each
7868                  * other, or if explicitly asked to, disable large page
7869                  * support for this slot
7870                  */
7871                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7872                     !kvm_largepages_enabled()) {
7873                         unsigned long j;
7874
7875                         for (j = 0; j < lpages; ++j)
7876                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7877                 }
7878         }
7879
7880         return 0;
7881
7882 out_free:
7883         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7884                 kvfree(slot->arch.rmap[i]);
7885                 slot->arch.rmap[i] = NULL;
7886                 if (i == 0)
7887                         continue;
7888
7889                 kvfree(slot->arch.lpage_info[i - 1]);
7890                 slot->arch.lpage_info[i - 1] = NULL;
7891         }
7892         return -ENOMEM;
7893 }
7894
7895 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7896 {
7897         /*
7898          * memslots->generation has been incremented.
7899          * mmio generation may have reached its maximum value.
7900          */
7901         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7902 }
7903
7904 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7905                                 struct kvm_memory_slot *memslot,
7906                                 const struct kvm_userspace_memory_region *mem,
7907                                 enum kvm_mr_change change)
7908 {
7909         return 0;
7910 }
7911
7912 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7913                                      struct kvm_memory_slot *new)
7914 {
7915         /* Still write protect RO slot */
7916         if (new->flags & KVM_MEM_READONLY) {
7917                 kvm_mmu_slot_remove_write_access(kvm, new);
7918                 return;
7919         }
7920
7921         /*
7922          * Call kvm_x86_ops dirty logging hooks when they are valid.
7923          *
7924          * kvm_x86_ops->slot_disable_log_dirty is called when:
7925          *
7926          *  - KVM_MR_CREATE with dirty logging is disabled
7927          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7928          *
7929          * The reason is, in case of PML, we need to set D-bit for any slots
7930          * with dirty logging disabled in order to eliminate unnecessary GPA
7931          * logging in PML buffer (and potential PML buffer full VMEXT). This
7932          * guarantees leaving PML enabled during guest's lifetime won't have
7933          * any additonal overhead from PML when guest is running with dirty
7934          * logging disabled for memory slots.
7935          *
7936          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7937          * to dirty logging mode.
7938          *
7939          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7940          *
7941          * In case of write protect:
7942          *
7943          * Write protect all pages for dirty logging.
7944          *
7945          * All the sptes including the large sptes which point to this
7946          * slot are set to readonly. We can not create any new large
7947          * spte on this slot until the end of the logging.
7948          *
7949          * See the comments in fast_page_fault().
7950          */
7951         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7952                 if (kvm_x86_ops->slot_enable_log_dirty)
7953                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7954                 else
7955                         kvm_mmu_slot_remove_write_access(kvm, new);
7956         } else {
7957                 if (kvm_x86_ops->slot_disable_log_dirty)
7958                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7959         }
7960 }
7961
7962 void kvm_arch_commit_memory_region(struct kvm *kvm,
7963                                 const struct kvm_userspace_memory_region *mem,
7964                                 const struct kvm_memory_slot *old,
7965                                 const struct kvm_memory_slot *new,
7966                                 enum kvm_mr_change change)
7967 {
7968         int nr_mmu_pages = 0;
7969
7970         if (!kvm->arch.n_requested_mmu_pages)
7971                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7972
7973         if (nr_mmu_pages)
7974                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7975
7976         /*
7977          * Dirty logging tracks sptes in 4k granularity, meaning that large
7978          * sptes have to be split.  If live migration is successful, the guest
7979          * in the source machine will be destroyed and large sptes will be
7980          * created in the destination. However, if the guest continues to run
7981          * in the source machine (for example if live migration fails), small
7982          * sptes will remain around and cause bad performance.
7983          *
7984          * Scan sptes if dirty logging has been stopped, dropping those
7985          * which can be collapsed into a single large-page spte.  Later
7986          * page faults will create the large-page sptes.
7987          */
7988         if ((change != KVM_MR_DELETE) &&
7989                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7990                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7991                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7992
7993         /*
7994          * Set up write protection and/or dirty logging for the new slot.
7995          *
7996          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7997          * been zapped so no dirty logging staff is needed for old slot. For
7998          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7999          * new and it's also covered when dealing with the new slot.
8000          *
8001          * FIXME: const-ify all uses of struct kvm_memory_slot.
8002          */
8003         if (change != KVM_MR_DELETE)
8004                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8005 }
8006
8007 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8008 {
8009         kvm_mmu_invalidate_zap_all_pages(kvm);
8010 }
8011
8012 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8013                                    struct kvm_memory_slot *slot)
8014 {
8015         kvm_mmu_invalidate_zap_all_pages(kvm);
8016 }
8017
8018 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8019 {
8020         if (!list_empty_careful(&vcpu->async_pf.done))
8021                 return true;
8022
8023         if (kvm_apic_has_events(vcpu))
8024                 return true;
8025
8026         if (vcpu->arch.pv.pv_unhalted)
8027                 return true;
8028
8029         if (atomic_read(&vcpu->arch.nmi_queued))
8030                 return true;
8031
8032         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8033                 return true;
8034
8035         if (kvm_arch_interrupt_allowed(vcpu) &&
8036             kvm_cpu_has_interrupt(vcpu))
8037                 return true;
8038
8039         return false;
8040 }
8041
8042 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8043 {
8044         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8045                 kvm_x86_ops->check_nested_events(vcpu, false);
8046
8047         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8048 }
8049
8050 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8051 {
8052         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8053 }
8054
8055 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8056 {
8057         return kvm_x86_ops->interrupt_allowed(vcpu);
8058 }
8059
8060 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8061 {
8062         if (is_64_bit_mode(vcpu))
8063                 return kvm_rip_read(vcpu);
8064         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8065                      kvm_rip_read(vcpu));
8066 }
8067 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8068
8069 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8070 {
8071         return kvm_get_linear_rip(vcpu) == linear_rip;
8072 }
8073 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8074
8075 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8076 {
8077         unsigned long rflags;
8078
8079         rflags = kvm_x86_ops->get_rflags(vcpu);
8080         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8081                 rflags &= ~X86_EFLAGS_TF;
8082         return rflags;
8083 }
8084 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8085
8086 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8087 {
8088         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8089             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8090                 rflags |= X86_EFLAGS_TF;
8091         kvm_x86_ops->set_rflags(vcpu, rflags);
8092 }
8093
8094 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8095 {
8096         __kvm_set_rflags(vcpu, rflags);
8097         kvm_make_request(KVM_REQ_EVENT, vcpu);
8098 }
8099 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8100
8101 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8102 {
8103         int r;
8104
8105         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8106               work->wakeup_all)
8107                 return;
8108
8109         r = kvm_mmu_reload(vcpu);
8110         if (unlikely(r))
8111                 return;
8112
8113         if (!vcpu->arch.mmu.direct_map &&
8114               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8115                 return;
8116
8117         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8118 }
8119
8120 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8121 {
8122         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8123 }
8124
8125 static inline u32 kvm_async_pf_next_probe(u32 key)
8126 {
8127         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8128 }
8129
8130 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8131 {
8132         u32 key = kvm_async_pf_hash_fn(gfn);
8133
8134         while (vcpu->arch.apf.gfns[key] != ~0)
8135                 key = kvm_async_pf_next_probe(key);
8136
8137         vcpu->arch.apf.gfns[key] = gfn;
8138 }
8139
8140 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8141 {
8142         int i;
8143         u32 key = kvm_async_pf_hash_fn(gfn);
8144
8145         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8146                      (vcpu->arch.apf.gfns[key] != gfn &&
8147                       vcpu->arch.apf.gfns[key] != ~0); i++)
8148                 key = kvm_async_pf_next_probe(key);
8149
8150         return key;
8151 }
8152
8153 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8154 {
8155         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8156 }
8157
8158 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8159 {
8160         u32 i, j, k;
8161
8162         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8163         while (true) {
8164                 vcpu->arch.apf.gfns[i] = ~0;
8165                 do {
8166                         j = kvm_async_pf_next_probe(j);
8167                         if (vcpu->arch.apf.gfns[j] == ~0)
8168                                 return;
8169                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8170                         /*
8171                          * k lies cyclically in ]i,j]
8172                          * |    i.k.j |
8173                          * |....j i.k.| or  |.k..j i...|
8174                          */
8175                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8176                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8177                 i = j;
8178         }
8179 }
8180
8181 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8182 {
8183
8184         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8185                                       sizeof(val));
8186 }
8187
8188 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8189                                      struct kvm_async_pf *work)
8190 {
8191         struct x86_exception fault;
8192
8193         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8194         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8195
8196         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8197             (vcpu->arch.apf.send_user_only &&
8198              kvm_x86_ops->get_cpl(vcpu) == 0))
8199                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8200         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8201                 fault.vector = PF_VECTOR;
8202                 fault.error_code_valid = true;
8203                 fault.error_code = 0;
8204                 fault.nested_page_fault = false;
8205                 fault.address = work->arch.token;
8206                 kvm_inject_page_fault(vcpu, &fault);
8207         }
8208 }
8209
8210 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8211                                  struct kvm_async_pf *work)
8212 {
8213         struct x86_exception fault;
8214
8215         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8216         if (work->wakeup_all)
8217                 work->arch.token = ~0; /* broadcast wakeup */
8218         else
8219                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8220
8221         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8222             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8223                 fault.vector = PF_VECTOR;
8224                 fault.error_code_valid = true;
8225                 fault.error_code = 0;
8226                 fault.nested_page_fault = false;
8227                 fault.address = work->arch.token;
8228                 kvm_inject_page_fault(vcpu, &fault);
8229         }
8230         vcpu->arch.apf.halted = false;
8231         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8232 }
8233
8234 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8235 {
8236         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8237                 return true;
8238         else
8239                 return !kvm_event_needs_reinjection(vcpu) &&
8240                         kvm_x86_ops->interrupt_allowed(vcpu);
8241 }
8242
8243 void kvm_arch_start_assignment(struct kvm *kvm)
8244 {
8245         atomic_inc(&kvm->arch.assigned_device_count);
8246 }
8247 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8248
8249 void kvm_arch_end_assignment(struct kvm *kvm)
8250 {
8251         atomic_dec(&kvm->arch.assigned_device_count);
8252 }
8253 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8254
8255 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8256 {
8257         return atomic_read(&kvm->arch.assigned_device_count);
8258 }
8259 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8260
8261 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8262 {
8263         atomic_inc(&kvm->arch.noncoherent_dma_count);
8264 }
8265 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8266
8267 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8268 {
8269         atomic_dec(&kvm->arch.noncoherent_dma_count);
8270 }
8271 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8272
8273 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8274 {
8275         return atomic_read(&kvm->arch.noncoherent_dma_count);
8276 }
8277 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8278
8279 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8280                                       struct irq_bypass_producer *prod)
8281 {
8282         struct kvm_kernel_irqfd *irqfd =
8283                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8284
8285         if (kvm_x86_ops->update_pi_irte) {
8286                 irqfd->producer = prod;
8287                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8288                                 prod->irq, irqfd->gsi, 1);
8289         }
8290
8291         return -EINVAL;
8292 }
8293
8294 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8295                                       struct irq_bypass_producer *prod)
8296 {
8297         int ret;
8298         struct kvm_kernel_irqfd *irqfd =
8299                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8300
8301         if (!kvm_x86_ops->update_pi_irte) {
8302                 WARN_ON(irqfd->producer != NULL);
8303                 return;
8304         }
8305
8306         WARN_ON(irqfd->producer != prod);
8307         irqfd->producer = NULL;
8308
8309         /*
8310          * When producer of consumer is unregistered, we change back to
8311          * remapped mode, so we can re-use the current implementation
8312          * when the irq is masked/disabed or the consumer side (KVM
8313          * int this case doesn't want to receive the interrupts.
8314         */
8315         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8316         if (ret)
8317                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8318                        " fails: %d\n", irqfd->consumer.token, ret);
8319 }
8320
8321 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8322                                    uint32_t guest_irq, bool set)
8323 {
8324         if (!kvm_x86_ops->update_pi_irte)
8325                 return -EINVAL;
8326
8327         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8328 }
8329
8330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);