Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_taken),
270         STATS_DESC_COUNTER(VCPU, pf_fixed),
271         STATS_DESC_COUNTER(VCPU, pf_emulate),
272         STATS_DESC_COUNTER(VCPU, pf_spurious),
273         STATS_DESC_COUNTER(VCPU, pf_fast),
274         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275         STATS_DESC_COUNTER(VCPU, pf_guest),
276         STATS_DESC_COUNTER(VCPU, tlb_flush),
277         STATS_DESC_COUNTER(VCPU, invlpg),
278         STATS_DESC_COUNTER(VCPU, exits),
279         STATS_DESC_COUNTER(VCPU, io_exits),
280         STATS_DESC_COUNTER(VCPU, mmio_exits),
281         STATS_DESC_COUNTER(VCPU, signal_exits),
282         STATS_DESC_COUNTER(VCPU, irq_window_exits),
283         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284         STATS_DESC_COUNTER(VCPU, l1d_flush),
285         STATS_DESC_COUNTER(VCPU, halt_exits),
286         STATS_DESC_COUNTER(VCPU, request_irq_exits),
287         STATS_DESC_COUNTER(VCPU, irq_exits),
288         STATS_DESC_COUNTER(VCPU, host_state_reload),
289         STATS_DESC_COUNTER(VCPU, fpu_reload),
290         STATS_DESC_COUNTER(VCPU, insn_emulation),
291         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292         STATS_DESC_COUNTER(VCPU, hypercalls),
293         STATS_DESC_COUNTER(VCPU, irq_injections),
294         STATS_DESC_COUNTER(VCPU, nmi_injections),
295         STATS_DESC_COUNTER(VCPU, req_event),
296         STATS_DESC_COUNTER(VCPU, nested_run),
297         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299         STATS_DESC_COUNTER(VCPU, preemption_reported),
300         STATS_DESC_COUNTER(VCPU, preemption_other),
301         STATS_DESC_IBOOLEAN(VCPU, guest_mode)
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305         .name_size = KVM_STATS_NAME_SIZE,
306         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307         .id_offset = sizeof(struct kvm_stats_header),
308         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310                        sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316
317 static struct kmem_cache *x86_emulator_cache;
318
319 /*
320  * When called, it means the previous get/set msr reached an invalid msr.
321  * Return true if we want to ignore/silent this failed msr access.
322  */
323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325         const char *op = write ? "wrmsr" : "rdmsr";
326
327         if (ignore_msrs) {
328                 if (report_ignored_msrs)
329                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330                                       op, msr, data);
331                 /* Mask the error */
332                 return true;
333         } else {
334                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335                                       op, msr, data);
336                 return false;
337         }
338 }
339
340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343         unsigned int size = sizeof(struct x86_emulate_ctxt);
344
345         return kmem_cache_create_usercopy("x86_emulator", size,
346                                           __alignof__(struct x86_emulate_ctxt),
347                                           SLAB_ACCOUNT, useroffset,
348                                           size - useroffset, NULL);
349 }
350
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352
353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355         int i;
356         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357                 vcpu->arch.apf.gfns[i] = ~0;
358 }
359
360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362         unsigned slot;
363         struct kvm_user_return_msrs *msrs
364                 = container_of(urn, struct kvm_user_return_msrs, urn);
365         struct kvm_user_return_msr_values *values;
366         unsigned long flags;
367
368         /*
369          * Disabling irqs at this point since the following code could be
370          * interrupted and executed through kvm_arch_hardware_disable()
371          */
372         local_irq_save(flags);
373         if (msrs->registered) {
374                 msrs->registered = false;
375                 user_return_notifier_unregister(urn);
376         }
377         local_irq_restore(flags);
378         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379                 values = &msrs->values[slot];
380                 if (values->host != values->curr) {
381                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
382                         values->curr = values->host;
383                 }
384         }
385 }
386
387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389         u64 val;
390         int ret;
391
392         preempt_disable();
393         ret = rdmsrl_safe(msr, &val);
394         if (ret)
395                 goto out;
396         ret = wrmsrl_safe(msr, val);
397 out:
398         preempt_enable();
399         return ret;
400 }
401
402 int kvm_add_user_return_msr(u32 msr)
403 {
404         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405
406         if (kvm_probe_user_return_msr(msr))
407                 return -1;
408
409         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410         return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413
414 int kvm_find_user_return_msr(u32 msr)
415 {
416         int i;
417
418         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419                 if (kvm_uret_msrs_list[i] == msr)
420                         return i;
421         }
422         return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425
426 static void kvm_user_return_msr_cpu_online(void)
427 {
428         unsigned int cpu = smp_processor_id();
429         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430         u64 value;
431         int i;
432
433         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435                 msrs->values[i].host = value;
436                 msrs->values[i].curr = value;
437         }
438 }
439
440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442         unsigned int cpu = smp_processor_id();
443         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444         int err;
445
446         value = (value & mask) | (msrs->values[slot].host & ~mask);
447         if (value == msrs->values[slot].curr)
448                 return 0;
449         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450         if (err)
451                 return 1;
452
453         msrs->values[slot].curr = value;
454         if (!msrs->registered) {
455                 msrs->urn.on_user_return = kvm_on_user_return;
456                 user_return_notifier_register(&msrs->urn);
457                 msrs->registered = true;
458         }
459         return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462
463 static void drop_user_return_notifiers(void)
464 {
465         unsigned int cpu = smp_processor_id();
466         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467
468         if (msrs->registered)
469                 kvm_on_user_return(&msrs->urn);
470 }
471
472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474         return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477
478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480         return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483
484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490
491         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492                 return 1;
493         if (!msr_info->host_initiated) {
494                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495                         return 1;
496                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497                         return 1;
498         }
499
500         kvm_lapic_set_base(vcpu, msr_info->data);
501         kvm_recalculate_apic_map(vcpu->kvm);
502         return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515         /* Fault while not rebooting.  We want the trace. */
516         BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN            0
521 #define EXCPT_CONTRIBUTORY      1
522 #define EXCPT_PF                2
523
524 static int exception_class(int vector)
525 {
526         switch (vector) {
527         case PF_VECTOR:
528                 return EXCPT_PF;
529         case DE_VECTOR:
530         case TS_VECTOR:
531         case NP_VECTOR:
532         case SS_VECTOR:
533         case GP_VECTOR:
534                 return EXCPT_CONTRIBUTORY;
535         default:
536                 break;
537         }
538         return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT             0
542 #define EXCPT_TRAP              1
543 #define EXCPT_ABORT             2
544 #define EXCPT_INTERRUPT         3
545
546 static int exception_type(int vector)
547 {
548         unsigned int mask;
549
550         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551                 return EXCPT_INTERRUPT;
552
553         mask = 1 << vector;
554
555         /* #DB is trap, as instruction watchpoints are handled elsewhere */
556         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557                 return EXCPT_TRAP;
558
559         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560                 return EXCPT_ABORT;
561
562         /* Reserved exceptions will result in fault */
563         return EXCPT_FAULT;
564 }
565
566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568         unsigned nr = vcpu->arch.exception.nr;
569         bool has_payload = vcpu->arch.exception.has_payload;
570         unsigned long payload = vcpu->arch.exception.payload;
571
572         if (!has_payload)
573                 return;
574
575         switch (nr) {
576         case DB_VECTOR:
577                 /*
578                  * "Certain debug exceptions may clear bit 0-3.  The
579                  * remaining contents of the DR6 register are never
580                  * cleared by the processor".
581                  */
582                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583                 /*
584                  * In order to reflect the #DB exception payload in guest
585                  * dr6, three components need to be considered: active low
586                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587                  * DR6_BS and DR6_BT)
588                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589                  * In the target guest dr6:
590                  * FIXED_1 bits should always be set.
591                  * Active low bits should be cleared if 1-setting in payload.
592                  * Active high bits should be set if 1-setting in payload.
593                  *
594                  * Note, the payload is compatible with the pending debug
595                  * exceptions/exit qualification under VMX, that active_low bits
596                  * are active high in payload.
597                  * So they need to be flipped for DR6.
598                  */
599                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600                 vcpu->arch.dr6 |= payload;
601                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602
603                 /*
604                  * The #DB payload is defined as compatible with the 'pending
605                  * debug exceptions' field under VMX, not DR6. While bit 12 is
606                  * defined in the 'pending debug exceptions' field (enabled
607                  * breakpoint), it is reserved and must be zero in DR6.
608                  */
609                 vcpu->arch.dr6 &= ~BIT(12);
610                 break;
611         case PF_VECTOR:
612                 vcpu->arch.cr2 = payload;
613                 break;
614         }
615
616         vcpu->arch.exception.has_payload = false;
617         vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622                 unsigned nr, bool has_error, u32 error_code,
623                 bool has_payload, unsigned long payload, bool reinject)
624 {
625         u32 prev_nr;
626         int class1, class2;
627
628         kvm_make_request(KVM_REQ_EVENT, vcpu);
629
630         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631         queue:
632                 if (reinject) {
633                         /*
634                          * On vmentry, vcpu->arch.exception.pending is only
635                          * true if an event injection was blocked by
636                          * nested_run_pending.  In that case, however,
637                          * vcpu_enter_guest requests an immediate exit,
638                          * and the guest shouldn't proceed far enough to
639                          * need reinjection.
640                          */
641                         WARN_ON_ONCE(vcpu->arch.exception.pending);
642                         vcpu->arch.exception.injected = true;
643                         if (WARN_ON_ONCE(has_payload)) {
644                                 /*
645                                  * A reinjected event has already
646                                  * delivered its payload.
647                                  */
648                                 has_payload = false;
649                                 payload = 0;
650                         }
651                 } else {
652                         vcpu->arch.exception.pending = true;
653                         vcpu->arch.exception.injected = false;
654                 }
655                 vcpu->arch.exception.has_error_code = has_error;
656                 vcpu->arch.exception.nr = nr;
657                 vcpu->arch.exception.error_code = error_code;
658                 vcpu->arch.exception.has_payload = has_payload;
659                 vcpu->arch.exception.payload = payload;
660                 if (!is_guest_mode(vcpu))
661                         kvm_deliver_exception_payload(vcpu);
662                 return;
663         }
664
665         /* to check exception */
666         prev_nr = vcpu->arch.exception.nr;
667         if (prev_nr == DF_VECTOR) {
668                 /* triple fault -> shutdown */
669                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670                 return;
671         }
672         class1 = exception_class(prev_nr);
673         class2 = exception_class(nr);
674         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676                 /*
677                  * Generate double fault per SDM Table 5-5.  Set
678                  * exception.pending = true so that the double fault
679                  * can trigger a nested vmexit.
680                  */
681                 vcpu->arch.exception.pending = true;
682                 vcpu->arch.exception.injected = false;
683                 vcpu->arch.exception.has_error_code = true;
684                 vcpu->arch.exception.nr = DF_VECTOR;
685                 vcpu->arch.exception.error_code = 0;
686                 vcpu->arch.exception.has_payload = false;
687                 vcpu->arch.exception.payload = 0;
688         } else
689                 /* replace previous exception with a new one in a hope
690                    that instruction re-execution will regenerate lost
691                    exception */
692                 goto queue;
693 }
694
695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700
701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706
707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708                            unsigned long payload)
709 {
710         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713
714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715                                     u32 error_code, unsigned long payload)
716 {
717         kvm_multiple_exception(vcpu, nr, true, error_code,
718                                true, payload, false);
719 }
720
721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723         if (err)
724                 kvm_inject_gp(vcpu, 0);
725         else
726                 return kvm_skip_emulated_instruction(vcpu);
727
728         return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731
732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734         if (err) {
735                 kvm_inject_gp(vcpu, 0);
736                 return 1;
737         }
738
739         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740                                        EMULTYPE_COMPLETE_USER_EXIT);
741 }
742
743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745         ++vcpu->stat.pf_guest;
746         vcpu->arch.exception.nested_apf =
747                 is_guest_mode(vcpu) && fault->async_page_fault;
748         if (vcpu->arch.exception.nested_apf) {
749                 vcpu->arch.apf.nested_apf_token = fault->address;
750                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751         } else {
752                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753                                         fault->address);
754         }
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760                                     struct x86_exception *fault)
761 {
762         struct kvm_mmu *fault_mmu;
763         WARN_ON_ONCE(fault->vector != PF_VECTOR);
764
765         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766                                                vcpu->arch.walk_mmu;
767
768         /*
769          * Invalidate the TLB entry for the faulting address, if it exists,
770          * else the access will fault indefinitely (and to emulate hardware).
771          */
772         if ((fault->error_code & PFERR_PRESENT_MASK) &&
773             !(fault->error_code & PFERR_RSVD_MASK))
774                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775                                        fault_mmu->root.hpa);
776
777         /*
778          * A workaround for KVM's bad exception handling.  If KVM injected an
779          * exception into L2, and L2 encountered a #PF while vectoring the
780          * injected exception, manually check to see if L1 wants to intercept
781          * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782          * In all other cases, defer the check to nested_ops->check_events(),
783          * which will correctly handle priority (this does not).  Note, other
784          * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785          * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786          * shadow paging.
787          *
788          * TODO: Rewrite exception handling to track injected and pending
789          *       (VM-Exit) exceptions separately.
790          */
791         if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792             kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793                 return true;
794
795         fault_mmu->inject_page_fault(vcpu, fault);
796         return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799
800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802         atomic_inc(&vcpu->arch.nmi_queued);
803         kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806
807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812
813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818
819 /*
820  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
821  * a #GP and return false.
822  */
823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826                 return true;
827         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828         return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835                 return true;
836
837         kvm_queue_exception(vcpu, UD_VECTOR);
838         return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846
847 /*
848  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
849  */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854         gpa_t real_gpa;
855         int i;
856         int ret;
857         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858
859         /*
860          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861          * to an L1 GPA.
862          */
863         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865         if (real_gpa == UNMAPPED_GVA)
866                 return 0;
867
868         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
871         if (ret < 0)
872                 return 0;
873
874         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875                 if ((pdpte[i] & PT_PRESENT_MASK) &&
876                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877                         return 0;
878                 }
879         }
880
881         /*
882          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883          * Shadow page roots need to be reconstructed instead.
884          */
885         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887
888         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891         vcpu->arch.pdptrs_from_userspace = false;
892
893         return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896
897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900                 kvm_clear_async_pf_completion_queue(vcpu);
901                 kvm_async_pf_hash_reset(vcpu);
902
903                 /*
904                  * Clearing CR0.PG is defined to flush the TLB from the guest's
905                  * perspective.
906                  */
907                 if (!(cr0 & X86_CR0_PG))
908                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909         }
910
911         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912                 kvm_mmu_reset_context(vcpu);
913
914         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920
921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923         unsigned long old_cr0 = kvm_read_cr0(vcpu);
924
925         cr0 |= X86_CR0_ET;
926
927 #ifdef CONFIG_X86_64
928         if (cr0 & 0xffffffff00000000UL)
929                 return 1;
930 #endif
931
932         cr0 &= ~CR0_RESERVED_BITS;
933
934         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935                 return 1;
936
937         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938                 return 1;
939
940 #ifdef CONFIG_X86_64
941         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942             (cr0 & X86_CR0_PG)) {
943                 int cs_db, cs_l;
944
945                 if (!is_pae(vcpu))
946                         return 1;
947                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948                 if (cs_l)
949                         return 1;
950         }
951 #endif
952         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955                 return 1;
956
957         if (!(cr0 & X86_CR0_PG) &&
958             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959                 return 1;
960
961         static_call(kvm_x86_set_cr0)(vcpu, cr0);
962
963         kvm_post_set_cr0(vcpu, old_cr0, cr0);
964
965         return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968
969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974
975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977         if (vcpu->arch.guest_state_protected)
978                 return;
979
980         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981
982                 if (vcpu->arch.xcr0 != host_xcr0)
983                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984
985                 if (vcpu->arch.xsaves_enabled &&
986                     vcpu->arch.ia32_xss != host_xss)
987                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988         }
989
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991         if (static_cpu_has(X86_FEATURE_PKU) &&
992             vcpu->arch.pkru != vcpu->arch.host_pkru &&
993             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995                 write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999
1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002         if (vcpu->arch.guest_state_protected)
1003                 return;
1004
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006         if (static_cpu_has(X86_FEATURE_PKU) &&
1007             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009                 vcpu->arch.pkru = rdpkru();
1010                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011                         write_pkru(vcpu->arch.host_pkru);
1012         }
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014
1015         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016
1017                 if (vcpu->arch.xcr0 != host_xcr0)
1018                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019
1020                 if (vcpu->arch.xsaves_enabled &&
1021                     vcpu->arch.ia32_xss != host_xss)
1022                         wrmsrl(MSR_IA32_XSS, host_xss);
1023         }
1024
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027
1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032
1033 #ifdef CONFIG_X86_64
1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039
1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042         u64 xcr0 = xcr;
1043         u64 old_xcr0 = vcpu->arch.xcr0;
1044         u64 valid_bits;
1045
1046         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1047         if (index != XCR_XFEATURE_ENABLED_MASK)
1048                 return 1;
1049         if (!(xcr0 & XFEATURE_MASK_FP))
1050                 return 1;
1051         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052                 return 1;
1053
1054         /*
1055          * Do not allow the guest to set bits that we do not support
1056          * saving.  However, xcr0 bit 0 is always set, even if the
1057          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058          */
1059         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060         if (xcr0 & ~valid_bits)
1061                 return 1;
1062
1063         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065                 return 1;
1066
1067         if (xcr0 & XFEATURE_MASK_AVX512) {
1068                 if (!(xcr0 & XFEATURE_MASK_YMM))
1069                         return 1;
1070                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071                         return 1;
1072         }
1073
1074         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076                 return 1;
1077
1078         vcpu->arch.xcr0 = xcr0;
1079
1080         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081                 kvm_update_cpuid_runtime(vcpu);
1082         return 0;
1083 }
1084
1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089                 kvm_inject_gp(vcpu, 0);
1090                 return 1;
1091         }
1092
1093         return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096
1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099         if (cr4 & cr4_reserved_bits)
1100                 return false;
1101
1102         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103                 return false;
1104
1105         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1108
1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1110 {
1111         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1112                 kvm_mmu_reset_context(vcpu);
1113
1114         /*
1115          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1116          * according to the SDM; however, stale prev_roots could be reused
1117          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1118          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1119          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1120          * so fall through.
1121          */
1122         if (!tdp_enabled &&
1123             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1124                 kvm_mmu_unload(vcpu);
1125
1126         /*
1127          * The TLB has to be flushed for all PCIDs if any of the following
1128          * (architecturally required) changes happen:
1129          * - CR4.PCIDE is changed from 1 to 0
1130          * - CR4.PGE is toggled
1131          *
1132          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1133          */
1134         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1135             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1136                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1137
1138         /*
1139          * The TLB has to be flushed for the current PCID if any of the
1140          * following (architecturally required) changes happen:
1141          * - CR4.SMEP is changed from 0 to 1
1142          * - CR4.PAE is toggled
1143          */
1144         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1145                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1146                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1150
1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1152 {
1153         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1154
1155         if (!kvm_is_valid_cr4(vcpu, cr4))
1156                 return 1;
1157
1158         if (is_long_mode(vcpu)) {
1159                 if (!(cr4 & X86_CR4_PAE))
1160                         return 1;
1161                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1162                         return 1;
1163         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1164                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1165                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1166                 return 1;
1167
1168         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1169                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1170                         return 1;
1171
1172                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1173                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1174                         return 1;
1175         }
1176
1177         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1178
1179         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1180
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1184
1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1186 {
1187         struct kvm_mmu *mmu = vcpu->arch.mmu;
1188         unsigned long roots_to_free = 0;
1189         int i;
1190
1191         /*
1192          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1193          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1194          * also via the emulator.  KVM's TDP page tables are not in the scope of
1195          * the invalidation, but the guest's TLB entries need to be flushed as
1196          * the CPU may have cached entries in its TLB for the target PCID.
1197          */
1198         if (unlikely(tdp_enabled)) {
1199                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200                 return;
1201         }
1202
1203         /*
1204          * If neither the current CR3 nor any of the prev_roots use the given
1205          * PCID, then nothing needs to be done here because a resync will
1206          * happen anyway before switching to any other CR3.
1207          */
1208         if (kvm_get_active_pcid(vcpu) == pcid) {
1209                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1210                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211         }
1212
1213         /*
1214          * If PCID is disabled, there is no need to free prev_roots even if the
1215          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1216          * with PCIDE=0.
1217          */
1218         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1219                 return;
1220
1221         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1222                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1223                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1224
1225         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1226 }
1227
1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1229 {
1230         bool skip_tlb_flush = false;
1231         unsigned long pcid = 0;
1232 #ifdef CONFIG_X86_64
1233         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1234
1235         if (pcid_enabled) {
1236                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1237                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1238                 pcid = cr3 & X86_CR3_PCID_MASK;
1239         }
1240 #endif
1241
1242         /* PDPTRs are always reloaded for PAE paging. */
1243         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1244                 goto handle_tlb_flush;
1245
1246         /*
1247          * Do not condition the GPA check on long mode, this helper is used to
1248          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1249          * the current vCPU mode is accurate.
1250          */
1251         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1252                 return 1;
1253
1254         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1255                 return 1;
1256
1257         if (cr3 != kvm_read_cr3(vcpu))
1258                 kvm_mmu_new_pgd(vcpu, cr3);
1259
1260         vcpu->arch.cr3 = cr3;
1261         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1262         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1263
1264 handle_tlb_flush:
1265         /*
1266          * A load of CR3 that flushes the TLB flushes only the current PCID,
1267          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1268          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1269          * and it's impossible to use a non-zero PCID when PCID is disabled,
1270          * i.e. only PCID=0 can be relevant.
1271          */
1272         if (!skip_tlb_flush)
1273                 kvm_invalidate_pcid(vcpu, pcid);
1274
1275         return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1278
1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1280 {
1281         if (cr8 & CR8_RESERVED_BITS)
1282                 return 1;
1283         if (lapic_in_kernel(vcpu))
1284                 kvm_lapic_set_tpr(vcpu, cr8);
1285         else
1286                 vcpu->arch.cr8 = cr8;
1287         return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1290
1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1292 {
1293         if (lapic_in_kernel(vcpu))
1294                 return kvm_lapic_get_cr8(vcpu);
1295         else
1296                 return vcpu->arch.cr8;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1299
1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1301 {
1302         int i;
1303
1304         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1305                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1306                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1307         }
1308 }
1309
1310 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1311 {
1312         unsigned long dr7;
1313
1314         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1315                 dr7 = vcpu->arch.guest_debug_dr7;
1316         else
1317                 dr7 = vcpu->arch.dr7;
1318         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1319         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1320         if (dr7 & DR7_BP_EN_MASK)
1321                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1324
1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1326 {
1327         u64 fixed = DR6_FIXED_1;
1328
1329         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1330                 fixed |= DR6_RTM;
1331
1332         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1333                 fixed |= DR6_BUS_LOCK;
1334         return fixed;
1335 }
1336
1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1338 {
1339         size_t size = ARRAY_SIZE(vcpu->arch.db);
1340
1341         switch (dr) {
1342         case 0 ... 3:
1343                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1344                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1345                         vcpu->arch.eff_db[dr] = val;
1346                 break;
1347         case 4:
1348         case 6:
1349                 if (!kvm_dr6_valid(val))
1350                         return 1; /* #GP */
1351                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1352                 break;
1353         case 5:
1354         default: /* 7 */
1355                 if (!kvm_dr7_valid(val))
1356                         return 1; /* #GP */
1357                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1358                 kvm_update_dr7(vcpu);
1359                 break;
1360         }
1361
1362         return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_dr);
1365
1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1367 {
1368         size_t size = ARRAY_SIZE(vcpu->arch.db);
1369
1370         switch (dr) {
1371         case 0 ... 3:
1372                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1373                 break;
1374         case 4:
1375         case 6:
1376                 *val = vcpu->arch.dr6;
1377                 break;
1378         case 5:
1379         default: /* 7 */
1380                 *val = vcpu->arch.dr7;
1381                 break;
1382         }
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_get_dr);
1385
1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1387 {
1388         u32 ecx = kvm_rcx_read(vcpu);
1389         u64 data;
1390
1391         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1392                 kvm_inject_gp(vcpu, 0);
1393                 return 1;
1394         }
1395
1396         kvm_rax_write(vcpu, (u32)data);
1397         kvm_rdx_write(vcpu, data >> 32);
1398         return kvm_skip_emulated_instruction(vcpu);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1401
1402 /*
1403  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1404  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1405  *
1406  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1407  * extract the supported MSRs from the related const lists.
1408  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1409  * capabilities of the host cpu. This capabilities test skips MSRs that are
1410  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1411  * may depend on host virtualization features rather than host cpu features.
1412  */
1413
1414 static const u32 msrs_to_save_all[] = {
1415         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1416         MSR_STAR,
1417 #ifdef CONFIG_X86_64
1418         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1419 #endif
1420         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1421         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1422         MSR_IA32_SPEC_CTRL,
1423         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1424         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1425         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1426         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1427         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1428         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1429         MSR_IA32_UMWAIT_CONTROL,
1430
1431         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1432         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1433         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1434         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1435         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1436         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1437         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1438         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1439         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1440         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1441         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1442         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1443         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1444         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1445         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1446         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1447         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1448         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1449         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1450         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1451         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1452         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1453
1454         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1455         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1456         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1457         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1458         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1459         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1460         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 };
1462
1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1464 static unsigned num_msrs_to_save;
1465
1466 static const u32 emulated_msrs_all[] = {
1467         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1468         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1469         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1470         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1471         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1472         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1473         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1474         HV_X64_MSR_RESET,
1475         HV_X64_MSR_VP_INDEX,
1476         HV_X64_MSR_VP_RUNTIME,
1477         HV_X64_MSR_SCONTROL,
1478         HV_X64_MSR_STIMER0_CONFIG,
1479         HV_X64_MSR_VP_ASSIST_PAGE,
1480         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1481         HV_X64_MSR_TSC_EMULATION_STATUS,
1482         HV_X64_MSR_SYNDBG_OPTIONS,
1483         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1484         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1485         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1486
1487         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1488         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1489
1490         MSR_IA32_TSC_ADJUST,
1491         MSR_IA32_TSC_DEADLINE,
1492         MSR_IA32_ARCH_CAPABILITIES,
1493         MSR_IA32_PERF_CAPABILITIES,
1494         MSR_IA32_MISC_ENABLE,
1495         MSR_IA32_MCG_STATUS,
1496         MSR_IA32_MCG_CTL,
1497         MSR_IA32_MCG_EXT_CTL,
1498         MSR_IA32_SMBASE,
1499         MSR_SMI_COUNT,
1500         MSR_PLATFORM_INFO,
1501         MSR_MISC_FEATURES_ENABLES,
1502         MSR_AMD64_VIRT_SPEC_CTRL,
1503         MSR_AMD64_TSC_RATIO,
1504         MSR_IA32_POWER_CTL,
1505         MSR_IA32_UCODE_REV,
1506
1507         /*
1508          * The following list leaves out MSRs whose values are determined
1509          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1510          * We always support the "true" VMX control MSRs, even if the host
1511          * processor does not, so I am putting these registers here rather
1512          * than in msrs_to_save_all.
1513          */
1514         MSR_IA32_VMX_BASIC,
1515         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1516         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1517         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1518         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1519         MSR_IA32_VMX_MISC,
1520         MSR_IA32_VMX_CR0_FIXED0,
1521         MSR_IA32_VMX_CR4_FIXED0,
1522         MSR_IA32_VMX_VMCS_ENUM,
1523         MSR_IA32_VMX_PROCBASED_CTLS2,
1524         MSR_IA32_VMX_EPT_VPID_CAP,
1525         MSR_IA32_VMX_VMFUNC,
1526
1527         MSR_K7_HWCR,
1528         MSR_KVM_POLL_CONTROL,
1529 };
1530
1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1532 static unsigned num_emulated_msrs;
1533
1534 /*
1535  * List of msr numbers which are used to expose MSR-based features that
1536  * can be used by a hypervisor to validate requested CPU features.
1537  */
1538 static const u32 msr_based_features_all[] = {
1539         MSR_IA32_VMX_BASIC,
1540         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541         MSR_IA32_VMX_PINBASED_CTLS,
1542         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543         MSR_IA32_VMX_PROCBASED_CTLS,
1544         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1545         MSR_IA32_VMX_EXIT_CTLS,
1546         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1547         MSR_IA32_VMX_ENTRY_CTLS,
1548         MSR_IA32_VMX_MISC,
1549         MSR_IA32_VMX_CR0_FIXED0,
1550         MSR_IA32_VMX_CR0_FIXED1,
1551         MSR_IA32_VMX_CR4_FIXED0,
1552         MSR_IA32_VMX_CR4_FIXED1,
1553         MSR_IA32_VMX_VMCS_ENUM,
1554         MSR_IA32_VMX_PROCBASED_CTLS2,
1555         MSR_IA32_VMX_EPT_VPID_CAP,
1556         MSR_IA32_VMX_VMFUNC,
1557
1558         MSR_F10H_DECFG,
1559         MSR_IA32_UCODE_REV,
1560         MSR_IA32_ARCH_CAPABILITIES,
1561         MSR_IA32_PERF_CAPABILITIES,
1562 };
1563
1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1565 static unsigned int num_msr_based_features;
1566
1567 static u64 kvm_get_arch_capabilities(void)
1568 {
1569         u64 data = 0;
1570
1571         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1572                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1573
1574         /*
1575          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1576          * the nested hypervisor runs with NX huge pages.  If it is not,
1577          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1578          * L1 guests, so it need not worry about its own (L2) guests.
1579          */
1580         data |= ARCH_CAP_PSCHANGE_MC_NO;
1581
1582         /*
1583          * If we're doing cache flushes (either "always" or "cond")
1584          * we will do one whenever the guest does a vmlaunch/vmresume.
1585          * If an outer hypervisor is doing the cache flush for us
1586          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1587          * capability to the guest too, and if EPT is disabled we're not
1588          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1589          * require a nested hypervisor to do a flush of its own.
1590          */
1591         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1592                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1593
1594         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1595                 data |= ARCH_CAP_RDCL_NO;
1596         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1597                 data |= ARCH_CAP_SSB_NO;
1598         if (!boot_cpu_has_bug(X86_BUG_MDS))
1599                 data |= ARCH_CAP_MDS_NO;
1600
1601         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1602                 /*
1603                  * If RTM=0 because the kernel has disabled TSX, the host might
1604                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1605                  * and therefore knows that there cannot be TAA) but keep
1606                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1607                  * and we want to allow migrating those guests to tsx=off hosts.
1608                  */
1609                 data &= ~ARCH_CAP_TAA_NO;
1610         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1611                 data |= ARCH_CAP_TAA_NO;
1612         } else {
1613                 /*
1614                  * Nothing to do here; we emulate TSX_CTRL if present on the
1615                  * host so the guest can choose between disabling TSX or
1616                  * using VERW to clear CPU buffers.
1617                  */
1618         }
1619
1620         /* Guests don't need to know "Fill buffer clear control" exists */
1621         data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1622
1623         return data;
1624 }
1625
1626 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1627 {
1628         switch (msr->index) {
1629         case MSR_IA32_ARCH_CAPABILITIES:
1630                 msr->data = kvm_get_arch_capabilities();
1631                 break;
1632         case MSR_IA32_UCODE_REV:
1633                 rdmsrl_safe(msr->index, &msr->data);
1634                 break;
1635         default:
1636                 return static_call(kvm_x86_get_msr_feature)(msr);
1637         }
1638         return 0;
1639 }
1640
1641 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1642 {
1643         struct kvm_msr_entry msr;
1644         int r;
1645
1646         msr.index = index;
1647         r = kvm_get_msr_feature(&msr);
1648
1649         if (r == KVM_MSR_RET_INVALID) {
1650                 /* Unconditionally clear the output for simplicity */
1651                 *data = 0;
1652                 if (kvm_msr_ignored_check(index, 0, false))
1653                         r = 0;
1654         }
1655
1656         if (r)
1657                 return r;
1658
1659         *data = msr.data;
1660
1661         return 0;
1662 }
1663
1664 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1665 {
1666         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1667                 return false;
1668
1669         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1670                 return false;
1671
1672         if (efer & (EFER_LME | EFER_LMA) &&
1673             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1674                 return false;
1675
1676         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1677                 return false;
1678
1679         return true;
1680
1681 }
1682 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684         if (efer & efer_reserved_bits)
1685                 return false;
1686
1687         return __kvm_valid_efer(vcpu, efer);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1690
1691 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1692 {
1693         u64 old_efer = vcpu->arch.efer;
1694         u64 efer = msr_info->data;
1695         int r;
1696
1697         if (efer & efer_reserved_bits)
1698                 return 1;
1699
1700         if (!msr_info->host_initiated) {
1701                 if (!__kvm_valid_efer(vcpu, efer))
1702                         return 1;
1703
1704                 if (is_paging(vcpu) &&
1705                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1706                         return 1;
1707         }
1708
1709         efer &= ~EFER_LMA;
1710         efer |= vcpu->arch.efer & EFER_LMA;
1711
1712         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1713         if (r) {
1714                 WARN_ON(r > 0);
1715                 return r;
1716         }
1717
1718         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1719                 kvm_mmu_reset_context(vcpu);
1720
1721         return 0;
1722 }
1723
1724 void kvm_enable_efer_bits(u64 mask)
1725 {
1726        efer_reserved_bits &= ~mask;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1729
1730 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1731 {
1732         struct kvm_x86_msr_filter *msr_filter;
1733         struct msr_bitmap_range *ranges;
1734         struct kvm *kvm = vcpu->kvm;
1735         bool allowed;
1736         int idx;
1737         u32 i;
1738
1739         /* x2APIC MSRs do not support filtering. */
1740         if (index >= 0x800 && index <= 0x8ff)
1741                 return true;
1742
1743         idx = srcu_read_lock(&kvm->srcu);
1744
1745         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1746         if (!msr_filter) {
1747                 allowed = true;
1748                 goto out;
1749         }
1750
1751         allowed = msr_filter->default_allow;
1752         ranges = msr_filter->ranges;
1753
1754         for (i = 0; i < msr_filter->count; i++) {
1755                 u32 start = ranges[i].base;
1756                 u32 end = start + ranges[i].nmsrs;
1757                 u32 flags = ranges[i].flags;
1758                 unsigned long *bitmap = ranges[i].bitmap;
1759
1760                 if ((index >= start) && (index < end) && (flags & type)) {
1761                         allowed = !!test_bit(index - start, bitmap);
1762                         break;
1763                 }
1764         }
1765
1766 out:
1767         srcu_read_unlock(&kvm->srcu, idx);
1768
1769         return allowed;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1772
1773 /*
1774  * Write @data into the MSR specified by @index.  Select MSR specific fault
1775  * checks are bypassed if @host_initiated is %true.
1776  * Returns 0 on success, non-0 otherwise.
1777  * Assumes vcpu_load() was already called.
1778  */
1779 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1780                          bool host_initiated)
1781 {
1782         struct msr_data msr;
1783
1784         switch (index) {
1785         case MSR_FS_BASE:
1786         case MSR_GS_BASE:
1787         case MSR_KERNEL_GS_BASE:
1788         case MSR_CSTAR:
1789         case MSR_LSTAR:
1790                 if (is_noncanonical_address(data, vcpu))
1791                         return 1;
1792                 break;
1793         case MSR_IA32_SYSENTER_EIP:
1794         case MSR_IA32_SYSENTER_ESP:
1795                 /*
1796                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1797                  * non-canonical address is written on Intel but not on
1798                  * AMD (which ignores the top 32-bits, because it does
1799                  * not implement 64-bit SYSENTER).
1800                  *
1801                  * 64-bit code should hence be able to write a non-canonical
1802                  * value on AMD.  Making the address canonical ensures that
1803                  * vmentry does not fail on Intel after writing a non-canonical
1804                  * value, and that something deterministic happens if the guest
1805                  * invokes 64-bit SYSENTER.
1806                  */
1807                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1808                 break;
1809         case MSR_TSC_AUX:
1810                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1811                         return 1;
1812
1813                 if (!host_initiated &&
1814                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1815                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1816                         return 1;
1817
1818                 /*
1819                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1820                  * incomplete and conflicting architectural behavior.  Current
1821                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1822                  * reserved and always read as zeros.  Enforce Intel's reserved
1823                  * bits check if and only if the guest CPU is Intel, and clear
1824                  * the bits in all other cases.  This ensures cross-vendor
1825                  * migration will provide consistent behavior for the guest.
1826                  */
1827                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1828                         return 1;
1829
1830                 data = (u32)data;
1831                 break;
1832         }
1833
1834         msr.data = data;
1835         msr.index = index;
1836         msr.host_initiated = host_initiated;
1837
1838         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1839 }
1840
1841 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1842                                      u32 index, u64 data, bool host_initiated)
1843 {
1844         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1845
1846         if (ret == KVM_MSR_RET_INVALID)
1847                 if (kvm_msr_ignored_check(index, data, true))
1848                         ret = 0;
1849
1850         return ret;
1851 }
1852
1853 /*
1854  * Read the MSR specified by @index into @data.  Select MSR specific fault
1855  * checks are bypassed if @host_initiated is %true.
1856  * Returns 0 on success, non-0 otherwise.
1857  * Assumes vcpu_load() was already called.
1858  */
1859 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1860                   bool host_initiated)
1861 {
1862         struct msr_data msr;
1863         int ret;
1864
1865         switch (index) {
1866         case MSR_TSC_AUX:
1867                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1868                         return 1;
1869
1870                 if (!host_initiated &&
1871                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1872                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1873                         return 1;
1874                 break;
1875         }
1876
1877         msr.index = index;
1878         msr.host_initiated = host_initiated;
1879
1880         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1881         if (!ret)
1882                 *data = msr.data;
1883         return ret;
1884 }
1885
1886 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1887                                      u32 index, u64 *data, bool host_initiated)
1888 {
1889         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1890
1891         if (ret == KVM_MSR_RET_INVALID) {
1892                 /* Unconditionally clear *data for simplicity */
1893                 *data = 0;
1894                 if (kvm_msr_ignored_check(index, 0, false))
1895                         ret = 0;
1896         }
1897
1898         return ret;
1899 }
1900
1901 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1902 {
1903         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1904                 return KVM_MSR_RET_FILTERED;
1905         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1906 }
1907
1908 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1909 {
1910         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1911                 return KVM_MSR_RET_FILTERED;
1912         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1913 }
1914
1915 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1916 {
1917         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_get_msr);
1920
1921 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1922 {
1923         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_set_msr);
1926
1927 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1928 {
1929         if (!vcpu->run->msr.error) {
1930                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1931                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1932         }
1933 }
1934
1935 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1936 {
1937         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1938 }
1939
1940 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1941 {
1942         complete_userspace_rdmsr(vcpu);
1943         return complete_emulated_msr_access(vcpu);
1944 }
1945
1946 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1947 {
1948         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1949 }
1950
1951 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953         complete_userspace_rdmsr(vcpu);
1954         return complete_fast_msr_access(vcpu);
1955 }
1956
1957 static u64 kvm_msr_reason(int r)
1958 {
1959         switch (r) {
1960         case KVM_MSR_RET_INVALID:
1961                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1962         case KVM_MSR_RET_FILTERED:
1963                 return KVM_MSR_EXIT_REASON_FILTER;
1964         default:
1965                 return KVM_MSR_EXIT_REASON_INVAL;
1966         }
1967 }
1968
1969 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1970                               u32 exit_reason, u64 data,
1971                               int (*completion)(struct kvm_vcpu *vcpu),
1972                               int r)
1973 {
1974         u64 msr_reason = kvm_msr_reason(r);
1975
1976         /* Check if the user wanted to know about this MSR fault */
1977         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1978                 return 0;
1979
1980         vcpu->run->exit_reason = exit_reason;
1981         vcpu->run->msr.error = 0;
1982         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1983         vcpu->run->msr.reason = msr_reason;
1984         vcpu->run->msr.index = index;
1985         vcpu->run->msr.data = data;
1986         vcpu->arch.complete_userspace_io = completion;
1987
1988         return 1;
1989 }
1990
1991 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993         u32 ecx = kvm_rcx_read(vcpu);
1994         u64 data;
1995         int r;
1996
1997         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1998
1999         if (!r) {
2000                 trace_kvm_msr_read(ecx, data);
2001
2002                 kvm_rax_write(vcpu, data & -1u);
2003                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2004         } else {
2005                 /* MSR read failed? See if we should ask user space */
2006                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2007                                        complete_fast_rdmsr, r))
2008                         return 0;
2009                 trace_kvm_msr_read_ex(ecx);
2010         }
2011
2012         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2015
2016 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2017 {
2018         u32 ecx = kvm_rcx_read(vcpu);
2019         u64 data = kvm_read_edx_eax(vcpu);
2020         int r;
2021
2022         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2023
2024         if (!r) {
2025                 trace_kvm_msr_write(ecx, data);
2026         } else {
2027                 /* MSR write failed? See if we should ask user space */
2028                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2029                                        complete_fast_msr_access, r))
2030                         return 0;
2031                 /* Signal all other negative errors to userspace */
2032                 if (r < 0)
2033                         return r;
2034                 trace_kvm_msr_write_ex(ecx, data);
2035         }
2036
2037         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2040
2041 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2042 {
2043         return kvm_skip_emulated_instruction(vcpu);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2046
2047 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2048 {
2049         /* Treat an INVD instruction as a NOP and just skip it. */
2050         return kvm_emulate_as_nop(vcpu);
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2053
2054 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2055 {
2056         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2057         return kvm_emulate_as_nop(vcpu);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2060
2061 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2062 {
2063         kvm_queue_exception(vcpu, UD_VECTOR);
2064         return 1;
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2067
2068 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2069 {
2070         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2071         return kvm_emulate_as_nop(vcpu);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2074
2075 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2076 {
2077         xfer_to_guest_mode_prepare();
2078         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2079                 xfer_to_guest_mode_work_pending();
2080 }
2081
2082 /*
2083  * The fast path for frequent and performance sensitive wrmsr emulation,
2084  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2085  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2086  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2087  * other cases which must be called after interrupts are enabled on the host.
2088  */
2089 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2090 {
2091         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2092                 return 1;
2093
2094         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2095             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2096             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2097             ((u32)(data >> 32) != X2APIC_BROADCAST))
2098                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2099
2100         return 1;
2101 }
2102
2103 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105         if (!kvm_can_use_hv_timer(vcpu))
2106                 return 1;
2107
2108         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2109         return 0;
2110 }
2111
2112 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2113 {
2114         u32 msr = kvm_rcx_read(vcpu);
2115         u64 data;
2116         fastpath_t ret = EXIT_FASTPATH_NONE;
2117
2118         switch (msr) {
2119         case APIC_BASE_MSR + (APIC_ICR >> 4):
2120                 data = kvm_read_edx_eax(vcpu);
2121                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2122                         kvm_skip_emulated_instruction(vcpu);
2123                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2124                 }
2125                 break;
2126         case MSR_IA32_TSC_DEADLINE:
2127                 data = kvm_read_edx_eax(vcpu);
2128                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2129                         kvm_skip_emulated_instruction(vcpu);
2130                         ret = EXIT_FASTPATH_REENTER_GUEST;
2131                 }
2132                 break;
2133         default:
2134                 break;
2135         }
2136
2137         if (ret != EXIT_FASTPATH_NONE)
2138                 trace_kvm_msr_write(msr, data);
2139
2140         return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2143
2144 /*
2145  * Adapt set_msr() to msr_io()'s calling convention
2146  */
2147 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2148 {
2149         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2150 }
2151
2152 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2153 {
2154         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2155 }
2156
2157 #ifdef CONFIG_X86_64
2158 struct pvclock_clock {
2159         int vclock_mode;
2160         u64 cycle_last;
2161         u64 mask;
2162         u32 mult;
2163         u32 shift;
2164         u64 base_cycles;
2165         u64 offset;
2166 };
2167
2168 struct pvclock_gtod_data {
2169         seqcount_t      seq;
2170
2171         struct pvclock_clock clock; /* extract of a clocksource struct */
2172         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2173
2174         ktime_t         offs_boot;
2175         u64             wall_time_sec;
2176 };
2177
2178 static struct pvclock_gtod_data pvclock_gtod_data;
2179
2180 static void update_pvclock_gtod(struct timekeeper *tk)
2181 {
2182         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2183
2184         write_seqcount_begin(&vdata->seq);
2185
2186         /* copy pvclock gtod data */
2187         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2188         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2189         vdata->clock.mask               = tk->tkr_mono.mask;
2190         vdata->clock.mult               = tk->tkr_mono.mult;
2191         vdata->clock.shift              = tk->tkr_mono.shift;
2192         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2193         vdata->clock.offset             = tk->tkr_mono.base;
2194
2195         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2196         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2197         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2198         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2199         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2200         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2201         vdata->raw_clock.offset         = tk->tkr_raw.base;
2202
2203         vdata->wall_time_sec            = tk->xtime_sec;
2204
2205         vdata->offs_boot                = tk->offs_boot;
2206
2207         write_seqcount_end(&vdata->seq);
2208 }
2209
2210 static s64 get_kvmclock_base_ns(void)
2211 {
2212         /* Count up from boot time, but with the frequency of the raw clock.  */
2213         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2214 }
2215 #else
2216 static s64 get_kvmclock_base_ns(void)
2217 {
2218         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2219         return ktime_get_boottime_ns();
2220 }
2221 #endif
2222
2223 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2224 {
2225         int version;
2226         int r;
2227         struct pvclock_wall_clock wc;
2228         u32 wc_sec_hi;
2229         u64 wall_nsec;
2230
2231         if (!wall_clock)
2232                 return;
2233
2234         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2235         if (r)
2236                 return;
2237
2238         if (version & 1)
2239                 ++version;  /* first time write, random junk */
2240
2241         ++version;
2242
2243         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2244                 return;
2245
2246         /*
2247          * The guest calculates current wall clock time by adding
2248          * system time (updated by kvm_guest_time_update below) to the
2249          * wall clock specified here.  We do the reverse here.
2250          */
2251         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2252
2253         wc.nsec = do_div(wall_nsec, 1000000000);
2254         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2255         wc.version = version;
2256
2257         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2258
2259         if (sec_hi_ofs) {
2260                 wc_sec_hi = wall_nsec >> 32;
2261                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2262                                 &wc_sec_hi, sizeof(wc_sec_hi));
2263         }
2264
2265         version++;
2266         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2267 }
2268
2269 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2270                                   bool old_msr, bool host_initiated)
2271 {
2272         struct kvm_arch *ka = &vcpu->kvm->arch;
2273
2274         if (vcpu->vcpu_id == 0 && !host_initiated) {
2275                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2276                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2277
2278                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2279         }
2280
2281         vcpu->arch.time = system_time;
2282         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2283
2284         /* we verify if the enable bit is set... */
2285         if (system_time & 1) {
2286                 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2287                                           KVM_HOST_USES_PFN, system_time & ~1ULL,
2288                                           sizeof(struct pvclock_vcpu_time_info));
2289         } else {
2290                 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2291         }
2292
2293         return;
2294 }
2295
2296 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2297 {
2298         do_shl32_div32(dividend, divisor);
2299         return dividend;
2300 }
2301
2302 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2303                                s8 *pshift, u32 *pmultiplier)
2304 {
2305         uint64_t scaled64;
2306         int32_t  shift = 0;
2307         uint64_t tps64;
2308         uint32_t tps32;
2309
2310         tps64 = base_hz;
2311         scaled64 = scaled_hz;
2312         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2313                 tps64 >>= 1;
2314                 shift--;
2315         }
2316
2317         tps32 = (uint32_t)tps64;
2318         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2319                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2320                         scaled64 >>= 1;
2321                 else
2322                         tps32 <<= 1;
2323                 shift++;
2324         }
2325
2326         *pshift = shift;
2327         *pmultiplier = div_frac(scaled64, tps32);
2328 }
2329
2330 #ifdef CONFIG_X86_64
2331 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2332 #endif
2333
2334 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2335 static unsigned long max_tsc_khz;
2336
2337 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2338 {
2339         u64 v = (u64)khz * (1000000 + ppm);
2340         do_div(v, 1000000);
2341         return v;
2342 }
2343
2344 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2345
2346 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2347 {
2348         u64 ratio;
2349
2350         /* Guest TSC same frequency as host TSC? */
2351         if (!scale) {
2352                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2353                 return 0;
2354         }
2355
2356         /* TSC scaling supported? */
2357         if (!kvm_has_tsc_control) {
2358                 if (user_tsc_khz > tsc_khz) {
2359                         vcpu->arch.tsc_catchup = 1;
2360                         vcpu->arch.tsc_always_catchup = 1;
2361                         return 0;
2362                 } else {
2363                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2364                         return -1;
2365                 }
2366         }
2367
2368         /* TSC scaling required  - calculate ratio */
2369         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2370                                 user_tsc_khz, tsc_khz);
2371
2372         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2373                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2374                                     user_tsc_khz);
2375                 return -1;
2376         }
2377
2378         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2379         return 0;
2380 }
2381
2382 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2383 {
2384         u32 thresh_lo, thresh_hi;
2385         int use_scaling = 0;
2386
2387         /* tsc_khz can be zero if TSC calibration fails */
2388         if (user_tsc_khz == 0) {
2389                 /* set tsc_scaling_ratio to a safe value */
2390                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2391                 return -1;
2392         }
2393
2394         /* Compute a scale to convert nanoseconds in TSC cycles */
2395         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2396                            &vcpu->arch.virtual_tsc_shift,
2397                            &vcpu->arch.virtual_tsc_mult);
2398         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2399
2400         /*
2401          * Compute the variation in TSC rate which is acceptable
2402          * within the range of tolerance and decide if the
2403          * rate being applied is within that bounds of the hardware
2404          * rate.  If so, no scaling or compensation need be done.
2405          */
2406         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2407         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2408         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2409                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2410                 use_scaling = 1;
2411         }
2412         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2413 }
2414
2415 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2416 {
2417         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2418                                       vcpu->arch.virtual_tsc_mult,
2419                                       vcpu->arch.virtual_tsc_shift);
2420         tsc += vcpu->arch.this_tsc_write;
2421         return tsc;
2422 }
2423
2424 #ifdef CONFIG_X86_64
2425 static inline int gtod_is_based_on_tsc(int mode)
2426 {
2427         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2428 }
2429 #endif
2430
2431 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2432 {
2433 #ifdef CONFIG_X86_64
2434         bool vcpus_matched;
2435         struct kvm_arch *ka = &vcpu->kvm->arch;
2436         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2437
2438         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2439                          atomic_read(&vcpu->kvm->online_vcpus));
2440
2441         /*
2442          * Once the masterclock is enabled, always perform request in
2443          * order to update it.
2444          *
2445          * In order to enable masterclock, the host clocksource must be TSC
2446          * and the vcpus need to have matched TSCs.  When that happens,
2447          * perform request to enable masterclock.
2448          */
2449         if (ka->use_master_clock ||
2450             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2451                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2452
2453         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2454                             atomic_read(&vcpu->kvm->online_vcpus),
2455                             ka->use_master_clock, gtod->clock.vclock_mode);
2456 #endif
2457 }
2458
2459 /*
2460  * Multiply tsc by a fixed point number represented by ratio.
2461  *
2462  * The most significant 64-N bits (mult) of ratio represent the
2463  * integral part of the fixed point number; the remaining N bits
2464  * (frac) represent the fractional part, ie. ratio represents a fixed
2465  * point number (mult + frac * 2^(-N)).
2466  *
2467  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2468  */
2469 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2470 {
2471         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2472 }
2473
2474 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2475 {
2476         u64 _tsc = tsc;
2477
2478         if (ratio != kvm_default_tsc_scaling_ratio)
2479                 _tsc = __scale_tsc(ratio, tsc);
2480
2481         return _tsc;
2482 }
2483 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2484
2485 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2486 {
2487         u64 tsc;
2488
2489         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2490
2491         return target_tsc - tsc;
2492 }
2493
2494 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2495 {
2496         return vcpu->arch.l1_tsc_offset +
2497                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2500
2501 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2502 {
2503         u64 nested_offset;
2504
2505         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2506                 nested_offset = l1_offset;
2507         else
2508                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2509                                                 kvm_tsc_scaling_ratio_frac_bits);
2510
2511         nested_offset += l2_offset;
2512         return nested_offset;
2513 }
2514 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2515
2516 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2517 {
2518         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2519                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2520                                        kvm_tsc_scaling_ratio_frac_bits);
2521
2522         return l1_multiplier;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2525
2526 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2527 {
2528         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2529                                    vcpu->arch.l1_tsc_offset,
2530                                    l1_offset);
2531
2532         vcpu->arch.l1_tsc_offset = l1_offset;
2533
2534         /*
2535          * If we are here because L1 chose not to trap WRMSR to TSC then
2536          * according to the spec this should set L1's TSC (as opposed to
2537          * setting L1's offset for L2).
2538          */
2539         if (is_guest_mode(vcpu))
2540                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541                         l1_offset,
2542                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2543                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2544         else
2545                 vcpu->arch.tsc_offset = l1_offset;
2546
2547         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2548 }
2549
2550 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2551 {
2552         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2553
2554         /* Userspace is changing the multiplier while L2 is active */
2555         if (is_guest_mode(vcpu))
2556                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2557                         l1_multiplier,
2558                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2559         else
2560                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2561
2562         if (kvm_has_tsc_control)
2563                 static_call(kvm_x86_write_tsc_multiplier)(
2564                         vcpu, vcpu->arch.tsc_scaling_ratio);
2565 }
2566
2567 static inline bool kvm_check_tsc_unstable(void)
2568 {
2569 #ifdef CONFIG_X86_64
2570         /*
2571          * TSC is marked unstable when we're running on Hyper-V,
2572          * 'TSC page' clocksource is good.
2573          */
2574         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2575                 return false;
2576 #endif
2577         return check_tsc_unstable();
2578 }
2579
2580 /*
2581  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2582  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2583  * participates in.
2584  */
2585 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2586                                   u64 ns, bool matched)
2587 {
2588         struct kvm *kvm = vcpu->kvm;
2589
2590         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2591
2592         /*
2593          * We also track th most recent recorded KHZ, write and time to
2594          * allow the matching interval to be extended at each write.
2595          */
2596         kvm->arch.last_tsc_nsec = ns;
2597         kvm->arch.last_tsc_write = tsc;
2598         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2599         kvm->arch.last_tsc_offset = offset;
2600
2601         vcpu->arch.last_guest_tsc = tsc;
2602
2603         kvm_vcpu_write_tsc_offset(vcpu, offset);
2604
2605         if (!matched) {
2606                 /*
2607                  * We split periods of matched TSC writes into generations.
2608                  * For each generation, we track the original measured
2609                  * nanosecond time, offset, and write, so if TSCs are in
2610                  * sync, we can match exact offset, and if not, we can match
2611                  * exact software computation in compute_guest_tsc()
2612                  *
2613                  * These values are tracked in kvm->arch.cur_xxx variables.
2614                  */
2615                 kvm->arch.cur_tsc_generation++;
2616                 kvm->arch.cur_tsc_nsec = ns;
2617                 kvm->arch.cur_tsc_write = tsc;
2618                 kvm->arch.cur_tsc_offset = offset;
2619                 kvm->arch.nr_vcpus_matched_tsc = 0;
2620         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2621                 kvm->arch.nr_vcpus_matched_tsc++;
2622         }
2623
2624         /* Keep track of which generation this VCPU has synchronized to */
2625         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2626         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2627         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2628
2629         kvm_track_tsc_matching(vcpu);
2630 }
2631
2632 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2633 {
2634         struct kvm *kvm = vcpu->kvm;
2635         u64 offset, ns, elapsed;
2636         unsigned long flags;
2637         bool matched = false;
2638         bool synchronizing = false;
2639
2640         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2641         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2642         ns = get_kvmclock_base_ns();
2643         elapsed = ns - kvm->arch.last_tsc_nsec;
2644
2645         if (vcpu->arch.virtual_tsc_khz) {
2646                 if (data == 0) {
2647                         /*
2648                          * detection of vcpu initialization -- need to sync
2649                          * with other vCPUs. This particularly helps to keep
2650                          * kvm_clock stable after CPU hotplug
2651                          */
2652                         synchronizing = true;
2653                 } else {
2654                         u64 tsc_exp = kvm->arch.last_tsc_write +
2655                                                 nsec_to_cycles(vcpu, elapsed);
2656                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2657                         /*
2658                          * Special case: TSC write with a small delta (1 second)
2659                          * of virtual cycle time against real time is
2660                          * interpreted as an attempt to synchronize the CPU.
2661                          */
2662                         synchronizing = data < tsc_exp + tsc_hz &&
2663                                         data + tsc_hz > tsc_exp;
2664                 }
2665         }
2666
2667         /*
2668          * For a reliable TSC, we can match TSC offsets, and for an unstable
2669          * TSC, we add elapsed time in this computation.  We could let the
2670          * compensation code attempt to catch up if we fall behind, but
2671          * it's better to try to match offsets from the beginning.
2672          */
2673         if (synchronizing &&
2674             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2675                 if (!kvm_check_tsc_unstable()) {
2676                         offset = kvm->arch.cur_tsc_offset;
2677                 } else {
2678                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2679                         data += delta;
2680                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2681                 }
2682                 matched = true;
2683         }
2684
2685         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2686         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2687 }
2688
2689 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2690                                            s64 adjustment)
2691 {
2692         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2693         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2694 }
2695
2696 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2697 {
2698         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2699                 WARN_ON(adjustment < 0);
2700         adjustment = kvm_scale_tsc((u64) adjustment,
2701                                    vcpu->arch.l1_tsc_scaling_ratio);
2702         adjust_tsc_offset_guest(vcpu, adjustment);
2703 }
2704
2705 #ifdef CONFIG_X86_64
2706
2707 static u64 read_tsc(void)
2708 {
2709         u64 ret = (u64)rdtsc_ordered();
2710         u64 last = pvclock_gtod_data.clock.cycle_last;
2711
2712         if (likely(ret >= last))
2713                 return ret;
2714
2715         /*
2716          * GCC likes to generate cmov here, but this branch is extremely
2717          * predictable (it's just a function of time and the likely is
2718          * very likely) and there's a data dependence, so force GCC
2719          * to generate a branch instead.  I don't barrier() because
2720          * we don't actually need a barrier, and if this function
2721          * ever gets inlined it will generate worse code.
2722          */
2723         asm volatile ("");
2724         return last;
2725 }
2726
2727 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2728                           int *mode)
2729 {
2730         long v;
2731         u64 tsc_pg_val;
2732
2733         switch (clock->vclock_mode) {
2734         case VDSO_CLOCKMODE_HVCLOCK:
2735                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2736                                                   tsc_timestamp);
2737                 if (tsc_pg_val != U64_MAX) {
2738                         /* TSC page valid */
2739                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2740                         v = (tsc_pg_val - clock->cycle_last) &
2741                                 clock->mask;
2742                 } else {
2743                         /* TSC page invalid */
2744                         *mode = VDSO_CLOCKMODE_NONE;
2745                 }
2746                 break;
2747         case VDSO_CLOCKMODE_TSC:
2748                 *mode = VDSO_CLOCKMODE_TSC;
2749                 *tsc_timestamp = read_tsc();
2750                 v = (*tsc_timestamp - clock->cycle_last) &
2751                         clock->mask;
2752                 break;
2753         default:
2754                 *mode = VDSO_CLOCKMODE_NONE;
2755         }
2756
2757         if (*mode == VDSO_CLOCKMODE_NONE)
2758                 *tsc_timestamp = v = 0;
2759
2760         return v * clock->mult;
2761 }
2762
2763 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2764 {
2765         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2766         unsigned long seq;
2767         int mode;
2768         u64 ns;
2769
2770         do {
2771                 seq = read_seqcount_begin(&gtod->seq);
2772                 ns = gtod->raw_clock.base_cycles;
2773                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2774                 ns >>= gtod->raw_clock.shift;
2775                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2776         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2777         *t = ns;
2778
2779         return mode;
2780 }
2781
2782 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2783 {
2784         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2785         unsigned long seq;
2786         int mode;
2787         u64 ns;
2788
2789         do {
2790                 seq = read_seqcount_begin(&gtod->seq);
2791                 ts->tv_sec = gtod->wall_time_sec;
2792                 ns = gtod->clock.base_cycles;
2793                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2794                 ns >>= gtod->clock.shift;
2795         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2796
2797         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2798         ts->tv_nsec = ns;
2799
2800         return mode;
2801 }
2802
2803 /* returns true if host is using TSC based clocksource */
2804 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2805 {
2806         /* checked again under seqlock below */
2807         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2808                 return false;
2809
2810         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2811                                                       tsc_timestamp));
2812 }
2813
2814 /* returns true if host is using TSC based clocksource */
2815 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2816                                            u64 *tsc_timestamp)
2817 {
2818         /* checked again under seqlock below */
2819         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2820                 return false;
2821
2822         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2823 }
2824 #endif
2825
2826 /*
2827  *
2828  * Assuming a stable TSC across physical CPUS, and a stable TSC
2829  * across virtual CPUs, the following condition is possible.
2830  * Each numbered line represents an event visible to both
2831  * CPUs at the next numbered event.
2832  *
2833  * "timespecX" represents host monotonic time. "tscX" represents
2834  * RDTSC value.
2835  *
2836  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2837  *
2838  * 1.  read timespec0,tsc0
2839  * 2.                                   | timespec1 = timespec0 + N
2840  *                                      | tsc1 = tsc0 + M
2841  * 3. transition to guest               | transition to guest
2842  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2843  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2844  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2845  *
2846  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2847  *
2848  *      - ret0 < ret1
2849  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2850  *              ...
2851  *      - 0 < N - M => M < N
2852  *
2853  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2854  * always the case (the difference between two distinct xtime instances
2855  * might be smaller then the difference between corresponding TSC reads,
2856  * when updating guest vcpus pvclock areas).
2857  *
2858  * To avoid that problem, do not allow visibility of distinct
2859  * system_timestamp/tsc_timestamp values simultaneously: use a master
2860  * copy of host monotonic time values. Update that master copy
2861  * in lockstep.
2862  *
2863  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2864  *
2865  */
2866
2867 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2868 {
2869 #ifdef CONFIG_X86_64
2870         struct kvm_arch *ka = &kvm->arch;
2871         int vclock_mode;
2872         bool host_tsc_clocksource, vcpus_matched;
2873
2874         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2875         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2876                         atomic_read(&kvm->online_vcpus));
2877
2878         /*
2879          * If the host uses TSC clock, then passthrough TSC as stable
2880          * to the guest.
2881          */
2882         host_tsc_clocksource = kvm_get_time_and_clockread(
2883                                         &ka->master_kernel_ns,
2884                                         &ka->master_cycle_now);
2885
2886         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2887                                 && !ka->backwards_tsc_observed
2888                                 && !ka->boot_vcpu_runs_old_kvmclock;
2889
2890         if (ka->use_master_clock)
2891                 atomic_set(&kvm_guest_has_master_clock, 1);
2892
2893         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2894         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2895                                         vcpus_matched);
2896 #endif
2897 }
2898
2899 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2900 {
2901         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2902 }
2903
2904 static void __kvm_start_pvclock_update(struct kvm *kvm)
2905 {
2906         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2907         write_seqcount_begin(&kvm->arch.pvclock_sc);
2908 }
2909
2910 static void kvm_start_pvclock_update(struct kvm *kvm)
2911 {
2912         kvm_make_mclock_inprogress_request(kvm);
2913
2914         /* no guest entries from this point */
2915         __kvm_start_pvclock_update(kvm);
2916 }
2917
2918 static void kvm_end_pvclock_update(struct kvm *kvm)
2919 {
2920         struct kvm_arch *ka = &kvm->arch;
2921         struct kvm_vcpu *vcpu;
2922         unsigned long i;
2923
2924         write_seqcount_end(&ka->pvclock_sc);
2925         raw_spin_unlock_irq(&ka->tsc_write_lock);
2926         kvm_for_each_vcpu(i, vcpu, kvm)
2927                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2928
2929         /* guest entries allowed */
2930         kvm_for_each_vcpu(i, vcpu, kvm)
2931                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2932 }
2933
2934 static void kvm_update_masterclock(struct kvm *kvm)
2935 {
2936         kvm_hv_request_tsc_page_update(kvm);
2937         kvm_start_pvclock_update(kvm);
2938         pvclock_update_vm_gtod_copy(kvm);
2939         kvm_end_pvclock_update(kvm);
2940 }
2941
2942 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2943 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2944 {
2945         struct kvm_arch *ka = &kvm->arch;
2946         struct pvclock_vcpu_time_info hv_clock;
2947
2948         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2949         get_cpu();
2950
2951         data->flags = 0;
2952         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2953 #ifdef CONFIG_X86_64
2954                 struct timespec64 ts;
2955
2956                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2957                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2958                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2959                 } else
2960 #endif
2961                 data->host_tsc = rdtsc();
2962
2963                 data->flags |= KVM_CLOCK_TSC_STABLE;
2964                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2965                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2966                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2967                                    &hv_clock.tsc_shift,
2968                                    &hv_clock.tsc_to_system_mul);
2969                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2970         } else {
2971                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2972         }
2973
2974         put_cpu();
2975 }
2976
2977 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2978 {
2979         struct kvm_arch *ka = &kvm->arch;
2980         unsigned seq;
2981
2982         do {
2983                 seq = read_seqcount_begin(&ka->pvclock_sc);
2984                 __get_kvmclock(kvm, data);
2985         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2986 }
2987
2988 u64 get_kvmclock_ns(struct kvm *kvm)
2989 {
2990         struct kvm_clock_data data;
2991
2992         get_kvmclock(kvm, &data);
2993         return data.clock;
2994 }
2995
2996 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2997                                     struct gfn_to_pfn_cache *gpc,
2998                                     unsigned int offset)
2999 {
3000         struct kvm_vcpu_arch *vcpu = &v->arch;
3001         struct pvclock_vcpu_time_info *guest_hv_clock;
3002         unsigned long flags;
3003
3004         read_lock_irqsave(&gpc->lock, flags);
3005         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3006                                            offset + sizeof(*guest_hv_clock))) {
3007                 read_unlock_irqrestore(&gpc->lock, flags);
3008
3009                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3010                                                  offset + sizeof(*guest_hv_clock)))
3011                         return;
3012
3013                 read_lock_irqsave(&gpc->lock, flags);
3014         }
3015
3016         guest_hv_clock = (void *)(gpc->khva + offset);
3017
3018         /*
3019          * This VCPU is paused, but it's legal for a guest to read another
3020          * VCPU's kvmclock, so we really have to follow the specification where
3021          * it says that version is odd if data is being modified, and even after
3022          * it is consistent.
3023          */
3024
3025         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3026         smp_wmb();
3027
3028         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3029         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3030
3031         if (vcpu->pvclock_set_guest_stopped_request) {
3032                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3033                 vcpu->pvclock_set_guest_stopped_request = false;
3034         }
3035
3036         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3037         smp_wmb();
3038
3039         guest_hv_clock->version = ++vcpu->hv_clock.version;
3040
3041         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3042         read_unlock_irqrestore(&gpc->lock, flags);
3043
3044         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3045 }
3046
3047 static int kvm_guest_time_update(struct kvm_vcpu *v)
3048 {
3049         unsigned long flags, tgt_tsc_khz;
3050         unsigned seq;
3051         struct kvm_vcpu_arch *vcpu = &v->arch;
3052         struct kvm_arch *ka = &v->kvm->arch;
3053         s64 kernel_ns;
3054         u64 tsc_timestamp, host_tsc;
3055         u8 pvclock_flags;
3056         bool use_master_clock;
3057
3058         kernel_ns = 0;
3059         host_tsc = 0;
3060
3061         /*
3062          * If the host uses TSC clock, then passthrough TSC as stable
3063          * to the guest.
3064          */
3065         do {
3066                 seq = read_seqcount_begin(&ka->pvclock_sc);
3067                 use_master_clock = ka->use_master_clock;
3068                 if (use_master_clock) {
3069                         host_tsc = ka->master_cycle_now;
3070                         kernel_ns = ka->master_kernel_ns;
3071                 }
3072         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3073
3074         /* Keep irq disabled to prevent changes to the clock */
3075         local_irq_save(flags);
3076         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3077         if (unlikely(tgt_tsc_khz == 0)) {
3078                 local_irq_restore(flags);
3079                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3080                 return 1;
3081         }
3082         if (!use_master_clock) {
3083                 host_tsc = rdtsc();
3084                 kernel_ns = get_kvmclock_base_ns();
3085         }
3086
3087         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3088
3089         /*
3090          * We may have to catch up the TSC to match elapsed wall clock
3091          * time for two reasons, even if kvmclock is used.
3092          *   1) CPU could have been running below the maximum TSC rate
3093          *   2) Broken TSC compensation resets the base at each VCPU
3094          *      entry to avoid unknown leaps of TSC even when running
3095          *      again on the same CPU.  This may cause apparent elapsed
3096          *      time to disappear, and the guest to stand still or run
3097          *      very slowly.
3098          */
3099         if (vcpu->tsc_catchup) {
3100                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3101                 if (tsc > tsc_timestamp) {
3102                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3103                         tsc_timestamp = tsc;
3104                 }
3105         }
3106
3107         local_irq_restore(flags);
3108
3109         /* With all the info we got, fill in the values */
3110
3111         if (kvm_has_tsc_control)
3112                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3113                                             v->arch.l1_tsc_scaling_ratio);
3114
3115         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3116                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3117                                    &vcpu->hv_clock.tsc_shift,
3118                                    &vcpu->hv_clock.tsc_to_system_mul);
3119                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3120         }
3121
3122         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3123         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3124         vcpu->last_guest_tsc = tsc_timestamp;
3125
3126         /* If the host uses TSC clocksource, then it is stable */
3127         pvclock_flags = 0;
3128         if (use_master_clock)
3129                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3130
3131         vcpu->hv_clock.flags = pvclock_flags;
3132
3133         if (vcpu->pv_time.active)
3134                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3135         if (vcpu->xen.vcpu_info_cache.active)
3136                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3137                                         offsetof(struct compat_vcpu_info, time));
3138         if (vcpu->xen.vcpu_time_info_cache.active)
3139                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3140         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3141         return 0;
3142 }
3143
3144 /*
3145  * kvmclock updates which are isolated to a given vcpu, such as
3146  * vcpu->cpu migration, should not allow system_timestamp from
3147  * the rest of the vcpus to remain static. Otherwise ntp frequency
3148  * correction applies to one vcpu's system_timestamp but not
3149  * the others.
3150  *
3151  * So in those cases, request a kvmclock update for all vcpus.
3152  * We need to rate-limit these requests though, as they can
3153  * considerably slow guests that have a large number of vcpus.
3154  * The time for a remote vcpu to update its kvmclock is bound
3155  * by the delay we use to rate-limit the updates.
3156  */
3157
3158 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3159
3160 static void kvmclock_update_fn(struct work_struct *work)
3161 {
3162         unsigned long i;
3163         struct delayed_work *dwork = to_delayed_work(work);
3164         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3165                                            kvmclock_update_work);
3166         struct kvm *kvm = container_of(ka, struct kvm, arch);
3167         struct kvm_vcpu *vcpu;
3168
3169         kvm_for_each_vcpu(i, vcpu, kvm) {
3170                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171                 kvm_vcpu_kick(vcpu);
3172         }
3173 }
3174
3175 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3176 {
3177         struct kvm *kvm = v->kvm;
3178
3179         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3180         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3181                                         KVMCLOCK_UPDATE_DELAY);
3182 }
3183
3184 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3185
3186 static void kvmclock_sync_fn(struct work_struct *work)
3187 {
3188         struct delayed_work *dwork = to_delayed_work(work);
3189         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3190                                            kvmclock_sync_work);
3191         struct kvm *kvm = container_of(ka, struct kvm, arch);
3192
3193         if (!kvmclock_periodic_sync)
3194                 return;
3195
3196         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3197         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3198                                         KVMCLOCK_SYNC_PERIOD);
3199 }
3200
3201 /*
3202  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3203  */
3204 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3205 {
3206         /* McStatusWrEn enabled? */
3207         if (guest_cpuid_is_amd_or_hygon(vcpu))
3208                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3209
3210         return false;
3211 }
3212
3213 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3214 {
3215         u64 mcg_cap = vcpu->arch.mcg_cap;
3216         unsigned bank_num = mcg_cap & 0xff;
3217         u32 msr = msr_info->index;
3218         u64 data = msr_info->data;
3219
3220         switch (msr) {
3221         case MSR_IA32_MCG_STATUS:
3222                 vcpu->arch.mcg_status = data;
3223                 break;
3224         case MSR_IA32_MCG_CTL:
3225                 if (!(mcg_cap & MCG_CTL_P) &&
3226                     (data || !msr_info->host_initiated))
3227                         return 1;
3228                 if (data != 0 && data != ~(u64)0)
3229                         return 1;
3230                 vcpu->arch.mcg_ctl = data;
3231                 break;
3232         default:
3233                 if (msr >= MSR_IA32_MC0_CTL &&
3234                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3235                         u32 offset = array_index_nospec(
3236                                 msr - MSR_IA32_MC0_CTL,
3237                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3238
3239                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3240                          * some Linux kernels though clear bit 10 in bank 4 to
3241                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3242                          * this to avoid an uncatched #GP in the guest
3243                          */
3244                         if ((offset & 0x3) == 0 &&
3245                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3246                                 return -1;
3247
3248                         /* MCi_STATUS */
3249                         if (!msr_info->host_initiated &&
3250                             (offset & 0x3) == 1 && data != 0) {
3251                                 if (!can_set_mci_status(vcpu))
3252                                         return -1;
3253                         }
3254
3255                         vcpu->arch.mce_banks[offset] = data;
3256                         break;
3257                 }
3258                 return 1;
3259         }
3260         return 0;
3261 }
3262
3263 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3264 {
3265         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3266
3267         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3268 }
3269
3270 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3271 {
3272         gpa_t gpa = data & ~0x3f;
3273
3274         /* Bits 4:5 are reserved, Should be zero */
3275         if (data & 0x30)
3276                 return 1;
3277
3278         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3279             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3280                 return 1;
3281
3282         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3283             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3284                 return 1;
3285
3286         if (!lapic_in_kernel(vcpu))
3287                 return data ? 1 : 0;
3288
3289         vcpu->arch.apf.msr_en_val = data;
3290
3291         if (!kvm_pv_async_pf_enabled(vcpu)) {
3292                 kvm_clear_async_pf_completion_queue(vcpu);
3293                 kvm_async_pf_hash_reset(vcpu);
3294                 return 0;
3295         }
3296
3297         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3298                                         sizeof(u64)))
3299                 return 1;
3300
3301         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3302         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3303
3304         kvm_async_pf_wakeup_all(vcpu);
3305
3306         return 0;
3307 }
3308
3309 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3310 {
3311         /* Bits 8-63 are reserved */
3312         if (data >> 8)
3313                 return 1;
3314
3315         if (!lapic_in_kernel(vcpu))
3316                 return 1;
3317
3318         vcpu->arch.apf.msr_int_val = data;
3319
3320         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3321
3322         return 0;
3323 }
3324
3325 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3326 {
3327         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3328         vcpu->arch.time = 0;
3329 }
3330
3331 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3332 {
3333         ++vcpu->stat.tlb_flush;
3334         static_call(kvm_x86_flush_tlb_all)(vcpu);
3335 }
3336
3337 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3338 {
3339         ++vcpu->stat.tlb_flush;
3340
3341         if (!tdp_enabled) {
3342                 /*
3343                  * A TLB flush on behalf of the guest is equivalent to
3344                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3345                  * a forced sync of the shadow page tables.  Ensure all the
3346                  * roots are synced and the guest TLB in hardware is clean.
3347                  */
3348                 kvm_mmu_sync_roots(vcpu);
3349                 kvm_mmu_sync_prev_roots(vcpu);
3350         }
3351
3352         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3353 }
3354
3355
3356 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3357 {
3358         ++vcpu->stat.tlb_flush;
3359         static_call(kvm_x86_flush_tlb_current)(vcpu);
3360 }
3361
3362 /*
3363  * Service "local" TLB flush requests, which are specific to the current MMU
3364  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3365  * TLB flushes that are targeted at an MMU context also need to be serviced
3366  * prior before nested VM-Enter/VM-Exit.
3367  */
3368 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3369 {
3370         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3371                 kvm_vcpu_flush_tlb_current(vcpu);
3372
3373         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3374                 kvm_vcpu_flush_tlb_guest(vcpu);
3375 }
3376 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3377
3378 static void record_steal_time(struct kvm_vcpu *vcpu)
3379 {
3380         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3381         struct kvm_steal_time __user *st;
3382         struct kvm_memslots *slots;
3383         u64 steal;
3384         u32 version;
3385
3386         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3387                 kvm_xen_runstate_set_running(vcpu);
3388                 return;
3389         }
3390
3391         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3392                 return;
3393
3394         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3395                 return;
3396
3397         slots = kvm_memslots(vcpu->kvm);
3398
3399         if (unlikely(slots->generation != ghc->generation ||
3400                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3401                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3402
3403                 /* We rely on the fact that it fits in a single page. */
3404                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3405
3406                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3407                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3408                         return;
3409         }
3410
3411         st = (struct kvm_steal_time __user *)ghc->hva;
3412         /*
3413          * Doing a TLB flush here, on the guest's behalf, can avoid
3414          * expensive IPIs.
3415          */
3416         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3417                 u8 st_preempted = 0;
3418                 int err = -EFAULT;
3419
3420                 if (!user_access_begin(st, sizeof(*st)))
3421                         return;
3422
3423                 asm volatile("1: xchgb %0, %2\n"
3424                              "xor %1, %1\n"
3425                              "2:\n"
3426                              _ASM_EXTABLE_UA(1b, 2b)
3427                              : "+q" (st_preempted),
3428                                "+&r" (err),
3429                                "+m" (st->preempted));
3430                 if (err)
3431                         goto out;
3432
3433                 user_access_end();
3434
3435                 vcpu->arch.st.preempted = 0;
3436
3437                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3438                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3439                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3440                         kvm_vcpu_flush_tlb_guest(vcpu);
3441
3442                 if (!user_access_begin(st, sizeof(*st)))
3443                         goto dirty;
3444         } else {
3445                 if (!user_access_begin(st, sizeof(*st)))
3446                         return;
3447
3448                 unsafe_put_user(0, &st->preempted, out);
3449                 vcpu->arch.st.preempted = 0;
3450         }
3451
3452         unsafe_get_user(version, &st->version, out);
3453         if (version & 1)
3454                 version += 1;  /* first time write, random junk */
3455
3456         version += 1;
3457         unsafe_put_user(version, &st->version, out);
3458
3459         smp_wmb();
3460
3461         unsafe_get_user(steal, &st->steal, out);
3462         steal += current->sched_info.run_delay -
3463                 vcpu->arch.st.last_steal;
3464         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3465         unsafe_put_user(steal, &st->steal, out);
3466
3467         version += 1;
3468         unsafe_put_user(version, &st->version, out);
3469
3470  out:
3471         user_access_end();
3472  dirty:
3473         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3474 }
3475
3476 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3477 {
3478         bool pr = false;
3479         u32 msr = msr_info->index;
3480         u64 data = msr_info->data;
3481
3482         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3483                 return kvm_xen_write_hypercall_page(vcpu, data);
3484
3485         switch (msr) {
3486         case MSR_AMD64_NB_CFG:
3487         case MSR_IA32_UCODE_WRITE:
3488         case MSR_VM_HSAVE_PA:
3489         case MSR_AMD64_PATCH_LOADER:
3490         case MSR_AMD64_BU_CFG2:
3491         case MSR_AMD64_DC_CFG:
3492         case MSR_F15H_EX_CFG:
3493                 break;
3494
3495         case MSR_IA32_UCODE_REV:
3496                 if (msr_info->host_initiated)
3497                         vcpu->arch.microcode_version = data;
3498                 break;
3499         case MSR_IA32_ARCH_CAPABILITIES:
3500                 if (!msr_info->host_initiated)
3501                         return 1;
3502                 vcpu->arch.arch_capabilities = data;
3503                 break;
3504         case MSR_IA32_PERF_CAPABILITIES: {
3505                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3506
3507                 if (!msr_info->host_initiated)
3508                         return 1;
3509                 if (kvm_get_msr_feature(&msr_ent))
3510                         return 1;
3511                 if (data & ~msr_ent.data)
3512                         return 1;
3513
3514                 vcpu->arch.perf_capabilities = data;
3515
3516                 return 0;
3517                 }
3518         case MSR_EFER:
3519                 return set_efer(vcpu, msr_info);
3520         case MSR_K7_HWCR:
3521                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3522                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3523                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3524
3525                 /* Handle McStatusWrEn */
3526                 if (data == BIT_ULL(18)) {
3527                         vcpu->arch.msr_hwcr = data;
3528                 } else if (data != 0) {
3529                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3530                                     data);
3531                         return 1;
3532                 }
3533                 break;
3534         case MSR_FAM10H_MMIO_CONF_BASE:
3535                 if (data != 0) {
3536                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3537                                     "0x%llx\n", data);
3538                         return 1;
3539                 }
3540                 break;
3541         case 0x200 ... 0x2ff:
3542                 return kvm_mtrr_set_msr(vcpu, msr, data);
3543         case MSR_IA32_APICBASE:
3544                 return kvm_set_apic_base(vcpu, msr_info);
3545         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3546                 return kvm_x2apic_msr_write(vcpu, msr, data);
3547         case MSR_IA32_TSC_DEADLINE:
3548                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3549                 break;
3550         case MSR_IA32_TSC_ADJUST:
3551                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3552                         if (!msr_info->host_initiated) {
3553                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3554                                 adjust_tsc_offset_guest(vcpu, adj);
3555                                 /* Before back to guest, tsc_timestamp must be adjusted
3556                                  * as well, otherwise guest's percpu pvclock time could jump.
3557                                  */
3558                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3559                         }
3560                         vcpu->arch.ia32_tsc_adjust_msr = data;
3561                 }
3562                 break;
3563         case MSR_IA32_MISC_ENABLE:
3564                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3565                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3566                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3567                                 return 1;
3568                         vcpu->arch.ia32_misc_enable_msr = data;
3569                         kvm_update_cpuid_runtime(vcpu);
3570                 } else {
3571                         vcpu->arch.ia32_misc_enable_msr = data;
3572                 }
3573                 break;
3574         case MSR_IA32_SMBASE:
3575                 if (!msr_info->host_initiated)
3576                         return 1;
3577                 vcpu->arch.smbase = data;
3578                 break;
3579         case MSR_IA32_POWER_CTL:
3580                 vcpu->arch.msr_ia32_power_ctl = data;
3581                 break;
3582         case MSR_IA32_TSC:
3583                 if (msr_info->host_initiated) {
3584                         kvm_synchronize_tsc(vcpu, data);
3585                 } else {
3586                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3587                         adjust_tsc_offset_guest(vcpu, adj);
3588                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3589                 }
3590                 break;
3591         case MSR_IA32_XSS:
3592                 if (!msr_info->host_initiated &&
3593                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3594                         return 1;
3595                 /*
3596                  * KVM supports exposing PT to the guest, but does not support
3597                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3598                  * XSAVES/XRSTORS to save/restore PT MSRs.
3599                  */
3600                 if (data & ~supported_xss)
3601                         return 1;
3602                 vcpu->arch.ia32_xss = data;
3603                 kvm_update_cpuid_runtime(vcpu);
3604                 break;
3605         case MSR_SMI_COUNT:
3606                 if (!msr_info->host_initiated)
3607                         return 1;
3608                 vcpu->arch.smi_count = data;
3609                 break;
3610         case MSR_KVM_WALL_CLOCK_NEW:
3611                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3612                         return 1;
3613
3614                 vcpu->kvm->arch.wall_clock = data;
3615                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3616                 break;
3617         case MSR_KVM_WALL_CLOCK:
3618                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3619                         return 1;
3620
3621                 vcpu->kvm->arch.wall_clock = data;
3622                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3623                 break;
3624         case MSR_KVM_SYSTEM_TIME_NEW:
3625                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3626                         return 1;
3627
3628                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3629                 break;
3630         case MSR_KVM_SYSTEM_TIME:
3631                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3632                         return 1;
3633
3634                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3635                 break;
3636         case MSR_KVM_ASYNC_PF_EN:
3637                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3638                         return 1;
3639
3640                 if (kvm_pv_enable_async_pf(vcpu, data))
3641                         return 1;
3642                 break;
3643         case MSR_KVM_ASYNC_PF_INT:
3644                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3645                         return 1;
3646
3647                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3648                         return 1;
3649                 break;
3650         case MSR_KVM_ASYNC_PF_ACK:
3651                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3652                         return 1;
3653                 if (data & 0x1) {
3654                         vcpu->arch.apf.pageready_pending = false;
3655                         kvm_check_async_pf_completion(vcpu);
3656                 }
3657                 break;
3658         case MSR_KVM_STEAL_TIME:
3659                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3660                         return 1;
3661
3662                 if (unlikely(!sched_info_on()))
3663                         return 1;
3664
3665                 if (data & KVM_STEAL_RESERVED_MASK)
3666                         return 1;
3667
3668                 vcpu->arch.st.msr_val = data;
3669
3670                 if (!(data & KVM_MSR_ENABLED))
3671                         break;
3672
3673                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3674
3675                 break;
3676         case MSR_KVM_PV_EOI_EN:
3677                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3678                         return 1;
3679
3680                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3681                         return 1;
3682                 break;
3683
3684         case MSR_KVM_POLL_CONTROL:
3685                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3686                         return 1;
3687
3688                 /* only enable bit supported */
3689                 if (data & (-1ULL << 1))
3690                         return 1;
3691
3692                 vcpu->arch.msr_kvm_poll_control = data;
3693                 break;
3694
3695         case MSR_IA32_MCG_CTL:
3696         case MSR_IA32_MCG_STATUS:
3697         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3698                 return set_msr_mce(vcpu, msr_info);
3699
3700         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3701         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3702                 pr = true;
3703                 fallthrough;
3704         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3705         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3706                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3707                         return kvm_pmu_set_msr(vcpu, msr_info);
3708
3709                 if (pr || data != 0)
3710                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3711                                     "0x%x data 0x%llx\n", msr, data);
3712                 break;
3713         case MSR_K7_CLK_CTL:
3714                 /*
3715                  * Ignore all writes to this no longer documented MSR.
3716                  * Writes are only relevant for old K7 processors,
3717                  * all pre-dating SVM, but a recommended workaround from
3718                  * AMD for these chips. It is possible to specify the
3719                  * affected processor models on the command line, hence
3720                  * the need to ignore the workaround.
3721                  */
3722                 break;
3723         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3724         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3725         case HV_X64_MSR_SYNDBG_OPTIONS:
3726         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3727         case HV_X64_MSR_CRASH_CTL:
3728         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3729         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3730         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3731         case HV_X64_MSR_TSC_EMULATION_STATUS:
3732                 return kvm_hv_set_msr_common(vcpu, msr, data,
3733                                              msr_info->host_initiated);
3734         case MSR_IA32_BBL_CR_CTL3:
3735                 /* Drop writes to this legacy MSR -- see rdmsr
3736                  * counterpart for further detail.
3737                  */
3738                 if (report_ignored_msrs)
3739                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3740                                 msr, data);
3741                 break;
3742         case MSR_AMD64_OSVW_ID_LENGTH:
3743                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3744                         return 1;
3745                 vcpu->arch.osvw.length = data;
3746                 break;
3747         case MSR_AMD64_OSVW_STATUS:
3748                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3749                         return 1;
3750                 vcpu->arch.osvw.status = data;
3751                 break;
3752         case MSR_PLATFORM_INFO:
3753                 if (!msr_info->host_initiated ||
3754                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3755                      cpuid_fault_enabled(vcpu)))
3756                         return 1;
3757                 vcpu->arch.msr_platform_info = data;
3758                 break;
3759         case MSR_MISC_FEATURES_ENABLES:
3760                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3761                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3762                      !supports_cpuid_fault(vcpu)))
3763                         return 1;
3764                 vcpu->arch.msr_misc_features_enables = data;
3765                 break;
3766 #ifdef CONFIG_X86_64
3767         case MSR_IA32_XFD:
3768                 if (!msr_info->host_initiated &&
3769                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3770                         return 1;
3771
3772                 if (data & ~kvm_guest_supported_xfd(vcpu))
3773                         return 1;
3774
3775                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3776                 break;
3777         case MSR_IA32_XFD_ERR:
3778                 if (!msr_info->host_initiated &&
3779                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3780                         return 1;
3781
3782                 if (data & ~kvm_guest_supported_xfd(vcpu))
3783                         return 1;
3784
3785                 vcpu->arch.guest_fpu.xfd_err = data;
3786                 break;
3787 #endif
3788         default:
3789                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3790                         return kvm_pmu_set_msr(vcpu, msr_info);
3791                 return KVM_MSR_RET_INVALID;
3792         }
3793         return 0;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3796
3797 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3798 {
3799         u64 data;
3800         u64 mcg_cap = vcpu->arch.mcg_cap;
3801         unsigned bank_num = mcg_cap & 0xff;
3802
3803         switch (msr) {
3804         case MSR_IA32_P5_MC_ADDR:
3805         case MSR_IA32_P5_MC_TYPE:
3806                 data = 0;
3807                 break;
3808         case MSR_IA32_MCG_CAP:
3809                 data = vcpu->arch.mcg_cap;
3810                 break;
3811         case MSR_IA32_MCG_CTL:
3812                 if (!(mcg_cap & MCG_CTL_P) && !host)
3813                         return 1;
3814                 data = vcpu->arch.mcg_ctl;
3815                 break;
3816         case MSR_IA32_MCG_STATUS:
3817                 data = vcpu->arch.mcg_status;
3818                 break;
3819         default:
3820                 if (msr >= MSR_IA32_MC0_CTL &&
3821                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3822                         u32 offset = array_index_nospec(
3823                                 msr - MSR_IA32_MC0_CTL,
3824                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3825
3826                         data = vcpu->arch.mce_banks[offset];
3827                         break;
3828                 }
3829                 return 1;
3830         }
3831         *pdata = data;
3832         return 0;
3833 }
3834
3835 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3836 {
3837         switch (msr_info->index) {
3838         case MSR_IA32_PLATFORM_ID:
3839         case MSR_IA32_EBL_CR_POWERON:
3840         case MSR_IA32_LASTBRANCHFROMIP:
3841         case MSR_IA32_LASTBRANCHTOIP:
3842         case MSR_IA32_LASTINTFROMIP:
3843         case MSR_IA32_LASTINTTOIP:
3844         case MSR_AMD64_SYSCFG:
3845         case MSR_K8_TSEG_ADDR:
3846         case MSR_K8_TSEG_MASK:
3847         case MSR_VM_HSAVE_PA:
3848         case MSR_K8_INT_PENDING_MSG:
3849         case MSR_AMD64_NB_CFG:
3850         case MSR_FAM10H_MMIO_CONF_BASE:
3851         case MSR_AMD64_BU_CFG2:
3852         case MSR_IA32_PERF_CTL:
3853         case MSR_AMD64_DC_CFG:
3854         case MSR_F15H_EX_CFG:
3855         /*
3856          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3857          * limit) MSRs. Just return 0, as we do not want to expose the host
3858          * data here. Do not conditionalize this on CPUID, as KVM does not do
3859          * so for existing CPU-specific MSRs.
3860          */
3861         case MSR_RAPL_POWER_UNIT:
3862         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3863         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3864         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3865         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3866                 msr_info->data = 0;
3867                 break;
3868         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3869                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3870                         return kvm_pmu_get_msr(vcpu, msr_info);
3871                 if (!msr_info->host_initiated)
3872                         return 1;
3873                 msr_info->data = 0;
3874                 break;
3875         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3876         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3877         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3878         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3879                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3880                         return kvm_pmu_get_msr(vcpu, msr_info);
3881                 msr_info->data = 0;
3882                 break;
3883         case MSR_IA32_UCODE_REV:
3884                 msr_info->data = vcpu->arch.microcode_version;
3885                 break;
3886         case MSR_IA32_ARCH_CAPABILITIES:
3887                 if (!msr_info->host_initiated &&
3888                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3889                         return 1;
3890                 msr_info->data = vcpu->arch.arch_capabilities;
3891                 break;
3892         case MSR_IA32_PERF_CAPABILITIES:
3893                 if (!msr_info->host_initiated &&
3894                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3895                         return 1;
3896                 msr_info->data = vcpu->arch.perf_capabilities;
3897                 break;
3898         case MSR_IA32_POWER_CTL:
3899                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3900                 break;
3901         case MSR_IA32_TSC: {
3902                 /*
3903                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3904                  * even when not intercepted. AMD manual doesn't explicitly
3905                  * state this but appears to behave the same.
3906                  *
3907                  * On userspace reads and writes, however, we unconditionally
3908                  * return L1's TSC value to ensure backwards-compatible
3909                  * behavior for migration.
3910                  */
3911                 u64 offset, ratio;
3912
3913                 if (msr_info->host_initiated) {
3914                         offset = vcpu->arch.l1_tsc_offset;
3915                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3916                 } else {
3917                         offset = vcpu->arch.tsc_offset;
3918                         ratio = vcpu->arch.tsc_scaling_ratio;
3919                 }
3920
3921                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3922                 break;
3923         }
3924         case MSR_MTRRcap:
3925         case 0x200 ... 0x2ff:
3926                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3927         case 0xcd: /* fsb frequency */
3928                 msr_info->data = 3;
3929                 break;
3930                 /*
3931                  * MSR_EBC_FREQUENCY_ID
3932                  * Conservative value valid for even the basic CPU models.
3933                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3934                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3935                  * and 266MHz for model 3, or 4. Set Core Clock
3936                  * Frequency to System Bus Frequency Ratio to 1 (bits
3937                  * 31:24) even though these are only valid for CPU
3938                  * models > 2, however guests may end up dividing or
3939                  * multiplying by zero otherwise.
3940                  */
3941         case MSR_EBC_FREQUENCY_ID:
3942                 msr_info->data = 1 << 24;
3943                 break;
3944         case MSR_IA32_APICBASE:
3945                 msr_info->data = kvm_get_apic_base(vcpu);
3946                 break;
3947         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3948                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3949         case MSR_IA32_TSC_DEADLINE:
3950                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3951                 break;
3952         case MSR_IA32_TSC_ADJUST:
3953                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3954                 break;
3955         case MSR_IA32_MISC_ENABLE:
3956                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3957                 break;
3958         case MSR_IA32_SMBASE:
3959                 if (!msr_info->host_initiated)
3960                         return 1;
3961                 msr_info->data = vcpu->arch.smbase;
3962                 break;
3963         case MSR_SMI_COUNT:
3964                 msr_info->data = vcpu->arch.smi_count;
3965                 break;
3966         case MSR_IA32_PERF_STATUS:
3967                 /* TSC increment by tick */
3968                 msr_info->data = 1000ULL;
3969                 /* CPU multiplier */
3970                 msr_info->data |= (((uint64_t)4ULL) << 40);
3971                 break;
3972         case MSR_EFER:
3973                 msr_info->data = vcpu->arch.efer;
3974                 break;
3975         case MSR_KVM_WALL_CLOCK:
3976                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3977                         return 1;
3978
3979                 msr_info->data = vcpu->kvm->arch.wall_clock;
3980                 break;
3981         case MSR_KVM_WALL_CLOCK_NEW:
3982                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3983                         return 1;
3984
3985                 msr_info->data = vcpu->kvm->arch.wall_clock;
3986                 break;
3987         case MSR_KVM_SYSTEM_TIME:
3988                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3989                         return 1;
3990
3991                 msr_info->data = vcpu->arch.time;
3992                 break;
3993         case MSR_KVM_SYSTEM_TIME_NEW:
3994                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3995                         return 1;
3996
3997                 msr_info->data = vcpu->arch.time;
3998                 break;
3999         case MSR_KVM_ASYNC_PF_EN:
4000                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4001                         return 1;
4002
4003                 msr_info->data = vcpu->arch.apf.msr_en_val;
4004                 break;
4005         case MSR_KVM_ASYNC_PF_INT:
4006                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4007                         return 1;
4008
4009                 msr_info->data = vcpu->arch.apf.msr_int_val;
4010                 break;
4011         case MSR_KVM_ASYNC_PF_ACK:
4012                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4013                         return 1;
4014
4015                 msr_info->data = 0;
4016                 break;
4017         case MSR_KVM_STEAL_TIME:
4018                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4019                         return 1;
4020
4021                 msr_info->data = vcpu->arch.st.msr_val;
4022                 break;
4023         case MSR_KVM_PV_EOI_EN:
4024                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4025                         return 1;
4026
4027                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4028                 break;
4029         case MSR_KVM_POLL_CONTROL:
4030                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4031                         return 1;
4032
4033                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4034                 break;
4035         case MSR_IA32_P5_MC_ADDR:
4036         case MSR_IA32_P5_MC_TYPE:
4037         case MSR_IA32_MCG_CAP:
4038         case MSR_IA32_MCG_CTL:
4039         case MSR_IA32_MCG_STATUS:
4040         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4041                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4042                                    msr_info->host_initiated);
4043         case MSR_IA32_XSS:
4044                 if (!msr_info->host_initiated &&
4045                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4046                         return 1;
4047                 msr_info->data = vcpu->arch.ia32_xss;
4048                 break;
4049         case MSR_K7_CLK_CTL:
4050                 /*
4051                  * Provide expected ramp-up count for K7. All other
4052                  * are set to zero, indicating minimum divisors for
4053                  * every field.
4054                  *
4055                  * This prevents guest kernels on AMD host with CPU
4056                  * type 6, model 8 and higher from exploding due to
4057                  * the rdmsr failing.
4058                  */
4059                 msr_info->data = 0x20000000;
4060                 break;
4061         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4062         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4063         case HV_X64_MSR_SYNDBG_OPTIONS:
4064         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4065         case HV_X64_MSR_CRASH_CTL:
4066         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4067         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4068         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4069         case HV_X64_MSR_TSC_EMULATION_STATUS:
4070                 return kvm_hv_get_msr_common(vcpu,
4071                                              msr_info->index, &msr_info->data,
4072                                              msr_info->host_initiated);
4073         case MSR_IA32_BBL_CR_CTL3:
4074                 /* This legacy MSR exists but isn't fully documented in current
4075                  * silicon.  It is however accessed by winxp in very narrow
4076                  * scenarios where it sets bit #19, itself documented as
4077                  * a "reserved" bit.  Best effort attempt to source coherent
4078                  * read data here should the balance of the register be
4079                  * interpreted by the guest:
4080                  *
4081                  * L2 cache control register 3: 64GB range, 256KB size,
4082                  * enabled, latency 0x1, configured
4083                  */
4084                 msr_info->data = 0xbe702111;
4085                 break;
4086         case MSR_AMD64_OSVW_ID_LENGTH:
4087                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4088                         return 1;
4089                 msr_info->data = vcpu->arch.osvw.length;
4090                 break;
4091         case MSR_AMD64_OSVW_STATUS:
4092                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4093                         return 1;
4094                 msr_info->data = vcpu->arch.osvw.status;
4095                 break;
4096         case MSR_PLATFORM_INFO:
4097                 if (!msr_info->host_initiated &&
4098                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4099                         return 1;
4100                 msr_info->data = vcpu->arch.msr_platform_info;
4101                 break;
4102         case MSR_MISC_FEATURES_ENABLES:
4103                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4104                 break;
4105         case MSR_K7_HWCR:
4106                 msr_info->data = vcpu->arch.msr_hwcr;
4107                 break;
4108 #ifdef CONFIG_X86_64
4109         case MSR_IA32_XFD:
4110                 if (!msr_info->host_initiated &&
4111                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4112                         return 1;
4113
4114                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4115                 break;
4116         case MSR_IA32_XFD_ERR:
4117                 if (!msr_info->host_initiated &&
4118                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4119                         return 1;
4120
4121                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4122                 break;
4123 #endif
4124         default:
4125                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4126                         return kvm_pmu_get_msr(vcpu, msr_info);
4127                 return KVM_MSR_RET_INVALID;
4128         }
4129         return 0;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4132
4133 /*
4134  * Read or write a bunch of msrs. All parameters are kernel addresses.
4135  *
4136  * @return number of msrs set successfully.
4137  */
4138 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4139                     struct kvm_msr_entry *entries,
4140                     int (*do_msr)(struct kvm_vcpu *vcpu,
4141                                   unsigned index, u64 *data))
4142 {
4143         int i;
4144
4145         for (i = 0; i < msrs->nmsrs; ++i)
4146                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4147                         break;
4148
4149         return i;
4150 }
4151
4152 /*
4153  * Read or write a bunch of msrs. Parameters are user addresses.
4154  *
4155  * @return number of msrs set successfully.
4156  */
4157 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4158                   int (*do_msr)(struct kvm_vcpu *vcpu,
4159                                 unsigned index, u64 *data),
4160                   int writeback)
4161 {
4162         struct kvm_msrs msrs;
4163         struct kvm_msr_entry *entries;
4164         int r, n;
4165         unsigned size;
4166
4167         r = -EFAULT;
4168         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4169                 goto out;
4170
4171         r = -E2BIG;
4172         if (msrs.nmsrs >= MAX_IO_MSRS)
4173                 goto out;
4174
4175         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4176         entries = memdup_user(user_msrs->entries, size);
4177         if (IS_ERR(entries)) {
4178                 r = PTR_ERR(entries);
4179                 goto out;
4180         }
4181
4182         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4183         if (r < 0)
4184                 goto out_free;
4185
4186         r = -EFAULT;
4187         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4188                 goto out_free;
4189
4190         r = n;
4191
4192 out_free:
4193         kfree(entries);
4194 out:
4195         return r;
4196 }
4197
4198 static inline bool kvm_can_mwait_in_guest(void)
4199 {
4200         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4201                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4202                 boot_cpu_has(X86_FEATURE_ARAT);
4203 }
4204
4205 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4206                                             struct kvm_cpuid2 __user *cpuid_arg)
4207 {
4208         struct kvm_cpuid2 cpuid;
4209         int r;
4210
4211         r = -EFAULT;
4212         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4213                 return r;
4214
4215         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4216         if (r)
4217                 return r;
4218
4219         r = -EFAULT;
4220         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4221                 return r;
4222
4223         return 0;
4224 }
4225
4226 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4227 {
4228         int r = 0;
4229
4230         switch (ext) {
4231         case KVM_CAP_IRQCHIP:
4232         case KVM_CAP_HLT:
4233         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4234         case KVM_CAP_SET_TSS_ADDR:
4235         case KVM_CAP_EXT_CPUID:
4236         case KVM_CAP_EXT_EMUL_CPUID:
4237         case KVM_CAP_CLOCKSOURCE:
4238         case KVM_CAP_PIT:
4239         case KVM_CAP_NOP_IO_DELAY:
4240         case KVM_CAP_MP_STATE:
4241         case KVM_CAP_SYNC_MMU:
4242         case KVM_CAP_USER_NMI:
4243         case KVM_CAP_REINJECT_CONTROL:
4244         case KVM_CAP_IRQ_INJECT_STATUS:
4245         case KVM_CAP_IOEVENTFD:
4246         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4247         case KVM_CAP_PIT2:
4248         case KVM_CAP_PIT_STATE2:
4249         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4250         case KVM_CAP_VCPU_EVENTS:
4251         case KVM_CAP_HYPERV:
4252         case KVM_CAP_HYPERV_VAPIC:
4253         case KVM_CAP_HYPERV_SPIN:
4254         case KVM_CAP_HYPERV_SYNIC:
4255         case KVM_CAP_HYPERV_SYNIC2:
4256         case KVM_CAP_HYPERV_VP_INDEX:
4257         case KVM_CAP_HYPERV_EVENTFD:
4258         case KVM_CAP_HYPERV_TLBFLUSH:
4259         case KVM_CAP_HYPERV_SEND_IPI:
4260         case KVM_CAP_HYPERV_CPUID:
4261         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4262         case KVM_CAP_SYS_HYPERV_CPUID:
4263         case KVM_CAP_PCI_SEGMENT:
4264         case KVM_CAP_DEBUGREGS:
4265         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4266         case KVM_CAP_XSAVE:
4267         case KVM_CAP_ASYNC_PF:
4268         case KVM_CAP_ASYNC_PF_INT:
4269         case KVM_CAP_GET_TSC_KHZ:
4270         case KVM_CAP_KVMCLOCK_CTRL:
4271         case KVM_CAP_READONLY_MEM:
4272         case KVM_CAP_HYPERV_TIME:
4273         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4274         case KVM_CAP_TSC_DEADLINE_TIMER:
4275         case KVM_CAP_DISABLE_QUIRKS:
4276         case KVM_CAP_SET_BOOT_CPU_ID:
4277         case KVM_CAP_SPLIT_IRQCHIP:
4278         case KVM_CAP_IMMEDIATE_EXIT:
4279         case KVM_CAP_PMU_EVENT_FILTER:
4280         case KVM_CAP_GET_MSR_FEATURES:
4281         case KVM_CAP_MSR_PLATFORM_INFO:
4282         case KVM_CAP_EXCEPTION_PAYLOAD:
4283         case KVM_CAP_SET_GUEST_DEBUG:
4284         case KVM_CAP_LAST_CPU:
4285         case KVM_CAP_X86_USER_SPACE_MSR:
4286         case KVM_CAP_X86_MSR_FILTER:
4287         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4288 #ifdef CONFIG_X86_SGX_KVM
4289         case KVM_CAP_SGX_ATTRIBUTE:
4290 #endif
4291         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4292         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4293         case KVM_CAP_SREGS2:
4294         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4295         case KVM_CAP_VCPU_ATTRIBUTES:
4296         case KVM_CAP_SYS_ATTRIBUTES:
4297         case KVM_CAP_VAPIC:
4298         case KVM_CAP_ENABLE_CAP:
4299                 r = 1;
4300                 break;
4301         case KVM_CAP_EXIT_HYPERCALL:
4302                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4303                 break;
4304         case KVM_CAP_SET_GUEST_DEBUG2:
4305                 return KVM_GUESTDBG_VALID_MASK;
4306 #ifdef CONFIG_KVM_XEN
4307         case KVM_CAP_XEN_HVM:
4308                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4309                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4310                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4311                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4312                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4313                 if (sched_info_on())
4314                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4315                 break;
4316 #endif
4317         case KVM_CAP_SYNC_REGS:
4318                 r = KVM_SYNC_X86_VALID_FIELDS;
4319                 break;
4320         case KVM_CAP_ADJUST_CLOCK:
4321                 r = KVM_CLOCK_VALID_FLAGS;
4322                 break;
4323         case KVM_CAP_X86_DISABLE_EXITS:
4324                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4325                       KVM_X86_DISABLE_EXITS_CSTATE;
4326                 if(kvm_can_mwait_in_guest())
4327                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4328                 break;
4329         case KVM_CAP_X86_SMM:
4330                 /* SMBASE is usually relocated above 1M on modern chipsets,
4331                  * and SMM handlers might indeed rely on 4G segment limits,
4332                  * so do not report SMM to be available if real mode is
4333                  * emulated via vm86 mode.  Still, do not go to great lengths
4334                  * to avoid userspace's usage of the feature, because it is a
4335                  * fringe case that is not enabled except via specific settings
4336                  * of the module parameters.
4337                  */
4338                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4339                 break;
4340         case KVM_CAP_NR_VCPUS:
4341                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4342                 break;
4343         case KVM_CAP_MAX_VCPUS:
4344                 r = KVM_MAX_VCPUS;
4345                 break;
4346         case KVM_CAP_MAX_VCPU_ID:
4347                 r = KVM_MAX_VCPU_IDS;
4348                 break;
4349         case KVM_CAP_PV_MMU:    /* obsolete */
4350                 r = 0;
4351                 break;
4352         case KVM_CAP_MCE:
4353                 r = KVM_MAX_MCE_BANKS;
4354                 break;
4355         case KVM_CAP_XCRS:
4356                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4357                 break;
4358         case KVM_CAP_TSC_CONTROL:
4359         case KVM_CAP_VM_TSC_CONTROL:
4360                 r = kvm_has_tsc_control;
4361                 break;
4362         case KVM_CAP_X2APIC_API:
4363                 r = KVM_X2APIC_API_VALID_FLAGS;
4364                 break;
4365         case KVM_CAP_NESTED_STATE:
4366                 r = kvm_x86_ops.nested_ops->get_state ?
4367                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4368                 break;
4369         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4370                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4371                 break;
4372         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4373                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4374                 break;
4375         case KVM_CAP_SMALLER_MAXPHYADDR:
4376                 r = (int) allow_smaller_maxphyaddr;
4377                 break;
4378         case KVM_CAP_STEAL_TIME:
4379                 r = sched_info_on();
4380                 break;
4381         case KVM_CAP_X86_BUS_LOCK_EXIT:
4382                 if (kvm_has_bus_lock_exit)
4383                         r = KVM_BUS_LOCK_DETECTION_OFF |
4384                             KVM_BUS_LOCK_DETECTION_EXIT;
4385                 else
4386                         r = 0;
4387                 break;
4388         case KVM_CAP_XSAVE2: {
4389                 u64 guest_perm = xstate_get_guest_group_perm();
4390
4391                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4392                 if (r < sizeof(struct kvm_xsave))
4393                         r = sizeof(struct kvm_xsave);
4394                 break;
4395         case KVM_CAP_PMU_CAPABILITY:
4396                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4397                 break;
4398         }
4399         case KVM_CAP_DISABLE_QUIRKS2:
4400                 r = KVM_X86_VALID_QUIRKS;
4401                 break;
4402         default:
4403                 break;
4404         }
4405         return r;
4406 }
4407
4408 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4409 {
4410         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4411
4412         if ((u64)(unsigned long)uaddr != attr->addr)
4413                 return ERR_PTR_USR(-EFAULT);
4414         return uaddr;
4415 }
4416
4417 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4418 {
4419         u64 __user *uaddr = kvm_get_attr_addr(attr);
4420
4421         if (attr->group)
4422                 return -ENXIO;
4423
4424         if (IS_ERR(uaddr))
4425                 return PTR_ERR(uaddr);
4426
4427         switch (attr->attr) {
4428         case KVM_X86_XCOMP_GUEST_SUPP:
4429                 if (put_user(supported_xcr0, uaddr))
4430                         return -EFAULT;
4431                 return 0;
4432         default:
4433                 return -ENXIO;
4434                 break;
4435         }
4436 }
4437
4438 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4439 {
4440         if (attr->group)
4441                 return -ENXIO;
4442
4443         switch (attr->attr) {
4444         case KVM_X86_XCOMP_GUEST_SUPP:
4445                 return 0;
4446         default:
4447                 return -ENXIO;
4448         }
4449 }
4450
4451 long kvm_arch_dev_ioctl(struct file *filp,
4452                         unsigned int ioctl, unsigned long arg)
4453 {
4454         void __user *argp = (void __user *)arg;
4455         long r;
4456
4457         switch (ioctl) {
4458         case KVM_GET_MSR_INDEX_LIST: {
4459                 struct kvm_msr_list __user *user_msr_list = argp;
4460                 struct kvm_msr_list msr_list;
4461                 unsigned n;
4462
4463                 r = -EFAULT;
4464                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4465                         goto out;
4466                 n = msr_list.nmsrs;
4467                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4468                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4469                         goto out;
4470                 r = -E2BIG;
4471                 if (n < msr_list.nmsrs)
4472                         goto out;
4473                 r = -EFAULT;
4474                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4475                                  num_msrs_to_save * sizeof(u32)))
4476                         goto out;
4477                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4478                                  &emulated_msrs,
4479                                  num_emulated_msrs * sizeof(u32)))
4480                         goto out;
4481                 r = 0;
4482                 break;
4483         }
4484         case KVM_GET_SUPPORTED_CPUID:
4485         case KVM_GET_EMULATED_CPUID: {
4486                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4487                 struct kvm_cpuid2 cpuid;
4488
4489                 r = -EFAULT;
4490                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4491                         goto out;
4492
4493                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4494                                             ioctl);
4495                 if (r)
4496                         goto out;
4497
4498                 r = -EFAULT;
4499                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4500                         goto out;
4501                 r = 0;
4502                 break;
4503         }
4504         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4505                 r = -EFAULT;
4506                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4507                                  sizeof(kvm_mce_cap_supported)))
4508                         goto out;
4509                 r = 0;
4510                 break;
4511         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4512                 struct kvm_msr_list __user *user_msr_list = argp;
4513                 struct kvm_msr_list msr_list;
4514                 unsigned int n;
4515
4516                 r = -EFAULT;
4517                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4518                         goto out;
4519                 n = msr_list.nmsrs;
4520                 msr_list.nmsrs = num_msr_based_features;
4521                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4522                         goto out;
4523                 r = -E2BIG;
4524                 if (n < msr_list.nmsrs)
4525                         goto out;
4526                 r = -EFAULT;
4527                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4528                                  num_msr_based_features * sizeof(u32)))
4529                         goto out;
4530                 r = 0;
4531                 break;
4532         }
4533         case KVM_GET_MSRS:
4534                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4535                 break;
4536         case KVM_GET_SUPPORTED_HV_CPUID:
4537                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4538                 break;
4539         case KVM_GET_DEVICE_ATTR: {
4540                 struct kvm_device_attr attr;
4541                 r = -EFAULT;
4542                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4543                         break;
4544                 r = kvm_x86_dev_get_attr(&attr);
4545                 break;
4546         }
4547         case KVM_HAS_DEVICE_ATTR: {
4548                 struct kvm_device_attr attr;
4549                 r = -EFAULT;
4550                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4551                         break;
4552                 r = kvm_x86_dev_has_attr(&attr);
4553                 break;
4554         }
4555         default:
4556                 r = -EINVAL;
4557                 break;
4558         }
4559 out:
4560         return r;
4561 }
4562
4563 static void wbinvd_ipi(void *garbage)
4564 {
4565         wbinvd();
4566 }
4567
4568 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4569 {
4570         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4571 }
4572
4573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4574 {
4575         /* Address WBINVD may be executed by guest */
4576         if (need_emulate_wbinvd(vcpu)) {
4577                 if (static_call(kvm_x86_has_wbinvd_exit)())
4578                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4579                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4580                         smp_call_function_single(vcpu->cpu,
4581                                         wbinvd_ipi, NULL, 1);
4582         }
4583
4584         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4585
4586         /* Save host pkru register if supported */
4587         vcpu->arch.host_pkru = read_pkru();
4588
4589         /* Apply any externally detected TSC adjustments (due to suspend) */
4590         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4591                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4592                 vcpu->arch.tsc_offset_adjustment = 0;
4593                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4594         }
4595
4596         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4597                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4598                                 rdtsc() - vcpu->arch.last_host_tsc;
4599                 if (tsc_delta < 0)
4600                         mark_tsc_unstable("KVM discovered backwards TSC");
4601
4602                 if (kvm_check_tsc_unstable()) {
4603                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4604                                                 vcpu->arch.last_guest_tsc);
4605                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4606                         vcpu->arch.tsc_catchup = 1;
4607                 }
4608
4609                 if (kvm_lapic_hv_timer_in_use(vcpu))
4610                         kvm_lapic_restart_hv_timer(vcpu);
4611
4612                 /*
4613                  * On a host with synchronized TSC, there is no need to update
4614                  * kvmclock on vcpu->cpu migration
4615                  */
4616                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4617                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4618                 if (vcpu->cpu != cpu)
4619                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4620                 vcpu->cpu = cpu;
4621         }
4622
4623         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4624 }
4625
4626 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4627 {
4628         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4629         struct kvm_steal_time __user *st;
4630         struct kvm_memslots *slots;
4631         static const u8 preempted = KVM_VCPU_PREEMPTED;
4632
4633         /*
4634          * The vCPU can be marked preempted if and only if the VM-Exit was on
4635          * an instruction boundary and will not trigger guest emulation of any
4636          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4637          * when this is true, for example allowing the vCPU to be marked
4638          * preempted if and only if the VM-Exit was due to a host interrupt.
4639          */
4640         if (!vcpu->arch.at_instruction_boundary) {
4641                 vcpu->stat.preemption_other++;
4642                 return;
4643         }
4644
4645         vcpu->stat.preemption_reported++;
4646         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4647                 return;
4648
4649         if (vcpu->arch.st.preempted)
4650                 return;
4651
4652         /* This happens on process exit */
4653         if (unlikely(current->mm != vcpu->kvm->mm))
4654                 return;
4655
4656         slots = kvm_memslots(vcpu->kvm);
4657
4658         if (unlikely(slots->generation != ghc->generation ||
4659                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4660                 return;
4661
4662         st = (struct kvm_steal_time __user *)ghc->hva;
4663         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4664
4665         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4666                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4667
4668         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4669 }
4670
4671 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4672 {
4673         int idx;
4674
4675         if (vcpu->preempted) {
4676                 if (!vcpu->arch.guest_state_protected)
4677                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4678
4679                 /*
4680                  * Take the srcu lock as memslots will be accessed to check the gfn
4681                  * cache generation against the memslots generation.
4682                  */
4683                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4684                 if (kvm_xen_msr_enabled(vcpu->kvm))
4685                         kvm_xen_runstate_set_preempted(vcpu);
4686                 else
4687                         kvm_steal_time_set_preempted(vcpu);
4688                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4689         }
4690
4691         static_call(kvm_x86_vcpu_put)(vcpu);
4692         vcpu->arch.last_host_tsc = rdtsc();
4693 }
4694
4695 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4696                                     struct kvm_lapic_state *s)
4697 {
4698         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4699
4700         return kvm_apic_get_state(vcpu, s);
4701 }
4702
4703 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4704                                     struct kvm_lapic_state *s)
4705 {
4706         int r;
4707
4708         r = kvm_apic_set_state(vcpu, s);
4709         if (r)
4710                 return r;
4711         update_cr8_intercept(vcpu);
4712
4713         return 0;
4714 }
4715
4716 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4717 {
4718         /*
4719          * We can accept userspace's request for interrupt injection
4720          * as long as we have a place to store the interrupt number.
4721          * The actual injection will happen when the CPU is able to
4722          * deliver the interrupt.
4723          */
4724         if (kvm_cpu_has_extint(vcpu))
4725                 return false;
4726
4727         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4728         return (!lapic_in_kernel(vcpu) ||
4729                 kvm_apic_accept_pic_intr(vcpu));
4730 }
4731
4732 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4733 {
4734         /*
4735          * Do not cause an interrupt window exit if an exception
4736          * is pending or an event needs reinjection; userspace
4737          * might want to inject the interrupt manually using KVM_SET_REGS
4738          * or KVM_SET_SREGS.  For that to work, we must be at an
4739          * instruction boundary and with no events half-injected.
4740          */
4741         return (kvm_arch_interrupt_allowed(vcpu) &&
4742                 kvm_cpu_accept_dm_intr(vcpu) &&
4743                 !kvm_event_needs_reinjection(vcpu) &&
4744                 !vcpu->arch.exception.pending);
4745 }
4746
4747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4748                                     struct kvm_interrupt *irq)
4749 {
4750         if (irq->irq >= KVM_NR_INTERRUPTS)
4751                 return -EINVAL;
4752
4753         if (!irqchip_in_kernel(vcpu->kvm)) {
4754                 kvm_queue_interrupt(vcpu, irq->irq, false);
4755                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4756                 return 0;
4757         }
4758
4759         /*
4760          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4761          * fail for in-kernel 8259.
4762          */
4763         if (pic_in_kernel(vcpu->kvm))
4764                 return -ENXIO;
4765
4766         if (vcpu->arch.pending_external_vector != -1)
4767                 return -EEXIST;
4768
4769         vcpu->arch.pending_external_vector = irq->irq;
4770         kvm_make_request(KVM_REQ_EVENT, vcpu);
4771         return 0;
4772 }
4773
4774 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4775 {
4776         kvm_inject_nmi(vcpu);
4777
4778         return 0;
4779 }
4780
4781 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4782 {
4783         kvm_make_request(KVM_REQ_SMI, vcpu);
4784
4785         return 0;
4786 }
4787
4788 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4789                                            struct kvm_tpr_access_ctl *tac)
4790 {
4791         if (tac->flags)
4792                 return -EINVAL;
4793         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4794         return 0;
4795 }
4796
4797 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4798                                         u64 mcg_cap)
4799 {
4800         int r;
4801         unsigned bank_num = mcg_cap & 0xff, bank;
4802
4803         r = -EINVAL;
4804         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4805                 goto out;
4806         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4807                 goto out;
4808         r = 0;
4809         vcpu->arch.mcg_cap = mcg_cap;
4810         /* Init IA32_MCG_CTL to all 1s */
4811         if (mcg_cap & MCG_CTL_P)
4812                 vcpu->arch.mcg_ctl = ~(u64)0;
4813         /* Init IA32_MCi_CTL to all 1s */
4814         for (bank = 0; bank < bank_num; bank++)
4815                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4816
4817         static_call(kvm_x86_setup_mce)(vcpu);
4818 out:
4819         return r;
4820 }
4821
4822 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4823                                       struct kvm_x86_mce *mce)
4824 {
4825         u64 mcg_cap = vcpu->arch.mcg_cap;
4826         unsigned bank_num = mcg_cap & 0xff;
4827         u64 *banks = vcpu->arch.mce_banks;
4828
4829         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4830                 return -EINVAL;
4831         /*
4832          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4833          * reporting is disabled
4834          */
4835         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4836             vcpu->arch.mcg_ctl != ~(u64)0)
4837                 return 0;
4838         banks += 4 * mce->bank;
4839         /*
4840          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4841          * reporting is disabled for the bank
4842          */
4843         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4844                 return 0;
4845         if (mce->status & MCI_STATUS_UC) {
4846                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4847                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4848                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4849                         return 0;
4850                 }
4851                 if (banks[1] & MCI_STATUS_VAL)
4852                         mce->status |= MCI_STATUS_OVER;
4853                 banks[2] = mce->addr;
4854                 banks[3] = mce->misc;
4855                 vcpu->arch.mcg_status = mce->mcg_status;
4856                 banks[1] = mce->status;
4857                 kvm_queue_exception(vcpu, MC_VECTOR);
4858         } else if (!(banks[1] & MCI_STATUS_VAL)
4859                    || !(banks[1] & MCI_STATUS_UC)) {
4860                 if (banks[1] & MCI_STATUS_VAL)
4861                         mce->status |= MCI_STATUS_OVER;
4862                 banks[2] = mce->addr;
4863                 banks[3] = mce->misc;
4864                 banks[1] = mce->status;
4865         } else
4866                 banks[1] |= MCI_STATUS_OVER;
4867         return 0;
4868 }
4869
4870 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4871                                                struct kvm_vcpu_events *events)
4872 {
4873         process_nmi(vcpu);
4874
4875         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4876                 process_smi(vcpu);
4877
4878         /*
4879          * In guest mode, payload delivery should be deferred,
4880          * so that the L1 hypervisor can intercept #PF before
4881          * CR2 is modified (or intercept #DB before DR6 is
4882          * modified under nVMX). Unless the per-VM capability,
4883          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4884          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4885          * opportunistically defer the exception payload, deliver it if the
4886          * capability hasn't been requested before processing a
4887          * KVM_GET_VCPU_EVENTS.
4888          */
4889         if (!vcpu->kvm->arch.exception_payload_enabled &&
4890             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4891                 kvm_deliver_exception_payload(vcpu);
4892
4893         /*
4894          * The API doesn't provide the instruction length for software
4895          * exceptions, so don't report them. As long as the guest RIP
4896          * isn't advanced, we should expect to encounter the exception
4897          * again.
4898          */
4899         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4900                 events->exception.injected = 0;
4901                 events->exception.pending = 0;
4902         } else {
4903                 events->exception.injected = vcpu->arch.exception.injected;
4904                 events->exception.pending = vcpu->arch.exception.pending;
4905                 /*
4906                  * For ABI compatibility, deliberately conflate
4907                  * pending and injected exceptions when
4908                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4909                  */
4910                 if (!vcpu->kvm->arch.exception_payload_enabled)
4911                         events->exception.injected |=
4912                                 vcpu->arch.exception.pending;
4913         }
4914         events->exception.nr = vcpu->arch.exception.nr;
4915         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4916         events->exception.error_code = vcpu->arch.exception.error_code;
4917         events->exception_has_payload = vcpu->arch.exception.has_payload;
4918         events->exception_payload = vcpu->arch.exception.payload;
4919
4920         events->interrupt.injected =
4921                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4922         events->interrupt.nr = vcpu->arch.interrupt.nr;
4923         events->interrupt.soft = 0;
4924         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4925
4926         events->nmi.injected = vcpu->arch.nmi_injected;
4927         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4928         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4929         events->nmi.pad = 0;
4930
4931         events->sipi_vector = 0; /* never valid when reporting to user space */
4932
4933         events->smi.smm = is_smm(vcpu);
4934         events->smi.pending = vcpu->arch.smi_pending;
4935         events->smi.smm_inside_nmi =
4936                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4937         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4938
4939         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4940                          | KVM_VCPUEVENT_VALID_SHADOW
4941                          | KVM_VCPUEVENT_VALID_SMM);
4942         if (vcpu->kvm->arch.exception_payload_enabled)
4943                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4944
4945         memset(&events->reserved, 0, sizeof(events->reserved));
4946 }
4947
4948 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4949
4950 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4951                                               struct kvm_vcpu_events *events)
4952 {
4953         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4954                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4955                               | KVM_VCPUEVENT_VALID_SHADOW
4956                               | KVM_VCPUEVENT_VALID_SMM
4957                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4958                 return -EINVAL;
4959
4960         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4961                 if (!vcpu->kvm->arch.exception_payload_enabled)
4962                         return -EINVAL;
4963                 if (events->exception.pending)
4964                         events->exception.injected = 0;
4965                 else
4966                         events->exception_has_payload = 0;
4967         } else {
4968                 events->exception.pending = 0;
4969                 events->exception_has_payload = 0;
4970         }
4971
4972         if ((events->exception.injected || events->exception.pending) &&
4973             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4974                 return -EINVAL;
4975
4976         /* INITs are latched while in SMM */
4977         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4978             (events->smi.smm || events->smi.pending) &&
4979             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4980                 return -EINVAL;
4981
4982         process_nmi(vcpu);
4983         vcpu->arch.exception.injected = events->exception.injected;
4984         vcpu->arch.exception.pending = events->exception.pending;
4985         vcpu->arch.exception.nr = events->exception.nr;
4986         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4987         vcpu->arch.exception.error_code = events->exception.error_code;
4988         vcpu->arch.exception.has_payload = events->exception_has_payload;
4989         vcpu->arch.exception.payload = events->exception_payload;
4990
4991         vcpu->arch.interrupt.injected = events->interrupt.injected;
4992         vcpu->arch.interrupt.nr = events->interrupt.nr;
4993         vcpu->arch.interrupt.soft = events->interrupt.soft;
4994         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4995                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4996                                                 events->interrupt.shadow);
4997
4998         vcpu->arch.nmi_injected = events->nmi.injected;
4999         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5000                 vcpu->arch.nmi_pending = events->nmi.pending;
5001         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5002
5003         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5004             lapic_in_kernel(vcpu))
5005                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5006
5007         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5008                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5009                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
5010                         kvm_smm_changed(vcpu, events->smi.smm);
5011                 }
5012
5013                 vcpu->arch.smi_pending = events->smi.pending;
5014
5015                 if (events->smi.smm) {
5016                         if (events->smi.smm_inside_nmi)
5017                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5018                         else
5019                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5020                 }
5021
5022                 if (lapic_in_kernel(vcpu)) {
5023                         if (events->smi.latched_init)
5024                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5025                         else
5026                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5027                 }
5028         }
5029
5030         kvm_make_request(KVM_REQ_EVENT, vcpu);
5031
5032         return 0;
5033 }
5034
5035 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5036                                              struct kvm_debugregs *dbgregs)
5037 {
5038         unsigned long val;
5039
5040         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5041         kvm_get_dr(vcpu, 6, &val);
5042         dbgregs->dr6 = val;
5043         dbgregs->dr7 = vcpu->arch.dr7;
5044         dbgregs->flags = 0;
5045         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5046 }
5047
5048 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5049                                             struct kvm_debugregs *dbgregs)
5050 {
5051         if (dbgregs->flags)
5052                 return -EINVAL;
5053
5054         if (!kvm_dr6_valid(dbgregs->dr6))
5055                 return -EINVAL;
5056         if (!kvm_dr7_valid(dbgregs->dr7))
5057                 return -EINVAL;
5058
5059         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5060         kvm_update_dr0123(vcpu);
5061         vcpu->arch.dr6 = dbgregs->dr6;
5062         vcpu->arch.dr7 = dbgregs->dr7;
5063         kvm_update_dr7(vcpu);
5064
5065         return 0;
5066 }
5067
5068 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5069                                          struct kvm_xsave *guest_xsave)
5070 {
5071         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5072                 return;
5073
5074         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5075                                        guest_xsave->region,
5076                                        sizeof(guest_xsave->region),
5077                                        vcpu->arch.pkru);
5078 }
5079
5080 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5081                                           u8 *state, unsigned int size)
5082 {
5083         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5084                 return;
5085
5086         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5087                                        state, size, vcpu->arch.pkru);
5088 }
5089
5090 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5091                                         struct kvm_xsave *guest_xsave)
5092 {
5093         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5094                 return 0;
5095
5096         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5097                                               guest_xsave->region,
5098                                               supported_xcr0, &vcpu->arch.pkru);
5099 }
5100
5101 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5102                                         struct kvm_xcrs *guest_xcrs)
5103 {
5104         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5105                 guest_xcrs->nr_xcrs = 0;
5106                 return;
5107         }
5108
5109         guest_xcrs->nr_xcrs = 1;
5110         guest_xcrs->flags = 0;
5111         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5112         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5113 }
5114
5115 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5116                                        struct kvm_xcrs *guest_xcrs)
5117 {
5118         int i, r = 0;
5119
5120         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5121                 return -EINVAL;
5122
5123         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5124                 return -EINVAL;
5125
5126         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5127                 /* Only support XCR0 currently */
5128                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5129                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5130                                 guest_xcrs->xcrs[i].value);
5131                         break;
5132                 }
5133         if (r)
5134                 r = -EINVAL;
5135         return r;
5136 }
5137
5138 /*
5139  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5140  * stopped by the hypervisor.  This function will be called from the host only.
5141  * EINVAL is returned when the host attempts to set the flag for a guest that
5142  * does not support pv clocks.
5143  */
5144 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5145 {
5146         if (!vcpu->arch.pv_time.active)
5147                 return -EINVAL;
5148         vcpu->arch.pvclock_set_guest_stopped_request = true;
5149         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5150         return 0;
5151 }
5152
5153 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5154                                  struct kvm_device_attr *attr)
5155 {
5156         int r;
5157
5158         switch (attr->attr) {
5159         case KVM_VCPU_TSC_OFFSET:
5160                 r = 0;
5161                 break;
5162         default:
5163                 r = -ENXIO;
5164         }
5165
5166         return r;
5167 }
5168
5169 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5170                                  struct kvm_device_attr *attr)
5171 {
5172         u64 __user *uaddr = kvm_get_attr_addr(attr);
5173         int r;
5174
5175         if (IS_ERR(uaddr))
5176                 return PTR_ERR(uaddr);
5177
5178         switch (attr->attr) {
5179         case KVM_VCPU_TSC_OFFSET:
5180                 r = -EFAULT;
5181                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5182                         break;
5183                 r = 0;
5184                 break;
5185         default:
5186                 r = -ENXIO;
5187         }
5188
5189         return r;
5190 }
5191
5192 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5193                                  struct kvm_device_attr *attr)
5194 {
5195         u64 __user *uaddr = kvm_get_attr_addr(attr);
5196         struct kvm *kvm = vcpu->kvm;
5197         int r;
5198
5199         if (IS_ERR(uaddr))
5200                 return PTR_ERR(uaddr);
5201
5202         switch (attr->attr) {
5203         case KVM_VCPU_TSC_OFFSET: {
5204                 u64 offset, tsc, ns;
5205                 unsigned long flags;
5206                 bool matched;
5207
5208                 r = -EFAULT;
5209                 if (get_user(offset, uaddr))
5210                         break;
5211
5212                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5213
5214                 matched = (vcpu->arch.virtual_tsc_khz &&
5215                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5216                            kvm->arch.last_tsc_offset == offset);
5217
5218                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5219                 ns = get_kvmclock_base_ns();
5220
5221                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5222                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5223
5224                 r = 0;
5225                 break;
5226         }
5227         default:
5228                 r = -ENXIO;
5229         }
5230
5231         return r;
5232 }
5233
5234 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5235                                       unsigned int ioctl,
5236                                       void __user *argp)
5237 {
5238         struct kvm_device_attr attr;
5239         int r;
5240
5241         if (copy_from_user(&attr, argp, sizeof(attr)))
5242                 return -EFAULT;
5243
5244         if (attr.group != KVM_VCPU_TSC_CTRL)
5245                 return -ENXIO;
5246
5247         switch (ioctl) {
5248         case KVM_HAS_DEVICE_ATTR:
5249                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5250                 break;
5251         case KVM_GET_DEVICE_ATTR:
5252                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5253                 break;
5254         case KVM_SET_DEVICE_ATTR:
5255                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5256                 break;
5257         }
5258
5259         return r;
5260 }
5261
5262 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5263                                      struct kvm_enable_cap *cap)
5264 {
5265         int r;
5266         uint16_t vmcs_version;
5267         void __user *user_ptr;
5268
5269         if (cap->flags)
5270                 return -EINVAL;
5271
5272         switch (cap->cap) {
5273         case KVM_CAP_HYPERV_SYNIC2:
5274                 if (cap->args[0])
5275                         return -EINVAL;
5276                 fallthrough;
5277
5278         case KVM_CAP_HYPERV_SYNIC:
5279                 if (!irqchip_in_kernel(vcpu->kvm))
5280                         return -EINVAL;
5281                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5282                                              KVM_CAP_HYPERV_SYNIC2);
5283         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5284                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5285                         return -ENOTTY;
5286                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5287                 if (!r) {
5288                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5289                         if (copy_to_user(user_ptr, &vmcs_version,
5290                                          sizeof(vmcs_version)))
5291                                 r = -EFAULT;
5292                 }
5293                 return r;
5294         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5295                 if (!kvm_x86_ops.enable_direct_tlbflush)
5296                         return -ENOTTY;
5297
5298                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5299
5300         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5301                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5302
5303         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5304                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5305                 if (vcpu->arch.pv_cpuid.enforce)
5306                         kvm_update_pv_runtime(vcpu);
5307
5308                 return 0;
5309         default:
5310                 return -EINVAL;
5311         }
5312 }
5313
5314 long kvm_arch_vcpu_ioctl(struct file *filp,
5315                          unsigned int ioctl, unsigned long arg)
5316 {
5317         struct kvm_vcpu *vcpu = filp->private_data;
5318         void __user *argp = (void __user *)arg;
5319         int r;
5320         union {
5321                 struct kvm_sregs2 *sregs2;
5322                 struct kvm_lapic_state *lapic;
5323                 struct kvm_xsave *xsave;
5324                 struct kvm_xcrs *xcrs;
5325                 void *buffer;
5326         } u;
5327
5328         vcpu_load(vcpu);
5329
5330         u.buffer = NULL;
5331         switch (ioctl) {
5332         case KVM_GET_LAPIC: {
5333                 r = -EINVAL;
5334                 if (!lapic_in_kernel(vcpu))
5335                         goto out;
5336                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5337                                 GFP_KERNEL_ACCOUNT);
5338
5339                 r = -ENOMEM;
5340                 if (!u.lapic)
5341                         goto out;
5342                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5343                 if (r)
5344                         goto out;
5345                 r = -EFAULT;
5346                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5347                         goto out;
5348                 r = 0;
5349                 break;
5350         }
5351         case KVM_SET_LAPIC: {
5352                 r = -EINVAL;
5353                 if (!lapic_in_kernel(vcpu))
5354                         goto out;
5355                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5356                 if (IS_ERR(u.lapic)) {
5357                         r = PTR_ERR(u.lapic);
5358                         goto out_nofree;
5359                 }
5360
5361                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5362                 break;
5363         }
5364         case KVM_INTERRUPT: {
5365                 struct kvm_interrupt irq;
5366
5367                 r = -EFAULT;
5368                 if (copy_from_user(&irq, argp, sizeof(irq)))
5369                         goto out;
5370                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5371                 break;
5372         }
5373         case KVM_NMI: {
5374                 r = kvm_vcpu_ioctl_nmi(vcpu);
5375                 break;
5376         }
5377         case KVM_SMI: {
5378                 r = kvm_vcpu_ioctl_smi(vcpu);
5379                 break;
5380         }
5381         case KVM_SET_CPUID: {
5382                 struct kvm_cpuid __user *cpuid_arg = argp;
5383                 struct kvm_cpuid cpuid;
5384
5385                 r = -EFAULT;
5386                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5387                         goto out;
5388                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5389                 break;
5390         }
5391         case KVM_SET_CPUID2: {
5392                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5393                 struct kvm_cpuid2 cpuid;
5394
5395                 r = -EFAULT;
5396                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5397                         goto out;
5398                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5399                                               cpuid_arg->entries);
5400                 break;
5401         }
5402         case KVM_GET_CPUID2: {
5403                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5404                 struct kvm_cpuid2 cpuid;
5405
5406                 r = -EFAULT;
5407                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5408                         goto out;
5409                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5410                                               cpuid_arg->entries);
5411                 if (r)
5412                         goto out;
5413                 r = -EFAULT;
5414                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5415                         goto out;
5416                 r = 0;
5417                 break;
5418         }
5419         case KVM_GET_MSRS: {
5420                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5421                 r = msr_io(vcpu, argp, do_get_msr, 1);
5422                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5423                 break;
5424         }
5425         case KVM_SET_MSRS: {
5426                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5427                 r = msr_io(vcpu, argp, do_set_msr, 0);
5428                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5429                 break;
5430         }
5431         case KVM_TPR_ACCESS_REPORTING: {
5432                 struct kvm_tpr_access_ctl tac;
5433
5434                 r = -EFAULT;
5435                 if (copy_from_user(&tac, argp, sizeof(tac)))
5436                         goto out;
5437                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5438                 if (r)
5439                         goto out;
5440                 r = -EFAULT;
5441                 if (copy_to_user(argp, &tac, sizeof(tac)))
5442                         goto out;
5443                 r = 0;
5444                 break;
5445         };
5446         case KVM_SET_VAPIC_ADDR: {
5447                 struct kvm_vapic_addr va;
5448                 int idx;
5449
5450                 r = -EINVAL;
5451                 if (!lapic_in_kernel(vcpu))
5452                         goto out;
5453                 r = -EFAULT;
5454                 if (copy_from_user(&va, argp, sizeof(va)))
5455                         goto out;
5456                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5457                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5458                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5459                 break;
5460         }
5461         case KVM_X86_SETUP_MCE: {
5462                 u64 mcg_cap;
5463
5464                 r = -EFAULT;
5465                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5466                         goto out;
5467                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5468                 break;
5469         }
5470         case KVM_X86_SET_MCE: {
5471                 struct kvm_x86_mce mce;
5472
5473                 r = -EFAULT;
5474                 if (copy_from_user(&mce, argp, sizeof(mce)))
5475                         goto out;
5476                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5477                 break;
5478         }
5479         case KVM_GET_VCPU_EVENTS: {
5480                 struct kvm_vcpu_events events;
5481
5482                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5483
5484                 r = -EFAULT;
5485                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5486                         break;
5487                 r = 0;
5488                 break;
5489         }
5490         case KVM_SET_VCPU_EVENTS: {
5491                 struct kvm_vcpu_events events;
5492
5493                 r = -EFAULT;
5494                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5495                         break;
5496
5497                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5498                 break;
5499         }
5500         case KVM_GET_DEBUGREGS: {
5501                 struct kvm_debugregs dbgregs;
5502
5503                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5504
5505                 r = -EFAULT;
5506                 if (copy_to_user(argp, &dbgregs,
5507                                  sizeof(struct kvm_debugregs)))
5508                         break;
5509                 r = 0;
5510                 break;
5511         }
5512         case KVM_SET_DEBUGREGS: {
5513                 struct kvm_debugregs dbgregs;
5514
5515                 r = -EFAULT;
5516                 if (copy_from_user(&dbgregs, argp,
5517                                    sizeof(struct kvm_debugregs)))
5518                         break;
5519
5520                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5521                 break;
5522         }
5523         case KVM_GET_XSAVE: {
5524                 r = -EINVAL;
5525                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5526                         break;
5527
5528                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5529                 r = -ENOMEM;
5530                 if (!u.xsave)
5531                         break;
5532
5533                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5534
5535                 r = -EFAULT;
5536                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5537                         break;
5538                 r = 0;
5539                 break;
5540         }
5541         case KVM_SET_XSAVE: {
5542                 int size = vcpu->arch.guest_fpu.uabi_size;
5543
5544                 u.xsave = memdup_user(argp, size);
5545                 if (IS_ERR(u.xsave)) {
5546                         r = PTR_ERR(u.xsave);
5547                         goto out_nofree;
5548                 }
5549
5550                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5551                 break;
5552         }
5553
5554         case KVM_GET_XSAVE2: {
5555                 int size = vcpu->arch.guest_fpu.uabi_size;
5556
5557                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5558                 r = -ENOMEM;
5559                 if (!u.xsave)
5560                         break;
5561
5562                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5563
5564                 r = -EFAULT;
5565                 if (copy_to_user(argp, u.xsave, size))
5566                         break;
5567
5568                 r = 0;
5569                 break;
5570         }
5571
5572         case KVM_GET_XCRS: {
5573                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5574                 r = -ENOMEM;
5575                 if (!u.xcrs)
5576                         break;
5577
5578                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5579
5580                 r = -EFAULT;
5581                 if (copy_to_user(argp, u.xcrs,
5582                                  sizeof(struct kvm_xcrs)))
5583                         break;
5584                 r = 0;
5585                 break;
5586         }
5587         case KVM_SET_XCRS: {
5588                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5589                 if (IS_ERR(u.xcrs)) {
5590                         r = PTR_ERR(u.xcrs);
5591                         goto out_nofree;
5592                 }
5593
5594                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5595                 break;
5596         }
5597         case KVM_SET_TSC_KHZ: {
5598                 u32 user_tsc_khz;
5599
5600                 r = -EINVAL;
5601                 user_tsc_khz = (u32)arg;
5602
5603                 if (kvm_has_tsc_control &&
5604                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5605                         goto out;
5606
5607                 if (user_tsc_khz == 0)
5608                         user_tsc_khz = tsc_khz;
5609
5610                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5611                         r = 0;
5612
5613                 goto out;
5614         }
5615         case KVM_GET_TSC_KHZ: {
5616                 r = vcpu->arch.virtual_tsc_khz;
5617                 goto out;
5618         }
5619         case KVM_KVMCLOCK_CTRL: {
5620                 r = kvm_set_guest_paused(vcpu);
5621                 goto out;
5622         }
5623         case KVM_ENABLE_CAP: {
5624                 struct kvm_enable_cap cap;
5625
5626                 r = -EFAULT;
5627                 if (copy_from_user(&cap, argp, sizeof(cap)))
5628                         goto out;
5629                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5630                 break;
5631         }
5632         case KVM_GET_NESTED_STATE: {
5633                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5634                 u32 user_data_size;
5635
5636                 r = -EINVAL;
5637                 if (!kvm_x86_ops.nested_ops->get_state)
5638                         break;
5639
5640                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5641                 r = -EFAULT;
5642                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5643                         break;
5644
5645                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5646                                                      user_data_size);
5647                 if (r < 0)
5648                         break;
5649
5650                 if (r > user_data_size) {
5651                         if (put_user(r, &user_kvm_nested_state->size))
5652                                 r = -EFAULT;
5653                         else
5654                                 r = -E2BIG;
5655                         break;
5656                 }
5657
5658                 r = 0;
5659                 break;
5660         }
5661         case KVM_SET_NESTED_STATE: {
5662                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5663                 struct kvm_nested_state kvm_state;
5664                 int idx;
5665
5666                 r = -EINVAL;
5667                 if (!kvm_x86_ops.nested_ops->set_state)
5668                         break;
5669
5670                 r = -EFAULT;
5671                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5672                         break;
5673
5674                 r = -EINVAL;
5675                 if (kvm_state.size < sizeof(kvm_state))
5676                         break;
5677
5678                 if (kvm_state.flags &
5679                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5680                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5681                       | KVM_STATE_NESTED_GIF_SET))
5682                         break;
5683
5684                 /* nested_run_pending implies guest_mode.  */
5685                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5686                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5687                         break;
5688
5689                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5690                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5691                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5692                 break;
5693         }
5694         case KVM_GET_SUPPORTED_HV_CPUID:
5695                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5696                 break;
5697 #ifdef CONFIG_KVM_XEN
5698         case KVM_XEN_VCPU_GET_ATTR: {
5699                 struct kvm_xen_vcpu_attr xva;
5700
5701                 r = -EFAULT;
5702                 if (copy_from_user(&xva, argp, sizeof(xva)))
5703                         goto out;
5704                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5705                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5706                         r = -EFAULT;
5707                 break;
5708         }
5709         case KVM_XEN_VCPU_SET_ATTR: {
5710                 struct kvm_xen_vcpu_attr xva;
5711
5712                 r = -EFAULT;
5713                 if (copy_from_user(&xva, argp, sizeof(xva)))
5714                         goto out;
5715                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5716                 break;
5717         }
5718 #endif
5719         case KVM_GET_SREGS2: {
5720                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5721                 r = -ENOMEM;
5722                 if (!u.sregs2)
5723                         goto out;
5724                 __get_sregs2(vcpu, u.sregs2);
5725                 r = -EFAULT;
5726                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5727                         goto out;
5728                 r = 0;
5729                 break;
5730         }
5731         case KVM_SET_SREGS2: {
5732                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5733                 if (IS_ERR(u.sregs2)) {
5734                         r = PTR_ERR(u.sregs2);
5735                         u.sregs2 = NULL;
5736                         goto out;
5737                 }
5738                 r = __set_sregs2(vcpu, u.sregs2);
5739                 break;
5740         }
5741         case KVM_HAS_DEVICE_ATTR:
5742         case KVM_GET_DEVICE_ATTR:
5743         case KVM_SET_DEVICE_ATTR:
5744                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5745                 break;
5746         default:
5747                 r = -EINVAL;
5748         }
5749 out:
5750         kfree(u.buffer);
5751 out_nofree:
5752         vcpu_put(vcpu);
5753         return r;
5754 }
5755
5756 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5757 {
5758         return VM_FAULT_SIGBUS;
5759 }
5760
5761 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5762 {
5763         int ret;
5764
5765         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5766                 return -EINVAL;
5767         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5768         return ret;
5769 }
5770
5771 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5772                                               u64 ident_addr)
5773 {
5774         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5775 }
5776
5777 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5778                                          unsigned long kvm_nr_mmu_pages)
5779 {
5780         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5781                 return -EINVAL;
5782
5783         mutex_lock(&kvm->slots_lock);
5784
5785         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5786         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5787
5788         mutex_unlock(&kvm->slots_lock);
5789         return 0;
5790 }
5791
5792 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5793 {
5794         return kvm->arch.n_max_mmu_pages;
5795 }
5796
5797 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5798 {
5799         struct kvm_pic *pic = kvm->arch.vpic;
5800         int r;
5801
5802         r = 0;
5803         switch (chip->chip_id) {
5804         case KVM_IRQCHIP_PIC_MASTER:
5805                 memcpy(&chip->chip.pic, &pic->pics[0],
5806                         sizeof(struct kvm_pic_state));
5807                 break;
5808         case KVM_IRQCHIP_PIC_SLAVE:
5809                 memcpy(&chip->chip.pic, &pic->pics[1],
5810                         sizeof(struct kvm_pic_state));
5811                 break;
5812         case KVM_IRQCHIP_IOAPIC:
5813                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5814                 break;
5815         default:
5816                 r = -EINVAL;
5817                 break;
5818         }
5819         return r;
5820 }
5821
5822 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5823 {
5824         struct kvm_pic *pic = kvm->arch.vpic;
5825         int r;
5826
5827         r = 0;
5828         switch (chip->chip_id) {
5829         case KVM_IRQCHIP_PIC_MASTER:
5830                 spin_lock(&pic->lock);
5831                 memcpy(&pic->pics[0], &chip->chip.pic,
5832                         sizeof(struct kvm_pic_state));
5833                 spin_unlock(&pic->lock);
5834                 break;
5835         case KVM_IRQCHIP_PIC_SLAVE:
5836                 spin_lock(&pic->lock);
5837                 memcpy(&pic->pics[1], &chip->chip.pic,
5838                         sizeof(struct kvm_pic_state));
5839                 spin_unlock(&pic->lock);
5840                 break;
5841         case KVM_IRQCHIP_IOAPIC:
5842                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5843                 break;
5844         default:
5845                 r = -EINVAL;
5846                 break;
5847         }
5848         kvm_pic_update_irq(pic);
5849         return r;
5850 }
5851
5852 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5853 {
5854         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5855
5856         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5857
5858         mutex_lock(&kps->lock);
5859         memcpy(ps, &kps->channels, sizeof(*ps));
5860         mutex_unlock(&kps->lock);
5861         return 0;
5862 }
5863
5864 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5865 {
5866         int i;
5867         struct kvm_pit *pit = kvm->arch.vpit;
5868
5869         mutex_lock(&pit->pit_state.lock);
5870         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5871         for (i = 0; i < 3; i++)
5872                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5873         mutex_unlock(&pit->pit_state.lock);
5874         return 0;
5875 }
5876
5877 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5878 {
5879         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5880         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5881                 sizeof(ps->channels));
5882         ps->flags = kvm->arch.vpit->pit_state.flags;
5883         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5884         memset(&ps->reserved, 0, sizeof(ps->reserved));
5885         return 0;
5886 }
5887
5888 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5889 {
5890         int start = 0;
5891         int i;
5892         u32 prev_legacy, cur_legacy;
5893         struct kvm_pit *pit = kvm->arch.vpit;
5894
5895         mutex_lock(&pit->pit_state.lock);
5896         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5897         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5898         if (!prev_legacy && cur_legacy)
5899                 start = 1;
5900         memcpy(&pit->pit_state.channels, &ps->channels,
5901                sizeof(pit->pit_state.channels));
5902         pit->pit_state.flags = ps->flags;
5903         for (i = 0; i < 3; i++)
5904                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5905                                    start && i == 0);
5906         mutex_unlock(&pit->pit_state.lock);
5907         return 0;
5908 }
5909
5910 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5911                                  struct kvm_reinject_control *control)
5912 {
5913         struct kvm_pit *pit = kvm->arch.vpit;
5914
5915         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5916          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5917          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5918          */
5919         mutex_lock(&pit->pit_state.lock);
5920         kvm_pit_set_reinject(pit, control->pit_reinject);
5921         mutex_unlock(&pit->pit_state.lock);
5922
5923         return 0;
5924 }
5925
5926 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5927 {
5928
5929         /*
5930          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5931          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5932          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5933          * VM-Exit.
5934          */
5935         struct kvm_vcpu *vcpu;
5936         unsigned long i;
5937
5938         kvm_for_each_vcpu(i, vcpu, kvm)
5939                 kvm_vcpu_kick(vcpu);
5940 }
5941
5942 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5943                         bool line_status)
5944 {
5945         if (!irqchip_in_kernel(kvm))
5946                 return -ENXIO;
5947
5948         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5949                                         irq_event->irq, irq_event->level,
5950                                         line_status);
5951         return 0;
5952 }
5953
5954 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5955                             struct kvm_enable_cap *cap)
5956 {
5957         int r;
5958
5959         if (cap->flags)
5960                 return -EINVAL;
5961
5962         switch (cap->cap) {
5963         case KVM_CAP_DISABLE_QUIRKS2:
5964                 r = -EINVAL;
5965                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5966                         break;
5967                 fallthrough;
5968         case KVM_CAP_DISABLE_QUIRKS:
5969                 kvm->arch.disabled_quirks = cap->args[0];
5970                 r = 0;
5971                 break;
5972         case KVM_CAP_SPLIT_IRQCHIP: {
5973                 mutex_lock(&kvm->lock);
5974                 r = -EINVAL;
5975                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5976                         goto split_irqchip_unlock;
5977                 r = -EEXIST;
5978                 if (irqchip_in_kernel(kvm))
5979                         goto split_irqchip_unlock;
5980                 if (kvm->created_vcpus)
5981                         goto split_irqchip_unlock;
5982                 r = kvm_setup_empty_irq_routing(kvm);
5983                 if (r)
5984                         goto split_irqchip_unlock;
5985                 /* Pairs with irqchip_in_kernel. */
5986                 smp_wmb();
5987                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5988                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5989                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5990                 r = 0;
5991 split_irqchip_unlock:
5992                 mutex_unlock(&kvm->lock);
5993                 break;
5994         }
5995         case KVM_CAP_X2APIC_API:
5996                 r = -EINVAL;
5997                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5998                         break;
5999
6000                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6001                         kvm->arch.x2apic_format = true;
6002                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6003                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6004
6005                 r = 0;
6006                 break;
6007         case KVM_CAP_X86_DISABLE_EXITS:
6008                 r = -EINVAL;
6009                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6010                         break;
6011
6012                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6013                         kvm_can_mwait_in_guest())
6014                         kvm->arch.mwait_in_guest = true;
6015                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6016                         kvm->arch.hlt_in_guest = true;
6017                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6018                         kvm->arch.pause_in_guest = true;
6019                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6020                         kvm->arch.cstate_in_guest = true;
6021                 r = 0;
6022                 break;
6023         case KVM_CAP_MSR_PLATFORM_INFO:
6024                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6025                 r = 0;
6026                 break;
6027         case KVM_CAP_EXCEPTION_PAYLOAD:
6028                 kvm->arch.exception_payload_enabled = cap->args[0];
6029                 r = 0;
6030                 break;
6031         case KVM_CAP_X86_USER_SPACE_MSR:
6032                 r = -EINVAL;
6033                 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6034                                      KVM_MSR_EXIT_REASON_UNKNOWN |
6035                                      KVM_MSR_EXIT_REASON_FILTER))
6036                         break;
6037                 kvm->arch.user_space_msr_mask = cap->args[0];
6038                 r = 0;
6039                 break;
6040         case KVM_CAP_X86_BUS_LOCK_EXIT:
6041                 r = -EINVAL;
6042                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6043                         break;
6044
6045                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6046                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6047                         break;
6048
6049                 if (kvm_has_bus_lock_exit &&
6050                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6051                         kvm->arch.bus_lock_detection_enabled = true;
6052                 r = 0;
6053                 break;
6054 #ifdef CONFIG_X86_SGX_KVM
6055         case KVM_CAP_SGX_ATTRIBUTE: {
6056                 unsigned long allowed_attributes = 0;
6057
6058                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6059                 if (r)
6060                         break;
6061
6062                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6063                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6064                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6065                         kvm->arch.sgx_provisioning_allowed = true;
6066                 else
6067                         r = -EINVAL;
6068                 break;
6069         }
6070 #endif
6071         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6072                 r = -EINVAL;
6073                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6074                         break;
6075
6076                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6077                 break;
6078         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6079                 r = -EINVAL;
6080                 if (!kvm_x86_ops.vm_move_enc_context_from)
6081                         break;
6082
6083                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6084                 break;
6085         case KVM_CAP_EXIT_HYPERCALL:
6086                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6087                         r = -EINVAL;
6088                         break;
6089                 }
6090                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6091                 r = 0;
6092                 break;
6093         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6094                 r = -EINVAL;
6095                 if (cap->args[0] & ~1)
6096                         break;
6097                 kvm->arch.exit_on_emulation_error = cap->args[0];
6098                 r = 0;
6099                 break;
6100         case KVM_CAP_PMU_CAPABILITY:
6101                 r = -EINVAL;
6102                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6103                         break;
6104
6105                 mutex_lock(&kvm->lock);
6106                 if (!kvm->created_vcpus) {
6107                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6108                         r = 0;
6109                 }
6110                 mutex_unlock(&kvm->lock);
6111                 break;
6112         default:
6113                 r = -EINVAL;
6114                 break;
6115         }
6116         return r;
6117 }
6118
6119 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6120 {
6121         struct kvm_x86_msr_filter *msr_filter;
6122
6123         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6124         if (!msr_filter)
6125                 return NULL;
6126
6127         msr_filter->default_allow = default_allow;
6128         return msr_filter;
6129 }
6130
6131 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6132 {
6133         u32 i;
6134
6135         if (!msr_filter)
6136                 return;
6137
6138         for (i = 0; i < msr_filter->count; i++)
6139                 kfree(msr_filter->ranges[i].bitmap);
6140
6141         kfree(msr_filter);
6142 }
6143
6144 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6145                               struct kvm_msr_filter_range *user_range)
6146 {
6147         unsigned long *bitmap = NULL;
6148         size_t bitmap_size;
6149
6150         if (!user_range->nmsrs)
6151                 return 0;
6152
6153         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6154                 return -EINVAL;
6155
6156         if (!user_range->flags)
6157                 return -EINVAL;
6158
6159         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6160         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6161                 return -EINVAL;
6162
6163         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6164         if (IS_ERR(bitmap))
6165                 return PTR_ERR(bitmap);
6166
6167         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6168                 .flags = user_range->flags,
6169                 .base = user_range->base,
6170                 .nmsrs = user_range->nmsrs,
6171                 .bitmap = bitmap,
6172         };
6173
6174         msr_filter->count++;
6175         return 0;
6176 }
6177
6178 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6179 {
6180         struct kvm_msr_filter __user *user_msr_filter = argp;
6181         struct kvm_x86_msr_filter *new_filter, *old_filter;
6182         struct kvm_msr_filter filter;
6183         bool default_allow;
6184         bool empty = true;
6185         int r = 0;
6186         u32 i;
6187
6188         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6189                 return -EFAULT;
6190
6191         if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6192                 return -EINVAL;
6193
6194         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6195                 empty &= !filter.ranges[i].nmsrs;
6196
6197         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6198         if (empty && !default_allow)
6199                 return -EINVAL;
6200
6201         new_filter = kvm_alloc_msr_filter(default_allow);
6202         if (!new_filter)
6203                 return -ENOMEM;
6204
6205         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6206                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6207                 if (r) {
6208                         kvm_free_msr_filter(new_filter);
6209                         return r;
6210                 }
6211         }
6212
6213         mutex_lock(&kvm->lock);
6214
6215         /* The per-VM filter is protected by kvm->lock... */
6216         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6217
6218         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6219         synchronize_srcu(&kvm->srcu);
6220
6221         kvm_free_msr_filter(old_filter);
6222
6223         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6224         mutex_unlock(&kvm->lock);
6225
6226         return 0;
6227 }
6228
6229 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6230 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6231 {
6232         struct kvm_vcpu *vcpu;
6233         unsigned long i;
6234         int ret = 0;
6235
6236         mutex_lock(&kvm->lock);
6237         kvm_for_each_vcpu(i, vcpu, kvm) {
6238                 if (!vcpu->arch.pv_time.active)
6239                         continue;
6240
6241                 ret = kvm_set_guest_paused(vcpu);
6242                 if (ret) {
6243                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6244                                 vcpu->vcpu_id, ret);
6245                         break;
6246                 }
6247         }
6248         mutex_unlock(&kvm->lock);
6249
6250         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6251 }
6252
6253 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6254 {
6255         switch (state) {
6256         case PM_HIBERNATION_PREPARE:
6257         case PM_SUSPEND_PREPARE:
6258                 return kvm_arch_suspend_notifier(kvm);
6259         }
6260
6261         return NOTIFY_DONE;
6262 }
6263 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6264
6265 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6266 {
6267         struct kvm_clock_data data = { 0 };
6268
6269         get_kvmclock(kvm, &data);
6270         if (copy_to_user(argp, &data, sizeof(data)))
6271                 return -EFAULT;
6272
6273         return 0;
6274 }
6275
6276 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6277 {
6278         struct kvm_arch *ka = &kvm->arch;
6279         struct kvm_clock_data data;
6280         u64 now_raw_ns;
6281
6282         if (copy_from_user(&data, argp, sizeof(data)))
6283                 return -EFAULT;
6284
6285         /*
6286          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6287          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6288          */
6289         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6290                 return -EINVAL;
6291
6292         kvm_hv_request_tsc_page_update(kvm);
6293         kvm_start_pvclock_update(kvm);
6294         pvclock_update_vm_gtod_copy(kvm);
6295
6296         /*
6297          * This pairs with kvm_guest_time_update(): when masterclock is
6298          * in use, we use master_kernel_ns + kvmclock_offset to set
6299          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6300          * is slightly ahead) here we risk going negative on unsigned
6301          * 'system_time' when 'data.clock' is very small.
6302          */
6303         if (data.flags & KVM_CLOCK_REALTIME) {
6304                 u64 now_real_ns = ktime_get_real_ns();
6305
6306                 /*
6307                  * Avoid stepping the kvmclock backwards.
6308                  */
6309                 if (now_real_ns > data.realtime)
6310                         data.clock += now_real_ns - data.realtime;
6311         }
6312
6313         if (ka->use_master_clock)
6314                 now_raw_ns = ka->master_kernel_ns;
6315         else
6316                 now_raw_ns = get_kvmclock_base_ns();
6317         ka->kvmclock_offset = data.clock - now_raw_ns;
6318         kvm_end_pvclock_update(kvm);
6319         return 0;
6320 }
6321
6322 long kvm_arch_vm_ioctl(struct file *filp,
6323                        unsigned int ioctl, unsigned long arg)
6324 {
6325         struct kvm *kvm = filp->private_data;
6326         void __user *argp = (void __user *)arg;
6327         int r = -ENOTTY;
6328         /*
6329          * This union makes it completely explicit to gcc-3.x
6330          * that these two variables' stack usage should be
6331          * combined, not added together.
6332          */
6333         union {
6334                 struct kvm_pit_state ps;
6335                 struct kvm_pit_state2 ps2;
6336                 struct kvm_pit_config pit_config;
6337         } u;
6338
6339         switch (ioctl) {
6340         case KVM_SET_TSS_ADDR:
6341                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6342                 break;
6343         case KVM_SET_IDENTITY_MAP_ADDR: {
6344                 u64 ident_addr;
6345
6346                 mutex_lock(&kvm->lock);
6347                 r = -EINVAL;
6348                 if (kvm->created_vcpus)
6349                         goto set_identity_unlock;
6350                 r = -EFAULT;
6351                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6352                         goto set_identity_unlock;
6353                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6354 set_identity_unlock:
6355                 mutex_unlock(&kvm->lock);
6356                 break;
6357         }
6358         case KVM_SET_NR_MMU_PAGES:
6359                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6360                 break;
6361         case KVM_GET_NR_MMU_PAGES:
6362                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6363                 break;
6364         case KVM_CREATE_IRQCHIP: {
6365                 mutex_lock(&kvm->lock);
6366
6367                 r = -EEXIST;
6368                 if (irqchip_in_kernel(kvm))
6369                         goto create_irqchip_unlock;
6370
6371                 r = -EINVAL;
6372                 if (kvm->created_vcpus)
6373                         goto create_irqchip_unlock;
6374
6375                 r = kvm_pic_init(kvm);
6376                 if (r)
6377                         goto create_irqchip_unlock;
6378
6379                 r = kvm_ioapic_init(kvm);
6380                 if (r) {
6381                         kvm_pic_destroy(kvm);
6382                         goto create_irqchip_unlock;
6383                 }
6384
6385                 r = kvm_setup_default_irq_routing(kvm);
6386                 if (r) {
6387                         kvm_ioapic_destroy(kvm);
6388                         kvm_pic_destroy(kvm);
6389                         goto create_irqchip_unlock;
6390                 }
6391                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6392                 smp_wmb();
6393                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6394                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6395         create_irqchip_unlock:
6396                 mutex_unlock(&kvm->lock);
6397                 break;
6398         }
6399         case KVM_CREATE_PIT:
6400                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6401                 goto create_pit;
6402         case KVM_CREATE_PIT2:
6403                 r = -EFAULT;
6404                 if (copy_from_user(&u.pit_config, argp,
6405                                    sizeof(struct kvm_pit_config)))
6406                         goto out;
6407         create_pit:
6408                 mutex_lock(&kvm->lock);
6409                 r = -EEXIST;
6410                 if (kvm->arch.vpit)
6411                         goto create_pit_unlock;
6412                 r = -ENOMEM;
6413                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6414                 if (kvm->arch.vpit)
6415                         r = 0;
6416         create_pit_unlock:
6417                 mutex_unlock(&kvm->lock);
6418                 break;
6419         case KVM_GET_IRQCHIP: {
6420                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6421                 struct kvm_irqchip *chip;
6422
6423                 chip = memdup_user(argp, sizeof(*chip));
6424                 if (IS_ERR(chip)) {
6425                         r = PTR_ERR(chip);
6426                         goto out;
6427                 }
6428
6429                 r = -ENXIO;
6430                 if (!irqchip_kernel(kvm))
6431                         goto get_irqchip_out;
6432                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6433                 if (r)
6434                         goto get_irqchip_out;
6435                 r = -EFAULT;
6436                 if (copy_to_user(argp, chip, sizeof(*chip)))
6437                         goto get_irqchip_out;
6438                 r = 0;
6439         get_irqchip_out:
6440                 kfree(chip);
6441                 break;
6442         }
6443         case KVM_SET_IRQCHIP: {
6444                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6445                 struct kvm_irqchip *chip;
6446
6447                 chip = memdup_user(argp, sizeof(*chip));
6448                 if (IS_ERR(chip)) {
6449                         r = PTR_ERR(chip);
6450                         goto out;
6451                 }
6452
6453                 r = -ENXIO;
6454                 if (!irqchip_kernel(kvm))
6455                         goto set_irqchip_out;
6456                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6457         set_irqchip_out:
6458                 kfree(chip);
6459                 break;
6460         }
6461         case KVM_GET_PIT: {
6462                 r = -EFAULT;
6463                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6464                         goto out;
6465                 r = -ENXIO;
6466                 if (!kvm->arch.vpit)
6467                         goto out;
6468                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6469                 if (r)
6470                         goto out;
6471                 r = -EFAULT;
6472                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6473                         goto out;
6474                 r = 0;
6475                 break;
6476         }
6477         case KVM_SET_PIT: {
6478                 r = -EFAULT;
6479                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6480                         goto out;
6481                 mutex_lock(&kvm->lock);
6482                 r = -ENXIO;
6483                 if (!kvm->arch.vpit)
6484                         goto set_pit_out;
6485                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6486 set_pit_out:
6487                 mutex_unlock(&kvm->lock);
6488                 break;
6489         }
6490         case KVM_GET_PIT2: {
6491                 r = -ENXIO;
6492                 if (!kvm->arch.vpit)
6493                         goto out;
6494                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6495                 if (r)
6496                         goto out;
6497                 r = -EFAULT;
6498                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6499                         goto out;
6500                 r = 0;
6501                 break;
6502         }
6503         case KVM_SET_PIT2: {
6504                 r = -EFAULT;
6505                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6506                         goto out;
6507                 mutex_lock(&kvm->lock);
6508                 r = -ENXIO;
6509                 if (!kvm->arch.vpit)
6510                         goto set_pit2_out;
6511                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6512 set_pit2_out:
6513                 mutex_unlock(&kvm->lock);
6514                 break;
6515         }
6516         case KVM_REINJECT_CONTROL: {
6517                 struct kvm_reinject_control control;
6518                 r =  -EFAULT;
6519                 if (copy_from_user(&control, argp, sizeof(control)))
6520                         goto out;
6521                 r = -ENXIO;
6522                 if (!kvm->arch.vpit)
6523                         goto out;
6524                 r = kvm_vm_ioctl_reinject(kvm, &control);
6525                 break;
6526         }
6527         case KVM_SET_BOOT_CPU_ID:
6528                 r = 0;
6529                 mutex_lock(&kvm->lock);
6530                 if (kvm->created_vcpus)
6531                         r = -EBUSY;
6532                 else
6533                         kvm->arch.bsp_vcpu_id = arg;
6534                 mutex_unlock(&kvm->lock);
6535                 break;
6536 #ifdef CONFIG_KVM_XEN
6537         case KVM_XEN_HVM_CONFIG: {
6538                 struct kvm_xen_hvm_config xhc;
6539                 r = -EFAULT;
6540                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6541                         goto out;
6542                 r = kvm_xen_hvm_config(kvm, &xhc);
6543                 break;
6544         }
6545         case KVM_XEN_HVM_GET_ATTR: {
6546                 struct kvm_xen_hvm_attr xha;
6547
6548                 r = -EFAULT;
6549                 if (copy_from_user(&xha, argp, sizeof(xha)))
6550                         goto out;
6551                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6552                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6553                         r = -EFAULT;
6554                 break;
6555         }
6556         case KVM_XEN_HVM_SET_ATTR: {
6557                 struct kvm_xen_hvm_attr xha;
6558
6559                 r = -EFAULT;
6560                 if (copy_from_user(&xha, argp, sizeof(xha)))
6561                         goto out;
6562                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6563                 break;
6564         }
6565         case KVM_XEN_HVM_EVTCHN_SEND: {
6566                 struct kvm_irq_routing_xen_evtchn uxe;
6567
6568                 r = -EFAULT;
6569                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6570                         goto out;
6571                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6572                 break;
6573         }
6574 #endif
6575         case KVM_SET_CLOCK:
6576                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6577                 break;
6578         case KVM_GET_CLOCK:
6579                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6580                 break;
6581         case KVM_SET_TSC_KHZ: {
6582                 u32 user_tsc_khz;
6583
6584                 r = -EINVAL;
6585                 user_tsc_khz = (u32)arg;
6586
6587                 if (kvm_has_tsc_control &&
6588                     user_tsc_khz >= kvm_max_guest_tsc_khz)
6589                         goto out;
6590
6591                 if (user_tsc_khz == 0)
6592                         user_tsc_khz = tsc_khz;
6593
6594                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6595                 r = 0;
6596
6597                 goto out;
6598         }
6599         case KVM_GET_TSC_KHZ: {
6600                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6601                 goto out;
6602         }
6603         case KVM_MEMORY_ENCRYPT_OP: {
6604                 r = -ENOTTY;
6605                 if (!kvm_x86_ops.mem_enc_ioctl)
6606                         goto out;
6607
6608                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6609                 break;
6610         }
6611         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6612                 struct kvm_enc_region region;
6613
6614                 r = -EFAULT;
6615                 if (copy_from_user(&region, argp, sizeof(region)))
6616                         goto out;
6617
6618                 r = -ENOTTY;
6619                 if (!kvm_x86_ops.mem_enc_register_region)
6620                         goto out;
6621
6622                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6623                 break;
6624         }
6625         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6626                 struct kvm_enc_region region;
6627
6628                 r = -EFAULT;
6629                 if (copy_from_user(&region, argp, sizeof(region)))
6630                         goto out;
6631
6632                 r = -ENOTTY;
6633                 if (!kvm_x86_ops.mem_enc_unregister_region)
6634                         goto out;
6635
6636                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6637                 break;
6638         }
6639         case KVM_HYPERV_EVENTFD: {
6640                 struct kvm_hyperv_eventfd hvevfd;
6641
6642                 r = -EFAULT;
6643                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6644                         goto out;
6645                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6646                 break;
6647         }
6648         case KVM_SET_PMU_EVENT_FILTER:
6649                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6650                 break;
6651         case KVM_X86_SET_MSR_FILTER:
6652                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6653                 break;
6654         default:
6655                 r = -ENOTTY;
6656         }
6657 out:
6658         return r;
6659 }
6660
6661 static void kvm_init_msr_list(void)
6662 {
6663         struct x86_pmu_capability x86_pmu;
6664         u32 dummy[2];
6665         unsigned i;
6666
6667         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6668                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6669
6670         perf_get_x86_pmu_capability(&x86_pmu);
6671
6672         num_msrs_to_save = 0;
6673         num_emulated_msrs = 0;
6674         num_msr_based_features = 0;
6675
6676         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6677                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6678                         continue;
6679
6680                 /*
6681                  * Even MSRs that are valid in the host may not be exposed
6682                  * to the guests in some cases.
6683                  */
6684                 switch (msrs_to_save_all[i]) {
6685                 case MSR_IA32_BNDCFGS:
6686                         if (!kvm_mpx_supported())
6687                                 continue;
6688                         break;
6689                 case MSR_TSC_AUX:
6690                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6691                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6692                                 continue;
6693                         break;
6694                 case MSR_IA32_UMWAIT_CONTROL:
6695                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6696                                 continue;
6697                         break;
6698                 case MSR_IA32_RTIT_CTL:
6699                 case MSR_IA32_RTIT_STATUS:
6700                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6701                                 continue;
6702                         break;
6703                 case MSR_IA32_RTIT_CR3_MATCH:
6704                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6705                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6706                                 continue;
6707                         break;
6708                 case MSR_IA32_RTIT_OUTPUT_BASE:
6709                 case MSR_IA32_RTIT_OUTPUT_MASK:
6710                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6711                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6712                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6713                                 continue;
6714                         break;
6715                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6716                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6717                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6718                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6719                                 continue;
6720                         break;
6721                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6722                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6723                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6724                                 continue;
6725                         break;
6726                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6727                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6728                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6729                                 continue;
6730                         break;
6731                 case MSR_IA32_XFD:
6732                 case MSR_IA32_XFD_ERR:
6733                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6734                                 continue;
6735                         break;
6736                 default:
6737                         break;
6738                 }
6739
6740                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6741         }
6742
6743         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6744                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6745                         continue;
6746
6747                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6748         }
6749
6750         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6751                 struct kvm_msr_entry msr;
6752
6753                 msr.index = msr_based_features_all[i];
6754                 if (kvm_get_msr_feature(&msr))
6755                         continue;
6756
6757                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6758         }
6759 }
6760
6761 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6762                            const void *v)
6763 {
6764         int handled = 0;
6765         int n;
6766
6767         do {
6768                 n = min(len, 8);
6769                 if (!(lapic_in_kernel(vcpu) &&
6770                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6771                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6772                         break;
6773                 handled += n;
6774                 addr += n;
6775                 len -= n;
6776                 v += n;
6777         } while (len);
6778
6779         return handled;
6780 }
6781
6782 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6783 {
6784         int handled = 0;
6785         int n;
6786
6787         do {
6788                 n = min(len, 8);
6789                 if (!(lapic_in_kernel(vcpu) &&
6790                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6791                                          addr, n, v))
6792                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6793                         break;
6794                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6795                 handled += n;
6796                 addr += n;
6797                 len -= n;
6798                 v += n;
6799         } while (len);
6800
6801         return handled;
6802 }
6803
6804 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6805                         struct kvm_segment *var, int seg)
6806 {
6807         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6808 }
6809
6810 void kvm_get_segment(struct kvm_vcpu *vcpu,
6811                      struct kvm_segment *var, int seg)
6812 {
6813         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6814 }
6815
6816 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6817                            struct x86_exception *exception)
6818 {
6819         struct kvm_mmu *mmu = vcpu->arch.mmu;
6820         gpa_t t_gpa;
6821
6822         BUG_ON(!mmu_is_nested(vcpu));
6823
6824         /* NPT walks are always user-walks */
6825         access |= PFERR_USER_MASK;
6826         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6827
6828         return t_gpa;
6829 }
6830
6831 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6832                               struct x86_exception *exception)
6833 {
6834         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6835
6836         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6837         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6838 }
6839 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6840
6841  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6842                                 struct x86_exception *exception)
6843 {
6844         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6845
6846         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6847         access |= PFERR_FETCH_MASK;
6848         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6849 }
6850
6851 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6852                                struct x86_exception *exception)
6853 {
6854         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6855
6856         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6857         access |= PFERR_WRITE_MASK;
6858         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6859 }
6860 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6861
6862 /* uses this to access any guest's mapped memory without checking CPL */
6863 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6864                                 struct x86_exception *exception)
6865 {
6866         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6867
6868         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6869 }
6870
6871 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6872                                       struct kvm_vcpu *vcpu, u64 access,
6873                                       struct x86_exception *exception)
6874 {
6875         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6876         void *data = val;
6877         int r = X86EMUL_CONTINUE;
6878
6879         while (bytes) {
6880                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6881                 unsigned offset = addr & (PAGE_SIZE-1);
6882                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6883                 int ret;
6884
6885                 if (gpa == UNMAPPED_GVA)
6886                         return X86EMUL_PROPAGATE_FAULT;
6887                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6888                                                offset, toread);
6889                 if (ret < 0) {
6890                         r = X86EMUL_IO_NEEDED;
6891                         goto out;
6892                 }
6893
6894                 bytes -= toread;
6895                 data += toread;
6896                 addr += toread;
6897         }
6898 out:
6899         return r;
6900 }
6901
6902 /* used for instruction fetching */
6903 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6904                                 gva_t addr, void *val, unsigned int bytes,
6905                                 struct x86_exception *exception)
6906 {
6907         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6908         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6909         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6910         unsigned offset;
6911         int ret;
6912
6913         /* Inline kvm_read_guest_virt_helper for speed.  */
6914         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6915                                     exception);
6916         if (unlikely(gpa == UNMAPPED_GVA))
6917                 return X86EMUL_PROPAGATE_FAULT;
6918
6919         offset = addr & (PAGE_SIZE-1);
6920         if (WARN_ON(offset + bytes > PAGE_SIZE))
6921                 bytes = (unsigned)PAGE_SIZE - offset;
6922         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6923                                        offset, bytes);
6924         if (unlikely(ret < 0))
6925                 return X86EMUL_IO_NEEDED;
6926
6927         return X86EMUL_CONTINUE;
6928 }
6929
6930 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6931                                gva_t addr, void *val, unsigned int bytes,
6932                                struct x86_exception *exception)
6933 {
6934         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6935
6936         /*
6937          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6938          * is returned, but our callers are not ready for that and they blindly
6939          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6940          * uninitialized kernel stack memory into cr2 and error code.
6941          */
6942         memset(exception, 0, sizeof(*exception));
6943         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6944                                           exception);
6945 }
6946 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6947
6948 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6949                              gva_t addr, void *val, unsigned int bytes,
6950                              struct x86_exception *exception, bool system)
6951 {
6952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6953         u64 access = 0;
6954
6955         if (system)
6956                 access |= PFERR_IMPLICIT_ACCESS;
6957         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6958                 access |= PFERR_USER_MASK;
6959
6960         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6961 }
6962
6963 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6964                 unsigned long addr, void *val, unsigned int bytes)
6965 {
6966         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6967         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6968
6969         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6970 }
6971
6972 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6973                                       struct kvm_vcpu *vcpu, u64 access,
6974                                       struct x86_exception *exception)
6975 {
6976         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6977         void *data = val;
6978         int r = X86EMUL_CONTINUE;
6979
6980         while (bytes) {
6981                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6982                 unsigned offset = addr & (PAGE_SIZE-1);
6983                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6984                 int ret;
6985
6986                 if (gpa == UNMAPPED_GVA)
6987                         return X86EMUL_PROPAGATE_FAULT;
6988                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6989                 if (ret < 0) {
6990                         r = X86EMUL_IO_NEEDED;
6991                         goto out;
6992                 }
6993
6994                 bytes -= towrite;
6995                 data += towrite;
6996                 addr += towrite;
6997         }
6998 out:
6999         return r;
7000 }
7001
7002 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7003                               unsigned int bytes, struct x86_exception *exception,
7004                               bool system)
7005 {
7006         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7007         u64 access = PFERR_WRITE_MASK;
7008
7009         if (system)
7010                 access |= PFERR_IMPLICIT_ACCESS;
7011         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7012                 access |= PFERR_USER_MASK;
7013
7014         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7015                                            access, exception);
7016 }
7017
7018 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7019                                 unsigned int bytes, struct x86_exception *exception)
7020 {
7021         /* kvm_write_guest_virt_system can pull in tons of pages. */
7022         vcpu->arch.l1tf_flush_l1d = true;
7023
7024         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7025                                            PFERR_WRITE_MASK, exception);
7026 }
7027 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7028
7029 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7030                                 void *insn, int insn_len)
7031 {
7032         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7033                                                             insn, insn_len);
7034 }
7035
7036 int handle_ud(struct kvm_vcpu *vcpu)
7037 {
7038         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7039         int emul_type = EMULTYPE_TRAP_UD;
7040         char sig[5]; /* ud2; .ascii "kvm" */
7041         struct x86_exception e;
7042
7043         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7044                 return 1;
7045
7046         if (force_emulation_prefix &&
7047             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7048                                 sig, sizeof(sig), &e) == 0 &&
7049             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7050                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7051                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7052         }
7053
7054         return kvm_emulate_instruction(vcpu, emul_type);
7055 }
7056 EXPORT_SYMBOL_GPL(handle_ud);
7057
7058 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7059                             gpa_t gpa, bool write)
7060 {
7061         /* For APIC access vmexit */
7062         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7063                 return 1;
7064
7065         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7066                 trace_vcpu_match_mmio(gva, gpa, write, true);
7067                 return 1;
7068         }
7069
7070         return 0;
7071 }
7072
7073 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7074                                 gpa_t *gpa, struct x86_exception *exception,
7075                                 bool write)
7076 {
7077         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7078         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7079                 | (write ? PFERR_WRITE_MASK : 0);
7080
7081         /*
7082          * currently PKRU is only applied to ept enabled guest so
7083          * there is no pkey in EPT page table for L1 guest or EPT
7084          * shadow page table for L2 guest.
7085          */
7086         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7087             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7088                               vcpu->arch.mmio_access, 0, access))) {
7089                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7090                                         (gva & (PAGE_SIZE - 1));
7091                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7092                 return 1;
7093         }
7094
7095         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7096
7097         if (*gpa == UNMAPPED_GVA)
7098                 return -1;
7099
7100         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7101 }
7102
7103 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7104                         const void *val, int bytes)
7105 {
7106         int ret;
7107
7108         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7109         if (ret < 0)
7110                 return 0;
7111         kvm_page_track_write(vcpu, gpa, val, bytes);
7112         return 1;
7113 }
7114
7115 struct read_write_emulator_ops {
7116         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7117                                   int bytes);
7118         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7119                                   void *val, int bytes);
7120         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7121                                int bytes, void *val);
7122         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7123                                     void *val, int bytes);
7124         bool write;
7125 };
7126
7127 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7128 {
7129         if (vcpu->mmio_read_completed) {
7130                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7131                                vcpu->mmio_fragments[0].gpa, val);
7132                 vcpu->mmio_read_completed = 0;
7133                 return 1;
7134         }
7135
7136         return 0;
7137 }
7138
7139 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7140                         void *val, int bytes)
7141 {
7142         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7143 }
7144
7145 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7146                          void *val, int bytes)
7147 {
7148         return emulator_write_phys(vcpu, gpa, val, bytes);
7149 }
7150
7151 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7152 {
7153         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7154         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7155 }
7156
7157 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7158                           void *val, int bytes)
7159 {
7160         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7161         return X86EMUL_IO_NEEDED;
7162 }
7163
7164 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7165                            void *val, int bytes)
7166 {
7167         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7168
7169         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7170         return X86EMUL_CONTINUE;
7171 }
7172
7173 static const struct read_write_emulator_ops read_emultor = {
7174         .read_write_prepare = read_prepare,
7175         .read_write_emulate = read_emulate,
7176         .read_write_mmio = vcpu_mmio_read,
7177         .read_write_exit_mmio = read_exit_mmio,
7178 };
7179
7180 static const struct read_write_emulator_ops write_emultor = {
7181         .read_write_emulate = write_emulate,
7182         .read_write_mmio = write_mmio,
7183         .read_write_exit_mmio = write_exit_mmio,
7184         .write = true,
7185 };
7186
7187 static int emulator_read_write_onepage(unsigned long addr, void *val,
7188                                        unsigned int bytes,
7189                                        struct x86_exception *exception,
7190                                        struct kvm_vcpu *vcpu,
7191                                        const struct read_write_emulator_ops *ops)
7192 {
7193         gpa_t gpa;
7194         int handled, ret;
7195         bool write = ops->write;
7196         struct kvm_mmio_fragment *frag;
7197         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7198
7199         /*
7200          * If the exit was due to a NPF we may already have a GPA.
7201          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7202          * Note, this cannot be used on string operations since string
7203          * operation using rep will only have the initial GPA from the NPF
7204          * occurred.
7205          */
7206         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7207             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7208                 gpa = ctxt->gpa_val;
7209                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7210         } else {
7211                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7212                 if (ret < 0)
7213                         return X86EMUL_PROPAGATE_FAULT;
7214         }
7215
7216         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7217                 return X86EMUL_CONTINUE;
7218
7219         /*
7220          * Is this MMIO handled locally?
7221          */
7222         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7223         if (handled == bytes)
7224                 return X86EMUL_CONTINUE;
7225
7226         gpa += handled;
7227         bytes -= handled;
7228         val += handled;
7229
7230         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7231         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7232         frag->gpa = gpa;
7233         frag->data = val;
7234         frag->len = bytes;
7235         return X86EMUL_CONTINUE;
7236 }
7237
7238 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7239                         unsigned long addr,
7240                         void *val, unsigned int bytes,
7241                         struct x86_exception *exception,
7242                         const struct read_write_emulator_ops *ops)
7243 {
7244         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7245         gpa_t gpa;
7246         int rc;
7247
7248         if (ops->read_write_prepare &&
7249                   ops->read_write_prepare(vcpu, val, bytes))
7250                 return X86EMUL_CONTINUE;
7251
7252         vcpu->mmio_nr_fragments = 0;
7253
7254         /* Crossing a page boundary? */
7255         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7256                 int now;
7257
7258                 now = -addr & ~PAGE_MASK;
7259                 rc = emulator_read_write_onepage(addr, val, now, exception,
7260                                                  vcpu, ops);
7261
7262                 if (rc != X86EMUL_CONTINUE)
7263                         return rc;
7264                 addr += now;
7265                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7266                         addr = (u32)addr;
7267                 val += now;
7268                 bytes -= now;
7269         }
7270
7271         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7272                                          vcpu, ops);
7273         if (rc != X86EMUL_CONTINUE)
7274                 return rc;
7275
7276         if (!vcpu->mmio_nr_fragments)
7277                 return rc;
7278
7279         gpa = vcpu->mmio_fragments[0].gpa;
7280
7281         vcpu->mmio_needed = 1;
7282         vcpu->mmio_cur_fragment = 0;
7283
7284         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7285         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7286         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7287         vcpu->run->mmio.phys_addr = gpa;
7288
7289         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7290 }
7291
7292 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7293                                   unsigned long addr,
7294                                   void *val,
7295                                   unsigned int bytes,
7296                                   struct x86_exception *exception)
7297 {
7298         return emulator_read_write(ctxt, addr, val, bytes,
7299                                    exception, &read_emultor);
7300 }
7301
7302 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7303                             unsigned long addr,
7304                             const void *val,
7305                             unsigned int bytes,
7306                             struct x86_exception *exception)
7307 {
7308         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7309                                    exception, &write_emultor);
7310 }
7311
7312 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7313         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7314
7315 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7316                                      unsigned long addr,
7317                                      const void *old,
7318                                      const void *new,
7319                                      unsigned int bytes,
7320                                      struct x86_exception *exception)
7321 {
7322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7323         u64 page_line_mask;
7324         unsigned long hva;
7325         gpa_t gpa;
7326         int r;
7327
7328         /* guests cmpxchg8b have to be emulated atomically */
7329         if (bytes > 8 || (bytes & (bytes - 1)))
7330                 goto emul_write;
7331
7332         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7333
7334         if (gpa == UNMAPPED_GVA ||
7335             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7336                 goto emul_write;
7337
7338         /*
7339          * Emulate the atomic as a straight write to avoid #AC if SLD is
7340          * enabled in the host and the access splits a cache line.
7341          */
7342         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7343                 page_line_mask = ~(cache_line_size() - 1);
7344         else
7345                 page_line_mask = PAGE_MASK;
7346
7347         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7348                 goto emul_write;
7349
7350         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7351         if (kvm_is_error_hva(hva))
7352                 goto emul_write;
7353
7354         hva += offset_in_page(gpa);
7355
7356         switch (bytes) {
7357         case 1:
7358                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7359                 break;
7360         case 2:
7361                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7362                 break;
7363         case 4:
7364                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7365                 break;
7366         case 8:
7367                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7368                 break;
7369         default:
7370                 BUG();
7371         }
7372
7373         if (r < 0)
7374                 return X86EMUL_UNHANDLEABLE;
7375         if (r)
7376                 return X86EMUL_CMPXCHG_FAILED;
7377
7378         kvm_page_track_write(vcpu, gpa, new, bytes);
7379
7380         return X86EMUL_CONTINUE;
7381
7382 emul_write:
7383         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7384
7385         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7386 }
7387
7388 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7389 {
7390         int r = 0, i;
7391
7392         for (i = 0; i < vcpu->arch.pio.count; i++) {
7393                 if (vcpu->arch.pio.in)
7394                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7395                                             vcpu->arch.pio.size, pd);
7396                 else
7397                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7398                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7399                                              pd);
7400                 if (r)
7401                         break;
7402                 pd += vcpu->arch.pio.size;
7403         }
7404         return r;
7405 }
7406
7407 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7408                                unsigned short port,
7409                                unsigned int count, bool in)
7410 {
7411         vcpu->arch.pio.port = port;
7412         vcpu->arch.pio.in = in;
7413         vcpu->arch.pio.count  = count;
7414         vcpu->arch.pio.size = size;
7415
7416         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7417                 return 1;
7418
7419         vcpu->run->exit_reason = KVM_EXIT_IO;
7420         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7421         vcpu->run->io.size = size;
7422         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7423         vcpu->run->io.count = count;
7424         vcpu->run->io.port = port;
7425
7426         return 0;
7427 }
7428
7429 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7430                              unsigned short port, unsigned int count)
7431 {
7432         WARN_ON(vcpu->arch.pio.count);
7433         memset(vcpu->arch.pio_data, 0, size * count);
7434         return emulator_pio_in_out(vcpu, size, port, count, true);
7435 }
7436
7437 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7438 {
7439         int size = vcpu->arch.pio.size;
7440         unsigned count = vcpu->arch.pio.count;
7441         memcpy(val, vcpu->arch.pio_data, size * count);
7442         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7443         vcpu->arch.pio.count = 0;
7444 }
7445
7446 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7447                            unsigned short port, void *val, unsigned int count)
7448 {
7449         if (vcpu->arch.pio.count) {
7450                 /*
7451                  * Complete a previous iteration that required userspace I/O.
7452                  * Note, @count isn't guaranteed to match pio.count as userspace
7453                  * can modify ECX before rerunning the vCPU.  Ignore any such
7454                  * shenanigans as KVM doesn't support modifying the rep count,
7455                  * and the emulator ensures @count doesn't overflow the buffer.
7456                  */
7457         } else {
7458                 int r = __emulator_pio_in(vcpu, size, port, count);
7459                 if (!r)
7460                         return r;
7461
7462                 /* Results already available, fall through.  */
7463         }
7464
7465         complete_emulator_pio_in(vcpu, val);
7466         return 1;
7467 }
7468
7469 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7470                                     int size, unsigned short port, void *val,
7471                                     unsigned int count)
7472 {
7473         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7474
7475 }
7476
7477 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7478                             unsigned short port, const void *val,
7479                             unsigned int count)
7480 {
7481         int ret;
7482
7483         memcpy(vcpu->arch.pio_data, val, size * count);
7484         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7485         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7486         if (ret)
7487                 vcpu->arch.pio.count = 0;
7488
7489         return ret;
7490 }
7491
7492 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7493                                      int size, unsigned short port,
7494                                      const void *val, unsigned int count)
7495 {
7496         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7497 }
7498
7499 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7500 {
7501         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7502 }
7503
7504 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7505 {
7506         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7507 }
7508
7509 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7510 {
7511         if (!need_emulate_wbinvd(vcpu))
7512                 return X86EMUL_CONTINUE;
7513
7514         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7515                 int cpu = get_cpu();
7516
7517                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7518                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7519                                 wbinvd_ipi, NULL, 1);
7520                 put_cpu();
7521                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7522         } else
7523                 wbinvd();
7524         return X86EMUL_CONTINUE;
7525 }
7526
7527 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7528 {
7529         kvm_emulate_wbinvd_noskip(vcpu);
7530         return kvm_skip_emulated_instruction(vcpu);
7531 }
7532 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7533
7534
7535
7536 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7537 {
7538         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7539 }
7540
7541 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7542                             unsigned long *dest)
7543 {
7544         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7545 }
7546
7547 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7548                            unsigned long value)
7549 {
7550
7551         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7552 }
7553
7554 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7555 {
7556         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7557 }
7558
7559 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7560 {
7561         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7562         unsigned long value;
7563
7564         switch (cr) {
7565         case 0:
7566                 value = kvm_read_cr0(vcpu);
7567                 break;
7568         case 2:
7569                 value = vcpu->arch.cr2;
7570                 break;
7571         case 3:
7572                 value = kvm_read_cr3(vcpu);
7573                 break;
7574         case 4:
7575                 value = kvm_read_cr4(vcpu);
7576                 break;
7577         case 8:
7578                 value = kvm_get_cr8(vcpu);
7579                 break;
7580         default:
7581                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7582                 return 0;
7583         }
7584
7585         return value;
7586 }
7587
7588 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7589 {
7590         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7591         int res = 0;
7592
7593         switch (cr) {
7594         case 0:
7595                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7596                 break;
7597         case 2:
7598                 vcpu->arch.cr2 = val;
7599                 break;
7600         case 3:
7601                 res = kvm_set_cr3(vcpu, val);
7602                 break;
7603         case 4:
7604                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7605                 break;
7606         case 8:
7607                 res = kvm_set_cr8(vcpu, val);
7608                 break;
7609         default:
7610                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7611                 res = -1;
7612         }
7613
7614         return res;
7615 }
7616
7617 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7618 {
7619         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7620 }
7621
7622 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7623 {
7624         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7625 }
7626
7627 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7628 {
7629         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7630 }
7631
7632 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7633 {
7634         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7635 }
7636
7637 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7638 {
7639         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7640 }
7641
7642 static unsigned long emulator_get_cached_segment_base(
7643         struct x86_emulate_ctxt *ctxt, int seg)
7644 {
7645         return get_segment_base(emul_to_vcpu(ctxt), seg);
7646 }
7647
7648 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7649                                  struct desc_struct *desc, u32 *base3,
7650                                  int seg)
7651 {
7652         struct kvm_segment var;
7653
7654         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7655         *selector = var.selector;
7656
7657         if (var.unusable) {
7658                 memset(desc, 0, sizeof(*desc));
7659                 if (base3)
7660                         *base3 = 0;
7661                 return false;
7662         }
7663
7664         if (var.g)
7665                 var.limit >>= 12;
7666         set_desc_limit(desc, var.limit);
7667         set_desc_base(desc, (unsigned long)var.base);
7668 #ifdef CONFIG_X86_64
7669         if (base3)
7670                 *base3 = var.base >> 32;
7671 #endif
7672         desc->type = var.type;
7673         desc->s = var.s;
7674         desc->dpl = var.dpl;
7675         desc->p = var.present;
7676         desc->avl = var.avl;
7677         desc->l = var.l;
7678         desc->d = var.db;
7679         desc->g = var.g;
7680
7681         return true;
7682 }
7683
7684 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7685                                  struct desc_struct *desc, u32 base3,
7686                                  int seg)
7687 {
7688         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7689         struct kvm_segment var;
7690
7691         var.selector = selector;
7692         var.base = get_desc_base(desc);
7693 #ifdef CONFIG_X86_64
7694         var.base |= ((u64)base3) << 32;
7695 #endif
7696         var.limit = get_desc_limit(desc);
7697         if (desc->g)
7698                 var.limit = (var.limit << 12) | 0xfff;
7699         var.type = desc->type;
7700         var.dpl = desc->dpl;
7701         var.db = desc->d;
7702         var.s = desc->s;
7703         var.l = desc->l;
7704         var.g = desc->g;
7705         var.avl = desc->avl;
7706         var.present = desc->p;
7707         var.unusable = !var.present;
7708         var.padding = 0;
7709
7710         kvm_set_segment(vcpu, &var, seg);
7711         return;
7712 }
7713
7714 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7715                                         u32 msr_index, u64 *pdata)
7716 {
7717         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7718         int r;
7719
7720         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7721
7722         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7723                                     complete_emulated_rdmsr, r)) {
7724                 /* Bounce to user space */
7725                 return X86EMUL_IO_NEEDED;
7726         }
7727
7728         return r;
7729 }
7730
7731 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7732                                         u32 msr_index, u64 data)
7733 {
7734         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7735         int r;
7736
7737         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7738
7739         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7740                                     complete_emulated_msr_access, r)) {
7741                 /* Bounce to user space */
7742                 return X86EMUL_IO_NEEDED;
7743         }
7744
7745         return r;
7746 }
7747
7748 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7749                             u32 msr_index, u64 *pdata)
7750 {
7751         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7752 }
7753
7754 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7755                             u32 msr_index, u64 data)
7756 {
7757         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7758 }
7759
7760 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7761 {
7762         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7763
7764         return vcpu->arch.smbase;
7765 }
7766
7767 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7768 {
7769         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7770
7771         vcpu->arch.smbase = smbase;
7772 }
7773
7774 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7775                               u32 pmc)
7776 {
7777         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7778                 return 0;
7779         return -EINVAL;
7780 }
7781
7782 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7783                              u32 pmc, u64 *pdata)
7784 {
7785         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7786 }
7787
7788 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7789 {
7790         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7791 }
7792
7793 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7794                               struct x86_instruction_info *info,
7795                               enum x86_intercept_stage stage)
7796 {
7797         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7798                                             &ctxt->exception);
7799 }
7800
7801 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7802                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7803                               bool exact_only)
7804 {
7805         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7806 }
7807
7808 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7809 {
7810         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7811 }
7812
7813 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7814 {
7815         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7816 }
7817
7818 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7819 {
7820         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7821 }
7822
7823 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7824 {
7825         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7826 }
7827
7828 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7829 {
7830         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7831 }
7832
7833 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7834 {
7835         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7836 }
7837
7838 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7839 {
7840         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7841 }
7842
7843 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7844 {
7845         return emul_to_vcpu(ctxt)->arch.hflags;
7846 }
7847
7848 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7849 {
7850         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7851
7852         kvm_smm_changed(vcpu, false);
7853 }
7854
7855 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7856                                   const char *smstate)
7857 {
7858         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7859 }
7860
7861 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7862 {
7863         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7864 }
7865
7866 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7867 {
7868         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7869 }
7870
7871 static const struct x86_emulate_ops emulate_ops = {
7872         .read_gpr            = emulator_read_gpr,
7873         .write_gpr           = emulator_write_gpr,
7874         .read_std            = emulator_read_std,
7875         .write_std           = emulator_write_std,
7876         .read_phys           = kvm_read_guest_phys_system,
7877         .fetch               = kvm_fetch_guest_virt,
7878         .read_emulated       = emulator_read_emulated,
7879         .write_emulated      = emulator_write_emulated,
7880         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7881         .invlpg              = emulator_invlpg,
7882         .pio_in_emulated     = emulator_pio_in_emulated,
7883         .pio_out_emulated    = emulator_pio_out_emulated,
7884         .get_segment         = emulator_get_segment,
7885         .set_segment         = emulator_set_segment,
7886         .get_cached_segment_base = emulator_get_cached_segment_base,
7887         .get_gdt             = emulator_get_gdt,
7888         .get_idt             = emulator_get_idt,
7889         .set_gdt             = emulator_set_gdt,
7890         .set_idt             = emulator_set_idt,
7891         .get_cr              = emulator_get_cr,
7892         .set_cr              = emulator_set_cr,
7893         .cpl                 = emulator_get_cpl,
7894         .get_dr              = emulator_get_dr,
7895         .set_dr              = emulator_set_dr,
7896         .get_smbase          = emulator_get_smbase,
7897         .set_smbase          = emulator_set_smbase,
7898         .set_msr_with_filter = emulator_set_msr_with_filter,
7899         .get_msr_with_filter = emulator_get_msr_with_filter,
7900         .set_msr             = emulator_set_msr,
7901         .get_msr             = emulator_get_msr,
7902         .check_pmc           = emulator_check_pmc,
7903         .read_pmc            = emulator_read_pmc,
7904         .halt                = emulator_halt,
7905         .wbinvd              = emulator_wbinvd,
7906         .fix_hypercall       = emulator_fix_hypercall,
7907         .intercept           = emulator_intercept,
7908         .get_cpuid           = emulator_get_cpuid,
7909         .guest_has_long_mode = emulator_guest_has_long_mode,
7910         .guest_has_movbe     = emulator_guest_has_movbe,
7911         .guest_has_fxsr      = emulator_guest_has_fxsr,
7912         .guest_has_rdpid     = emulator_guest_has_rdpid,
7913         .set_nmi_mask        = emulator_set_nmi_mask,
7914         .get_hflags          = emulator_get_hflags,
7915         .exiting_smm         = emulator_exiting_smm,
7916         .leave_smm           = emulator_leave_smm,
7917         .triple_fault        = emulator_triple_fault,
7918         .set_xcr             = emulator_set_xcr,
7919 };
7920
7921 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7922 {
7923         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7924         /*
7925          * an sti; sti; sequence only disable interrupts for the first
7926          * instruction. So, if the last instruction, be it emulated or
7927          * not, left the system with the INT_STI flag enabled, it
7928          * means that the last instruction is an sti. We should not
7929          * leave the flag on in this case. The same goes for mov ss
7930          */
7931         if (int_shadow & mask)
7932                 mask = 0;
7933         if (unlikely(int_shadow || mask)) {
7934                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7935                 if (!mask)
7936                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7937         }
7938 }
7939
7940 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7941 {
7942         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7943         if (ctxt->exception.vector == PF_VECTOR)
7944                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7945
7946         if (ctxt->exception.error_code_valid)
7947                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7948                                       ctxt->exception.error_code);
7949         else
7950                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7951         return false;
7952 }
7953
7954 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7955 {
7956         struct x86_emulate_ctxt *ctxt;
7957
7958         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7959         if (!ctxt) {
7960                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7961                 return NULL;
7962         }
7963
7964         ctxt->vcpu = vcpu;
7965         ctxt->ops = &emulate_ops;
7966         vcpu->arch.emulate_ctxt = ctxt;
7967
7968         return ctxt;
7969 }
7970
7971 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7972 {
7973         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7974         int cs_db, cs_l;
7975
7976         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7977
7978         ctxt->gpa_available = false;
7979         ctxt->eflags = kvm_get_rflags(vcpu);
7980         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7981
7982         ctxt->eip = kvm_rip_read(vcpu);
7983         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7984                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7985                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7986                      cs_db                              ? X86EMUL_MODE_PROT32 :
7987                                                           X86EMUL_MODE_PROT16;
7988         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7989         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7990         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7991
7992         ctxt->interruptibility = 0;
7993         ctxt->have_exception = false;
7994         ctxt->exception.vector = -1;
7995         ctxt->perm_ok = false;
7996
7997         init_decode_cache(ctxt);
7998         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7999 }
8000
8001 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8002 {
8003         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8004         int ret;
8005
8006         init_emulate_ctxt(vcpu);
8007
8008         ctxt->op_bytes = 2;
8009         ctxt->ad_bytes = 2;
8010         ctxt->_eip = ctxt->eip + inc_eip;
8011         ret = emulate_int_real(ctxt, irq);
8012
8013         if (ret != X86EMUL_CONTINUE) {
8014                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8015         } else {
8016                 ctxt->eip = ctxt->_eip;
8017                 kvm_rip_write(vcpu, ctxt->eip);
8018                 kvm_set_rflags(vcpu, ctxt->eflags);
8019         }
8020 }
8021 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8022
8023 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8024                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8025 {
8026         struct kvm_run *run = vcpu->run;
8027         u64 info[5];
8028         u8 info_start;
8029
8030         /*
8031          * Zero the whole array used to retrieve the exit info, as casting to
8032          * u32 for select entries will leave some chunks uninitialized.
8033          */
8034         memset(&info, 0, sizeof(info));
8035
8036         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8037                                            &info[2], (u32 *)&info[3],
8038                                            (u32 *)&info[4]);
8039
8040         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8041         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8042
8043         /*
8044          * There's currently space for 13 entries, but 5 are used for the exit
8045          * reason and info.  Restrict to 4 to reduce the maintenance burden
8046          * when expanding kvm_run.emulation_failure in the future.
8047          */
8048         if (WARN_ON_ONCE(ndata > 4))
8049                 ndata = 4;
8050
8051         /* Always include the flags as a 'data' entry. */
8052         info_start = 1;
8053         run->emulation_failure.flags = 0;
8054
8055         if (insn_size) {
8056                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8057                               sizeof(run->emulation_failure.insn_bytes) != 16));
8058                 info_start += 2;
8059                 run->emulation_failure.flags |=
8060                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8061                 run->emulation_failure.insn_size = insn_size;
8062                 memset(run->emulation_failure.insn_bytes, 0x90,
8063                        sizeof(run->emulation_failure.insn_bytes));
8064                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8065         }
8066
8067         memcpy(&run->internal.data[info_start], info, sizeof(info));
8068         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8069                ndata * sizeof(data[0]));
8070
8071         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8072 }
8073
8074 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8075 {
8076         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8077
8078         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8079                                        ctxt->fetch.end - ctxt->fetch.data);
8080 }
8081
8082 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8083                                           u8 ndata)
8084 {
8085         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8086 }
8087 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8088
8089 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8090 {
8091         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8092 }
8093 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8094
8095 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8096 {
8097         struct kvm *kvm = vcpu->kvm;
8098
8099         ++vcpu->stat.insn_emulation_fail;
8100         trace_kvm_emulate_insn_failed(vcpu);
8101
8102         if (emulation_type & EMULTYPE_VMWARE_GP) {
8103                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8104                 return 1;
8105         }
8106
8107         if (kvm->arch.exit_on_emulation_error ||
8108             (emulation_type & EMULTYPE_SKIP)) {
8109                 prepare_emulation_ctxt_failure_exit(vcpu);
8110                 return 0;
8111         }
8112
8113         kvm_queue_exception(vcpu, UD_VECTOR);
8114
8115         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8116                 prepare_emulation_ctxt_failure_exit(vcpu);
8117                 return 0;
8118         }
8119
8120         return 1;
8121 }
8122
8123 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8124                                   bool write_fault_to_shadow_pgtable,
8125                                   int emulation_type)
8126 {
8127         gpa_t gpa = cr2_or_gpa;
8128         kvm_pfn_t pfn;
8129
8130         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8131                 return false;
8132
8133         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8134             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8135                 return false;
8136
8137         if (!vcpu->arch.mmu->root_role.direct) {
8138                 /*
8139                  * Write permission should be allowed since only
8140                  * write access need to be emulated.
8141                  */
8142                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8143
8144                 /*
8145                  * If the mapping is invalid in guest, let cpu retry
8146                  * it to generate fault.
8147                  */
8148                 if (gpa == UNMAPPED_GVA)
8149                         return true;
8150         }
8151
8152         /*
8153          * Do not retry the unhandleable instruction if it faults on the
8154          * readonly host memory, otherwise it will goto a infinite loop:
8155          * retry instruction -> write #PF -> emulation fail -> retry
8156          * instruction -> ...
8157          */
8158         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8159
8160         /*
8161          * If the instruction failed on the error pfn, it can not be fixed,
8162          * report the error to userspace.
8163          */
8164         if (is_error_noslot_pfn(pfn))
8165                 return false;
8166
8167         kvm_release_pfn_clean(pfn);
8168
8169         /* The instructions are well-emulated on direct mmu. */
8170         if (vcpu->arch.mmu->root_role.direct) {
8171                 unsigned int indirect_shadow_pages;
8172
8173                 write_lock(&vcpu->kvm->mmu_lock);
8174                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8175                 write_unlock(&vcpu->kvm->mmu_lock);
8176
8177                 if (indirect_shadow_pages)
8178                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8179
8180                 return true;
8181         }
8182
8183         /*
8184          * if emulation was due to access to shadowed page table
8185          * and it failed try to unshadow page and re-enter the
8186          * guest to let CPU execute the instruction.
8187          */
8188         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8189
8190         /*
8191          * If the access faults on its page table, it can not
8192          * be fixed by unprotecting shadow page and it should
8193          * be reported to userspace.
8194          */
8195         return !write_fault_to_shadow_pgtable;
8196 }
8197
8198 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8199                               gpa_t cr2_or_gpa,  int emulation_type)
8200 {
8201         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8202         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8203
8204         last_retry_eip = vcpu->arch.last_retry_eip;
8205         last_retry_addr = vcpu->arch.last_retry_addr;
8206
8207         /*
8208          * If the emulation is caused by #PF and it is non-page_table
8209          * writing instruction, it means the VM-EXIT is caused by shadow
8210          * page protected, we can zap the shadow page and retry this
8211          * instruction directly.
8212          *
8213          * Note: if the guest uses a non-page-table modifying instruction
8214          * on the PDE that points to the instruction, then we will unmap
8215          * the instruction and go to an infinite loop. So, we cache the
8216          * last retried eip and the last fault address, if we meet the eip
8217          * and the address again, we can break out of the potential infinite
8218          * loop.
8219          */
8220         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8221
8222         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8223                 return false;
8224
8225         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8226             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8227                 return false;
8228
8229         if (x86_page_table_writing_insn(ctxt))
8230                 return false;
8231
8232         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8233                 return false;
8234
8235         vcpu->arch.last_retry_eip = ctxt->eip;
8236         vcpu->arch.last_retry_addr = cr2_or_gpa;
8237
8238         if (!vcpu->arch.mmu->root_role.direct)
8239                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8240
8241         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8242
8243         return true;
8244 }
8245
8246 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8247 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8248
8249 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8250 {
8251         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8252
8253         if (entering_smm) {
8254                 vcpu->arch.hflags |= HF_SMM_MASK;
8255         } else {
8256                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8257
8258                 /* Process a latched INIT or SMI, if any.  */
8259                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8260
8261                 /*
8262                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8263                  * on SMM exit we still need to reload them from
8264                  * guest memory
8265                  */
8266                 vcpu->arch.pdptrs_from_userspace = false;
8267         }
8268
8269         kvm_mmu_reset_context(vcpu);
8270 }
8271
8272 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8273                                 unsigned long *db)
8274 {
8275         u32 dr6 = 0;
8276         int i;
8277         u32 enable, rwlen;
8278
8279         enable = dr7;
8280         rwlen = dr7 >> 16;
8281         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8282                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8283                         dr6 |= (1 << i);
8284         return dr6;
8285 }
8286
8287 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8288 {
8289         struct kvm_run *kvm_run = vcpu->run;
8290
8291         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8292                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8293                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8294                 kvm_run->debug.arch.exception = DB_VECTOR;
8295                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8296                 return 0;
8297         }
8298         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8299         return 1;
8300 }
8301
8302 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8303 {
8304         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8305         int r;
8306
8307         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8308         if (unlikely(!r))
8309                 return 0;
8310
8311         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8312
8313         /*
8314          * rflags is the old, "raw" value of the flags.  The new value has
8315          * not been saved yet.
8316          *
8317          * This is correct even for TF set by the guest, because "the
8318          * processor will not generate this exception after the instruction
8319          * that sets the TF flag".
8320          */
8321         if (unlikely(rflags & X86_EFLAGS_TF))
8322                 r = kvm_vcpu_do_singlestep(vcpu);
8323         return r;
8324 }
8325 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8326
8327 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8328 {
8329         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8330             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8331                 struct kvm_run *kvm_run = vcpu->run;
8332                 unsigned long eip = kvm_get_linear_rip(vcpu);
8333                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8334                                            vcpu->arch.guest_debug_dr7,
8335                                            vcpu->arch.eff_db);
8336
8337                 if (dr6 != 0) {
8338                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8339                         kvm_run->debug.arch.pc = eip;
8340                         kvm_run->debug.arch.exception = DB_VECTOR;
8341                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8342                         *r = 0;
8343                         return true;
8344                 }
8345         }
8346
8347         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8348             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8349                 unsigned long eip = kvm_get_linear_rip(vcpu);
8350                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8351                                            vcpu->arch.dr7,
8352                                            vcpu->arch.db);
8353
8354                 if (dr6 != 0) {
8355                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8356                         *r = 1;
8357                         return true;
8358                 }
8359         }
8360
8361         return false;
8362 }
8363
8364 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8365 {
8366         switch (ctxt->opcode_len) {
8367         case 1:
8368                 switch (ctxt->b) {
8369                 case 0xe4:      /* IN */
8370                 case 0xe5:
8371                 case 0xec:
8372                 case 0xed:
8373                 case 0xe6:      /* OUT */
8374                 case 0xe7:
8375                 case 0xee:
8376                 case 0xef:
8377                 case 0x6c:      /* INS */
8378                 case 0x6d:
8379                 case 0x6e:      /* OUTS */
8380                 case 0x6f:
8381                         return true;
8382                 }
8383                 break;
8384         case 2:
8385                 switch (ctxt->b) {
8386                 case 0x33:      /* RDPMC */
8387                         return true;
8388                 }
8389                 break;
8390         }
8391
8392         return false;
8393 }
8394
8395 /*
8396  * Decode an instruction for emulation.  The caller is responsible for handling
8397  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8398  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8399  * code breakpoints have higher priority and thus have already been done by
8400  * hardware.
8401  *
8402  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8403  *     response to a machine check.
8404  */
8405 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8406                                     void *insn, int insn_len)
8407 {
8408         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8409         int r;
8410
8411         init_emulate_ctxt(vcpu);
8412
8413         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8414
8415         trace_kvm_emulate_insn_start(vcpu);
8416         ++vcpu->stat.insn_emulation;
8417
8418         return r;
8419 }
8420 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8421
8422 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8423                             int emulation_type, void *insn, int insn_len)
8424 {
8425         int r;
8426         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8427         bool writeback = true;
8428         bool write_fault_to_spt;
8429
8430         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8431                 return 1;
8432
8433         vcpu->arch.l1tf_flush_l1d = true;
8434
8435         /*
8436          * Clear write_fault_to_shadow_pgtable here to ensure it is
8437          * never reused.
8438          */
8439         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8440         vcpu->arch.write_fault_to_shadow_pgtable = false;
8441
8442         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8443                 kvm_clear_exception_queue(vcpu);
8444
8445                 /*
8446                  * Return immediately if RIP hits a code breakpoint, such #DBs
8447                  * are fault-like and are higher priority than any faults on
8448                  * the code fetch itself.
8449                  */
8450                 if (!(emulation_type & EMULTYPE_SKIP) &&
8451                     kvm_vcpu_check_code_breakpoint(vcpu, &r))
8452                         return r;
8453
8454                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8455                                                     insn, insn_len);
8456                 if (r != EMULATION_OK)  {
8457                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8458                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8459                                 kvm_queue_exception(vcpu, UD_VECTOR);
8460                                 return 1;
8461                         }
8462                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8463                                                   write_fault_to_spt,
8464                                                   emulation_type))
8465                                 return 1;
8466                         if (ctxt->have_exception) {
8467                                 /*
8468                                  * #UD should result in just EMULATION_FAILED, and trap-like
8469                                  * exception should not be encountered during decode.
8470                                  */
8471                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8472                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8473                                 inject_emulated_exception(vcpu);
8474                                 return 1;
8475                         }
8476                         return handle_emulation_failure(vcpu, emulation_type);
8477                 }
8478         }
8479
8480         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8481             !is_vmware_backdoor_opcode(ctxt)) {
8482                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8483                 return 1;
8484         }
8485
8486         /*
8487          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8488          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8489          * The caller is responsible for updating interruptibility state and
8490          * injecting single-step #DBs.
8491          */
8492         if (emulation_type & EMULTYPE_SKIP) {
8493                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8494                         ctxt->eip = (u32)ctxt->_eip;
8495                 else
8496                         ctxt->eip = ctxt->_eip;
8497
8498                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8499                         r = 1;
8500                         goto writeback;
8501                 }
8502
8503                 kvm_rip_write(vcpu, ctxt->eip);
8504                 if (ctxt->eflags & X86_EFLAGS_RF)
8505                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8506                 return 1;
8507         }
8508
8509         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8510                 return 1;
8511
8512         /* this is needed for vmware backdoor interface to work since it
8513            changes registers values  during IO operation */
8514         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8515                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8516                 emulator_invalidate_register_cache(ctxt);
8517         }
8518
8519 restart:
8520         if (emulation_type & EMULTYPE_PF) {
8521                 /* Save the faulting GPA (cr2) in the address field */
8522                 ctxt->exception.address = cr2_or_gpa;
8523
8524                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8525                 if (vcpu->arch.mmu->root_role.direct) {
8526                         ctxt->gpa_available = true;
8527                         ctxt->gpa_val = cr2_or_gpa;
8528                 }
8529         } else {
8530                 /* Sanitize the address out of an abundance of paranoia. */
8531                 ctxt->exception.address = 0;
8532         }
8533
8534         r = x86_emulate_insn(ctxt);
8535
8536         if (r == EMULATION_INTERCEPTED)
8537                 return 1;
8538
8539         if (r == EMULATION_FAILED) {
8540                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8541                                         emulation_type))
8542                         return 1;
8543
8544                 return handle_emulation_failure(vcpu, emulation_type);
8545         }
8546
8547         if (ctxt->have_exception) {
8548                 r = 1;
8549                 if (inject_emulated_exception(vcpu))
8550                         return r;
8551         } else if (vcpu->arch.pio.count) {
8552                 if (!vcpu->arch.pio.in) {
8553                         /* FIXME: return into emulator if single-stepping.  */
8554                         vcpu->arch.pio.count = 0;
8555                 } else {
8556                         writeback = false;
8557                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8558                 }
8559                 r = 0;
8560         } else if (vcpu->mmio_needed) {
8561                 ++vcpu->stat.mmio_exits;
8562
8563                 if (!vcpu->mmio_is_write)
8564                         writeback = false;
8565                 r = 0;
8566                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8567         } else if (vcpu->arch.complete_userspace_io) {
8568                 writeback = false;
8569                 r = 0;
8570         } else if (r == EMULATION_RESTART)
8571                 goto restart;
8572         else
8573                 r = 1;
8574
8575 writeback:
8576         if (writeback) {
8577                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8578                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8579                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8580                 if (!ctxt->have_exception ||
8581                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8582                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8583                         if (ctxt->is_branch)
8584                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8585                         kvm_rip_write(vcpu, ctxt->eip);
8586                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8587                                 r = kvm_vcpu_do_singlestep(vcpu);
8588                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8589                         __kvm_set_rflags(vcpu, ctxt->eflags);
8590                 }
8591
8592                 /*
8593                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8594                  * do nothing, and it will be requested again as soon as
8595                  * the shadow expires.  But we still need to check here,
8596                  * because POPF has no interrupt shadow.
8597                  */
8598                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8599                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8600         } else
8601                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8602
8603         return r;
8604 }
8605
8606 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8607 {
8608         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8609 }
8610 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8611
8612 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8613                                         void *insn, int insn_len)
8614 {
8615         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8616 }
8617 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8618
8619 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8620 {
8621         vcpu->arch.pio.count = 0;
8622         return 1;
8623 }
8624
8625 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8626 {
8627         vcpu->arch.pio.count = 0;
8628
8629         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8630                 return 1;
8631
8632         return kvm_skip_emulated_instruction(vcpu);
8633 }
8634
8635 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8636                             unsigned short port)
8637 {
8638         unsigned long val = kvm_rax_read(vcpu);
8639         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8640
8641         if (ret)
8642                 return ret;
8643
8644         /*
8645          * Workaround userspace that relies on old KVM behavior of %rip being
8646          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8647          */
8648         if (port == 0x7e &&
8649             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8650                 vcpu->arch.complete_userspace_io =
8651                         complete_fast_pio_out_port_0x7e;
8652                 kvm_skip_emulated_instruction(vcpu);
8653         } else {
8654                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8655                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8656         }
8657         return 0;
8658 }
8659
8660 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8661 {
8662         unsigned long val;
8663
8664         /* We should only ever be called with arch.pio.count equal to 1 */
8665         BUG_ON(vcpu->arch.pio.count != 1);
8666
8667         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8668                 vcpu->arch.pio.count = 0;
8669                 return 1;
8670         }
8671
8672         /* For size less than 4 we merge, else we zero extend */
8673         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8674
8675         /*
8676          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8677          * the copy and tracing
8678          */
8679         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8680         kvm_rax_write(vcpu, val);
8681
8682         return kvm_skip_emulated_instruction(vcpu);
8683 }
8684
8685 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8686                            unsigned short port)
8687 {
8688         unsigned long val;
8689         int ret;
8690
8691         /* For size less than 4 we merge, else we zero extend */
8692         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8693
8694         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8695         if (ret) {
8696                 kvm_rax_write(vcpu, val);
8697                 return ret;
8698         }
8699
8700         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8701         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8702
8703         return 0;
8704 }
8705
8706 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8707 {
8708         int ret;
8709
8710         if (in)
8711                 ret = kvm_fast_pio_in(vcpu, size, port);
8712         else
8713                 ret = kvm_fast_pio_out(vcpu, size, port);
8714         return ret && kvm_skip_emulated_instruction(vcpu);
8715 }
8716 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8717
8718 static int kvmclock_cpu_down_prep(unsigned int cpu)
8719 {
8720         __this_cpu_write(cpu_tsc_khz, 0);
8721         return 0;
8722 }
8723
8724 static void tsc_khz_changed(void *data)
8725 {
8726         struct cpufreq_freqs *freq = data;
8727         unsigned long khz = 0;
8728
8729         if (data)
8730                 khz = freq->new;
8731         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8732                 khz = cpufreq_quick_get(raw_smp_processor_id());
8733         if (!khz)
8734                 khz = tsc_khz;
8735         __this_cpu_write(cpu_tsc_khz, khz);
8736 }
8737
8738 #ifdef CONFIG_X86_64
8739 static void kvm_hyperv_tsc_notifier(void)
8740 {
8741         struct kvm *kvm;
8742         int cpu;
8743
8744         mutex_lock(&kvm_lock);
8745         list_for_each_entry(kvm, &vm_list, vm_list)
8746                 kvm_make_mclock_inprogress_request(kvm);
8747
8748         /* no guest entries from this point */
8749         hyperv_stop_tsc_emulation();
8750
8751         /* TSC frequency always matches when on Hyper-V */
8752         for_each_present_cpu(cpu)
8753                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8754         kvm_max_guest_tsc_khz = tsc_khz;
8755
8756         list_for_each_entry(kvm, &vm_list, vm_list) {
8757                 __kvm_start_pvclock_update(kvm);
8758                 pvclock_update_vm_gtod_copy(kvm);
8759                 kvm_end_pvclock_update(kvm);
8760         }
8761
8762         mutex_unlock(&kvm_lock);
8763 }
8764 #endif
8765
8766 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8767 {
8768         struct kvm *kvm;
8769         struct kvm_vcpu *vcpu;
8770         int send_ipi = 0;
8771         unsigned long i;
8772
8773         /*
8774          * We allow guests to temporarily run on slowing clocks,
8775          * provided we notify them after, or to run on accelerating
8776          * clocks, provided we notify them before.  Thus time never
8777          * goes backwards.
8778          *
8779          * However, we have a problem.  We can't atomically update
8780          * the frequency of a given CPU from this function; it is
8781          * merely a notifier, which can be called from any CPU.
8782          * Changing the TSC frequency at arbitrary points in time
8783          * requires a recomputation of local variables related to
8784          * the TSC for each VCPU.  We must flag these local variables
8785          * to be updated and be sure the update takes place with the
8786          * new frequency before any guests proceed.
8787          *
8788          * Unfortunately, the combination of hotplug CPU and frequency
8789          * change creates an intractable locking scenario; the order
8790          * of when these callouts happen is undefined with respect to
8791          * CPU hotplug, and they can race with each other.  As such,
8792          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8793          * undefined; you can actually have a CPU frequency change take
8794          * place in between the computation of X and the setting of the
8795          * variable.  To protect against this problem, all updates of
8796          * the per_cpu tsc_khz variable are done in an interrupt
8797          * protected IPI, and all callers wishing to update the value
8798          * must wait for a synchronous IPI to complete (which is trivial
8799          * if the caller is on the CPU already).  This establishes the
8800          * necessary total order on variable updates.
8801          *
8802          * Note that because a guest time update may take place
8803          * anytime after the setting of the VCPU's request bit, the
8804          * correct TSC value must be set before the request.  However,
8805          * to ensure the update actually makes it to any guest which
8806          * starts running in hardware virtualization between the set
8807          * and the acquisition of the spinlock, we must also ping the
8808          * CPU after setting the request bit.
8809          *
8810          */
8811
8812         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8813
8814         mutex_lock(&kvm_lock);
8815         list_for_each_entry(kvm, &vm_list, vm_list) {
8816                 kvm_for_each_vcpu(i, vcpu, kvm) {
8817                         if (vcpu->cpu != cpu)
8818                                 continue;
8819                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8820                         if (vcpu->cpu != raw_smp_processor_id())
8821                                 send_ipi = 1;
8822                 }
8823         }
8824         mutex_unlock(&kvm_lock);
8825
8826         if (freq->old < freq->new && send_ipi) {
8827                 /*
8828                  * We upscale the frequency.  Must make the guest
8829                  * doesn't see old kvmclock values while running with
8830                  * the new frequency, otherwise we risk the guest sees
8831                  * time go backwards.
8832                  *
8833                  * In case we update the frequency for another cpu
8834                  * (which might be in guest context) send an interrupt
8835                  * to kick the cpu out of guest context.  Next time
8836                  * guest context is entered kvmclock will be updated,
8837                  * so the guest will not see stale values.
8838                  */
8839                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8840         }
8841 }
8842
8843 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8844                                      void *data)
8845 {
8846         struct cpufreq_freqs *freq = data;
8847         int cpu;
8848
8849         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8850                 return 0;
8851         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8852                 return 0;
8853
8854         for_each_cpu(cpu, freq->policy->cpus)
8855                 __kvmclock_cpufreq_notifier(freq, cpu);
8856
8857         return 0;
8858 }
8859
8860 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8861         .notifier_call  = kvmclock_cpufreq_notifier
8862 };
8863
8864 static int kvmclock_cpu_online(unsigned int cpu)
8865 {
8866         tsc_khz_changed(NULL);
8867         return 0;
8868 }
8869
8870 static void kvm_timer_init(void)
8871 {
8872         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8873                 max_tsc_khz = tsc_khz;
8874
8875                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8876                         struct cpufreq_policy *policy;
8877                         int cpu;
8878
8879                         cpu = get_cpu();
8880                         policy = cpufreq_cpu_get(cpu);
8881                         if (policy) {
8882                                 if (policy->cpuinfo.max_freq)
8883                                         max_tsc_khz = policy->cpuinfo.max_freq;
8884                                 cpufreq_cpu_put(policy);
8885                         }
8886                         put_cpu();
8887                 }
8888                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8889                                           CPUFREQ_TRANSITION_NOTIFIER);
8890         }
8891
8892         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8893                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8894 }
8895
8896 #ifdef CONFIG_X86_64
8897 static void pvclock_gtod_update_fn(struct work_struct *work)
8898 {
8899         struct kvm *kvm;
8900         struct kvm_vcpu *vcpu;
8901         unsigned long i;
8902
8903         mutex_lock(&kvm_lock);
8904         list_for_each_entry(kvm, &vm_list, vm_list)
8905                 kvm_for_each_vcpu(i, vcpu, kvm)
8906                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8907         atomic_set(&kvm_guest_has_master_clock, 0);
8908         mutex_unlock(&kvm_lock);
8909 }
8910
8911 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8912
8913 /*
8914  * Indirection to move queue_work() out of the tk_core.seq write held
8915  * region to prevent possible deadlocks against time accessors which
8916  * are invoked with work related locks held.
8917  */
8918 static void pvclock_irq_work_fn(struct irq_work *w)
8919 {
8920         queue_work(system_long_wq, &pvclock_gtod_work);
8921 }
8922
8923 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8924
8925 /*
8926  * Notification about pvclock gtod data update.
8927  */
8928 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8929                                void *priv)
8930 {
8931         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8932         struct timekeeper *tk = priv;
8933
8934         update_pvclock_gtod(tk);
8935
8936         /*
8937          * Disable master clock if host does not trust, or does not use,
8938          * TSC based clocksource. Delegate queue_work() to irq_work as
8939          * this is invoked with tk_core.seq write held.
8940          */
8941         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8942             atomic_read(&kvm_guest_has_master_clock) != 0)
8943                 irq_work_queue(&pvclock_irq_work);
8944         return 0;
8945 }
8946
8947 static struct notifier_block pvclock_gtod_notifier = {
8948         .notifier_call = pvclock_gtod_notify,
8949 };
8950 #endif
8951
8952 int kvm_arch_init(void *opaque)
8953 {
8954         struct kvm_x86_init_ops *ops = opaque;
8955         int r;
8956
8957         if (kvm_x86_ops.hardware_enable) {
8958                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8959                 r = -EEXIST;
8960                 goto out;
8961         }
8962
8963         if (!ops->cpu_has_kvm_support()) {
8964                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8965                                    ops->runtime_ops->name);
8966                 r = -EOPNOTSUPP;
8967                 goto out;
8968         }
8969         if (ops->disabled_by_bios()) {
8970                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8971                                    ops->runtime_ops->name);
8972                 r = -EOPNOTSUPP;
8973                 goto out;
8974         }
8975
8976         /*
8977          * KVM explicitly assumes that the guest has an FPU and
8978          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8979          * vCPU's FPU state as a fxregs_state struct.
8980          */
8981         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8982                 printk(KERN_ERR "kvm: inadequate fpu\n");
8983                 r = -EOPNOTSUPP;
8984                 goto out;
8985         }
8986
8987         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8988                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8989                 r = -EOPNOTSUPP;
8990                 goto out;
8991         }
8992
8993         r = -ENOMEM;
8994
8995         x86_emulator_cache = kvm_alloc_emulator_cache();
8996         if (!x86_emulator_cache) {
8997                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8998                 goto out;
8999         }
9000
9001         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9002         if (!user_return_msrs) {
9003                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9004                 goto out_free_x86_emulator_cache;
9005         }
9006         kvm_nr_uret_msrs = 0;
9007
9008         r = kvm_mmu_vendor_module_init();
9009         if (r)
9010                 goto out_free_percpu;
9011
9012         kvm_timer_init();
9013
9014         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9015                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9016                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9017         }
9018
9019         if (pi_inject_timer == -1)
9020                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9021 #ifdef CONFIG_X86_64
9022         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9023
9024         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9025                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9026 #endif
9027
9028         return 0;
9029
9030 out_free_percpu:
9031         free_percpu(user_return_msrs);
9032 out_free_x86_emulator_cache:
9033         kmem_cache_destroy(x86_emulator_cache);
9034 out:
9035         return r;
9036 }
9037
9038 void kvm_arch_exit(void)
9039 {
9040 #ifdef CONFIG_X86_64
9041         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9042                 clear_hv_tscchange_cb();
9043 #endif
9044         kvm_lapic_exit();
9045
9046         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9047                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9048                                             CPUFREQ_TRANSITION_NOTIFIER);
9049         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9050 #ifdef CONFIG_X86_64
9051         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9052         irq_work_sync(&pvclock_irq_work);
9053         cancel_work_sync(&pvclock_gtod_work);
9054 #endif
9055         kvm_x86_ops.hardware_enable = NULL;
9056         kvm_mmu_vendor_module_exit();
9057         free_percpu(user_return_msrs);
9058         kmem_cache_destroy(x86_emulator_cache);
9059 #ifdef CONFIG_KVM_XEN
9060         static_key_deferred_flush(&kvm_xen_enabled);
9061         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9062 #endif
9063 }
9064
9065 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9066 {
9067         /*
9068          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9069          * local APIC is in-kernel, the run loop will detect the non-runnable
9070          * state and halt the vCPU.  Exit to userspace if the local APIC is
9071          * managed by userspace, in which case userspace is responsible for
9072          * handling wake events.
9073          */
9074         ++vcpu->stat.halt_exits;
9075         if (lapic_in_kernel(vcpu)) {
9076                 vcpu->arch.mp_state = state;
9077                 return 1;
9078         } else {
9079                 vcpu->run->exit_reason = reason;
9080                 return 0;
9081         }
9082 }
9083
9084 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9085 {
9086         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9087 }
9088 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9089
9090 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9091 {
9092         int ret = kvm_skip_emulated_instruction(vcpu);
9093         /*
9094          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9095          * KVM_EXIT_DEBUG here.
9096          */
9097         return kvm_emulate_halt_noskip(vcpu) && ret;
9098 }
9099 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9100
9101 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9102 {
9103         int ret = kvm_skip_emulated_instruction(vcpu);
9104
9105         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9106                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9107 }
9108 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9109
9110 #ifdef CONFIG_X86_64
9111 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9112                                 unsigned long clock_type)
9113 {
9114         struct kvm_clock_pairing clock_pairing;
9115         struct timespec64 ts;
9116         u64 cycle;
9117         int ret;
9118
9119         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9120                 return -KVM_EOPNOTSUPP;
9121
9122         /*
9123          * When tsc is in permanent catchup mode guests won't be able to use
9124          * pvclock_read_retry loop to get consistent view of pvclock
9125          */
9126         if (vcpu->arch.tsc_always_catchup)
9127                 return -KVM_EOPNOTSUPP;
9128
9129         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9130                 return -KVM_EOPNOTSUPP;
9131
9132         clock_pairing.sec = ts.tv_sec;
9133         clock_pairing.nsec = ts.tv_nsec;
9134         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9135         clock_pairing.flags = 0;
9136         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9137
9138         ret = 0;
9139         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9140                             sizeof(struct kvm_clock_pairing)))
9141                 ret = -KVM_EFAULT;
9142
9143         return ret;
9144 }
9145 #endif
9146
9147 /*
9148  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9149  *
9150  * @apicid - apicid of vcpu to be kicked.
9151  */
9152 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9153 {
9154         /*
9155          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9156          * common code, e.g. for tracing. Defer initialization to the compiler.
9157          */
9158         struct kvm_lapic_irq lapic_irq = {
9159                 .delivery_mode = APIC_DM_REMRD,
9160                 .dest_mode = APIC_DEST_PHYSICAL,
9161                 .shorthand = APIC_DEST_NOSHORT,
9162                 .dest_id = apicid,
9163         };
9164
9165         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9166 }
9167
9168 bool kvm_apicv_activated(struct kvm *kvm)
9169 {
9170         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9171 }
9172 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9173
9174 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9175 {
9176         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9177         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9178
9179         return (vm_reasons | vcpu_reasons) == 0;
9180 }
9181 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9182
9183 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9184                                        enum kvm_apicv_inhibit reason, bool set)
9185 {
9186         if (set)
9187                 __set_bit(reason, inhibits);
9188         else
9189                 __clear_bit(reason, inhibits);
9190
9191         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9192 }
9193
9194 static void kvm_apicv_init(struct kvm *kvm)
9195 {
9196         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9197
9198         init_rwsem(&kvm->arch.apicv_update_lock);
9199
9200         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9201
9202         if (!enable_apicv)
9203                 set_or_clear_apicv_inhibit(inhibits,
9204                                            APICV_INHIBIT_REASON_DISABLE, true);
9205 }
9206
9207 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9208 {
9209         struct kvm_vcpu *target = NULL;
9210         struct kvm_apic_map *map;
9211
9212         vcpu->stat.directed_yield_attempted++;
9213
9214         if (single_task_running())
9215                 goto no_yield;
9216
9217         rcu_read_lock();
9218         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9219
9220         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9221                 target = map->phys_map[dest_id]->vcpu;
9222
9223         rcu_read_unlock();
9224
9225         if (!target || !READ_ONCE(target->ready))
9226                 goto no_yield;
9227
9228         /* Ignore requests to yield to self */
9229         if (vcpu == target)
9230                 goto no_yield;
9231
9232         if (kvm_vcpu_yield_to(target) <= 0)
9233                 goto no_yield;
9234
9235         vcpu->stat.directed_yield_successful++;
9236
9237 no_yield:
9238         return;
9239 }
9240
9241 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9242 {
9243         u64 ret = vcpu->run->hypercall.ret;
9244
9245         if (!is_64_bit_mode(vcpu))
9246                 ret = (u32)ret;
9247         kvm_rax_write(vcpu, ret);
9248         ++vcpu->stat.hypercalls;
9249         return kvm_skip_emulated_instruction(vcpu);
9250 }
9251
9252 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9253 {
9254         unsigned long nr, a0, a1, a2, a3, ret;
9255         int op_64_bit;
9256
9257         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9258                 return kvm_xen_hypercall(vcpu);
9259
9260         if (kvm_hv_hypercall_enabled(vcpu))
9261                 return kvm_hv_hypercall(vcpu);
9262
9263         nr = kvm_rax_read(vcpu);
9264         a0 = kvm_rbx_read(vcpu);
9265         a1 = kvm_rcx_read(vcpu);
9266         a2 = kvm_rdx_read(vcpu);
9267         a3 = kvm_rsi_read(vcpu);
9268
9269         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9270
9271         op_64_bit = is_64_bit_hypercall(vcpu);
9272         if (!op_64_bit) {
9273                 nr &= 0xFFFFFFFF;
9274                 a0 &= 0xFFFFFFFF;
9275                 a1 &= 0xFFFFFFFF;
9276                 a2 &= 0xFFFFFFFF;
9277                 a3 &= 0xFFFFFFFF;
9278         }
9279
9280         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9281                 ret = -KVM_EPERM;
9282                 goto out;
9283         }
9284
9285         ret = -KVM_ENOSYS;
9286
9287         switch (nr) {
9288         case KVM_HC_VAPIC_POLL_IRQ:
9289                 ret = 0;
9290                 break;
9291         case KVM_HC_KICK_CPU:
9292                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9293                         break;
9294
9295                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9296                 kvm_sched_yield(vcpu, a1);
9297                 ret = 0;
9298                 break;
9299 #ifdef CONFIG_X86_64
9300         case KVM_HC_CLOCK_PAIRING:
9301                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9302                 break;
9303 #endif
9304         case KVM_HC_SEND_IPI:
9305                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9306                         break;
9307
9308                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9309                 break;
9310         case KVM_HC_SCHED_YIELD:
9311                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9312                         break;
9313
9314                 kvm_sched_yield(vcpu, a0);
9315                 ret = 0;
9316                 break;
9317         case KVM_HC_MAP_GPA_RANGE: {
9318                 u64 gpa = a0, npages = a1, attrs = a2;
9319
9320                 ret = -KVM_ENOSYS;
9321                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9322                         break;
9323
9324                 if (!PAGE_ALIGNED(gpa) || !npages ||
9325                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9326                         ret = -KVM_EINVAL;
9327                         break;
9328                 }
9329
9330                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9331                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9332                 vcpu->run->hypercall.args[0]  = gpa;
9333                 vcpu->run->hypercall.args[1]  = npages;
9334                 vcpu->run->hypercall.args[2]  = attrs;
9335                 vcpu->run->hypercall.longmode = op_64_bit;
9336                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9337                 return 0;
9338         }
9339         default:
9340                 ret = -KVM_ENOSYS;
9341                 break;
9342         }
9343 out:
9344         if (!op_64_bit)
9345                 ret = (u32)ret;
9346         kvm_rax_write(vcpu, ret);
9347
9348         ++vcpu->stat.hypercalls;
9349         return kvm_skip_emulated_instruction(vcpu);
9350 }
9351 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9352
9353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9354 {
9355         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9356         char instruction[3];
9357         unsigned long rip = kvm_rip_read(vcpu);
9358
9359         /*
9360          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9361          * the pieces.
9362          */
9363         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9364                 ctxt->exception.error_code_valid = false;
9365                 ctxt->exception.vector = UD_VECTOR;
9366                 ctxt->have_exception = true;
9367                 return X86EMUL_PROPAGATE_FAULT;
9368         }
9369
9370         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9371
9372         return emulator_write_emulated(ctxt, rip, instruction, 3,
9373                 &ctxt->exception);
9374 }
9375
9376 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9377 {
9378         return vcpu->run->request_interrupt_window &&
9379                 likely(!pic_in_kernel(vcpu->kvm));
9380 }
9381
9382 /* Called within kvm->srcu read side.  */
9383 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9384 {
9385         struct kvm_run *kvm_run = vcpu->run;
9386
9387         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9388         kvm_run->cr8 = kvm_get_cr8(vcpu);
9389         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9390
9391         kvm_run->ready_for_interrupt_injection =
9392                 pic_in_kernel(vcpu->kvm) ||
9393                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9394
9395         if (is_smm(vcpu))
9396                 kvm_run->flags |= KVM_RUN_X86_SMM;
9397 }
9398
9399 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9400 {
9401         int max_irr, tpr;
9402
9403         if (!kvm_x86_ops.update_cr8_intercept)
9404                 return;
9405
9406         if (!lapic_in_kernel(vcpu))
9407                 return;
9408
9409         if (vcpu->arch.apicv_active)
9410                 return;
9411
9412         if (!vcpu->arch.apic->vapic_addr)
9413                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9414         else
9415                 max_irr = -1;
9416
9417         if (max_irr != -1)
9418                 max_irr >>= 4;
9419
9420         tpr = kvm_lapic_get_cr8(vcpu);
9421
9422         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9423 }
9424
9425
9426 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9427 {
9428         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9429                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9430                 return 1;
9431         }
9432
9433         return kvm_x86_ops.nested_ops->check_events(vcpu);
9434 }
9435
9436 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9437 {
9438         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9439                 vcpu->arch.exception.error_code = false;
9440         static_call(kvm_x86_queue_exception)(vcpu);
9441 }
9442
9443 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9444 {
9445         int r;
9446         bool can_inject = true;
9447
9448         /* try to reinject previous events if any */
9449
9450         if (vcpu->arch.exception.injected) {
9451                 kvm_inject_exception(vcpu);
9452                 can_inject = false;
9453         }
9454         /*
9455          * Do not inject an NMI or interrupt if there is a pending
9456          * exception.  Exceptions and interrupts are recognized at
9457          * instruction boundaries, i.e. the start of an instruction.
9458          * Trap-like exceptions, e.g. #DB, have higher priority than
9459          * NMIs and interrupts, i.e. traps are recognized before an
9460          * NMI/interrupt that's pending on the same instruction.
9461          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9462          * priority, but are only generated (pended) during instruction
9463          * execution, i.e. a pending fault-like exception means the
9464          * fault occurred on the *previous* instruction and must be
9465          * serviced prior to recognizing any new events in order to
9466          * fully complete the previous instruction.
9467          */
9468         else if (!vcpu->arch.exception.pending) {
9469                 if (vcpu->arch.nmi_injected) {
9470                         static_call(kvm_x86_inject_nmi)(vcpu);
9471                         can_inject = false;
9472                 } else if (vcpu->arch.interrupt.injected) {
9473                         static_call(kvm_x86_inject_irq)(vcpu);
9474                         can_inject = false;
9475                 }
9476         }
9477
9478         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9479                      vcpu->arch.exception.pending);
9480
9481         /*
9482          * Call check_nested_events() even if we reinjected a previous event
9483          * in order for caller to determine if it should require immediate-exit
9484          * from L2 to L1 due to pending L1 events which require exit
9485          * from L2 to L1.
9486          */
9487         if (is_guest_mode(vcpu)) {
9488                 r = kvm_check_nested_events(vcpu);
9489                 if (r < 0)
9490                         goto out;
9491         }
9492
9493         /* try to inject new event if pending */
9494         if (vcpu->arch.exception.pending) {
9495                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9496                                         vcpu->arch.exception.has_error_code,
9497                                         vcpu->arch.exception.error_code);
9498
9499                 vcpu->arch.exception.pending = false;
9500                 vcpu->arch.exception.injected = true;
9501
9502                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9503                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9504                                              X86_EFLAGS_RF);
9505
9506                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9507                         kvm_deliver_exception_payload(vcpu);
9508                         if (vcpu->arch.dr7 & DR7_GD) {
9509                                 vcpu->arch.dr7 &= ~DR7_GD;
9510                                 kvm_update_dr7(vcpu);
9511                         }
9512                 }
9513
9514                 kvm_inject_exception(vcpu);
9515                 can_inject = false;
9516         }
9517
9518         /* Don't inject interrupts if the user asked to avoid doing so */
9519         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9520                 return 0;
9521
9522         /*
9523          * Finally, inject interrupt events.  If an event cannot be injected
9524          * due to architectural conditions (e.g. IF=0) a window-open exit
9525          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9526          * and can architecturally be injected, but we cannot do it right now:
9527          * an interrupt could have arrived just now and we have to inject it
9528          * as a vmexit, or there could already an event in the queue, which is
9529          * indicated by can_inject.  In that case we request an immediate exit
9530          * in order to make progress and get back here for another iteration.
9531          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9532          */
9533         if (vcpu->arch.smi_pending) {
9534                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9535                 if (r < 0)
9536                         goto out;
9537                 if (r) {
9538                         vcpu->arch.smi_pending = false;
9539                         ++vcpu->arch.smi_count;
9540                         enter_smm(vcpu);
9541                         can_inject = false;
9542                 } else
9543                         static_call(kvm_x86_enable_smi_window)(vcpu);
9544         }
9545
9546         if (vcpu->arch.nmi_pending) {
9547                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9548                 if (r < 0)
9549                         goto out;
9550                 if (r) {
9551                         --vcpu->arch.nmi_pending;
9552                         vcpu->arch.nmi_injected = true;
9553                         static_call(kvm_x86_inject_nmi)(vcpu);
9554                         can_inject = false;
9555                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9556                 }
9557                 if (vcpu->arch.nmi_pending)
9558                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9559         }
9560
9561         if (kvm_cpu_has_injectable_intr(vcpu)) {
9562                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9563                 if (r < 0)
9564                         goto out;
9565                 if (r) {
9566                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9567                         static_call(kvm_x86_inject_irq)(vcpu);
9568                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9569                 }
9570                 if (kvm_cpu_has_injectable_intr(vcpu))
9571                         static_call(kvm_x86_enable_irq_window)(vcpu);
9572         }
9573
9574         if (is_guest_mode(vcpu) &&
9575             kvm_x86_ops.nested_ops->hv_timer_pending &&
9576             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9577                 *req_immediate_exit = true;
9578
9579         WARN_ON(vcpu->arch.exception.pending);
9580         return 0;
9581
9582 out:
9583         if (r == -EBUSY) {
9584                 *req_immediate_exit = true;
9585                 r = 0;
9586         }
9587         return r;
9588 }
9589
9590 static void process_nmi(struct kvm_vcpu *vcpu)
9591 {
9592         unsigned limit = 2;
9593
9594         /*
9595          * x86 is limited to one NMI running, and one NMI pending after it.
9596          * If an NMI is already in progress, limit further NMIs to just one.
9597          * Otherwise, allow two (and we'll inject the first one immediately).
9598          */
9599         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9600                 limit = 1;
9601
9602         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9603         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9604         kvm_make_request(KVM_REQ_EVENT, vcpu);
9605 }
9606
9607 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9608 {
9609         u32 flags = 0;
9610         flags |= seg->g       << 23;
9611         flags |= seg->db      << 22;
9612         flags |= seg->l       << 21;
9613         flags |= seg->avl     << 20;
9614         flags |= seg->present << 15;
9615         flags |= seg->dpl     << 13;
9616         flags |= seg->s       << 12;
9617         flags |= seg->type    << 8;
9618         return flags;
9619 }
9620
9621 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9622 {
9623         struct kvm_segment seg;
9624         int offset;
9625
9626         kvm_get_segment(vcpu, &seg, n);
9627         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9628
9629         if (n < 3)
9630                 offset = 0x7f84 + n * 12;
9631         else
9632                 offset = 0x7f2c + (n - 3) * 12;
9633
9634         put_smstate(u32, buf, offset + 8, seg.base);
9635         put_smstate(u32, buf, offset + 4, seg.limit);
9636         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9637 }
9638
9639 #ifdef CONFIG_X86_64
9640 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9641 {
9642         struct kvm_segment seg;
9643         int offset;
9644         u16 flags;
9645
9646         kvm_get_segment(vcpu, &seg, n);
9647         offset = 0x7e00 + n * 16;
9648
9649         flags = enter_smm_get_segment_flags(&seg) >> 8;
9650         put_smstate(u16, buf, offset, seg.selector);
9651         put_smstate(u16, buf, offset + 2, flags);
9652         put_smstate(u32, buf, offset + 4, seg.limit);
9653         put_smstate(u64, buf, offset + 8, seg.base);
9654 }
9655 #endif
9656
9657 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9658 {
9659         struct desc_ptr dt;
9660         struct kvm_segment seg;
9661         unsigned long val;
9662         int i;
9663
9664         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9665         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9666         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9667         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9668
9669         for (i = 0; i < 8; i++)
9670                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9671
9672         kvm_get_dr(vcpu, 6, &val);
9673         put_smstate(u32, buf, 0x7fcc, (u32)val);
9674         kvm_get_dr(vcpu, 7, &val);
9675         put_smstate(u32, buf, 0x7fc8, (u32)val);
9676
9677         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9678         put_smstate(u32, buf, 0x7fc4, seg.selector);
9679         put_smstate(u32, buf, 0x7f64, seg.base);
9680         put_smstate(u32, buf, 0x7f60, seg.limit);
9681         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9682
9683         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9684         put_smstate(u32, buf, 0x7fc0, seg.selector);
9685         put_smstate(u32, buf, 0x7f80, seg.base);
9686         put_smstate(u32, buf, 0x7f7c, seg.limit);
9687         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9688
9689         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9690         put_smstate(u32, buf, 0x7f74, dt.address);
9691         put_smstate(u32, buf, 0x7f70, dt.size);
9692
9693         static_call(kvm_x86_get_idt)(vcpu, &dt);
9694         put_smstate(u32, buf, 0x7f58, dt.address);
9695         put_smstate(u32, buf, 0x7f54, dt.size);
9696
9697         for (i = 0; i < 6; i++)
9698                 enter_smm_save_seg_32(vcpu, buf, i);
9699
9700         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9701
9702         /* revision id */
9703         put_smstate(u32, buf, 0x7efc, 0x00020000);
9704         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9705 }
9706
9707 #ifdef CONFIG_X86_64
9708 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9709 {
9710         struct desc_ptr dt;
9711         struct kvm_segment seg;
9712         unsigned long val;
9713         int i;
9714
9715         for (i = 0; i < 16; i++)
9716                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9717
9718         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9719         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9720
9721         kvm_get_dr(vcpu, 6, &val);
9722         put_smstate(u64, buf, 0x7f68, val);
9723         kvm_get_dr(vcpu, 7, &val);
9724         put_smstate(u64, buf, 0x7f60, val);
9725
9726         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9727         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9728         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9729
9730         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9731
9732         /* revision id */
9733         put_smstate(u32, buf, 0x7efc, 0x00020064);
9734
9735         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9736
9737         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9738         put_smstate(u16, buf, 0x7e90, seg.selector);
9739         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9740         put_smstate(u32, buf, 0x7e94, seg.limit);
9741         put_smstate(u64, buf, 0x7e98, seg.base);
9742
9743         static_call(kvm_x86_get_idt)(vcpu, &dt);
9744         put_smstate(u32, buf, 0x7e84, dt.size);
9745         put_smstate(u64, buf, 0x7e88, dt.address);
9746
9747         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9748         put_smstate(u16, buf, 0x7e70, seg.selector);
9749         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9750         put_smstate(u32, buf, 0x7e74, seg.limit);
9751         put_smstate(u64, buf, 0x7e78, seg.base);
9752
9753         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9754         put_smstate(u32, buf, 0x7e64, dt.size);
9755         put_smstate(u64, buf, 0x7e68, dt.address);
9756
9757         for (i = 0; i < 6; i++)
9758                 enter_smm_save_seg_64(vcpu, buf, i);
9759 }
9760 #endif
9761
9762 static void enter_smm(struct kvm_vcpu *vcpu)
9763 {
9764         struct kvm_segment cs, ds;
9765         struct desc_ptr dt;
9766         unsigned long cr0;
9767         char buf[512];
9768
9769         memset(buf, 0, 512);
9770 #ifdef CONFIG_X86_64
9771         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9772                 enter_smm_save_state_64(vcpu, buf);
9773         else
9774 #endif
9775                 enter_smm_save_state_32(vcpu, buf);
9776
9777         /*
9778          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9779          * state (e.g. leave guest mode) after we've saved the state into the
9780          * SMM state-save area.
9781          */
9782         static_call(kvm_x86_enter_smm)(vcpu, buf);
9783
9784         kvm_smm_changed(vcpu, true);
9785         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9786
9787         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9788                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9789         else
9790                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9791
9792         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9793         kvm_rip_write(vcpu, 0x8000);
9794
9795         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9796         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9797         vcpu->arch.cr0 = cr0;
9798
9799         static_call(kvm_x86_set_cr4)(vcpu, 0);
9800
9801         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9802         dt.address = dt.size = 0;
9803         static_call(kvm_x86_set_idt)(vcpu, &dt);
9804
9805         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9806
9807         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9808         cs.base = vcpu->arch.smbase;
9809
9810         ds.selector = 0;
9811         ds.base = 0;
9812
9813         cs.limit    = ds.limit = 0xffffffff;
9814         cs.type     = ds.type = 0x3;
9815         cs.dpl      = ds.dpl = 0;
9816         cs.db       = ds.db = 0;
9817         cs.s        = ds.s = 1;
9818         cs.l        = ds.l = 0;
9819         cs.g        = ds.g = 1;
9820         cs.avl      = ds.avl = 0;
9821         cs.present  = ds.present = 1;
9822         cs.unusable = ds.unusable = 0;
9823         cs.padding  = ds.padding = 0;
9824
9825         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9826         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9827         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9828         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9829         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9830         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9831
9832 #ifdef CONFIG_X86_64
9833         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9834                 static_call(kvm_x86_set_efer)(vcpu, 0);
9835 #endif
9836
9837         kvm_update_cpuid_runtime(vcpu);
9838         kvm_mmu_reset_context(vcpu);
9839 }
9840
9841 static void process_smi(struct kvm_vcpu *vcpu)
9842 {
9843         vcpu->arch.smi_pending = true;
9844         kvm_make_request(KVM_REQ_EVENT, vcpu);
9845 }
9846
9847 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9848                                        unsigned long *vcpu_bitmap)
9849 {
9850         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9851 }
9852
9853 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9854 {
9855         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9856 }
9857
9858 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9859 {
9860         bool activate;
9861
9862         if (!lapic_in_kernel(vcpu))
9863                 return;
9864
9865         down_read(&vcpu->kvm->arch.apicv_update_lock);
9866         preempt_disable();
9867
9868         activate = kvm_vcpu_apicv_activated(vcpu);
9869
9870         if (vcpu->arch.apicv_active == activate)
9871                 goto out;
9872
9873         vcpu->arch.apicv_active = activate;
9874         kvm_apic_update_apicv(vcpu);
9875         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9876
9877         /*
9878          * When APICv gets disabled, we may still have injected interrupts
9879          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9880          * still active when the interrupt got accepted. Make sure
9881          * inject_pending_event() is called to check for that.
9882          */
9883         if (!vcpu->arch.apicv_active)
9884                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9885
9886 out:
9887         preempt_enable();
9888         up_read(&vcpu->kvm->arch.apicv_update_lock);
9889 }
9890 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9891
9892 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9893                                       enum kvm_apicv_inhibit reason, bool set)
9894 {
9895         unsigned long old, new;
9896
9897         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9898
9899         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9900                 return;
9901
9902         old = new = kvm->arch.apicv_inhibit_reasons;
9903
9904         set_or_clear_apicv_inhibit(&new, reason, set);
9905
9906         if (!!old != !!new) {
9907                 /*
9908                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9909                  * false positives in the sanity check WARN in svm_vcpu_run().
9910                  * This task will wait for all vCPUs to ack the kick IRQ before
9911                  * updating apicv_inhibit_reasons, and all other vCPUs will
9912                  * block on acquiring apicv_update_lock so that vCPUs can't
9913                  * redo svm_vcpu_run() without seeing the new inhibit state.
9914                  *
9915                  * Note, holding apicv_update_lock and taking it in the read
9916                  * side (handling the request) also prevents other vCPUs from
9917                  * servicing the request with a stale apicv_inhibit_reasons.
9918                  */
9919                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9920                 kvm->arch.apicv_inhibit_reasons = new;
9921                 if (new) {
9922                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9923                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9924                 }
9925         } else {
9926                 kvm->arch.apicv_inhibit_reasons = new;
9927         }
9928 }
9929
9930 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9931                                     enum kvm_apicv_inhibit reason, bool set)
9932 {
9933         if (!enable_apicv)
9934                 return;
9935
9936         down_write(&kvm->arch.apicv_update_lock);
9937         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9938         up_write(&kvm->arch.apicv_update_lock);
9939 }
9940 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9941
9942 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9943 {
9944         if (!kvm_apic_present(vcpu))
9945                 return;
9946
9947         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9948
9949         if (irqchip_split(vcpu->kvm))
9950                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9951         else {
9952                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9953                 if (ioapic_in_kernel(vcpu->kvm))
9954                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9955         }
9956
9957         if (is_guest_mode(vcpu))
9958                 vcpu->arch.load_eoi_exitmap_pending = true;
9959         else
9960                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9961 }
9962
9963 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9964 {
9965         u64 eoi_exit_bitmap[4];
9966
9967         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9968                 return;
9969
9970         if (to_hv_vcpu(vcpu)) {
9971                 bitmap_or((ulong *)eoi_exit_bitmap,
9972                           vcpu->arch.ioapic_handled_vectors,
9973                           to_hv_synic(vcpu)->vec_bitmap, 256);
9974                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9975                 return;
9976         }
9977
9978         static_call_cond(kvm_x86_load_eoi_exitmap)(
9979                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9980 }
9981
9982 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9983                                             unsigned long start, unsigned long end)
9984 {
9985         unsigned long apic_address;
9986
9987         /*
9988          * The physical address of apic access page is stored in the VMCS.
9989          * Update it when it becomes invalid.
9990          */
9991         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9992         if (start <= apic_address && apic_address < end)
9993                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9994 }
9995
9996 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9997 {
9998         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9999 }
10000
10001 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10002 {
10003         if (!lapic_in_kernel(vcpu))
10004                 return;
10005
10006         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10007 }
10008
10009 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10010 {
10011         smp_send_reschedule(vcpu->cpu);
10012 }
10013 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10014
10015 /*
10016  * Called within kvm->srcu read side.
10017  * Returns 1 to let vcpu_run() continue the guest execution loop without
10018  * exiting to the userspace.  Otherwise, the value will be returned to the
10019  * userspace.
10020  */
10021 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10022 {
10023         int r;
10024         bool req_int_win =
10025                 dm_request_for_irq_injection(vcpu) &&
10026                 kvm_cpu_accept_dm_intr(vcpu);
10027         fastpath_t exit_fastpath;
10028
10029         bool req_immediate_exit = false;
10030
10031         /* Forbid vmenter if vcpu dirty ring is soft-full */
10032         if (unlikely(vcpu->kvm->dirty_ring_size &&
10033                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10034                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10035                 trace_kvm_dirty_ring_exit(vcpu);
10036                 r = 0;
10037                 goto out;
10038         }
10039
10040         if (kvm_request_pending(vcpu)) {
10041                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10042                         r = -EIO;
10043                         goto out;
10044                 }
10045                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10046                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10047                                 r = 0;
10048                                 goto out;
10049                         }
10050                 }
10051                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10052                         kvm_mmu_free_obsolete_roots(vcpu);
10053                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10054                         __kvm_migrate_timers(vcpu);
10055                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10056                         kvm_update_masterclock(vcpu->kvm);
10057                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10058                         kvm_gen_kvmclock_update(vcpu);
10059                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10060                         r = kvm_guest_time_update(vcpu);
10061                         if (unlikely(r))
10062                                 goto out;
10063                 }
10064                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10065                         kvm_mmu_sync_roots(vcpu);
10066                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10067                         kvm_mmu_load_pgd(vcpu);
10068                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10069                         kvm_vcpu_flush_tlb_all(vcpu);
10070
10071                         /* Flushing all ASIDs flushes the current ASID... */
10072                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10073                 }
10074                 kvm_service_local_tlb_flush_requests(vcpu);
10075
10076                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10077                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10078                         r = 0;
10079                         goto out;
10080                 }
10081                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10082                         if (is_guest_mode(vcpu)) {
10083                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10084                         } else {
10085                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10086                                 vcpu->mmio_needed = 0;
10087                                 r = 0;
10088                                 goto out;
10089                         }
10090                 }
10091                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10092                         /* Page is swapped out. Do synthetic halt */
10093                         vcpu->arch.apf.halted = true;
10094                         r = 1;
10095                         goto out;
10096                 }
10097                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10098                         record_steal_time(vcpu);
10099                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10100                         process_smi(vcpu);
10101                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10102                         process_nmi(vcpu);
10103                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10104                         kvm_pmu_handle_event(vcpu);
10105                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10106                         kvm_pmu_deliver_pmi(vcpu);
10107                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10108                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10109                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10110                                      vcpu->arch.ioapic_handled_vectors)) {
10111                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10112                                 vcpu->run->eoi.vector =
10113                                                 vcpu->arch.pending_ioapic_eoi;
10114                                 r = 0;
10115                                 goto out;
10116                         }
10117                 }
10118                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10119                         vcpu_scan_ioapic(vcpu);
10120                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10121                         vcpu_load_eoi_exitmap(vcpu);
10122                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10123                         kvm_vcpu_reload_apic_access_page(vcpu);
10124                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10125                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10126                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10127                         vcpu->run->system_event.ndata = 0;
10128                         r = 0;
10129                         goto out;
10130                 }
10131                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10132                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10133                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10134                         vcpu->run->system_event.ndata = 0;
10135                         r = 0;
10136                         goto out;
10137                 }
10138                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10139                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10140
10141                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10142                         vcpu->run->hyperv = hv_vcpu->exit;
10143                         r = 0;
10144                         goto out;
10145                 }
10146
10147                 /*
10148                  * KVM_REQ_HV_STIMER has to be processed after
10149                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10150                  * depend on the guest clock being up-to-date
10151                  */
10152                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10153                         kvm_hv_process_stimers(vcpu);
10154                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10155                         kvm_vcpu_update_apicv(vcpu);
10156                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10157                         kvm_check_async_pf_completion(vcpu);
10158                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10159                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10160
10161                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10162                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10163         }
10164
10165         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10166             kvm_xen_has_interrupt(vcpu)) {
10167                 ++vcpu->stat.req_event;
10168                 r = kvm_apic_accept_events(vcpu);
10169                 if (r < 0) {
10170                         r = 0;
10171                         goto out;
10172                 }
10173                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10174                         r = 1;
10175                         goto out;
10176                 }
10177
10178                 r = inject_pending_event(vcpu, &req_immediate_exit);
10179                 if (r < 0) {
10180                         r = 0;
10181                         goto out;
10182                 }
10183                 if (req_int_win)
10184                         static_call(kvm_x86_enable_irq_window)(vcpu);
10185
10186                 if (kvm_lapic_enabled(vcpu)) {
10187                         update_cr8_intercept(vcpu);
10188                         kvm_lapic_sync_to_vapic(vcpu);
10189                 }
10190         }
10191
10192         r = kvm_mmu_reload(vcpu);
10193         if (unlikely(r)) {
10194                 goto cancel_injection;
10195         }
10196
10197         preempt_disable();
10198
10199         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10200
10201         /*
10202          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10203          * IPI are then delayed after guest entry, which ensures that they
10204          * result in virtual interrupt delivery.
10205          */
10206         local_irq_disable();
10207
10208         /* Store vcpu->apicv_active before vcpu->mode.  */
10209         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10210
10211         kvm_vcpu_srcu_read_unlock(vcpu);
10212
10213         /*
10214          * 1) We should set ->mode before checking ->requests.  Please see
10215          * the comment in kvm_vcpu_exiting_guest_mode().
10216          *
10217          * 2) For APICv, we should set ->mode before checking PID.ON. This
10218          * pairs with the memory barrier implicit in pi_test_and_set_on
10219          * (see vmx_deliver_posted_interrupt).
10220          *
10221          * 3) This also orders the write to mode from any reads to the page
10222          * tables done while the VCPU is running.  Please see the comment
10223          * in kvm_flush_remote_tlbs.
10224          */
10225         smp_mb__after_srcu_read_unlock();
10226
10227         /*
10228          * Process pending posted interrupts to handle the case where the
10229          * notification IRQ arrived in the host, or was never sent (because the
10230          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10231          * status, KVM doesn't update assigned devices when APICv is inhibited,
10232          * i.e. they can post interrupts even if APICv is temporarily disabled.
10233          */
10234         if (kvm_lapic_enabled(vcpu))
10235                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10236
10237         if (kvm_vcpu_exit_request(vcpu)) {
10238                 vcpu->mode = OUTSIDE_GUEST_MODE;
10239                 smp_wmb();
10240                 local_irq_enable();
10241                 preempt_enable();
10242                 kvm_vcpu_srcu_read_lock(vcpu);
10243                 r = 1;
10244                 goto cancel_injection;
10245         }
10246
10247         if (req_immediate_exit) {
10248                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10249                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10250         }
10251
10252         fpregs_assert_state_consistent();
10253         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10254                 switch_fpu_return();
10255
10256         if (vcpu->arch.guest_fpu.xfd_err)
10257                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10258
10259         if (unlikely(vcpu->arch.switch_db_regs)) {
10260                 set_debugreg(0, 7);
10261                 set_debugreg(vcpu->arch.eff_db[0], 0);
10262                 set_debugreg(vcpu->arch.eff_db[1], 1);
10263                 set_debugreg(vcpu->arch.eff_db[2], 2);
10264                 set_debugreg(vcpu->arch.eff_db[3], 3);
10265         } else if (unlikely(hw_breakpoint_active())) {
10266                 set_debugreg(0, 7);
10267         }
10268
10269         guest_timing_enter_irqoff();
10270
10271         for (;;) {
10272                 /*
10273                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10274                  * update must kick and wait for all vCPUs before toggling the
10275                  * per-VM state, and responsing vCPUs must wait for the update
10276                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10277                  */
10278                 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10279
10280                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10281                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10282                         break;
10283
10284                 if (kvm_lapic_enabled(vcpu))
10285                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10286
10287                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10288                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10289                         break;
10290                 }
10291         }
10292
10293         /*
10294          * Do this here before restoring debug registers on the host.  And
10295          * since we do this before handling the vmexit, a DR access vmexit
10296          * can (a) read the correct value of the debug registers, (b) set
10297          * KVM_DEBUGREG_WONT_EXIT again.
10298          */
10299         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10300                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10301                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10302                 kvm_update_dr0123(vcpu);
10303                 kvm_update_dr7(vcpu);
10304         }
10305
10306         /*
10307          * If the guest has used debug registers, at least dr7
10308          * will be disabled while returning to the host.
10309          * If we don't have active breakpoints in the host, we don't
10310          * care about the messed up debug address registers. But if
10311          * we have some of them active, restore the old state.
10312          */
10313         if (hw_breakpoint_active())
10314                 hw_breakpoint_restore();
10315
10316         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10317         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10318
10319         vcpu->mode = OUTSIDE_GUEST_MODE;
10320         smp_wmb();
10321
10322         /*
10323          * Sync xfd before calling handle_exit_irqoff() which may
10324          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10325          * in #NM irqoff handler).
10326          */
10327         if (vcpu->arch.xfd_no_write_intercept)
10328                 fpu_sync_guest_vmexit_xfd_state();
10329
10330         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10331
10332         if (vcpu->arch.guest_fpu.xfd_err)
10333                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10334
10335         /*
10336          * Consume any pending interrupts, including the possible source of
10337          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10338          * An instruction is required after local_irq_enable() to fully unblock
10339          * interrupts on processors that implement an interrupt shadow, the
10340          * stat.exits increment will do nicely.
10341          */
10342         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10343         local_irq_enable();
10344         ++vcpu->stat.exits;
10345         local_irq_disable();
10346         kvm_after_interrupt(vcpu);
10347
10348         /*
10349          * Wait until after servicing IRQs to account guest time so that any
10350          * ticks that occurred while running the guest are properly accounted
10351          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10352          * of accounting via context tracking, but the loss of accuracy is
10353          * acceptable for all known use cases.
10354          */
10355         guest_timing_exit_irqoff();
10356
10357         local_irq_enable();
10358         preempt_enable();
10359
10360         kvm_vcpu_srcu_read_lock(vcpu);
10361
10362         /*
10363          * Profile KVM exit RIPs:
10364          */
10365         if (unlikely(prof_on == KVM_PROFILING)) {
10366                 unsigned long rip = kvm_rip_read(vcpu);
10367                 profile_hit(KVM_PROFILING, (void *)rip);
10368         }
10369
10370         if (unlikely(vcpu->arch.tsc_always_catchup))
10371                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10372
10373         if (vcpu->arch.apic_attention)
10374                 kvm_lapic_sync_from_vapic(vcpu);
10375
10376         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10377         return r;
10378
10379 cancel_injection:
10380         if (req_immediate_exit)
10381                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10382         static_call(kvm_x86_cancel_injection)(vcpu);
10383         if (unlikely(vcpu->arch.apic_attention))
10384                 kvm_lapic_sync_from_vapic(vcpu);
10385 out:
10386         return r;
10387 }
10388
10389 /* Called within kvm->srcu read side.  */
10390 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10391 {
10392         bool hv_timer;
10393
10394         if (!kvm_arch_vcpu_runnable(vcpu)) {
10395                 /*
10396                  * Switch to the software timer before halt-polling/blocking as
10397                  * the guest's timer may be a break event for the vCPU, and the
10398                  * hypervisor timer runs only when the CPU is in guest mode.
10399                  * Switch before halt-polling so that KVM recognizes an expired
10400                  * timer before blocking.
10401                  */
10402                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10403                 if (hv_timer)
10404                         kvm_lapic_switch_to_sw_timer(vcpu);
10405
10406                 kvm_vcpu_srcu_read_unlock(vcpu);
10407                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10408                         kvm_vcpu_halt(vcpu);
10409                 else
10410                         kvm_vcpu_block(vcpu);
10411                 kvm_vcpu_srcu_read_lock(vcpu);
10412
10413                 if (hv_timer)
10414                         kvm_lapic_switch_to_hv_timer(vcpu);
10415
10416                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10417                         return 1;
10418         }
10419
10420         if (kvm_apic_accept_events(vcpu) < 0)
10421                 return 0;
10422         switch(vcpu->arch.mp_state) {
10423         case KVM_MP_STATE_HALTED:
10424         case KVM_MP_STATE_AP_RESET_HOLD:
10425                 vcpu->arch.pv.pv_unhalted = false;
10426                 vcpu->arch.mp_state =
10427                         KVM_MP_STATE_RUNNABLE;
10428                 fallthrough;
10429         case KVM_MP_STATE_RUNNABLE:
10430                 vcpu->arch.apf.halted = false;
10431                 break;
10432         case KVM_MP_STATE_INIT_RECEIVED:
10433                 break;
10434         default:
10435                 return -EINTR;
10436         }
10437         return 1;
10438 }
10439
10440 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10441 {
10442         if (is_guest_mode(vcpu))
10443                 kvm_check_nested_events(vcpu);
10444
10445         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10446                 !vcpu->arch.apf.halted);
10447 }
10448
10449 /* Called within kvm->srcu read side.  */
10450 static int vcpu_run(struct kvm_vcpu *vcpu)
10451 {
10452         int r;
10453
10454         vcpu->arch.l1tf_flush_l1d = true;
10455
10456         for (;;) {
10457                 /*
10458                  * If another guest vCPU requests a PV TLB flush in the middle
10459                  * of instruction emulation, the rest of the emulation could
10460                  * use a stale page translation. Assume that any code after
10461                  * this point can start executing an instruction.
10462                  */
10463                 vcpu->arch.at_instruction_boundary = false;
10464                 if (kvm_vcpu_running(vcpu)) {
10465                         r = vcpu_enter_guest(vcpu);
10466                 } else {
10467                         r = vcpu_block(vcpu);
10468                 }
10469
10470                 if (r <= 0)
10471                         break;
10472
10473                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10474                 if (kvm_xen_has_pending_events(vcpu))
10475                         kvm_xen_inject_pending_events(vcpu);
10476
10477                 if (kvm_cpu_has_pending_timer(vcpu))
10478                         kvm_inject_pending_timer_irqs(vcpu);
10479
10480                 if (dm_request_for_irq_injection(vcpu) &&
10481                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10482                         r = 0;
10483                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10484                         ++vcpu->stat.request_irq_exits;
10485                         break;
10486                 }
10487
10488                 if (__xfer_to_guest_mode_work_pending()) {
10489                         kvm_vcpu_srcu_read_unlock(vcpu);
10490                         r = xfer_to_guest_mode_handle_work(vcpu);
10491                         kvm_vcpu_srcu_read_lock(vcpu);
10492                         if (r)
10493                                 return r;
10494                 }
10495         }
10496
10497         return r;
10498 }
10499
10500 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10501 {
10502         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10503 }
10504
10505 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10506 {
10507         BUG_ON(!vcpu->arch.pio.count);
10508
10509         return complete_emulated_io(vcpu);
10510 }
10511
10512 /*
10513  * Implements the following, as a state machine:
10514  *
10515  * read:
10516  *   for each fragment
10517  *     for each mmio piece in the fragment
10518  *       write gpa, len
10519  *       exit
10520  *       copy data
10521  *   execute insn
10522  *
10523  * write:
10524  *   for each fragment
10525  *     for each mmio piece in the fragment
10526  *       write gpa, len
10527  *       copy data
10528  *       exit
10529  */
10530 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10531 {
10532         struct kvm_run *run = vcpu->run;
10533         struct kvm_mmio_fragment *frag;
10534         unsigned len;
10535
10536         BUG_ON(!vcpu->mmio_needed);
10537
10538         /* Complete previous fragment */
10539         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10540         len = min(8u, frag->len);
10541         if (!vcpu->mmio_is_write)
10542                 memcpy(frag->data, run->mmio.data, len);
10543
10544         if (frag->len <= 8) {
10545                 /* Switch to the next fragment. */
10546                 frag++;
10547                 vcpu->mmio_cur_fragment++;
10548         } else {
10549                 /* Go forward to the next mmio piece. */
10550                 frag->data += len;
10551                 frag->gpa += len;
10552                 frag->len -= len;
10553         }
10554
10555         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10556                 vcpu->mmio_needed = 0;
10557
10558                 /* FIXME: return into emulator if single-stepping.  */
10559                 if (vcpu->mmio_is_write)
10560                         return 1;
10561                 vcpu->mmio_read_completed = 1;
10562                 return complete_emulated_io(vcpu);
10563         }
10564
10565         run->exit_reason = KVM_EXIT_MMIO;
10566         run->mmio.phys_addr = frag->gpa;
10567         if (vcpu->mmio_is_write)
10568                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10569         run->mmio.len = min(8u, frag->len);
10570         run->mmio.is_write = vcpu->mmio_is_write;
10571         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10572         return 0;
10573 }
10574
10575 /* Swap (qemu) user FPU context for the guest FPU context. */
10576 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10577 {
10578         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10579         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10580         trace_kvm_fpu(1);
10581 }
10582
10583 /* When vcpu_run ends, restore user space FPU context. */
10584 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10585 {
10586         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10587         ++vcpu->stat.fpu_reload;
10588         trace_kvm_fpu(0);
10589 }
10590
10591 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10592 {
10593         struct kvm_run *kvm_run = vcpu->run;
10594         int r;
10595
10596         vcpu_load(vcpu);
10597         kvm_sigset_activate(vcpu);
10598         kvm_run->flags = 0;
10599         kvm_load_guest_fpu(vcpu);
10600
10601         kvm_vcpu_srcu_read_lock(vcpu);
10602         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10603                 if (kvm_run->immediate_exit) {
10604                         r = -EINTR;
10605                         goto out;
10606                 }
10607                 /*
10608                  * It should be impossible for the hypervisor timer to be in
10609                  * use before KVM has ever run the vCPU.
10610                  */
10611                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10612
10613                 kvm_vcpu_srcu_read_unlock(vcpu);
10614                 kvm_vcpu_block(vcpu);
10615                 kvm_vcpu_srcu_read_lock(vcpu);
10616
10617                 if (kvm_apic_accept_events(vcpu) < 0) {
10618                         r = 0;
10619                         goto out;
10620                 }
10621                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10622                 r = -EAGAIN;
10623                 if (signal_pending(current)) {
10624                         r = -EINTR;
10625                         kvm_run->exit_reason = KVM_EXIT_INTR;
10626                         ++vcpu->stat.signal_exits;
10627                 }
10628                 goto out;
10629         }
10630
10631         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10632             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10633                 r = -EINVAL;
10634                 goto out;
10635         }
10636
10637         if (kvm_run->kvm_dirty_regs) {
10638                 r = sync_regs(vcpu);
10639                 if (r != 0)
10640                         goto out;
10641         }
10642
10643         /* re-sync apic's tpr */
10644         if (!lapic_in_kernel(vcpu)) {
10645                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10646                         r = -EINVAL;
10647                         goto out;
10648                 }
10649         }
10650
10651         if (unlikely(vcpu->arch.complete_userspace_io)) {
10652                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10653                 vcpu->arch.complete_userspace_io = NULL;
10654                 r = cui(vcpu);
10655                 if (r <= 0)
10656                         goto out;
10657         } else
10658                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10659
10660         if (kvm_run->immediate_exit) {
10661                 r = -EINTR;
10662                 goto out;
10663         }
10664
10665         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10666         if (r <= 0)
10667                 goto out;
10668
10669         r = vcpu_run(vcpu);
10670
10671 out:
10672         kvm_put_guest_fpu(vcpu);
10673         if (kvm_run->kvm_valid_regs)
10674                 store_regs(vcpu);
10675         post_kvm_run_save(vcpu);
10676         kvm_vcpu_srcu_read_unlock(vcpu);
10677
10678         kvm_sigset_deactivate(vcpu);
10679         vcpu_put(vcpu);
10680         return r;
10681 }
10682
10683 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10684 {
10685         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10686                 /*
10687                  * We are here if userspace calls get_regs() in the middle of
10688                  * instruction emulation. Registers state needs to be copied
10689                  * back from emulation context to vcpu. Userspace shouldn't do
10690                  * that usually, but some bad designed PV devices (vmware
10691                  * backdoor interface) need this to work
10692                  */
10693                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10694                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10695         }
10696         regs->rax = kvm_rax_read(vcpu);
10697         regs->rbx = kvm_rbx_read(vcpu);
10698         regs->rcx = kvm_rcx_read(vcpu);
10699         regs->rdx = kvm_rdx_read(vcpu);
10700         regs->rsi = kvm_rsi_read(vcpu);
10701         regs->rdi = kvm_rdi_read(vcpu);
10702         regs->rsp = kvm_rsp_read(vcpu);
10703         regs->rbp = kvm_rbp_read(vcpu);
10704 #ifdef CONFIG_X86_64
10705         regs->r8 = kvm_r8_read(vcpu);
10706         regs->r9 = kvm_r9_read(vcpu);
10707         regs->r10 = kvm_r10_read(vcpu);
10708         regs->r11 = kvm_r11_read(vcpu);
10709         regs->r12 = kvm_r12_read(vcpu);
10710         regs->r13 = kvm_r13_read(vcpu);
10711         regs->r14 = kvm_r14_read(vcpu);
10712         regs->r15 = kvm_r15_read(vcpu);
10713 #endif
10714
10715         regs->rip = kvm_rip_read(vcpu);
10716         regs->rflags = kvm_get_rflags(vcpu);
10717 }
10718
10719 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10720 {
10721         vcpu_load(vcpu);
10722         __get_regs(vcpu, regs);
10723         vcpu_put(vcpu);
10724         return 0;
10725 }
10726
10727 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10728 {
10729         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10730         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10731
10732         kvm_rax_write(vcpu, regs->rax);
10733         kvm_rbx_write(vcpu, regs->rbx);
10734         kvm_rcx_write(vcpu, regs->rcx);
10735         kvm_rdx_write(vcpu, regs->rdx);
10736         kvm_rsi_write(vcpu, regs->rsi);
10737         kvm_rdi_write(vcpu, regs->rdi);
10738         kvm_rsp_write(vcpu, regs->rsp);
10739         kvm_rbp_write(vcpu, regs->rbp);
10740 #ifdef CONFIG_X86_64
10741         kvm_r8_write(vcpu, regs->r8);
10742         kvm_r9_write(vcpu, regs->r9);
10743         kvm_r10_write(vcpu, regs->r10);
10744         kvm_r11_write(vcpu, regs->r11);
10745         kvm_r12_write(vcpu, regs->r12);
10746         kvm_r13_write(vcpu, regs->r13);
10747         kvm_r14_write(vcpu, regs->r14);
10748         kvm_r15_write(vcpu, regs->r15);
10749 #endif
10750
10751         kvm_rip_write(vcpu, regs->rip);
10752         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10753
10754         vcpu->arch.exception.pending = false;
10755
10756         kvm_make_request(KVM_REQ_EVENT, vcpu);
10757 }
10758
10759 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10760 {
10761         vcpu_load(vcpu);
10762         __set_regs(vcpu, regs);
10763         vcpu_put(vcpu);
10764         return 0;
10765 }
10766
10767 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10768 {
10769         struct desc_ptr dt;
10770
10771         if (vcpu->arch.guest_state_protected)
10772                 goto skip_protected_regs;
10773
10774         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10775         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10776         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10777         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10778         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10779         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10780
10781         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10782         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10783
10784         static_call(kvm_x86_get_idt)(vcpu, &dt);
10785         sregs->idt.limit = dt.size;
10786         sregs->idt.base = dt.address;
10787         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10788         sregs->gdt.limit = dt.size;
10789         sregs->gdt.base = dt.address;
10790
10791         sregs->cr2 = vcpu->arch.cr2;
10792         sregs->cr3 = kvm_read_cr3(vcpu);
10793
10794 skip_protected_regs:
10795         sregs->cr0 = kvm_read_cr0(vcpu);
10796         sregs->cr4 = kvm_read_cr4(vcpu);
10797         sregs->cr8 = kvm_get_cr8(vcpu);
10798         sregs->efer = vcpu->arch.efer;
10799         sregs->apic_base = kvm_get_apic_base(vcpu);
10800 }
10801
10802 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10803 {
10804         __get_sregs_common(vcpu, sregs);
10805
10806         if (vcpu->arch.guest_state_protected)
10807                 return;
10808
10809         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10810                 set_bit(vcpu->arch.interrupt.nr,
10811                         (unsigned long *)sregs->interrupt_bitmap);
10812 }
10813
10814 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10815 {
10816         int i;
10817
10818         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10819
10820         if (vcpu->arch.guest_state_protected)
10821                 return;
10822
10823         if (is_pae_paging(vcpu)) {
10824                 for (i = 0 ; i < 4 ; i++)
10825                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10826                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10827         }
10828 }
10829
10830 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10831                                   struct kvm_sregs *sregs)
10832 {
10833         vcpu_load(vcpu);
10834         __get_sregs(vcpu, sregs);
10835         vcpu_put(vcpu);
10836         return 0;
10837 }
10838
10839 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10840                                     struct kvm_mp_state *mp_state)
10841 {
10842         int r;
10843
10844         vcpu_load(vcpu);
10845         if (kvm_mpx_supported())
10846                 kvm_load_guest_fpu(vcpu);
10847
10848         r = kvm_apic_accept_events(vcpu);
10849         if (r < 0)
10850                 goto out;
10851         r = 0;
10852
10853         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10854              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10855             vcpu->arch.pv.pv_unhalted)
10856                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10857         else
10858                 mp_state->mp_state = vcpu->arch.mp_state;
10859
10860 out:
10861         if (kvm_mpx_supported())
10862                 kvm_put_guest_fpu(vcpu);
10863         vcpu_put(vcpu);
10864         return r;
10865 }
10866
10867 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10868                                     struct kvm_mp_state *mp_state)
10869 {
10870         int ret = -EINVAL;
10871
10872         vcpu_load(vcpu);
10873
10874         if (!lapic_in_kernel(vcpu) &&
10875             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10876                 goto out;
10877
10878         /*
10879          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10880          * INIT state; latched init should be reported using
10881          * KVM_SET_VCPU_EVENTS, so reject it here.
10882          */
10883         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10884             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10885              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10886                 goto out;
10887
10888         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10889                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10890                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10891         } else
10892                 vcpu->arch.mp_state = mp_state->mp_state;
10893         kvm_make_request(KVM_REQ_EVENT, vcpu);
10894
10895         ret = 0;
10896 out:
10897         vcpu_put(vcpu);
10898         return ret;
10899 }
10900
10901 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10902                     int reason, bool has_error_code, u32 error_code)
10903 {
10904         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10905         int ret;
10906
10907         init_emulate_ctxt(vcpu);
10908
10909         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10910                                    has_error_code, error_code);
10911         if (ret) {
10912                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10913                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10914                 vcpu->run->internal.ndata = 0;
10915                 return 0;
10916         }
10917
10918         kvm_rip_write(vcpu, ctxt->eip);
10919         kvm_set_rflags(vcpu, ctxt->eflags);
10920         return 1;
10921 }
10922 EXPORT_SYMBOL_GPL(kvm_task_switch);
10923
10924 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10925 {
10926         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10927                 /*
10928                  * When EFER.LME and CR0.PG are set, the processor is in
10929                  * 64-bit mode (though maybe in a 32-bit code segment).
10930                  * CR4.PAE and EFER.LMA must be set.
10931                  */
10932                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10933                         return false;
10934                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10935                         return false;
10936         } else {
10937                 /*
10938                  * Not in 64-bit mode: EFER.LMA is clear and the code
10939                  * segment cannot be 64-bit.
10940                  */
10941                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10942                         return false;
10943         }
10944
10945         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10946 }
10947
10948 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10949                 int *mmu_reset_needed, bool update_pdptrs)
10950 {
10951         struct msr_data apic_base_msr;
10952         int idx;
10953         struct desc_ptr dt;
10954
10955         if (!kvm_is_valid_sregs(vcpu, sregs))
10956                 return -EINVAL;
10957
10958         apic_base_msr.data = sregs->apic_base;
10959         apic_base_msr.host_initiated = true;
10960         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10961                 return -EINVAL;
10962
10963         if (vcpu->arch.guest_state_protected)
10964                 return 0;
10965
10966         dt.size = sregs->idt.limit;
10967         dt.address = sregs->idt.base;
10968         static_call(kvm_x86_set_idt)(vcpu, &dt);
10969         dt.size = sregs->gdt.limit;
10970         dt.address = sregs->gdt.base;
10971         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10972
10973         vcpu->arch.cr2 = sregs->cr2;
10974         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10975         vcpu->arch.cr3 = sregs->cr3;
10976         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10977         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10978
10979         kvm_set_cr8(vcpu, sregs->cr8);
10980
10981         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10982         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10983
10984         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10985         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10986         vcpu->arch.cr0 = sregs->cr0;
10987
10988         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10989         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10990
10991         if (update_pdptrs) {
10992                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10993                 if (is_pae_paging(vcpu)) {
10994                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10995                         *mmu_reset_needed = 1;
10996                 }
10997                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10998         }
10999
11000         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11001         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11002         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11003         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11004         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11005         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11006
11007         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11008         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11009
11010         update_cr8_intercept(vcpu);
11011
11012         /* Older userspace won't unhalt the vcpu on reset. */
11013         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11014             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11015             !is_protmode(vcpu))
11016                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11017
11018         return 0;
11019 }
11020
11021 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11022 {
11023         int pending_vec, max_bits;
11024         int mmu_reset_needed = 0;
11025         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11026
11027         if (ret)
11028                 return ret;
11029
11030         if (mmu_reset_needed)
11031                 kvm_mmu_reset_context(vcpu);
11032
11033         max_bits = KVM_NR_INTERRUPTS;
11034         pending_vec = find_first_bit(
11035                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11036
11037         if (pending_vec < max_bits) {
11038                 kvm_queue_interrupt(vcpu, pending_vec, false);
11039                 pr_debug("Set back pending irq %d\n", pending_vec);
11040                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11041         }
11042         return 0;
11043 }
11044
11045 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11046 {
11047         int mmu_reset_needed = 0;
11048         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11049         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11050                 !(sregs2->efer & EFER_LMA);
11051         int i, ret;
11052
11053         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11054                 return -EINVAL;
11055
11056         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11057                 return -EINVAL;
11058
11059         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11060                                  &mmu_reset_needed, !valid_pdptrs);
11061         if (ret)
11062                 return ret;
11063
11064         if (valid_pdptrs) {
11065                 for (i = 0; i < 4 ; i++)
11066                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11067
11068                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11069                 mmu_reset_needed = 1;
11070                 vcpu->arch.pdptrs_from_userspace = true;
11071         }
11072         if (mmu_reset_needed)
11073                 kvm_mmu_reset_context(vcpu);
11074         return 0;
11075 }
11076
11077 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11078                                   struct kvm_sregs *sregs)
11079 {
11080         int ret;
11081
11082         vcpu_load(vcpu);
11083         ret = __set_sregs(vcpu, sregs);
11084         vcpu_put(vcpu);
11085         return ret;
11086 }
11087
11088 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11089 {
11090         bool set = false;
11091         struct kvm_vcpu *vcpu;
11092         unsigned long i;
11093
11094         if (!enable_apicv)
11095                 return;
11096
11097         down_write(&kvm->arch.apicv_update_lock);
11098
11099         kvm_for_each_vcpu(i, vcpu, kvm) {
11100                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11101                         set = true;
11102                         break;
11103                 }
11104         }
11105         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11106         up_write(&kvm->arch.apicv_update_lock);
11107 }
11108
11109 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11110                                         struct kvm_guest_debug *dbg)
11111 {
11112         unsigned long rflags;
11113         int i, r;
11114
11115         if (vcpu->arch.guest_state_protected)
11116                 return -EINVAL;
11117
11118         vcpu_load(vcpu);
11119
11120         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11121                 r = -EBUSY;
11122                 if (vcpu->arch.exception.pending)
11123                         goto out;
11124                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11125                         kvm_queue_exception(vcpu, DB_VECTOR);
11126                 else
11127                         kvm_queue_exception(vcpu, BP_VECTOR);
11128         }
11129
11130         /*
11131          * Read rflags as long as potentially injected trace flags are still
11132          * filtered out.
11133          */
11134         rflags = kvm_get_rflags(vcpu);
11135
11136         vcpu->guest_debug = dbg->control;
11137         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11138                 vcpu->guest_debug = 0;
11139
11140         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11141                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11142                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11143                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11144         } else {
11145                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11146                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11147         }
11148         kvm_update_dr7(vcpu);
11149
11150         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11151                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11152
11153         /*
11154          * Trigger an rflags update that will inject or remove the trace
11155          * flags.
11156          */
11157         kvm_set_rflags(vcpu, rflags);
11158
11159         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11160
11161         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11162
11163         r = 0;
11164
11165 out:
11166         vcpu_put(vcpu);
11167         return r;
11168 }
11169
11170 /*
11171  * Translate a guest virtual address to a guest physical address.
11172  */
11173 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11174                                     struct kvm_translation *tr)
11175 {
11176         unsigned long vaddr = tr->linear_address;
11177         gpa_t gpa;
11178         int idx;
11179
11180         vcpu_load(vcpu);
11181
11182         idx = srcu_read_lock(&vcpu->kvm->srcu);
11183         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11184         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11185         tr->physical_address = gpa;
11186         tr->valid = gpa != UNMAPPED_GVA;
11187         tr->writeable = 1;
11188         tr->usermode = 0;
11189
11190         vcpu_put(vcpu);
11191         return 0;
11192 }
11193
11194 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11195 {
11196         struct fxregs_state *fxsave;
11197
11198         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11199                 return 0;
11200
11201         vcpu_load(vcpu);
11202
11203         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11204         memcpy(fpu->fpr, fxsave->st_space, 128);
11205         fpu->fcw = fxsave->cwd;
11206         fpu->fsw = fxsave->swd;
11207         fpu->ftwx = fxsave->twd;
11208         fpu->last_opcode = fxsave->fop;
11209         fpu->last_ip = fxsave->rip;
11210         fpu->last_dp = fxsave->rdp;
11211         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11212
11213         vcpu_put(vcpu);
11214         return 0;
11215 }
11216
11217 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11218 {
11219         struct fxregs_state *fxsave;
11220
11221         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11222                 return 0;
11223
11224         vcpu_load(vcpu);
11225
11226         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11227
11228         memcpy(fxsave->st_space, fpu->fpr, 128);
11229         fxsave->cwd = fpu->fcw;
11230         fxsave->swd = fpu->fsw;
11231         fxsave->twd = fpu->ftwx;
11232         fxsave->fop = fpu->last_opcode;
11233         fxsave->rip = fpu->last_ip;
11234         fxsave->rdp = fpu->last_dp;
11235         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11236
11237         vcpu_put(vcpu);
11238         return 0;
11239 }
11240
11241 static void store_regs(struct kvm_vcpu *vcpu)
11242 {
11243         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11244
11245         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11246                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11247
11248         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11249                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11250
11251         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11252                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11253                                 vcpu, &vcpu->run->s.regs.events);
11254 }
11255
11256 static int sync_regs(struct kvm_vcpu *vcpu)
11257 {
11258         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11259                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11260                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11261         }
11262         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11263                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11264                         return -EINVAL;
11265                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11266         }
11267         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11268                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11269                                 vcpu, &vcpu->run->s.regs.events))
11270                         return -EINVAL;
11271                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11272         }
11273
11274         return 0;
11275 }
11276
11277 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11278 {
11279         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11280                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11281                              "guest TSC will not be reliable\n");
11282
11283         return 0;
11284 }
11285
11286 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11287 {
11288         struct page *page;
11289         int r;
11290
11291         vcpu->arch.last_vmentry_cpu = -1;
11292         vcpu->arch.regs_avail = ~0;
11293         vcpu->arch.regs_dirty = ~0;
11294
11295         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11296                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11297         else
11298                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11299
11300         r = kvm_mmu_create(vcpu);
11301         if (r < 0)
11302                 return r;
11303
11304         if (irqchip_in_kernel(vcpu->kvm)) {
11305                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11306                 if (r < 0)
11307                         goto fail_mmu_destroy;
11308
11309                 /*
11310                  * Defer evaluating inhibits until the vCPU is first run, as
11311                  * this vCPU will not get notified of any changes until this
11312                  * vCPU is visible to other vCPUs (marked online and added to
11313                  * the set of vCPUs).  Opportunistically mark APICv active as
11314                  * VMX in particularly is highly unlikely to have inhibits.
11315                  * Ignore the current per-VM APICv state so that vCPU creation
11316                  * is guaranteed to run with a deterministic value, the request
11317                  * will ensure the vCPU gets the correct state before VM-Entry.
11318                  */
11319                 if (enable_apicv) {
11320                         vcpu->arch.apicv_active = true;
11321                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11322                 }
11323         } else
11324                 static_branch_inc(&kvm_has_noapic_vcpu);
11325
11326         r = -ENOMEM;
11327
11328         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11329         if (!page)
11330                 goto fail_free_lapic;
11331         vcpu->arch.pio_data = page_address(page);
11332
11333         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11334                                        GFP_KERNEL_ACCOUNT);
11335         if (!vcpu->arch.mce_banks)
11336                 goto fail_free_pio_data;
11337         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11338
11339         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11340                                 GFP_KERNEL_ACCOUNT))
11341                 goto fail_free_mce_banks;
11342
11343         if (!alloc_emulate_ctxt(vcpu))
11344                 goto free_wbinvd_dirty_mask;
11345
11346         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11347                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11348                 goto free_emulate_ctxt;
11349         }
11350
11351         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11352         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11353
11354         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11355
11356         kvm_async_pf_hash_reset(vcpu);
11357         kvm_pmu_init(vcpu);
11358
11359         vcpu->arch.pending_external_vector = -1;
11360         vcpu->arch.preempted_in_kernel = false;
11361
11362 #if IS_ENABLED(CONFIG_HYPERV)
11363         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11364 #endif
11365
11366         r = static_call(kvm_x86_vcpu_create)(vcpu);
11367         if (r)
11368                 goto free_guest_fpu;
11369
11370         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11371         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11372         kvm_xen_init_vcpu(vcpu);
11373         kvm_vcpu_mtrr_init(vcpu);
11374         vcpu_load(vcpu);
11375         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11376         kvm_vcpu_reset(vcpu, false);
11377         kvm_init_mmu(vcpu);
11378         vcpu_put(vcpu);
11379         return 0;
11380
11381 free_guest_fpu:
11382         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11383 free_emulate_ctxt:
11384         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11385 free_wbinvd_dirty_mask:
11386         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11387 fail_free_mce_banks:
11388         kfree(vcpu->arch.mce_banks);
11389 fail_free_pio_data:
11390         free_page((unsigned long)vcpu->arch.pio_data);
11391 fail_free_lapic:
11392         kvm_free_lapic(vcpu);
11393 fail_mmu_destroy:
11394         kvm_mmu_destroy(vcpu);
11395         return r;
11396 }
11397
11398 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11399 {
11400         struct kvm *kvm = vcpu->kvm;
11401
11402         if (mutex_lock_killable(&vcpu->mutex))
11403                 return;
11404         vcpu_load(vcpu);
11405         kvm_synchronize_tsc(vcpu, 0);
11406         vcpu_put(vcpu);
11407
11408         /* poll control enabled by default */
11409         vcpu->arch.msr_kvm_poll_control = 1;
11410
11411         mutex_unlock(&vcpu->mutex);
11412
11413         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11414                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11415                                                 KVMCLOCK_SYNC_PERIOD);
11416 }
11417
11418 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11419 {
11420         int idx;
11421
11422         kvmclock_reset(vcpu);
11423
11424         static_call(kvm_x86_vcpu_free)(vcpu);
11425
11426         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11427         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11428         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11429
11430         kvm_xen_destroy_vcpu(vcpu);
11431         kvm_hv_vcpu_uninit(vcpu);
11432         kvm_pmu_destroy(vcpu);
11433         kfree(vcpu->arch.mce_banks);
11434         kvm_free_lapic(vcpu);
11435         idx = srcu_read_lock(&vcpu->kvm->srcu);
11436         kvm_mmu_destroy(vcpu);
11437         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11438         free_page((unsigned long)vcpu->arch.pio_data);
11439         kvfree(vcpu->arch.cpuid_entries);
11440         if (!lapic_in_kernel(vcpu))
11441                 static_branch_dec(&kvm_has_noapic_vcpu);
11442 }
11443
11444 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11445 {
11446         struct kvm_cpuid_entry2 *cpuid_0x1;
11447         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11448         unsigned long new_cr0;
11449
11450         /*
11451          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11452          * to handle side effects.  RESET emulation hits those flows and relies
11453          * on emulated/virtualized registers, including those that are loaded
11454          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11455          * to detect improper or missing initialization.
11456          */
11457         WARN_ON_ONCE(!init_event &&
11458                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11459
11460         kvm_lapic_reset(vcpu, init_event);
11461
11462         vcpu->arch.hflags = 0;
11463
11464         vcpu->arch.smi_pending = 0;
11465         vcpu->arch.smi_count = 0;
11466         atomic_set(&vcpu->arch.nmi_queued, 0);
11467         vcpu->arch.nmi_pending = 0;
11468         vcpu->arch.nmi_injected = false;
11469         kvm_clear_interrupt_queue(vcpu);
11470         kvm_clear_exception_queue(vcpu);
11471
11472         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11473         kvm_update_dr0123(vcpu);
11474         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11475         vcpu->arch.dr7 = DR7_FIXED_1;
11476         kvm_update_dr7(vcpu);
11477
11478         vcpu->arch.cr2 = 0;
11479
11480         kvm_make_request(KVM_REQ_EVENT, vcpu);
11481         vcpu->arch.apf.msr_en_val = 0;
11482         vcpu->arch.apf.msr_int_val = 0;
11483         vcpu->arch.st.msr_val = 0;
11484
11485         kvmclock_reset(vcpu);
11486
11487         kvm_clear_async_pf_completion_queue(vcpu);
11488         kvm_async_pf_hash_reset(vcpu);
11489         vcpu->arch.apf.halted = false;
11490
11491         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11492                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11493
11494                 /*
11495                  * To avoid have the INIT path from kvm_apic_has_events() that be
11496                  * called with loaded FPU and does not let userspace fix the state.
11497                  */
11498                 if (init_event)
11499                         kvm_put_guest_fpu(vcpu);
11500
11501                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11502                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11503
11504                 if (init_event)
11505                         kvm_load_guest_fpu(vcpu);
11506         }
11507
11508         if (!init_event) {
11509                 kvm_pmu_reset(vcpu);
11510                 vcpu->arch.smbase = 0x30000;
11511
11512                 vcpu->arch.msr_misc_features_enables = 0;
11513
11514                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11515                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11516         }
11517
11518         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11519         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11520         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11521
11522         /*
11523          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11524          * if no CPUID match is found.  Note, it's impossible to get a match at
11525          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11526          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11527          * on RESET.  But, go through the motions in case that's ever remedied.
11528          */
11529         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11530         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11531
11532         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11533
11534         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11535         kvm_rip_write(vcpu, 0xfff0);
11536
11537         vcpu->arch.cr3 = 0;
11538         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11539
11540         /*
11541          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11542          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11543          * (or qualify) that with a footnote stating that CD/NW are preserved.
11544          */
11545         new_cr0 = X86_CR0_ET;
11546         if (init_event)
11547                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11548         else
11549                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11550
11551         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11552         static_call(kvm_x86_set_cr4)(vcpu, 0);
11553         static_call(kvm_x86_set_efer)(vcpu, 0);
11554         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11555
11556         /*
11557          * On the standard CR0/CR4/EFER modification paths, there are several
11558          * complex conditions determining whether the MMU has to be reset and/or
11559          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11560          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11561          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11562          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11563          */
11564         if (old_cr0 & X86_CR0_PG) {
11565                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11566                 kvm_mmu_reset_context(vcpu);
11567         }
11568
11569         /*
11570          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11571          * APM states the TLBs are untouched by INIT, but it also states that
11572          * the TLBs are flushed on "External initialization of the processor."
11573          * Flush the guest TLB regardless of vendor, there is no meaningful
11574          * benefit in relying on the guest to flush the TLB immediately after
11575          * INIT.  A spurious TLB flush is benign and likely negligible from a
11576          * performance perspective.
11577          */
11578         if (init_event)
11579                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11580 }
11581 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11582
11583 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11584 {
11585         struct kvm_segment cs;
11586
11587         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11588         cs.selector = vector << 8;
11589         cs.base = vector << 12;
11590         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11591         kvm_rip_write(vcpu, 0);
11592 }
11593 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11594
11595 int kvm_arch_hardware_enable(void)
11596 {
11597         struct kvm *kvm;
11598         struct kvm_vcpu *vcpu;
11599         unsigned long i;
11600         int ret;
11601         u64 local_tsc;
11602         u64 max_tsc = 0;
11603         bool stable, backwards_tsc = false;
11604
11605         kvm_user_return_msr_cpu_online();
11606         ret = static_call(kvm_x86_hardware_enable)();
11607         if (ret != 0)
11608                 return ret;
11609
11610         local_tsc = rdtsc();
11611         stable = !kvm_check_tsc_unstable();
11612         list_for_each_entry(kvm, &vm_list, vm_list) {
11613                 kvm_for_each_vcpu(i, vcpu, kvm) {
11614                         if (!stable && vcpu->cpu == smp_processor_id())
11615                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11616                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11617                                 backwards_tsc = true;
11618                                 if (vcpu->arch.last_host_tsc > max_tsc)
11619                                         max_tsc = vcpu->arch.last_host_tsc;
11620                         }
11621                 }
11622         }
11623
11624         /*
11625          * Sometimes, even reliable TSCs go backwards.  This happens on
11626          * platforms that reset TSC during suspend or hibernate actions, but
11627          * maintain synchronization.  We must compensate.  Fortunately, we can
11628          * detect that condition here, which happens early in CPU bringup,
11629          * before any KVM threads can be running.  Unfortunately, we can't
11630          * bring the TSCs fully up to date with real time, as we aren't yet far
11631          * enough into CPU bringup that we know how much real time has actually
11632          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11633          * variables that haven't been updated yet.
11634          *
11635          * So we simply find the maximum observed TSC above, then record the
11636          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11637          * the adjustment will be applied.  Note that we accumulate
11638          * adjustments, in case multiple suspend cycles happen before some VCPU
11639          * gets a chance to run again.  In the event that no KVM threads get a
11640          * chance to run, we will miss the entire elapsed period, as we'll have
11641          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11642          * loose cycle time.  This isn't too big a deal, since the loss will be
11643          * uniform across all VCPUs (not to mention the scenario is extremely
11644          * unlikely). It is possible that a second hibernate recovery happens
11645          * much faster than a first, causing the observed TSC here to be
11646          * smaller; this would require additional padding adjustment, which is
11647          * why we set last_host_tsc to the local tsc observed here.
11648          *
11649          * N.B. - this code below runs only on platforms with reliable TSC,
11650          * as that is the only way backwards_tsc is set above.  Also note
11651          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11652          * have the same delta_cyc adjustment applied if backwards_tsc
11653          * is detected.  Note further, this adjustment is only done once,
11654          * as we reset last_host_tsc on all VCPUs to stop this from being
11655          * called multiple times (one for each physical CPU bringup).
11656          *
11657          * Platforms with unreliable TSCs don't have to deal with this, they
11658          * will be compensated by the logic in vcpu_load, which sets the TSC to
11659          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11660          * guarantee that they stay in perfect synchronization.
11661          */
11662         if (backwards_tsc) {
11663                 u64 delta_cyc = max_tsc - local_tsc;
11664                 list_for_each_entry(kvm, &vm_list, vm_list) {
11665                         kvm->arch.backwards_tsc_observed = true;
11666                         kvm_for_each_vcpu(i, vcpu, kvm) {
11667                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11668                                 vcpu->arch.last_host_tsc = local_tsc;
11669                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11670                         }
11671
11672                         /*
11673                          * We have to disable TSC offset matching.. if you were
11674                          * booting a VM while issuing an S4 host suspend....
11675                          * you may have some problem.  Solving this issue is
11676                          * left as an exercise to the reader.
11677                          */
11678                         kvm->arch.last_tsc_nsec = 0;
11679                         kvm->arch.last_tsc_write = 0;
11680                 }
11681
11682         }
11683         return 0;
11684 }
11685
11686 void kvm_arch_hardware_disable(void)
11687 {
11688         static_call(kvm_x86_hardware_disable)();
11689         drop_user_return_notifiers();
11690 }
11691
11692 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11693 {
11694         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11695
11696 #define __KVM_X86_OP(func) \
11697         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11698 #define KVM_X86_OP(func) \
11699         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11700 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11701 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11702         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11703                                            (void *)__static_call_return0);
11704 #include <asm/kvm-x86-ops.h>
11705 #undef __KVM_X86_OP
11706
11707         kvm_pmu_ops_update(ops->pmu_ops);
11708 }
11709
11710 int kvm_arch_hardware_setup(void *opaque)
11711 {
11712         struct kvm_x86_init_ops *ops = opaque;
11713         int r;
11714
11715         rdmsrl_safe(MSR_EFER, &host_efer);
11716
11717         if (boot_cpu_has(X86_FEATURE_XSAVES))
11718                 rdmsrl(MSR_IA32_XSS, host_xss);
11719
11720         r = ops->hardware_setup();
11721         if (r != 0)
11722                 return r;
11723
11724         kvm_ops_update(ops);
11725
11726         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11727
11728         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11729                 supported_xss = 0;
11730
11731 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11732         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11733 #undef __kvm_cpu_cap_has
11734
11735         if (kvm_has_tsc_control) {
11736                 /*
11737                  * Make sure the user can only configure tsc_khz values that
11738                  * fit into a signed integer.
11739                  * A min value is not calculated because it will always
11740                  * be 1 on all machines.
11741                  */
11742                 u64 max = min(0x7fffffffULL,
11743                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11744                 kvm_max_guest_tsc_khz = max;
11745         }
11746         kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11747         kvm_init_msr_list();
11748         return 0;
11749 }
11750
11751 void kvm_arch_hardware_unsetup(void)
11752 {
11753         kvm_unregister_perf_callbacks();
11754
11755         static_call(kvm_x86_hardware_unsetup)();
11756 }
11757
11758 int kvm_arch_check_processor_compat(void *opaque)
11759 {
11760         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11761         struct kvm_x86_init_ops *ops = opaque;
11762
11763         WARN_ON(!irqs_disabled());
11764
11765         if (__cr4_reserved_bits(cpu_has, c) !=
11766             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11767                 return -EIO;
11768
11769         return ops->check_processor_compatibility();
11770 }
11771
11772 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11773 {
11774         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11775 }
11776 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11777
11778 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11779 {
11780         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11781 }
11782
11783 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11784 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11785
11786 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11787 {
11788         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11789
11790         vcpu->arch.l1tf_flush_l1d = true;
11791         if (pmu->version && unlikely(pmu->event_count)) {
11792                 pmu->need_cleanup = true;
11793                 kvm_make_request(KVM_REQ_PMU, vcpu);
11794         }
11795         static_call(kvm_x86_sched_in)(vcpu, cpu);
11796 }
11797
11798 void kvm_arch_free_vm(struct kvm *kvm)
11799 {
11800         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11801         __kvm_arch_free_vm(kvm);
11802 }
11803
11804
11805 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11806 {
11807         int ret;
11808         unsigned long flags;
11809
11810         if (type)
11811                 return -EINVAL;
11812
11813         ret = kvm_page_track_init(kvm);
11814         if (ret)
11815                 goto out;
11816
11817         ret = kvm_mmu_init_vm(kvm);
11818         if (ret)
11819                 goto out_page_track;
11820
11821         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11822         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11823         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11824
11825         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11826         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11827         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11828         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11829                 &kvm->arch.irq_sources_bitmap);
11830
11831         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11832         mutex_init(&kvm->arch.apic_map_lock);
11833         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11834         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11835
11836         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11837         pvclock_update_vm_gtod_copy(kvm);
11838         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11839
11840         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11841         kvm->arch.guest_can_read_msr_platform_info = true;
11842         kvm->arch.enable_pmu = enable_pmu;
11843
11844 #if IS_ENABLED(CONFIG_HYPERV)
11845         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11846         kvm->arch.hv_root_tdp = INVALID_PAGE;
11847 #endif
11848
11849         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11850         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11851
11852         kvm_apicv_init(kvm);
11853         kvm_hv_init_vm(kvm);
11854         kvm_xen_init_vm(kvm);
11855
11856         return static_call(kvm_x86_vm_init)(kvm);
11857
11858 out_page_track:
11859         kvm_page_track_cleanup(kvm);
11860 out:
11861         return ret;
11862 }
11863
11864 int kvm_arch_post_init_vm(struct kvm *kvm)
11865 {
11866         return kvm_mmu_post_init_vm(kvm);
11867 }
11868
11869 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11870 {
11871         vcpu_load(vcpu);
11872         kvm_mmu_unload(vcpu);
11873         vcpu_put(vcpu);
11874 }
11875
11876 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11877 {
11878         unsigned long i;
11879         struct kvm_vcpu *vcpu;
11880
11881         kvm_for_each_vcpu(i, vcpu, kvm) {
11882                 kvm_clear_async_pf_completion_queue(vcpu);
11883                 kvm_unload_vcpu_mmu(vcpu);
11884         }
11885 }
11886
11887 void kvm_arch_sync_events(struct kvm *kvm)
11888 {
11889         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11890         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11891         kvm_free_pit(kvm);
11892 }
11893
11894 /**
11895  * __x86_set_memory_region: Setup KVM internal memory slot
11896  *
11897  * @kvm: the kvm pointer to the VM.
11898  * @id: the slot ID to setup.
11899  * @gpa: the GPA to install the slot (unused when @size == 0).
11900  * @size: the size of the slot. Set to zero to uninstall a slot.
11901  *
11902  * This function helps to setup a KVM internal memory slot.  Specify
11903  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11904  * slot.  The return code can be one of the following:
11905  *
11906  *   HVA:           on success (uninstall will return a bogus HVA)
11907  *   -errno:        on error
11908  *
11909  * The caller should always use IS_ERR() to check the return value
11910  * before use.  Note, the KVM internal memory slots are guaranteed to
11911  * remain valid and unchanged until the VM is destroyed, i.e., the
11912  * GPA->HVA translation will not change.  However, the HVA is a user
11913  * address, i.e. its accessibility is not guaranteed, and must be
11914  * accessed via __copy_{to,from}_user().
11915  */
11916 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11917                                       u32 size)
11918 {
11919         int i, r;
11920         unsigned long hva, old_npages;
11921         struct kvm_memslots *slots = kvm_memslots(kvm);
11922         struct kvm_memory_slot *slot;
11923
11924         /* Called with kvm->slots_lock held.  */
11925         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11926                 return ERR_PTR_USR(-EINVAL);
11927
11928         slot = id_to_memslot(slots, id);
11929         if (size) {
11930                 if (slot && slot->npages)
11931                         return ERR_PTR_USR(-EEXIST);
11932
11933                 /*
11934                  * MAP_SHARED to prevent internal slot pages from being moved
11935                  * by fork()/COW.
11936                  */
11937                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11938                               MAP_SHARED | MAP_ANONYMOUS, 0);
11939                 if (IS_ERR((void *)hva))
11940                         return (void __user *)hva;
11941         } else {
11942                 if (!slot || !slot->npages)
11943                         return NULL;
11944
11945                 old_npages = slot->npages;
11946                 hva = slot->userspace_addr;
11947         }
11948
11949         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11950                 struct kvm_userspace_memory_region m;
11951
11952                 m.slot = id | (i << 16);
11953                 m.flags = 0;
11954                 m.guest_phys_addr = gpa;
11955                 m.userspace_addr = hva;
11956                 m.memory_size = size;
11957                 r = __kvm_set_memory_region(kvm, &m);
11958                 if (r < 0)
11959                         return ERR_PTR_USR(r);
11960         }
11961
11962         if (!size)
11963                 vm_munmap(hva, old_npages * PAGE_SIZE);
11964
11965         return (void __user *)hva;
11966 }
11967 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11968
11969 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11970 {
11971         kvm_mmu_pre_destroy_vm(kvm);
11972 }
11973
11974 void kvm_arch_destroy_vm(struct kvm *kvm)
11975 {
11976         if (current->mm == kvm->mm) {
11977                 /*
11978                  * Free memory regions allocated on behalf of userspace,
11979                  * unless the memory map has changed due to process exit
11980                  * or fd copying.
11981                  */
11982                 mutex_lock(&kvm->slots_lock);
11983                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11984                                         0, 0);
11985                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11986                                         0, 0);
11987                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11988                 mutex_unlock(&kvm->slots_lock);
11989         }
11990         kvm_unload_vcpu_mmus(kvm);
11991         static_call_cond(kvm_x86_vm_destroy)(kvm);
11992         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11993         kvm_pic_destroy(kvm);
11994         kvm_ioapic_destroy(kvm);
11995         kvm_destroy_vcpus(kvm);
11996         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11997         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11998         kvm_mmu_uninit_vm(kvm);
11999         kvm_page_track_cleanup(kvm);
12000         kvm_xen_destroy_vm(kvm);
12001         kvm_hv_destroy_vm(kvm);
12002 }
12003
12004 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12005 {
12006         int i;
12007
12008         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12009                 kvfree(slot->arch.rmap[i]);
12010                 slot->arch.rmap[i] = NULL;
12011         }
12012 }
12013
12014 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12015 {
12016         int i;
12017
12018         memslot_rmap_free(slot);
12019
12020         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12021                 kvfree(slot->arch.lpage_info[i - 1]);
12022                 slot->arch.lpage_info[i - 1] = NULL;
12023         }
12024
12025         kvm_page_track_free_memslot(slot);
12026 }
12027
12028 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12029 {
12030         const int sz = sizeof(*slot->arch.rmap[0]);
12031         int i;
12032
12033         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12034                 int level = i + 1;
12035                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12036
12037                 if (slot->arch.rmap[i])
12038                         continue;
12039
12040                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12041                 if (!slot->arch.rmap[i]) {
12042                         memslot_rmap_free(slot);
12043                         return -ENOMEM;
12044                 }
12045         }
12046
12047         return 0;
12048 }
12049
12050 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12051                                       struct kvm_memory_slot *slot)
12052 {
12053         unsigned long npages = slot->npages;
12054         int i, r;
12055
12056         /*
12057          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12058          * old arrays will be freed by __kvm_set_memory_region() if installing
12059          * the new memslot is successful.
12060          */
12061         memset(&slot->arch, 0, sizeof(slot->arch));
12062
12063         if (kvm_memslots_have_rmaps(kvm)) {
12064                 r = memslot_rmap_alloc(slot, npages);
12065                 if (r)
12066                         return r;
12067         }
12068
12069         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12070                 struct kvm_lpage_info *linfo;
12071                 unsigned long ugfn;
12072                 int lpages;
12073                 int level = i + 1;
12074
12075                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12076
12077                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12078                 if (!linfo)
12079                         goto out_free;
12080
12081                 slot->arch.lpage_info[i - 1] = linfo;
12082
12083                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12084                         linfo[0].disallow_lpage = 1;
12085                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12086                         linfo[lpages - 1].disallow_lpage = 1;
12087                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12088                 /*
12089                  * If the gfn and userspace address are not aligned wrt each
12090                  * other, disable large page support for this slot.
12091                  */
12092                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12093                         unsigned long j;
12094
12095                         for (j = 0; j < lpages; ++j)
12096                                 linfo[j].disallow_lpage = 1;
12097                 }
12098         }
12099
12100         if (kvm_page_track_create_memslot(kvm, slot, npages))
12101                 goto out_free;
12102
12103         return 0;
12104
12105 out_free:
12106         memslot_rmap_free(slot);
12107
12108         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12109                 kvfree(slot->arch.lpage_info[i - 1]);
12110                 slot->arch.lpage_info[i - 1] = NULL;
12111         }
12112         return -ENOMEM;
12113 }
12114
12115 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12116 {
12117         struct kvm_vcpu *vcpu;
12118         unsigned long i;
12119
12120         /*
12121          * memslots->generation has been incremented.
12122          * mmio generation may have reached its maximum value.
12123          */
12124         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12125
12126         /* Force re-initialization of steal_time cache */
12127         kvm_for_each_vcpu(i, vcpu, kvm)
12128                 kvm_vcpu_kick(vcpu);
12129 }
12130
12131 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12132                                    const struct kvm_memory_slot *old,
12133                                    struct kvm_memory_slot *new,
12134                                    enum kvm_mr_change change)
12135 {
12136         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12137                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12138                         return -EINVAL;
12139
12140                 return kvm_alloc_memslot_metadata(kvm, new);
12141         }
12142
12143         if (change == KVM_MR_FLAGS_ONLY)
12144                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12145         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12146                 return -EIO;
12147
12148         return 0;
12149 }
12150
12151
12152 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12153 {
12154         struct kvm_arch *ka = &kvm->arch;
12155
12156         if (!kvm_x86_ops.cpu_dirty_log_size)
12157                 return;
12158
12159         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12160             (!enable && --ka->cpu_dirty_logging_count == 0))
12161                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12162
12163         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12164 }
12165
12166 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12167                                      struct kvm_memory_slot *old,
12168                                      const struct kvm_memory_slot *new,
12169                                      enum kvm_mr_change change)
12170 {
12171         u32 old_flags = old ? old->flags : 0;
12172         u32 new_flags = new ? new->flags : 0;
12173         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12174
12175         /*
12176          * Update CPU dirty logging if dirty logging is being toggled.  This
12177          * applies to all operations.
12178          */
12179         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12180                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12181
12182         /*
12183          * Nothing more to do for RO slots (which can't be dirtied and can't be
12184          * made writable) or CREATE/MOVE/DELETE of a slot.
12185          *
12186          * For a memslot with dirty logging disabled:
12187          * CREATE:      No dirty mappings will already exist.
12188          * MOVE/DELETE: The old mappings will already have been cleaned up by
12189          *              kvm_arch_flush_shadow_memslot()
12190          *
12191          * For a memslot with dirty logging enabled:
12192          * CREATE:      No shadow pages exist, thus nothing to write-protect
12193          *              and no dirty bits to clear.
12194          * MOVE/DELETE: The old mappings will already have been cleaned up by
12195          *              kvm_arch_flush_shadow_memslot().
12196          */
12197         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12198                 return;
12199
12200         /*
12201          * READONLY and non-flags changes were filtered out above, and the only
12202          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12203          * logging isn't being toggled on or off.
12204          */
12205         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12206                 return;
12207
12208         if (!log_dirty_pages) {
12209                 /*
12210                  * Dirty logging tracks sptes in 4k granularity, meaning that
12211                  * large sptes have to be split.  If live migration succeeds,
12212                  * the guest in the source machine will be destroyed and large
12213                  * sptes will be created in the destination.  However, if the
12214                  * guest continues to run in the source machine (for example if
12215                  * live migration fails), small sptes will remain around and
12216                  * cause bad performance.
12217                  *
12218                  * Scan sptes if dirty logging has been stopped, dropping those
12219                  * which can be collapsed into a single large-page spte.  Later
12220                  * page faults will create the large-page sptes.
12221                  */
12222                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12223         } else {
12224                 /*
12225                  * Initially-all-set does not require write protecting any page,
12226                  * because they're all assumed to be dirty.
12227                  */
12228                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12229                         return;
12230
12231                 if (READ_ONCE(eager_page_split))
12232                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12233
12234                 if (kvm_x86_ops.cpu_dirty_log_size) {
12235                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12236                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12237                 } else {
12238                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12239                 }
12240         }
12241 }
12242
12243 void kvm_arch_commit_memory_region(struct kvm *kvm,
12244                                 struct kvm_memory_slot *old,
12245                                 const struct kvm_memory_slot *new,
12246                                 enum kvm_mr_change change)
12247 {
12248         if (!kvm->arch.n_requested_mmu_pages &&
12249             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12250                 unsigned long nr_mmu_pages;
12251
12252                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12253                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12254                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12255         }
12256
12257         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12258
12259         /* Free the arrays associated with the old memslot. */
12260         if (change == KVM_MR_MOVE)
12261                 kvm_arch_free_memslot(kvm, old);
12262 }
12263
12264 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12265 {
12266         kvm_mmu_zap_all(kvm);
12267 }
12268
12269 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12270                                    struct kvm_memory_slot *slot)
12271 {
12272         kvm_page_track_flush_slot(kvm, slot);
12273 }
12274
12275 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12276 {
12277         return (is_guest_mode(vcpu) &&
12278                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12279 }
12280
12281 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12282 {
12283         if (!list_empty_careful(&vcpu->async_pf.done))
12284                 return true;
12285
12286         if (kvm_apic_has_events(vcpu))
12287                 return true;
12288
12289         if (vcpu->arch.pv.pv_unhalted)
12290                 return true;
12291
12292         if (vcpu->arch.exception.pending)
12293                 return true;
12294
12295         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12296             (vcpu->arch.nmi_pending &&
12297              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12298                 return true;
12299
12300         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12301             (vcpu->arch.smi_pending &&
12302              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12303                 return true;
12304
12305         if (kvm_arch_interrupt_allowed(vcpu) &&
12306             (kvm_cpu_has_interrupt(vcpu) ||
12307             kvm_guest_apic_has_interrupt(vcpu)))
12308                 return true;
12309
12310         if (kvm_hv_has_stimer_pending(vcpu))
12311                 return true;
12312
12313         if (is_guest_mode(vcpu) &&
12314             kvm_x86_ops.nested_ops->hv_timer_pending &&
12315             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12316                 return true;
12317
12318         if (kvm_xen_has_pending_events(vcpu))
12319                 return true;
12320
12321         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12322                 return true;
12323
12324         return false;
12325 }
12326
12327 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12328 {
12329         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12330 }
12331
12332 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12333 {
12334         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12335                 return true;
12336
12337         return false;
12338 }
12339
12340 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12341 {
12342         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12343                 return true;
12344
12345         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12346                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12347                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12348                 return true;
12349
12350         return kvm_arch_dy_has_pending_interrupt(vcpu);
12351 }
12352
12353 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12354 {
12355         if (vcpu->arch.guest_state_protected)
12356                 return true;
12357
12358         return vcpu->arch.preempted_in_kernel;
12359 }
12360
12361 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12362 {
12363         return kvm_rip_read(vcpu);
12364 }
12365
12366 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12367 {
12368         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12369 }
12370
12371 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12372 {
12373         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12374 }
12375
12376 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12377 {
12378         /* Can't read the RIP when guest state is protected, just return 0 */
12379         if (vcpu->arch.guest_state_protected)
12380                 return 0;
12381
12382         if (is_64_bit_mode(vcpu))
12383                 return kvm_rip_read(vcpu);
12384         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12385                      kvm_rip_read(vcpu));
12386 }
12387 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12388
12389 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12390 {
12391         return kvm_get_linear_rip(vcpu) == linear_rip;
12392 }
12393 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12394
12395 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12396 {
12397         unsigned long rflags;
12398
12399         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12400         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12401                 rflags &= ~X86_EFLAGS_TF;
12402         return rflags;
12403 }
12404 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12405
12406 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12407 {
12408         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12409             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12410                 rflags |= X86_EFLAGS_TF;
12411         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12412 }
12413
12414 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12415 {
12416         __kvm_set_rflags(vcpu, rflags);
12417         kvm_make_request(KVM_REQ_EVENT, vcpu);
12418 }
12419 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12420
12421 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12422 {
12423         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12424
12425         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12426 }
12427
12428 static inline u32 kvm_async_pf_next_probe(u32 key)
12429 {
12430         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12431 }
12432
12433 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12434 {
12435         u32 key = kvm_async_pf_hash_fn(gfn);
12436
12437         while (vcpu->arch.apf.gfns[key] != ~0)
12438                 key = kvm_async_pf_next_probe(key);
12439
12440         vcpu->arch.apf.gfns[key] = gfn;
12441 }
12442
12443 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12444 {
12445         int i;
12446         u32 key = kvm_async_pf_hash_fn(gfn);
12447
12448         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12449                      (vcpu->arch.apf.gfns[key] != gfn &&
12450                       vcpu->arch.apf.gfns[key] != ~0); i++)
12451                 key = kvm_async_pf_next_probe(key);
12452
12453         return key;
12454 }
12455
12456 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12457 {
12458         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12459 }
12460
12461 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12462 {
12463         u32 i, j, k;
12464
12465         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12466
12467         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12468                 return;
12469
12470         while (true) {
12471                 vcpu->arch.apf.gfns[i] = ~0;
12472                 do {
12473                         j = kvm_async_pf_next_probe(j);
12474                         if (vcpu->arch.apf.gfns[j] == ~0)
12475                                 return;
12476                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12477                         /*
12478                          * k lies cyclically in ]i,j]
12479                          * |    i.k.j |
12480                          * |....j i.k.| or  |.k..j i...|
12481                          */
12482                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12483                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12484                 i = j;
12485         }
12486 }
12487
12488 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12489 {
12490         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12491
12492         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12493                                       sizeof(reason));
12494 }
12495
12496 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12497 {
12498         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12499
12500         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12501                                              &token, offset, sizeof(token));
12502 }
12503
12504 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12505 {
12506         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12507         u32 val;
12508
12509         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12510                                          &val, offset, sizeof(val)))
12511                 return false;
12512
12513         return !val;
12514 }
12515
12516 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12517 {
12518
12519         if (!kvm_pv_async_pf_enabled(vcpu))
12520                 return false;
12521
12522         if (vcpu->arch.apf.send_user_only &&
12523             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12524                 return false;
12525
12526         if (is_guest_mode(vcpu)) {
12527                 /*
12528                  * L1 needs to opt into the special #PF vmexits that are
12529                  * used to deliver async page faults.
12530                  */
12531                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12532         } else {
12533                 /*
12534                  * Play it safe in case the guest temporarily disables paging.
12535                  * The real mode IDT in particular is unlikely to have a #PF
12536                  * exception setup.
12537                  */
12538                 return is_paging(vcpu);
12539         }
12540 }
12541
12542 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12543 {
12544         if (unlikely(!lapic_in_kernel(vcpu) ||
12545                      kvm_event_needs_reinjection(vcpu) ||
12546                      vcpu->arch.exception.pending))
12547                 return false;
12548
12549         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12550                 return false;
12551
12552         /*
12553          * If interrupts are off we cannot even use an artificial
12554          * halt state.
12555          */
12556         return kvm_arch_interrupt_allowed(vcpu);
12557 }
12558
12559 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12560                                      struct kvm_async_pf *work)
12561 {
12562         struct x86_exception fault;
12563
12564         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12565         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12566
12567         if (kvm_can_deliver_async_pf(vcpu) &&
12568             !apf_put_user_notpresent(vcpu)) {
12569                 fault.vector = PF_VECTOR;
12570                 fault.error_code_valid = true;
12571                 fault.error_code = 0;
12572                 fault.nested_page_fault = false;
12573                 fault.address = work->arch.token;
12574                 fault.async_page_fault = true;
12575                 kvm_inject_page_fault(vcpu, &fault);
12576                 return true;
12577         } else {
12578                 /*
12579                  * It is not possible to deliver a paravirtualized asynchronous
12580                  * page fault, but putting the guest in an artificial halt state
12581                  * can be beneficial nevertheless: if an interrupt arrives, we
12582                  * can deliver it timely and perhaps the guest will schedule
12583                  * another process.  When the instruction that triggered a page
12584                  * fault is retried, hopefully the page will be ready in the host.
12585                  */
12586                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12587                 return false;
12588         }
12589 }
12590
12591 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12592                                  struct kvm_async_pf *work)
12593 {
12594         struct kvm_lapic_irq irq = {
12595                 .delivery_mode = APIC_DM_FIXED,
12596                 .vector = vcpu->arch.apf.vec
12597         };
12598
12599         if (work->wakeup_all)
12600                 work->arch.token = ~0; /* broadcast wakeup */
12601         else
12602                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12603         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12604
12605         if ((work->wakeup_all || work->notpresent_injected) &&
12606             kvm_pv_async_pf_enabled(vcpu) &&
12607             !apf_put_user_ready(vcpu, work->arch.token)) {
12608                 vcpu->arch.apf.pageready_pending = true;
12609                 kvm_apic_set_irq(vcpu, &irq, NULL);
12610         }
12611
12612         vcpu->arch.apf.halted = false;
12613         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12614 }
12615
12616 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12617 {
12618         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12619         if (!vcpu->arch.apf.pageready_pending)
12620                 kvm_vcpu_kick(vcpu);
12621 }
12622
12623 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12624 {
12625         if (!kvm_pv_async_pf_enabled(vcpu))
12626                 return true;
12627         else
12628                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12629 }
12630
12631 void kvm_arch_start_assignment(struct kvm *kvm)
12632 {
12633         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12634                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12635 }
12636 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12637
12638 void kvm_arch_end_assignment(struct kvm *kvm)
12639 {
12640         atomic_dec(&kvm->arch.assigned_device_count);
12641 }
12642 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12643
12644 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12645 {
12646         return arch_atomic_read(&kvm->arch.assigned_device_count);
12647 }
12648 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12649
12650 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12651 {
12652         atomic_inc(&kvm->arch.noncoherent_dma_count);
12653 }
12654 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12655
12656 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12657 {
12658         atomic_dec(&kvm->arch.noncoherent_dma_count);
12659 }
12660 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12661
12662 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12663 {
12664         return atomic_read(&kvm->arch.noncoherent_dma_count);
12665 }
12666 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12667
12668 bool kvm_arch_has_irq_bypass(void)
12669 {
12670         return true;
12671 }
12672
12673 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12674                                       struct irq_bypass_producer *prod)
12675 {
12676         struct kvm_kernel_irqfd *irqfd =
12677                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12678         int ret;
12679
12680         irqfd->producer = prod;
12681         kvm_arch_start_assignment(irqfd->kvm);
12682         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12683                                          prod->irq, irqfd->gsi, 1);
12684
12685         if (ret)
12686                 kvm_arch_end_assignment(irqfd->kvm);
12687
12688         return ret;
12689 }
12690
12691 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12692                                       struct irq_bypass_producer *prod)
12693 {
12694         int ret;
12695         struct kvm_kernel_irqfd *irqfd =
12696                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12697
12698         WARN_ON(irqfd->producer != prod);
12699         irqfd->producer = NULL;
12700
12701         /*
12702          * When producer of consumer is unregistered, we change back to
12703          * remapped mode, so we can re-use the current implementation
12704          * when the irq is masked/disabled or the consumer side (KVM
12705          * int this case doesn't want to receive the interrupts.
12706         */
12707         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12708         if (ret)
12709                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12710                        " fails: %d\n", irqfd->consumer.token, ret);
12711
12712         kvm_arch_end_assignment(irqfd->kvm);
12713 }
12714
12715 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12716                                    uint32_t guest_irq, bool set)
12717 {
12718         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12719 }
12720
12721 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12722                                   struct kvm_kernel_irq_routing_entry *new)
12723 {
12724         if (new->type != KVM_IRQ_ROUTING_MSI)
12725                 return true;
12726
12727         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12728 }
12729
12730 bool kvm_vector_hashing_enabled(void)
12731 {
12732         return vector_hashing;
12733 }
12734
12735 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12736 {
12737         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12738 }
12739 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12740
12741
12742 int kvm_spec_ctrl_test_value(u64 value)
12743 {
12744         /*
12745          * test that setting IA32_SPEC_CTRL to given value
12746          * is allowed by the host processor
12747          */
12748
12749         u64 saved_value;
12750         unsigned long flags;
12751         int ret = 0;
12752
12753         local_irq_save(flags);
12754
12755         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12756                 ret = 1;
12757         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12758                 ret = 1;
12759         else
12760                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12761
12762         local_irq_restore(flags);
12763
12764         return ret;
12765 }
12766 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12767
12768 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12769 {
12770         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12771         struct x86_exception fault;
12772         u64 access = error_code &
12773                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12774
12775         if (!(error_code & PFERR_PRESENT_MASK) ||
12776             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12777                 /*
12778                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12779                  * tables probably do not match the TLB.  Just proceed
12780                  * with the error code that the processor gave.
12781                  */
12782                 fault.vector = PF_VECTOR;
12783                 fault.error_code_valid = true;
12784                 fault.error_code = error_code;
12785                 fault.nested_page_fault = false;
12786                 fault.address = gva;
12787         }
12788         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12789 }
12790 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12791
12792 /*
12793  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12794  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12795  * indicates whether exit to userspace is needed.
12796  */
12797 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12798                               struct x86_exception *e)
12799 {
12800         if (r == X86EMUL_PROPAGATE_FAULT) {
12801                 kvm_inject_emulated_page_fault(vcpu, e);
12802                 return 1;
12803         }
12804
12805         /*
12806          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12807          * while handling a VMX instruction KVM could've handled the request
12808          * correctly by exiting to userspace and performing I/O but there
12809          * doesn't seem to be a real use-case behind such requests, just return
12810          * KVM_EXIT_INTERNAL_ERROR for now.
12811          */
12812         kvm_prepare_emulation_failure_exit(vcpu);
12813
12814         return 0;
12815 }
12816 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12817
12818 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12819 {
12820         bool pcid_enabled;
12821         struct x86_exception e;
12822         struct {
12823                 u64 pcid;
12824                 u64 gla;
12825         } operand;
12826         int r;
12827
12828         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12829         if (r != X86EMUL_CONTINUE)
12830                 return kvm_handle_memory_failure(vcpu, r, &e);
12831
12832         if (operand.pcid >> 12 != 0) {
12833                 kvm_inject_gp(vcpu, 0);
12834                 return 1;
12835         }
12836
12837         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12838
12839         switch (type) {
12840         case INVPCID_TYPE_INDIV_ADDR:
12841                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12842                     is_noncanonical_address(operand.gla, vcpu)) {
12843                         kvm_inject_gp(vcpu, 0);
12844                         return 1;
12845                 }
12846                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12847                 return kvm_skip_emulated_instruction(vcpu);
12848
12849         case INVPCID_TYPE_SINGLE_CTXT:
12850                 if (!pcid_enabled && (operand.pcid != 0)) {
12851                         kvm_inject_gp(vcpu, 0);
12852                         return 1;
12853                 }
12854
12855                 kvm_invalidate_pcid(vcpu, operand.pcid);
12856                 return kvm_skip_emulated_instruction(vcpu);
12857
12858         case INVPCID_TYPE_ALL_NON_GLOBAL:
12859                 /*
12860                  * Currently, KVM doesn't mark global entries in the shadow
12861                  * page tables, so a non-global flush just degenerates to a
12862                  * global flush. If needed, we could optimize this later by
12863                  * keeping track of global entries in shadow page tables.
12864                  */
12865
12866                 fallthrough;
12867         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12868                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12869                 return kvm_skip_emulated_instruction(vcpu);
12870
12871         default:
12872                 kvm_inject_gp(vcpu, 0);
12873                 return 1;
12874         }
12875 }
12876 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12877
12878 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12879 {
12880         struct kvm_run *run = vcpu->run;
12881         struct kvm_mmio_fragment *frag;
12882         unsigned int len;
12883
12884         BUG_ON(!vcpu->mmio_needed);
12885
12886         /* Complete previous fragment */
12887         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12888         len = min(8u, frag->len);
12889         if (!vcpu->mmio_is_write)
12890                 memcpy(frag->data, run->mmio.data, len);
12891
12892         if (frag->len <= 8) {
12893                 /* Switch to the next fragment. */
12894                 frag++;
12895                 vcpu->mmio_cur_fragment++;
12896         } else {
12897                 /* Go forward to the next mmio piece. */
12898                 frag->data += len;
12899                 frag->gpa += len;
12900                 frag->len -= len;
12901         }
12902
12903         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12904                 vcpu->mmio_needed = 0;
12905
12906                 // VMG change, at this point, we're always done
12907                 // RIP has already been advanced
12908                 return 1;
12909         }
12910
12911         // More MMIO is needed
12912         run->mmio.phys_addr = frag->gpa;
12913         run->mmio.len = min(8u, frag->len);
12914         run->mmio.is_write = vcpu->mmio_is_write;
12915         if (run->mmio.is_write)
12916                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12917         run->exit_reason = KVM_EXIT_MMIO;
12918
12919         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12920
12921         return 0;
12922 }
12923
12924 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12925                           void *data)
12926 {
12927         int handled;
12928         struct kvm_mmio_fragment *frag;
12929
12930         if (!data)
12931                 return -EINVAL;
12932
12933         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12934         if (handled == bytes)
12935                 return 1;
12936
12937         bytes -= handled;
12938         gpa += handled;
12939         data += handled;
12940
12941         /*TODO: Check if need to increment number of frags */
12942         frag = vcpu->mmio_fragments;
12943         vcpu->mmio_nr_fragments = 1;
12944         frag->len = bytes;
12945         frag->gpa = gpa;
12946         frag->data = data;
12947
12948         vcpu->mmio_needed = 1;
12949         vcpu->mmio_cur_fragment = 0;
12950
12951         vcpu->run->mmio.phys_addr = gpa;
12952         vcpu->run->mmio.len = min(8u, frag->len);
12953         vcpu->run->mmio.is_write = 1;
12954         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12955         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12956
12957         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12958
12959         return 0;
12960 }
12961 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12962
12963 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12964                          void *data)
12965 {
12966         int handled;
12967         struct kvm_mmio_fragment *frag;
12968
12969         if (!data)
12970                 return -EINVAL;
12971
12972         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12973         if (handled == bytes)
12974                 return 1;
12975
12976         bytes -= handled;
12977         gpa += handled;
12978         data += handled;
12979
12980         /*TODO: Check if need to increment number of frags */
12981         frag = vcpu->mmio_fragments;
12982         vcpu->mmio_nr_fragments = 1;
12983         frag->len = bytes;
12984         frag->gpa = gpa;
12985         frag->data = data;
12986
12987         vcpu->mmio_needed = 1;
12988         vcpu->mmio_cur_fragment = 0;
12989
12990         vcpu->run->mmio.phys_addr = gpa;
12991         vcpu->run->mmio.len = min(8u, frag->len);
12992         vcpu->run->mmio.is_write = 0;
12993         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12994
12995         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12996
12997         return 0;
12998 }
12999 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13000
13001 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13002                            unsigned int port);
13003
13004 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13005 {
13006         int size = vcpu->arch.pio.size;
13007         int port = vcpu->arch.pio.port;
13008
13009         vcpu->arch.pio.count = 0;
13010         if (vcpu->arch.sev_pio_count)
13011                 return kvm_sev_es_outs(vcpu, size, port);
13012         return 1;
13013 }
13014
13015 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13016                            unsigned int port)
13017 {
13018         for (;;) {
13019                 unsigned int count =
13020                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13021                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13022
13023                 /* memcpy done already by emulator_pio_out.  */
13024                 vcpu->arch.sev_pio_count -= count;
13025                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13026                 if (!ret)
13027                         break;
13028
13029                 /* Emulation done by the kernel.  */
13030                 if (!vcpu->arch.sev_pio_count)
13031                         return 1;
13032         }
13033
13034         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13035         return 0;
13036 }
13037
13038 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13039                           unsigned int port);
13040
13041 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13042 {
13043         unsigned count = vcpu->arch.pio.count;
13044         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13045         vcpu->arch.sev_pio_count -= count;
13046         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13047 }
13048
13049 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13050 {
13051         int size = vcpu->arch.pio.size;
13052         int port = vcpu->arch.pio.port;
13053
13054         advance_sev_es_emulated_ins(vcpu);
13055         if (vcpu->arch.sev_pio_count)
13056                 return kvm_sev_es_ins(vcpu, size, port);
13057         return 1;
13058 }
13059
13060 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13061                           unsigned int port)
13062 {
13063         for (;;) {
13064                 unsigned int count =
13065                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13066                 if (!__emulator_pio_in(vcpu, size, port, count))
13067                         break;
13068
13069                 /* Emulation done by the kernel.  */
13070                 advance_sev_es_emulated_ins(vcpu);
13071                 if (!vcpu->arch.sev_pio_count)
13072                         return 1;
13073         }
13074
13075         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13076         return 0;
13077 }
13078
13079 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13080                          unsigned int port, void *data,  unsigned int count,
13081                          int in)
13082 {
13083         vcpu->arch.sev_pio_data = data;
13084         vcpu->arch.sev_pio_count = count;
13085         return in ? kvm_sev_es_ins(vcpu, size, port)
13086                   : kvm_sev_es_outs(vcpu, size, port);
13087 }
13088 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13089
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13108 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13109 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13110 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13111 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13112 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13113 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13114 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13115 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13116 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13117 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13118
13119 static int __init kvm_x86_init(void)
13120 {
13121         kvm_mmu_x86_module_init();
13122         return 0;
13123 }
13124 module_init(kvm_x86_init);
13125
13126 static void __exit kvm_x86_exit(void)
13127 {
13128         /*
13129          * If module_init() is implemented, module_exit() must also be
13130          * implemented to allow module unload.
13131          */
13132 }
13133 module_exit(kvm_x86_exit);