Merge branch 'kvm-late-6.1-fixes' into HEAD
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 #include "smm.h"
34
35 #include <linux/clocksource.h>
36 #include <linux/interrupt.h>
37 #include <linux/kvm.h>
38 #include <linux/fs.h>
39 #include <linux/vmalloc.h>
40 #include <linux/export.h>
41 #include <linux/moduleparam.h>
42 #include <linux/mman.h>
43 #include <linux/highmem.h>
44 #include <linux/iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90
91 struct kvm_caps kvm_caps __read_mostly = {
92         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
93 };
94 EXPORT_SYMBOL_GPL(kvm_caps);
95
96 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
97
98 #define emul_to_vcpu(ctxt) \
99         ((struct kvm_vcpu *)(ctxt)->vcpu)
100
101 /* EFER defaults:
102  * - enable syscall per default because its emulated by KVM
103  * - enable LME and LMA per default on 64 bit KVM
104  */
105 #ifdef CONFIG_X86_64
106 static
107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
108 #else
109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
110 #endif
111
112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
113
114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
115
116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
117
118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
119                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
120
121 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
122 static void process_nmi(struct kvm_vcpu *vcpu);
123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
124 static void store_regs(struct kvm_vcpu *vcpu);
125 static int sync_regs(struct kvm_vcpu *vcpu);
126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
127
128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130
131 struct kvm_x86_ops kvm_x86_ops __read_mostly;
132
133 #define KVM_X86_OP(func)                                             \
134         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
135                                 *(((struct kvm_x86_ops *)0)->func));
136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
138 #include <asm/kvm-x86-ops.h>
139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
141
142 static bool __read_mostly ignore_msrs = 0;
143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
144
145 bool __read_mostly report_ignored_msrs = true;
146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
147 EXPORT_SYMBOL_GPL(report_ignored_msrs);
148
149 unsigned int min_timer_period_us = 200;
150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly kvmclock_periodic_sync = true;
153 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
154
155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
156 static u32 __read_mostly tsc_tolerance_ppm = 250;
157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
158
159 /*
160  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
161  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
162  * advancement entirely.  Any other value is used as-is and disables adaptive
163  * tuning, i.e. allows privileged userspace to set an exact advancement time.
164  */
165 static int __read_mostly lapic_timer_advance_ns = -1;
166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, S_IRUGO);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, S_IRUGO);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 /*
176  * Flags to manipulate forced emulation behavior (any non-zero value will
177  * enable forced emulation).
178  */
179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
185
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193
194 /*
195  * Restoring the host value for MSRs that are only consumed when running in
196  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
197  * returns to userspace, i.e. the kernel can run with the guest's value.
198  */
199 #define KVM_MAX_NR_USER_RETURN_MSRS 16
200
201 struct kvm_user_return_msrs {
202         struct user_return_notifier urn;
203         bool registered;
204         struct kvm_user_return_msr_values {
205                 u64 host;
206                 u64 curr;
207         } values[KVM_MAX_NR_USER_RETURN_MSRS];
208 };
209
210 u32 __read_mostly kvm_nr_uret_msrs;
211 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
212 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
213 static struct kvm_user_return_msrs __percpu *user_return_msrs;
214
215 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
216                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
217                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
218                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
219
220 u64 __read_mostly host_efer;
221 EXPORT_SYMBOL_GPL(host_efer);
222
223 bool __read_mostly allow_smaller_maxphyaddr = 0;
224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
225
226 bool __read_mostly enable_apicv = true;
227 EXPORT_SYMBOL_GPL(enable_apicv);
228
229 u64 __read_mostly host_xss;
230 EXPORT_SYMBOL_GPL(host_xss);
231
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233         KVM_GENERIC_VM_STATS(),
234         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235         STATS_DESC_COUNTER(VM, mmu_pte_write),
236         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237         STATS_DESC_COUNTER(VM, mmu_flooded),
238         STATS_DESC_COUNTER(VM, mmu_recycled),
239         STATS_DESC_COUNTER(VM, mmu_cache_miss),
240         STATS_DESC_ICOUNTER(VM, mmu_unsync),
241         STATS_DESC_ICOUNTER(VM, pages_4k),
242         STATS_DESC_ICOUNTER(VM, pages_2m),
243         STATS_DESC_ICOUNTER(VM, pages_1g),
244         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248
249 const struct kvm_stats_header kvm_vm_stats_header = {
250         .name_size = KVM_STATS_NAME_SIZE,
251         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252         .id_offset = sizeof(struct kvm_stats_header),
253         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255                        sizeof(kvm_vm_stats_desc),
256 };
257
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259         KVM_GENERIC_VCPU_STATS(),
260         STATS_DESC_COUNTER(VCPU, pf_taken),
261         STATS_DESC_COUNTER(VCPU, pf_fixed),
262         STATS_DESC_COUNTER(VCPU, pf_emulate),
263         STATS_DESC_COUNTER(VCPU, pf_spurious),
264         STATS_DESC_COUNTER(VCPU, pf_fast),
265         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266         STATS_DESC_COUNTER(VCPU, pf_guest),
267         STATS_DESC_COUNTER(VCPU, tlb_flush),
268         STATS_DESC_COUNTER(VCPU, invlpg),
269         STATS_DESC_COUNTER(VCPU, exits),
270         STATS_DESC_COUNTER(VCPU, io_exits),
271         STATS_DESC_COUNTER(VCPU, mmio_exits),
272         STATS_DESC_COUNTER(VCPU, signal_exits),
273         STATS_DESC_COUNTER(VCPU, irq_window_exits),
274         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275         STATS_DESC_COUNTER(VCPU, l1d_flush),
276         STATS_DESC_COUNTER(VCPU, halt_exits),
277         STATS_DESC_COUNTER(VCPU, request_irq_exits),
278         STATS_DESC_COUNTER(VCPU, irq_exits),
279         STATS_DESC_COUNTER(VCPU, host_state_reload),
280         STATS_DESC_COUNTER(VCPU, fpu_reload),
281         STATS_DESC_COUNTER(VCPU, insn_emulation),
282         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283         STATS_DESC_COUNTER(VCPU, hypercalls),
284         STATS_DESC_COUNTER(VCPU, irq_injections),
285         STATS_DESC_COUNTER(VCPU, nmi_injections),
286         STATS_DESC_COUNTER(VCPU, req_event),
287         STATS_DESC_COUNTER(VCPU, nested_run),
288         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290         STATS_DESC_COUNTER(VCPU, preemption_reported),
291         STATS_DESC_COUNTER(VCPU, preemption_other),
292         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293         STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297         .name_size = KVM_STATS_NAME_SIZE,
298         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299         .id_offset = sizeof(struct kvm_stats_header),
300         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302                        sizeof(kvm_vcpu_stats_desc),
303 };
304
305 u64 __read_mostly host_xcr0;
306
307 static struct kmem_cache *x86_emulator_cache;
308
309 /*
310  * When called, it means the previous get/set msr reached an invalid msr.
311  * Return true if we want to ignore/silent this failed msr access.
312  */
313 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
314 {
315         const char *op = write ? "wrmsr" : "rdmsr";
316
317         if (ignore_msrs) {
318                 if (report_ignored_msrs)
319                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
320                                       op, msr, data);
321                 /* Mask the error */
322                 return true;
323         } else {
324                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
325                                       op, msr, data);
326                 return false;
327         }
328 }
329
330 static struct kmem_cache *kvm_alloc_emulator_cache(void)
331 {
332         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
333         unsigned int size = sizeof(struct x86_emulate_ctxt);
334
335         return kmem_cache_create_usercopy("x86_emulator", size,
336                                           __alignof__(struct x86_emulate_ctxt),
337                                           SLAB_ACCOUNT, useroffset,
338                                           size - useroffset, NULL);
339 }
340
341 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
342
343 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
344 {
345         int i;
346         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
347                 vcpu->arch.apf.gfns[i] = ~0;
348 }
349
350 static void kvm_on_user_return(struct user_return_notifier *urn)
351 {
352         unsigned slot;
353         struct kvm_user_return_msrs *msrs
354                 = container_of(urn, struct kvm_user_return_msrs, urn);
355         struct kvm_user_return_msr_values *values;
356         unsigned long flags;
357
358         /*
359          * Disabling irqs at this point since the following code could be
360          * interrupted and executed through kvm_arch_hardware_disable()
361          */
362         local_irq_save(flags);
363         if (msrs->registered) {
364                 msrs->registered = false;
365                 user_return_notifier_unregister(urn);
366         }
367         local_irq_restore(flags);
368         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
369                 values = &msrs->values[slot];
370                 if (values->host != values->curr) {
371                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
372                         values->curr = values->host;
373                 }
374         }
375 }
376
377 static int kvm_probe_user_return_msr(u32 msr)
378 {
379         u64 val;
380         int ret;
381
382         preempt_disable();
383         ret = rdmsrl_safe(msr, &val);
384         if (ret)
385                 goto out;
386         ret = wrmsrl_safe(msr, val);
387 out:
388         preempt_enable();
389         return ret;
390 }
391
392 int kvm_add_user_return_msr(u32 msr)
393 {
394         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
395
396         if (kvm_probe_user_return_msr(msr))
397                 return -1;
398
399         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
400         return kvm_nr_uret_msrs++;
401 }
402 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
403
404 int kvm_find_user_return_msr(u32 msr)
405 {
406         int i;
407
408         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
409                 if (kvm_uret_msrs_list[i] == msr)
410                         return i;
411         }
412         return -1;
413 }
414 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
415
416 static void kvm_user_return_msr_cpu_online(void)
417 {
418         unsigned int cpu = smp_processor_id();
419         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
420         u64 value;
421         int i;
422
423         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
424                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
425                 msrs->values[i].host = value;
426                 msrs->values[i].curr = value;
427         }
428 }
429
430 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
431 {
432         unsigned int cpu = smp_processor_id();
433         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
434         int err;
435
436         value = (value & mask) | (msrs->values[slot].host & ~mask);
437         if (value == msrs->values[slot].curr)
438                 return 0;
439         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
440         if (err)
441                 return 1;
442
443         msrs->values[slot].curr = value;
444         if (!msrs->registered) {
445                 msrs->urn.on_user_return = kvm_on_user_return;
446                 user_return_notifier_register(&msrs->urn);
447                 msrs->registered = true;
448         }
449         return 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
452
453 static void drop_user_return_notifiers(void)
454 {
455         unsigned int cpu = smp_processor_id();
456         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
457
458         if (msrs->registered)
459                 kvm_on_user_return(&msrs->urn);
460 }
461
462 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
463 {
464         return vcpu->arch.apic_base;
465 }
466
467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
468 {
469         return kvm_apic_mode(kvm_get_apic_base(vcpu));
470 }
471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
472
473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
474 {
475         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
476         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
477         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
478                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
479
480         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
481                 return 1;
482         if (!msr_info->host_initiated) {
483                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
484                         return 1;
485                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
486                         return 1;
487         }
488
489         kvm_lapic_set_base(vcpu, msr_info->data);
490         kvm_recalculate_apic_map(vcpu->kvm);
491         return 0;
492 }
493
494 /*
495  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
496  *
497  * Hardware virtualization extension instructions may fault if a reboot turns
498  * off virtualization while processes are running.  Usually after catching the
499  * fault we just panic; during reboot instead the instruction is ignored.
500  */
501 noinstr void kvm_spurious_fault(void)
502 {
503         /* Fault while not rebooting.  We want the trace. */
504         BUG_ON(!kvm_rebooting);
505 }
506 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
507
508 #define EXCPT_BENIGN            0
509 #define EXCPT_CONTRIBUTORY      1
510 #define EXCPT_PF                2
511
512 static int exception_class(int vector)
513 {
514         switch (vector) {
515         case PF_VECTOR:
516                 return EXCPT_PF;
517         case DE_VECTOR:
518         case TS_VECTOR:
519         case NP_VECTOR:
520         case SS_VECTOR:
521         case GP_VECTOR:
522                 return EXCPT_CONTRIBUTORY;
523         default:
524                 break;
525         }
526         return EXCPT_BENIGN;
527 }
528
529 #define EXCPT_FAULT             0
530 #define EXCPT_TRAP              1
531 #define EXCPT_ABORT             2
532 #define EXCPT_INTERRUPT         3
533 #define EXCPT_DB                4
534
535 static int exception_type(int vector)
536 {
537         unsigned int mask;
538
539         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
540                 return EXCPT_INTERRUPT;
541
542         mask = 1 << vector;
543
544         /*
545          * #DBs can be trap-like or fault-like, the caller must check other CPU
546          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
547          */
548         if (mask & (1 << DB_VECTOR))
549                 return EXCPT_DB;
550
551         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
552                 return EXCPT_TRAP;
553
554         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
555                 return EXCPT_ABORT;
556
557         /* Reserved exceptions will result in fault */
558         return EXCPT_FAULT;
559 }
560
561 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
562                                    struct kvm_queued_exception *ex)
563 {
564         if (!ex->has_payload)
565                 return;
566
567         switch (ex->vector) {
568         case DB_VECTOR:
569                 /*
570                  * "Certain debug exceptions may clear bit 0-3.  The
571                  * remaining contents of the DR6 register are never
572                  * cleared by the processor".
573                  */
574                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
575                 /*
576                  * In order to reflect the #DB exception payload in guest
577                  * dr6, three components need to be considered: active low
578                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
579                  * DR6_BS and DR6_BT)
580                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
581                  * In the target guest dr6:
582                  * FIXED_1 bits should always be set.
583                  * Active low bits should be cleared if 1-setting in payload.
584                  * Active high bits should be set if 1-setting in payload.
585                  *
586                  * Note, the payload is compatible with the pending debug
587                  * exceptions/exit qualification under VMX, that active_low bits
588                  * are active high in payload.
589                  * So they need to be flipped for DR6.
590                  */
591                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
592                 vcpu->arch.dr6 |= ex->payload;
593                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
594
595                 /*
596                  * The #DB payload is defined as compatible with the 'pending
597                  * debug exceptions' field under VMX, not DR6. While bit 12 is
598                  * defined in the 'pending debug exceptions' field (enabled
599                  * breakpoint), it is reserved and must be zero in DR6.
600                  */
601                 vcpu->arch.dr6 &= ~BIT(12);
602                 break;
603         case PF_VECTOR:
604                 vcpu->arch.cr2 = ex->payload;
605                 break;
606         }
607
608         ex->has_payload = false;
609         ex->payload = 0;
610 }
611 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
612
613 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
614                                        bool has_error_code, u32 error_code,
615                                        bool has_payload, unsigned long payload)
616 {
617         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
618
619         ex->vector = vector;
620         ex->injected = false;
621         ex->pending = true;
622         ex->has_error_code = has_error_code;
623         ex->error_code = error_code;
624         ex->has_payload = has_payload;
625         ex->payload = payload;
626 }
627
628 /* Forcibly leave the nested mode in cases like a vCPU reset */
629 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
630 {
631         kvm_x86_ops.nested_ops->leave_nested(vcpu);
632 }
633
634 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
635                 unsigned nr, bool has_error, u32 error_code,
636                 bool has_payload, unsigned long payload, bool reinject)
637 {
638         u32 prev_nr;
639         int class1, class2;
640
641         kvm_make_request(KVM_REQ_EVENT, vcpu);
642
643         /*
644          * If the exception is destined for L2 and isn't being reinjected,
645          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
646          * previously injected exception is not checked because it was checked
647          * when it was original queued, and re-checking is incorrect if _L1_
648          * injected the exception, in which case it's exempt from interception.
649          */
650         if (!reinject && is_guest_mode(vcpu) &&
651             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
652                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
653                                            has_payload, payload);
654                 return;
655         }
656
657         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
658         queue:
659                 if (reinject) {
660                         /*
661                          * On VM-Entry, an exception can be pending if and only
662                          * if event injection was blocked by nested_run_pending.
663                          * In that case, however, vcpu_enter_guest() requests an
664                          * immediate exit, and the guest shouldn't proceed far
665                          * enough to need reinjection.
666                          */
667                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
668                         vcpu->arch.exception.injected = true;
669                         if (WARN_ON_ONCE(has_payload)) {
670                                 /*
671                                  * A reinjected event has already
672                                  * delivered its payload.
673                                  */
674                                 has_payload = false;
675                                 payload = 0;
676                         }
677                 } else {
678                         vcpu->arch.exception.pending = true;
679                         vcpu->arch.exception.injected = false;
680                 }
681                 vcpu->arch.exception.has_error_code = has_error;
682                 vcpu->arch.exception.vector = nr;
683                 vcpu->arch.exception.error_code = error_code;
684                 vcpu->arch.exception.has_payload = has_payload;
685                 vcpu->arch.exception.payload = payload;
686                 if (!is_guest_mode(vcpu))
687                         kvm_deliver_exception_payload(vcpu,
688                                                       &vcpu->arch.exception);
689                 return;
690         }
691
692         /* to check exception */
693         prev_nr = vcpu->arch.exception.vector;
694         if (prev_nr == DF_VECTOR) {
695                 /* triple fault -> shutdown */
696                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
697                 return;
698         }
699         class1 = exception_class(prev_nr);
700         class2 = exception_class(nr);
701         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
702             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
703                 /*
704                  * Synthesize #DF.  Clear the previously injected or pending
705                  * exception so as not to incorrectly trigger shutdown.
706                  */
707                 vcpu->arch.exception.injected = false;
708                 vcpu->arch.exception.pending = false;
709
710                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
711         } else {
712                 /* replace previous exception with a new one in a hope
713                    that instruction re-execution will regenerate lost
714                    exception */
715                 goto queue;
716         }
717 }
718
719 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
720 {
721         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
722 }
723 EXPORT_SYMBOL_GPL(kvm_queue_exception);
724
725 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
726 {
727         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
728 }
729 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
730
731 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
732                            unsigned long payload)
733 {
734         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
735 }
736 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
737
738 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
739                                     u32 error_code, unsigned long payload)
740 {
741         kvm_multiple_exception(vcpu, nr, true, error_code,
742                                true, payload, false);
743 }
744
745 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
746 {
747         if (err)
748                 kvm_inject_gp(vcpu, 0);
749         else
750                 return kvm_skip_emulated_instruction(vcpu);
751
752         return 1;
753 }
754 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
755
756 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
757 {
758         if (err) {
759                 kvm_inject_gp(vcpu, 0);
760                 return 1;
761         }
762
763         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
764                                        EMULTYPE_COMPLETE_USER_EXIT);
765 }
766
767 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
768 {
769         ++vcpu->stat.pf_guest;
770
771         /*
772          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
773          * whether or not L1 wants to intercept "regular" #PF.
774          */
775         if (is_guest_mode(vcpu) && fault->async_page_fault)
776                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
777                                            true, fault->error_code,
778                                            true, fault->address);
779         else
780                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
781                                         fault->address);
782 }
783
784 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
785                                     struct x86_exception *fault)
786 {
787         struct kvm_mmu *fault_mmu;
788         WARN_ON_ONCE(fault->vector != PF_VECTOR);
789
790         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
791                                                vcpu->arch.walk_mmu;
792
793         /*
794          * Invalidate the TLB entry for the faulting address, if it exists,
795          * else the access will fault indefinitely (and to emulate hardware).
796          */
797         if ((fault->error_code & PFERR_PRESENT_MASK) &&
798             !(fault->error_code & PFERR_RSVD_MASK))
799                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
800                                        fault_mmu->root.hpa);
801
802         fault_mmu->inject_page_fault(vcpu, fault);
803 }
804 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
805
806 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
807 {
808         atomic_inc(&vcpu->arch.nmi_queued);
809         kvm_make_request(KVM_REQ_NMI, vcpu);
810 }
811
812 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
813 {
814         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
815 }
816 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
817
818 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
819 {
820         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
821 }
822 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
823
824 /*
825  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
826  * a #GP and return false.
827  */
828 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
829 {
830         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
831                 return true;
832         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
833         return false;
834 }
835
836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
837 {
838         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
839                 return true;
840
841         kvm_queue_exception(vcpu, UD_VECTOR);
842         return false;
843 }
844 EXPORT_SYMBOL_GPL(kvm_require_dr);
845
846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
847 {
848         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
849 }
850
851 /*
852  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
853  */
854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
855 {
856         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
857         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
858         gpa_t real_gpa;
859         int i;
860         int ret;
861         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
862
863         /*
864          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
865          * to an L1 GPA.
866          */
867         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
868                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
869         if (real_gpa == INVALID_GPA)
870                 return 0;
871
872         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
873         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
874                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
875         if (ret < 0)
876                 return 0;
877
878         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
879                 if ((pdpte[i] & PT_PRESENT_MASK) &&
880                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
881                         return 0;
882                 }
883         }
884
885         /*
886          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
887          * Shadow page roots need to be reconstructed instead.
888          */
889         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
890                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
891
892         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
893         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
894         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
895         vcpu->arch.pdptrs_from_userspace = false;
896
897         return 1;
898 }
899 EXPORT_SYMBOL_GPL(load_pdptrs);
900
901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
902 {
903         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
904                 kvm_clear_async_pf_completion_queue(vcpu);
905                 kvm_async_pf_hash_reset(vcpu);
906
907                 /*
908                  * Clearing CR0.PG is defined to flush the TLB from the guest's
909                  * perspective.
910                  */
911                 if (!(cr0 & X86_CR0_PG))
912                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
913         }
914
915         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
916                 kvm_mmu_reset_context(vcpu);
917
918         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
919             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
920             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
921                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
922 }
923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
924
925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
926 {
927         unsigned long old_cr0 = kvm_read_cr0(vcpu);
928
929         cr0 |= X86_CR0_ET;
930
931 #ifdef CONFIG_X86_64
932         if (cr0 & 0xffffffff00000000UL)
933                 return 1;
934 #endif
935
936         cr0 &= ~CR0_RESERVED_BITS;
937
938         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
939                 return 1;
940
941         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
942                 return 1;
943
944 #ifdef CONFIG_X86_64
945         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
946             (cr0 & X86_CR0_PG)) {
947                 int cs_db, cs_l;
948
949                 if (!is_pae(vcpu))
950                         return 1;
951                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
952                 if (cs_l)
953                         return 1;
954         }
955 #endif
956         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
957             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
958             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
959                 return 1;
960
961         if (!(cr0 & X86_CR0_PG) &&
962             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
963                 return 1;
964
965         static_call(kvm_x86_set_cr0)(vcpu, cr0);
966
967         kvm_post_set_cr0(vcpu, old_cr0, cr0);
968
969         return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr0);
972
973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
974 {
975         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
976 }
977 EXPORT_SYMBOL_GPL(kvm_lmsw);
978
979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
980 {
981         if (vcpu->arch.guest_state_protected)
982                 return;
983
984         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
985
986                 if (vcpu->arch.xcr0 != host_xcr0)
987                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
988
989                 if (vcpu->arch.xsaves_enabled &&
990                     vcpu->arch.ia32_xss != host_xss)
991                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
992         }
993
994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
995         if (static_cpu_has(X86_FEATURE_PKU) &&
996             vcpu->arch.pkru != vcpu->arch.host_pkru &&
997             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
998              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
999                 write_pkru(vcpu->arch.pkru);
1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1003
1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1005 {
1006         if (vcpu->arch.guest_state_protected)
1007                 return;
1008
1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1010         if (static_cpu_has(X86_FEATURE_PKU) &&
1011             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1012              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1013                 vcpu->arch.pkru = rdpkru();
1014                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1015                         write_pkru(vcpu->arch.host_pkru);
1016         }
1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1018
1019         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1020
1021                 if (vcpu->arch.xcr0 != host_xcr0)
1022                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1023
1024                 if (vcpu->arch.xsaves_enabled &&
1025                     vcpu->arch.ia32_xss != host_xss)
1026                         wrmsrl(MSR_IA32_XSS, host_xss);
1027         }
1028
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1031
1032 #ifdef CONFIG_X86_64
1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1034 {
1035         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1036 }
1037 #endif
1038
1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1040 {
1041         u64 xcr0 = xcr;
1042         u64 old_xcr0 = vcpu->arch.xcr0;
1043         u64 valid_bits;
1044
1045         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1046         if (index != XCR_XFEATURE_ENABLED_MASK)
1047                 return 1;
1048         if (!(xcr0 & XFEATURE_MASK_FP))
1049                 return 1;
1050         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1051                 return 1;
1052
1053         /*
1054          * Do not allow the guest to set bits that we do not support
1055          * saving.  However, xcr0 bit 0 is always set, even if the
1056          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1057          */
1058         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1059         if (xcr0 & ~valid_bits)
1060                 return 1;
1061
1062         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1063             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1064                 return 1;
1065
1066         if (xcr0 & XFEATURE_MASK_AVX512) {
1067                 if (!(xcr0 & XFEATURE_MASK_YMM))
1068                         return 1;
1069                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1070                         return 1;
1071         }
1072
1073         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1074             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1075                 return 1;
1076
1077         vcpu->arch.xcr0 = xcr0;
1078
1079         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1080                 kvm_update_cpuid_runtime(vcpu);
1081         return 0;
1082 }
1083
1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1085 {
1086         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1087         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089                 kvm_inject_gp(vcpu, 0);
1090                 return 1;
1091         }
1092
1093         return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096
1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099         if (cr4 & cr4_reserved_bits)
1100                 return false;
1101
1102         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103                 return false;
1104
1105         return true;
1106 }
1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1108
1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111         return __kvm_is_valid_cr4(vcpu, cr4) &&
1112                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1113 }
1114
1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1116 {
1117         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1118                 kvm_mmu_reset_context(vcpu);
1119
1120         /*
1121          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1122          * according to the SDM; however, stale prev_roots could be reused
1123          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1124          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1125          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1126          * so fall through.
1127          */
1128         if (!tdp_enabled &&
1129             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1130                 kvm_mmu_unload(vcpu);
1131
1132         /*
1133          * The TLB has to be flushed for all PCIDs if any of the following
1134          * (architecturally required) changes happen:
1135          * - CR4.PCIDE is changed from 1 to 0
1136          * - CR4.PGE is toggled
1137          *
1138          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1139          */
1140         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1141             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1142                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143
1144         /*
1145          * The TLB has to be flushed for the current PCID if any of the
1146          * following (architecturally required) changes happen:
1147          * - CR4.SMEP is changed from 0 to 1
1148          * - CR4.PAE is toggled
1149          */
1150         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1151                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1152                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1153
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1156
1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1158 {
1159         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1160
1161         if (!kvm_is_valid_cr4(vcpu, cr4))
1162                 return 1;
1163
1164         if (is_long_mode(vcpu)) {
1165                 if (!(cr4 & X86_CR4_PAE))
1166                         return 1;
1167                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1168                         return 1;
1169         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1170                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1171                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172                 return 1;
1173
1174         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1175                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1176                         return 1;
1177
1178                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1179                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1180                         return 1;
1181         }
1182
1183         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1184
1185         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1186
1187         return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1190
1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1192 {
1193         struct kvm_mmu *mmu = vcpu->arch.mmu;
1194         unsigned long roots_to_free = 0;
1195         int i;
1196
1197         /*
1198          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1199          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1200          * also via the emulator.  KVM's TDP page tables are not in the scope of
1201          * the invalidation, but the guest's TLB entries need to be flushed as
1202          * the CPU may have cached entries in its TLB for the target PCID.
1203          */
1204         if (unlikely(tdp_enabled)) {
1205                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1206                 return;
1207         }
1208
1209         /*
1210          * If neither the current CR3 nor any of the prev_roots use the given
1211          * PCID, then nothing needs to be done here because a resync will
1212          * happen anyway before switching to any other CR3.
1213          */
1214         if (kvm_get_active_pcid(vcpu) == pcid) {
1215                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1216                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1217         }
1218
1219         /*
1220          * If PCID is disabled, there is no need to free prev_roots even if the
1221          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1222          * with PCIDE=0.
1223          */
1224         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1225                 return;
1226
1227         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1228                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1229                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1230
1231         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1232 }
1233
1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1235 {
1236         bool skip_tlb_flush = false;
1237         unsigned long pcid = 0;
1238 #ifdef CONFIG_X86_64
1239         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1240
1241         if (pcid_enabled) {
1242                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1243                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1244                 pcid = cr3 & X86_CR3_PCID_MASK;
1245         }
1246 #endif
1247
1248         /* PDPTRs are always reloaded for PAE paging. */
1249         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1250                 goto handle_tlb_flush;
1251
1252         /*
1253          * Do not condition the GPA check on long mode, this helper is used to
1254          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1255          * the current vCPU mode is accurate.
1256          */
1257         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1258                 return 1;
1259
1260         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1261                 return 1;
1262
1263         if (cr3 != kvm_read_cr3(vcpu))
1264                 kvm_mmu_new_pgd(vcpu, cr3);
1265
1266         vcpu->arch.cr3 = cr3;
1267         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1268         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1269
1270 handle_tlb_flush:
1271         /*
1272          * A load of CR3 that flushes the TLB flushes only the current PCID,
1273          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1274          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1275          * and it's impossible to use a non-zero PCID when PCID is disabled,
1276          * i.e. only PCID=0 can be relevant.
1277          */
1278         if (!skip_tlb_flush)
1279                 kvm_invalidate_pcid(vcpu, pcid);
1280
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1284
1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1286 {
1287         if (cr8 & CR8_RESERVED_BITS)
1288                 return 1;
1289         if (lapic_in_kernel(vcpu))
1290                 kvm_lapic_set_tpr(vcpu, cr8);
1291         else
1292                 vcpu->arch.cr8 = cr8;
1293         return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1296
1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1298 {
1299         if (lapic_in_kernel(vcpu))
1300                 return kvm_lapic_get_cr8(vcpu);
1301         else
1302                 return vcpu->arch.cr8;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1305
1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1307 {
1308         int i;
1309
1310         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1311                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1312                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1313         }
1314 }
1315
1316 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1317 {
1318         unsigned long dr7;
1319
1320         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321                 dr7 = vcpu->arch.guest_debug_dr7;
1322         else
1323                 dr7 = vcpu->arch.dr7;
1324         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1325         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1326         if (dr7 & DR7_BP_EN_MASK)
1327                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1330
1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1332 {
1333         u64 fixed = DR6_FIXED_1;
1334
1335         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1336                 fixed |= DR6_RTM;
1337
1338         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1339                 fixed |= DR6_BUS_LOCK;
1340         return fixed;
1341 }
1342
1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1344 {
1345         size_t size = ARRAY_SIZE(vcpu->arch.db);
1346
1347         switch (dr) {
1348         case 0 ... 3:
1349                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1350                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1351                         vcpu->arch.eff_db[dr] = val;
1352                 break;
1353         case 4:
1354         case 6:
1355                 if (!kvm_dr6_valid(val))
1356                         return 1; /* #GP */
1357                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1358                 break;
1359         case 5:
1360         default: /* 7 */
1361                 if (!kvm_dr7_valid(val))
1362                         return 1; /* #GP */
1363                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1364                 kvm_update_dr7(vcpu);
1365                 break;
1366         }
1367
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_set_dr);
1371
1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1373 {
1374         size_t size = ARRAY_SIZE(vcpu->arch.db);
1375
1376         switch (dr) {
1377         case 0 ... 3:
1378                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1379                 break;
1380         case 4:
1381         case 6:
1382                 *val = vcpu->arch.dr6;
1383                 break;
1384         case 5:
1385         default: /* 7 */
1386                 *val = vcpu->arch.dr7;
1387                 break;
1388         }
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_get_dr);
1391
1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1393 {
1394         u32 ecx = kvm_rcx_read(vcpu);
1395         u64 data;
1396
1397         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1398                 kvm_inject_gp(vcpu, 0);
1399                 return 1;
1400         }
1401
1402         kvm_rax_write(vcpu, (u32)data);
1403         kvm_rdx_write(vcpu, data >> 32);
1404         return kvm_skip_emulated_instruction(vcpu);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1407
1408 /*
1409  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1410  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1411  *
1412  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1413  * extract the supported MSRs from the related const lists.
1414  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1415  * capabilities of the host cpu. This capabilities test skips MSRs that are
1416  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1417  * may depend on host virtualization features rather than host cpu features.
1418  */
1419
1420 static const u32 msrs_to_save_all[] = {
1421         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1422         MSR_STAR,
1423 #ifdef CONFIG_X86_64
1424         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1425 #endif
1426         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1427         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1428         MSR_IA32_SPEC_CTRL,
1429         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1430         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1431         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1432         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1433         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1434         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1435         MSR_IA32_UMWAIT_CONTROL,
1436
1437         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1438         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1439         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1440         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1441         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1442
1443         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1444         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1445         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1446         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1447         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1448         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1449         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1450         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1451         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1452
1453         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1454         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1455
1456         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1457         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1458         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1459         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1460         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1461
1462         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1463 };
1464
1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1466 static unsigned num_msrs_to_save;
1467
1468 static const u32 emulated_msrs_all[] = {
1469         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1470         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1471         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1472         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1473         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1474         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1475         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1476         HV_X64_MSR_RESET,
1477         HV_X64_MSR_VP_INDEX,
1478         HV_X64_MSR_VP_RUNTIME,
1479         HV_X64_MSR_SCONTROL,
1480         HV_X64_MSR_STIMER0_CONFIG,
1481         HV_X64_MSR_VP_ASSIST_PAGE,
1482         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1483         HV_X64_MSR_TSC_EMULATION_STATUS,
1484         HV_X64_MSR_SYNDBG_OPTIONS,
1485         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1486         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1487         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1488
1489         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1490         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1491
1492         MSR_IA32_TSC_ADJUST,
1493         MSR_IA32_TSC_DEADLINE,
1494         MSR_IA32_ARCH_CAPABILITIES,
1495         MSR_IA32_PERF_CAPABILITIES,
1496         MSR_IA32_MISC_ENABLE,
1497         MSR_IA32_MCG_STATUS,
1498         MSR_IA32_MCG_CTL,
1499         MSR_IA32_MCG_EXT_CTL,
1500         MSR_IA32_SMBASE,
1501         MSR_SMI_COUNT,
1502         MSR_PLATFORM_INFO,
1503         MSR_MISC_FEATURES_ENABLES,
1504         MSR_AMD64_VIRT_SPEC_CTRL,
1505         MSR_AMD64_TSC_RATIO,
1506         MSR_IA32_POWER_CTL,
1507         MSR_IA32_UCODE_REV,
1508
1509         /*
1510          * The following list leaves out MSRs whose values are determined
1511          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1512          * We always support the "true" VMX control MSRs, even if the host
1513          * processor does not, so I am putting these registers here rather
1514          * than in msrs_to_save_all.
1515          */
1516         MSR_IA32_VMX_BASIC,
1517         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1518         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1519         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1520         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1521         MSR_IA32_VMX_MISC,
1522         MSR_IA32_VMX_CR0_FIXED0,
1523         MSR_IA32_VMX_CR4_FIXED0,
1524         MSR_IA32_VMX_VMCS_ENUM,
1525         MSR_IA32_VMX_PROCBASED_CTLS2,
1526         MSR_IA32_VMX_EPT_VPID_CAP,
1527         MSR_IA32_VMX_VMFUNC,
1528
1529         MSR_K7_HWCR,
1530         MSR_KVM_POLL_CONTROL,
1531 };
1532
1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1534 static unsigned num_emulated_msrs;
1535
1536 /*
1537  * List of msr numbers which are used to expose MSR-based features that
1538  * can be used by a hypervisor to validate requested CPU features.
1539  */
1540 static const u32 msr_based_features_all[] = {
1541         MSR_IA32_VMX_BASIC,
1542         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1543         MSR_IA32_VMX_PINBASED_CTLS,
1544         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1545         MSR_IA32_VMX_PROCBASED_CTLS,
1546         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1547         MSR_IA32_VMX_EXIT_CTLS,
1548         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1549         MSR_IA32_VMX_ENTRY_CTLS,
1550         MSR_IA32_VMX_MISC,
1551         MSR_IA32_VMX_CR0_FIXED0,
1552         MSR_IA32_VMX_CR0_FIXED1,
1553         MSR_IA32_VMX_CR4_FIXED0,
1554         MSR_IA32_VMX_CR4_FIXED1,
1555         MSR_IA32_VMX_VMCS_ENUM,
1556         MSR_IA32_VMX_PROCBASED_CTLS2,
1557         MSR_IA32_VMX_EPT_VPID_CAP,
1558         MSR_IA32_VMX_VMFUNC,
1559
1560         MSR_AMD64_DE_CFG,
1561         MSR_IA32_UCODE_REV,
1562         MSR_IA32_ARCH_CAPABILITIES,
1563         MSR_IA32_PERF_CAPABILITIES,
1564 };
1565
1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1567 static unsigned int num_msr_based_features;
1568
1569 /*
1570  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1571  * does not yet virtualize. These include:
1572  *   10 - MISC_PACKAGE_CTRLS
1573  *   11 - ENERGY_FILTERING_CTL
1574  *   12 - DOITM
1575  *   18 - FB_CLEAR_CTRL
1576  *   21 - XAPIC_DISABLE_STATUS
1577  *   23 - OVERCLOCKING_STATUS
1578  */
1579
1580 #define KVM_SUPPORTED_ARCH_CAP \
1581         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1582          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1583          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1584          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1585          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1586
1587 static u64 kvm_get_arch_capabilities(void)
1588 {
1589         u64 data = 0;
1590
1591         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1592                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1593                 data &= KVM_SUPPORTED_ARCH_CAP;
1594         }
1595
1596         /*
1597          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1598          * the nested hypervisor runs with NX huge pages.  If it is not,
1599          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1600          * L1 guests, so it need not worry about its own (L2) guests.
1601          */
1602         data |= ARCH_CAP_PSCHANGE_MC_NO;
1603
1604         /*
1605          * If we're doing cache flushes (either "always" or "cond")
1606          * we will do one whenever the guest does a vmlaunch/vmresume.
1607          * If an outer hypervisor is doing the cache flush for us
1608          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1609          * capability to the guest too, and if EPT is disabled we're not
1610          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1611          * require a nested hypervisor to do a flush of its own.
1612          */
1613         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1614                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1615
1616         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1617                 data |= ARCH_CAP_RDCL_NO;
1618         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1619                 data |= ARCH_CAP_SSB_NO;
1620         if (!boot_cpu_has_bug(X86_BUG_MDS))
1621                 data |= ARCH_CAP_MDS_NO;
1622
1623         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1624                 /*
1625                  * If RTM=0 because the kernel has disabled TSX, the host might
1626                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1627                  * and therefore knows that there cannot be TAA) but keep
1628                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1629                  * and we want to allow migrating those guests to tsx=off hosts.
1630                  */
1631                 data &= ~ARCH_CAP_TAA_NO;
1632         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1633                 data |= ARCH_CAP_TAA_NO;
1634         } else {
1635                 /*
1636                  * Nothing to do here; we emulate TSX_CTRL if present on the
1637                  * host so the guest can choose between disabling TSX or
1638                  * using VERW to clear CPU buffers.
1639                  */
1640         }
1641
1642         return data;
1643 }
1644
1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1646 {
1647         switch (msr->index) {
1648         case MSR_IA32_ARCH_CAPABILITIES:
1649                 msr->data = kvm_get_arch_capabilities();
1650                 break;
1651         case MSR_IA32_PERF_CAPABILITIES:
1652                 msr->data = kvm_caps.supported_perf_cap;
1653                 break;
1654         case MSR_IA32_UCODE_REV:
1655                 rdmsrl_safe(msr->index, &msr->data);
1656                 break;
1657         default:
1658                 return static_call(kvm_x86_get_msr_feature)(msr);
1659         }
1660         return 0;
1661 }
1662
1663 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1664 {
1665         struct kvm_msr_entry msr;
1666         int r;
1667
1668         msr.index = index;
1669         r = kvm_get_msr_feature(&msr);
1670
1671         if (r == KVM_MSR_RET_INVALID) {
1672                 /* Unconditionally clear the output for simplicity */
1673                 *data = 0;
1674                 if (kvm_msr_ignored_check(index, 0, false))
1675                         r = 0;
1676         }
1677
1678         if (r)
1679                 return r;
1680
1681         *data = msr.data;
1682
1683         return 0;
1684 }
1685
1686 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1687 {
1688         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1689                 return false;
1690
1691         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1692                 return false;
1693
1694         if (efer & (EFER_LME | EFER_LMA) &&
1695             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1696                 return false;
1697
1698         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1699                 return false;
1700
1701         return true;
1702
1703 }
1704 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1705 {
1706         if (efer & efer_reserved_bits)
1707                 return false;
1708
1709         return __kvm_valid_efer(vcpu, efer);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1712
1713 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1714 {
1715         u64 old_efer = vcpu->arch.efer;
1716         u64 efer = msr_info->data;
1717         int r;
1718
1719         if (efer & efer_reserved_bits)
1720                 return 1;
1721
1722         if (!msr_info->host_initiated) {
1723                 if (!__kvm_valid_efer(vcpu, efer))
1724                         return 1;
1725
1726                 if (is_paging(vcpu) &&
1727                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1728                         return 1;
1729         }
1730
1731         efer &= ~EFER_LMA;
1732         efer |= vcpu->arch.efer & EFER_LMA;
1733
1734         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1735         if (r) {
1736                 WARN_ON(r > 0);
1737                 return r;
1738         }
1739
1740         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1741                 kvm_mmu_reset_context(vcpu);
1742
1743         return 0;
1744 }
1745
1746 void kvm_enable_efer_bits(u64 mask)
1747 {
1748        efer_reserved_bits &= ~mask;
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1751
1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1753 {
1754         struct kvm_x86_msr_filter *msr_filter;
1755         struct msr_bitmap_range *ranges;
1756         struct kvm *kvm = vcpu->kvm;
1757         bool allowed;
1758         int idx;
1759         u32 i;
1760
1761         /* x2APIC MSRs do not support filtering. */
1762         if (index >= 0x800 && index <= 0x8ff)
1763                 return true;
1764
1765         idx = srcu_read_lock(&kvm->srcu);
1766
1767         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1768         if (!msr_filter) {
1769                 allowed = true;
1770                 goto out;
1771         }
1772
1773         allowed = msr_filter->default_allow;
1774         ranges = msr_filter->ranges;
1775
1776         for (i = 0; i < msr_filter->count; i++) {
1777                 u32 start = ranges[i].base;
1778                 u32 end = start + ranges[i].nmsrs;
1779                 u32 flags = ranges[i].flags;
1780                 unsigned long *bitmap = ranges[i].bitmap;
1781
1782                 if ((index >= start) && (index < end) && (flags & type)) {
1783                         allowed = !!test_bit(index - start, bitmap);
1784                         break;
1785                 }
1786         }
1787
1788 out:
1789         srcu_read_unlock(&kvm->srcu, idx);
1790
1791         return allowed;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1794
1795 /*
1796  * Write @data into the MSR specified by @index.  Select MSR specific fault
1797  * checks are bypassed if @host_initiated is %true.
1798  * Returns 0 on success, non-0 otherwise.
1799  * Assumes vcpu_load() was already called.
1800  */
1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1802                          bool host_initiated)
1803 {
1804         struct msr_data msr;
1805
1806         switch (index) {
1807         case MSR_FS_BASE:
1808         case MSR_GS_BASE:
1809         case MSR_KERNEL_GS_BASE:
1810         case MSR_CSTAR:
1811         case MSR_LSTAR:
1812                 if (is_noncanonical_address(data, vcpu))
1813                         return 1;
1814                 break;
1815         case MSR_IA32_SYSENTER_EIP:
1816         case MSR_IA32_SYSENTER_ESP:
1817                 /*
1818                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1819                  * non-canonical address is written on Intel but not on
1820                  * AMD (which ignores the top 32-bits, because it does
1821                  * not implement 64-bit SYSENTER).
1822                  *
1823                  * 64-bit code should hence be able to write a non-canonical
1824                  * value on AMD.  Making the address canonical ensures that
1825                  * vmentry does not fail on Intel after writing a non-canonical
1826                  * value, and that something deterministic happens if the guest
1827                  * invokes 64-bit SYSENTER.
1828                  */
1829                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1830                 break;
1831         case MSR_TSC_AUX:
1832                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1833                         return 1;
1834
1835                 if (!host_initiated &&
1836                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1837                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1838                         return 1;
1839
1840                 /*
1841                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1842                  * incomplete and conflicting architectural behavior.  Current
1843                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1844                  * reserved and always read as zeros.  Enforce Intel's reserved
1845                  * bits check if and only if the guest CPU is Intel, and clear
1846                  * the bits in all other cases.  This ensures cross-vendor
1847                  * migration will provide consistent behavior for the guest.
1848                  */
1849                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1850                         return 1;
1851
1852                 data = (u32)data;
1853                 break;
1854         }
1855
1856         msr.data = data;
1857         msr.index = index;
1858         msr.host_initiated = host_initiated;
1859
1860         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1861 }
1862
1863 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1864                                      u32 index, u64 data, bool host_initiated)
1865 {
1866         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1867
1868         if (ret == KVM_MSR_RET_INVALID)
1869                 if (kvm_msr_ignored_check(index, data, true))
1870                         ret = 0;
1871
1872         return ret;
1873 }
1874
1875 /*
1876  * Read the MSR specified by @index into @data.  Select MSR specific fault
1877  * checks are bypassed if @host_initiated is %true.
1878  * Returns 0 on success, non-0 otherwise.
1879  * Assumes vcpu_load() was already called.
1880  */
1881 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1882                   bool host_initiated)
1883 {
1884         struct msr_data msr;
1885         int ret;
1886
1887         switch (index) {
1888         case MSR_TSC_AUX:
1889                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1890                         return 1;
1891
1892                 if (!host_initiated &&
1893                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1894                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1895                         return 1;
1896                 break;
1897         }
1898
1899         msr.index = index;
1900         msr.host_initiated = host_initiated;
1901
1902         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1903         if (!ret)
1904                 *data = msr.data;
1905         return ret;
1906 }
1907
1908 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1909                                      u32 index, u64 *data, bool host_initiated)
1910 {
1911         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1912
1913         if (ret == KVM_MSR_RET_INVALID) {
1914                 /* Unconditionally clear *data for simplicity */
1915                 *data = 0;
1916                 if (kvm_msr_ignored_check(index, 0, false))
1917                         ret = 0;
1918         }
1919
1920         return ret;
1921 }
1922
1923 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1924 {
1925         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1926                 return KVM_MSR_RET_FILTERED;
1927         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1928 }
1929
1930 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1931 {
1932         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1933                 return KVM_MSR_RET_FILTERED;
1934         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1935 }
1936
1937 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1938 {
1939         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_get_msr);
1942
1943 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1944 {
1945         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_msr);
1948
1949 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1950 {
1951         if (!vcpu->run->msr.error) {
1952                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1953                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1954         }
1955 }
1956
1957 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1958 {
1959         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1960 }
1961
1962 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1963 {
1964         complete_userspace_rdmsr(vcpu);
1965         return complete_emulated_msr_access(vcpu);
1966 }
1967
1968 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1969 {
1970         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1971 }
1972
1973 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1974 {
1975         complete_userspace_rdmsr(vcpu);
1976         return complete_fast_msr_access(vcpu);
1977 }
1978
1979 static u64 kvm_msr_reason(int r)
1980 {
1981         switch (r) {
1982         case KVM_MSR_RET_INVALID:
1983                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1984         case KVM_MSR_RET_FILTERED:
1985                 return KVM_MSR_EXIT_REASON_FILTER;
1986         default:
1987                 return KVM_MSR_EXIT_REASON_INVAL;
1988         }
1989 }
1990
1991 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1992                               u32 exit_reason, u64 data,
1993                               int (*completion)(struct kvm_vcpu *vcpu),
1994                               int r)
1995 {
1996         u64 msr_reason = kvm_msr_reason(r);
1997
1998         /* Check if the user wanted to know about this MSR fault */
1999         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2000                 return 0;
2001
2002         vcpu->run->exit_reason = exit_reason;
2003         vcpu->run->msr.error = 0;
2004         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2005         vcpu->run->msr.reason = msr_reason;
2006         vcpu->run->msr.index = index;
2007         vcpu->run->msr.data = data;
2008         vcpu->arch.complete_userspace_io = completion;
2009
2010         return 1;
2011 }
2012
2013 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2014 {
2015         u32 ecx = kvm_rcx_read(vcpu);
2016         u64 data;
2017         int r;
2018
2019         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2020
2021         if (!r) {
2022                 trace_kvm_msr_read(ecx, data);
2023
2024                 kvm_rax_write(vcpu, data & -1u);
2025                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2026         } else {
2027                 /* MSR read failed? See if we should ask user space */
2028                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2029                                        complete_fast_rdmsr, r))
2030                         return 0;
2031                 trace_kvm_msr_read_ex(ecx);
2032         }
2033
2034         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2037
2038 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2039 {
2040         u32 ecx = kvm_rcx_read(vcpu);
2041         u64 data = kvm_read_edx_eax(vcpu);
2042         int r;
2043
2044         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2045
2046         if (!r) {
2047                 trace_kvm_msr_write(ecx, data);
2048         } else {
2049                 /* MSR write failed? See if we should ask user space */
2050                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2051                                        complete_fast_msr_access, r))
2052                         return 0;
2053                 /* Signal all other negative errors to userspace */
2054                 if (r < 0)
2055                         return r;
2056                 trace_kvm_msr_write_ex(ecx, data);
2057         }
2058
2059         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2062
2063 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2064 {
2065         return kvm_skip_emulated_instruction(vcpu);
2066 }
2067
2068 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2069 {
2070         /* Treat an INVD instruction as a NOP and just skip it. */
2071         return kvm_emulate_as_nop(vcpu);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2074
2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2076 {
2077         kvm_queue_exception(vcpu, UD_VECTOR);
2078         return 1;
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2081
2082
2083 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2084 {
2085         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2086             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2087                 return kvm_handle_invalid_op(vcpu);
2088
2089         pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2090         return kvm_emulate_as_nop(vcpu);
2091 }
2092 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2093 {
2094         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2097
2098 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2099 {
2100         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2103
2104 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2105 {
2106         xfer_to_guest_mode_prepare();
2107         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2108                 xfer_to_guest_mode_work_pending();
2109 }
2110
2111 /*
2112  * The fast path for frequent and performance sensitive wrmsr emulation,
2113  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2114  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2115  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2116  * other cases which must be called after interrupts are enabled on the host.
2117  */
2118 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2119 {
2120         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2121                 return 1;
2122
2123         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2124             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2125             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2126             ((u32)(data >> 32) != X2APIC_BROADCAST))
2127                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2128
2129         return 1;
2130 }
2131
2132 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2133 {
2134         if (!kvm_can_use_hv_timer(vcpu))
2135                 return 1;
2136
2137         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2138         return 0;
2139 }
2140
2141 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2142 {
2143         u32 msr = kvm_rcx_read(vcpu);
2144         u64 data;
2145         fastpath_t ret = EXIT_FASTPATH_NONE;
2146
2147         switch (msr) {
2148         case APIC_BASE_MSR + (APIC_ICR >> 4):
2149                 data = kvm_read_edx_eax(vcpu);
2150                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2151                         kvm_skip_emulated_instruction(vcpu);
2152                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2153                 }
2154                 break;
2155         case MSR_IA32_TSC_DEADLINE:
2156                 data = kvm_read_edx_eax(vcpu);
2157                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2158                         kvm_skip_emulated_instruction(vcpu);
2159                         ret = EXIT_FASTPATH_REENTER_GUEST;
2160                 }
2161                 break;
2162         default:
2163                 break;
2164         }
2165
2166         if (ret != EXIT_FASTPATH_NONE)
2167                 trace_kvm_msr_write(msr, data);
2168
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2172
2173 /*
2174  * Adapt set_msr() to msr_io()'s calling convention
2175  */
2176 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2177 {
2178         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2179 }
2180
2181 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2182 {
2183         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2184 }
2185
2186 #ifdef CONFIG_X86_64
2187 struct pvclock_clock {
2188         int vclock_mode;
2189         u64 cycle_last;
2190         u64 mask;
2191         u32 mult;
2192         u32 shift;
2193         u64 base_cycles;
2194         u64 offset;
2195 };
2196
2197 struct pvclock_gtod_data {
2198         seqcount_t      seq;
2199
2200         struct pvclock_clock clock; /* extract of a clocksource struct */
2201         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2202
2203         ktime_t         offs_boot;
2204         u64             wall_time_sec;
2205 };
2206
2207 static struct pvclock_gtod_data pvclock_gtod_data;
2208
2209 static void update_pvclock_gtod(struct timekeeper *tk)
2210 {
2211         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2212
2213         write_seqcount_begin(&vdata->seq);
2214
2215         /* copy pvclock gtod data */
2216         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2217         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2218         vdata->clock.mask               = tk->tkr_mono.mask;
2219         vdata->clock.mult               = tk->tkr_mono.mult;
2220         vdata->clock.shift              = tk->tkr_mono.shift;
2221         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2222         vdata->clock.offset             = tk->tkr_mono.base;
2223
2224         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2225         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2226         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2227         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2228         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2229         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2230         vdata->raw_clock.offset         = tk->tkr_raw.base;
2231
2232         vdata->wall_time_sec            = tk->xtime_sec;
2233
2234         vdata->offs_boot                = tk->offs_boot;
2235
2236         write_seqcount_end(&vdata->seq);
2237 }
2238
2239 static s64 get_kvmclock_base_ns(void)
2240 {
2241         /* Count up from boot time, but with the frequency of the raw clock.  */
2242         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2243 }
2244 #else
2245 static s64 get_kvmclock_base_ns(void)
2246 {
2247         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2248         return ktime_get_boottime_ns();
2249 }
2250 #endif
2251
2252 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2253 {
2254         int version;
2255         int r;
2256         struct pvclock_wall_clock wc;
2257         u32 wc_sec_hi;
2258         u64 wall_nsec;
2259
2260         if (!wall_clock)
2261                 return;
2262
2263         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2264         if (r)
2265                 return;
2266
2267         if (version & 1)
2268                 ++version;  /* first time write, random junk */
2269
2270         ++version;
2271
2272         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2273                 return;
2274
2275         /*
2276          * The guest calculates current wall clock time by adding
2277          * system time (updated by kvm_guest_time_update below) to the
2278          * wall clock specified here.  We do the reverse here.
2279          */
2280         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2281
2282         wc.nsec = do_div(wall_nsec, 1000000000);
2283         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2284         wc.version = version;
2285
2286         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2287
2288         if (sec_hi_ofs) {
2289                 wc_sec_hi = wall_nsec >> 32;
2290                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2291                                 &wc_sec_hi, sizeof(wc_sec_hi));
2292         }
2293
2294         version++;
2295         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2296 }
2297
2298 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2299                                   bool old_msr, bool host_initiated)
2300 {
2301         struct kvm_arch *ka = &vcpu->kvm->arch;
2302
2303         if (vcpu->vcpu_id == 0 && !host_initiated) {
2304                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2305                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2306
2307                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2308         }
2309
2310         vcpu->arch.time = system_time;
2311         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2312
2313         /* we verify if the enable bit is set... */
2314         if (system_time & 1)
2315                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2316                                  sizeof(struct pvclock_vcpu_time_info));
2317         else
2318                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2319
2320         return;
2321 }
2322
2323 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2324 {
2325         do_shl32_div32(dividend, divisor);
2326         return dividend;
2327 }
2328
2329 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2330                                s8 *pshift, u32 *pmultiplier)
2331 {
2332         uint64_t scaled64;
2333         int32_t  shift = 0;
2334         uint64_t tps64;
2335         uint32_t tps32;
2336
2337         tps64 = base_hz;
2338         scaled64 = scaled_hz;
2339         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2340                 tps64 >>= 1;
2341                 shift--;
2342         }
2343
2344         tps32 = (uint32_t)tps64;
2345         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2346                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2347                         scaled64 >>= 1;
2348                 else
2349                         tps32 <<= 1;
2350                 shift++;
2351         }
2352
2353         *pshift = shift;
2354         *pmultiplier = div_frac(scaled64, tps32);
2355 }
2356
2357 #ifdef CONFIG_X86_64
2358 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2359 #endif
2360
2361 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2362 static unsigned long max_tsc_khz;
2363
2364 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2365 {
2366         u64 v = (u64)khz * (1000000 + ppm);
2367         do_div(v, 1000000);
2368         return v;
2369 }
2370
2371 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2372
2373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2374 {
2375         u64 ratio;
2376
2377         /* Guest TSC same frequency as host TSC? */
2378         if (!scale) {
2379                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2380                 return 0;
2381         }
2382
2383         /* TSC scaling supported? */
2384         if (!kvm_caps.has_tsc_control) {
2385                 if (user_tsc_khz > tsc_khz) {
2386                         vcpu->arch.tsc_catchup = 1;
2387                         vcpu->arch.tsc_always_catchup = 1;
2388                         return 0;
2389                 } else {
2390                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2391                         return -1;
2392                 }
2393         }
2394
2395         /* TSC scaling required  - calculate ratio */
2396         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2397                                 user_tsc_khz, tsc_khz);
2398
2399         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2400                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2401                                     user_tsc_khz);
2402                 return -1;
2403         }
2404
2405         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2406         return 0;
2407 }
2408
2409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2410 {
2411         u32 thresh_lo, thresh_hi;
2412         int use_scaling = 0;
2413
2414         /* tsc_khz can be zero if TSC calibration fails */
2415         if (user_tsc_khz == 0) {
2416                 /* set tsc_scaling_ratio to a safe value */
2417                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2418                 return -1;
2419         }
2420
2421         /* Compute a scale to convert nanoseconds in TSC cycles */
2422         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2423                            &vcpu->arch.virtual_tsc_shift,
2424                            &vcpu->arch.virtual_tsc_mult);
2425         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2426
2427         /*
2428          * Compute the variation in TSC rate which is acceptable
2429          * within the range of tolerance and decide if the
2430          * rate being applied is within that bounds of the hardware
2431          * rate.  If so, no scaling or compensation need be done.
2432          */
2433         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2434         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2435         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2436                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2437                 use_scaling = 1;
2438         }
2439         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2440 }
2441
2442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2443 {
2444         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2445                                       vcpu->arch.virtual_tsc_mult,
2446                                       vcpu->arch.virtual_tsc_shift);
2447         tsc += vcpu->arch.this_tsc_write;
2448         return tsc;
2449 }
2450
2451 #ifdef CONFIG_X86_64
2452 static inline int gtod_is_based_on_tsc(int mode)
2453 {
2454         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2455 }
2456 #endif
2457
2458 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2459 {
2460 #ifdef CONFIG_X86_64
2461         bool vcpus_matched;
2462         struct kvm_arch *ka = &vcpu->kvm->arch;
2463         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2464
2465         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2466                          atomic_read(&vcpu->kvm->online_vcpus));
2467
2468         /*
2469          * Once the masterclock is enabled, always perform request in
2470          * order to update it.
2471          *
2472          * In order to enable masterclock, the host clocksource must be TSC
2473          * and the vcpus need to have matched TSCs.  When that happens,
2474          * perform request to enable masterclock.
2475          */
2476         if (ka->use_master_clock ||
2477             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2478                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2479
2480         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2481                             atomic_read(&vcpu->kvm->online_vcpus),
2482                             ka->use_master_clock, gtod->clock.vclock_mode);
2483 #endif
2484 }
2485
2486 /*
2487  * Multiply tsc by a fixed point number represented by ratio.
2488  *
2489  * The most significant 64-N bits (mult) of ratio represent the
2490  * integral part of the fixed point number; the remaining N bits
2491  * (frac) represent the fractional part, ie. ratio represents a fixed
2492  * point number (mult + frac * 2^(-N)).
2493  *
2494  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2495  */
2496 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2497 {
2498         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2499 }
2500
2501 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2502 {
2503         u64 _tsc = tsc;
2504
2505         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2506                 _tsc = __scale_tsc(ratio, tsc);
2507
2508         return _tsc;
2509 }
2510
2511 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2512 {
2513         u64 tsc;
2514
2515         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2516
2517         return target_tsc - tsc;
2518 }
2519
2520 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2521 {
2522         return vcpu->arch.l1_tsc_offset +
2523                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2524 }
2525 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2526
2527 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2528 {
2529         u64 nested_offset;
2530
2531         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2532                 nested_offset = l1_offset;
2533         else
2534                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2535                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2536
2537         nested_offset += l2_offset;
2538         return nested_offset;
2539 }
2540 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2541
2542 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2543 {
2544         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2545                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2546                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2547
2548         return l1_multiplier;
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2551
2552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2553 {
2554         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2555                                    vcpu->arch.l1_tsc_offset,
2556                                    l1_offset);
2557
2558         vcpu->arch.l1_tsc_offset = l1_offset;
2559
2560         /*
2561          * If we are here because L1 chose not to trap WRMSR to TSC then
2562          * according to the spec this should set L1's TSC (as opposed to
2563          * setting L1's offset for L2).
2564          */
2565         if (is_guest_mode(vcpu))
2566                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2567                         l1_offset,
2568                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2569                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2570         else
2571                 vcpu->arch.tsc_offset = l1_offset;
2572
2573         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2574 }
2575
2576 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2577 {
2578         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2579
2580         /* Userspace is changing the multiplier while L2 is active */
2581         if (is_guest_mode(vcpu))
2582                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2583                         l1_multiplier,
2584                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2585         else
2586                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2587
2588         if (kvm_caps.has_tsc_control)
2589                 static_call(kvm_x86_write_tsc_multiplier)(
2590                         vcpu, vcpu->arch.tsc_scaling_ratio);
2591 }
2592
2593 static inline bool kvm_check_tsc_unstable(void)
2594 {
2595 #ifdef CONFIG_X86_64
2596         /*
2597          * TSC is marked unstable when we're running on Hyper-V,
2598          * 'TSC page' clocksource is good.
2599          */
2600         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2601                 return false;
2602 #endif
2603         return check_tsc_unstable();
2604 }
2605
2606 /*
2607  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2608  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2609  * participates in.
2610  */
2611 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2612                                   u64 ns, bool matched)
2613 {
2614         struct kvm *kvm = vcpu->kvm;
2615
2616         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2617
2618         /*
2619          * We also track th most recent recorded KHZ, write and time to
2620          * allow the matching interval to be extended at each write.
2621          */
2622         kvm->arch.last_tsc_nsec = ns;
2623         kvm->arch.last_tsc_write = tsc;
2624         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2625         kvm->arch.last_tsc_offset = offset;
2626
2627         vcpu->arch.last_guest_tsc = tsc;
2628
2629         kvm_vcpu_write_tsc_offset(vcpu, offset);
2630
2631         if (!matched) {
2632                 /*
2633                  * We split periods of matched TSC writes into generations.
2634                  * For each generation, we track the original measured
2635                  * nanosecond time, offset, and write, so if TSCs are in
2636                  * sync, we can match exact offset, and if not, we can match
2637                  * exact software computation in compute_guest_tsc()
2638                  *
2639                  * These values are tracked in kvm->arch.cur_xxx variables.
2640                  */
2641                 kvm->arch.cur_tsc_generation++;
2642                 kvm->arch.cur_tsc_nsec = ns;
2643                 kvm->arch.cur_tsc_write = tsc;
2644                 kvm->arch.cur_tsc_offset = offset;
2645                 kvm->arch.nr_vcpus_matched_tsc = 0;
2646         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2647                 kvm->arch.nr_vcpus_matched_tsc++;
2648         }
2649
2650         /* Keep track of which generation this VCPU has synchronized to */
2651         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2652         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2653         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2654
2655         kvm_track_tsc_matching(vcpu);
2656 }
2657
2658 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2659 {
2660         struct kvm *kvm = vcpu->kvm;
2661         u64 offset, ns, elapsed;
2662         unsigned long flags;
2663         bool matched = false;
2664         bool synchronizing = false;
2665
2666         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2667         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2668         ns = get_kvmclock_base_ns();
2669         elapsed = ns - kvm->arch.last_tsc_nsec;
2670
2671         if (vcpu->arch.virtual_tsc_khz) {
2672                 if (data == 0) {
2673                         /*
2674                          * detection of vcpu initialization -- need to sync
2675                          * with other vCPUs. This particularly helps to keep
2676                          * kvm_clock stable after CPU hotplug
2677                          */
2678                         synchronizing = true;
2679                 } else {
2680                         u64 tsc_exp = kvm->arch.last_tsc_write +
2681                                                 nsec_to_cycles(vcpu, elapsed);
2682                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2683                         /*
2684                          * Special case: TSC write with a small delta (1 second)
2685                          * of virtual cycle time against real time is
2686                          * interpreted as an attempt to synchronize the CPU.
2687                          */
2688                         synchronizing = data < tsc_exp + tsc_hz &&
2689                                         data + tsc_hz > tsc_exp;
2690                 }
2691         }
2692
2693         /*
2694          * For a reliable TSC, we can match TSC offsets, and for an unstable
2695          * TSC, we add elapsed time in this computation.  We could let the
2696          * compensation code attempt to catch up if we fall behind, but
2697          * it's better to try to match offsets from the beginning.
2698          */
2699         if (synchronizing &&
2700             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2701                 if (!kvm_check_tsc_unstable()) {
2702                         offset = kvm->arch.cur_tsc_offset;
2703                 } else {
2704                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2705                         data += delta;
2706                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2707                 }
2708                 matched = true;
2709         }
2710
2711         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2712         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2713 }
2714
2715 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2716                                            s64 adjustment)
2717 {
2718         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2719         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2720 }
2721
2722 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2723 {
2724         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2725                 WARN_ON(adjustment < 0);
2726         adjustment = kvm_scale_tsc((u64) adjustment,
2727                                    vcpu->arch.l1_tsc_scaling_ratio);
2728         adjust_tsc_offset_guest(vcpu, adjustment);
2729 }
2730
2731 #ifdef CONFIG_X86_64
2732
2733 static u64 read_tsc(void)
2734 {
2735         u64 ret = (u64)rdtsc_ordered();
2736         u64 last = pvclock_gtod_data.clock.cycle_last;
2737
2738         if (likely(ret >= last))
2739                 return ret;
2740
2741         /*
2742          * GCC likes to generate cmov here, but this branch is extremely
2743          * predictable (it's just a function of time and the likely is
2744          * very likely) and there's a data dependence, so force GCC
2745          * to generate a branch instead.  I don't barrier() because
2746          * we don't actually need a barrier, and if this function
2747          * ever gets inlined it will generate worse code.
2748          */
2749         asm volatile ("");
2750         return last;
2751 }
2752
2753 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2754                           int *mode)
2755 {
2756         long v;
2757         u64 tsc_pg_val;
2758
2759         switch (clock->vclock_mode) {
2760         case VDSO_CLOCKMODE_HVCLOCK:
2761                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2762                                                   tsc_timestamp);
2763                 if (tsc_pg_val != U64_MAX) {
2764                         /* TSC page valid */
2765                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2766                         v = (tsc_pg_val - clock->cycle_last) &
2767                                 clock->mask;
2768                 } else {
2769                         /* TSC page invalid */
2770                         *mode = VDSO_CLOCKMODE_NONE;
2771                 }
2772                 break;
2773         case VDSO_CLOCKMODE_TSC:
2774                 *mode = VDSO_CLOCKMODE_TSC;
2775                 *tsc_timestamp = read_tsc();
2776                 v = (*tsc_timestamp - clock->cycle_last) &
2777                         clock->mask;
2778                 break;
2779         default:
2780                 *mode = VDSO_CLOCKMODE_NONE;
2781         }
2782
2783         if (*mode == VDSO_CLOCKMODE_NONE)
2784                 *tsc_timestamp = v = 0;
2785
2786         return v * clock->mult;
2787 }
2788
2789 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2790 {
2791         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2792         unsigned long seq;
2793         int mode;
2794         u64 ns;
2795
2796         do {
2797                 seq = read_seqcount_begin(&gtod->seq);
2798                 ns = gtod->raw_clock.base_cycles;
2799                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2800                 ns >>= gtod->raw_clock.shift;
2801                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2802         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2803         *t = ns;
2804
2805         return mode;
2806 }
2807
2808 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2809 {
2810         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2811         unsigned long seq;
2812         int mode;
2813         u64 ns;
2814
2815         do {
2816                 seq = read_seqcount_begin(&gtod->seq);
2817                 ts->tv_sec = gtod->wall_time_sec;
2818                 ns = gtod->clock.base_cycles;
2819                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2820                 ns >>= gtod->clock.shift;
2821         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2822
2823         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2824         ts->tv_nsec = ns;
2825
2826         return mode;
2827 }
2828
2829 /* returns true if host is using TSC based clocksource */
2830 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2831 {
2832         /* checked again under seqlock below */
2833         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2834                 return false;
2835
2836         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2837                                                       tsc_timestamp));
2838 }
2839
2840 /* returns true if host is using TSC based clocksource */
2841 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2842                                            u64 *tsc_timestamp)
2843 {
2844         /* checked again under seqlock below */
2845         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2846                 return false;
2847
2848         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2849 }
2850 #endif
2851
2852 /*
2853  *
2854  * Assuming a stable TSC across physical CPUS, and a stable TSC
2855  * across virtual CPUs, the following condition is possible.
2856  * Each numbered line represents an event visible to both
2857  * CPUs at the next numbered event.
2858  *
2859  * "timespecX" represents host monotonic time. "tscX" represents
2860  * RDTSC value.
2861  *
2862  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2863  *
2864  * 1.  read timespec0,tsc0
2865  * 2.                                   | timespec1 = timespec0 + N
2866  *                                      | tsc1 = tsc0 + M
2867  * 3. transition to guest               | transition to guest
2868  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2869  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2870  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2871  *
2872  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2873  *
2874  *      - ret0 < ret1
2875  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2876  *              ...
2877  *      - 0 < N - M => M < N
2878  *
2879  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2880  * always the case (the difference between two distinct xtime instances
2881  * might be smaller then the difference between corresponding TSC reads,
2882  * when updating guest vcpus pvclock areas).
2883  *
2884  * To avoid that problem, do not allow visibility of distinct
2885  * system_timestamp/tsc_timestamp values simultaneously: use a master
2886  * copy of host monotonic time values. Update that master copy
2887  * in lockstep.
2888  *
2889  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2890  *
2891  */
2892
2893 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2894 {
2895 #ifdef CONFIG_X86_64
2896         struct kvm_arch *ka = &kvm->arch;
2897         int vclock_mode;
2898         bool host_tsc_clocksource, vcpus_matched;
2899
2900         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2901         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2902                         atomic_read(&kvm->online_vcpus));
2903
2904         /*
2905          * If the host uses TSC clock, then passthrough TSC as stable
2906          * to the guest.
2907          */
2908         host_tsc_clocksource = kvm_get_time_and_clockread(
2909                                         &ka->master_kernel_ns,
2910                                         &ka->master_cycle_now);
2911
2912         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2913                                 && !ka->backwards_tsc_observed
2914                                 && !ka->boot_vcpu_runs_old_kvmclock;
2915
2916         if (ka->use_master_clock)
2917                 atomic_set(&kvm_guest_has_master_clock, 1);
2918
2919         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2920         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2921                                         vcpus_matched);
2922 #endif
2923 }
2924
2925 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2926 {
2927         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2928 }
2929
2930 static void __kvm_start_pvclock_update(struct kvm *kvm)
2931 {
2932         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2933         write_seqcount_begin(&kvm->arch.pvclock_sc);
2934 }
2935
2936 static void kvm_start_pvclock_update(struct kvm *kvm)
2937 {
2938         kvm_make_mclock_inprogress_request(kvm);
2939
2940         /* no guest entries from this point */
2941         __kvm_start_pvclock_update(kvm);
2942 }
2943
2944 static void kvm_end_pvclock_update(struct kvm *kvm)
2945 {
2946         struct kvm_arch *ka = &kvm->arch;
2947         struct kvm_vcpu *vcpu;
2948         unsigned long i;
2949
2950         write_seqcount_end(&ka->pvclock_sc);
2951         raw_spin_unlock_irq(&ka->tsc_write_lock);
2952         kvm_for_each_vcpu(i, vcpu, kvm)
2953                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2954
2955         /* guest entries allowed */
2956         kvm_for_each_vcpu(i, vcpu, kvm)
2957                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2958 }
2959
2960 static void kvm_update_masterclock(struct kvm *kvm)
2961 {
2962         kvm_hv_request_tsc_page_update(kvm);
2963         kvm_start_pvclock_update(kvm);
2964         pvclock_update_vm_gtod_copy(kvm);
2965         kvm_end_pvclock_update(kvm);
2966 }
2967
2968 /*
2969  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2970  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2971  * can change during boot even if the TSC is constant, as it's possible for KVM
2972  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2973  * notification when calibration completes, but practically speaking calibration
2974  * will complete before userspace is alive enough to create VMs.
2975  */
2976 static unsigned long get_cpu_tsc_khz(void)
2977 {
2978         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2979                 return tsc_khz;
2980         else
2981                 return __this_cpu_read(cpu_tsc_khz);
2982 }
2983
2984 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2985 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2986 {
2987         struct kvm_arch *ka = &kvm->arch;
2988         struct pvclock_vcpu_time_info hv_clock;
2989
2990         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2991         get_cpu();
2992
2993         data->flags = 0;
2994         if (ka->use_master_clock &&
2995             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
2996 #ifdef CONFIG_X86_64
2997                 struct timespec64 ts;
2998
2999                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3000                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3001                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3002                 } else
3003 #endif
3004                 data->host_tsc = rdtsc();
3005
3006                 data->flags |= KVM_CLOCK_TSC_STABLE;
3007                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3008                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3009                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3010                                    &hv_clock.tsc_shift,
3011                                    &hv_clock.tsc_to_system_mul);
3012                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3013         } else {
3014                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3015         }
3016
3017         put_cpu();
3018 }
3019
3020 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3021 {
3022         struct kvm_arch *ka = &kvm->arch;
3023         unsigned seq;
3024
3025         do {
3026                 seq = read_seqcount_begin(&ka->pvclock_sc);
3027                 __get_kvmclock(kvm, data);
3028         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3029 }
3030
3031 u64 get_kvmclock_ns(struct kvm *kvm)
3032 {
3033         struct kvm_clock_data data;
3034
3035         get_kvmclock(kvm, &data);
3036         return data.clock;
3037 }
3038
3039 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3040                                     struct gfn_to_pfn_cache *gpc,
3041                                     unsigned int offset)
3042 {
3043         struct kvm_vcpu_arch *vcpu = &v->arch;
3044         struct pvclock_vcpu_time_info *guest_hv_clock;
3045         unsigned long flags;
3046
3047         read_lock_irqsave(&gpc->lock, flags);
3048         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3049                 read_unlock_irqrestore(&gpc->lock, flags);
3050
3051                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3052                         return;
3053
3054                 read_lock_irqsave(&gpc->lock, flags);
3055         }
3056
3057         guest_hv_clock = (void *)(gpc->khva + offset);
3058
3059         /*
3060          * This VCPU is paused, but it's legal for a guest to read another
3061          * VCPU's kvmclock, so we really have to follow the specification where
3062          * it says that version is odd if data is being modified, and even after
3063          * it is consistent.
3064          */
3065
3066         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3067         smp_wmb();
3068
3069         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3070         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3071
3072         if (vcpu->pvclock_set_guest_stopped_request) {
3073                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3074                 vcpu->pvclock_set_guest_stopped_request = false;
3075         }
3076
3077         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3078         smp_wmb();
3079
3080         guest_hv_clock->version = ++vcpu->hv_clock.version;
3081
3082         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3083         read_unlock_irqrestore(&gpc->lock, flags);
3084
3085         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3086 }
3087
3088 static int kvm_guest_time_update(struct kvm_vcpu *v)
3089 {
3090         unsigned long flags, tgt_tsc_khz;
3091         unsigned seq;
3092         struct kvm_vcpu_arch *vcpu = &v->arch;
3093         struct kvm_arch *ka = &v->kvm->arch;
3094         s64 kernel_ns;
3095         u64 tsc_timestamp, host_tsc;
3096         u8 pvclock_flags;
3097         bool use_master_clock;
3098
3099         kernel_ns = 0;
3100         host_tsc = 0;
3101
3102         /*
3103          * If the host uses TSC clock, then passthrough TSC as stable
3104          * to the guest.
3105          */
3106         do {
3107                 seq = read_seqcount_begin(&ka->pvclock_sc);
3108                 use_master_clock = ka->use_master_clock;
3109                 if (use_master_clock) {
3110                         host_tsc = ka->master_cycle_now;
3111                         kernel_ns = ka->master_kernel_ns;
3112                 }
3113         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3114
3115         /* Keep irq disabled to prevent changes to the clock */
3116         local_irq_save(flags);
3117         tgt_tsc_khz = get_cpu_tsc_khz();
3118         if (unlikely(tgt_tsc_khz == 0)) {
3119                 local_irq_restore(flags);
3120                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3121                 return 1;
3122         }
3123         if (!use_master_clock) {
3124                 host_tsc = rdtsc();
3125                 kernel_ns = get_kvmclock_base_ns();
3126         }
3127
3128         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3129
3130         /*
3131          * We may have to catch up the TSC to match elapsed wall clock
3132          * time for two reasons, even if kvmclock is used.
3133          *   1) CPU could have been running below the maximum TSC rate
3134          *   2) Broken TSC compensation resets the base at each VCPU
3135          *      entry to avoid unknown leaps of TSC even when running
3136          *      again on the same CPU.  This may cause apparent elapsed
3137          *      time to disappear, and the guest to stand still or run
3138          *      very slowly.
3139          */
3140         if (vcpu->tsc_catchup) {
3141                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3142                 if (tsc > tsc_timestamp) {
3143                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3144                         tsc_timestamp = tsc;
3145                 }
3146         }
3147
3148         local_irq_restore(flags);
3149
3150         /* With all the info we got, fill in the values */
3151
3152         if (kvm_caps.has_tsc_control)
3153                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3154                                             v->arch.l1_tsc_scaling_ratio);
3155
3156         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3157                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3158                                    &vcpu->hv_clock.tsc_shift,
3159                                    &vcpu->hv_clock.tsc_to_system_mul);
3160                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3161         }
3162
3163         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3164         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3165         vcpu->last_guest_tsc = tsc_timestamp;
3166
3167         /* If the host uses TSC clocksource, then it is stable */
3168         pvclock_flags = 0;
3169         if (use_master_clock)
3170                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3171
3172         vcpu->hv_clock.flags = pvclock_flags;
3173
3174         if (vcpu->pv_time.active)
3175                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3176         if (vcpu->xen.vcpu_info_cache.active)
3177                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3178                                         offsetof(struct compat_vcpu_info, time));
3179         if (vcpu->xen.vcpu_time_info_cache.active)
3180                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3181         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3182         return 0;
3183 }
3184
3185 /*
3186  * kvmclock updates which are isolated to a given vcpu, such as
3187  * vcpu->cpu migration, should not allow system_timestamp from
3188  * the rest of the vcpus to remain static. Otherwise ntp frequency
3189  * correction applies to one vcpu's system_timestamp but not
3190  * the others.
3191  *
3192  * So in those cases, request a kvmclock update for all vcpus.
3193  * We need to rate-limit these requests though, as they can
3194  * considerably slow guests that have a large number of vcpus.
3195  * The time for a remote vcpu to update its kvmclock is bound
3196  * by the delay we use to rate-limit the updates.
3197  */
3198
3199 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3200
3201 static void kvmclock_update_fn(struct work_struct *work)
3202 {
3203         unsigned long i;
3204         struct delayed_work *dwork = to_delayed_work(work);
3205         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3206                                            kvmclock_update_work);
3207         struct kvm *kvm = container_of(ka, struct kvm, arch);
3208         struct kvm_vcpu *vcpu;
3209
3210         kvm_for_each_vcpu(i, vcpu, kvm) {
3211                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3212                 kvm_vcpu_kick(vcpu);
3213         }
3214 }
3215
3216 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3217 {
3218         struct kvm *kvm = v->kvm;
3219
3220         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3221         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3222                                         KVMCLOCK_UPDATE_DELAY);
3223 }
3224
3225 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3226
3227 static void kvmclock_sync_fn(struct work_struct *work)
3228 {
3229         struct delayed_work *dwork = to_delayed_work(work);
3230         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3231                                            kvmclock_sync_work);
3232         struct kvm *kvm = container_of(ka, struct kvm, arch);
3233
3234         if (!kvmclock_periodic_sync)
3235                 return;
3236
3237         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3238         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3239                                         KVMCLOCK_SYNC_PERIOD);
3240 }
3241
3242 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3243 static bool is_mci_control_msr(u32 msr)
3244 {
3245         return (msr & 3) == 0;
3246 }
3247 static bool is_mci_status_msr(u32 msr)
3248 {
3249         return (msr & 3) == 1;
3250 }
3251
3252 /*
3253  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3254  */
3255 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3256 {
3257         /* McStatusWrEn enabled? */
3258         if (guest_cpuid_is_amd_or_hygon(vcpu))
3259                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3260
3261         return false;
3262 }
3263
3264 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3265 {
3266         u64 mcg_cap = vcpu->arch.mcg_cap;
3267         unsigned bank_num = mcg_cap & 0xff;
3268         u32 msr = msr_info->index;
3269         u64 data = msr_info->data;
3270         u32 offset, last_msr;
3271
3272         switch (msr) {
3273         case MSR_IA32_MCG_STATUS:
3274                 vcpu->arch.mcg_status = data;
3275                 break;
3276         case MSR_IA32_MCG_CTL:
3277                 if (!(mcg_cap & MCG_CTL_P) &&
3278                     (data || !msr_info->host_initiated))
3279                         return 1;
3280                 if (data != 0 && data != ~(u64)0)
3281                         return 1;
3282                 vcpu->arch.mcg_ctl = data;
3283                 break;
3284         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3285                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3286                 if (msr > last_msr)
3287                         return 1;
3288
3289                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3290                         return 1;
3291                 /* An attempt to write a 1 to a reserved bit raises #GP */
3292                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3293                         return 1;
3294                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3295                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3296                 vcpu->arch.mci_ctl2_banks[offset] = data;
3297                 break;
3298         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3299                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3300                 if (msr > last_msr)
3301                         return 1;
3302
3303                 /*
3304                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3305                  * values are architecturally undefined.  But, some Linux
3306                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3307                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3308                  * other bits in order to avoid an uncaught #GP in the guest.
3309                  *
3310                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3311                  * single-bit ECC data errors.
3312                  */
3313                 if (is_mci_control_msr(msr) &&
3314                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3315                         return 1;
3316
3317                 /*
3318                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3319                  * AMD-based CPUs allow non-zero values, but if and only if
3320                  * HWCR[McStatusWrEn] is set.
3321                  */
3322                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3323                     data != 0 && !can_set_mci_status(vcpu))
3324                         return 1;
3325
3326                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3327                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3328                 vcpu->arch.mce_banks[offset] = data;
3329                 break;
3330         default:
3331                 return 1;
3332         }
3333         return 0;
3334 }
3335
3336 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3337 {
3338         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3339
3340         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3341 }
3342
3343 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3344 {
3345         gpa_t gpa = data & ~0x3f;
3346
3347         /* Bits 4:5 are reserved, Should be zero */
3348         if (data & 0x30)
3349                 return 1;
3350
3351         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3352             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3353                 return 1;
3354
3355         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3356             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3357                 return 1;
3358
3359         if (!lapic_in_kernel(vcpu))
3360                 return data ? 1 : 0;
3361
3362         vcpu->arch.apf.msr_en_val = data;
3363
3364         if (!kvm_pv_async_pf_enabled(vcpu)) {
3365                 kvm_clear_async_pf_completion_queue(vcpu);
3366                 kvm_async_pf_hash_reset(vcpu);
3367                 return 0;
3368         }
3369
3370         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3371                                         sizeof(u64)))
3372                 return 1;
3373
3374         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3375         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3376
3377         kvm_async_pf_wakeup_all(vcpu);
3378
3379         return 0;
3380 }
3381
3382 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3383 {
3384         /* Bits 8-63 are reserved */
3385         if (data >> 8)
3386                 return 1;
3387
3388         if (!lapic_in_kernel(vcpu))
3389                 return 1;
3390
3391         vcpu->arch.apf.msr_int_val = data;
3392
3393         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3394
3395         return 0;
3396 }
3397
3398 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3399 {
3400         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3401         vcpu->arch.time = 0;
3402 }
3403
3404 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3405 {
3406         ++vcpu->stat.tlb_flush;
3407         static_call(kvm_x86_flush_tlb_all)(vcpu);
3408
3409         /* Flushing all ASIDs flushes the current ASID... */
3410         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3411 }
3412
3413 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3414 {
3415         ++vcpu->stat.tlb_flush;
3416
3417         if (!tdp_enabled) {
3418                 /*
3419                  * A TLB flush on behalf of the guest is equivalent to
3420                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3421                  * a forced sync of the shadow page tables.  Ensure all the
3422                  * roots are synced and the guest TLB in hardware is clean.
3423                  */
3424                 kvm_mmu_sync_roots(vcpu);
3425                 kvm_mmu_sync_prev_roots(vcpu);
3426         }
3427
3428         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3429
3430         /*
3431          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3432          * grained flushing.
3433          */
3434         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3435 }
3436
3437
3438 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3439 {
3440         ++vcpu->stat.tlb_flush;
3441         static_call(kvm_x86_flush_tlb_current)(vcpu);
3442 }
3443
3444 /*
3445  * Service "local" TLB flush requests, which are specific to the current MMU
3446  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3447  * TLB flushes that are targeted at an MMU context also need to be serviced
3448  * prior before nested VM-Enter/VM-Exit.
3449  */
3450 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3451 {
3452         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3453                 kvm_vcpu_flush_tlb_current(vcpu);
3454
3455         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3456                 kvm_vcpu_flush_tlb_guest(vcpu);
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3459
3460 static void record_steal_time(struct kvm_vcpu *vcpu)
3461 {
3462         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3463         struct kvm_steal_time __user *st;
3464         struct kvm_memslots *slots;
3465         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3466         u64 steal;
3467         u32 version;
3468
3469         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3470                 kvm_xen_runstate_set_running(vcpu);
3471                 return;
3472         }
3473
3474         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3475                 return;
3476
3477         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3478                 return;
3479
3480         slots = kvm_memslots(vcpu->kvm);
3481
3482         if (unlikely(slots->generation != ghc->generation ||
3483                      gpa != ghc->gpa ||
3484                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3485                 /* We rely on the fact that it fits in a single page. */
3486                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3487
3488                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3489                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3490                         return;
3491         }
3492
3493         st = (struct kvm_steal_time __user *)ghc->hva;
3494         /*
3495          * Doing a TLB flush here, on the guest's behalf, can avoid
3496          * expensive IPIs.
3497          */
3498         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3499                 u8 st_preempted = 0;
3500                 int err = -EFAULT;
3501
3502                 if (!user_access_begin(st, sizeof(*st)))
3503                         return;
3504
3505                 asm volatile("1: xchgb %0, %2\n"
3506                              "xor %1, %1\n"
3507                              "2:\n"
3508                              _ASM_EXTABLE_UA(1b, 2b)
3509                              : "+q" (st_preempted),
3510                                "+&r" (err),
3511                                "+m" (st->preempted));
3512                 if (err)
3513                         goto out;
3514
3515                 user_access_end();
3516
3517                 vcpu->arch.st.preempted = 0;
3518
3519                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3520                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3521                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3522                         kvm_vcpu_flush_tlb_guest(vcpu);
3523
3524                 if (!user_access_begin(st, sizeof(*st)))
3525                         goto dirty;
3526         } else {
3527                 if (!user_access_begin(st, sizeof(*st)))
3528                         return;
3529
3530                 unsafe_put_user(0, &st->preempted, out);
3531                 vcpu->arch.st.preempted = 0;
3532         }
3533
3534         unsafe_get_user(version, &st->version, out);
3535         if (version & 1)
3536                 version += 1;  /* first time write, random junk */
3537
3538         version += 1;
3539         unsafe_put_user(version, &st->version, out);
3540
3541         smp_wmb();
3542
3543         unsafe_get_user(steal, &st->steal, out);
3544         steal += current->sched_info.run_delay -
3545                 vcpu->arch.st.last_steal;
3546         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3547         unsafe_put_user(steal, &st->steal, out);
3548
3549         version += 1;
3550         unsafe_put_user(version, &st->version, out);
3551
3552  out:
3553         user_access_end();
3554  dirty:
3555         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3556 }
3557
3558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3559 {
3560         bool pr = false;
3561         u32 msr = msr_info->index;
3562         u64 data = msr_info->data;
3563
3564         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3565                 return kvm_xen_write_hypercall_page(vcpu, data);
3566
3567         switch (msr) {
3568         case MSR_AMD64_NB_CFG:
3569         case MSR_IA32_UCODE_WRITE:
3570         case MSR_VM_HSAVE_PA:
3571         case MSR_AMD64_PATCH_LOADER:
3572         case MSR_AMD64_BU_CFG2:
3573         case MSR_AMD64_DC_CFG:
3574         case MSR_F15H_EX_CFG:
3575                 break;
3576
3577         case MSR_IA32_UCODE_REV:
3578                 if (msr_info->host_initiated)
3579                         vcpu->arch.microcode_version = data;
3580                 break;
3581         case MSR_IA32_ARCH_CAPABILITIES:
3582                 if (!msr_info->host_initiated)
3583                         return 1;
3584                 vcpu->arch.arch_capabilities = data;
3585                 break;
3586         case MSR_IA32_PERF_CAPABILITIES:
3587                 if (!msr_info->host_initiated)
3588                         return 1;
3589                 if (data & ~kvm_caps.supported_perf_cap)
3590                         return 1;
3591
3592                 vcpu->arch.perf_capabilities = data;
3593                 kvm_pmu_refresh(vcpu);
3594                 return 0;
3595         case MSR_EFER:
3596                 return set_efer(vcpu, msr_info);
3597         case MSR_K7_HWCR:
3598                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3599                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3600                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3601
3602                 /* Handle McStatusWrEn */
3603                 if (data == BIT_ULL(18)) {
3604                         vcpu->arch.msr_hwcr = data;
3605                 } else if (data != 0) {
3606                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3607                                     data);
3608                         return 1;
3609                 }
3610                 break;
3611         case MSR_FAM10H_MMIO_CONF_BASE:
3612                 if (data != 0) {
3613                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3614                                     "0x%llx\n", data);
3615                         return 1;
3616                 }
3617                 break;
3618         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3619         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3620                 return kvm_mtrr_set_msr(vcpu, msr, data);
3621         case MSR_IA32_APICBASE:
3622                 return kvm_set_apic_base(vcpu, msr_info);
3623         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3624                 return kvm_x2apic_msr_write(vcpu, msr, data);
3625         case MSR_IA32_TSC_DEADLINE:
3626                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3627                 break;
3628         case MSR_IA32_TSC_ADJUST:
3629                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3630                         if (!msr_info->host_initiated) {
3631                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3632                                 adjust_tsc_offset_guest(vcpu, adj);
3633                                 /* Before back to guest, tsc_timestamp must be adjusted
3634                                  * as well, otherwise guest's percpu pvclock time could jump.
3635                                  */
3636                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3637                         }
3638                         vcpu->arch.ia32_tsc_adjust_msr = data;
3639                 }
3640                 break;
3641         case MSR_IA32_MISC_ENABLE: {
3642                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3643
3644                 if (!msr_info->host_initiated) {
3645                         /* RO bits */
3646                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3647                                 return 1;
3648
3649                         /* R bits, i.e. writes are ignored, but don't fault. */
3650                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3651                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3652                 }
3653
3654                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3655                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3656                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3657                                 return 1;
3658                         vcpu->arch.ia32_misc_enable_msr = data;
3659                         kvm_update_cpuid_runtime(vcpu);
3660                 } else {
3661                         vcpu->arch.ia32_misc_enable_msr = data;
3662                 }
3663                 break;
3664         }
3665         case MSR_IA32_SMBASE:
3666                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3667                         return 1;
3668                 vcpu->arch.smbase = data;
3669                 break;
3670         case MSR_IA32_POWER_CTL:
3671                 vcpu->arch.msr_ia32_power_ctl = data;
3672                 break;
3673         case MSR_IA32_TSC:
3674                 if (msr_info->host_initiated) {
3675                         kvm_synchronize_tsc(vcpu, data);
3676                 } else {
3677                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3678                         adjust_tsc_offset_guest(vcpu, adj);
3679                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3680                 }
3681                 break;
3682         case MSR_IA32_XSS:
3683                 if (!msr_info->host_initiated &&
3684                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3685                         return 1;
3686                 /*
3687                  * KVM supports exposing PT to the guest, but does not support
3688                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3689                  * XSAVES/XRSTORS to save/restore PT MSRs.
3690                  */
3691                 if (data & ~kvm_caps.supported_xss)
3692                         return 1;
3693                 vcpu->arch.ia32_xss = data;
3694                 kvm_update_cpuid_runtime(vcpu);
3695                 break;
3696         case MSR_SMI_COUNT:
3697                 if (!msr_info->host_initiated)
3698                         return 1;
3699                 vcpu->arch.smi_count = data;
3700                 break;
3701         case MSR_KVM_WALL_CLOCK_NEW:
3702                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3703                         return 1;
3704
3705                 vcpu->kvm->arch.wall_clock = data;
3706                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3707                 break;
3708         case MSR_KVM_WALL_CLOCK:
3709                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3710                         return 1;
3711
3712                 vcpu->kvm->arch.wall_clock = data;
3713                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3714                 break;
3715         case MSR_KVM_SYSTEM_TIME_NEW:
3716                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3717                         return 1;
3718
3719                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3720                 break;
3721         case MSR_KVM_SYSTEM_TIME:
3722                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3723                         return 1;
3724
3725                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3726                 break;
3727         case MSR_KVM_ASYNC_PF_EN:
3728                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3729                         return 1;
3730
3731                 if (kvm_pv_enable_async_pf(vcpu, data))
3732                         return 1;
3733                 break;
3734         case MSR_KVM_ASYNC_PF_INT:
3735                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3736                         return 1;
3737
3738                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3739                         return 1;
3740                 break;
3741         case MSR_KVM_ASYNC_PF_ACK:
3742                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3743                         return 1;
3744                 if (data & 0x1) {
3745                         vcpu->arch.apf.pageready_pending = false;
3746                         kvm_check_async_pf_completion(vcpu);
3747                 }
3748                 break;
3749         case MSR_KVM_STEAL_TIME:
3750                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3751                         return 1;
3752
3753                 if (unlikely(!sched_info_on()))
3754                         return 1;
3755
3756                 if (data & KVM_STEAL_RESERVED_MASK)
3757                         return 1;
3758
3759                 vcpu->arch.st.msr_val = data;
3760
3761                 if (!(data & KVM_MSR_ENABLED))
3762                         break;
3763
3764                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3765
3766                 break;
3767         case MSR_KVM_PV_EOI_EN:
3768                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3769                         return 1;
3770
3771                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3772                         return 1;
3773                 break;
3774
3775         case MSR_KVM_POLL_CONTROL:
3776                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3777                         return 1;
3778
3779                 /* only enable bit supported */
3780                 if (data & (-1ULL << 1))
3781                         return 1;
3782
3783                 vcpu->arch.msr_kvm_poll_control = data;
3784                 break;
3785
3786         case MSR_IA32_MCG_CTL:
3787         case MSR_IA32_MCG_STATUS:
3788         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3789         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3790                 return set_msr_mce(vcpu, msr_info);
3791
3792         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3793         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3794                 pr = true;
3795                 fallthrough;
3796         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3797         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3798                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3799                         return kvm_pmu_set_msr(vcpu, msr_info);
3800
3801                 if (pr || data != 0)
3802                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3803                                     "0x%x data 0x%llx\n", msr, data);
3804                 break;
3805         case MSR_K7_CLK_CTL:
3806                 /*
3807                  * Ignore all writes to this no longer documented MSR.
3808                  * Writes are only relevant for old K7 processors,
3809                  * all pre-dating SVM, but a recommended workaround from
3810                  * AMD for these chips. It is possible to specify the
3811                  * affected processor models on the command line, hence
3812                  * the need to ignore the workaround.
3813                  */
3814                 break;
3815         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3816         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3817         case HV_X64_MSR_SYNDBG_OPTIONS:
3818         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3819         case HV_X64_MSR_CRASH_CTL:
3820         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3821         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3822         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3823         case HV_X64_MSR_TSC_EMULATION_STATUS:
3824                 return kvm_hv_set_msr_common(vcpu, msr, data,
3825                                              msr_info->host_initiated);
3826         case MSR_IA32_BBL_CR_CTL3:
3827                 /* Drop writes to this legacy MSR -- see rdmsr
3828                  * counterpart for further detail.
3829                  */
3830                 if (report_ignored_msrs)
3831                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3832                                 msr, data);
3833                 break;
3834         case MSR_AMD64_OSVW_ID_LENGTH:
3835                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3836                         return 1;
3837                 vcpu->arch.osvw.length = data;
3838                 break;
3839         case MSR_AMD64_OSVW_STATUS:
3840                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841                         return 1;
3842                 vcpu->arch.osvw.status = data;
3843                 break;
3844         case MSR_PLATFORM_INFO:
3845                 if (!msr_info->host_initiated ||
3846                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3847                      cpuid_fault_enabled(vcpu)))
3848                         return 1;
3849                 vcpu->arch.msr_platform_info = data;
3850                 break;
3851         case MSR_MISC_FEATURES_ENABLES:
3852                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3853                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3854                      !supports_cpuid_fault(vcpu)))
3855                         return 1;
3856                 vcpu->arch.msr_misc_features_enables = data;
3857                 break;
3858 #ifdef CONFIG_X86_64
3859         case MSR_IA32_XFD:
3860                 if (!msr_info->host_initiated &&
3861                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3862                         return 1;
3863
3864                 if (data & ~kvm_guest_supported_xfd(vcpu))
3865                         return 1;
3866
3867                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3868                 break;
3869         case MSR_IA32_XFD_ERR:
3870                 if (!msr_info->host_initiated &&
3871                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3872                         return 1;
3873
3874                 if (data & ~kvm_guest_supported_xfd(vcpu))
3875                         return 1;
3876
3877                 vcpu->arch.guest_fpu.xfd_err = data;
3878                 break;
3879 #endif
3880         case MSR_IA32_PEBS_ENABLE:
3881         case MSR_IA32_DS_AREA:
3882         case MSR_PEBS_DATA_CFG:
3883         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3884                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3885                         return kvm_pmu_set_msr(vcpu, msr_info);
3886                 /*
3887                  * Userspace is allowed to write '0' to MSRs that KVM reports
3888                  * as to-be-saved, even if an MSRs isn't fully supported.
3889                  */
3890                 return !msr_info->host_initiated || data;
3891         default:
3892                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3893                         return kvm_pmu_set_msr(vcpu, msr_info);
3894                 return KVM_MSR_RET_INVALID;
3895         }
3896         return 0;
3897 }
3898 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3899
3900 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3901 {
3902         u64 data;
3903         u64 mcg_cap = vcpu->arch.mcg_cap;
3904         unsigned bank_num = mcg_cap & 0xff;
3905         u32 offset, last_msr;
3906
3907         switch (msr) {
3908         case MSR_IA32_P5_MC_ADDR:
3909         case MSR_IA32_P5_MC_TYPE:
3910                 data = 0;
3911                 break;
3912         case MSR_IA32_MCG_CAP:
3913                 data = vcpu->arch.mcg_cap;
3914                 break;
3915         case MSR_IA32_MCG_CTL:
3916                 if (!(mcg_cap & MCG_CTL_P) && !host)
3917                         return 1;
3918                 data = vcpu->arch.mcg_ctl;
3919                 break;
3920         case MSR_IA32_MCG_STATUS:
3921                 data = vcpu->arch.mcg_status;
3922                 break;
3923         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3924                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3925                 if (msr > last_msr)
3926                         return 1;
3927
3928                 if (!(mcg_cap & MCG_CMCI_P) && !host)
3929                         return 1;
3930                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3931                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3932                 data = vcpu->arch.mci_ctl2_banks[offset];
3933                 break;
3934         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3935                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3936                 if (msr > last_msr)
3937                         return 1;
3938
3939                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3940                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3941                 data = vcpu->arch.mce_banks[offset];
3942                 break;
3943         default:
3944                 return 1;
3945         }
3946         *pdata = data;
3947         return 0;
3948 }
3949
3950 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3951 {
3952         switch (msr_info->index) {
3953         case MSR_IA32_PLATFORM_ID:
3954         case MSR_IA32_EBL_CR_POWERON:
3955         case MSR_IA32_LASTBRANCHFROMIP:
3956         case MSR_IA32_LASTBRANCHTOIP:
3957         case MSR_IA32_LASTINTFROMIP:
3958         case MSR_IA32_LASTINTTOIP:
3959         case MSR_AMD64_SYSCFG:
3960         case MSR_K8_TSEG_ADDR:
3961         case MSR_K8_TSEG_MASK:
3962         case MSR_VM_HSAVE_PA:
3963         case MSR_K8_INT_PENDING_MSG:
3964         case MSR_AMD64_NB_CFG:
3965         case MSR_FAM10H_MMIO_CONF_BASE:
3966         case MSR_AMD64_BU_CFG2:
3967         case MSR_IA32_PERF_CTL:
3968         case MSR_AMD64_DC_CFG:
3969         case MSR_F15H_EX_CFG:
3970         /*
3971          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3972          * limit) MSRs. Just return 0, as we do not want to expose the host
3973          * data here. Do not conditionalize this on CPUID, as KVM does not do
3974          * so for existing CPU-specific MSRs.
3975          */
3976         case MSR_RAPL_POWER_UNIT:
3977         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3978         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3979         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3980         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3981                 msr_info->data = 0;
3982                 break;
3983         case MSR_IA32_PEBS_ENABLE:
3984         case MSR_IA32_DS_AREA:
3985         case MSR_PEBS_DATA_CFG:
3986         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3987                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3988                         return kvm_pmu_get_msr(vcpu, msr_info);
3989                 /*
3990                  * Userspace is allowed to read MSRs that KVM reports as
3991                  * to-be-saved, even if an MSR isn't fully supported.
3992                  */
3993                 if (!msr_info->host_initiated)
3994                         return 1;
3995                 msr_info->data = 0;
3996                 break;
3997         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3998         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3999         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4000         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4001                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4002                         return kvm_pmu_get_msr(vcpu, msr_info);
4003                 msr_info->data = 0;
4004                 break;
4005         case MSR_IA32_UCODE_REV:
4006                 msr_info->data = vcpu->arch.microcode_version;
4007                 break;
4008         case MSR_IA32_ARCH_CAPABILITIES:
4009                 if (!msr_info->host_initiated &&
4010                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4011                         return 1;
4012                 msr_info->data = vcpu->arch.arch_capabilities;
4013                 break;
4014         case MSR_IA32_PERF_CAPABILITIES:
4015                 if (!msr_info->host_initiated &&
4016                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4017                         return 1;
4018                 msr_info->data = vcpu->arch.perf_capabilities;
4019                 break;
4020         case MSR_IA32_POWER_CTL:
4021                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4022                 break;
4023         case MSR_IA32_TSC: {
4024                 /*
4025                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4026                  * even when not intercepted. AMD manual doesn't explicitly
4027                  * state this but appears to behave the same.
4028                  *
4029                  * On userspace reads and writes, however, we unconditionally
4030                  * return L1's TSC value to ensure backwards-compatible
4031                  * behavior for migration.
4032                  */
4033                 u64 offset, ratio;
4034
4035                 if (msr_info->host_initiated) {
4036                         offset = vcpu->arch.l1_tsc_offset;
4037                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4038                 } else {
4039                         offset = vcpu->arch.tsc_offset;
4040                         ratio = vcpu->arch.tsc_scaling_ratio;
4041                 }
4042
4043                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4044                 break;
4045         }
4046         case MSR_MTRRcap:
4047         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4048         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4049                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4050         case 0xcd: /* fsb frequency */
4051                 msr_info->data = 3;
4052                 break;
4053                 /*
4054                  * MSR_EBC_FREQUENCY_ID
4055                  * Conservative value valid for even the basic CPU models.
4056                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4057                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4058                  * and 266MHz for model 3, or 4. Set Core Clock
4059                  * Frequency to System Bus Frequency Ratio to 1 (bits
4060                  * 31:24) even though these are only valid for CPU
4061                  * models > 2, however guests may end up dividing or
4062                  * multiplying by zero otherwise.
4063                  */
4064         case MSR_EBC_FREQUENCY_ID:
4065                 msr_info->data = 1 << 24;
4066                 break;
4067         case MSR_IA32_APICBASE:
4068                 msr_info->data = kvm_get_apic_base(vcpu);
4069                 break;
4070         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4071                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4072         case MSR_IA32_TSC_DEADLINE:
4073                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4074                 break;
4075         case MSR_IA32_TSC_ADJUST:
4076                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4077                 break;
4078         case MSR_IA32_MISC_ENABLE:
4079                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4080                 break;
4081         case MSR_IA32_SMBASE:
4082                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4083                         return 1;
4084                 msr_info->data = vcpu->arch.smbase;
4085                 break;
4086         case MSR_SMI_COUNT:
4087                 msr_info->data = vcpu->arch.smi_count;
4088                 break;
4089         case MSR_IA32_PERF_STATUS:
4090                 /* TSC increment by tick */
4091                 msr_info->data = 1000ULL;
4092                 /* CPU multiplier */
4093                 msr_info->data |= (((uint64_t)4ULL) << 40);
4094                 break;
4095         case MSR_EFER:
4096                 msr_info->data = vcpu->arch.efer;
4097                 break;
4098         case MSR_KVM_WALL_CLOCK:
4099                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4100                         return 1;
4101
4102                 msr_info->data = vcpu->kvm->arch.wall_clock;
4103                 break;
4104         case MSR_KVM_WALL_CLOCK_NEW:
4105                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4106                         return 1;
4107
4108                 msr_info->data = vcpu->kvm->arch.wall_clock;
4109                 break;
4110         case MSR_KVM_SYSTEM_TIME:
4111                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4112                         return 1;
4113
4114                 msr_info->data = vcpu->arch.time;
4115                 break;
4116         case MSR_KVM_SYSTEM_TIME_NEW:
4117                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4118                         return 1;
4119
4120                 msr_info->data = vcpu->arch.time;
4121                 break;
4122         case MSR_KVM_ASYNC_PF_EN:
4123                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4124                         return 1;
4125
4126                 msr_info->data = vcpu->arch.apf.msr_en_val;
4127                 break;
4128         case MSR_KVM_ASYNC_PF_INT:
4129                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4130                         return 1;
4131
4132                 msr_info->data = vcpu->arch.apf.msr_int_val;
4133                 break;
4134         case MSR_KVM_ASYNC_PF_ACK:
4135                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4136                         return 1;
4137
4138                 msr_info->data = 0;
4139                 break;
4140         case MSR_KVM_STEAL_TIME:
4141                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4142                         return 1;
4143
4144                 msr_info->data = vcpu->arch.st.msr_val;
4145                 break;
4146         case MSR_KVM_PV_EOI_EN:
4147                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4148                         return 1;
4149
4150                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4151                 break;
4152         case MSR_KVM_POLL_CONTROL:
4153                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4154                         return 1;
4155
4156                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4157                 break;
4158         case MSR_IA32_P5_MC_ADDR:
4159         case MSR_IA32_P5_MC_TYPE:
4160         case MSR_IA32_MCG_CAP:
4161         case MSR_IA32_MCG_CTL:
4162         case MSR_IA32_MCG_STATUS:
4163         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4164         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4165                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4166                                    msr_info->host_initiated);
4167         case MSR_IA32_XSS:
4168                 if (!msr_info->host_initiated &&
4169                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4170                         return 1;
4171                 msr_info->data = vcpu->arch.ia32_xss;
4172                 break;
4173         case MSR_K7_CLK_CTL:
4174                 /*
4175                  * Provide expected ramp-up count for K7. All other
4176                  * are set to zero, indicating minimum divisors for
4177                  * every field.
4178                  *
4179                  * This prevents guest kernels on AMD host with CPU
4180                  * type 6, model 8 and higher from exploding due to
4181                  * the rdmsr failing.
4182                  */
4183                 msr_info->data = 0x20000000;
4184                 break;
4185         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4186         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4187         case HV_X64_MSR_SYNDBG_OPTIONS:
4188         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4189         case HV_X64_MSR_CRASH_CTL:
4190         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4191         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4192         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4193         case HV_X64_MSR_TSC_EMULATION_STATUS:
4194                 return kvm_hv_get_msr_common(vcpu,
4195                                              msr_info->index, &msr_info->data,
4196                                              msr_info->host_initiated);
4197         case MSR_IA32_BBL_CR_CTL3:
4198                 /* This legacy MSR exists but isn't fully documented in current
4199                  * silicon.  It is however accessed by winxp in very narrow
4200                  * scenarios where it sets bit #19, itself documented as
4201                  * a "reserved" bit.  Best effort attempt to source coherent
4202                  * read data here should the balance of the register be
4203                  * interpreted by the guest:
4204                  *
4205                  * L2 cache control register 3: 64GB range, 256KB size,
4206                  * enabled, latency 0x1, configured
4207                  */
4208                 msr_info->data = 0xbe702111;
4209                 break;
4210         case MSR_AMD64_OSVW_ID_LENGTH:
4211                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4212                         return 1;
4213                 msr_info->data = vcpu->arch.osvw.length;
4214                 break;
4215         case MSR_AMD64_OSVW_STATUS:
4216                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4217                         return 1;
4218                 msr_info->data = vcpu->arch.osvw.status;
4219                 break;
4220         case MSR_PLATFORM_INFO:
4221                 if (!msr_info->host_initiated &&
4222                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4223                         return 1;
4224                 msr_info->data = vcpu->arch.msr_platform_info;
4225                 break;
4226         case MSR_MISC_FEATURES_ENABLES:
4227                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4228                 break;
4229         case MSR_K7_HWCR:
4230                 msr_info->data = vcpu->arch.msr_hwcr;
4231                 break;
4232 #ifdef CONFIG_X86_64
4233         case MSR_IA32_XFD:
4234                 if (!msr_info->host_initiated &&
4235                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4236                         return 1;
4237
4238                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4239                 break;
4240         case MSR_IA32_XFD_ERR:
4241                 if (!msr_info->host_initiated &&
4242                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4243                         return 1;
4244
4245                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4246                 break;
4247 #endif
4248         default:
4249                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4250                         return kvm_pmu_get_msr(vcpu, msr_info);
4251                 return KVM_MSR_RET_INVALID;
4252         }
4253         return 0;
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4256
4257 /*
4258  * Read or write a bunch of msrs. All parameters are kernel addresses.
4259  *
4260  * @return number of msrs set successfully.
4261  */
4262 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4263                     struct kvm_msr_entry *entries,
4264                     int (*do_msr)(struct kvm_vcpu *vcpu,
4265                                   unsigned index, u64 *data))
4266 {
4267         int i;
4268
4269         for (i = 0; i < msrs->nmsrs; ++i)
4270                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4271                         break;
4272
4273         return i;
4274 }
4275
4276 /*
4277  * Read or write a bunch of msrs. Parameters are user addresses.
4278  *
4279  * @return number of msrs set successfully.
4280  */
4281 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4282                   int (*do_msr)(struct kvm_vcpu *vcpu,
4283                                 unsigned index, u64 *data),
4284                   int writeback)
4285 {
4286         struct kvm_msrs msrs;
4287         struct kvm_msr_entry *entries;
4288         int r, n;
4289         unsigned size;
4290
4291         r = -EFAULT;
4292         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4293                 goto out;
4294
4295         r = -E2BIG;
4296         if (msrs.nmsrs >= MAX_IO_MSRS)
4297                 goto out;
4298
4299         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4300         entries = memdup_user(user_msrs->entries, size);
4301         if (IS_ERR(entries)) {
4302                 r = PTR_ERR(entries);
4303                 goto out;
4304         }
4305
4306         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4307         if (r < 0)
4308                 goto out_free;
4309
4310         r = -EFAULT;
4311         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4312                 goto out_free;
4313
4314         r = n;
4315
4316 out_free:
4317         kfree(entries);
4318 out:
4319         return r;
4320 }
4321
4322 static inline bool kvm_can_mwait_in_guest(void)
4323 {
4324         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4325                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4326                 boot_cpu_has(X86_FEATURE_ARAT);
4327 }
4328
4329 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4330                                             struct kvm_cpuid2 __user *cpuid_arg)
4331 {
4332         struct kvm_cpuid2 cpuid;
4333         int r;
4334
4335         r = -EFAULT;
4336         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4337                 return r;
4338
4339         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4340         if (r)
4341                 return r;
4342
4343         r = -EFAULT;
4344         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4345                 return r;
4346
4347         return 0;
4348 }
4349
4350 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4351 {
4352         int r = 0;
4353
4354         switch (ext) {
4355         case KVM_CAP_IRQCHIP:
4356         case KVM_CAP_HLT:
4357         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4358         case KVM_CAP_SET_TSS_ADDR:
4359         case KVM_CAP_EXT_CPUID:
4360         case KVM_CAP_EXT_EMUL_CPUID:
4361         case KVM_CAP_CLOCKSOURCE:
4362         case KVM_CAP_PIT:
4363         case KVM_CAP_NOP_IO_DELAY:
4364         case KVM_CAP_MP_STATE:
4365         case KVM_CAP_SYNC_MMU:
4366         case KVM_CAP_USER_NMI:
4367         case KVM_CAP_REINJECT_CONTROL:
4368         case KVM_CAP_IRQ_INJECT_STATUS:
4369         case KVM_CAP_IOEVENTFD:
4370         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4371         case KVM_CAP_PIT2:
4372         case KVM_CAP_PIT_STATE2:
4373         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4374         case KVM_CAP_VCPU_EVENTS:
4375         case KVM_CAP_HYPERV:
4376         case KVM_CAP_HYPERV_VAPIC:
4377         case KVM_CAP_HYPERV_SPIN:
4378         case KVM_CAP_HYPERV_SYNIC:
4379         case KVM_CAP_HYPERV_SYNIC2:
4380         case KVM_CAP_HYPERV_VP_INDEX:
4381         case KVM_CAP_HYPERV_EVENTFD:
4382         case KVM_CAP_HYPERV_TLBFLUSH:
4383         case KVM_CAP_HYPERV_SEND_IPI:
4384         case KVM_CAP_HYPERV_CPUID:
4385         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4386         case KVM_CAP_SYS_HYPERV_CPUID:
4387         case KVM_CAP_PCI_SEGMENT:
4388         case KVM_CAP_DEBUGREGS:
4389         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4390         case KVM_CAP_XSAVE:
4391         case KVM_CAP_ASYNC_PF:
4392         case KVM_CAP_ASYNC_PF_INT:
4393         case KVM_CAP_GET_TSC_KHZ:
4394         case KVM_CAP_KVMCLOCK_CTRL:
4395         case KVM_CAP_READONLY_MEM:
4396         case KVM_CAP_HYPERV_TIME:
4397         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4398         case KVM_CAP_TSC_DEADLINE_TIMER:
4399         case KVM_CAP_DISABLE_QUIRKS:
4400         case KVM_CAP_SET_BOOT_CPU_ID:
4401         case KVM_CAP_SPLIT_IRQCHIP:
4402         case KVM_CAP_IMMEDIATE_EXIT:
4403         case KVM_CAP_PMU_EVENT_FILTER:
4404         case KVM_CAP_GET_MSR_FEATURES:
4405         case KVM_CAP_MSR_PLATFORM_INFO:
4406         case KVM_CAP_EXCEPTION_PAYLOAD:
4407         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4408         case KVM_CAP_SET_GUEST_DEBUG:
4409         case KVM_CAP_LAST_CPU:
4410         case KVM_CAP_X86_USER_SPACE_MSR:
4411         case KVM_CAP_X86_MSR_FILTER:
4412         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4413 #ifdef CONFIG_X86_SGX_KVM
4414         case KVM_CAP_SGX_ATTRIBUTE:
4415 #endif
4416         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4417         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4418         case KVM_CAP_SREGS2:
4419         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4420         case KVM_CAP_VCPU_ATTRIBUTES:
4421         case KVM_CAP_SYS_ATTRIBUTES:
4422         case KVM_CAP_VAPIC:
4423         case KVM_CAP_ENABLE_CAP:
4424         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4425                 r = 1;
4426                 break;
4427         case KVM_CAP_EXIT_HYPERCALL:
4428                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4429                 break;
4430         case KVM_CAP_SET_GUEST_DEBUG2:
4431                 return KVM_GUESTDBG_VALID_MASK;
4432 #ifdef CONFIG_KVM_XEN
4433         case KVM_CAP_XEN_HVM:
4434                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4435                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4436                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4437                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4438                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4439                 if (sched_info_on())
4440                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4441                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4442                 break;
4443 #endif
4444         case KVM_CAP_SYNC_REGS:
4445                 r = KVM_SYNC_X86_VALID_FIELDS;
4446                 break;
4447         case KVM_CAP_ADJUST_CLOCK:
4448                 r = KVM_CLOCK_VALID_FLAGS;
4449                 break;
4450         case KVM_CAP_X86_DISABLE_EXITS:
4451                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4452                       KVM_X86_DISABLE_EXITS_CSTATE;
4453                 if(kvm_can_mwait_in_guest())
4454                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4455                 break;
4456         case KVM_CAP_X86_SMM:
4457                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4458                         break;
4459
4460                 /* SMBASE is usually relocated above 1M on modern chipsets,
4461                  * and SMM handlers might indeed rely on 4G segment limits,
4462                  * so do not report SMM to be available if real mode is
4463                  * emulated via vm86 mode.  Still, do not go to great lengths
4464                  * to avoid userspace's usage of the feature, because it is a
4465                  * fringe case that is not enabled except via specific settings
4466                  * of the module parameters.
4467                  */
4468                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4469                 break;
4470         case KVM_CAP_NR_VCPUS:
4471                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4472                 break;
4473         case KVM_CAP_MAX_VCPUS:
4474                 r = KVM_MAX_VCPUS;
4475                 break;
4476         case KVM_CAP_MAX_VCPU_ID:
4477                 r = KVM_MAX_VCPU_IDS;
4478                 break;
4479         case KVM_CAP_PV_MMU:    /* obsolete */
4480                 r = 0;
4481                 break;
4482         case KVM_CAP_MCE:
4483                 r = KVM_MAX_MCE_BANKS;
4484                 break;
4485         case KVM_CAP_XCRS:
4486                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4487                 break;
4488         case KVM_CAP_TSC_CONTROL:
4489         case KVM_CAP_VM_TSC_CONTROL:
4490                 r = kvm_caps.has_tsc_control;
4491                 break;
4492         case KVM_CAP_X2APIC_API:
4493                 r = KVM_X2APIC_API_VALID_FLAGS;
4494                 break;
4495         case KVM_CAP_NESTED_STATE:
4496                 r = kvm_x86_ops.nested_ops->get_state ?
4497                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4498                 break;
4499         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4500                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4501                 break;
4502         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4503                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4504                 break;
4505         case KVM_CAP_SMALLER_MAXPHYADDR:
4506                 r = (int) allow_smaller_maxphyaddr;
4507                 break;
4508         case KVM_CAP_STEAL_TIME:
4509                 r = sched_info_on();
4510                 break;
4511         case KVM_CAP_X86_BUS_LOCK_EXIT:
4512                 if (kvm_caps.has_bus_lock_exit)
4513                         r = KVM_BUS_LOCK_DETECTION_OFF |
4514                             KVM_BUS_LOCK_DETECTION_EXIT;
4515                 else
4516                         r = 0;
4517                 break;
4518         case KVM_CAP_XSAVE2: {
4519                 u64 guest_perm = xstate_get_guest_group_perm();
4520
4521                 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4522                 if (r < sizeof(struct kvm_xsave))
4523                         r = sizeof(struct kvm_xsave);
4524                 break;
4525         }
4526         case KVM_CAP_PMU_CAPABILITY:
4527                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4528                 break;
4529         case KVM_CAP_DISABLE_QUIRKS2:
4530                 r = KVM_X86_VALID_QUIRKS;
4531                 break;
4532         case KVM_CAP_X86_NOTIFY_VMEXIT:
4533                 r = kvm_caps.has_notify_vmexit;
4534                 break;
4535         default:
4536                 break;
4537         }
4538         return r;
4539 }
4540
4541 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4542 {
4543         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4544
4545         if ((u64)(unsigned long)uaddr != attr->addr)
4546                 return ERR_PTR_USR(-EFAULT);
4547         return uaddr;
4548 }
4549
4550 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4551 {
4552         u64 __user *uaddr = kvm_get_attr_addr(attr);
4553
4554         if (attr->group)
4555                 return -ENXIO;
4556
4557         if (IS_ERR(uaddr))
4558                 return PTR_ERR(uaddr);
4559
4560         switch (attr->attr) {
4561         case KVM_X86_XCOMP_GUEST_SUPP:
4562                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4563                         return -EFAULT;
4564                 return 0;
4565         default:
4566                 return -ENXIO;
4567                 break;
4568         }
4569 }
4570
4571 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4572 {
4573         if (attr->group)
4574                 return -ENXIO;
4575
4576         switch (attr->attr) {
4577         case KVM_X86_XCOMP_GUEST_SUPP:
4578                 return 0;
4579         default:
4580                 return -ENXIO;
4581         }
4582 }
4583
4584 long kvm_arch_dev_ioctl(struct file *filp,
4585                         unsigned int ioctl, unsigned long arg)
4586 {
4587         void __user *argp = (void __user *)arg;
4588         long r;
4589
4590         switch (ioctl) {
4591         case KVM_GET_MSR_INDEX_LIST: {
4592                 struct kvm_msr_list __user *user_msr_list = argp;
4593                 struct kvm_msr_list msr_list;
4594                 unsigned n;
4595
4596                 r = -EFAULT;
4597                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4598                         goto out;
4599                 n = msr_list.nmsrs;
4600                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4601                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4602                         goto out;
4603                 r = -E2BIG;
4604                 if (n < msr_list.nmsrs)
4605                         goto out;
4606                 r = -EFAULT;
4607                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4608                                  num_msrs_to_save * sizeof(u32)))
4609                         goto out;
4610                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4611                                  &emulated_msrs,
4612                                  num_emulated_msrs * sizeof(u32)))
4613                         goto out;
4614                 r = 0;
4615                 break;
4616         }
4617         case KVM_GET_SUPPORTED_CPUID:
4618         case KVM_GET_EMULATED_CPUID: {
4619                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4620                 struct kvm_cpuid2 cpuid;
4621
4622                 r = -EFAULT;
4623                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4624                         goto out;
4625
4626                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4627                                             ioctl);
4628                 if (r)
4629                         goto out;
4630
4631                 r = -EFAULT;
4632                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4633                         goto out;
4634                 r = 0;
4635                 break;
4636         }
4637         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4638                 r = -EFAULT;
4639                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4640                                  sizeof(kvm_caps.supported_mce_cap)))
4641                         goto out;
4642                 r = 0;
4643                 break;
4644         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4645                 struct kvm_msr_list __user *user_msr_list = argp;
4646                 struct kvm_msr_list msr_list;
4647                 unsigned int n;
4648
4649                 r = -EFAULT;
4650                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4651                         goto out;
4652                 n = msr_list.nmsrs;
4653                 msr_list.nmsrs = num_msr_based_features;
4654                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4655                         goto out;
4656                 r = -E2BIG;
4657                 if (n < msr_list.nmsrs)
4658                         goto out;
4659                 r = -EFAULT;
4660                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4661                                  num_msr_based_features * sizeof(u32)))
4662                         goto out;
4663                 r = 0;
4664                 break;
4665         }
4666         case KVM_GET_MSRS:
4667                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4668                 break;
4669         case KVM_GET_SUPPORTED_HV_CPUID:
4670                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4671                 break;
4672         case KVM_GET_DEVICE_ATTR: {
4673                 struct kvm_device_attr attr;
4674                 r = -EFAULT;
4675                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676                         break;
4677                 r = kvm_x86_dev_get_attr(&attr);
4678                 break;
4679         }
4680         case KVM_HAS_DEVICE_ATTR: {
4681                 struct kvm_device_attr attr;
4682                 r = -EFAULT;
4683                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4684                         break;
4685                 r = kvm_x86_dev_has_attr(&attr);
4686                 break;
4687         }
4688         default:
4689                 r = -EINVAL;
4690                 break;
4691         }
4692 out:
4693         return r;
4694 }
4695
4696 static void wbinvd_ipi(void *garbage)
4697 {
4698         wbinvd();
4699 }
4700
4701 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4702 {
4703         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4704 }
4705
4706 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4707 {
4708         /* Address WBINVD may be executed by guest */
4709         if (need_emulate_wbinvd(vcpu)) {
4710                 if (static_call(kvm_x86_has_wbinvd_exit)())
4711                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4712                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4713                         smp_call_function_single(vcpu->cpu,
4714                                         wbinvd_ipi, NULL, 1);
4715         }
4716
4717         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4718
4719         /* Save host pkru register if supported */
4720         vcpu->arch.host_pkru = read_pkru();
4721
4722         /* Apply any externally detected TSC adjustments (due to suspend) */
4723         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4724                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4725                 vcpu->arch.tsc_offset_adjustment = 0;
4726                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4727         }
4728
4729         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4730                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4731                                 rdtsc() - vcpu->arch.last_host_tsc;
4732                 if (tsc_delta < 0)
4733                         mark_tsc_unstable("KVM discovered backwards TSC");
4734
4735                 if (kvm_check_tsc_unstable()) {
4736                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4737                                                 vcpu->arch.last_guest_tsc);
4738                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4739                         vcpu->arch.tsc_catchup = 1;
4740                 }
4741
4742                 if (kvm_lapic_hv_timer_in_use(vcpu))
4743                         kvm_lapic_restart_hv_timer(vcpu);
4744
4745                 /*
4746                  * On a host with synchronized TSC, there is no need to update
4747                  * kvmclock on vcpu->cpu migration
4748                  */
4749                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4750                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4751                 if (vcpu->cpu != cpu)
4752                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4753                 vcpu->cpu = cpu;
4754         }
4755
4756         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4757 }
4758
4759 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4760 {
4761         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4762         struct kvm_steal_time __user *st;
4763         struct kvm_memslots *slots;
4764         static const u8 preempted = KVM_VCPU_PREEMPTED;
4765         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4766
4767         /*
4768          * The vCPU can be marked preempted if and only if the VM-Exit was on
4769          * an instruction boundary and will not trigger guest emulation of any
4770          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4771          * when this is true, for example allowing the vCPU to be marked
4772          * preempted if and only if the VM-Exit was due to a host interrupt.
4773          */
4774         if (!vcpu->arch.at_instruction_boundary) {
4775                 vcpu->stat.preemption_other++;
4776                 return;
4777         }
4778
4779         vcpu->stat.preemption_reported++;
4780         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4781                 return;
4782
4783         if (vcpu->arch.st.preempted)
4784                 return;
4785
4786         /* This happens on process exit */
4787         if (unlikely(current->mm != vcpu->kvm->mm))
4788                 return;
4789
4790         slots = kvm_memslots(vcpu->kvm);
4791
4792         if (unlikely(slots->generation != ghc->generation ||
4793                      gpa != ghc->gpa ||
4794                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4795                 return;
4796
4797         st = (struct kvm_steal_time __user *)ghc->hva;
4798         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4799
4800         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4801                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4802
4803         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4804 }
4805
4806 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4807 {
4808         int idx;
4809
4810         if (vcpu->preempted) {
4811                 if (!vcpu->arch.guest_state_protected)
4812                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4813
4814                 /*
4815                  * Take the srcu lock as memslots will be accessed to check the gfn
4816                  * cache generation against the memslots generation.
4817                  */
4818                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4819                 if (kvm_xen_msr_enabled(vcpu->kvm))
4820                         kvm_xen_runstate_set_preempted(vcpu);
4821                 else
4822                         kvm_steal_time_set_preempted(vcpu);
4823                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4824         }
4825
4826         static_call(kvm_x86_vcpu_put)(vcpu);
4827         vcpu->arch.last_host_tsc = rdtsc();
4828 }
4829
4830 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4831                                     struct kvm_lapic_state *s)
4832 {
4833         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4834
4835         return kvm_apic_get_state(vcpu, s);
4836 }
4837
4838 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4839                                     struct kvm_lapic_state *s)
4840 {
4841         int r;
4842
4843         r = kvm_apic_set_state(vcpu, s);
4844         if (r)
4845                 return r;
4846         update_cr8_intercept(vcpu);
4847
4848         return 0;
4849 }
4850
4851 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4852 {
4853         /*
4854          * We can accept userspace's request for interrupt injection
4855          * as long as we have a place to store the interrupt number.
4856          * The actual injection will happen when the CPU is able to
4857          * deliver the interrupt.
4858          */
4859         if (kvm_cpu_has_extint(vcpu))
4860                 return false;
4861
4862         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4863         return (!lapic_in_kernel(vcpu) ||
4864                 kvm_apic_accept_pic_intr(vcpu));
4865 }
4866
4867 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4868 {
4869         /*
4870          * Do not cause an interrupt window exit if an exception
4871          * is pending or an event needs reinjection; userspace
4872          * might want to inject the interrupt manually using KVM_SET_REGS
4873          * or KVM_SET_SREGS.  For that to work, we must be at an
4874          * instruction boundary and with no events half-injected.
4875          */
4876         return (kvm_arch_interrupt_allowed(vcpu) &&
4877                 kvm_cpu_accept_dm_intr(vcpu) &&
4878                 !kvm_event_needs_reinjection(vcpu) &&
4879                 !kvm_is_exception_pending(vcpu));
4880 }
4881
4882 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4883                                     struct kvm_interrupt *irq)
4884 {
4885         if (irq->irq >= KVM_NR_INTERRUPTS)
4886                 return -EINVAL;
4887
4888         if (!irqchip_in_kernel(vcpu->kvm)) {
4889                 kvm_queue_interrupt(vcpu, irq->irq, false);
4890                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4891                 return 0;
4892         }
4893
4894         /*
4895          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4896          * fail for in-kernel 8259.
4897          */
4898         if (pic_in_kernel(vcpu->kvm))
4899                 return -ENXIO;
4900
4901         if (vcpu->arch.pending_external_vector != -1)
4902                 return -EEXIST;
4903
4904         vcpu->arch.pending_external_vector = irq->irq;
4905         kvm_make_request(KVM_REQ_EVENT, vcpu);
4906         return 0;
4907 }
4908
4909 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4910 {
4911         kvm_inject_nmi(vcpu);
4912
4913         return 0;
4914 }
4915
4916 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4917                                            struct kvm_tpr_access_ctl *tac)
4918 {
4919         if (tac->flags)
4920                 return -EINVAL;
4921         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4922         return 0;
4923 }
4924
4925 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4926                                         u64 mcg_cap)
4927 {
4928         int r;
4929         unsigned bank_num = mcg_cap & 0xff, bank;
4930
4931         r = -EINVAL;
4932         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4933                 goto out;
4934         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4935                 goto out;
4936         r = 0;
4937         vcpu->arch.mcg_cap = mcg_cap;
4938         /* Init IA32_MCG_CTL to all 1s */
4939         if (mcg_cap & MCG_CTL_P)
4940                 vcpu->arch.mcg_ctl = ~(u64)0;
4941         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4942         for (bank = 0; bank < bank_num; bank++) {
4943                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4944                 if (mcg_cap & MCG_CMCI_P)
4945                         vcpu->arch.mci_ctl2_banks[bank] = 0;
4946         }
4947
4948         kvm_apic_after_set_mcg_cap(vcpu);
4949
4950         static_call(kvm_x86_setup_mce)(vcpu);
4951 out:
4952         return r;
4953 }
4954
4955 /*
4956  * Validate this is an UCNA (uncorrectable no action) error by checking the
4957  * MCG_STATUS and MCi_STATUS registers:
4958  * - none of the bits for Machine Check Exceptions are set
4959  * - both the VAL (valid) and UC (uncorrectable) bits are set
4960  * MCI_STATUS_PCC - Processor Context Corrupted
4961  * MCI_STATUS_S - Signaled as a Machine Check Exception
4962  * MCI_STATUS_AR - Software recoverable Action Required
4963  */
4964 static bool is_ucna(struct kvm_x86_mce *mce)
4965 {
4966         return  !mce->mcg_status &&
4967                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4968                 (mce->status & MCI_STATUS_VAL) &&
4969                 (mce->status & MCI_STATUS_UC);
4970 }
4971
4972 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4973 {
4974         u64 mcg_cap = vcpu->arch.mcg_cap;
4975
4976         banks[1] = mce->status;
4977         banks[2] = mce->addr;
4978         banks[3] = mce->misc;
4979         vcpu->arch.mcg_status = mce->mcg_status;
4980
4981         if (!(mcg_cap & MCG_CMCI_P) ||
4982             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4983                 return 0;
4984
4985         if (lapic_in_kernel(vcpu))
4986                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4987
4988         return 0;
4989 }
4990
4991 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4992                                       struct kvm_x86_mce *mce)
4993 {
4994         u64 mcg_cap = vcpu->arch.mcg_cap;
4995         unsigned bank_num = mcg_cap & 0xff;
4996         u64 *banks = vcpu->arch.mce_banks;
4997
4998         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4999                 return -EINVAL;
5000
5001         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5002
5003         if (is_ucna(mce))
5004                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5005
5006         /*
5007          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5008          * reporting is disabled
5009          */
5010         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5011             vcpu->arch.mcg_ctl != ~(u64)0)
5012                 return 0;
5013         /*
5014          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5015          * reporting is disabled for the bank
5016          */
5017         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5018                 return 0;
5019         if (mce->status & MCI_STATUS_UC) {
5020                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5021                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5022                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5023                         return 0;
5024                 }
5025                 if (banks[1] & MCI_STATUS_VAL)
5026                         mce->status |= MCI_STATUS_OVER;
5027                 banks[2] = mce->addr;
5028                 banks[3] = mce->misc;
5029                 vcpu->arch.mcg_status = mce->mcg_status;
5030                 banks[1] = mce->status;
5031                 kvm_queue_exception(vcpu, MC_VECTOR);
5032         } else if (!(banks[1] & MCI_STATUS_VAL)
5033                    || !(banks[1] & MCI_STATUS_UC)) {
5034                 if (banks[1] & MCI_STATUS_VAL)
5035                         mce->status |= MCI_STATUS_OVER;
5036                 banks[2] = mce->addr;
5037                 banks[3] = mce->misc;
5038                 banks[1] = mce->status;
5039         } else
5040                 banks[1] |= MCI_STATUS_OVER;
5041         return 0;
5042 }
5043
5044 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5045                                                struct kvm_vcpu_events *events)
5046 {
5047         struct kvm_queued_exception *ex;
5048
5049         process_nmi(vcpu);
5050
5051 #ifdef CONFIG_KVM_SMM
5052         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5053                 process_smi(vcpu);
5054 #endif
5055
5056         /*
5057          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5058          * the only time there can be two queued exceptions is if there's a
5059          * non-exiting _injected_ exception, and a pending exiting exception.
5060          * In that case, ignore the VM-Exiting exception as it's an extension
5061          * of the injected exception.
5062          */
5063         if (vcpu->arch.exception_vmexit.pending &&
5064             !vcpu->arch.exception.pending &&
5065             !vcpu->arch.exception.injected)
5066                 ex = &vcpu->arch.exception_vmexit;
5067         else
5068                 ex = &vcpu->arch.exception;
5069
5070         /*
5071          * In guest mode, payload delivery should be deferred if the exception
5072          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5073          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5074          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5075          * propagate the payload and so it cannot be safely deferred.  Deliver
5076          * the payload if the capability hasn't been requested.
5077          */
5078         if (!vcpu->kvm->arch.exception_payload_enabled &&
5079             ex->pending && ex->has_payload)
5080                 kvm_deliver_exception_payload(vcpu, ex);
5081
5082         memset(events, 0, sizeof(*events));
5083
5084         /*
5085          * The API doesn't provide the instruction length for software
5086          * exceptions, so don't report them. As long as the guest RIP
5087          * isn't advanced, we should expect to encounter the exception
5088          * again.
5089          */
5090         if (!kvm_exception_is_soft(ex->vector)) {
5091                 events->exception.injected = ex->injected;
5092                 events->exception.pending = ex->pending;
5093                 /*
5094                  * For ABI compatibility, deliberately conflate
5095                  * pending and injected exceptions when
5096                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5097                  */
5098                 if (!vcpu->kvm->arch.exception_payload_enabled)
5099                         events->exception.injected |= ex->pending;
5100         }
5101         events->exception.nr = ex->vector;
5102         events->exception.has_error_code = ex->has_error_code;
5103         events->exception.error_code = ex->error_code;
5104         events->exception_has_payload = ex->has_payload;
5105         events->exception_payload = ex->payload;
5106
5107         events->interrupt.injected =
5108                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5109         events->interrupt.nr = vcpu->arch.interrupt.nr;
5110         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5111
5112         events->nmi.injected = vcpu->arch.nmi_injected;
5113         events->nmi.pending = vcpu->arch.nmi_pending != 0;
5114         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5115
5116         /* events->sipi_vector is never valid when reporting to user space */
5117
5118 #ifdef CONFIG_KVM_SMM
5119         events->smi.smm = is_smm(vcpu);
5120         events->smi.pending = vcpu->arch.smi_pending;
5121         events->smi.smm_inside_nmi =
5122                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5123 #endif
5124         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5125
5126         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5127                          | KVM_VCPUEVENT_VALID_SHADOW
5128                          | KVM_VCPUEVENT_VALID_SMM);
5129         if (vcpu->kvm->arch.exception_payload_enabled)
5130                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5131         if (vcpu->kvm->arch.triple_fault_event) {
5132                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5133                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5134         }
5135 }
5136
5137 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5138                                               struct kvm_vcpu_events *events)
5139 {
5140         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5141                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5142                               | KVM_VCPUEVENT_VALID_SHADOW
5143                               | KVM_VCPUEVENT_VALID_SMM
5144                               | KVM_VCPUEVENT_VALID_PAYLOAD
5145                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5146                 return -EINVAL;
5147
5148         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5149                 if (!vcpu->kvm->arch.exception_payload_enabled)
5150                         return -EINVAL;
5151                 if (events->exception.pending)
5152                         events->exception.injected = 0;
5153                 else
5154                         events->exception_has_payload = 0;
5155         } else {
5156                 events->exception.pending = 0;
5157                 events->exception_has_payload = 0;
5158         }
5159
5160         if ((events->exception.injected || events->exception.pending) &&
5161             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5162                 return -EINVAL;
5163
5164         /* INITs are latched while in SMM */
5165         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5166             (events->smi.smm || events->smi.pending) &&
5167             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5168                 return -EINVAL;
5169
5170         process_nmi(vcpu);
5171
5172         /*
5173          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5174          * morph the exception to a VM-Exit if appropriate.  Do this only for
5175          * pending exceptions, already-injected exceptions are not subject to
5176          * intercpetion.  Note, userspace that conflates pending and injected
5177          * is hosed, and will incorrectly convert an injected exception into a
5178          * pending exception, which in turn may cause a spurious VM-Exit.
5179          */
5180         vcpu->arch.exception_from_userspace = events->exception.pending;
5181
5182         vcpu->arch.exception_vmexit.pending = false;
5183
5184         vcpu->arch.exception.injected = events->exception.injected;
5185         vcpu->arch.exception.pending = events->exception.pending;
5186         vcpu->arch.exception.vector = events->exception.nr;
5187         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5188         vcpu->arch.exception.error_code = events->exception.error_code;
5189         vcpu->arch.exception.has_payload = events->exception_has_payload;
5190         vcpu->arch.exception.payload = events->exception_payload;
5191
5192         vcpu->arch.interrupt.injected = events->interrupt.injected;
5193         vcpu->arch.interrupt.nr = events->interrupt.nr;
5194         vcpu->arch.interrupt.soft = events->interrupt.soft;
5195         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5196                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5197                                                 events->interrupt.shadow);
5198
5199         vcpu->arch.nmi_injected = events->nmi.injected;
5200         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5201                 vcpu->arch.nmi_pending = events->nmi.pending;
5202         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5203
5204         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5205             lapic_in_kernel(vcpu))
5206                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5207
5208         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5209 #ifdef CONFIG_KVM_SMM
5210                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5211                         kvm_leave_nested(vcpu);
5212                         kvm_smm_changed(vcpu, events->smi.smm);
5213                 }
5214
5215                 vcpu->arch.smi_pending = events->smi.pending;
5216
5217                 if (events->smi.smm) {
5218                         if (events->smi.smm_inside_nmi)
5219                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5220                         else
5221                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5222                 }
5223
5224 #else
5225                 if (events->smi.smm || events->smi.pending ||
5226                     events->smi.smm_inside_nmi)
5227                         return -EINVAL;
5228 #endif
5229
5230                 if (lapic_in_kernel(vcpu)) {
5231                         if (events->smi.latched_init)
5232                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5233                         else
5234                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5235                 }
5236         }
5237
5238         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5239                 if (!vcpu->kvm->arch.triple_fault_event)
5240                         return -EINVAL;
5241                 if (events->triple_fault.pending)
5242                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5243                 else
5244                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5245         }
5246
5247         kvm_make_request(KVM_REQ_EVENT, vcpu);
5248
5249         return 0;
5250 }
5251
5252 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5253                                              struct kvm_debugregs *dbgregs)
5254 {
5255         unsigned long val;
5256
5257         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5258         kvm_get_dr(vcpu, 6, &val);
5259         dbgregs->dr6 = val;
5260         dbgregs->dr7 = vcpu->arch.dr7;
5261         dbgregs->flags = 0;
5262         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5263 }
5264
5265 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5266                                             struct kvm_debugregs *dbgregs)
5267 {
5268         if (dbgregs->flags)
5269                 return -EINVAL;
5270
5271         if (!kvm_dr6_valid(dbgregs->dr6))
5272                 return -EINVAL;
5273         if (!kvm_dr7_valid(dbgregs->dr7))
5274                 return -EINVAL;
5275
5276         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5277         kvm_update_dr0123(vcpu);
5278         vcpu->arch.dr6 = dbgregs->dr6;
5279         vcpu->arch.dr7 = dbgregs->dr7;
5280         kvm_update_dr7(vcpu);
5281
5282         return 0;
5283 }
5284
5285 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5286                                          struct kvm_xsave *guest_xsave)
5287 {
5288         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5289                 return;
5290
5291         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5292                                        guest_xsave->region,
5293                                        sizeof(guest_xsave->region),
5294                                        vcpu->arch.pkru);
5295 }
5296
5297 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5298                                           u8 *state, unsigned int size)
5299 {
5300         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5301                 return;
5302
5303         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5304                                        state, size, vcpu->arch.pkru);
5305 }
5306
5307 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5308                                         struct kvm_xsave *guest_xsave)
5309 {
5310         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5311                 return 0;
5312
5313         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5314                                               guest_xsave->region,
5315                                               kvm_caps.supported_xcr0,
5316                                               &vcpu->arch.pkru);
5317 }
5318
5319 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5320                                         struct kvm_xcrs *guest_xcrs)
5321 {
5322         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5323                 guest_xcrs->nr_xcrs = 0;
5324                 return;
5325         }
5326
5327         guest_xcrs->nr_xcrs = 1;
5328         guest_xcrs->flags = 0;
5329         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5330         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5331 }
5332
5333 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5334                                        struct kvm_xcrs *guest_xcrs)
5335 {
5336         int i, r = 0;
5337
5338         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5339                 return -EINVAL;
5340
5341         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5342                 return -EINVAL;
5343
5344         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5345                 /* Only support XCR0 currently */
5346                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5347                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5348                                 guest_xcrs->xcrs[i].value);
5349                         break;
5350                 }
5351         if (r)
5352                 r = -EINVAL;
5353         return r;
5354 }
5355
5356 /*
5357  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5358  * stopped by the hypervisor.  This function will be called from the host only.
5359  * EINVAL is returned when the host attempts to set the flag for a guest that
5360  * does not support pv clocks.
5361  */
5362 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5363 {
5364         if (!vcpu->arch.pv_time.active)
5365                 return -EINVAL;
5366         vcpu->arch.pvclock_set_guest_stopped_request = true;
5367         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5368         return 0;
5369 }
5370
5371 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5372                                  struct kvm_device_attr *attr)
5373 {
5374         int r;
5375
5376         switch (attr->attr) {
5377         case KVM_VCPU_TSC_OFFSET:
5378                 r = 0;
5379                 break;
5380         default:
5381                 r = -ENXIO;
5382         }
5383
5384         return r;
5385 }
5386
5387 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5388                                  struct kvm_device_attr *attr)
5389 {
5390         u64 __user *uaddr = kvm_get_attr_addr(attr);
5391         int r;
5392
5393         if (IS_ERR(uaddr))
5394                 return PTR_ERR(uaddr);
5395
5396         switch (attr->attr) {
5397         case KVM_VCPU_TSC_OFFSET:
5398                 r = -EFAULT;
5399                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5400                         break;
5401                 r = 0;
5402                 break;
5403         default:
5404                 r = -ENXIO;
5405         }
5406
5407         return r;
5408 }
5409
5410 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5411                                  struct kvm_device_attr *attr)
5412 {
5413         u64 __user *uaddr = kvm_get_attr_addr(attr);
5414         struct kvm *kvm = vcpu->kvm;
5415         int r;
5416
5417         if (IS_ERR(uaddr))
5418                 return PTR_ERR(uaddr);
5419
5420         switch (attr->attr) {
5421         case KVM_VCPU_TSC_OFFSET: {
5422                 u64 offset, tsc, ns;
5423                 unsigned long flags;
5424                 bool matched;
5425
5426                 r = -EFAULT;
5427                 if (get_user(offset, uaddr))
5428                         break;
5429
5430                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5431
5432                 matched = (vcpu->arch.virtual_tsc_khz &&
5433                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5434                            kvm->arch.last_tsc_offset == offset);
5435
5436                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5437                 ns = get_kvmclock_base_ns();
5438
5439                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5440                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5441
5442                 r = 0;
5443                 break;
5444         }
5445         default:
5446                 r = -ENXIO;
5447         }
5448
5449         return r;
5450 }
5451
5452 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5453                                       unsigned int ioctl,
5454                                       void __user *argp)
5455 {
5456         struct kvm_device_attr attr;
5457         int r;
5458
5459         if (copy_from_user(&attr, argp, sizeof(attr)))
5460                 return -EFAULT;
5461
5462         if (attr.group != KVM_VCPU_TSC_CTRL)
5463                 return -ENXIO;
5464
5465         switch (ioctl) {
5466         case KVM_HAS_DEVICE_ATTR:
5467                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5468                 break;
5469         case KVM_GET_DEVICE_ATTR:
5470                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5471                 break;
5472         case KVM_SET_DEVICE_ATTR:
5473                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5474                 break;
5475         }
5476
5477         return r;
5478 }
5479
5480 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5481                                      struct kvm_enable_cap *cap)
5482 {
5483         int r;
5484         uint16_t vmcs_version;
5485         void __user *user_ptr;
5486
5487         if (cap->flags)
5488                 return -EINVAL;
5489
5490         switch (cap->cap) {
5491         case KVM_CAP_HYPERV_SYNIC2:
5492                 if (cap->args[0])
5493                         return -EINVAL;
5494                 fallthrough;
5495
5496         case KVM_CAP_HYPERV_SYNIC:
5497                 if (!irqchip_in_kernel(vcpu->kvm))
5498                         return -EINVAL;
5499                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5500                                              KVM_CAP_HYPERV_SYNIC2);
5501         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5502                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5503                         return -ENOTTY;
5504                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5505                 if (!r) {
5506                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5507                         if (copy_to_user(user_ptr, &vmcs_version,
5508                                          sizeof(vmcs_version)))
5509                                 r = -EFAULT;
5510                 }
5511                 return r;
5512         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5513                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5514                         return -ENOTTY;
5515
5516                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5517
5518         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5519                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5520
5521         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5522                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5523                 if (vcpu->arch.pv_cpuid.enforce)
5524                         kvm_update_pv_runtime(vcpu);
5525
5526                 return 0;
5527         default:
5528                 return -EINVAL;
5529         }
5530 }
5531
5532 long kvm_arch_vcpu_ioctl(struct file *filp,
5533                          unsigned int ioctl, unsigned long arg)
5534 {
5535         struct kvm_vcpu *vcpu = filp->private_data;
5536         void __user *argp = (void __user *)arg;
5537         int r;
5538         union {
5539                 struct kvm_sregs2 *sregs2;
5540                 struct kvm_lapic_state *lapic;
5541                 struct kvm_xsave *xsave;
5542                 struct kvm_xcrs *xcrs;
5543                 void *buffer;
5544         } u;
5545
5546         vcpu_load(vcpu);
5547
5548         u.buffer = NULL;
5549         switch (ioctl) {
5550         case KVM_GET_LAPIC: {
5551                 r = -EINVAL;
5552                 if (!lapic_in_kernel(vcpu))
5553                         goto out;
5554                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5555                                 GFP_KERNEL_ACCOUNT);
5556
5557                 r = -ENOMEM;
5558                 if (!u.lapic)
5559                         goto out;
5560                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5561                 if (r)
5562                         goto out;
5563                 r = -EFAULT;
5564                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5565                         goto out;
5566                 r = 0;
5567                 break;
5568         }
5569         case KVM_SET_LAPIC: {
5570                 r = -EINVAL;
5571                 if (!lapic_in_kernel(vcpu))
5572                         goto out;
5573                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5574                 if (IS_ERR(u.lapic)) {
5575                         r = PTR_ERR(u.lapic);
5576                         goto out_nofree;
5577                 }
5578
5579                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5580                 break;
5581         }
5582         case KVM_INTERRUPT: {
5583                 struct kvm_interrupt irq;
5584
5585                 r = -EFAULT;
5586                 if (copy_from_user(&irq, argp, sizeof(irq)))
5587                         goto out;
5588                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5589                 break;
5590         }
5591         case KVM_NMI: {
5592                 r = kvm_vcpu_ioctl_nmi(vcpu);
5593                 break;
5594         }
5595         case KVM_SMI: {
5596                 r = kvm_inject_smi(vcpu);
5597                 break;
5598         }
5599         case KVM_SET_CPUID: {
5600                 struct kvm_cpuid __user *cpuid_arg = argp;
5601                 struct kvm_cpuid cpuid;
5602
5603                 r = -EFAULT;
5604                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5605                         goto out;
5606                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5607                 break;
5608         }
5609         case KVM_SET_CPUID2: {
5610                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5611                 struct kvm_cpuid2 cpuid;
5612
5613                 r = -EFAULT;
5614                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5615                         goto out;
5616                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5617                                               cpuid_arg->entries);
5618                 break;
5619         }
5620         case KVM_GET_CPUID2: {
5621                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5622                 struct kvm_cpuid2 cpuid;
5623
5624                 r = -EFAULT;
5625                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5626                         goto out;
5627                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5628                                               cpuid_arg->entries);
5629                 if (r)
5630                         goto out;
5631                 r = -EFAULT;
5632                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5633                         goto out;
5634                 r = 0;
5635                 break;
5636         }
5637         case KVM_GET_MSRS: {
5638                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5639                 r = msr_io(vcpu, argp, do_get_msr, 1);
5640                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5641                 break;
5642         }
5643         case KVM_SET_MSRS: {
5644                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5645                 r = msr_io(vcpu, argp, do_set_msr, 0);
5646                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5647                 break;
5648         }
5649         case KVM_TPR_ACCESS_REPORTING: {
5650                 struct kvm_tpr_access_ctl tac;
5651
5652                 r = -EFAULT;
5653                 if (copy_from_user(&tac, argp, sizeof(tac)))
5654                         goto out;
5655                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5656                 if (r)
5657                         goto out;
5658                 r = -EFAULT;
5659                 if (copy_to_user(argp, &tac, sizeof(tac)))
5660                         goto out;
5661                 r = 0;
5662                 break;
5663         };
5664         case KVM_SET_VAPIC_ADDR: {
5665                 struct kvm_vapic_addr va;
5666                 int idx;
5667
5668                 r = -EINVAL;
5669                 if (!lapic_in_kernel(vcpu))
5670                         goto out;
5671                 r = -EFAULT;
5672                 if (copy_from_user(&va, argp, sizeof(va)))
5673                         goto out;
5674                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5675                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5676                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5677                 break;
5678         }
5679         case KVM_X86_SETUP_MCE: {
5680                 u64 mcg_cap;
5681
5682                 r = -EFAULT;
5683                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5684                         goto out;
5685                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5686                 break;
5687         }
5688         case KVM_X86_SET_MCE: {
5689                 struct kvm_x86_mce mce;
5690
5691                 r = -EFAULT;
5692                 if (copy_from_user(&mce, argp, sizeof(mce)))
5693                         goto out;
5694                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5695                 break;
5696         }
5697         case KVM_GET_VCPU_EVENTS: {
5698                 struct kvm_vcpu_events events;
5699
5700                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5701
5702                 r = -EFAULT;
5703                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5704                         break;
5705                 r = 0;
5706                 break;
5707         }
5708         case KVM_SET_VCPU_EVENTS: {
5709                 struct kvm_vcpu_events events;
5710
5711                 r = -EFAULT;
5712                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5713                         break;
5714
5715                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5716                 break;
5717         }
5718         case KVM_GET_DEBUGREGS: {
5719                 struct kvm_debugregs dbgregs;
5720
5721                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5722
5723                 r = -EFAULT;
5724                 if (copy_to_user(argp, &dbgregs,
5725                                  sizeof(struct kvm_debugregs)))
5726                         break;
5727                 r = 0;
5728                 break;
5729         }
5730         case KVM_SET_DEBUGREGS: {
5731                 struct kvm_debugregs dbgregs;
5732
5733                 r = -EFAULT;
5734                 if (copy_from_user(&dbgregs, argp,
5735                                    sizeof(struct kvm_debugregs)))
5736                         break;
5737
5738                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5739                 break;
5740         }
5741         case KVM_GET_XSAVE: {
5742                 r = -EINVAL;
5743                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5744                         break;
5745
5746                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5747                 r = -ENOMEM;
5748                 if (!u.xsave)
5749                         break;
5750
5751                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5752
5753                 r = -EFAULT;
5754                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5755                         break;
5756                 r = 0;
5757                 break;
5758         }
5759         case KVM_SET_XSAVE: {
5760                 int size = vcpu->arch.guest_fpu.uabi_size;
5761
5762                 u.xsave = memdup_user(argp, size);
5763                 if (IS_ERR(u.xsave)) {
5764                         r = PTR_ERR(u.xsave);
5765                         goto out_nofree;
5766                 }
5767
5768                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5769                 break;
5770         }
5771
5772         case KVM_GET_XSAVE2: {
5773                 int size = vcpu->arch.guest_fpu.uabi_size;
5774
5775                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5776                 r = -ENOMEM;
5777                 if (!u.xsave)
5778                         break;
5779
5780                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5781
5782                 r = -EFAULT;
5783                 if (copy_to_user(argp, u.xsave, size))
5784                         break;
5785
5786                 r = 0;
5787                 break;
5788         }
5789
5790         case KVM_GET_XCRS: {
5791                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5792                 r = -ENOMEM;
5793                 if (!u.xcrs)
5794                         break;
5795
5796                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5797
5798                 r = -EFAULT;
5799                 if (copy_to_user(argp, u.xcrs,
5800                                  sizeof(struct kvm_xcrs)))
5801                         break;
5802                 r = 0;
5803                 break;
5804         }
5805         case KVM_SET_XCRS: {
5806                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5807                 if (IS_ERR(u.xcrs)) {
5808                         r = PTR_ERR(u.xcrs);
5809                         goto out_nofree;
5810                 }
5811
5812                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5813                 break;
5814         }
5815         case KVM_SET_TSC_KHZ: {
5816                 u32 user_tsc_khz;
5817
5818                 r = -EINVAL;
5819                 user_tsc_khz = (u32)arg;
5820
5821                 if (kvm_caps.has_tsc_control &&
5822                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5823                         goto out;
5824
5825                 if (user_tsc_khz == 0)
5826                         user_tsc_khz = tsc_khz;
5827
5828                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5829                         r = 0;
5830
5831                 goto out;
5832         }
5833         case KVM_GET_TSC_KHZ: {
5834                 r = vcpu->arch.virtual_tsc_khz;
5835                 goto out;
5836         }
5837         case KVM_KVMCLOCK_CTRL: {
5838                 r = kvm_set_guest_paused(vcpu);
5839                 goto out;
5840         }
5841         case KVM_ENABLE_CAP: {
5842                 struct kvm_enable_cap cap;
5843
5844                 r = -EFAULT;
5845                 if (copy_from_user(&cap, argp, sizeof(cap)))
5846                         goto out;
5847                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5848                 break;
5849         }
5850         case KVM_GET_NESTED_STATE: {
5851                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5852                 u32 user_data_size;
5853
5854                 r = -EINVAL;
5855                 if (!kvm_x86_ops.nested_ops->get_state)
5856                         break;
5857
5858                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5859                 r = -EFAULT;
5860                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5861                         break;
5862
5863                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5864                                                      user_data_size);
5865                 if (r < 0)
5866                         break;
5867
5868                 if (r > user_data_size) {
5869                         if (put_user(r, &user_kvm_nested_state->size))
5870                                 r = -EFAULT;
5871                         else
5872                                 r = -E2BIG;
5873                         break;
5874                 }
5875
5876                 r = 0;
5877                 break;
5878         }
5879         case KVM_SET_NESTED_STATE: {
5880                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5881                 struct kvm_nested_state kvm_state;
5882                 int idx;
5883
5884                 r = -EINVAL;
5885                 if (!kvm_x86_ops.nested_ops->set_state)
5886                         break;
5887
5888                 r = -EFAULT;
5889                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5890                         break;
5891
5892                 r = -EINVAL;
5893                 if (kvm_state.size < sizeof(kvm_state))
5894                         break;
5895
5896                 if (kvm_state.flags &
5897                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5898                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5899                       | KVM_STATE_NESTED_GIF_SET))
5900                         break;
5901
5902                 /* nested_run_pending implies guest_mode.  */
5903                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5904                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5905                         break;
5906
5907                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5908                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5909                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5910                 break;
5911         }
5912         case KVM_GET_SUPPORTED_HV_CPUID:
5913                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5914                 break;
5915 #ifdef CONFIG_KVM_XEN
5916         case KVM_XEN_VCPU_GET_ATTR: {
5917                 struct kvm_xen_vcpu_attr xva;
5918
5919                 r = -EFAULT;
5920                 if (copy_from_user(&xva, argp, sizeof(xva)))
5921                         goto out;
5922                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5923                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5924                         r = -EFAULT;
5925                 break;
5926         }
5927         case KVM_XEN_VCPU_SET_ATTR: {
5928                 struct kvm_xen_vcpu_attr xva;
5929
5930                 r = -EFAULT;
5931                 if (copy_from_user(&xva, argp, sizeof(xva)))
5932                         goto out;
5933                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5934                 break;
5935         }
5936 #endif
5937         case KVM_GET_SREGS2: {
5938                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5939                 r = -ENOMEM;
5940                 if (!u.sregs2)
5941                         goto out;
5942                 __get_sregs2(vcpu, u.sregs2);
5943                 r = -EFAULT;
5944                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5945                         goto out;
5946                 r = 0;
5947                 break;
5948         }
5949         case KVM_SET_SREGS2: {
5950                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5951                 if (IS_ERR(u.sregs2)) {
5952                         r = PTR_ERR(u.sregs2);
5953                         u.sregs2 = NULL;
5954                         goto out;
5955                 }
5956                 r = __set_sregs2(vcpu, u.sregs2);
5957                 break;
5958         }
5959         case KVM_HAS_DEVICE_ATTR:
5960         case KVM_GET_DEVICE_ATTR:
5961         case KVM_SET_DEVICE_ATTR:
5962                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5963                 break;
5964         default:
5965                 r = -EINVAL;
5966         }
5967 out:
5968         kfree(u.buffer);
5969 out_nofree:
5970         vcpu_put(vcpu);
5971         return r;
5972 }
5973
5974 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5975 {
5976         return VM_FAULT_SIGBUS;
5977 }
5978
5979 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5980 {
5981         int ret;
5982
5983         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5984                 return -EINVAL;
5985         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5986         return ret;
5987 }
5988
5989 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5990                                               u64 ident_addr)
5991 {
5992         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5993 }
5994
5995 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5996                                          unsigned long kvm_nr_mmu_pages)
5997 {
5998         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5999                 return -EINVAL;
6000
6001         mutex_lock(&kvm->slots_lock);
6002
6003         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6004         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6005
6006         mutex_unlock(&kvm->slots_lock);
6007         return 0;
6008 }
6009
6010 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6011 {
6012         return kvm->arch.n_max_mmu_pages;
6013 }
6014
6015 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6016 {
6017         struct kvm_pic *pic = kvm->arch.vpic;
6018         int r;
6019
6020         r = 0;
6021         switch (chip->chip_id) {
6022         case KVM_IRQCHIP_PIC_MASTER:
6023                 memcpy(&chip->chip.pic, &pic->pics[0],
6024                         sizeof(struct kvm_pic_state));
6025                 break;
6026         case KVM_IRQCHIP_PIC_SLAVE:
6027                 memcpy(&chip->chip.pic, &pic->pics[1],
6028                         sizeof(struct kvm_pic_state));
6029                 break;
6030         case KVM_IRQCHIP_IOAPIC:
6031                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6032                 break;
6033         default:
6034                 r = -EINVAL;
6035                 break;
6036         }
6037         return r;
6038 }
6039
6040 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6041 {
6042         struct kvm_pic *pic = kvm->arch.vpic;
6043         int r;
6044
6045         r = 0;
6046         switch (chip->chip_id) {
6047         case KVM_IRQCHIP_PIC_MASTER:
6048                 spin_lock(&pic->lock);
6049                 memcpy(&pic->pics[0], &chip->chip.pic,
6050                         sizeof(struct kvm_pic_state));
6051                 spin_unlock(&pic->lock);
6052                 break;
6053         case KVM_IRQCHIP_PIC_SLAVE:
6054                 spin_lock(&pic->lock);
6055                 memcpy(&pic->pics[1], &chip->chip.pic,
6056                         sizeof(struct kvm_pic_state));
6057                 spin_unlock(&pic->lock);
6058                 break;
6059         case KVM_IRQCHIP_IOAPIC:
6060                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6061                 break;
6062         default:
6063                 r = -EINVAL;
6064                 break;
6065         }
6066         kvm_pic_update_irq(pic);
6067         return r;
6068 }
6069
6070 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6071 {
6072         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6073
6074         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6075
6076         mutex_lock(&kps->lock);
6077         memcpy(ps, &kps->channels, sizeof(*ps));
6078         mutex_unlock(&kps->lock);
6079         return 0;
6080 }
6081
6082 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6083 {
6084         int i;
6085         struct kvm_pit *pit = kvm->arch.vpit;
6086
6087         mutex_lock(&pit->pit_state.lock);
6088         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6089         for (i = 0; i < 3; i++)
6090                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6091         mutex_unlock(&pit->pit_state.lock);
6092         return 0;
6093 }
6094
6095 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6096 {
6097         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6098         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6099                 sizeof(ps->channels));
6100         ps->flags = kvm->arch.vpit->pit_state.flags;
6101         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6102         memset(&ps->reserved, 0, sizeof(ps->reserved));
6103         return 0;
6104 }
6105
6106 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6107 {
6108         int start = 0;
6109         int i;
6110         u32 prev_legacy, cur_legacy;
6111         struct kvm_pit *pit = kvm->arch.vpit;
6112
6113         mutex_lock(&pit->pit_state.lock);
6114         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6115         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6116         if (!prev_legacy && cur_legacy)
6117                 start = 1;
6118         memcpy(&pit->pit_state.channels, &ps->channels,
6119                sizeof(pit->pit_state.channels));
6120         pit->pit_state.flags = ps->flags;
6121         for (i = 0; i < 3; i++)
6122                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6123                                    start && i == 0);
6124         mutex_unlock(&pit->pit_state.lock);
6125         return 0;
6126 }
6127
6128 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6129                                  struct kvm_reinject_control *control)
6130 {
6131         struct kvm_pit *pit = kvm->arch.vpit;
6132
6133         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6134          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6135          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6136          */
6137         mutex_lock(&pit->pit_state.lock);
6138         kvm_pit_set_reinject(pit, control->pit_reinject);
6139         mutex_unlock(&pit->pit_state.lock);
6140
6141         return 0;
6142 }
6143
6144 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6145 {
6146
6147         /*
6148          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6149          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6150          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6151          * VM-Exit.
6152          */
6153         struct kvm_vcpu *vcpu;
6154         unsigned long i;
6155
6156         kvm_for_each_vcpu(i, vcpu, kvm)
6157                 kvm_vcpu_kick(vcpu);
6158 }
6159
6160 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6161                         bool line_status)
6162 {
6163         if (!irqchip_in_kernel(kvm))
6164                 return -ENXIO;
6165
6166         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6167                                         irq_event->irq, irq_event->level,
6168                                         line_status);
6169         return 0;
6170 }
6171
6172 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6173                             struct kvm_enable_cap *cap)
6174 {
6175         int r;
6176
6177         if (cap->flags)
6178                 return -EINVAL;
6179
6180         switch (cap->cap) {
6181         case KVM_CAP_DISABLE_QUIRKS2:
6182                 r = -EINVAL;
6183                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6184                         break;
6185                 fallthrough;
6186         case KVM_CAP_DISABLE_QUIRKS:
6187                 kvm->arch.disabled_quirks = cap->args[0];
6188                 r = 0;
6189                 break;
6190         case KVM_CAP_SPLIT_IRQCHIP: {
6191                 mutex_lock(&kvm->lock);
6192                 r = -EINVAL;
6193                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6194                         goto split_irqchip_unlock;
6195                 r = -EEXIST;
6196                 if (irqchip_in_kernel(kvm))
6197                         goto split_irqchip_unlock;
6198                 if (kvm->created_vcpus)
6199                         goto split_irqchip_unlock;
6200                 r = kvm_setup_empty_irq_routing(kvm);
6201                 if (r)
6202                         goto split_irqchip_unlock;
6203                 /* Pairs with irqchip_in_kernel. */
6204                 smp_wmb();
6205                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6206                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6207                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6208                 r = 0;
6209 split_irqchip_unlock:
6210                 mutex_unlock(&kvm->lock);
6211                 break;
6212         }
6213         case KVM_CAP_X2APIC_API:
6214                 r = -EINVAL;
6215                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6216                         break;
6217
6218                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6219                         kvm->arch.x2apic_format = true;
6220                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6221                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6222
6223                 r = 0;
6224                 break;
6225         case KVM_CAP_X86_DISABLE_EXITS:
6226                 r = -EINVAL;
6227                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6228                         break;
6229
6230                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6231                         kvm_can_mwait_in_guest())
6232                         kvm->arch.mwait_in_guest = true;
6233                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6234                         kvm->arch.hlt_in_guest = true;
6235                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6236                         kvm->arch.pause_in_guest = true;
6237                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6238                         kvm->arch.cstate_in_guest = true;
6239                 r = 0;
6240                 break;
6241         case KVM_CAP_MSR_PLATFORM_INFO:
6242                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6243                 r = 0;
6244                 break;
6245         case KVM_CAP_EXCEPTION_PAYLOAD:
6246                 kvm->arch.exception_payload_enabled = cap->args[0];
6247                 r = 0;
6248                 break;
6249         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6250                 kvm->arch.triple_fault_event = cap->args[0];
6251                 r = 0;
6252                 break;
6253         case KVM_CAP_X86_USER_SPACE_MSR:
6254                 r = -EINVAL;
6255                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6256                         break;
6257                 kvm->arch.user_space_msr_mask = cap->args[0];
6258                 r = 0;
6259                 break;
6260         case KVM_CAP_X86_BUS_LOCK_EXIT:
6261                 r = -EINVAL;
6262                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6263                         break;
6264
6265                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6266                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6267                         break;
6268
6269                 if (kvm_caps.has_bus_lock_exit &&
6270                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6271                         kvm->arch.bus_lock_detection_enabled = true;
6272                 r = 0;
6273                 break;
6274 #ifdef CONFIG_X86_SGX_KVM
6275         case KVM_CAP_SGX_ATTRIBUTE: {
6276                 unsigned long allowed_attributes = 0;
6277
6278                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6279                 if (r)
6280                         break;
6281
6282                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6283                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6284                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6285                         kvm->arch.sgx_provisioning_allowed = true;
6286                 else
6287                         r = -EINVAL;
6288                 break;
6289         }
6290 #endif
6291         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6292                 r = -EINVAL;
6293                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6294                         break;
6295
6296                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6297                 break;
6298         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6299                 r = -EINVAL;
6300                 if (!kvm_x86_ops.vm_move_enc_context_from)
6301                         break;
6302
6303                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6304                 break;
6305         case KVM_CAP_EXIT_HYPERCALL:
6306                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6307                         r = -EINVAL;
6308                         break;
6309                 }
6310                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6311                 r = 0;
6312                 break;
6313         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6314                 r = -EINVAL;
6315                 if (cap->args[0] & ~1)
6316                         break;
6317                 kvm->arch.exit_on_emulation_error = cap->args[0];
6318                 r = 0;
6319                 break;
6320         case KVM_CAP_PMU_CAPABILITY:
6321                 r = -EINVAL;
6322                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6323                         break;
6324
6325                 mutex_lock(&kvm->lock);
6326                 if (!kvm->created_vcpus) {
6327                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6328                         r = 0;
6329                 }
6330                 mutex_unlock(&kvm->lock);
6331                 break;
6332         case KVM_CAP_MAX_VCPU_ID:
6333                 r = -EINVAL;
6334                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6335                         break;
6336
6337                 mutex_lock(&kvm->lock);
6338                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6339                         r = 0;
6340                 } else if (!kvm->arch.max_vcpu_ids) {
6341                         kvm->arch.max_vcpu_ids = cap->args[0];
6342                         r = 0;
6343                 }
6344                 mutex_unlock(&kvm->lock);
6345                 break;
6346         case KVM_CAP_X86_NOTIFY_VMEXIT:
6347                 r = -EINVAL;
6348                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6349                         break;
6350                 if (!kvm_caps.has_notify_vmexit)
6351                         break;
6352                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6353                         break;
6354                 mutex_lock(&kvm->lock);
6355                 if (!kvm->created_vcpus) {
6356                         kvm->arch.notify_window = cap->args[0] >> 32;
6357                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6358                         r = 0;
6359                 }
6360                 mutex_unlock(&kvm->lock);
6361                 break;
6362         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6363                 r = -EINVAL;
6364
6365                 /*
6366                  * Since the risk of disabling NX hugepages is a guest crashing
6367                  * the system, ensure the userspace process has permission to
6368                  * reboot the system.
6369                  *
6370                  * Note that unlike the reboot() syscall, the process must have
6371                  * this capability in the root namespace because exposing
6372                  * /dev/kvm into a container does not limit the scope of the
6373                  * iTLB multihit bug to that container. In other words,
6374                  * this must use capable(), not ns_capable().
6375                  */
6376                 if (!capable(CAP_SYS_BOOT)) {
6377                         r = -EPERM;
6378                         break;
6379                 }
6380
6381                 if (cap->args[0])
6382                         break;
6383
6384                 mutex_lock(&kvm->lock);
6385                 if (!kvm->created_vcpus) {
6386                         kvm->arch.disable_nx_huge_pages = true;
6387                         r = 0;
6388                 }
6389                 mutex_unlock(&kvm->lock);
6390                 break;
6391         default:
6392                 r = -EINVAL;
6393                 break;
6394         }
6395         return r;
6396 }
6397
6398 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6399 {
6400         struct kvm_x86_msr_filter *msr_filter;
6401
6402         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6403         if (!msr_filter)
6404                 return NULL;
6405
6406         msr_filter->default_allow = default_allow;
6407         return msr_filter;
6408 }
6409
6410 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6411 {
6412         u32 i;
6413
6414         if (!msr_filter)
6415                 return;
6416
6417         for (i = 0; i < msr_filter->count; i++)
6418                 kfree(msr_filter->ranges[i].bitmap);
6419
6420         kfree(msr_filter);
6421 }
6422
6423 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6424                               struct kvm_msr_filter_range *user_range)
6425 {
6426         unsigned long *bitmap = NULL;
6427         size_t bitmap_size;
6428
6429         if (!user_range->nmsrs)
6430                 return 0;
6431
6432         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6433                 return -EINVAL;
6434
6435         if (!user_range->flags)
6436                 return -EINVAL;
6437
6438         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6439         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6440                 return -EINVAL;
6441
6442         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6443         if (IS_ERR(bitmap))
6444                 return PTR_ERR(bitmap);
6445
6446         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6447                 .flags = user_range->flags,
6448                 .base = user_range->base,
6449                 .nmsrs = user_range->nmsrs,
6450                 .bitmap = bitmap,
6451         };
6452
6453         msr_filter->count++;
6454         return 0;
6455 }
6456
6457 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6458                                        struct kvm_msr_filter *filter)
6459 {
6460         struct kvm_x86_msr_filter *new_filter, *old_filter;
6461         bool default_allow;
6462         bool empty = true;
6463         int r = 0;
6464         u32 i;
6465
6466         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6467                 return -EINVAL;
6468
6469         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6470                 empty &= !filter->ranges[i].nmsrs;
6471
6472         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6473         if (empty && !default_allow)
6474                 return -EINVAL;
6475
6476         new_filter = kvm_alloc_msr_filter(default_allow);
6477         if (!new_filter)
6478                 return -ENOMEM;
6479
6480         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6481                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6482                 if (r) {
6483                         kvm_free_msr_filter(new_filter);
6484                         return r;
6485                 }
6486         }
6487
6488         mutex_lock(&kvm->lock);
6489
6490         /* The per-VM filter is protected by kvm->lock... */
6491         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6492
6493         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6494         synchronize_srcu(&kvm->srcu);
6495
6496         kvm_free_msr_filter(old_filter);
6497
6498         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6499         mutex_unlock(&kvm->lock);
6500
6501         return 0;
6502 }
6503
6504 #ifdef CONFIG_KVM_COMPAT
6505 /* for KVM_X86_SET_MSR_FILTER */
6506 struct kvm_msr_filter_range_compat {
6507         __u32 flags;
6508         __u32 nmsrs;
6509         __u32 base;
6510         __u32 bitmap;
6511 };
6512
6513 struct kvm_msr_filter_compat {
6514         __u32 flags;
6515         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6516 };
6517
6518 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6519
6520 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6521                               unsigned long arg)
6522 {
6523         void __user *argp = (void __user *)arg;
6524         struct kvm *kvm = filp->private_data;
6525         long r = -ENOTTY;
6526
6527         switch (ioctl) {
6528         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6529                 struct kvm_msr_filter __user *user_msr_filter = argp;
6530                 struct kvm_msr_filter_compat filter_compat;
6531                 struct kvm_msr_filter filter;
6532                 int i;
6533
6534                 if (copy_from_user(&filter_compat, user_msr_filter,
6535                                    sizeof(filter_compat)))
6536                         return -EFAULT;
6537
6538                 filter.flags = filter_compat.flags;
6539                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6540                         struct kvm_msr_filter_range_compat *cr;
6541
6542                         cr = &filter_compat.ranges[i];
6543                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6544                                 .flags = cr->flags,
6545                                 .nmsrs = cr->nmsrs,
6546                                 .base = cr->base,
6547                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6548                         };
6549                 }
6550
6551                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6552                 break;
6553         }
6554         }
6555
6556         return r;
6557 }
6558 #endif
6559
6560 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6561 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6562 {
6563         struct kvm_vcpu *vcpu;
6564         unsigned long i;
6565         int ret = 0;
6566
6567         mutex_lock(&kvm->lock);
6568         kvm_for_each_vcpu(i, vcpu, kvm) {
6569                 if (!vcpu->arch.pv_time.active)
6570                         continue;
6571
6572                 ret = kvm_set_guest_paused(vcpu);
6573                 if (ret) {
6574                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6575                                 vcpu->vcpu_id, ret);
6576                         break;
6577                 }
6578         }
6579         mutex_unlock(&kvm->lock);
6580
6581         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6582 }
6583
6584 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6585 {
6586         switch (state) {
6587         case PM_HIBERNATION_PREPARE:
6588         case PM_SUSPEND_PREPARE:
6589                 return kvm_arch_suspend_notifier(kvm);
6590         }
6591
6592         return NOTIFY_DONE;
6593 }
6594 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6595
6596 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6597 {
6598         struct kvm_clock_data data = { 0 };
6599
6600         get_kvmclock(kvm, &data);
6601         if (copy_to_user(argp, &data, sizeof(data)))
6602                 return -EFAULT;
6603
6604         return 0;
6605 }
6606
6607 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6608 {
6609         struct kvm_arch *ka = &kvm->arch;
6610         struct kvm_clock_data data;
6611         u64 now_raw_ns;
6612
6613         if (copy_from_user(&data, argp, sizeof(data)))
6614                 return -EFAULT;
6615
6616         /*
6617          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6618          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6619          */
6620         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6621                 return -EINVAL;
6622
6623         kvm_hv_request_tsc_page_update(kvm);
6624         kvm_start_pvclock_update(kvm);
6625         pvclock_update_vm_gtod_copy(kvm);
6626
6627         /*
6628          * This pairs with kvm_guest_time_update(): when masterclock is
6629          * in use, we use master_kernel_ns + kvmclock_offset to set
6630          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6631          * is slightly ahead) here we risk going negative on unsigned
6632          * 'system_time' when 'data.clock' is very small.
6633          */
6634         if (data.flags & KVM_CLOCK_REALTIME) {
6635                 u64 now_real_ns = ktime_get_real_ns();
6636
6637                 /*
6638                  * Avoid stepping the kvmclock backwards.
6639                  */
6640                 if (now_real_ns > data.realtime)
6641                         data.clock += now_real_ns - data.realtime;
6642         }
6643
6644         if (ka->use_master_clock)
6645                 now_raw_ns = ka->master_kernel_ns;
6646         else
6647                 now_raw_ns = get_kvmclock_base_ns();
6648         ka->kvmclock_offset = data.clock - now_raw_ns;
6649         kvm_end_pvclock_update(kvm);
6650         return 0;
6651 }
6652
6653 long kvm_arch_vm_ioctl(struct file *filp,
6654                        unsigned int ioctl, unsigned long arg)
6655 {
6656         struct kvm *kvm = filp->private_data;
6657         void __user *argp = (void __user *)arg;
6658         int r = -ENOTTY;
6659         /*
6660          * This union makes it completely explicit to gcc-3.x
6661          * that these two variables' stack usage should be
6662          * combined, not added together.
6663          */
6664         union {
6665                 struct kvm_pit_state ps;
6666                 struct kvm_pit_state2 ps2;
6667                 struct kvm_pit_config pit_config;
6668         } u;
6669
6670         switch (ioctl) {
6671         case KVM_SET_TSS_ADDR:
6672                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6673                 break;
6674         case KVM_SET_IDENTITY_MAP_ADDR: {
6675                 u64 ident_addr;
6676
6677                 mutex_lock(&kvm->lock);
6678                 r = -EINVAL;
6679                 if (kvm->created_vcpus)
6680                         goto set_identity_unlock;
6681                 r = -EFAULT;
6682                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6683                         goto set_identity_unlock;
6684                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6685 set_identity_unlock:
6686                 mutex_unlock(&kvm->lock);
6687                 break;
6688         }
6689         case KVM_SET_NR_MMU_PAGES:
6690                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6691                 break;
6692         case KVM_GET_NR_MMU_PAGES:
6693                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6694                 break;
6695         case KVM_CREATE_IRQCHIP: {
6696                 mutex_lock(&kvm->lock);
6697
6698                 r = -EEXIST;
6699                 if (irqchip_in_kernel(kvm))
6700                         goto create_irqchip_unlock;
6701
6702                 r = -EINVAL;
6703                 if (kvm->created_vcpus)
6704                         goto create_irqchip_unlock;
6705
6706                 r = kvm_pic_init(kvm);
6707                 if (r)
6708                         goto create_irqchip_unlock;
6709
6710                 r = kvm_ioapic_init(kvm);
6711                 if (r) {
6712                         kvm_pic_destroy(kvm);
6713                         goto create_irqchip_unlock;
6714                 }
6715
6716                 r = kvm_setup_default_irq_routing(kvm);
6717                 if (r) {
6718                         kvm_ioapic_destroy(kvm);
6719                         kvm_pic_destroy(kvm);
6720                         goto create_irqchip_unlock;
6721                 }
6722                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6723                 smp_wmb();
6724                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6725                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6726         create_irqchip_unlock:
6727                 mutex_unlock(&kvm->lock);
6728                 break;
6729         }
6730         case KVM_CREATE_PIT:
6731                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6732                 goto create_pit;
6733         case KVM_CREATE_PIT2:
6734                 r = -EFAULT;
6735                 if (copy_from_user(&u.pit_config, argp,
6736                                    sizeof(struct kvm_pit_config)))
6737                         goto out;
6738         create_pit:
6739                 mutex_lock(&kvm->lock);
6740                 r = -EEXIST;
6741                 if (kvm->arch.vpit)
6742                         goto create_pit_unlock;
6743                 r = -ENOMEM;
6744                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6745                 if (kvm->arch.vpit)
6746                         r = 0;
6747         create_pit_unlock:
6748                 mutex_unlock(&kvm->lock);
6749                 break;
6750         case KVM_GET_IRQCHIP: {
6751                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6752                 struct kvm_irqchip *chip;
6753
6754                 chip = memdup_user(argp, sizeof(*chip));
6755                 if (IS_ERR(chip)) {
6756                         r = PTR_ERR(chip);
6757                         goto out;
6758                 }
6759
6760                 r = -ENXIO;
6761                 if (!irqchip_kernel(kvm))
6762                         goto get_irqchip_out;
6763                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6764                 if (r)
6765                         goto get_irqchip_out;
6766                 r = -EFAULT;
6767                 if (copy_to_user(argp, chip, sizeof(*chip)))
6768                         goto get_irqchip_out;
6769                 r = 0;
6770         get_irqchip_out:
6771                 kfree(chip);
6772                 break;
6773         }
6774         case KVM_SET_IRQCHIP: {
6775                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6776                 struct kvm_irqchip *chip;
6777
6778                 chip = memdup_user(argp, sizeof(*chip));
6779                 if (IS_ERR(chip)) {
6780                         r = PTR_ERR(chip);
6781                         goto out;
6782                 }
6783
6784                 r = -ENXIO;
6785                 if (!irqchip_kernel(kvm))
6786                         goto set_irqchip_out;
6787                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6788         set_irqchip_out:
6789                 kfree(chip);
6790                 break;
6791         }
6792         case KVM_GET_PIT: {
6793                 r = -EFAULT;
6794                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6795                         goto out;
6796                 r = -ENXIO;
6797                 if (!kvm->arch.vpit)
6798                         goto out;
6799                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6800                 if (r)
6801                         goto out;
6802                 r = -EFAULT;
6803                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6804                         goto out;
6805                 r = 0;
6806                 break;
6807         }
6808         case KVM_SET_PIT: {
6809                 r = -EFAULT;
6810                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6811                         goto out;
6812                 mutex_lock(&kvm->lock);
6813                 r = -ENXIO;
6814                 if (!kvm->arch.vpit)
6815                         goto set_pit_out;
6816                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6817 set_pit_out:
6818                 mutex_unlock(&kvm->lock);
6819                 break;
6820         }
6821         case KVM_GET_PIT2: {
6822                 r = -ENXIO;
6823                 if (!kvm->arch.vpit)
6824                         goto out;
6825                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6826                 if (r)
6827                         goto out;
6828                 r = -EFAULT;
6829                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6830                         goto out;
6831                 r = 0;
6832                 break;
6833         }
6834         case KVM_SET_PIT2: {
6835                 r = -EFAULT;
6836                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6837                         goto out;
6838                 mutex_lock(&kvm->lock);
6839                 r = -ENXIO;
6840                 if (!kvm->arch.vpit)
6841                         goto set_pit2_out;
6842                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6843 set_pit2_out:
6844                 mutex_unlock(&kvm->lock);
6845                 break;
6846         }
6847         case KVM_REINJECT_CONTROL: {
6848                 struct kvm_reinject_control control;
6849                 r =  -EFAULT;
6850                 if (copy_from_user(&control, argp, sizeof(control)))
6851                         goto out;
6852                 r = -ENXIO;
6853                 if (!kvm->arch.vpit)
6854                         goto out;
6855                 r = kvm_vm_ioctl_reinject(kvm, &control);
6856                 break;
6857         }
6858         case KVM_SET_BOOT_CPU_ID:
6859                 r = 0;
6860                 mutex_lock(&kvm->lock);
6861                 if (kvm->created_vcpus)
6862                         r = -EBUSY;
6863                 else
6864                         kvm->arch.bsp_vcpu_id = arg;
6865                 mutex_unlock(&kvm->lock);
6866                 break;
6867 #ifdef CONFIG_KVM_XEN
6868         case KVM_XEN_HVM_CONFIG: {
6869                 struct kvm_xen_hvm_config xhc;
6870                 r = -EFAULT;
6871                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6872                         goto out;
6873                 r = kvm_xen_hvm_config(kvm, &xhc);
6874                 break;
6875         }
6876         case KVM_XEN_HVM_GET_ATTR: {
6877                 struct kvm_xen_hvm_attr xha;
6878
6879                 r = -EFAULT;
6880                 if (copy_from_user(&xha, argp, sizeof(xha)))
6881                         goto out;
6882                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6883                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6884                         r = -EFAULT;
6885                 break;
6886         }
6887         case KVM_XEN_HVM_SET_ATTR: {
6888                 struct kvm_xen_hvm_attr xha;
6889
6890                 r = -EFAULT;
6891                 if (copy_from_user(&xha, argp, sizeof(xha)))
6892                         goto out;
6893                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6894                 break;
6895         }
6896         case KVM_XEN_HVM_EVTCHN_SEND: {
6897                 struct kvm_irq_routing_xen_evtchn uxe;
6898
6899                 r = -EFAULT;
6900                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6901                         goto out;
6902                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6903                 break;
6904         }
6905 #endif
6906         case KVM_SET_CLOCK:
6907                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6908                 break;
6909         case KVM_GET_CLOCK:
6910                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6911                 break;
6912         case KVM_SET_TSC_KHZ: {
6913                 u32 user_tsc_khz;
6914
6915                 r = -EINVAL;
6916                 user_tsc_khz = (u32)arg;
6917
6918                 if (kvm_caps.has_tsc_control &&
6919                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6920                         goto out;
6921
6922                 if (user_tsc_khz == 0)
6923                         user_tsc_khz = tsc_khz;
6924
6925                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6926                 r = 0;
6927
6928                 goto out;
6929         }
6930         case KVM_GET_TSC_KHZ: {
6931                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6932                 goto out;
6933         }
6934         case KVM_MEMORY_ENCRYPT_OP: {
6935                 r = -ENOTTY;
6936                 if (!kvm_x86_ops.mem_enc_ioctl)
6937                         goto out;
6938
6939                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6940                 break;
6941         }
6942         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6943                 struct kvm_enc_region region;
6944
6945                 r = -EFAULT;
6946                 if (copy_from_user(&region, argp, sizeof(region)))
6947                         goto out;
6948
6949                 r = -ENOTTY;
6950                 if (!kvm_x86_ops.mem_enc_register_region)
6951                         goto out;
6952
6953                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6954                 break;
6955         }
6956         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6957                 struct kvm_enc_region region;
6958
6959                 r = -EFAULT;
6960                 if (copy_from_user(&region, argp, sizeof(region)))
6961                         goto out;
6962
6963                 r = -ENOTTY;
6964                 if (!kvm_x86_ops.mem_enc_unregister_region)
6965                         goto out;
6966
6967                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6968                 break;
6969         }
6970         case KVM_HYPERV_EVENTFD: {
6971                 struct kvm_hyperv_eventfd hvevfd;
6972
6973                 r = -EFAULT;
6974                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6975                         goto out;
6976                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6977                 break;
6978         }
6979         case KVM_SET_PMU_EVENT_FILTER:
6980                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6981                 break;
6982         case KVM_X86_SET_MSR_FILTER: {
6983                 struct kvm_msr_filter __user *user_msr_filter = argp;
6984                 struct kvm_msr_filter filter;
6985
6986                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6987                         return -EFAULT;
6988
6989                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6990                 break;
6991         }
6992         default:
6993                 r = -ENOTTY;
6994         }
6995 out:
6996         return r;
6997 }
6998
6999 static void kvm_init_msr_list(void)
7000 {
7001         u32 dummy[2];
7002         unsigned i;
7003
7004         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7005                          "Please update the fixed PMCs in msrs_to_saved_all[]");
7006
7007         num_msrs_to_save = 0;
7008         num_emulated_msrs = 0;
7009         num_msr_based_features = 0;
7010
7011         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7012                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7013                         continue;
7014
7015                 /*
7016                  * Even MSRs that are valid in the host may not be exposed
7017                  * to the guests in some cases.
7018                  */
7019                 switch (msrs_to_save_all[i]) {
7020                 case MSR_IA32_BNDCFGS:
7021                         if (!kvm_mpx_supported())
7022                                 continue;
7023                         break;
7024                 case MSR_TSC_AUX:
7025                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7026                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7027                                 continue;
7028                         break;
7029                 case MSR_IA32_UMWAIT_CONTROL:
7030                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7031                                 continue;
7032                         break;
7033                 case MSR_IA32_RTIT_CTL:
7034                 case MSR_IA32_RTIT_STATUS:
7035                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7036                                 continue;
7037                         break;
7038                 case MSR_IA32_RTIT_CR3_MATCH:
7039                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7040                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7041                                 continue;
7042                         break;
7043                 case MSR_IA32_RTIT_OUTPUT_BASE:
7044                 case MSR_IA32_RTIT_OUTPUT_MASK:
7045                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7046                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7047                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7048                                 continue;
7049                         break;
7050                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7051                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7052                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7053                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7054                                 continue;
7055                         break;
7056                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7057                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7058                             min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7059                                 continue;
7060                         break;
7061                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7062                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7063                             min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7064                                 continue;
7065                         break;
7066                 case MSR_IA32_XFD:
7067                 case MSR_IA32_XFD_ERR:
7068                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7069                                 continue;
7070                         break;
7071                 default:
7072                         break;
7073                 }
7074
7075                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7076         }
7077
7078         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7079                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7080                         continue;
7081
7082                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7083         }
7084
7085         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7086                 struct kvm_msr_entry msr;
7087
7088                 msr.index = msr_based_features_all[i];
7089                 if (kvm_get_msr_feature(&msr))
7090                         continue;
7091
7092                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7093         }
7094 }
7095
7096 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7097                            const void *v)
7098 {
7099         int handled = 0;
7100         int n;
7101
7102         do {
7103                 n = min(len, 8);
7104                 if (!(lapic_in_kernel(vcpu) &&
7105                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7106                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7107                         break;
7108                 handled += n;
7109                 addr += n;
7110                 len -= n;
7111                 v += n;
7112         } while (len);
7113
7114         return handled;
7115 }
7116
7117 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7118 {
7119         int handled = 0;
7120         int n;
7121
7122         do {
7123                 n = min(len, 8);
7124                 if (!(lapic_in_kernel(vcpu) &&
7125                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7126                                          addr, n, v))
7127                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7128                         break;
7129                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7130                 handled += n;
7131                 addr += n;
7132                 len -= n;
7133                 v += n;
7134         } while (len);
7135
7136         return handled;
7137 }
7138
7139 void kvm_set_segment(struct kvm_vcpu *vcpu,
7140                      struct kvm_segment *var, int seg)
7141 {
7142         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7143 }
7144
7145 void kvm_get_segment(struct kvm_vcpu *vcpu,
7146                      struct kvm_segment *var, int seg)
7147 {
7148         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7149 }
7150
7151 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7152                            struct x86_exception *exception)
7153 {
7154         struct kvm_mmu *mmu = vcpu->arch.mmu;
7155         gpa_t t_gpa;
7156
7157         BUG_ON(!mmu_is_nested(vcpu));
7158
7159         /* NPT walks are always user-walks */
7160         access |= PFERR_USER_MASK;
7161         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7162
7163         return t_gpa;
7164 }
7165
7166 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7167                               struct x86_exception *exception)
7168 {
7169         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7170
7171         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7172         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7173 }
7174 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7175
7176 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7177                                struct x86_exception *exception)
7178 {
7179         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7180
7181         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7182         access |= PFERR_WRITE_MASK;
7183         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7184 }
7185 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7186
7187 /* uses this to access any guest's mapped memory without checking CPL */
7188 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7189                                 struct x86_exception *exception)
7190 {
7191         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7192
7193         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7194 }
7195
7196 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7197                                       struct kvm_vcpu *vcpu, u64 access,
7198                                       struct x86_exception *exception)
7199 {
7200         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7201         void *data = val;
7202         int r = X86EMUL_CONTINUE;
7203
7204         while (bytes) {
7205                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7206                 unsigned offset = addr & (PAGE_SIZE-1);
7207                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7208                 int ret;
7209
7210                 if (gpa == INVALID_GPA)
7211                         return X86EMUL_PROPAGATE_FAULT;
7212                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7213                                                offset, toread);
7214                 if (ret < 0) {
7215                         r = X86EMUL_IO_NEEDED;
7216                         goto out;
7217                 }
7218
7219                 bytes -= toread;
7220                 data += toread;
7221                 addr += toread;
7222         }
7223 out:
7224         return r;
7225 }
7226
7227 /* used for instruction fetching */
7228 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7229                                 gva_t addr, void *val, unsigned int bytes,
7230                                 struct x86_exception *exception)
7231 {
7232         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7233         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7234         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7235         unsigned offset;
7236         int ret;
7237
7238         /* Inline kvm_read_guest_virt_helper for speed.  */
7239         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7240                                     exception);
7241         if (unlikely(gpa == INVALID_GPA))
7242                 return X86EMUL_PROPAGATE_FAULT;
7243
7244         offset = addr & (PAGE_SIZE-1);
7245         if (WARN_ON(offset + bytes > PAGE_SIZE))
7246                 bytes = (unsigned)PAGE_SIZE - offset;
7247         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7248                                        offset, bytes);
7249         if (unlikely(ret < 0))
7250                 return X86EMUL_IO_NEEDED;
7251
7252         return X86EMUL_CONTINUE;
7253 }
7254
7255 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7256                                gva_t addr, void *val, unsigned int bytes,
7257                                struct x86_exception *exception)
7258 {
7259         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7260
7261         /*
7262          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7263          * is returned, but our callers are not ready for that and they blindly
7264          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7265          * uninitialized kernel stack memory into cr2 and error code.
7266          */
7267         memset(exception, 0, sizeof(*exception));
7268         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7269                                           exception);
7270 }
7271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7272
7273 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7274                              gva_t addr, void *val, unsigned int bytes,
7275                              struct x86_exception *exception, bool system)
7276 {
7277         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7278         u64 access = 0;
7279
7280         if (system)
7281                 access |= PFERR_IMPLICIT_ACCESS;
7282         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7283                 access |= PFERR_USER_MASK;
7284
7285         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7286 }
7287
7288 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7289                                       struct kvm_vcpu *vcpu, u64 access,
7290                                       struct x86_exception *exception)
7291 {
7292         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7293         void *data = val;
7294         int r = X86EMUL_CONTINUE;
7295
7296         while (bytes) {
7297                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7298                 unsigned offset = addr & (PAGE_SIZE-1);
7299                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7300                 int ret;
7301
7302                 if (gpa == INVALID_GPA)
7303                         return X86EMUL_PROPAGATE_FAULT;
7304                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7305                 if (ret < 0) {
7306                         r = X86EMUL_IO_NEEDED;
7307                         goto out;
7308                 }
7309
7310                 bytes -= towrite;
7311                 data += towrite;
7312                 addr += towrite;
7313         }
7314 out:
7315         return r;
7316 }
7317
7318 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7319                               unsigned int bytes, struct x86_exception *exception,
7320                               bool system)
7321 {
7322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7323         u64 access = PFERR_WRITE_MASK;
7324
7325         if (system)
7326                 access |= PFERR_IMPLICIT_ACCESS;
7327         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7328                 access |= PFERR_USER_MASK;
7329
7330         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7331                                            access, exception);
7332 }
7333
7334 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7335                                 unsigned int bytes, struct x86_exception *exception)
7336 {
7337         /* kvm_write_guest_virt_system can pull in tons of pages. */
7338         vcpu->arch.l1tf_flush_l1d = true;
7339
7340         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7341                                            PFERR_WRITE_MASK, exception);
7342 }
7343 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7344
7345 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7346                                 void *insn, int insn_len)
7347 {
7348         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7349                                                             insn, insn_len);
7350 }
7351
7352 int handle_ud(struct kvm_vcpu *vcpu)
7353 {
7354         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7355         int fep_flags = READ_ONCE(force_emulation_prefix);
7356         int emul_type = EMULTYPE_TRAP_UD;
7357         char sig[5]; /* ud2; .ascii "kvm" */
7358         struct x86_exception e;
7359
7360         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7361                 return 1;
7362
7363         if (fep_flags &&
7364             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7365                                 sig, sizeof(sig), &e) == 0 &&
7366             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7367                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7368                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7369                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7370                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7371         }
7372
7373         return kvm_emulate_instruction(vcpu, emul_type);
7374 }
7375 EXPORT_SYMBOL_GPL(handle_ud);
7376
7377 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7378                             gpa_t gpa, bool write)
7379 {
7380         /* For APIC access vmexit */
7381         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7382                 return 1;
7383
7384         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7385                 trace_vcpu_match_mmio(gva, gpa, write, true);
7386                 return 1;
7387         }
7388
7389         return 0;
7390 }
7391
7392 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7393                                 gpa_t *gpa, struct x86_exception *exception,
7394                                 bool write)
7395 {
7396         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7397         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7398                 | (write ? PFERR_WRITE_MASK : 0);
7399
7400         /*
7401          * currently PKRU is only applied to ept enabled guest so
7402          * there is no pkey in EPT page table for L1 guest or EPT
7403          * shadow page table for L2 guest.
7404          */
7405         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7406             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7407                               vcpu->arch.mmio_access, 0, access))) {
7408                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7409                                         (gva & (PAGE_SIZE - 1));
7410                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7411                 return 1;
7412         }
7413
7414         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7415
7416         if (*gpa == INVALID_GPA)
7417                 return -1;
7418
7419         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7420 }
7421
7422 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7423                         const void *val, int bytes)
7424 {
7425         int ret;
7426
7427         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7428         if (ret < 0)
7429                 return 0;
7430         kvm_page_track_write(vcpu, gpa, val, bytes);
7431         return 1;
7432 }
7433
7434 struct read_write_emulator_ops {
7435         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7436                                   int bytes);
7437         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7438                                   void *val, int bytes);
7439         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7440                                int bytes, void *val);
7441         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7442                                     void *val, int bytes);
7443         bool write;
7444 };
7445
7446 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7447 {
7448         if (vcpu->mmio_read_completed) {
7449                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7450                                vcpu->mmio_fragments[0].gpa, val);
7451                 vcpu->mmio_read_completed = 0;
7452                 return 1;
7453         }
7454
7455         return 0;
7456 }
7457
7458 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7459                         void *val, int bytes)
7460 {
7461         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7462 }
7463
7464 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7465                          void *val, int bytes)
7466 {
7467         return emulator_write_phys(vcpu, gpa, val, bytes);
7468 }
7469
7470 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7471 {
7472         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7473         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7474 }
7475
7476 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7477                           void *val, int bytes)
7478 {
7479         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7480         return X86EMUL_IO_NEEDED;
7481 }
7482
7483 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7484                            void *val, int bytes)
7485 {
7486         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7487
7488         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7489         return X86EMUL_CONTINUE;
7490 }
7491
7492 static const struct read_write_emulator_ops read_emultor = {
7493         .read_write_prepare = read_prepare,
7494         .read_write_emulate = read_emulate,
7495         .read_write_mmio = vcpu_mmio_read,
7496         .read_write_exit_mmio = read_exit_mmio,
7497 };
7498
7499 static const struct read_write_emulator_ops write_emultor = {
7500         .read_write_emulate = write_emulate,
7501         .read_write_mmio = write_mmio,
7502         .read_write_exit_mmio = write_exit_mmio,
7503         .write = true,
7504 };
7505
7506 static int emulator_read_write_onepage(unsigned long addr, void *val,
7507                                        unsigned int bytes,
7508                                        struct x86_exception *exception,
7509                                        struct kvm_vcpu *vcpu,
7510                                        const struct read_write_emulator_ops *ops)
7511 {
7512         gpa_t gpa;
7513         int handled, ret;
7514         bool write = ops->write;
7515         struct kvm_mmio_fragment *frag;
7516         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7517
7518         /*
7519          * If the exit was due to a NPF we may already have a GPA.
7520          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7521          * Note, this cannot be used on string operations since string
7522          * operation using rep will only have the initial GPA from the NPF
7523          * occurred.
7524          */
7525         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7526             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7527                 gpa = ctxt->gpa_val;
7528                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7529         } else {
7530                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7531                 if (ret < 0)
7532                         return X86EMUL_PROPAGATE_FAULT;
7533         }
7534
7535         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7536                 return X86EMUL_CONTINUE;
7537
7538         /*
7539          * Is this MMIO handled locally?
7540          */
7541         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7542         if (handled == bytes)
7543                 return X86EMUL_CONTINUE;
7544
7545         gpa += handled;
7546         bytes -= handled;
7547         val += handled;
7548
7549         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7550         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7551         frag->gpa = gpa;
7552         frag->data = val;
7553         frag->len = bytes;
7554         return X86EMUL_CONTINUE;
7555 }
7556
7557 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7558                         unsigned long addr,
7559                         void *val, unsigned int bytes,
7560                         struct x86_exception *exception,
7561                         const struct read_write_emulator_ops *ops)
7562 {
7563         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7564         gpa_t gpa;
7565         int rc;
7566
7567         if (ops->read_write_prepare &&
7568                   ops->read_write_prepare(vcpu, val, bytes))
7569                 return X86EMUL_CONTINUE;
7570
7571         vcpu->mmio_nr_fragments = 0;
7572
7573         /* Crossing a page boundary? */
7574         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7575                 int now;
7576
7577                 now = -addr & ~PAGE_MASK;
7578                 rc = emulator_read_write_onepage(addr, val, now, exception,
7579                                                  vcpu, ops);
7580
7581                 if (rc != X86EMUL_CONTINUE)
7582                         return rc;
7583                 addr += now;
7584                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7585                         addr = (u32)addr;
7586                 val += now;
7587                 bytes -= now;
7588         }
7589
7590         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7591                                          vcpu, ops);
7592         if (rc != X86EMUL_CONTINUE)
7593                 return rc;
7594
7595         if (!vcpu->mmio_nr_fragments)
7596                 return rc;
7597
7598         gpa = vcpu->mmio_fragments[0].gpa;
7599
7600         vcpu->mmio_needed = 1;
7601         vcpu->mmio_cur_fragment = 0;
7602
7603         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7604         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7605         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7606         vcpu->run->mmio.phys_addr = gpa;
7607
7608         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7609 }
7610
7611 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7612                                   unsigned long addr,
7613                                   void *val,
7614                                   unsigned int bytes,
7615                                   struct x86_exception *exception)
7616 {
7617         return emulator_read_write(ctxt, addr, val, bytes,
7618                                    exception, &read_emultor);
7619 }
7620
7621 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7622                             unsigned long addr,
7623                             const void *val,
7624                             unsigned int bytes,
7625                             struct x86_exception *exception)
7626 {
7627         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7628                                    exception, &write_emultor);
7629 }
7630
7631 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7632         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7633
7634 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7635                                      unsigned long addr,
7636                                      const void *old,
7637                                      const void *new,
7638                                      unsigned int bytes,
7639                                      struct x86_exception *exception)
7640 {
7641         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7642         u64 page_line_mask;
7643         unsigned long hva;
7644         gpa_t gpa;
7645         int r;
7646
7647         /* guests cmpxchg8b have to be emulated atomically */
7648         if (bytes > 8 || (bytes & (bytes - 1)))
7649                 goto emul_write;
7650
7651         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7652
7653         if (gpa == INVALID_GPA ||
7654             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7655                 goto emul_write;
7656
7657         /*
7658          * Emulate the atomic as a straight write to avoid #AC if SLD is
7659          * enabled in the host and the access splits a cache line.
7660          */
7661         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7662                 page_line_mask = ~(cache_line_size() - 1);
7663         else
7664                 page_line_mask = PAGE_MASK;
7665
7666         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7667                 goto emul_write;
7668
7669         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7670         if (kvm_is_error_hva(hva))
7671                 goto emul_write;
7672
7673         hva += offset_in_page(gpa);
7674
7675         switch (bytes) {
7676         case 1:
7677                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7678                 break;
7679         case 2:
7680                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7681                 break;
7682         case 4:
7683                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7684                 break;
7685         case 8:
7686                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7687                 break;
7688         default:
7689                 BUG();
7690         }
7691
7692         if (r < 0)
7693                 return X86EMUL_UNHANDLEABLE;
7694         if (r)
7695                 return X86EMUL_CMPXCHG_FAILED;
7696
7697         kvm_page_track_write(vcpu, gpa, new, bytes);
7698
7699         return X86EMUL_CONTINUE;
7700
7701 emul_write:
7702         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7703
7704         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7705 }
7706
7707 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7708                                unsigned short port, void *data,
7709                                unsigned int count, bool in)
7710 {
7711         unsigned i;
7712         int r;
7713
7714         WARN_ON_ONCE(vcpu->arch.pio.count);
7715         for (i = 0; i < count; i++) {
7716                 if (in)
7717                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7718                 else
7719                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7720
7721                 if (r) {
7722                         if (i == 0)
7723                                 goto userspace_io;
7724
7725                         /*
7726                          * Userspace must have unregistered the device while PIO
7727                          * was running.  Drop writes / read as 0.
7728                          */
7729                         if (in)
7730                                 memset(data, 0, size * (count - i));
7731                         break;
7732                 }
7733
7734                 data += size;
7735         }
7736         return 1;
7737
7738 userspace_io:
7739         vcpu->arch.pio.port = port;
7740         vcpu->arch.pio.in = in;
7741         vcpu->arch.pio.count = count;
7742         vcpu->arch.pio.size = size;
7743
7744         if (in)
7745                 memset(vcpu->arch.pio_data, 0, size * count);
7746         else
7747                 memcpy(vcpu->arch.pio_data, data, size * count);
7748
7749         vcpu->run->exit_reason = KVM_EXIT_IO;
7750         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7751         vcpu->run->io.size = size;
7752         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7753         vcpu->run->io.count = count;
7754         vcpu->run->io.port = port;
7755         return 0;
7756 }
7757
7758 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7759                            unsigned short port, void *val, unsigned int count)
7760 {
7761         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7762         if (r)
7763                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7764
7765         return r;
7766 }
7767
7768 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7769 {
7770         int size = vcpu->arch.pio.size;
7771         unsigned int count = vcpu->arch.pio.count;
7772         memcpy(val, vcpu->arch.pio_data, size * count);
7773         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7774         vcpu->arch.pio.count = 0;
7775 }
7776
7777 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7778                                     int size, unsigned short port, void *val,
7779                                     unsigned int count)
7780 {
7781         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7782         if (vcpu->arch.pio.count) {
7783                 /*
7784                  * Complete a previous iteration that required userspace I/O.
7785                  * Note, @count isn't guaranteed to match pio.count as userspace
7786                  * can modify ECX before rerunning the vCPU.  Ignore any such
7787                  * shenanigans as KVM doesn't support modifying the rep count,
7788                  * and the emulator ensures @count doesn't overflow the buffer.
7789                  */
7790                 complete_emulator_pio_in(vcpu, val);
7791                 return 1;
7792         }
7793
7794         return emulator_pio_in(vcpu, size, port, val, count);
7795 }
7796
7797 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7798                             unsigned short port, const void *val,
7799                             unsigned int count)
7800 {
7801         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7802         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7803 }
7804
7805 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7806                                      int size, unsigned short port,
7807                                      const void *val, unsigned int count)
7808 {
7809         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7810 }
7811
7812 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7813 {
7814         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7815 }
7816
7817 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7818 {
7819         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7820 }
7821
7822 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7823 {
7824         if (!need_emulate_wbinvd(vcpu))
7825                 return X86EMUL_CONTINUE;
7826
7827         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7828                 int cpu = get_cpu();
7829
7830                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7831                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7832                                 wbinvd_ipi, NULL, 1);
7833                 put_cpu();
7834                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7835         } else
7836                 wbinvd();
7837         return X86EMUL_CONTINUE;
7838 }
7839
7840 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7841 {
7842         kvm_emulate_wbinvd_noskip(vcpu);
7843         return kvm_skip_emulated_instruction(vcpu);
7844 }
7845 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7846
7847
7848
7849 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7850 {
7851         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7852 }
7853
7854 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7855                             unsigned long *dest)
7856 {
7857         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7858 }
7859
7860 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7861                            unsigned long value)
7862 {
7863
7864         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7865 }
7866
7867 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7868 {
7869         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7870 }
7871
7872 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7873 {
7874         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7875         unsigned long value;
7876
7877         switch (cr) {
7878         case 0:
7879                 value = kvm_read_cr0(vcpu);
7880                 break;
7881         case 2:
7882                 value = vcpu->arch.cr2;
7883                 break;
7884         case 3:
7885                 value = kvm_read_cr3(vcpu);
7886                 break;
7887         case 4:
7888                 value = kvm_read_cr4(vcpu);
7889                 break;
7890         case 8:
7891                 value = kvm_get_cr8(vcpu);
7892                 break;
7893         default:
7894                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7895                 return 0;
7896         }
7897
7898         return value;
7899 }
7900
7901 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7902 {
7903         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7904         int res = 0;
7905
7906         switch (cr) {
7907         case 0:
7908                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7909                 break;
7910         case 2:
7911                 vcpu->arch.cr2 = val;
7912                 break;
7913         case 3:
7914                 res = kvm_set_cr3(vcpu, val);
7915                 break;
7916         case 4:
7917                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7918                 break;
7919         case 8:
7920                 res = kvm_set_cr8(vcpu, val);
7921                 break;
7922         default:
7923                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7924                 res = -1;
7925         }
7926
7927         return res;
7928 }
7929
7930 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7931 {
7932         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7933 }
7934
7935 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7936 {
7937         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7938 }
7939
7940 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7941 {
7942         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7943 }
7944
7945 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7946 {
7947         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7948 }
7949
7950 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7951 {
7952         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7953 }
7954
7955 static unsigned long emulator_get_cached_segment_base(
7956         struct x86_emulate_ctxt *ctxt, int seg)
7957 {
7958         return get_segment_base(emul_to_vcpu(ctxt), seg);
7959 }
7960
7961 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7962                                  struct desc_struct *desc, u32 *base3,
7963                                  int seg)
7964 {
7965         struct kvm_segment var;
7966
7967         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7968         *selector = var.selector;
7969
7970         if (var.unusable) {
7971                 memset(desc, 0, sizeof(*desc));
7972                 if (base3)
7973                         *base3 = 0;
7974                 return false;
7975         }
7976
7977         if (var.g)
7978                 var.limit >>= 12;
7979         set_desc_limit(desc, var.limit);
7980         set_desc_base(desc, (unsigned long)var.base);
7981 #ifdef CONFIG_X86_64
7982         if (base3)
7983                 *base3 = var.base >> 32;
7984 #endif
7985         desc->type = var.type;
7986         desc->s = var.s;
7987         desc->dpl = var.dpl;
7988         desc->p = var.present;
7989         desc->avl = var.avl;
7990         desc->l = var.l;
7991         desc->d = var.db;
7992         desc->g = var.g;
7993
7994         return true;
7995 }
7996
7997 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7998                                  struct desc_struct *desc, u32 base3,
7999                                  int seg)
8000 {
8001         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8002         struct kvm_segment var;
8003
8004         var.selector = selector;
8005         var.base = get_desc_base(desc);
8006 #ifdef CONFIG_X86_64
8007         var.base |= ((u64)base3) << 32;
8008 #endif
8009         var.limit = get_desc_limit(desc);
8010         if (desc->g)
8011                 var.limit = (var.limit << 12) | 0xfff;
8012         var.type = desc->type;
8013         var.dpl = desc->dpl;
8014         var.db = desc->d;
8015         var.s = desc->s;
8016         var.l = desc->l;
8017         var.g = desc->g;
8018         var.avl = desc->avl;
8019         var.present = desc->p;
8020         var.unusable = !var.present;
8021         var.padding = 0;
8022
8023         kvm_set_segment(vcpu, &var, seg);
8024         return;
8025 }
8026
8027 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8028                                         u32 msr_index, u64 *pdata)
8029 {
8030         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8031         int r;
8032
8033         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8034         if (r < 0)
8035                 return X86EMUL_UNHANDLEABLE;
8036
8037         if (r) {
8038                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8039                                        complete_emulated_rdmsr, r))
8040                         return X86EMUL_IO_NEEDED;
8041
8042                 trace_kvm_msr_read_ex(msr_index);
8043                 return X86EMUL_PROPAGATE_FAULT;
8044         }
8045
8046         trace_kvm_msr_read(msr_index, *pdata);
8047         return X86EMUL_CONTINUE;
8048 }
8049
8050 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8051                                         u32 msr_index, u64 data)
8052 {
8053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8054         int r;
8055
8056         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8057         if (r < 0)
8058                 return X86EMUL_UNHANDLEABLE;
8059
8060         if (r) {
8061                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8062                                        complete_emulated_msr_access, r))
8063                         return X86EMUL_IO_NEEDED;
8064
8065                 trace_kvm_msr_write_ex(msr_index, data);
8066                 return X86EMUL_PROPAGATE_FAULT;
8067         }
8068
8069         trace_kvm_msr_write(msr_index, data);
8070         return X86EMUL_CONTINUE;
8071 }
8072
8073 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8074                             u32 msr_index, u64 *pdata)
8075 {
8076         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8077 }
8078
8079 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8080                               u32 pmc)
8081 {
8082         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8083                 return 0;
8084         return -EINVAL;
8085 }
8086
8087 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8088                              u32 pmc, u64 *pdata)
8089 {
8090         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8091 }
8092
8093 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8094 {
8095         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8096 }
8097
8098 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8099                               struct x86_instruction_info *info,
8100                               enum x86_intercept_stage stage)
8101 {
8102         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8103                                             &ctxt->exception);
8104 }
8105
8106 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8107                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8108                               bool exact_only)
8109 {
8110         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8111 }
8112
8113 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8114 {
8115         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8116 }
8117
8118 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8119 {
8120         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8121 }
8122
8123 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8124 {
8125         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8126 }
8127
8128 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8129 {
8130         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8131 }
8132
8133 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8134 {
8135         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8136 }
8137
8138 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8139 {
8140         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8141 }
8142
8143 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8144 {
8145         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8146 }
8147
8148 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8149 {
8150         return emul_to_vcpu(ctxt)->arch.hflags;
8151 }
8152
8153 #ifndef CONFIG_KVM_SMM
8154 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8155 {
8156         WARN_ON_ONCE(1);
8157         return X86EMUL_UNHANDLEABLE;
8158 }
8159 #endif
8160
8161 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8162 {
8163         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8164 }
8165
8166 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8167 {
8168         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8169 }
8170
8171 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8172 {
8173         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8174
8175         if (!kvm->vm_bugged)
8176                 kvm_vm_bugged(kvm);
8177 }
8178
8179 static const struct x86_emulate_ops emulate_ops = {
8180         .vm_bugged           = emulator_vm_bugged,
8181         .read_gpr            = emulator_read_gpr,
8182         .write_gpr           = emulator_write_gpr,
8183         .read_std            = emulator_read_std,
8184         .write_std           = emulator_write_std,
8185         .fetch               = kvm_fetch_guest_virt,
8186         .read_emulated       = emulator_read_emulated,
8187         .write_emulated      = emulator_write_emulated,
8188         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8189         .invlpg              = emulator_invlpg,
8190         .pio_in_emulated     = emulator_pio_in_emulated,
8191         .pio_out_emulated    = emulator_pio_out_emulated,
8192         .get_segment         = emulator_get_segment,
8193         .set_segment         = emulator_set_segment,
8194         .get_cached_segment_base = emulator_get_cached_segment_base,
8195         .get_gdt             = emulator_get_gdt,
8196         .get_idt             = emulator_get_idt,
8197         .set_gdt             = emulator_set_gdt,
8198         .set_idt             = emulator_set_idt,
8199         .get_cr              = emulator_get_cr,
8200         .set_cr              = emulator_set_cr,
8201         .cpl                 = emulator_get_cpl,
8202         .get_dr              = emulator_get_dr,
8203         .set_dr              = emulator_set_dr,
8204         .set_msr_with_filter = emulator_set_msr_with_filter,
8205         .get_msr_with_filter = emulator_get_msr_with_filter,
8206         .get_msr             = emulator_get_msr,
8207         .check_pmc           = emulator_check_pmc,
8208         .read_pmc            = emulator_read_pmc,
8209         .halt                = emulator_halt,
8210         .wbinvd              = emulator_wbinvd,
8211         .fix_hypercall       = emulator_fix_hypercall,
8212         .intercept           = emulator_intercept,
8213         .get_cpuid           = emulator_get_cpuid,
8214         .guest_has_long_mode = emulator_guest_has_long_mode,
8215         .guest_has_movbe     = emulator_guest_has_movbe,
8216         .guest_has_fxsr      = emulator_guest_has_fxsr,
8217         .guest_has_rdpid     = emulator_guest_has_rdpid,
8218         .set_nmi_mask        = emulator_set_nmi_mask,
8219         .get_hflags          = emulator_get_hflags,
8220         .leave_smm           = emulator_leave_smm,
8221         .triple_fault        = emulator_triple_fault,
8222         .set_xcr             = emulator_set_xcr,
8223 };
8224
8225 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8226 {
8227         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8228         /*
8229          * an sti; sti; sequence only disable interrupts for the first
8230          * instruction. So, if the last instruction, be it emulated or
8231          * not, left the system with the INT_STI flag enabled, it
8232          * means that the last instruction is an sti. We should not
8233          * leave the flag on in this case. The same goes for mov ss
8234          */
8235         if (int_shadow & mask)
8236                 mask = 0;
8237         if (unlikely(int_shadow || mask)) {
8238                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8239                 if (!mask)
8240                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8241         }
8242 }
8243
8244 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8245 {
8246         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8247
8248         if (ctxt->exception.vector == PF_VECTOR)
8249                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8250         else if (ctxt->exception.error_code_valid)
8251                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8252                                       ctxt->exception.error_code);
8253         else
8254                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8255 }
8256
8257 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8258 {
8259         struct x86_emulate_ctxt *ctxt;
8260
8261         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8262         if (!ctxt) {
8263                 pr_err("kvm: failed to allocate vcpu's emulator\n");
8264                 return NULL;
8265         }
8266
8267         ctxt->vcpu = vcpu;
8268         ctxt->ops = &emulate_ops;
8269         vcpu->arch.emulate_ctxt = ctxt;
8270
8271         return ctxt;
8272 }
8273
8274 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8275 {
8276         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8277         int cs_db, cs_l;
8278
8279         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8280
8281         ctxt->gpa_available = false;
8282         ctxt->eflags = kvm_get_rflags(vcpu);
8283         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8284
8285         ctxt->eip = kvm_rip_read(vcpu);
8286         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8287                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8288                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8289                      cs_db                              ? X86EMUL_MODE_PROT32 :
8290                                                           X86EMUL_MODE_PROT16;
8291         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8292
8293         ctxt->interruptibility = 0;
8294         ctxt->have_exception = false;
8295         ctxt->exception.vector = -1;
8296         ctxt->perm_ok = false;
8297
8298         init_decode_cache(ctxt);
8299         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8300 }
8301
8302 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8303 {
8304         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8305         int ret;
8306
8307         init_emulate_ctxt(vcpu);
8308
8309         ctxt->op_bytes = 2;
8310         ctxt->ad_bytes = 2;
8311         ctxt->_eip = ctxt->eip + inc_eip;
8312         ret = emulate_int_real(ctxt, irq);
8313
8314         if (ret != X86EMUL_CONTINUE) {
8315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8316         } else {
8317                 ctxt->eip = ctxt->_eip;
8318                 kvm_rip_write(vcpu, ctxt->eip);
8319                 kvm_set_rflags(vcpu, ctxt->eflags);
8320         }
8321 }
8322 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8323
8324 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8325                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8326 {
8327         struct kvm_run *run = vcpu->run;
8328         u64 info[5];
8329         u8 info_start;
8330
8331         /*
8332          * Zero the whole array used to retrieve the exit info, as casting to
8333          * u32 for select entries will leave some chunks uninitialized.
8334          */
8335         memset(&info, 0, sizeof(info));
8336
8337         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8338                                            &info[2], (u32 *)&info[3],
8339                                            (u32 *)&info[4]);
8340
8341         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8342         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8343
8344         /*
8345          * There's currently space for 13 entries, but 5 are used for the exit
8346          * reason and info.  Restrict to 4 to reduce the maintenance burden
8347          * when expanding kvm_run.emulation_failure in the future.
8348          */
8349         if (WARN_ON_ONCE(ndata > 4))
8350                 ndata = 4;
8351
8352         /* Always include the flags as a 'data' entry. */
8353         info_start = 1;
8354         run->emulation_failure.flags = 0;
8355
8356         if (insn_size) {
8357                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8358                               sizeof(run->emulation_failure.insn_bytes) != 16));
8359                 info_start += 2;
8360                 run->emulation_failure.flags |=
8361                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8362                 run->emulation_failure.insn_size = insn_size;
8363                 memset(run->emulation_failure.insn_bytes, 0x90,
8364                        sizeof(run->emulation_failure.insn_bytes));
8365                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8366         }
8367
8368         memcpy(&run->internal.data[info_start], info, sizeof(info));
8369         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8370                ndata * sizeof(data[0]));
8371
8372         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8373 }
8374
8375 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8376 {
8377         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8378
8379         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8380                                        ctxt->fetch.end - ctxt->fetch.data);
8381 }
8382
8383 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8384                                           u8 ndata)
8385 {
8386         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8387 }
8388 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8389
8390 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8391 {
8392         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8393 }
8394 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8395
8396 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8397 {
8398         struct kvm *kvm = vcpu->kvm;
8399
8400         ++vcpu->stat.insn_emulation_fail;
8401         trace_kvm_emulate_insn_failed(vcpu);
8402
8403         if (emulation_type & EMULTYPE_VMWARE_GP) {
8404                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8405                 return 1;
8406         }
8407
8408         if (kvm->arch.exit_on_emulation_error ||
8409             (emulation_type & EMULTYPE_SKIP)) {
8410                 prepare_emulation_ctxt_failure_exit(vcpu);
8411                 return 0;
8412         }
8413
8414         kvm_queue_exception(vcpu, UD_VECTOR);
8415
8416         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8417                 prepare_emulation_ctxt_failure_exit(vcpu);
8418                 return 0;
8419         }
8420
8421         return 1;
8422 }
8423
8424 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8425                                   bool write_fault_to_shadow_pgtable,
8426                                   int emulation_type)
8427 {
8428         gpa_t gpa = cr2_or_gpa;
8429         kvm_pfn_t pfn;
8430
8431         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8432                 return false;
8433
8434         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8435             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8436                 return false;
8437
8438         if (!vcpu->arch.mmu->root_role.direct) {
8439                 /*
8440                  * Write permission should be allowed since only
8441                  * write access need to be emulated.
8442                  */
8443                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8444
8445                 /*
8446                  * If the mapping is invalid in guest, let cpu retry
8447                  * it to generate fault.
8448                  */
8449                 if (gpa == INVALID_GPA)
8450                         return true;
8451         }
8452
8453         /*
8454          * Do not retry the unhandleable instruction if it faults on the
8455          * readonly host memory, otherwise it will goto a infinite loop:
8456          * retry instruction -> write #PF -> emulation fail -> retry
8457          * instruction -> ...
8458          */
8459         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8460
8461         /*
8462          * If the instruction failed on the error pfn, it can not be fixed,
8463          * report the error to userspace.
8464          */
8465         if (is_error_noslot_pfn(pfn))
8466                 return false;
8467
8468         kvm_release_pfn_clean(pfn);
8469
8470         /* The instructions are well-emulated on direct mmu. */
8471         if (vcpu->arch.mmu->root_role.direct) {
8472                 unsigned int indirect_shadow_pages;
8473
8474                 write_lock(&vcpu->kvm->mmu_lock);
8475                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8476                 write_unlock(&vcpu->kvm->mmu_lock);
8477
8478                 if (indirect_shadow_pages)
8479                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8480
8481                 return true;
8482         }
8483
8484         /*
8485          * if emulation was due to access to shadowed page table
8486          * and it failed try to unshadow page and re-enter the
8487          * guest to let CPU execute the instruction.
8488          */
8489         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8490
8491         /*
8492          * If the access faults on its page table, it can not
8493          * be fixed by unprotecting shadow page and it should
8494          * be reported to userspace.
8495          */
8496         return !write_fault_to_shadow_pgtable;
8497 }
8498
8499 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8500                               gpa_t cr2_or_gpa,  int emulation_type)
8501 {
8502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8503         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8504
8505         last_retry_eip = vcpu->arch.last_retry_eip;
8506         last_retry_addr = vcpu->arch.last_retry_addr;
8507
8508         /*
8509          * If the emulation is caused by #PF and it is non-page_table
8510          * writing instruction, it means the VM-EXIT is caused by shadow
8511          * page protected, we can zap the shadow page and retry this
8512          * instruction directly.
8513          *
8514          * Note: if the guest uses a non-page-table modifying instruction
8515          * on the PDE that points to the instruction, then we will unmap
8516          * the instruction and go to an infinite loop. So, we cache the
8517          * last retried eip and the last fault address, if we meet the eip
8518          * and the address again, we can break out of the potential infinite
8519          * loop.
8520          */
8521         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8522
8523         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8524                 return false;
8525
8526         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8527             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8528                 return false;
8529
8530         if (x86_page_table_writing_insn(ctxt))
8531                 return false;
8532
8533         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8534                 return false;
8535
8536         vcpu->arch.last_retry_eip = ctxt->eip;
8537         vcpu->arch.last_retry_addr = cr2_or_gpa;
8538
8539         if (!vcpu->arch.mmu->root_role.direct)
8540                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8541
8542         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8543
8544         return true;
8545 }
8546
8547 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8548 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8549
8550 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8551                                 unsigned long *db)
8552 {
8553         u32 dr6 = 0;
8554         int i;
8555         u32 enable, rwlen;
8556
8557         enable = dr7;
8558         rwlen = dr7 >> 16;
8559         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8560                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8561                         dr6 |= (1 << i);
8562         return dr6;
8563 }
8564
8565 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8566 {
8567         struct kvm_run *kvm_run = vcpu->run;
8568
8569         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8570                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8571                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8572                 kvm_run->debug.arch.exception = DB_VECTOR;
8573                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8574                 return 0;
8575         }
8576         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8577         return 1;
8578 }
8579
8580 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8581 {
8582         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8583         int r;
8584
8585         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8586         if (unlikely(!r))
8587                 return 0;
8588
8589         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8590
8591         /*
8592          * rflags is the old, "raw" value of the flags.  The new value has
8593          * not been saved yet.
8594          *
8595          * This is correct even for TF set by the guest, because "the
8596          * processor will not generate this exception after the instruction
8597          * that sets the TF flag".
8598          */
8599         if (unlikely(rflags & X86_EFLAGS_TF))
8600                 r = kvm_vcpu_do_singlestep(vcpu);
8601         return r;
8602 }
8603 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8604
8605 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8606 {
8607         u32 shadow;
8608
8609         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8610                 return true;
8611
8612         /*
8613          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8614          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8615          * to avoid the relatively expensive CPUID lookup.
8616          */
8617         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8618         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8619                guest_cpuid_is_intel(vcpu);
8620 }
8621
8622 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8623                                            int emulation_type, int *r)
8624 {
8625         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8626
8627         /*
8628          * Do not check for code breakpoints if hardware has already done the
8629          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8630          * the instruction has passed all exception checks, and all intercepted
8631          * exceptions that trigger emulation have lower priority than code
8632          * breakpoints, i.e. the fact that the intercepted exception occurred
8633          * means any code breakpoints have already been serviced.
8634          *
8635          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8636          * hardware has checked the RIP of the magic prefix, but not the RIP of
8637          * the instruction being emulated.  The intent of forced emulation is
8638          * to behave as if KVM intercepted the instruction without an exception
8639          * and without a prefix.
8640          */
8641         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8642                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8643                 return false;
8644
8645         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8646             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8647                 struct kvm_run *kvm_run = vcpu->run;
8648                 unsigned long eip = kvm_get_linear_rip(vcpu);
8649                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8650                                            vcpu->arch.guest_debug_dr7,
8651                                            vcpu->arch.eff_db);
8652
8653                 if (dr6 != 0) {
8654                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8655                         kvm_run->debug.arch.pc = eip;
8656                         kvm_run->debug.arch.exception = DB_VECTOR;
8657                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8658                         *r = 0;
8659                         return true;
8660                 }
8661         }
8662
8663         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8664             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8665                 unsigned long eip = kvm_get_linear_rip(vcpu);
8666                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8667                                            vcpu->arch.dr7,
8668                                            vcpu->arch.db);
8669
8670                 if (dr6 != 0) {
8671                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8672                         *r = 1;
8673                         return true;
8674                 }
8675         }
8676
8677         return false;
8678 }
8679
8680 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8681 {
8682         switch (ctxt->opcode_len) {
8683         case 1:
8684                 switch (ctxt->b) {
8685                 case 0xe4:      /* IN */
8686                 case 0xe5:
8687                 case 0xec:
8688                 case 0xed:
8689                 case 0xe6:      /* OUT */
8690                 case 0xe7:
8691                 case 0xee:
8692                 case 0xef:
8693                 case 0x6c:      /* INS */
8694                 case 0x6d:
8695                 case 0x6e:      /* OUTS */
8696                 case 0x6f:
8697                         return true;
8698                 }
8699                 break;
8700         case 2:
8701                 switch (ctxt->b) {
8702                 case 0x33:      /* RDPMC */
8703                         return true;
8704                 }
8705                 break;
8706         }
8707
8708         return false;
8709 }
8710
8711 /*
8712  * Decode an instruction for emulation.  The caller is responsible for handling
8713  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8714  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8715  * code breakpoints have higher priority and thus have already been done by
8716  * hardware.
8717  *
8718  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8719  *     response to a machine check.
8720  */
8721 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8722                                     void *insn, int insn_len)
8723 {
8724         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8725         int r;
8726
8727         init_emulate_ctxt(vcpu);
8728
8729         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8730
8731         trace_kvm_emulate_insn_start(vcpu);
8732         ++vcpu->stat.insn_emulation;
8733
8734         return r;
8735 }
8736 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8737
8738 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8739                             int emulation_type, void *insn, int insn_len)
8740 {
8741         int r;
8742         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8743         bool writeback = true;
8744         bool write_fault_to_spt;
8745
8746         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8747                 return 1;
8748
8749         vcpu->arch.l1tf_flush_l1d = true;
8750
8751         /*
8752          * Clear write_fault_to_shadow_pgtable here to ensure it is
8753          * never reused.
8754          */
8755         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8756         vcpu->arch.write_fault_to_shadow_pgtable = false;
8757
8758         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8759                 kvm_clear_exception_queue(vcpu);
8760
8761                 /*
8762                  * Return immediately if RIP hits a code breakpoint, such #DBs
8763                  * are fault-like and are higher priority than any faults on
8764                  * the code fetch itself.
8765                  */
8766                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8767                         return r;
8768
8769                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8770                                                     insn, insn_len);
8771                 if (r != EMULATION_OK)  {
8772                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8773                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8774                                 kvm_queue_exception(vcpu, UD_VECTOR);
8775                                 return 1;
8776                         }
8777                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8778                                                   write_fault_to_spt,
8779                                                   emulation_type))
8780                                 return 1;
8781
8782                         if (ctxt->have_exception &&
8783                             !(emulation_type & EMULTYPE_SKIP)) {
8784                                 /*
8785                                  * #UD should result in just EMULATION_FAILED, and trap-like
8786                                  * exception should not be encountered during decode.
8787                                  */
8788                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8789                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8790                                 inject_emulated_exception(vcpu);
8791                                 return 1;
8792                         }
8793                         return handle_emulation_failure(vcpu, emulation_type);
8794                 }
8795         }
8796
8797         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8798             !is_vmware_backdoor_opcode(ctxt)) {
8799                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8800                 return 1;
8801         }
8802
8803         /*
8804          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8805          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8806          * The caller is responsible for updating interruptibility state and
8807          * injecting single-step #DBs.
8808          */
8809         if (emulation_type & EMULTYPE_SKIP) {
8810                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8811                         ctxt->eip = (u32)ctxt->_eip;
8812                 else
8813                         ctxt->eip = ctxt->_eip;
8814
8815                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8816                         r = 1;
8817                         goto writeback;
8818                 }
8819
8820                 kvm_rip_write(vcpu, ctxt->eip);
8821                 if (ctxt->eflags & X86_EFLAGS_RF)
8822                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8823                 return 1;
8824         }
8825
8826         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8827                 return 1;
8828
8829         /* this is needed for vmware backdoor interface to work since it
8830            changes registers values  during IO operation */
8831         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8832                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8833                 emulator_invalidate_register_cache(ctxt);
8834         }
8835
8836 restart:
8837         if (emulation_type & EMULTYPE_PF) {
8838                 /* Save the faulting GPA (cr2) in the address field */
8839                 ctxt->exception.address = cr2_or_gpa;
8840
8841                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8842                 if (vcpu->arch.mmu->root_role.direct) {
8843                         ctxt->gpa_available = true;
8844                         ctxt->gpa_val = cr2_or_gpa;
8845                 }
8846         } else {
8847                 /* Sanitize the address out of an abundance of paranoia. */
8848                 ctxt->exception.address = 0;
8849         }
8850
8851         r = x86_emulate_insn(ctxt);
8852
8853         if (r == EMULATION_INTERCEPTED)
8854                 return 1;
8855
8856         if (r == EMULATION_FAILED) {
8857                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8858                                         emulation_type))
8859                         return 1;
8860
8861                 return handle_emulation_failure(vcpu, emulation_type);
8862         }
8863
8864         if (ctxt->have_exception) {
8865                 r = 1;
8866                 inject_emulated_exception(vcpu);
8867         } else if (vcpu->arch.pio.count) {
8868                 if (!vcpu->arch.pio.in) {
8869                         /* FIXME: return into emulator if single-stepping.  */
8870                         vcpu->arch.pio.count = 0;
8871                 } else {
8872                         writeback = false;
8873                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8874                 }
8875                 r = 0;
8876         } else if (vcpu->mmio_needed) {
8877                 ++vcpu->stat.mmio_exits;
8878
8879                 if (!vcpu->mmio_is_write)
8880                         writeback = false;
8881                 r = 0;
8882                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8883         } else if (vcpu->arch.complete_userspace_io) {
8884                 writeback = false;
8885                 r = 0;
8886         } else if (r == EMULATION_RESTART)
8887                 goto restart;
8888         else
8889                 r = 1;
8890
8891 writeback:
8892         if (writeback) {
8893                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8894                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8895                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8896
8897                 /*
8898                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
8899                  * only supports code breakpoints and general detect #DB, both
8900                  * of which are fault-like.
8901                  */
8902                 if (!ctxt->have_exception ||
8903                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8904                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8905                         if (ctxt->is_branch)
8906                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8907                         kvm_rip_write(vcpu, ctxt->eip);
8908                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8909                                 r = kvm_vcpu_do_singlestep(vcpu);
8910                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8911                         __kvm_set_rflags(vcpu, ctxt->eflags);
8912                 }
8913
8914                 /*
8915                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8916                  * do nothing, and it will be requested again as soon as
8917                  * the shadow expires.  But we still need to check here,
8918                  * because POPF has no interrupt shadow.
8919                  */
8920                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8921                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8922         } else
8923                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8924
8925         return r;
8926 }
8927
8928 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8929 {
8930         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8931 }
8932 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8933
8934 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8935                                         void *insn, int insn_len)
8936 {
8937         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8938 }
8939 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8940
8941 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8942 {
8943         vcpu->arch.pio.count = 0;
8944         return 1;
8945 }
8946
8947 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8948 {
8949         vcpu->arch.pio.count = 0;
8950
8951         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8952                 return 1;
8953
8954         return kvm_skip_emulated_instruction(vcpu);
8955 }
8956
8957 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8958                             unsigned short port)
8959 {
8960         unsigned long val = kvm_rax_read(vcpu);
8961         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8962
8963         if (ret)
8964                 return ret;
8965
8966         /*
8967          * Workaround userspace that relies on old KVM behavior of %rip being
8968          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8969          */
8970         if (port == 0x7e &&
8971             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8972                 vcpu->arch.complete_userspace_io =
8973                         complete_fast_pio_out_port_0x7e;
8974                 kvm_skip_emulated_instruction(vcpu);
8975         } else {
8976                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8977                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8978         }
8979         return 0;
8980 }
8981
8982 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8983 {
8984         unsigned long val;
8985
8986         /* We should only ever be called with arch.pio.count equal to 1 */
8987         BUG_ON(vcpu->arch.pio.count != 1);
8988
8989         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8990                 vcpu->arch.pio.count = 0;
8991                 return 1;
8992         }
8993
8994         /* For size less than 4 we merge, else we zero extend */
8995         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8996
8997         complete_emulator_pio_in(vcpu, &val);
8998         kvm_rax_write(vcpu, val);
8999
9000         return kvm_skip_emulated_instruction(vcpu);
9001 }
9002
9003 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9004                            unsigned short port)
9005 {
9006         unsigned long val;
9007         int ret;
9008
9009         /* For size less than 4 we merge, else we zero extend */
9010         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9011
9012         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9013         if (ret) {
9014                 kvm_rax_write(vcpu, val);
9015                 return ret;
9016         }
9017
9018         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9019         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9020
9021         return 0;
9022 }
9023
9024 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9025 {
9026         int ret;
9027
9028         if (in)
9029                 ret = kvm_fast_pio_in(vcpu, size, port);
9030         else
9031                 ret = kvm_fast_pio_out(vcpu, size, port);
9032         return ret && kvm_skip_emulated_instruction(vcpu);
9033 }
9034 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9035
9036 static int kvmclock_cpu_down_prep(unsigned int cpu)
9037 {
9038         __this_cpu_write(cpu_tsc_khz, 0);
9039         return 0;
9040 }
9041
9042 static void tsc_khz_changed(void *data)
9043 {
9044         struct cpufreq_freqs *freq = data;
9045         unsigned long khz = 0;
9046
9047         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9048
9049         if (data)
9050                 khz = freq->new;
9051         else
9052                 khz = cpufreq_quick_get(raw_smp_processor_id());
9053         if (!khz)
9054                 khz = tsc_khz;
9055         __this_cpu_write(cpu_tsc_khz, khz);
9056 }
9057
9058 #ifdef CONFIG_X86_64
9059 static void kvm_hyperv_tsc_notifier(void)
9060 {
9061         struct kvm *kvm;
9062         int cpu;
9063
9064         mutex_lock(&kvm_lock);
9065         list_for_each_entry(kvm, &vm_list, vm_list)
9066                 kvm_make_mclock_inprogress_request(kvm);
9067
9068         /* no guest entries from this point */
9069         hyperv_stop_tsc_emulation();
9070
9071         /* TSC frequency always matches when on Hyper-V */
9072         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9073                 for_each_present_cpu(cpu)
9074                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9075         }
9076         kvm_caps.max_guest_tsc_khz = tsc_khz;
9077
9078         list_for_each_entry(kvm, &vm_list, vm_list) {
9079                 __kvm_start_pvclock_update(kvm);
9080                 pvclock_update_vm_gtod_copy(kvm);
9081                 kvm_end_pvclock_update(kvm);
9082         }
9083
9084         mutex_unlock(&kvm_lock);
9085 }
9086 #endif
9087
9088 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9089 {
9090         struct kvm *kvm;
9091         struct kvm_vcpu *vcpu;
9092         int send_ipi = 0;
9093         unsigned long i;
9094
9095         /*
9096          * We allow guests to temporarily run on slowing clocks,
9097          * provided we notify them after, or to run on accelerating
9098          * clocks, provided we notify them before.  Thus time never
9099          * goes backwards.
9100          *
9101          * However, we have a problem.  We can't atomically update
9102          * the frequency of a given CPU from this function; it is
9103          * merely a notifier, which can be called from any CPU.
9104          * Changing the TSC frequency at arbitrary points in time
9105          * requires a recomputation of local variables related to
9106          * the TSC for each VCPU.  We must flag these local variables
9107          * to be updated and be sure the update takes place with the
9108          * new frequency before any guests proceed.
9109          *
9110          * Unfortunately, the combination of hotplug CPU and frequency
9111          * change creates an intractable locking scenario; the order
9112          * of when these callouts happen is undefined with respect to
9113          * CPU hotplug, and they can race with each other.  As such,
9114          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9115          * undefined; you can actually have a CPU frequency change take
9116          * place in between the computation of X and the setting of the
9117          * variable.  To protect against this problem, all updates of
9118          * the per_cpu tsc_khz variable are done in an interrupt
9119          * protected IPI, and all callers wishing to update the value
9120          * must wait for a synchronous IPI to complete (which is trivial
9121          * if the caller is on the CPU already).  This establishes the
9122          * necessary total order on variable updates.
9123          *
9124          * Note that because a guest time update may take place
9125          * anytime after the setting of the VCPU's request bit, the
9126          * correct TSC value must be set before the request.  However,
9127          * to ensure the update actually makes it to any guest which
9128          * starts running in hardware virtualization between the set
9129          * and the acquisition of the spinlock, we must also ping the
9130          * CPU after setting the request bit.
9131          *
9132          */
9133
9134         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9135
9136         mutex_lock(&kvm_lock);
9137         list_for_each_entry(kvm, &vm_list, vm_list) {
9138                 kvm_for_each_vcpu(i, vcpu, kvm) {
9139                         if (vcpu->cpu != cpu)
9140                                 continue;
9141                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9142                         if (vcpu->cpu != raw_smp_processor_id())
9143                                 send_ipi = 1;
9144                 }
9145         }
9146         mutex_unlock(&kvm_lock);
9147
9148         if (freq->old < freq->new && send_ipi) {
9149                 /*
9150                  * We upscale the frequency.  Must make the guest
9151                  * doesn't see old kvmclock values while running with
9152                  * the new frequency, otherwise we risk the guest sees
9153                  * time go backwards.
9154                  *
9155                  * In case we update the frequency for another cpu
9156                  * (which might be in guest context) send an interrupt
9157                  * to kick the cpu out of guest context.  Next time
9158                  * guest context is entered kvmclock will be updated,
9159                  * so the guest will not see stale values.
9160                  */
9161                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9162         }
9163 }
9164
9165 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9166                                      void *data)
9167 {
9168         struct cpufreq_freqs *freq = data;
9169         int cpu;
9170
9171         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9172                 return 0;
9173         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9174                 return 0;
9175
9176         for_each_cpu(cpu, freq->policy->cpus)
9177                 __kvmclock_cpufreq_notifier(freq, cpu);
9178
9179         return 0;
9180 }
9181
9182 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9183         .notifier_call  = kvmclock_cpufreq_notifier
9184 };
9185
9186 static int kvmclock_cpu_online(unsigned int cpu)
9187 {
9188         tsc_khz_changed(NULL);
9189         return 0;
9190 }
9191
9192 static void kvm_timer_init(void)
9193 {
9194         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9195                 max_tsc_khz = tsc_khz;
9196
9197                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9198                         struct cpufreq_policy *policy;
9199                         int cpu;
9200
9201                         cpu = get_cpu();
9202                         policy = cpufreq_cpu_get(cpu);
9203                         if (policy) {
9204                                 if (policy->cpuinfo.max_freq)
9205                                         max_tsc_khz = policy->cpuinfo.max_freq;
9206                                 cpufreq_cpu_put(policy);
9207                         }
9208                         put_cpu();
9209                 }
9210                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9211                                           CPUFREQ_TRANSITION_NOTIFIER);
9212
9213                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9214                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9215         }
9216 }
9217
9218 #ifdef CONFIG_X86_64
9219 static void pvclock_gtod_update_fn(struct work_struct *work)
9220 {
9221         struct kvm *kvm;
9222         struct kvm_vcpu *vcpu;
9223         unsigned long i;
9224
9225         mutex_lock(&kvm_lock);
9226         list_for_each_entry(kvm, &vm_list, vm_list)
9227                 kvm_for_each_vcpu(i, vcpu, kvm)
9228                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9229         atomic_set(&kvm_guest_has_master_clock, 0);
9230         mutex_unlock(&kvm_lock);
9231 }
9232
9233 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9234
9235 /*
9236  * Indirection to move queue_work() out of the tk_core.seq write held
9237  * region to prevent possible deadlocks against time accessors which
9238  * are invoked with work related locks held.
9239  */
9240 static void pvclock_irq_work_fn(struct irq_work *w)
9241 {
9242         queue_work(system_long_wq, &pvclock_gtod_work);
9243 }
9244
9245 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9246
9247 /*
9248  * Notification about pvclock gtod data update.
9249  */
9250 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9251                                void *priv)
9252 {
9253         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9254         struct timekeeper *tk = priv;
9255
9256         update_pvclock_gtod(tk);
9257
9258         /*
9259          * Disable master clock if host does not trust, or does not use,
9260          * TSC based clocksource. Delegate queue_work() to irq_work as
9261          * this is invoked with tk_core.seq write held.
9262          */
9263         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9264             atomic_read(&kvm_guest_has_master_clock) != 0)
9265                 irq_work_queue(&pvclock_irq_work);
9266         return 0;
9267 }
9268
9269 static struct notifier_block pvclock_gtod_notifier = {
9270         .notifier_call = pvclock_gtod_notify,
9271 };
9272 #endif
9273
9274 int kvm_arch_init(void *opaque)
9275 {
9276         struct kvm_x86_init_ops *ops = opaque;
9277         u64 host_pat;
9278         int r;
9279
9280         if (kvm_x86_ops.hardware_enable) {
9281                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9282                 return -EEXIST;
9283         }
9284
9285         if (!ops->cpu_has_kvm_support()) {
9286                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9287                                    ops->runtime_ops->name);
9288                 return -EOPNOTSUPP;
9289         }
9290         if (ops->disabled_by_bios()) {
9291                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9292                                    ops->runtime_ops->name);
9293                 return -EOPNOTSUPP;
9294         }
9295
9296         /*
9297          * KVM explicitly assumes that the guest has an FPU and
9298          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9299          * vCPU's FPU state as a fxregs_state struct.
9300          */
9301         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9302                 printk(KERN_ERR "kvm: inadequate fpu\n");
9303                 return -EOPNOTSUPP;
9304         }
9305
9306         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9307                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9308                 return -EOPNOTSUPP;
9309         }
9310
9311         /*
9312          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9313          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9314          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9315          * with an exception.  PAT[0] is set to WB on RESET and also by the
9316          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9317          */
9318         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9319             (host_pat & GENMASK(2, 0)) != 6) {
9320                 pr_err("kvm: host PAT[0] is not WB\n");
9321                 return -EIO;
9322         }
9323
9324         x86_emulator_cache = kvm_alloc_emulator_cache();
9325         if (!x86_emulator_cache) {
9326                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
9327                 return -ENOMEM;
9328         }
9329
9330         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9331         if (!user_return_msrs) {
9332                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9333                 r = -ENOMEM;
9334                 goto out_free_x86_emulator_cache;
9335         }
9336         kvm_nr_uret_msrs = 0;
9337
9338         r = kvm_mmu_vendor_module_init();
9339         if (r)
9340                 goto out_free_percpu;
9341
9342         kvm_timer_init();
9343
9344         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9345                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9346                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9347         }
9348
9349         if (pi_inject_timer == -1)
9350                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9351 #ifdef CONFIG_X86_64
9352         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9353
9354         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9355                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9356 #endif
9357
9358         return 0;
9359
9360 out_free_percpu:
9361         free_percpu(user_return_msrs);
9362 out_free_x86_emulator_cache:
9363         kmem_cache_destroy(x86_emulator_cache);
9364         return r;
9365 }
9366
9367 void kvm_arch_exit(void)
9368 {
9369 #ifdef CONFIG_X86_64
9370         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9371                 clear_hv_tscchange_cb();
9372 #endif
9373         kvm_lapic_exit();
9374
9375         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9376                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9377                                             CPUFREQ_TRANSITION_NOTIFIER);
9378                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9379         }
9380 #ifdef CONFIG_X86_64
9381         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9382         irq_work_sync(&pvclock_irq_work);
9383         cancel_work_sync(&pvclock_gtod_work);
9384 #endif
9385         kvm_x86_ops.hardware_enable = NULL;
9386         kvm_mmu_vendor_module_exit();
9387         free_percpu(user_return_msrs);
9388         kmem_cache_destroy(x86_emulator_cache);
9389 #ifdef CONFIG_KVM_XEN
9390         static_key_deferred_flush(&kvm_xen_enabled);
9391         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9392 #endif
9393 }
9394
9395 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9396 {
9397         /*
9398          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9399          * local APIC is in-kernel, the run loop will detect the non-runnable
9400          * state and halt the vCPU.  Exit to userspace if the local APIC is
9401          * managed by userspace, in which case userspace is responsible for
9402          * handling wake events.
9403          */
9404         ++vcpu->stat.halt_exits;
9405         if (lapic_in_kernel(vcpu)) {
9406                 vcpu->arch.mp_state = state;
9407                 return 1;
9408         } else {
9409                 vcpu->run->exit_reason = reason;
9410                 return 0;
9411         }
9412 }
9413
9414 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9415 {
9416         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9417 }
9418 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9419
9420 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9421 {
9422         int ret = kvm_skip_emulated_instruction(vcpu);
9423         /*
9424          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9425          * KVM_EXIT_DEBUG here.
9426          */
9427         return kvm_emulate_halt_noskip(vcpu) && ret;
9428 }
9429 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9430
9431 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9432 {
9433         int ret = kvm_skip_emulated_instruction(vcpu);
9434
9435         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9436                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9437 }
9438 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9439
9440 #ifdef CONFIG_X86_64
9441 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9442                                 unsigned long clock_type)
9443 {
9444         struct kvm_clock_pairing clock_pairing;
9445         struct timespec64 ts;
9446         u64 cycle;
9447         int ret;
9448
9449         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9450                 return -KVM_EOPNOTSUPP;
9451
9452         /*
9453          * When tsc is in permanent catchup mode guests won't be able to use
9454          * pvclock_read_retry loop to get consistent view of pvclock
9455          */
9456         if (vcpu->arch.tsc_always_catchup)
9457                 return -KVM_EOPNOTSUPP;
9458
9459         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9460                 return -KVM_EOPNOTSUPP;
9461
9462         clock_pairing.sec = ts.tv_sec;
9463         clock_pairing.nsec = ts.tv_nsec;
9464         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9465         clock_pairing.flags = 0;
9466         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9467
9468         ret = 0;
9469         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9470                             sizeof(struct kvm_clock_pairing)))
9471                 ret = -KVM_EFAULT;
9472
9473         return ret;
9474 }
9475 #endif
9476
9477 /*
9478  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9479  *
9480  * @apicid - apicid of vcpu to be kicked.
9481  */
9482 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9483 {
9484         /*
9485          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9486          * common code, e.g. for tracing. Defer initialization to the compiler.
9487          */
9488         struct kvm_lapic_irq lapic_irq = {
9489                 .delivery_mode = APIC_DM_REMRD,
9490                 .dest_mode = APIC_DEST_PHYSICAL,
9491                 .shorthand = APIC_DEST_NOSHORT,
9492                 .dest_id = apicid,
9493         };
9494
9495         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9496 }
9497
9498 bool kvm_apicv_activated(struct kvm *kvm)
9499 {
9500         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9501 }
9502 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9503
9504 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9505 {
9506         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9507         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9508
9509         return (vm_reasons | vcpu_reasons) == 0;
9510 }
9511 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9512
9513 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9514                                        enum kvm_apicv_inhibit reason, bool set)
9515 {
9516         if (set)
9517                 __set_bit(reason, inhibits);
9518         else
9519                 __clear_bit(reason, inhibits);
9520
9521         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9522 }
9523
9524 static void kvm_apicv_init(struct kvm *kvm)
9525 {
9526         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9527
9528         init_rwsem(&kvm->arch.apicv_update_lock);
9529
9530         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9531
9532         if (!enable_apicv)
9533                 set_or_clear_apicv_inhibit(inhibits,
9534                                            APICV_INHIBIT_REASON_DISABLE, true);
9535 }
9536
9537 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9538 {
9539         struct kvm_vcpu *target = NULL;
9540         struct kvm_apic_map *map;
9541
9542         vcpu->stat.directed_yield_attempted++;
9543
9544         if (single_task_running())
9545                 goto no_yield;
9546
9547         rcu_read_lock();
9548         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9549
9550         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9551                 target = map->phys_map[dest_id]->vcpu;
9552
9553         rcu_read_unlock();
9554
9555         if (!target || !READ_ONCE(target->ready))
9556                 goto no_yield;
9557
9558         /* Ignore requests to yield to self */
9559         if (vcpu == target)
9560                 goto no_yield;
9561
9562         if (kvm_vcpu_yield_to(target) <= 0)
9563                 goto no_yield;
9564
9565         vcpu->stat.directed_yield_successful++;
9566
9567 no_yield:
9568         return;
9569 }
9570
9571 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9572 {
9573         u64 ret = vcpu->run->hypercall.ret;
9574
9575         if (!is_64_bit_mode(vcpu))
9576                 ret = (u32)ret;
9577         kvm_rax_write(vcpu, ret);
9578         ++vcpu->stat.hypercalls;
9579         return kvm_skip_emulated_instruction(vcpu);
9580 }
9581
9582 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9583 {
9584         unsigned long nr, a0, a1, a2, a3, ret;
9585         int op_64_bit;
9586
9587         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9588                 return kvm_xen_hypercall(vcpu);
9589
9590         if (kvm_hv_hypercall_enabled(vcpu))
9591                 return kvm_hv_hypercall(vcpu);
9592
9593         nr = kvm_rax_read(vcpu);
9594         a0 = kvm_rbx_read(vcpu);
9595         a1 = kvm_rcx_read(vcpu);
9596         a2 = kvm_rdx_read(vcpu);
9597         a3 = kvm_rsi_read(vcpu);
9598
9599         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9600
9601         op_64_bit = is_64_bit_hypercall(vcpu);
9602         if (!op_64_bit) {
9603                 nr &= 0xFFFFFFFF;
9604                 a0 &= 0xFFFFFFFF;
9605                 a1 &= 0xFFFFFFFF;
9606                 a2 &= 0xFFFFFFFF;
9607                 a3 &= 0xFFFFFFFF;
9608         }
9609
9610         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9611                 ret = -KVM_EPERM;
9612                 goto out;
9613         }
9614
9615         ret = -KVM_ENOSYS;
9616
9617         switch (nr) {
9618         case KVM_HC_VAPIC_POLL_IRQ:
9619                 ret = 0;
9620                 break;
9621         case KVM_HC_KICK_CPU:
9622                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9623                         break;
9624
9625                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9626                 kvm_sched_yield(vcpu, a1);
9627                 ret = 0;
9628                 break;
9629 #ifdef CONFIG_X86_64
9630         case KVM_HC_CLOCK_PAIRING:
9631                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9632                 break;
9633 #endif
9634         case KVM_HC_SEND_IPI:
9635                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9636                         break;
9637
9638                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9639                 break;
9640         case KVM_HC_SCHED_YIELD:
9641                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9642                         break;
9643
9644                 kvm_sched_yield(vcpu, a0);
9645                 ret = 0;
9646                 break;
9647         case KVM_HC_MAP_GPA_RANGE: {
9648                 u64 gpa = a0, npages = a1, attrs = a2;
9649
9650                 ret = -KVM_ENOSYS;
9651                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9652                         break;
9653
9654                 if (!PAGE_ALIGNED(gpa) || !npages ||
9655                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9656                         ret = -KVM_EINVAL;
9657                         break;
9658                 }
9659
9660                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9661                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9662                 vcpu->run->hypercall.args[0]  = gpa;
9663                 vcpu->run->hypercall.args[1]  = npages;
9664                 vcpu->run->hypercall.args[2]  = attrs;
9665                 vcpu->run->hypercall.longmode = op_64_bit;
9666                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9667                 return 0;
9668         }
9669         default:
9670                 ret = -KVM_ENOSYS;
9671                 break;
9672         }
9673 out:
9674         if (!op_64_bit)
9675                 ret = (u32)ret;
9676         kvm_rax_write(vcpu, ret);
9677
9678         ++vcpu->stat.hypercalls;
9679         return kvm_skip_emulated_instruction(vcpu);
9680 }
9681 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9682
9683 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9684 {
9685         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9686         char instruction[3];
9687         unsigned long rip = kvm_rip_read(vcpu);
9688
9689         /*
9690          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9691          * the pieces.
9692          */
9693         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9694                 ctxt->exception.error_code_valid = false;
9695                 ctxt->exception.vector = UD_VECTOR;
9696                 ctxt->have_exception = true;
9697                 return X86EMUL_PROPAGATE_FAULT;
9698         }
9699
9700         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9701
9702         return emulator_write_emulated(ctxt, rip, instruction, 3,
9703                 &ctxt->exception);
9704 }
9705
9706 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9707 {
9708         return vcpu->run->request_interrupt_window &&
9709                 likely(!pic_in_kernel(vcpu->kvm));
9710 }
9711
9712 /* Called within kvm->srcu read side.  */
9713 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9714 {
9715         struct kvm_run *kvm_run = vcpu->run;
9716
9717         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9718         kvm_run->cr8 = kvm_get_cr8(vcpu);
9719         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9720
9721         kvm_run->ready_for_interrupt_injection =
9722                 pic_in_kernel(vcpu->kvm) ||
9723                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9724
9725         if (is_smm(vcpu))
9726                 kvm_run->flags |= KVM_RUN_X86_SMM;
9727 }
9728
9729 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9730 {
9731         int max_irr, tpr;
9732
9733         if (!kvm_x86_ops.update_cr8_intercept)
9734                 return;
9735
9736         if (!lapic_in_kernel(vcpu))
9737                 return;
9738
9739         if (vcpu->arch.apic->apicv_active)
9740                 return;
9741
9742         if (!vcpu->arch.apic->vapic_addr)
9743                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9744         else
9745                 max_irr = -1;
9746
9747         if (max_irr != -1)
9748                 max_irr >>= 4;
9749
9750         tpr = kvm_lapic_get_cr8(vcpu);
9751
9752         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9753 }
9754
9755
9756 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9757 {
9758         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9759                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9760                 return 1;
9761         }
9762
9763         return kvm_x86_ops.nested_ops->check_events(vcpu);
9764 }
9765
9766 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9767 {
9768         trace_kvm_inj_exception(vcpu->arch.exception.vector,
9769                                 vcpu->arch.exception.has_error_code,
9770                                 vcpu->arch.exception.error_code,
9771                                 vcpu->arch.exception.injected);
9772
9773         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9774                 vcpu->arch.exception.error_code = false;
9775         static_call(kvm_x86_inject_exception)(vcpu);
9776 }
9777
9778 /*
9779  * Check for any event (interrupt or exception) that is ready to be injected,
9780  * and if there is at least one event, inject the event with the highest
9781  * priority.  This handles both "pending" events, i.e. events that have never
9782  * been injected into the guest, and "injected" events, i.e. events that were
9783  * injected as part of a previous VM-Enter, but weren't successfully delivered
9784  * and need to be re-injected.
9785  *
9786  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9787  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9788  * be able to inject exceptions in the "middle" of an instruction, and so must
9789  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9790  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9791  * boundaries is necessary and correct.
9792  *
9793  * For simplicity, KVM uses a single path to inject all events (except events
9794  * that are injected directly from L1 to L2) and doesn't explicitly track
9795  * instruction boundaries for asynchronous events.  However, because VM-Exits
9796  * that can occur during instruction execution typically result in KVM skipping
9797  * the instruction or injecting an exception, e.g. instruction and exception
9798  * intercepts, and because pending exceptions have higher priority than pending
9799  * interrupts, KVM still honors instruction boundaries in most scenarios.
9800  *
9801  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9802  * the instruction or inject an exception, then KVM can incorrecty inject a new
9803  * asynchrounous event if the event became pending after the CPU fetched the
9804  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9805  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9806  * injected on the restarted instruction instead of being deferred until the
9807  * instruction completes.
9808  *
9809  * In practice, this virtualization hole is unlikely to be observed by the
9810  * guest, and even less likely to cause functional problems.  To detect the
9811  * hole, the guest would have to trigger an event on a side effect of an early
9812  * phase of instruction execution, e.g. on the instruction fetch from memory.
9813  * And for it to be a functional problem, the guest would need to depend on the
9814  * ordering between that side effect, the instruction completing, _and_ the
9815  * delivery of the asynchronous event.
9816  */
9817 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9818                                        bool *req_immediate_exit)
9819 {
9820         bool can_inject;
9821         int r;
9822
9823         /*
9824          * Process nested events first, as nested VM-Exit supercedes event
9825          * re-injection.  If there's an event queued for re-injection, it will
9826          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9827          */
9828         if (is_guest_mode(vcpu))
9829                 r = kvm_check_nested_events(vcpu);
9830         else
9831                 r = 0;
9832
9833         /*
9834          * Re-inject exceptions and events *especially* if immediate entry+exit
9835          * to/from L2 is needed, as any event that has already been injected
9836          * into L2 needs to complete its lifecycle before injecting a new event.
9837          *
9838          * Don't re-inject an NMI or interrupt if there is a pending exception.
9839          * This collision arises if an exception occurred while vectoring the
9840          * injected event, KVM intercepted said exception, and KVM ultimately
9841          * determined the fault belongs to the guest and queues the exception
9842          * for injection back into the guest.
9843          *
9844          * "Injected" interrupts can also collide with pending exceptions if
9845          * userspace ignores the "ready for injection" flag and blindly queues
9846          * an interrupt.  In that case, prioritizing the exception is correct,
9847          * as the exception "occurred" before the exit to userspace.  Trap-like
9848          * exceptions, e.g. most #DBs, have higher priority than interrupts.
9849          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9850          * priority, they're only generated (pended) during instruction
9851          * execution, and interrupts are recognized at instruction boundaries.
9852          * Thus a pending fault-like exception means the fault occurred on the
9853          * *previous* instruction and must be serviced prior to recognizing any
9854          * new events in order to fully complete the previous instruction.
9855          */
9856         if (vcpu->arch.exception.injected)
9857                 kvm_inject_exception(vcpu);
9858         else if (kvm_is_exception_pending(vcpu))
9859                 ; /* see above */
9860         else if (vcpu->arch.nmi_injected)
9861                 static_call(kvm_x86_inject_nmi)(vcpu);
9862         else if (vcpu->arch.interrupt.injected)
9863                 static_call(kvm_x86_inject_irq)(vcpu, true);
9864
9865         /*
9866          * Exceptions that morph to VM-Exits are handled above, and pending
9867          * exceptions on top of injected exceptions that do not VM-Exit should
9868          * either morph to #DF or, sadly, override the injected exception.
9869          */
9870         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9871                      vcpu->arch.exception.pending);
9872
9873         /*
9874          * Bail if immediate entry+exit to/from the guest is needed to complete
9875          * nested VM-Enter or event re-injection so that a different pending
9876          * event can be serviced (or if KVM needs to exit to userspace).
9877          *
9878          * Otherwise, continue processing events even if VM-Exit occurred.  The
9879          * VM-Exit will have cleared exceptions that were meant for L2, but
9880          * there may now be events that can be injected into L1.
9881          */
9882         if (r < 0)
9883                 goto out;
9884
9885         /*
9886          * A pending exception VM-Exit should either result in nested VM-Exit
9887          * or force an immediate re-entry and exit to/from L2, and exception
9888          * VM-Exits cannot be injected (flag should _never_ be set).
9889          */
9890         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9891                      vcpu->arch.exception_vmexit.pending);
9892
9893         /*
9894          * New events, other than exceptions, cannot be injected if KVM needs
9895          * to re-inject a previous event.  See above comments on re-injecting
9896          * for why pending exceptions get priority.
9897          */
9898         can_inject = !kvm_event_needs_reinjection(vcpu);
9899
9900         if (vcpu->arch.exception.pending) {
9901                 /*
9902                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9903                  * value pushed on the stack.  Trap-like exception and all #DBs
9904                  * leave RF as-is (KVM follows Intel's behavior in this regard;
9905                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
9906                  *
9907                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
9908                  * describe the behavior of General Detect #DBs, which are
9909                  * fault-like.  They do _not_ set RF, a la code breakpoints.
9910                  */
9911                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9912                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9913                                              X86_EFLAGS_RF);
9914
9915                 if (vcpu->arch.exception.vector == DB_VECTOR) {
9916                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9917                         if (vcpu->arch.dr7 & DR7_GD) {
9918                                 vcpu->arch.dr7 &= ~DR7_GD;
9919                                 kvm_update_dr7(vcpu);
9920                         }
9921                 }
9922
9923                 kvm_inject_exception(vcpu);
9924
9925                 vcpu->arch.exception.pending = false;
9926                 vcpu->arch.exception.injected = true;
9927
9928                 can_inject = false;
9929         }
9930
9931         /* Don't inject interrupts if the user asked to avoid doing so */
9932         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9933                 return 0;
9934
9935         /*
9936          * Finally, inject interrupt events.  If an event cannot be injected
9937          * due to architectural conditions (e.g. IF=0) a window-open exit
9938          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9939          * and can architecturally be injected, but we cannot do it right now:
9940          * an interrupt could have arrived just now and we have to inject it
9941          * as a vmexit, or there could already an event in the queue, which is
9942          * indicated by can_inject.  In that case we request an immediate exit
9943          * in order to make progress and get back here for another iteration.
9944          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9945          */
9946 #ifdef CONFIG_KVM_SMM
9947         if (vcpu->arch.smi_pending) {
9948                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9949                 if (r < 0)
9950                         goto out;
9951                 if (r) {
9952                         vcpu->arch.smi_pending = false;
9953                         ++vcpu->arch.smi_count;
9954                         enter_smm(vcpu);
9955                         can_inject = false;
9956                 } else
9957                         static_call(kvm_x86_enable_smi_window)(vcpu);
9958         }
9959 #endif
9960
9961         if (vcpu->arch.nmi_pending) {
9962                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9963                 if (r < 0)
9964                         goto out;
9965                 if (r) {
9966                         --vcpu->arch.nmi_pending;
9967                         vcpu->arch.nmi_injected = true;
9968                         static_call(kvm_x86_inject_nmi)(vcpu);
9969                         can_inject = false;
9970                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9971                 }
9972                 if (vcpu->arch.nmi_pending)
9973                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9974         }
9975
9976         if (kvm_cpu_has_injectable_intr(vcpu)) {
9977                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9978                 if (r < 0)
9979                         goto out;
9980                 if (r) {
9981                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9982                         static_call(kvm_x86_inject_irq)(vcpu, false);
9983                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9984                 }
9985                 if (kvm_cpu_has_injectable_intr(vcpu))
9986                         static_call(kvm_x86_enable_irq_window)(vcpu);
9987         }
9988
9989         if (is_guest_mode(vcpu) &&
9990             kvm_x86_ops.nested_ops->has_events &&
9991             kvm_x86_ops.nested_ops->has_events(vcpu))
9992                 *req_immediate_exit = true;
9993
9994         /*
9995          * KVM must never queue a new exception while injecting an event; KVM
9996          * is done emulating and should only propagate the to-be-injected event
9997          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
9998          * infinite loop as KVM will bail from VM-Enter to inject the pending
9999          * exception and start the cycle all over.
10000          *
10001          * Exempt triple faults as they have special handling and won't put the
10002          * vCPU into an infinite loop.  Triple fault can be queued when running
10003          * VMX without unrestricted guest, as that requires KVM to emulate Real
10004          * Mode events (see kvm_inject_realmode_interrupt()).
10005          */
10006         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10007                      vcpu->arch.exception_vmexit.pending);
10008         return 0;
10009
10010 out:
10011         if (r == -EBUSY) {
10012                 *req_immediate_exit = true;
10013                 r = 0;
10014         }
10015         return r;
10016 }
10017
10018 static void process_nmi(struct kvm_vcpu *vcpu)
10019 {
10020         unsigned limit = 2;
10021
10022         /*
10023          * x86 is limited to one NMI running, and one NMI pending after it.
10024          * If an NMI is already in progress, limit further NMIs to just one.
10025          * Otherwise, allow two (and we'll inject the first one immediately).
10026          */
10027         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10028                 limit = 1;
10029
10030         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10031         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10032         kvm_make_request(KVM_REQ_EVENT, vcpu);
10033 }
10034
10035 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10036                                        unsigned long *vcpu_bitmap)
10037 {
10038         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10039 }
10040
10041 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10042 {
10043         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10044 }
10045
10046 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10047 {
10048         struct kvm_lapic *apic = vcpu->arch.apic;
10049         bool activate;
10050
10051         if (!lapic_in_kernel(vcpu))
10052                 return;
10053
10054         down_read(&vcpu->kvm->arch.apicv_update_lock);
10055         preempt_disable();
10056
10057         /* Do not activate APICV when APIC is disabled */
10058         activate = kvm_vcpu_apicv_activated(vcpu) &&
10059                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10060
10061         if (apic->apicv_active == activate)
10062                 goto out;
10063
10064         apic->apicv_active = activate;
10065         kvm_apic_update_apicv(vcpu);
10066         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10067
10068         /*
10069          * When APICv gets disabled, we may still have injected interrupts
10070          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10071          * still active when the interrupt got accepted. Make sure
10072          * kvm_check_and_inject_events() is called to check for that.
10073          */
10074         if (!apic->apicv_active)
10075                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10076
10077 out:
10078         preempt_enable();
10079         up_read(&vcpu->kvm->arch.apicv_update_lock);
10080 }
10081 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10082
10083 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10084                                       enum kvm_apicv_inhibit reason, bool set)
10085 {
10086         unsigned long old, new;
10087
10088         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10089
10090         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10091                 return;
10092
10093         old = new = kvm->arch.apicv_inhibit_reasons;
10094
10095         set_or_clear_apicv_inhibit(&new, reason, set);
10096
10097         if (!!old != !!new) {
10098                 /*
10099                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10100                  * false positives in the sanity check WARN in svm_vcpu_run().
10101                  * This task will wait for all vCPUs to ack the kick IRQ before
10102                  * updating apicv_inhibit_reasons, and all other vCPUs will
10103                  * block on acquiring apicv_update_lock so that vCPUs can't
10104                  * redo svm_vcpu_run() without seeing the new inhibit state.
10105                  *
10106                  * Note, holding apicv_update_lock and taking it in the read
10107                  * side (handling the request) also prevents other vCPUs from
10108                  * servicing the request with a stale apicv_inhibit_reasons.
10109                  */
10110                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10111                 kvm->arch.apicv_inhibit_reasons = new;
10112                 if (new) {
10113                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10114                         int idx = srcu_read_lock(&kvm->srcu);
10115
10116                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10117                         srcu_read_unlock(&kvm->srcu, idx);
10118                 }
10119         } else {
10120                 kvm->arch.apicv_inhibit_reasons = new;
10121         }
10122 }
10123
10124 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10125                                     enum kvm_apicv_inhibit reason, bool set)
10126 {
10127         if (!enable_apicv)
10128                 return;
10129
10130         down_write(&kvm->arch.apicv_update_lock);
10131         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10132         up_write(&kvm->arch.apicv_update_lock);
10133 }
10134 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10135
10136 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10137 {
10138         if (!kvm_apic_present(vcpu))
10139                 return;
10140
10141         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10142
10143         if (irqchip_split(vcpu->kvm))
10144                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10145         else {
10146                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10147                 if (ioapic_in_kernel(vcpu->kvm))
10148                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10149         }
10150
10151         if (is_guest_mode(vcpu))
10152                 vcpu->arch.load_eoi_exitmap_pending = true;
10153         else
10154                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10155 }
10156
10157 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10158 {
10159         u64 eoi_exit_bitmap[4];
10160
10161         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10162                 return;
10163
10164         if (to_hv_vcpu(vcpu)) {
10165                 bitmap_or((ulong *)eoi_exit_bitmap,
10166                           vcpu->arch.ioapic_handled_vectors,
10167                           to_hv_synic(vcpu)->vec_bitmap, 256);
10168                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10169                 return;
10170         }
10171
10172         static_call_cond(kvm_x86_load_eoi_exitmap)(
10173                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10174 }
10175
10176 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10177                                             unsigned long start, unsigned long end)
10178 {
10179         unsigned long apic_address;
10180
10181         /*
10182          * The physical address of apic access page is stored in the VMCS.
10183          * Update it when it becomes invalid.
10184          */
10185         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10186         if (start <= apic_address && apic_address < end)
10187                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10188 }
10189
10190 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10191 {
10192         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10193 }
10194
10195 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10196 {
10197         if (!lapic_in_kernel(vcpu))
10198                 return;
10199
10200         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10201 }
10202
10203 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10204 {
10205         smp_send_reschedule(vcpu->cpu);
10206 }
10207 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10208
10209 /*
10210  * Called within kvm->srcu read side.
10211  * Returns 1 to let vcpu_run() continue the guest execution loop without
10212  * exiting to the userspace.  Otherwise, the value will be returned to the
10213  * userspace.
10214  */
10215 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10216 {
10217         int r;
10218         bool req_int_win =
10219                 dm_request_for_irq_injection(vcpu) &&
10220                 kvm_cpu_accept_dm_intr(vcpu);
10221         fastpath_t exit_fastpath;
10222
10223         bool req_immediate_exit = false;
10224
10225         if (kvm_request_pending(vcpu)) {
10226                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10227                         r = -EIO;
10228                         goto out;
10229                 }
10230
10231                 if (kvm_dirty_ring_check_request(vcpu)) {
10232                         r = 0;
10233                         goto out;
10234                 }
10235
10236                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10237                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10238                                 r = 0;
10239                                 goto out;
10240                         }
10241                 }
10242                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10243                         kvm_mmu_free_obsolete_roots(vcpu);
10244                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10245                         __kvm_migrate_timers(vcpu);
10246                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10247                         kvm_update_masterclock(vcpu->kvm);
10248                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10249                         kvm_gen_kvmclock_update(vcpu);
10250                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10251                         r = kvm_guest_time_update(vcpu);
10252                         if (unlikely(r))
10253                                 goto out;
10254                 }
10255                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10256                         kvm_mmu_sync_roots(vcpu);
10257                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10258                         kvm_mmu_load_pgd(vcpu);
10259
10260                 /*
10261                  * Note, the order matters here, as flushing "all" TLB entries
10262                  * also flushes the "current" TLB entries, i.e. servicing the
10263                  * flush "all" will clear any request to flush "current".
10264                  */
10265                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10266                         kvm_vcpu_flush_tlb_all(vcpu);
10267
10268                 kvm_service_local_tlb_flush_requests(vcpu);
10269
10270                 /*
10271                  * Fall back to a "full" guest flush if Hyper-V's precise
10272                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10273                  * the flushes are considered "remote" and not "local" because
10274                  * the requests can be initiated from other vCPUs.
10275                  */
10276                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10277                     kvm_hv_vcpu_flush_tlb(vcpu))
10278                         kvm_vcpu_flush_tlb_guest(vcpu);
10279
10280                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10281                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10282                         r = 0;
10283                         goto out;
10284                 }
10285                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10286                         if (is_guest_mode(vcpu))
10287                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10288
10289                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10290                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10291                                 vcpu->mmio_needed = 0;
10292                                 r = 0;
10293                                 goto out;
10294                         }
10295                 }
10296                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10297                         /* Page is swapped out. Do synthetic halt */
10298                         vcpu->arch.apf.halted = true;
10299                         r = 1;
10300                         goto out;
10301                 }
10302                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10303                         record_steal_time(vcpu);
10304 #ifdef CONFIG_KVM_SMM
10305                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10306                         process_smi(vcpu);
10307 #endif
10308                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10309                         process_nmi(vcpu);
10310                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10311                         kvm_pmu_handle_event(vcpu);
10312                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10313                         kvm_pmu_deliver_pmi(vcpu);
10314                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10315                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10316                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10317                                      vcpu->arch.ioapic_handled_vectors)) {
10318                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10319                                 vcpu->run->eoi.vector =
10320                                                 vcpu->arch.pending_ioapic_eoi;
10321                                 r = 0;
10322                                 goto out;
10323                         }
10324                 }
10325                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10326                         vcpu_scan_ioapic(vcpu);
10327                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10328                         vcpu_load_eoi_exitmap(vcpu);
10329                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10330                         kvm_vcpu_reload_apic_access_page(vcpu);
10331                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10332                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10333                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10334                         vcpu->run->system_event.ndata = 0;
10335                         r = 0;
10336                         goto out;
10337                 }
10338                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10339                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10340                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10341                         vcpu->run->system_event.ndata = 0;
10342                         r = 0;
10343                         goto out;
10344                 }
10345                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10346                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10347
10348                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10349                         vcpu->run->hyperv = hv_vcpu->exit;
10350                         r = 0;
10351                         goto out;
10352                 }
10353
10354                 /*
10355                  * KVM_REQ_HV_STIMER has to be processed after
10356                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10357                  * depend on the guest clock being up-to-date
10358                  */
10359                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10360                         kvm_hv_process_stimers(vcpu);
10361                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10362                         kvm_vcpu_update_apicv(vcpu);
10363                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10364                         kvm_check_async_pf_completion(vcpu);
10365                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10366                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10367
10368                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10369                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10370         }
10371
10372         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10373             kvm_xen_has_interrupt(vcpu)) {
10374                 ++vcpu->stat.req_event;
10375                 r = kvm_apic_accept_events(vcpu);
10376                 if (r < 0) {
10377                         r = 0;
10378                         goto out;
10379                 }
10380                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10381                         r = 1;
10382                         goto out;
10383                 }
10384
10385                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10386                 if (r < 0) {
10387                         r = 0;
10388                         goto out;
10389                 }
10390                 if (req_int_win)
10391                         static_call(kvm_x86_enable_irq_window)(vcpu);
10392
10393                 if (kvm_lapic_enabled(vcpu)) {
10394                         update_cr8_intercept(vcpu);
10395                         kvm_lapic_sync_to_vapic(vcpu);
10396                 }
10397         }
10398
10399         r = kvm_mmu_reload(vcpu);
10400         if (unlikely(r)) {
10401                 goto cancel_injection;
10402         }
10403
10404         preempt_disable();
10405
10406         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10407
10408         /*
10409          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10410          * IPI are then delayed after guest entry, which ensures that they
10411          * result in virtual interrupt delivery.
10412          */
10413         local_irq_disable();
10414
10415         /* Store vcpu->apicv_active before vcpu->mode.  */
10416         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10417
10418         kvm_vcpu_srcu_read_unlock(vcpu);
10419
10420         /*
10421          * 1) We should set ->mode before checking ->requests.  Please see
10422          * the comment in kvm_vcpu_exiting_guest_mode().
10423          *
10424          * 2) For APICv, we should set ->mode before checking PID.ON. This
10425          * pairs with the memory barrier implicit in pi_test_and_set_on
10426          * (see vmx_deliver_posted_interrupt).
10427          *
10428          * 3) This also orders the write to mode from any reads to the page
10429          * tables done while the VCPU is running.  Please see the comment
10430          * in kvm_flush_remote_tlbs.
10431          */
10432         smp_mb__after_srcu_read_unlock();
10433
10434         /*
10435          * Process pending posted interrupts to handle the case where the
10436          * notification IRQ arrived in the host, or was never sent (because the
10437          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10438          * status, KVM doesn't update assigned devices when APICv is inhibited,
10439          * i.e. they can post interrupts even if APICv is temporarily disabled.
10440          */
10441         if (kvm_lapic_enabled(vcpu))
10442                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10443
10444         if (kvm_vcpu_exit_request(vcpu)) {
10445                 vcpu->mode = OUTSIDE_GUEST_MODE;
10446                 smp_wmb();
10447                 local_irq_enable();
10448                 preempt_enable();
10449                 kvm_vcpu_srcu_read_lock(vcpu);
10450                 r = 1;
10451                 goto cancel_injection;
10452         }
10453
10454         if (req_immediate_exit) {
10455                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10456                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10457         }
10458
10459         fpregs_assert_state_consistent();
10460         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10461                 switch_fpu_return();
10462
10463         if (vcpu->arch.guest_fpu.xfd_err)
10464                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10465
10466         if (unlikely(vcpu->arch.switch_db_regs)) {
10467                 set_debugreg(0, 7);
10468                 set_debugreg(vcpu->arch.eff_db[0], 0);
10469                 set_debugreg(vcpu->arch.eff_db[1], 1);
10470                 set_debugreg(vcpu->arch.eff_db[2], 2);
10471                 set_debugreg(vcpu->arch.eff_db[3], 3);
10472         } else if (unlikely(hw_breakpoint_active())) {
10473                 set_debugreg(0, 7);
10474         }
10475
10476         guest_timing_enter_irqoff();
10477
10478         for (;;) {
10479                 /*
10480                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10481                  * update must kick and wait for all vCPUs before toggling the
10482                  * per-VM state, and responsing vCPUs must wait for the update
10483                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10484                  */
10485                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10486                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10487
10488                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10489                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10490                         break;
10491
10492                 if (kvm_lapic_enabled(vcpu))
10493                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10494
10495                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10496                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10497                         break;
10498                 }
10499         }
10500
10501         /*
10502          * Do this here before restoring debug registers on the host.  And
10503          * since we do this before handling the vmexit, a DR access vmexit
10504          * can (a) read the correct value of the debug registers, (b) set
10505          * KVM_DEBUGREG_WONT_EXIT again.
10506          */
10507         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10508                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10509                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10510                 kvm_update_dr0123(vcpu);
10511                 kvm_update_dr7(vcpu);
10512         }
10513
10514         /*
10515          * If the guest has used debug registers, at least dr7
10516          * will be disabled while returning to the host.
10517          * If we don't have active breakpoints in the host, we don't
10518          * care about the messed up debug address registers. But if
10519          * we have some of them active, restore the old state.
10520          */
10521         if (hw_breakpoint_active())
10522                 hw_breakpoint_restore();
10523
10524         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10525         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10526
10527         vcpu->mode = OUTSIDE_GUEST_MODE;
10528         smp_wmb();
10529
10530         /*
10531          * Sync xfd before calling handle_exit_irqoff() which may
10532          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10533          * in #NM irqoff handler).
10534          */
10535         if (vcpu->arch.xfd_no_write_intercept)
10536                 fpu_sync_guest_vmexit_xfd_state();
10537
10538         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10539
10540         if (vcpu->arch.guest_fpu.xfd_err)
10541                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10542
10543         /*
10544          * Consume any pending interrupts, including the possible source of
10545          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10546          * An instruction is required after local_irq_enable() to fully unblock
10547          * interrupts on processors that implement an interrupt shadow, the
10548          * stat.exits increment will do nicely.
10549          */
10550         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10551         local_irq_enable();
10552         ++vcpu->stat.exits;
10553         local_irq_disable();
10554         kvm_after_interrupt(vcpu);
10555
10556         /*
10557          * Wait until after servicing IRQs to account guest time so that any
10558          * ticks that occurred while running the guest are properly accounted
10559          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10560          * of accounting via context tracking, but the loss of accuracy is
10561          * acceptable for all known use cases.
10562          */
10563         guest_timing_exit_irqoff();
10564
10565         local_irq_enable();
10566         preempt_enable();
10567
10568         kvm_vcpu_srcu_read_lock(vcpu);
10569
10570         /*
10571          * Profile KVM exit RIPs:
10572          */
10573         if (unlikely(prof_on == KVM_PROFILING)) {
10574                 unsigned long rip = kvm_rip_read(vcpu);
10575                 profile_hit(KVM_PROFILING, (void *)rip);
10576         }
10577
10578         if (unlikely(vcpu->arch.tsc_always_catchup))
10579                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10580
10581         if (vcpu->arch.apic_attention)
10582                 kvm_lapic_sync_from_vapic(vcpu);
10583
10584         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10585         return r;
10586
10587 cancel_injection:
10588         if (req_immediate_exit)
10589                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10590         static_call(kvm_x86_cancel_injection)(vcpu);
10591         if (unlikely(vcpu->arch.apic_attention))
10592                 kvm_lapic_sync_from_vapic(vcpu);
10593 out:
10594         return r;
10595 }
10596
10597 /* Called within kvm->srcu read side.  */
10598 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10599 {
10600         bool hv_timer;
10601
10602         if (!kvm_arch_vcpu_runnable(vcpu)) {
10603                 /*
10604                  * Switch to the software timer before halt-polling/blocking as
10605                  * the guest's timer may be a break event for the vCPU, and the
10606                  * hypervisor timer runs only when the CPU is in guest mode.
10607                  * Switch before halt-polling so that KVM recognizes an expired
10608                  * timer before blocking.
10609                  */
10610                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10611                 if (hv_timer)
10612                         kvm_lapic_switch_to_sw_timer(vcpu);
10613
10614                 kvm_vcpu_srcu_read_unlock(vcpu);
10615                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10616                         kvm_vcpu_halt(vcpu);
10617                 else
10618                         kvm_vcpu_block(vcpu);
10619                 kvm_vcpu_srcu_read_lock(vcpu);
10620
10621                 if (hv_timer)
10622                         kvm_lapic_switch_to_hv_timer(vcpu);
10623
10624                 /*
10625                  * If the vCPU is not runnable, a signal or another host event
10626                  * of some kind is pending; service it without changing the
10627                  * vCPU's activity state.
10628                  */
10629                 if (!kvm_arch_vcpu_runnable(vcpu))
10630                         return 1;
10631         }
10632
10633         /*
10634          * Evaluate nested events before exiting the halted state.  This allows
10635          * the halt state to be recorded properly in the VMCS12's activity
10636          * state field (AMD does not have a similar field and a VM-Exit always
10637          * causes a spurious wakeup from HLT).
10638          */
10639         if (is_guest_mode(vcpu)) {
10640                 if (kvm_check_nested_events(vcpu) < 0)
10641                         return 0;
10642         }
10643
10644         if (kvm_apic_accept_events(vcpu) < 0)
10645                 return 0;
10646         switch(vcpu->arch.mp_state) {
10647         case KVM_MP_STATE_HALTED:
10648         case KVM_MP_STATE_AP_RESET_HOLD:
10649                 vcpu->arch.pv.pv_unhalted = false;
10650                 vcpu->arch.mp_state =
10651                         KVM_MP_STATE_RUNNABLE;
10652                 fallthrough;
10653         case KVM_MP_STATE_RUNNABLE:
10654                 vcpu->arch.apf.halted = false;
10655                 break;
10656         case KVM_MP_STATE_INIT_RECEIVED:
10657                 break;
10658         default:
10659                 WARN_ON_ONCE(1);
10660                 break;
10661         }
10662         return 1;
10663 }
10664
10665 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10666 {
10667         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10668                 !vcpu->arch.apf.halted);
10669 }
10670
10671 /* Called within kvm->srcu read side.  */
10672 static int vcpu_run(struct kvm_vcpu *vcpu)
10673 {
10674         int r;
10675
10676         vcpu->arch.l1tf_flush_l1d = true;
10677
10678         for (;;) {
10679                 /*
10680                  * If another guest vCPU requests a PV TLB flush in the middle
10681                  * of instruction emulation, the rest of the emulation could
10682                  * use a stale page translation. Assume that any code after
10683                  * this point can start executing an instruction.
10684                  */
10685                 vcpu->arch.at_instruction_boundary = false;
10686                 if (kvm_vcpu_running(vcpu)) {
10687                         r = vcpu_enter_guest(vcpu);
10688                 } else {
10689                         r = vcpu_block(vcpu);
10690                 }
10691
10692                 if (r <= 0)
10693                         break;
10694
10695                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10696                 if (kvm_xen_has_pending_events(vcpu))
10697                         kvm_xen_inject_pending_events(vcpu);
10698
10699                 if (kvm_cpu_has_pending_timer(vcpu))
10700                         kvm_inject_pending_timer_irqs(vcpu);
10701
10702                 if (dm_request_for_irq_injection(vcpu) &&
10703                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10704                         r = 0;
10705                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10706                         ++vcpu->stat.request_irq_exits;
10707                         break;
10708                 }
10709
10710                 if (__xfer_to_guest_mode_work_pending()) {
10711                         kvm_vcpu_srcu_read_unlock(vcpu);
10712                         r = xfer_to_guest_mode_handle_work(vcpu);
10713                         kvm_vcpu_srcu_read_lock(vcpu);
10714                         if (r)
10715                                 return r;
10716                 }
10717         }
10718
10719         return r;
10720 }
10721
10722 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10723 {
10724         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10725 }
10726
10727 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10728 {
10729         BUG_ON(!vcpu->arch.pio.count);
10730
10731         return complete_emulated_io(vcpu);
10732 }
10733
10734 /*
10735  * Implements the following, as a state machine:
10736  *
10737  * read:
10738  *   for each fragment
10739  *     for each mmio piece in the fragment
10740  *       write gpa, len
10741  *       exit
10742  *       copy data
10743  *   execute insn
10744  *
10745  * write:
10746  *   for each fragment
10747  *     for each mmio piece in the fragment
10748  *       write gpa, len
10749  *       copy data
10750  *       exit
10751  */
10752 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10753 {
10754         struct kvm_run *run = vcpu->run;
10755         struct kvm_mmio_fragment *frag;
10756         unsigned len;
10757
10758         BUG_ON(!vcpu->mmio_needed);
10759
10760         /* Complete previous fragment */
10761         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10762         len = min(8u, frag->len);
10763         if (!vcpu->mmio_is_write)
10764                 memcpy(frag->data, run->mmio.data, len);
10765
10766         if (frag->len <= 8) {
10767                 /* Switch to the next fragment. */
10768                 frag++;
10769                 vcpu->mmio_cur_fragment++;
10770         } else {
10771                 /* Go forward to the next mmio piece. */
10772                 frag->data += len;
10773                 frag->gpa += len;
10774                 frag->len -= len;
10775         }
10776
10777         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10778                 vcpu->mmio_needed = 0;
10779
10780                 /* FIXME: return into emulator if single-stepping.  */
10781                 if (vcpu->mmio_is_write)
10782                         return 1;
10783                 vcpu->mmio_read_completed = 1;
10784                 return complete_emulated_io(vcpu);
10785         }
10786
10787         run->exit_reason = KVM_EXIT_MMIO;
10788         run->mmio.phys_addr = frag->gpa;
10789         if (vcpu->mmio_is_write)
10790                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10791         run->mmio.len = min(8u, frag->len);
10792         run->mmio.is_write = vcpu->mmio_is_write;
10793         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10794         return 0;
10795 }
10796
10797 /* Swap (qemu) user FPU context for the guest FPU context. */
10798 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10799 {
10800         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10801         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10802         trace_kvm_fpu(1);
10803 }
10804
10805 /* When vcpu_run ends, restore user space FPU context. */
10806 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10807 {
10808         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10809         ++vcpu->stat.fpu_reload;
10810         trace_kvm_fpu(0);
10811 }
10812
10813 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10814 {
10815         struct kvm_queued_exception *ex = &vcpu->arch.exception;
10816         struct kvm_run *kvm_run = vcpu->run;
10817         int r;
10818
10819         vcpu_load(vcpu);
10820         kvm_sigset_activate(vcpu);
10821         kvm_run->flags = 0;
10822         kvm_load_guest_fpu(vcpu);
10823
10824         kvm_vcpu_srcu_read_lock(vcpu);
10825         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10826                 if (kvm_run->immediate_exit) {
10827                         r = -EINTR;
10828                         goto out;
10829                 }
10830                 /*
10831                  * It should be impossible for the hypervisor timer to be in
10832                  * use before KVM has ever run the vCPU.
10833                  */
10834                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10835
10836                 kvm_vcpu_srcu_read_unlock(vcpu);
10837                 kvm_vcpu_block(vcpu);
10838                 kvm_vcpu_srcu_read_lock(vcpu);
10839
10840                 if (kvm_apic_accept_events(vcpu) < 0) {
10841                         r = 0;
10842                         goto out;
10843                 }
10844                 r = -EAGAIN;
10845                 if (signal_pending(current)) {
10846                         r = -EINTR;
10847                         kvm_run->exit_reason = KVM_EXIT_INTR;
10848                         ++vcpu->stat.signal_exits;
10849                 }
10850                 goto out;
10851         }
10852
10853         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10854             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10855                 r = -EINVAL;
10856                 goto out;
10857         }
10858
10859         if (kvm_run->kvm_dirty_regs) {
10860                 r = sync_regs(vcpu);
10861                 if (r != 0)
10862                         goto out;
10863         }
10864
10865         /* re-sync apic's tpr */
10866         if (!lapic_in_kernel(vcpu)) {
10867                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10868                         r = -EINVAL;
10869                         goto out;
10870                 }
10871         }
10872
10873         /*
10874          * If userspace set a pending exception and L2 is active, convert it to
10875          * a pending VM-Exit if L1 wants to intercept the exception.
10876          */
10877         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
10878             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
10879                                                         ex->error_code)) {
10880                 kvm_queue_exception_vmexit(vcpu, ex->vector,
10881                                            ex->has_error_code, ex->error_code,
10882                                            ex->has_payload, ex->payload);
10883                 ex->injected = false;
10884                 ex->pending = false;
10885         }
10886         vcpu->arch.exception_from_userspace = false;
10887
10888         if (unlikely(vcpu->arch.complete_userspace_io)) {
10889                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10890                 vcpu->arch.complete_userspace_io = NULL;
10891                 r = cui(vcpu);
10892                 if (r <= 0)
10893                         goto out;
10894         } else {
10895                 WARN_ON_ONCE(vcpu->arch.pio.count);
10896                 WARN_ON_ONCE(vcpu->mmio_needed);
10897         }
10898
10899         if (kvm_run->immediate_exit) {
10900                 r = -EINTR;
10901                 goto out;
10902         }
10903
10904         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10905         if (r <= 0)
10906                 goto out;
10907
10908         r = vcpu_run(vcpu);
10909
10910 out:
10911         kvm_put_guest_fpu(vcpu);
10912         if (kvm_run->kvm_valid_regs)
10913                 store_regs(vcpu);
10914         post_kvm_run_save(vcpu);
10915         kvm_vcpu_srcu_read_unlock(vcpu);
10916
10917         kvm_sigset_deactivate(vcpu);
10918         vcpu_put(vcpu);
10919         return r;
10920 }
10921
10922 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10923 {
10924         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10925                 /*
10926                  * We are here if userspace calls get_regs() in the middle of
10927                  * instruction emulation. Registers state needs to be copied
10928                  * back from emulation context to vcpu. Userspace shouldn't do
10929                  * that usually, but some bad designed PV devices (vmware
10930                  * backdoor interface) need this to work
10931                  */
10932                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10933                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10934         }
10935         regs->rax = kvm_rax_read(vcpu);
10936         regs->rbx = kvm_rbx_read(vcpu);
10937         regs->rcx = kvm_rcx_read(vcpu);
10938         regs->rdx = kvm_rdx_read(vcpu);
10939         regs->rsi = kvm_rsi_read(vcpu);
10940         regs->rdi = kvm_rdi_read(vcpu);
10941         regs->rsp = kvm_rsp_read(vcpu);
10942         regs->rbp = kvm_rbp_read(vcpu);
10943 #ifdef CONFIG_X86_64
10944         regs->r8 = kvm_r8_read(vcpu);
10945         regs->r9 = kvm_r9_read(vcpu);
10946         regs->r10 = kvm_r10_read(vcpu);
10947         regs->r11 = kvm_r11_read(vcpu);
10948         regs->r12 = kvm_r12_read(vcpu);
10949         regs->r13 = kvm_r13_read(vcpu);
10950         regs->r14 = kvm_r14_read(vcpu);
10951         regs->r15 = kvm_r15_read(vcpu);
10952 #endif
10953
10954         regs->rip = kvm_rip_read(vcpu);
10955         regs->rflags = kvm_get_rflags(vcpu);
10956 }
10957
10958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10959 {
10960         vcpu_load(vcpu);
10961         __get_regs(vcpu, regs);
10962         vcpu_put(vcpu);
10963         return 0;
10964 }
10965
10966 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10967 {
10968         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10969         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10970
10971         kvm_rax_write(vcpu, regs->rax);
10972         kvm_rbx_write(vcpu, regs->rbx);
10973         kvm_rcx_write(vcpu, regs->rcx);
10974         kvm_rdx_write(vcpu, regs->rdx);
10975         kvm_rsi_write(vcpu, regs->rsi);
10976         kvm_rdi_write(vcpu, regs->rdi);
10977         kvm_rsp_write(vcpu, regs->rsp);
10978         kvm_rbp_write(vcpu, regs->rbp);
10979 #ifdef CONFIG_X86_64
10980         kvm_r8_write(vcpu, regs->r8);
10981         kvm_r9_write(vcpu, regs->r9);
10982         kvm_r10_write(vcpu, regs->r10);
10983         kvm_r11_write(vcpu, regs->r11);
10984         kvm_r12_write(vcpu, regs->r12);
10985         kvm_r13_write(vcpu, regs->r13);
10986         kvm_r14_write(vcpu, regs->r14);
10987         kvm_r15_write(vcpu, regs->r15);
10988 #endif
10989
10990         kvm_rip_write(vcpu, regs->rip);
10991         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10992
10993         vcpu->arch.exception.pending = false;
10994         vcpu->arch.exception_vmexit.pending = false;
10995
10996         kvm_make_request(KVM_REQ_EVENT, vcpu);
10997 }
10998
10999 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11000 {
11001         vcpu_load(vcpu);
11002         __set_regs(vcpu, regs);
11003         vcpu_put(vcpu);
11004         return 0;
11005 }
11006
11007 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11008 {
11009         struct desc_ptr dt;
11010
11011         if (vcpu->arch.guest_state_protected)
11012                 goto skip_protected_regs;
11013
11014         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11015         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11016         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11017         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11018         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11019         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11020
11021         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11022         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11023
11024         static_call(kvm_x86_get_idt)(vcpu, &dt);
11025         sregs->idt.limit = dt.size;
11026         sregs->idt.base = dt.address;
11027         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11028         sregs->gdt.limit = dt.size;
11029         sregs->gdt.base = dt.address;
11030
11031         sregs->cr2 = vcpu->arch.cr2;
11032         sregs->cr3 = kvm_read_cr3(vcpu);
11033
11034 skip_protected_regs:
11035         sregs->cr0 = kvm_read_cr0(vcpu);
11036         sregs->cr4 = kvm_read_cr4(vcpu);
11037         sregs->cr8 = kvm_get_cr8(vcpu);
11038         sregs->efer = vcpu->arch.efer;
11039         sregs->apic_base = kvm_get_apic_base(vcpu);
11040 }
11041
11042 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11043 {
11044         __get_sregs_common(vcpu, sregs);
11045
11046         if (vcpu->arch.guest_state_protected)
11047                 return;
11048
11049         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11050                 set_bit(vcpu->arch.interrupt.nr,
11051                         (unsigned long *)sregs->interrupt_bitmap);
11052 }
11053
11054 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11055 {
11056         int i;
11057
11058         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11059
11060         if (vcpu->arch.guest_state_protected)
11061                 return;
11062
11063         if (is_pae_paging(vcpu)) {
11064                 for (i = 0 ; i < 4 ; i++)
11065                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11066                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11067         }
11068 }
11069
11070 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11071                                   struct kvm_sregs *sregs)
11072 {
11073         vcpu_load(vcpu);
11074         __get_sregs(vcpu, sregs);
11075         vcpu_put(vcpu);
11076         return 0;
11077 }
11078
11079 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11080                                     struct kvm_mp_state *mp_state)
11081 {
11082         int r;
11083
11084         vcpu_load(vcpu);
11085         if (kvm_mpx_supported())
11086                 kvm_load_guest_fpu(vcpu);
11087
11088         r = kvm_apic_accept_events(vcpu);
11089         if (r < 0)
11090                 goto out;
11091         r = 0;
11092
11093         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11094              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11095             vcpu->arch.pv.pv_unhalted)
11096                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11097         else
11098                 mp_state->mp_state = vcpu->arch.mp_state;
11099
11100 out:
11101         if (kvm_mpx_supported())
11102                 kvm_put_guest_fpu(vcpu);
11103         vcpu_put(vcpu);
11104         return r;
11105 }
11106
11107 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11108                                     struct kvm_mp_state *mp_state)
11109 {
11110         int ret = -EINVAL;
11111
11112         vcpu_load(vcpu);
11113
11114         switch (mp_state->mp_state) {
11115         case KVM_MP_STATE_UNINITIALIZED:
11116         case KVM_MP_STATE_HALTED:
11117         case KVM_MP_STATE_AP_RESET_HOLD:
11118         case KVM_MP_STATE_INIT_RECEIVED:
11119         case KVM_MP_STATE_SIPI_RECEIVED:
11120                 if (!lapic_in_kernel(vcpu))
11121                         goto out;
11122                 break;
11123
11124         case KVM_MP_STATE_RUNNABLE:
11125                 break;
11126
11127         default:
11128                 goto out;
11129         }
11130
11131         /*
11132          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11133          * forcing the guest into INIT/SIPI if those events are supposed to be
11134          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11135          * if an SMI is pending as well.
11136          */
11137         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11138             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11139              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11140                 goto out;
11141
11142         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11143                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11144                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11145         } else
11146                 vcpu->arch.mp_state = mp_state->mp_state;
11147         kvm_make_request(KVM_REQ_EVENT, vcpu);
11148
11149         ret = 0;
11150 out:
11151         vcpu_put(vcpu);
11152         return ret;
11153 }
11154
11155 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11156                     int reason, bool has_error_code, u32 error_code)
11157 {
11158         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11159         int ret;
11160
11161         init_emulate_ctxt(vcpu);
11162
11163         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11164                                    has_error_code, error_code);
11165         if (ret) {
11166                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11167                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11168                 vcpu->run->internal.ndata = 0;
11169                 return 0;
11170         }
11171
11172         kvm_rip_write(vcpu, ctxt->eip);
11173         kvm_set_rflags(vcpu, ctxt->eflags);
11174         return 1;
11175 }
11176 EXPORT_SYMBOL_GPL(kvm_task_switch);
11177
11178 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11179 {
11180         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11181                 /*
11182                  * When EFER.LME and CR0.PG are set, the processor is in
11183                  * 64-bit mode (though maybe in a 32-bit code segment).
11184                  * CR4.PAE and EFER.LMA must be set.
11185                  */
11186                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11187                         return false;
11188                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11189                         return false;
11190         } else {
11191                 /*
11192                  * Not in 64-bit mode: EFER.LMA is clear and the code
11193                  * segment cannot be 64-bit.
11194                  */
11195                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11196                         return false;
11197         }
11198
11199         return kvm_is_valid_cr4(vcpu, sregs->cr4);
11200 }
11201
11202 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11203                 int *mmu_reset_needed, bool update_pdptrs)
11204 {
11205         struct msr_data apic_base_msr;
11206         int idx;
11207         struct desc_ptr dt;
11208
11209         if (!kvm_is_valid_sregs(vcpu, sregs))
11210                 return -EINVAL;
11211
11212         apic_base_msr.data = sregs->apic_base;
11213         apic_base_msr.host_initiated = true;
11214         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11215                 return -EINVAL;
11216
11217         if (vcpu->arch.guest_state_protected)
11218                 return 0;
11219
11220         dt.size = sregs->idt.limit;
11221         dt.address = sregs->idt.base;
11222         static_call(kvm_x86_set_idt)(vcpu, &dt);
11223         dt.size = sregs->gdt.limit;
11224         dt.address = sregs->gdt.base;
11225         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11226
11227         vcpu->arch.cr2 = sregs->cr2;
11228         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11229         vcpu->arch.cr3 = sregs->cr3;
11230         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11231         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11232
11233         kvm_set_cr8(vcpu, sregs->cr8);
11234
11235         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11236         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11237
11238         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11239         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11240         vcpu->arch.cr0 = sregs->cr0;
11241
11242         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11243         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11244
11245         if (update_pdptrs) {
11246                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11247                 if (is_pae_paging(vcpu)) {
11248                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11249                         *mmu_reset_needed = 1;
11250                 }
11251                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11252         }
11253
11254         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11255         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11256         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11257         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11258         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11259         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11260
11261         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11262         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11263
11264         update_cr8_intercept(vcpu);
11265
11266         /* Older userspace won't unhalt the vcpu on reset. */
11267         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11268             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11269             !is_protmode(vcpu))
11270                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11271
11272         return 0;
11273 }
11274
11275 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11276 {
11277         int pending_vec, max_bits;
11278         int mmu_reset_needed = 0;
11279         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11280
11281         if (ret)
11282                 return ret;
11283
11284         if (mmu_reset_needed)
11285                 kvm_mmu_reset_context(vcpu);
11286
11287         max_bits = KVM_NR_INTERRUPTS;
11288         pending_vec = find_first_bit(
11289                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11290
11291         if (pending_vec < max_bits) {
11292                 kvm_queue_interrupt(vcpu, pending_vec, false);
11293                 pr_debug("Set back pending irq %d\n", pending_vec);
11294                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11295         }
11296         return 0;
11297 }
11298
11299 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11300 {
11301         int mmu_reset_needed = 0;
11302         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11303         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11304                 !(sregs2->efer & EFER_LMA);
11305         int i, ret;
11306
11307         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11308                 return -EINVAL;
11309
11310         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11311                 return -EINVAL;
11312
11313         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11314                                  &mmu_reset_needed, !valid_pdptrs);
11315         if (ret)
11316                 return ret;
11317
11318         if (valid_pdptrs) {
11319                 for (i = 0; i < 4 ; i++)
11320                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11321
11322                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11323                 mmu_reset_needed = 1;
11324                 vcpu->arch.pdptrs_from_userspace = true;
11325         }
11326         if (mmu_reset_needed)
11327                 kvm_mmu_reset_context(vcpu);
11328         return 0;
11329 }
11330
11331 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11332                                   struct kvm_sregs *sregs)
11333 {
11334         int ret;
11335
11336         vcpu_load(vcpu);
11337         ret = __set_sregs(vcpu, sregs);
11338         vcpu_put(vcpu);
11339         return ret;
11340 }
11341
11342 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11343 {
11344         bool set = false;
11345         struct kvm_vcpu *vcpu;
11346         unsigned long i;
11347
11348         if (!enable_apicv)
11349                 return;
11350
11351         down_write(&kvm->arch.apicv_update_lock);
11352
11353         kvm_for_each_vcpu(i, vcpu, kvm) {
11354                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11355                         set = true;
11356                         break;
11357                 }
11358         }
11359         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11360         up_write(&kvm->arch.apicv_update_lock);
11361 }
11362
11363 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11364                                         struct kvm_guest_debug *dbg)
11365 {
11366         unsigned long rflags;
11367         int i, r;
11368
11369         if (vcpu->arch.guest_state_protected)
11370                 return -EINVAL;
11371
11372         vcpu_load(vcpu);
11373
11374         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11375                 r = -EBUSY;
11376                 if (kvm_is_exception_pending(vcpu))
11377                         goto out;
11378                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11379                         kvm_queue_exception(vcpu, DB_VECTOR);
11380                 else
11381                         kvm_queue_exception(vcpu, BP_VECTOR);
11382         }
11383
11384         /*
11385          * Read rflags as long as potentially injected trace flags are still
11386          * filtered out.
11387          */
11388         rflags = kvm_get_rflags(vcpu);
11389
11390         vcpu->guest_debug = dbg->control;
11391         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11392                 vcpu->guest_debug = 0;
11393
11394         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11395                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11396                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11397                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11398         } else {
11399                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11400                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11401         }
11402         kvm_update_dr7(vcpu);
11403
11404         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11405                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11406
11407         /*
11408          * Trigger an rflags update that will inject or remove the trace
11409          * flags.
11410          */
11411         kvm_set_rflags(vcpu, rflags);
11412
11413         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11414
11415         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11416
11417         r = 0;
11418
11419 out:
11420         vcpu_put(vcpu);
11421         return r;
11422 }
11423
11424 /*
11425  * Translate a guest virtual address to a guest physical address.
11426  */
11427 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11428                                     struct kvm_translation *tr)
11429 {
11430         unsigned long vaddr = tr->linear_address;
11431         gpa_t gpa;
11432         int idx;
11433
11434         vcpu_load(vcpu);
11435
11436         idx = srcu_read_lock(&vcpu->kvm->srcu);
11437         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11438         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11439         tr->physical_address = gpa;
11440         tr->valid = gpa != INVALID_GPA;
11441         tr->writeable = 1;
11442         tr->usermode = 0;
11443
11444         vcpu_put(vcpu);
11445         return 0;
11446 }
11447
11448 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11449 {
11450         struct fxregs_state *fxsave;
11451
11452         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11453                 return 0;
11454
11455         vcpu_load(vcpu);
11456
11457         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11458         memcpy(fpu->fpr, fxsave->st_space, 128);
11459         fpu->fcw = fxsave->cwd;
11460         fpu->fsw = fxsave->swd;
11461         fpu->ftwx = fxsave->twd;
11462         fpu->last_opcode = fxsave->fop;
11463         fpu->last_ip = fxsave->rip;
11464         fpu->last_dp = fxsave->rdp;
11465         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11466
11467         vcpu_put(vcpu);
11468         return 0;
11469 }
11470
11471 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11472 {
11473         struct fxregs_state *fxsave;
11474
11475         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11476                 return 0;
11477
11478         vcpu_load(vcpu);
11479
11480         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11481
11482         memcpy(fxsave->st_space, fpu->fpr, 128);
11483         fxsave->cwd = fpu->fcw;
11484         fxsave->swd = fpu->fsw;
11485         fxsave->twd = fpu->ftwx;
11486         fxsave->fop = fpu->last_opcode;
11487         fxsave->rip = fpu->last_ip;
11488         fxsave->rdp = fpu->last_dp;
11489         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11490
11491         vcpu_put(vcpu);
11492         return 0;
11493 }
11494
11495 static void store_regs(struct kvm_vcpu *vcpu)
11496 {
11497         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11498
11499         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11500                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11501
11502         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11503                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11504
11505         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11506                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11507                                 vcpu, &vcpu->run->s.regs.events);
11508 }
11509
11510 static int sync_regs(struct kvm_vcpu *vcpu)
11511 {
11512         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11513                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11514                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11515         }
11516         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11517                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11518                         return -EINVAL;
11519                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11520         }
11521         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11522                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11523                                 vcpu, &vcpu->run->s.regs.events))
11524                         return -EINVAL;
11525                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11526         }
11527
11528         return 0;
11529 }
11530
11531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11532 {
11533         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11534                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11535                              "guest TSC will not be reliable\n");
11536
11537         if (!kvm->arch.max_vcpu_ids)
11538                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11539
11540         if (id >= kvm->arch.max_vcpu_ids)
11541                 return -EINVAL;
11542
11543         return static_call(kvm_x86_vcpu_precreate)(kvm);
11544 }
11545
11546 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11547 {
11548         struct page *page;
11549         int r;
11550
11551         vcpu->arch.last_vmentry_cpu = -1;
11552         vcpu->arch.regs_avail = ~0;
11553         vcpu->arch.regs_dirty = ~0;
11554
11555         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11556
11557         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11558                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11559         else
11560                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11561
11562         r = kvm_mmu_create(vcpu);
11563         if (r < 0)
11564                 return r;
11565
11566         if (irqchip_in_kernel(vcpu->kvm)) {
11567                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11568                 if (r < 0)
11569                         goto fail_mmu_destroy;
11570
11571                 /*
11572                  * Defer evaluating inhibits until the vCPU is first run, as
11573                  * this vCPU will not get notified of any changes until this
11574                  * vCPU is visible to other vCPUs (marked online and added to
11575                  * the set of vCPUs).  Opportunistically mark APICv active as
11576                  * VMX in particularly is highly unlikely to have inhibits.
11577                  * Ignore the current per-VM APICv state so that vCPU creation
11578                  * is guaranteed to run with a deterministic value, the request
11579                  * will ensure the vCPU gets the correct state before VM-Entry.
11580                  */
11581                 if (enable_apicv) {
11582                         vcpu->arch.apic->apicv_active = true;
11583                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11584                 }
11585         } else
11586                 static_branch_inc(&kvm_has_noapic_vcpu);
11587
11588         r = -ENOMEM;
11589
11590         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11591         if (!page)
11592                 goto fail_free_lapic;
11593         vcpu->arch.pio_data = page_address(page);
11594
11595         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11596                                        GFP_KERNEL_ACCOUNT);
11597         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11598                                             GFP_KERNEL_ACCOUNT);
11599         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11600                 goto fail_free_mce_banks;
11601         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11602
11603         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11604                                 GFP_KERNEL_ACCOUNT))
11605                 goto fail_free_mce_banks;
11606
11607         if (!alloc_emulate_ctxt(vcpu))
11608                 goto free_wbinvd_dirty_mask;
11609
11610         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11611                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11612                 goto free_emulate_ctxt;
11613         }
11614
11615         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11616         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11617
11618         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11619
11620         kvm_async_pf_hash_reset(vcpu);
11621
11622         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11623         kvm_pmu_init(vcpu);
11624
11625         vcpu->arch.pending_external_vector = -1;
11626         vcpu->arch.preempted_in_kernel = false;
11627
11628 #if IS_ENABLED(CONFIG_HYPERV)
11629         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11630 #endif
11631
11632         r = static_call(kvm_x86_vcpu_create)(vcpu);
11633         if (r)
11634                 goto free_guest_fpu;
11635
11636         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11637         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11638         kvm_xen_init_vcpu(vcpu);
11639         kvm_vcpu_mtrr_init(vcpu);
11640         vcpu_load(vcpu);
11641         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11642         kvm_vcpu_reset(vcpu, false);
11643         kvm_init_mmu(vcpu);
11644         vcpu_put(vcpu);
11645         return 0;
11646
11647 free_guest_fpu:
11648         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11649 free_emulate_ctxt:
11650         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11651 free_wbinvd_dirty_mask:
11652         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11653 fail_free_mce_banks:
11654         kfree(vcpu->arch.mce_banks);
11655         kfree(vcpu->arch.mci_ctl2_banks);
11656         free_page((unsigned long)vcpu->arch.pio_data);
11657 fail_free_lapic:
11658         kvm_free_lapic(vcpu);
11659 fail_mmu_destroy:
11660         kvm_mmu_destroy(vcpu);
11661         return r;
11662 }
11663
11664 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11665 {
11666         struct kvm *kvm = vcpu->kvm;
11667
11668         if (mutex_lock_killable(&vcpu->mutex))
11669                 return;
11670         vcpu_load(vcpu);
11671         kvm_synchronize_tsc(vcpu, 0);
11672         vcpu_put(vcpu);
11673
11674         /* poll control enabled by default */
11675         vcpu->arch.msr_kvm_poll_control = 1;
11676
11677         mutex_unlock(&vcpu->mutex);
11678
11679         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11680                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11681                                                 KVMCLOCK_SYNC_PERIOD);
11682 }
11683
11684 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11685 {
11686         int idx;
11687
11688         kvmclock_reset(vcpu);
11689
11690         static_call(kvm_x86_vcpu_free)(vcpu);
11691
11692         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11693         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11694         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11695
11696         kvm_xen_destroy_vcpu(vcpu);
11697         kvm_hv_vcpu_uninit(vcpu);
11698         kvm_pmu_destroy(vcpu);
11699         kfree(vcpu->arch.mce_banks);
11700         kfree(vcpu->arch.mci_ctl2_banks);
11701         kvm_free_lapic(vcpu);
11702         idx = srcu_read_lock(&vcpu->kvm->srcu);
11703         kvm_mmu_destroy(vcpu);
11704         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11705         free_page((unsigned long)vcpu->arch.pio_data);
11706         kvfree(vcpu->arch.cpuid_entries);
11707         if (!lapic_in_kernel(vcpu))
11708                 static_branch_dec(&kvm_has_noapic_vcpu);
11709 }
11710
11711 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11712 {
11713         struct kvm_cpuid_entry2 *cpuid_0x1;
11714         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11715         unsigned long new_cr0;
11716
11717         /*
11718          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11719          * to handle side effects.  RESET emulation hits those flows and relies
11720          * on emulated/virtualized registers, including those that are loaded
11721          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11722          * to detect improper or missing initialization.
11723          */
11724         WARN_ON_ONCE(!init_event &&
11725                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11726
11727         /*
11728          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11729          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11730          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11731          * bits), i.e. virtualization is disabled.
11732          */
11733         if (is_guest_mode(vcpu))
11734                 kvm_leave_nested(vcpu);
11735
11736         kvm_lapic_reset(vcpu, init_event);
11737
11738         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11739         vcpu->arch.hflags = 0;
11740
11741         vcpu->arch.smi_pending = 0;
11742         vcpu->arch.smi_count = 0;
11743         atomic_set(&vcpu->arch.nmi_queued, 0);
11744         vcpu->arch.nmi_pending = 0;
11745         vcpu->arch.nmi_injected = false;
11746         kvm_clear_interrupt_queue(vcpu);
11747         kvm_clear_exception_queue(vcpu);
11748
11749         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11750         kvm_update_dr0123(vcpu);
11751         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11752         vcpu->arch.dr7 = DR7_FIXED_1;
11753         kvm_update_dr7(vcpu);
11754
11755         vcpu->arch.cr2 = 0;
11756
11757         kvm_make_request(KVM_REQ_EVENT, vcpu);
11758         vcpu->arch.apf.msr_en_val = 0;
11759         vcpu->arch.apf.msr_int_val = 0;
11760         vcpu->arch.st.msr_val = 0;
11761
11762         kvmclock_reset(vcpu);
11763
11764         kvm_clear_async_pf_completion_queue(vcpu);
11765         kvm_async_pf_hash_reset(vcpu);
11766         vcpu->arch.apf.halted = false;
11767
11768         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11769                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11770
11771                 /*
11772                  * All paths that lead to INIT are required to load the guest's
11773                  * FPU state (because most paths are buried in KVM_RUN).
11774                  */
11775                 if (init_event)
11776                         kvm_put_guest_fpu(vcpu);
11777
11778                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11779                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11780
11781                 if (init_event)
11782                         kvm_load_guest_fpu(vcpu);
11783         }
11784
11785         if (!init_event) {
11786                 kvm_pmu_reset(vcpu);
11787                 vcpu->arch.smbase = 0x30000;
11788
11789                 vcpu->arch.msr_misc_features_enables = 0;
11790                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11791                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11792
11793                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11794                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11795         }
11796
11797         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11798         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11799         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11800
11801         /*
11802          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11803          * if no CPUID match is found.  Note, it's impossible to get a match at
11804          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11805          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11806          * on RESET.  But, go through the motions in case that's ever remedied.
11807          */
11808         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11809         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11810
11811         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11812
11813         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11814         kvm_rip_write(vcpu, 0xfff0);
11815
11816         vcpu->arch.cr3 = 0;
11817         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11818
11819         /*
11820          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11821          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11822          * (or qualify) that with a footnote stating that CD/NW are preserved.
11823          */
11824         new_cr0 = X86_CR0_ET;
11825         if (init_event)
11826                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11827         else
11828                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11829
11830         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11831         static_call(kvm_x86_set_cr4)(vcpu, 0);
11832         static_call(kvm_x86_set_efer)(vcpu, 0);
11833         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11834
11835         /*
11836          * On the standard CR0/CR4/EFER modification paths, there are several
11837          * complex conditions determining whether the MMU has to be reset and/or
11838          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11839          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11840          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11841          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11842          */
11843         if (old_cr0 & X86_CR0_PG) {
11844                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11845                 kvm_mmu_reset_context(vcpu);
11846         }
11847
11848         /*
11849          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11850          * APM states the TLBs are untouched by INIT, but it also states that
11851          * the TLBs are flushed on "External initialization of the processor."
11852          * Flush the guest TLB regardless of vendor, there is no meaningful
11853          * benefit in relying on the guest to flush the TLB immediately after
11854          * INIT.  A spurious TLB flush is benign and likely negligible from a
11855          * performance perspective.
11856          */
11857         if (init_event)
11858                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11859 }
11860 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11861
11862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11863 {
11864         struct kvm_segment cs;
11865
11866         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11867         cs.selector = vector << 8;
11868         cs.base = vector << 12;
11869         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11870         kvm_rip_write(vcpu, 0);
11871 }
11872 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11873
11874 int kvm_arch_hardware_enable(void)
11875 {
11876         struct kvm *kvm;
11877         struct kvm_vcpu *vcpu;
11878         unsigned long i;
11879         int ret;
11880         u64 local_tsc;
11881         u64 max_tsc = 0;
11882         bool stable, backwards_tsc = false;
11883
11884         kvm_user_return_msr_cpu_online();
11885         ret = static_call(kvm_x86_hardware_enable)();
11886         if (ret != 0)
11887                 return ret;
11888
11889         local_tsc = rdtsc();
11890         stable = !kvm_check_tsc_unstable();
11891         list_for_each_entry(kvm, &vm_list, vm_list) {
11892                 kvm_for_each_vcpu(i, vcpu, kvm) {
11893                         if (!stable && vcpu->cpu == smp_processor_id())
11894                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11895                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11896                                 backwards_tsc = true;
11897                                 if (vcpu->arch.last_host_tsc > max_tsc)
11898                                         max_tsc = vcpu->arch.last_host_tsc;
11899                         }
11900                 }
11901         }
11902
11903         /*
11904          * Sometimes, even reliable TSCs go backwards.  This happens on
11905          * platforms that reset TSC during suspend or hibernate actions, but
11906          * maintain synchronization.  We must compensate.  Fortunately, we can
11907          * detect that condition here, which happens early in CPU bringup,
11908          * before any KVM threads can be running.  Unfortunately, we can't
11909          * bring the TSCs fully up to date with real time, as we aren't yet far
11910          * enough into CPU bringup that we know how much real time has actually
11911          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11912          * variables that haven't been updated yet.
11913          *
11914          * So we simply find the maximum observed TSC above, then record the
11915          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11916          * the adjustment will be applied.  Note that we accumulate
11917          * adjustments, in case multiple suspend cycles happen before some VCPU
11918          * gets a chance to run again.  In the event that no KVM threads get a
11919          * chance to run, we will miss the entire elapsed period, as we'll have
11920          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11921          * loose cycle time.  This isn't too big a deal, since the loss will be
11922          * uniform across all VCPUs (not to mention the scenario is extremely
11923          * unlikely). It is possible that a second hibernate recovery happens
11924          * much faster than a first, causing the observed TSC here to be
11925          * smaller; this would require additional padding adjustment, which is
11926          * why we set last_host_tsc to the local tsc observed here.
11927          *
11928          * N.B. - this code below runs only on platforms with reliable TSC,
11929          * as that is the only way backwards_tsc is set above.  Also note
11930          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11931          * have the same delta_cyc adjustment applied if backwards_tsc
11932          * is detected.  Note further, this adjustment is only done once,
11933          * as we reset last_host_tsc on all VCPUs to stop this from being
11934          * called multiple times (one for each physical CPU bringup).
11935          *
11936          * Platforms with unreliable TSCs don't have to deal with this, they
11937          * will be compensated by the logic in vcpu_load, which sets the TSC to
11938          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11939          * guarantee that they stay in perfect synchronization.
11940          */
11941         if (backwards_tsc) {
11942                 u64 delta_cyc = max_tsc - local_tsc;
11943                 list_for_each_entry(kvm, &vm_list, vm_list) {
11944                         kvm->arch.backwards_tsc_observed = true;
11945                         kvm_for_each_vcpu(i, vcpu, kvm) {
11946                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11947                                 vcpu->arch.last_host_tsc = local_tsc;
11948                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11949                         }
11950
11951                         /*
11952                          * We have to disable TSC offset matching.. if you were
11953                          * booting a VM while issuing an S4 host suspend....
11954                          * you may have some problem.  Solving this issue is
11955                          * left as an exercise to the reader.
11956                          */
11957                         kvm->arch.last_tsc_nsec = 0;
11958                         kvm->arch.last_tsc_write = 0;
11959                 }
11960
11961         }
11962         return 0;
11963 }
11964
11965 void kvm_arch_hardware_disable(void)
11966 {
11967         static_call(kvm_x86_hardware_disable)();
11968         drop_user_return_notifiers();
11969 }
11970
11971 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11972 {
11973         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11974
11975 #define __KVM_X86_OP(func) \
11976         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11977 #define KVM_X86_OP(func) \
11978         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11979 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11980 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11981         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11982                                            (void *)__static_call_return0);
11983 #include <asm/kvm-x86-ops.h>
11984 #undef __KVM_X86_OP
11985
11986         kvm_pmu_ops_update(ops->pmu_ops);
11987 }
11988
11989 int kvm_arch_hardware_setup(void *opaque)
11990 {
11991         struct kvm_x86_init_ops *ops = opaque;
11992         int r;
11993
11994         rdmsrl_safe(MSR_EFER, &host_efer);
11995
11996         if (boot_cpu_has(X86_FEATURE_XSAVES))
11997                 rdmsrl(MSR_IA32_XSS, host_xss);
11998
11999         kvm_init_pmu_capability();
12000
12001         r = ops->hardware_setup();
12002         if (r != 0)
12003                 return r;
12004
12005         kvm_ops_update(ops);
12006
12007         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12008
12009         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12010                 kvm_caps.supported_xss = 0;
12011
12012 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12013         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12014 #undef __kvm_cpu_cap_has
12015
12016         if (kvm_caps.has_tsc_control) {
12017                 /*
12018                  * Make sure the user can only configure tsc_khz values that
12019                  * fit into a signed integer.
12020                  * A min value is not calculated because it will always
12021                  * be 1 on all machines.
12022                  */
12023                 u64 max = min(0x7fffffffULL,
12024                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12025                 kvm_caps.max_guest_tsc_khz = max;
12026         }
12027         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12028         kvm_init_msr_list();
12029         return 0;
12030 }
12031
12032 void kvm_arch_hardware_unsetup(void)
12033 {
12034         kvm_unregister_perf_callbacks();
12035
12036         static_call(kvm_x86_hardware_unsetup)();
12037 }
12038
12039 int kvm_arch_check_processor_compat(void *opaque)
12040 {
12041         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12042         struct kvm_x86_init_ops *ops = opaque;
12043
12044         WARN_ON(!irqs_disabled());
12045
12046         if (__cr4_reserved_bits(cpu_has, c) !=
12047             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12048                 return -EIO;
12049
12050         return ops->check_processor_compatibility();
12051 }
12052
12053 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12054 {
12055         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12056 }
12057
12058 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12059 {
12060         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12061 }
12062
12063 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12064 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12065
12066 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12067 {
12068         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12069
12070         vcpu->arch.l1tf_flush_l1d = true;
12071         if (pmu->version && unlikely(pmu->event_count)) {
12072                 pmu->need_cleanup = true;
12073                 kvm_make_request(KVM_REQ_PMU, vcpu);
12074         }
12075         static_call(kvm_x86_sched_in)(vcpu, cpu);
12076 }
12077
12078 void kvm_arch_free_vm(struct kvm *kvm)
12079 {
12080         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12081         __kvm_arch_free_vm(kvm);
12082 }
12083
12084
12085 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12086 {
12087         int ret;
12088         unsigned long flags;
12089
12090         if (type)
12091                 return -EINVAL;
12092
12093         ret = kvm_page_track_init(kvm);
12094         if (ret)
12095                 goto out;
12096
12097         ret = kvm_mmu_init_vm(kvm);
12098         if (ret)
12099                 goto out_page_track;
12100
12101         ret = static_call(kvm_x86_vm_init)(kvm);
12102         if (ret)
12103                 goto out_uninit_mmu;
12104
12105         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12106         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12107         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12108
12109         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12110         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12111         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12112         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12113                 &kvm->arch.irq_sources_bitmap);
12114
12115         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12116         mutex_init(&kvm->arch.apic_map_lock);
12117         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12118         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12119
12120         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12121         pvclock_update_vm_gtod_copy(kvm);
12122         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12123
12124         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12125         kvm->arch.guest_can_read_msr_platform_info = true;
12126         kvm->arch.enable_pmu = enable_pmu;
12127
12128 #if IS_ENABLED(CONFIG_HYPERV)
12129         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12130         kvm->arch.hv_root_tdp = INVALID_PAGE;
12131 #endif
12132
12133         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12134         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12135
12136         kvm_apicv_init(kvm);
12137         kvm_hv_init_vm(kvm);
12138         kvm_xen_init_vm(kvm);
12139
12140         return 0;
12141
12142 out_uninit_mmu:
12143         kvm_mmu_uninit_vm(kvm);
12144 out_page_track:
12145         kvm_page_track_cleanup(kvm);
12146 out:
12147         return ret;
12148 }
12149
12150 int kvm_arch_post_init_vm(struct kvm *kvm)
12151 {
12152         return kvm_mmu_post_init_vm(kvm);
12153 }
12154
12155 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12156 {
12157         vcpu_load(vcpu);
12158         kvm_mmu_unload(vcpu);
12159         vcpu_put(vcpu);
12160 }
12161
12162 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12163 {
12164         unsigned long i;
12165         struct kvm_vcpu *vcpu;
12166
12167         kvm_for_each_vcpu(i, vcpu, kvm) {
12168                 kvm_clear_async_pf_completion_queue(vcpu);
12169                 kvm_unload_vcpu_mmu(vcpu);
12170         }
12171 }
12172
12173 void kvm_arch_sync_events(struct kvm *kvm)
12174 {
12175         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12176         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12177         kvm_free_pit(kvm);
12178 }
12179
12180 /**
12181  * __x86_set_memory_region: Setup KVM internal memory slot
12182  *
12183  * @kvm: the kvm pointer to the VM.
12184  * @id: the slot ID to setup.
12185  * @gpa: the GPA to install the slot (unused when @size == 0).
12186  * @size: the size of the slot. Set to zero to uninstall a slot.
12187  *
12188  * This function helps to setup a KVM internal memory slot.  Specify
12189  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12190  * slot.  The return code can be one of the following:
12191  *
12192  *   HVA:           on success (uninstall will return a bogus HVA)
12193  *   -errno:        on error
12194  *
12195  * The caller should always use IS_ERR() to check the return value
12196  * before use.  Note, the KVM internal memory slots are guaranteed to
12197  * remain valid and unchanged until the VM is destroyed, i.e., the
12198  * GPA->HVA translation will not change.  However, the HVA is a user
12199  * address, i.e. its accessibility is not guaranteed, and must be
12200  * accessed via __copy_{to,from}_user().
12201  */
12202 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12203                                       u32 size)
12204 {
12205         int i, r;
12206         unsigned long hva, old_npages;
12207         struct kvm_memslots *slots = kvm_memslots(kvm);
12208         struct kvm_memory_slot *slot;
12209
12210         /* Called with kvm->slots_lock held.  */
12211         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12212                 return ERR_PTR_USR(-EINVAL);
12213
12214         slot = id_to_memslot(slots, id);
12215         if (size) {
12216                 if (slot && slot->npages)
12217                         return ERR_PTR_USR(-EEXIST);
12218
12219                 /*
12220                  * MAP_SHARED to prevent internal slot pages from being moved
12221                  * by fork()/COW.
12222                  */
12223                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12224                               MAP_SHARED | MAP_ANONYMOUS, 0);
12225                 if (IS_ERR((void *)hva))
12226                         return (void __user *)hva;
12227         } else {
12228                 if (!slot || !slot->npages)
12229                         return NULL;
12230
12231                 old_npages = slot->npages;
12232                 hva = slot->userspace_addr;
12233         }
12234
12235         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12236                 struct kvm_userspace_memory_region m;
12237
12238                 m.slot = id | (i << 16);
12239                 m.flags = 0;
12240                 m.guest_phys_addr = gpa;
12241                 m.userspace_addr = hva;
12242                 m.memory_size = size;
12243                 r = __kvm_set_memory_region(kvm, &m);
12244                 if (r < 0)
12245                         return ERR_PTR_USR(r);
12246         }
12247
12248         if (!size)
12249                 vm_munmap(hva, old_npages * PAGE_SIZE);
12250
12251         return (void __user *)hva;
12252 }
12253 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12254
12255 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12256 {
12257         kvm_mmu_pre_destroy_vm(kvm);
12258 }
12259
12260 void kvm_arch_destroy_vm(struct kvm *kvm)
12261 {
12262         if (current->mm == kvm->mm) {
12263                 /*
12264                  * Free memory regions allocated on behalf of userspace,
12265                  * unless the memory map has changed due to process exit
12266                  * or fd copying.
12267                  */
12268                 mutex_lock(&kvm->slots_lock);
12269                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12270                                         0, 0);
12271                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12272                                         0, 0);
12273                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12274                 mutex_unlock(&kvm->slots_lock);
12275         }
12276         kvm_unload_vcpu_mmus(kvm);
12277         static_call_cond(kvm_x86_vm_destroy)(kvm);
12278         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12279         kvm_pic_destroy(kvm);
12280         kvm_ioapic_destroy(kvm);
12281         kvm_destroy_vcpus(kvm);
12282         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12283         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12284         kvm_mmu_uninit_vm(kvm);
12285         kvm_page_track_cleanup(kvm);
12286         kvm_xen_destroy_vm(kvm);
12287         kvm_hv_destroy_vm(kvm);
12288 }
12289
12290 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12291 {
12292         int i;
12293
12294         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12295                 kvfree(slot->arch.rmap[i]);
12296                 slot->arch.rmap[i] = NULL;
12297         }
12298 }
12299
12300 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12301 {
12302         int i;
12303
12304         memslot_rmap_free(slot);
12305
12306         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12307                 kvfree(slot->arch.lpage_info[i - 1]);
12308                 slot->arch.lpage_info[i - 1] = NULL;
12309         }
12310
12311         kvm_page_track_free_memslot(slot);
12312 }
12313
12314 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12315 {
12316         const int sz = sizeof(*slot->arch.rmap[0]);
12317         int i;
12318
12319         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12320                 int level = i + 1;
12321                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12322
12323                 if (slot->arch.rmap[i])
12324                         continue;
12325
12326                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12327                 if (!slot->arch.rmap[i]) {
12328                         memslot_rmap_free(slot);
12329                         return -ENOMEM;
12330                 }
12331         }
12332
12333         return 0;
12334 }
12335
12336 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12337                                       struct kvm_memory_slot *slot)
12338 {
12339         unsigned long npages = slot->npages;
12340         int i, r;
12341
12342         /*
12343          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12344          * old arrays will be freed by __kvm_set_memory_region() if installing
12345          * the new memslot is successful.
12346          */
12347         memset(&slot->arch, 0, sizeof(slot->arch));
12348
12349         if (kvm_memslots_have_rmaps(kvm)) {
12350                 r = memslot_rmap_alloc(slot, npages);
12351                 if (r)
12352                         return r;
12353         }
12354
12355         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12356                 struct kvm_lpage_info *linfo;
12357                 unsigned long ugfn;
12358                 int lpages;
12359                 int level = i + 1;
12360
12361                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12362
12363                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12364                 if (!linfo)
12365                         goto out_free;
12366
12367                 slot->arch.lpage_info[i - 1] = linfo;
12368
12369                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12370                         linfo[0].disallow_lpage = 1;
12371                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12372                         linfo[lpages - 1].disallow_lpage = 1;
12373                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12374                 /*
12375                  * If the gfn and userspace address are not aligned wrt each
12376                  * other, disable large page support for this slot.
12377                  */
12378                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12379                         unsigned long j;
12380
12381                         for (j = 0; j < lpages; ++j)
12382                                 linfo[j].disallow_lpage = 1;
12383                 }
12384         }
12385
12386         if (kvm_page_track_create_memslot(kvm, slot, npages))
12387                 goto out_free;
12388
12389         return 0;
12390
12391 out_free:
12392         memslot_rmap_free(slot);
12393
12394         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12395                 kvfree(slot->arch.lpage_info[i - 1]);
12396                 slot->arch.lpage_info[i - 1] = NULL;
12397         }
12398         return -ENOMEM;
12399 }
12400
12401 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12402 {
12403         struct kvm_vcpu *vcpu;
12404         unsigned long i;
12405
12406         /*
12407          * memslots->generation has been incremented.
12408          * mmio generation may have reached its maximum value.
12409          */
12410         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12411
12412         /* Force re-initialization of steal_time cache */
12413         kvm_for_each_vcpu(i, vcpu, kvm)
12414                 kvm_vcpu_kick(vcpu);
12415 }
12416
12417 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12418                                    const struct kvm_memory_slot *old,
12419                                    struct kvm_memory_slot *new,
12420                                    enum kvm_mr_change change)
12421 {
12422         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12423                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12424                         return -EINVAL;
12425
12426                 return kvm_alloc_memslot_metadata(kvm, new);
12427         }
12428
12429         if (change == KVM_MR_FLAGS_ONLY)
12430                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12431         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12432                 return -EIO;
12433
12434         return 0;
12435 }
12436
12437
12438 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12439 {
12440         struct kvm_arch *ka = &kvm->arch;
12441
12442         if (!kvm_x86_ops.cpu_dirty_log_size)
12443                 return;
12444
12445         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12446             (!enable && --ka->cpu_dirty_logging_count == 0))
12447                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12448
12449         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12450 }
12451
12452 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12453                                      struct kvm_memory_slot *old,
12454                                      const struct kvm_memory_slot *new,
12455                                      enum kvm_mr_change change)
12456 {
12457         u32 old_flags = old ? old->flags : 0;
12458         u32 new_flags = new ? new->flags : 0;
12459         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12460
12461         /*
12462          * Update CPU dirty logging if dirty logging is being toggled.  This
12463          * applies to all operations.
12464          */
12465         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12466                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12467
12468         /*
12469          * Nothing more to do for RO slots (which can't be dirtied and can't be
12470          * made writable) or CREATE/MOVE/DELETE of a slot.
12471          *
12472          * For a memslot with dirty logging disabled:
12473          * CREATE:      No dirty mappings will already exist.
12474          * MOVE/DELETE: The old mappings will already have been cleaned up by
12475          *              kvm_arch_flush_shadow_memslot()
12476          *
12477          * For a memslot with dirty logging enabled:
12478          * CREATE:      No shadow pages exist, thus nothing to write-protect
12479          *              and no dirty bits to clear.
12480          * MOVE/DELETE: The old mappings will already have been cleaned up by
12481          *              kvm_arch_flush_shadow_memslot().
12482          */
12483         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12484                 return;
12485
12486         /*
12487          * READONLY and non-flags changes were filtered out above, and the only
12488          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12489          * logging isn't being toggled on or off.
12490          */
12491         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12492                 return;
12493
12494         if (!log_dirty_pages) {
12495                 /*
12496                  * Dirty logging tracks sptes in 4k granularity, meaning that
12497                  * large sptes have to be split.  If live migration succeeds,
12498                  * the guest in the source machine will be destroyed and large
12499                  * sptes will be created in the destination.  However, if the
12500                  * guest continues to run in the source machine (for example if
12501                  * live migration fails), small sptes will remain around and
12502                  * cause bad performance.
12503                  *
12504                  * Scan sptes if dirty logging has been stopped, dropping those
12505                  * which can be collapsed into a single large-page spte.  Later
12506                  * page faults will create the large-page sptes.
12507                  */
12508                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12509         } else {
12510                 /*
12511                  * Initially-all-set does not require write protecting any page,
12512                  * because they're all assumed to be dirty.
12513                  */
12514                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12515                         return;
12516
12517                 if (READ_ONCE(eager_page_split))
12518                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12519
12520                 if (kvm_x86_ops.cpu_dirty_log_size) {
12521                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12522                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12523                 } else {
12524                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12525                 }
12526
12527                 /*
12528                  * Unconditionally flush the TLBs after enabling dirty logging.
12529                  * A flush is almost always going to be necessary (see below),
12530                  * and unconditionally flushing allows the helpers to omit
12531                  * the subtly complex checks when removing write access.
12532                  *
12533                  * Do the flush outside of mmu_lock to reduce the amount of
12534                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12535                  * safe as KVM only needs to guarantee the slot is fully
12536                  * write-protected before returning to userspace, i.e. before
12537                  * userspace can consume the dirty status.
12538                  *
12539                  * Flushing outside of mmu_lock requires KVM to be careful when
12540                  * making decisions based on writable status of an SPTE, e.g. a
12541                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12542                  *
12543                  * Specifically, KVM also write-protects guest page tables to
12544                  * monitor changes when using shadow paging, and must guarantee
12545                  * no CPUs can write to those page before mmu_lock is dropped.
12546                  * Because CPUs may have stale TLB entries at this point, a
12547                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12548                  *
12549                  * KVM also allows making SPTES writable outside of mmu_lock,
12550                  * e.g. to allow dirty logging without taking mmu_lock.
12551                  *
12552                  * To handle these scenarios, KVM uses a separate software-only
12553                  * bit (MMU-writable) to track if a SPTE is !writable due to
12554                  * a guest page table being write-protected (KVM clears the
12555                  * MMU-writable flag when write-protecting for shadow paging).
12556                  *
12557                  * The use of MMU-writable is also the primary motivation for
12558                  * the unconditional flush.  Because KVM must guarantee that a
12559                  * CPU doesn't contain stale, writable TLB entries for a
12560                  * !MMU-writable SPTE, KVM must flush if it encounters any
12561                  * MMU-writable SPTE regardless of whether the actual hardware
12562                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12563                  * to flush, while unconditionally flushing allows the "remove
12564                  * write access" helpers to ignore MMU-writable entirely.
12565                  *
12566                  * See is_writable_pte() for more details (the case involving
12567                  * access-tracked SPTEs is particularly relevant).
12568                  */
12569                 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12570         }
12571 }
12572
12573 void kvm_arch_commit_memory_region(struct kvm *kvm,
12574                                 struct kvm_memory_slot *old,
12575                                 const struct kvm_memory_slot *new,
12576                                 enum kvm_mr_change change)
12577 {
12578         if (!kvm->arch.n_requested_mmu_pages &&
12579             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12580                 unsigned long nr_mmu_pages;
12581
12582                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12583                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12584                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12585         }
12586
12587         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12588
12589         /* Free the arrays associated with the old memslot. */
12590         if (change == KVM_MR_MOVE)
12591                 kvm_arch_free_memslot(kvm, old);
12592 }
12593
12594 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12595 {
12596         kvm_mmu_zap_all(kvm);
12597 }
12598
12599 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12600                                    struct kvm_memory_slot *slot)
12601 {
12602         kvm_page_track_flush_slot(kvm, slot);
12603 }
12604
12605 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12606 {
12607         return (is_guest_mode(vcpu) &&
12608                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12609 }
12610
12611 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12612 {
12613         if (!list_empty_careful(&vcpu->async_pf.done))
12614                 return true;
12615
12616         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12617             kvm_apic_init_sipi_allowed(vcpu))
12618                 return true;
12619
12620         if (vcpu->arch.pv.pv_unhalted)
12621                 return true;
12622
12623         if (kvm_is_exception_pending(vcpu))
12624                 return true;
12625
12626         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12627             (vcpu->arch.nmi_pending &&
12628              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12629                 return true;
12630
12631 #ifdef CONFIG_KVM_SMM
12632         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12633             (vcpu->arch.smi_pending &&
12634              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12635                 return true;
12636 #endif
12637
12638         if (kvm_arch_interrupt_allowed(vcpu) &&
12639             (kvm_cpu_has_interrupt(vcpu) ||
12640             kvm_guest_apic_has_interrupt(vcpu)))
12641                 return true;
12642
12643         if (kvm_hv_has_stimer_pending(vcpu))
12644                 return true;
12645
12646         if (is_guest_mode(vcpu) &&
12647             kvm_x86_ops.nested_ops->has_events &&
12648             kvm_x86_ops.nested_ops->has_events(vcpu))
12649                 return true;
12650
12651         if (kvm_xen_has_pending_events(vcpu))
12652                 return true;
12653
12654         return false;
12655 }
12656
12657 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12658 {
12659         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12660 }
12661
12662 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12663 {
12664         if (kvm_vcpu_apicv_active(vcpu) &&
12665             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12666                 return true;
12667
12668         return false;
12669 }
12670
12671 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12672 {
12673         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12674                 return true;
12675
12676         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12677 #ifdef CONFIG_KVM_SMM
12678                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12679 #endif
12680                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12681                 return true;
12682
12683         return kvm_arch_dy_has_pending_interrupt(vcpu);
12684 }
12685
12686 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12687 {
12688         if (vcpu->arch.guest_state_protected)
12689                 return true;
12690
12691         return vcpu->arch.preempted_in_kernel;
12692 }
12693
12694 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12695 {
12696         return kvm_rip_read(vcpu);
12697 }
12698
12699 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12700 {
12701         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12702 }
12703
12704 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12705 {
12706         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12707 }
12708
12709 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12710 {
12711         /* Can't read the RIP when guest state is protected, just return 0 */
12712         if (vcpu->arch.guest_state_protected)
12713                 return 0;
12714
12715         if (is_64_bit_mode(vcpu))
12716                 return kvm_rip_read(vcpu);
12717         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12718                      kvm_rip_read(vcpu));
12719 }
12720 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12721
12722 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12723 {
12724         return kvm_get_linear_rip(vcpu) == linear_rip;
12725 }
12726 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12727
12728 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12729 {
12730         unsigned long rflags;
12731
12732         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12733         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12734                 rflags &= ~X86_EFLAGS_TF;
12735         return rflags;
12736 }
12737 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12738
12739 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12740 {
12741         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12742             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12743                 rflags |= X86_EFLAGS_TF;
12744         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12745 }
12746
12747 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12748 {
12749         __kvm_set_rflags(vcpu, rflags);
12750         kvm_make_request(KVM_REQ_EVENT, vcpu);
12751 }
12752 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12753
12754 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12755 {
12756         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12757
12758         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12759 }
12760
12761 static inline u32 kvm_async_pf_next_probe(u32 key)
12762 {
12763         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12764 }
12765
12766 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12767 {
12768         u32 key = kvm_async_pf_hash_fn(gfn);
12769
12770         while (vcpu->arch.apf.gfns[key] != ~0)
12771                 key = kvm_async_pf_next_probe(key);
12772
12773         vcpu->arch.apf.gfns[key] = gfn;
12774 }
12775
12776 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12777 {
12778         int i;
12779         u32 key = kvm_async_pf_hash_fn(gfn);
12780
12781         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12782                      (vcpu->arch.apf.gfns[key] != gfn &&
12783                       vcpu->arch.apf.gfns[key] != ~0); i++)
12784                 key = kvm_async_pf_next_probe(key);
12785
12786         return key;
12787 }
12788
12789 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12790 {
12791         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12792 }
12793
12794 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12795 {
12796         u32 i, j, k;
12797
12798         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12799
12800         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12801                 return;
12802
12803         while (true) {
12804                 vcpu->arch.apf.gfns[i] = ~0;
12805                 do {
12806                         j = kvm_async_pf_next_probe(j);
12807                         if (vcpu->arch.apf.gfns[j] == ~0)
12808                                 return;
12809                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12810                         /*
12811                          * k lies cyclically in ]i,j]
12812                          * |    i.k.j |
12813                          * |....j i.k.| or  |.k..j i...|
12814                          */
12815                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12816                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12817                 i = j;
12818         }
12819 }
12820
12821 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12822 {
12823         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12824
12825         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12826                                       sizeof(reason));
12827 }
12828
12829 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12830 {
12831         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12832
12833         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12834                                              &token, offset, sizeof(token));
12835 }
12836
12837 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12838 {
12839         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12840         u32 val;
12841
12842         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12843                                          &val, offset, sizeof(val)))
12844                 return false;
12845
12846         return !val;
12847 }
12848
12849 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12850 {
12851
12852         if (!kvm_pv_async_pf_enabled(vcpu))
12853                 return false;
12854
12855         if (vcpu->arch.apf.send_user_only &&
12856             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12857                 return false;
12858
12859         if (is_guest_mode(vcpu)) {
12860                 /*
12861                  * L1 needs to opt into the special #PF vmexits that are
12862                  * used to deliver async page faults.
12863                  */
12864                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12865         } else {
12866                 /*
12867                  * Play it safe in case the guest temporarily disables paging.
12868                  * The real mode IDT in particular is unlikely to have a #PF
12869                  * exception setup.
12870                  */
12871                 return is_paging(vcpu);
12872         }
12873 }
12874
12875 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12876 {
12877         if (unlikely(!lapic_in_kernel(vcpu) ||
12878                      kvm_event_needs_reinjection(vcpu) ||
12879                      kvm_is_exception_pending(vcpu)))
12880                 return false;
12881
12882         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12883                 return false;
12884
12885         /*
12886          * If interrupts are off we cannot even use an artificial
12887          * halt state.
12888          */
12889         return kvm_arch_interrupt_allowed(vcpu);
12890 }
12891
12892 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12893                                      struct kvm_async_pf *work)
12894 {
12895         struct x86_exception fault;
12896
12897         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12898         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12899
12900         if (kvm_can_deliver_async_pf(vcpu) &&
12901             !apf_put_user_notpresent(vcpu)) {
12902                 fault.vector = PF_VECTOR;
12903                 fault.error_code_valid = true;
12904                 fault.error_code = 0;
12905                 fault.nested_page_fault = false;
12906                 fault.address = work->arch.token;
12907                 fault.async_page_fault = true;
12908                 kvm_inject_page_fault(vcpu, &fault);
12909                 return true;
12910         } else {
12911                 /*
12912                  * It is not possible to deliver a paravirtualized asynchronous
12913                  * page fault, but putting the guest in an artificial halt state
12914                  * can be beneficial nevertheless: if an interrupt arrives, we
12915                  * can deliver it timely and perhaps the guest will schedule
12916                  * another process.  When the instruction that triggered a page
12917                  * fault is retried, hopefully the page will be ready in the host.
12918                  */
12919                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12920                 return false;
12921         }
12922 }
12923
12924 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12925                                  struct kvm_async_pf *work)
12926 {
12927         struct kvm_lapic_irq irq = {
12928                 .delivery_mode = APIC_DM_FIXED,
12929                 .vector = vcpu->arch.apf.vec
12930         };
12931
12932         if (work->wakeup_all)
12933                 work->arch.token = ~0; /* broadcast wakeup */
12934         else
12935                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12936         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12937
12938         if ((work->wakeup_all || work->notpresent_injected) &&
12939             kvm_pv_async_pf_enabled(vcpu) &&
12940             !apf_put_user_ready(vcpu, work->arch.token)) {
12941                 vcpu->arch.apf.pageready_pending = true;
12942                 kvm_apic_set_irq(vcpu, &irq, NULL);
12943         }
12944
12945         vcpu->arch.apf.halted = false;
12946         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12947 }
12948
12949 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12950 {
12951         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12952         if (!vcpu->arch.apf.pageready_pending)
12953                 kvm_vcpu_kick(vcpu);
12954 }
12955
12956 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12957 {
12958         if (!kvm_pv_async_pf_enabled(vcpu))
12959                 return true;
12960         else
12961                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12962 }
12963
12964 void kvm_arch_start_assignment(struct kvm *kvm)
12965 {
12966         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12967                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12968 }
12969 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12970
12971 void kvm_arch_end_assignment(struct kvm *kvm)
12972 {
12973         atomic_dec(&kvm->arch.assigned_device_count);
12974 }
12975 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12976
12977 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12978 {
12979         return arch_atomic_read(&kvm->arch.assigned_device_count);
12980 }
12981 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12982
12983 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12984 {
12985         atomic_inc(&kvm->arch.noncoherent_dma_count);
12986 }
12987 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12988
12989 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12990 {
12991         atomic_dec(&kvm->arch.noncoherent_dma_count);
12992 }
12993 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12994
12995 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12996 {
12997         return atomic_read(&kvm->arch.noncoherent_dma_count);
12998 }
12999 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13000
13001 bool kvm_arch_has_irq_bypass(void)
13002 {
13003         return true;
13004 }
13005
13006 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13007                                       struct irq_bypass_producer *prod)
13008 {
13009         struct kvm_kernel_irqfd *irqfd =
13010                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13011         int ret;
13012
13013         irqfd->producer = prod;
13014         kvm_arch_start_assignment(irqfd->kvm);
13015         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13016                                          prod->irq, irqfd->gsi, 1);
13017
13018         if (ret)
13019                 kvm_arch_end_assignment(irqfd->kvm);
13020
13021         return ret;
13022 }
13023
13024 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13025                                       struct irq_bypass_producer *prod)
13026 {
13027         int ret;
13028         struct kvm_kernel_irqfd *irqfd =
13029                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13030
13031         WARN_ON(irqfd->producer != prod);
13032         irqfd->producer = NULL;
13033
13034         /*
13035          * When producer of consumer is unregistered, we change back to
13036          * remapped mode, so we can re-use the current implementation
13037          * when the irq is masked/disabled or the consumer side (KVM
13038          * int this case doesn't want to receive the interrupts.
13039         */
13040         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13041         if (ret)
13042                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13043                        " fails: %d\n", irqfd->consumer.token, ret);
13044
13045         kvm_arch_end_assignment(irqfd->kvm);
13046 }
13047
13048 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13049                                    uint32_t guest_irq, bool set)
13050 {
13051         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13052 }
13053
13054 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13055                                   struct kvm_kernel_irq_routing_entry *new)
13056 {
13057         if (new->type != KVM_IRQ_ROUTING_MSI)
13058                 return true;
13059
13060         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13061 }
13062
13063 bool kvm_vector_hashing_enabled(void)
13064 {
13065         return vector_hashing;
13066 }
13067
13068 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13069 {
13070         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13071 }
13072 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13073
13074
13075 int kvm_spec_ctrl_test_value(u64 value)
13076 {
13077         /*
13078          * test that setting IA32_SPEC_CTRL to given value
13079          * is allowed by the host processor
13080          */
13081
13082         u64 saved_value;
13083         unsigned long flags;
13084         int ret = 0;
13085
13086         local_irq_save(flags);
13087
13088         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13089                 ret = 1;
13090         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13091                 ret = 1;
13092         else
13093                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13094
13095         local_irq_restore(flags);
13096
13097         return ret;
13098 }
13099 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13100
13101 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13102 {
13103         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13104         struct x86_exception fault;
13105         u64 access = error_code &
13106                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13107
13108         if (!(error_code & PFERR_PRESENT_MASK) ||
13109             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13110                 /*
13111                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13112                  * tables probably do not match the TLB.  Just proceed
13113                  * with the error code that the processor gave.
13114                  */
13115                 fault.vector = PF_VECTOR;
13116                 fault.error_code_valid = true;
13117                 fault.error_code = error_code;
13118                 fault.nested_page_fault = false;
13119                 fault.address = gva;
13120                 fault.async_page_fault = false;
13121         }
13122         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13123 }
13124 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13125
13126 /*
13127  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13128  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13129  * indicates whether exit to userspace is needed.
13130  */
13131 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13132                               struct x86_exception *e)
13133 {
13134         if (r == X86EMUL_PROPAGATE_FAULT) {
13135                 if (KVM_BUG_ON(!e, vcpu->kvm))
13136                         return -EIO;
13137
13138                 kvm_inject_emulated_page_fault(vcpu, e);
13139                 return 1;
13140         }
13141
13142         /*
13143          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13144          * while handling a VMX instruction KVM could've handled the request
13145          * correctly by exiting to userspace and performing I/O but there
13146          * doesn't seem to be a real use-case behind such requests, just return
13147          * KVM_EXIT_INTERNAL_ERROR for now.
13148          */
13149         kvm_prepare_emulation_failure_exit(vcpu);
13150
13151         return 0;
13152 }
13153 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13154
13155 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13156 {
13157         bool pcid_enabled;
13158         struct x86_exception e;
13159         struct {
13160                 u64 pcid;
13161                 u64 gla;
13162         } operand;
13163         int r;
13164
13165         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13166         if (r != X86EMUL_CONTINUE)
13167                 return kvm_handle_memory_failure(vcpu, r, &e);
13168
13169         if (operand.pcid >> 12 != 0) {
13170                 kvm_inject_gp(vcpu, 0);
13171                 return 1;
13172         }
13173
13174         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13175
13176         switch (type) {
13177         case INVPCID_TYPE_INDIV_ADDR:
13178                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13179                     is_noncanonical_address(operand.gla, vcpu)) {
13180                         kvm_inject_gp(vcpu, 0);
13181                         return 1;
13182                 }
13183                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13184                 return kvm_skip_emulated_instruction(vcpu);
13185
13186         case INVPCID_TYPE_SINGLE_CTXT:
13187                 if (!pcid_enabled && (operand.pcid != 0)) {
13188                         kvm_inject_gp(vcpu, 0);
13189                         return 1;
13190                 }
13191
13192                 kvm_invalidate_pcid(vcpu, operand.pcid);
13193                 return kvm_skip_emulated_instruction(vcpu);
13194
13195         case INVPCID_TYPE_ALL_NON_GLOBAL:
13196                 /*
13197                  * Currently, KVM doesn't mark global entries in the shadow
13198                  * page tables, so a non-global flush just degenerates to a
13199                  * global flush. If needed, we could optimize this later by
13200                  * keeping track of global entries in shadow page tables.
13201                  */
13202
13203                 fallthrough;
13204         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13205                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13206                 return kvm_skip_emulated_instruction(vcpu);
13207
13208         default:
13209                 kvm_inject_gp(vcpu, 0);
13210                 return 1;
13211         }
13212 }
13213 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13214
13215 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13216 {
13217         struct kvm_run *run = vcpu->run;
13218         struct kvm_mmio_fragment *frag;
13219         unsigned int len;
13220
13221         BUG_ON(!vcpu->mmio_needed);
13222
13223         /* Complete previous fragment */
13224         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13225         len = min(8u, frag->len);
13226         if (!vcpu->mmio_is_write)
13227                 memcpy(frag->data, run->mmio.data, len);
13228
13229         if (frag->len <= 8) {
13230                 /* Switch to the next fragment. */
13231                 frag++;
13232                 vcpu->mmio_cur_fragment++;
13233         } else {
13234                 /* Go forward to the next mmio piece. */
13235                 frag->data += len;
13236                 frag->gpa += len;
13237                 frag->len -= len;
13238         }
13239
13240         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13241                 vcpu->mmio_needed = 0;
13242
13243                 // VMG change, at this point, we're always done
13244                 // RIP has already been advanced
13245                 return 1;
13246         }
13247
13248         // More MMIO is needed
13249         run->mmio.phys_addr = frag->gpa;
13250         run->mmio.len = min(8u, frag->len);
13251         run->mmio.is_write = vcpu->mmio_is_write;
13252         if (run->mmio.is_write)
13253                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13254         run->exit_reason = KVM_EXIT_MMIO;
13255
13256         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13257
13258         return 0;
13259 }
13260
13261 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13262                           void *data)
13263 {
13264         int handled;
13265         struct kvm_mmio_fragment *frag;
13266
13267         if (!data)
13268                 return -EINVAL;
13269
13270         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13271         if (handled == bytes)
13272                 return 1;
13273
13274         bytes -= handled;
13275         gpa += handled;
13276         data += handled;
13277
13278         /*TODO: Check if need to increment number of frags */
13279         frag = vcpu->mmio_fragments;
13280         vcpu->mmio_nr_fragments = 1;
13281         frag->len = bytes;
13282         frag->gpa = gpa;
13283         frag->data = data;
13284
13285         vcpu->mmio_needed = 1;
13286         vcpu->mmio_cur_fragment = 0;
13287
13288         vcpu->run->mmio.phys_addr = gpa;
13289         vcpu->run->mmio.len = min(8u, frag->len);
13290         vcpu->run->mmio.is_write = 1;
13291         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13292         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13293
13294         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13295
13296         return 0;
13297 }
13298 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13299
13300 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13301                          void *data)
13302 {
13303         int handled;
13304         struct kvm_mmio_fragment *frag;
13305
13306         if (!data)
13307                 return -EINVAL;
13308
13309         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13310         if (handled == bytes)
13311                 return 1;
13312
13313         bytes -= handled;
13314         gpa += handled;
13315         data += handled;
13316
13317         /*TODO: Check if need to increment number of frags */
13318         frag = vcpu->mmio_fragments;
13319         vcpu->mmio_nr_fragments = 1;
13320         frag->len = bytes;
13321         frag->gpa = gpa;
13322         frag->data = data;
13323
13324         vcpu->mmio_needed = 1;
13325         vcpu->mmio_cur_fragment = 0;
13326
13327         vcpu->run->mmio.phys_addr = gpa;
13328         vcpu->run->mmio.len = min(8u, frag->len);
13329         vcpu->run->mmio.is_write = 0;
13330         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13331
13332         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13333
13334         return 0;
13335 }
13336 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13337
13338 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13339 {
13340         vcpu->arch.sev_pio_count -= count;
13341         vcpu->arch.sev_pio_data += count * size;
13342 }
13343
13344 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13345                            unsigned int port);
13346
13347 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13348 {
13349         int size = vcpu->arch.pio.size;
13350         int port = vcpu->arch.pio.port;
13351
13352         vcpu->arch.pio.count = 0;
13353         if (vcpu->arch.sev_pio_count)
13354                 return kvm_sev_es_outs(vcpu, size, port);
13355         return 1;
13356 }
13357
13358 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13359                            unsigned int port)
13360 {
13361         for (;;) {
13362                 unsigned int count =
13363                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13364                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13365
13366                 /* memcpy done already by emulator_pio_out.  */
13367                 advance_sev_es_emulated_pio(vcpu, count, size);
13368                 if (!ret)
13369                         break;
13370
13371                 /* Emulation done by the kernel.  */
13372                 if (!vcpu->arch.sev_pio_count)
13373                         return 1;
13374         }
13375
13376         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13377         return 0;
13378 }
13379
13380 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13381                           unsigned int port);
13382
13383 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13384 {
13385         unsigned count = vcpu->arch.pio.count;
13386         int size = vcpu->arch.pio.size;
13387         int port = vcpu->arch.pio.port;
13388
13389         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13390         advance_sev_es_emulated_pio(vcpu, count, size);
13391         if (vcpu->arch.sev_pio_count)
13392                 return kvm_sev_es_ins(vcpu, size, port);
13393         return 1;
13394 }
13395
13396 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13397                           unsigned int port)
13398 {
13399         for (;;) {
13400                 unsigned int count =
13401                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13402                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13403                         break;
13404
13405                 /* Emulation done by the kernel.  */
13406                 advance_sev_es_emulated_pio(vcpu, count, size);
13407                 if (!vcpu->arch.sev_pio_count)
13408                         return 1;
13409         }
13410
13411         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13412         return 0;
13413 }
13414
13415 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13416                          unsigned int port, void *data,  unsigned int count,
13417                          int in)
13418 {
13419         vcpu->arch.sev_pio_data = data;
13420         vcpu->arch.sev_pio_count = count;
13421         return in ? kvm_sev_es_ins(vcpu, size, port)
13422                   : kvm_sev_es_outs(vcpu, size, port);
13423 }
13424 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13425
13426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13455
13456 static int __init kvm_x86_init(void)
13457 {
13458         kvm_mmu_x86_module_init();
13459         return 0;
13460 }
13461 module_init(kvm_x86_init);
13462
13463 static void __exit kvm_x86_exit(void)
13464 {
13465         /*
13466          * If module_init() is implemented, module_exit() must also be
13467          * implemented to allow module unload.
13468          */
13469 }
13470 module_exit(kvm_x86_exit);