bd4e402b2e79c889a0e6b953d8086ddd8d978a32
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220         int i;
221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222                 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227         unsigned slot;
228         struct kvm_shared_msrs *locals
229                 = container_of(urn, struct kvm_shared_msrs, urn);
230         struct kvm_shared_msr_values *values;
231         unsigned long flags;
232
233         /*
234          * Disabling irqs at this point since the following code could be
235          * interrupted and executed through kvm_arch_hardware_disable()
236          */
237         local_irq_save(flags);
238         if (locals->registered) {
239                 locals->registered = false;
240                 user_return_notifier_unregister(urn);
241         }
242         local_irq_restore(flags);
243         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244                 values = &locals->values[slot];
245                 if (values->host != values->curr) {
246                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
247                         values->curr = values->host;
248                 }
249         }
250 }
251
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254         u64 value;
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258         /* only read, and nobody should modify it at this time,
259          * so don't need lock */
260         if (slot >= shared_msrs_global.nr) {
261                 printk(KERN_ERR "kvm: invalid MSR slot!");
262                 return;
263         }
264         rdmsrl_safe(msr, &value);
265         smsr->values[slot].host = value;
266         smsr->values[slot].curr = value;
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280         unsigned i;
281
282         for (i = 0; i < shared_msrs_global.nr; ++i)
283                 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288         unsigned int cpu = smp_processor_id();
289         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290         int err;
291
292         if (((value ^ smsr->values[slot].curr) & mask) == 0)
293                 return 0;
294         smsr->values[slot].curr = value;
295         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296         if (err)
297                 return 1;
298
299         if (!smsr->registered) {
300                 smsr->urn.on_user_return = kvm_on_user_return;
301                 user_return_notifier_register(&smsr->urn);
302                 smsr->registered = true;
303         }
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
308 static void drop_user_return_notifiers(void)
309 {
310         unsigned int cpu = smp_processor_id();
311         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313         if (smsr->registered)
314                 kvm_on_user_return(&smsr->urn);
315 }
316
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319         return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325         return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337                 return 1;
338         if (!msr_info->host_initiated) {
339                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340                         return 1;
341                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342                         return 1;
343         }
344
345         kvm_lapic_set_base(vcpu, msr_info->data);
346         return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352         /* Fault while not rebooting.  We want the trace. */
353         BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN            0
358 #define EXCPT_CONTRIBUTORY      1
359 #define EXCPT_PF                2
360
361 static int exception_class(int vector)
362 {
363         switch (vector) {
364         case PF_VECTOR:
365                 return EXCPT_PF;
366         case DE_VECTOR:
367         case TS_VECTOR:
368         case NP_VECTOR:
369         case SS_VECTOR:
370         case GP_VECTOR:
371                 return EXCPT_CONTRIBUTORY;
372         default:
373                 break;
374         }
375         return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT             0
379 #define EXCPT_TRAP              1
380 #define EXCPT_ABORT             2
381 #define EXCPT_INTERRUPT         3
382
383 static int exception_type(int vector)
384 {
385         unsigned int mask;
386
387         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388                 return EXCPT_INTERRUPT;
389
390         mask = 1 << vector;
391
392         /* #DB is trap, as instruction watchpoints are handled elsewhere */
393         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394                 return EXCPT_TRAP;
395
396         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397                 return EXCPT_ABORT;
398
399         /* Reserved exceptions will result in fault */
400         return EXCPT_FAULT;
401 }
402
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
404 {
405         unsigned nr = vcpu->arch.exception.nr;
406         bool has_payload = vcpu->arch.exception.has_payload;
407         unsigned long payload = vcpu->arch.exception.payload;
408
409         if (!has_payload)
410                 return;
411
412         switch (nr) {
413         case DB_VECTOR:
414                 /*
415                  * "Certain debug exceptions may clear bit 0-3.  The
416                  * remaining contents of the DR6 register are never
417                  * cleared by the processor".
418                  */
419                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
420                 /*
421                  * DR6.RTM is set by all #DB exceptions that don't clear it.
422                  */
423                 vcpu->arch.dr6 |= DR6_RTM;
424                 vcpu->arch.dr6 |= payload;
425                 /*
426                  * Bit 16 should be set in the payload whenever the #DB
427                  * exception should clear DR6.RTM. This makes the payload
428                  * compatible with the pending debug exceptions under VMX.
429                  * Though not currently documented in the SDM, this also
430                  * makes the payload compatible with the exit qualification
431                  * for #DB exceptions under VMX.
432                  */
433                 vcpu->arch.dr6 ^= payload & DR6_RTM;
434                 break;
435         case PF_VECTOR:
436                 vcpu->arch.cr2 = payload;
437                 break;
438         }
439
440         vcpu->arch.exception.has_payload = false;
441         vcpu->arch.exception.payload = 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
444
445 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
446                 unsigned nr, bool has_error, u32 error_code,
447                 bool has_payload, unsigned long payload, bool reinject)
448 {
449         u32 prev_nr;
450         int class1, class2;
451
452         kvm_make_request(KVM_REQ_EVENT, vcpu);
453
454         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
455         queue:
456                 if (has_error && !is_protmode(vcpu))
457                         has_error = false;
458                 if (reinject) {
459                         /*
460                          * On vmentry, vcpu->arch.exception.pending is only
461                          * true if an event injection was blocked by
462                          * nested_run_pending.  In that case, however,
463                          * vcpu_enter_guest requests an immediate exit,
464                          * and the guest shouldn't proceed far enough to
465                          * need reinjection.
466                          */
467                         WARN_ON_ONCE(vcpu->arch.exception.pending);
468                         vcpu->arch.exception.injected = true;
469                         if (WARN_ON_ONCE(has_payload)) {
470                                 /*
471                                  * A reinjected event has already
472                                  * delivered its payload.
473                                  */
474                                 has_payload = false;
475                                 payload = 0;
476                         }
477                 } else {
478                         vcpu->arch.exception.pending = true;
479                         vcpu->arch.exception.injected = false;
480                 }
481                 vcpu->arch.exception.has_error_code = has_error;
482                 vcpu->arch.exception.nr = nr;
483                 vcpu->arch.exception.error_code = error_code;
484                 vcpu->arch.exception.has_payload = has_payload;
485                 vcpu->arch.exception.payload = payload;
486                 /*
487                  * In guest mode, payload delivery should be deferred,
488                  * so that the L1 hypervisor can intercept #PF before
489                  * CR2 is modified (or intercept #DB before DR6 is
490                  * modified under nVMX).  However, for ABI
491                  * compatibility with KVM_GET_VCPU_EVENTS and
492                  * KVM_SET_VCPU_EVENTS, we can't delay payload
493                  * delivery unless userspace has enabled this
494                  * functionality via the per-VM capability,
495                  * KVM_CAP_EXCEPTION_PAYLOAD.
496                  */
497                 if (!vcpu->kvm->arch.exception_payload_enabled ||
498                     !is_guest_mode(vcpu))
499                         kvm_deliver_exception_payload(vcpu);
500                 return;
501         }
502
503         /* to check exception */
504         prev_nr = vcpu->arch.exception.nr;
505         if (prev_nr == DF_VECTOR) {
506                 /* triple fault -> shutdown */
507                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
508                 return;
509         }
510         class1 = exception_class(prev_nr);
511         class2 = exception_class(nr);
512         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
513                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
514                 /*
515                  * Generate double fault per SDM Table 5-5.  Set
516                  * exception.pending = true so that the double fault
517                  * can trigger a nested vmexit.
518                  */
519                 vcpu->arch.exception.pending = true;
520                 vcpu->arch.exception.injected = false;
521                 vcpu->arch.exception.has_error_code = true;
522                 vcpu->arch.exception.nr = DF_VECTOR;
523                 vcpu->arch.exception.error_code = 0;
524                 vcpu->arch.exception.has_payload = false;
525                 vcpu->arch.exception.payload = 0;
526         } else
527                 /* replace previous exception with a new one in a hope
528                    that instruction re-execution will regenerate lost
529                    exception */
530                 goto queue;
531 }
532
533 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
534 {
535         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
536 }
537 EXPORT_SYMBOL_GPL(kvm_queue_exception);
538
539 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
540 {
541         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
542 }
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
544
545 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
546                                   unsigned long payload)
547 {
548         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
549 }
550
551 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
552                                     u32 error_code, unsigned long payload)
553 {
554         kvm_multiple_exception(vcpu, nr, true, error_code,
555                                true, payload, false);
556 }
557
558 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
559 {
560         if (err)
561                 kvm_inject_gp(vcpu, 0);
562         else
563                 return kvm_skip_emulated_instruction(vcpu);
564
565         return 1;
566 }
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
568
569 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
570 {
571         ++vcpu->stat.pf_guest;
572         vcpu->arch.exception.nested_apf =
573                 is_guest_mode(vcpu) && fault->async_page_fault;
574         if (vcpu->arch.exception.nested_apf) {
575                 vcpu->arch.apf.nested_apf_token = fault->address;
576                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
577         } else {
578                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
579                                         fault->address);
580         }
581 }
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
583
584 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
585 {
586         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
587                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
588         else
589                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
590
591         return fault->nested_page_fault;
592 }
593
594 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
595 {
596         atomic_inc(&vcpu->arch.nmi_queued);
597         kvm_make_request(KVM_REQ_NMI, vcpu);
598 }
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
600
601 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
602 {
603         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
606
607 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
608 {
609         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
610 }
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
612
613 /*
614  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
615  * a #GP and return false.
616  */
617 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
618 {
619         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
620                 return true;
621         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
622         return false;
623 }
624 EXPORT_SYMBOL_GPL(kvm_require_cpl);
625
626 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
627 {
628         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
629                 return true;
630
631         kvm_queue_exception(vcpu, UD_VECTOR);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_dr);
635
636 /*
637  * This function will be used to read from the physical memory of the currently
638  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639  * can read from guest physical or from the guest's guest physical memory.
640  */
641 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
642                             gfn_t ngfn, void *data, int offset, int len,
643                             u32 access)
644 {
645         struct x86_exception exception;
646         gfn_t real_gfn;
647         gpa_t ngpa;
648
649         ngpa     = gfn_to_gpa(ngfn);
650         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
651         if (real_gfn == UNMAPPED_GVA)
652                 return -EFAULT;
653
654         real_gfn = gpa_to_gfn(real_gfn);
655
656         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
657 }
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
659
660 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
661                                void *data, int offset, int len, u32 access)
662 {
663         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
664                                        data, offset, len, access);
665 }
666
667 /*
668  * Load the pae pdptrs.  Return true is they are all valid.
669  */
670 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
671 {
672         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
673         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
674         int i;
675         int ret;
676         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
677
678         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
679                                       offset * sizeof(u64), sizeof(pdpte),
680                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
681         if (ret < 0) {
682                 ret = 0;
683                 goto out;
684         }
685         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
686                 if ((pdpte[i] & PT_PRESENT_MASK) &&
687                     (pdpte[i] &
688                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
689                         ret = 0;
690                         goto out;
691                 }
692         }
693         ret = 1;
694
695         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
696         __set_bit(VCPU_EXREG_PDPTR,
697                   (unsigned long *)&vcpu->arch.regs_avail);
698         __set_bit(VCPU_EXREG_PDPTR,
699                   (unsigned long *)&vcpu->arch.regs_dirty);
700 out:
701
702         return ret;
703 }
704 EXPORT_SYMBOL_GPL(load_pdptrs);
705
706 bool pdptrs_changed(struct kvm_vcpu *vcpu)
707 {
708         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
709         bool changed = true;
710         int offset;
711         gfn_t gfn;
712         int r;
713
714         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
715                 return false;
716
717         if (!test_bit(VCPU_EXREG_PDPTR,
718                       (unsigned long *)&vcpu->arch.regs_avail))
719                 return true;
720
721         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
722         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
723         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
724                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
725         if (r < 0)
726                 goto out;
727         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
728 out:
729
730         return changed;
731 }
732 EXPORT_SYMBOL_GPL(pdptrs_changed);
733
734 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
735 {
736         unsigned long old_cr0 = kvm_read_cr0(vcpu);
737         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
738
739         cr0 |= X86_CR0_ET;
740
741 #ifdef CONFIG_X86_64
742         if (cr0 & 0xffffffff00000000UL)
743                 return 1;
744 #endif
745
746         cr0 &= ~CR0_RESERVED_BITS;
747
748         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
749                 return 1;
750
751         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
752                 return 1;
753
754         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
755 #ifdef CONFIG_X86_64
756                 if ((vcpu->arch.efer & EFER_LME)) {
757                         int cs_db, cs_l;
758
759                         if (!is_pae(vcpu))
760                                 return 1;
761                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
762                         if (cs_l)
763                                 return 1;
764                 } else
765 #endif
766                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
767                                                  kvm_read_cr3(vcpu)))
768                         return 1;
769         }
770
771         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
772                 return 1;
773
774         kvm_x86_ops->set_cr0(vcpu, cr0);
775
776         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
777                 kvm_clear_async_pf_completion_queue(vcpu);
778                 kvm_async_pf_hash_reset(vcpu);
779         }
780
781         if ((cr0 ^ old_cr0) & update_bits)
782                 kvm_mmu_reset_context(vcpu);
783
784         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
785             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
786             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
787                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
788
789         return 0;
790 }
791 EXPORT_SYMBOL_GPL(kvm_set_cr0);
792
793 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
794 {
795         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
796 }
797 EXPORT_SYMBOL_GPL(kvm_lmsw);
798
799 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
800 {
801         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
802                         !vcpu->guest_xcr0_loaded) {
803                 /* kvm_set_xcr() also depends on this */
804                 if (vcpu->arch.xcr0 != host_xcr0)
805                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
806                 vcpu->guest_xcr0_loaded = 1;
807         }
808 }
809
810 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
811 {
812         if (vcpu->guest_xcr0_loaded) {
813                 if (vcpu->arch.xcr0 != host_xcr0)
814                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
815                 vcpu->guest_xcr0_loaded = 0;
816         }
817 }
818
819 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
820 {
821         u64 xcr0 = xcr;
822         u64 old_xcr0 = vcpu->arch.xcr0;
823         u64 valid_bits;
824
825         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
826         if (index != XCR_XFEATURE_ENABLED_MASK)
827                 return 1;
828         if (!(xcr0 & XFEATURE_MASK_FP))
829                 return 1;
830         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
831                 return 1;
832
833         /*
834          * Do not allow the guest to set bits that we do not support
835          * saving.  However, xcr0 bit 0 is always set, even if the
836          * emulated CPU does not support XSAVE (see fx_init).
837          */
838         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
839         if (xcr0 & ~valid_bits)
840                 return 1;
841
842         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
843             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
844                 return 1;
845
846         if (xcr0 & XFEATURE_MASK_AVX512) {
847                 if (!(xcr0 & XFEATURE_MASK_YMM))
848                         return 1;
849                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
850                         return 1;
851         }
852         vcpu->arch.xcr0 = xcr0;
853
854         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
855                 kvm_update_cpuid(vcpu);
856         return 0;
857 }
858
859 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
860 {
861         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
862             __kvm_set_xcr(vcpu, index, xcr)) {
863                 kvm_inject_gp(vcpu, 0);
864                 return 1;
865         }
866         return 0;
867 }
868 EXPORT_SYMBOL_GPL(kvm_set_xcr);
869
870 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
871 {
872         unsigned long old_cr4 = kvm_read_cr4(vcpu);
873         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
874                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
875
876         if (cr4 & CR4_RESERVED_BITS)
877                 return 1;
878
879         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
880                 return 1;
881
882         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
898                 return 1;
899
900         if (is_long_mode(vcpu)) {
901                 if (!(cr4 & X86_CR4_PAE))
902                         return 1;
903         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
904                    && ((cr4 ^ old_cr4) & pdptr_bits)
905                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
906                                    kvm_read_cr3(vcpu)))
907                 return 1;
908
909         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
910                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
911                         return 1;
912
913                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
915                         return 1;
916         }
917
918         if (kvm_x86_ops->set_cr4(vcpu, cr4))
919                 return 1;
920
921         if (((cr4 ^ old_cr4) & pdptr_bits) ||
922             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
923                 kvm_mmu_reset_context(vcpu);
924
925         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
926                 kvm_update_cpuid(vcpu);
927
928         return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_cr4);
931
932 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
933 {
934         bool skip_tlb_flush = false;
935 #ifdef CONFIG_X86_64
936         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
937
938         if (pcid_enabled) {
939                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
940                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
941         }
942 #endif
943
944         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
945                 if (!skip_tlb_flush) {
946                         kvm_mmu_sync_roots(vcpu);
947                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
948                 }
949                 return 0;
950         }
951
952         if (is_long_mode(vcpu) &&
953             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
954                 return 1;
955         else if (is_pae(vcpu) && is_paging(vcpu) &&
956                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
957                 return 1;
958
959         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
960         vcpu->arch.cr3 = cr3;
961         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
962
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr3);
966
967 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
968 {
969         if (cr8 & CR8_RESERVED_BITS)
970                 return 1;
971         if (lapic_in_kernel(vcpu))
972                 kvm_lapic_set_tpr(vcpu, cr8);
973         else
974                 vcpu->arch.cr8 = cr8;
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr8);
978
979 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
980 {
981         if (lapic_in_kernel(vcpu))
982                 return kvm_lapic_get_cr8(vcpu);
983         else
984                 return vcpu->arch.cr8;
985 }
986 EXPORT_SYMBOL_GPL(kvm_get_cr8);
987
988 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
989 {
990         int i;
991
992         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
993                 for (i = 0; i < KVM_NR_DB_REGS; i++)
994                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
995                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
996         }
997 }
998
999 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1000 {
1001         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1002                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1003 }
1004
1005 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1006 {
1007         unsigned long dr7;
1008
1009         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1010                 dr7 = vcpu->arch.guest_debug_dr7;
1011         else
1012                 dr7 = vcpu->arch.dr7;
1013         kvm_x86_ops->set_dr7(vcpu, dr7);
1014         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1015         if (dr7 & DR7_BP_EN_MASK)
1016                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1017 }
1018
1019 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1020 {
1021         u64 fixed = DR6_FIXED_1;
1022
1023         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1024                 fixed |= DR6_RTM;
1025         return fixed;
1026 }
1027
1028 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1029 {
1030         switch (dr) {
1031         case 0 ... 3:
1032                 vcpu->arch.db[dr] = val;
1033                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1034                         vcpu->arch.eff_db[dr] = val;
1035                 break;
1036         case 4:
1037                 /* fall through */
1038         case 6:
1039                 if (val & 0xffffffff00000000ULL)
1040                         return -1; /* #GP */
1041                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1042                 kvm_update_dr6(vcpu);
1043                 break;
1044         case 5:
1045                 /* fall through */
1046         default: /* 7 */
1047                 if (val & 0xffffffff00000000ULL)
1048                         return -1; /* #GP */
1049                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1050                 kvm_update_dr7(vcpu);
1051                 break;
1052         }
1053
1054         return 0;
1055 }
1056
1057 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1058 {
1059         if (__kvm_set_dr(vcpu, dr, val)) {
1060                 kvm_inject_gp(vcpu, 0);
1061                 return 1;
1062         }
1063         return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_set_dr);
1066
1067 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1068 {
1069         switch (dr) {
1070         case 0 ... 3:
1071                 *val = vcpu->arch.db[dr];
1072                 break;
1073         case 4:
1074                 /* fall through */
1075         case 6:
1076                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077                         *val = vcpu->arch.dr6;
1078                 else
1079                         *val = kvm_x86_ops->get_dr6(vcpu);
1080                 break;
1081         case 5:
1082                 /* fall through */
1083         default: /* 7 */
1084                 *val = vcpu->arch.dr7;
1085                 break;
1086         }
1087         return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_get_dr);
1090
1091 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1092 {
1093         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1094         u64 data;
1095         int err;
1096
1097         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1098         if (err)
1099                 return err;
1100         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1101         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1102         return err;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1105
1106 /*
1107  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1109  *
1110  * This list is modified at module load time to reflect the
1111  * capabilities of the host cpu. This capabilities test skips MSRs that are
1112  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113  * may depend on host virtualization features rather than host cpu features.
1114  */
1115
1116 static u32 msrs_to_save[] = {
1117         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1118         MSR_STAR,
1119 #ifdef CONFIG_X86_64
1120         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1121 #endif
1122         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1123         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1124         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1125 };
1126
1127 static unsigned num_msrs_to_save;
1128
1129 static u32 emulated_msrs[] = {
1130         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1131         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1132         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1133         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1134         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1135         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1136         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1137         HV_X64_MSR_RESET,
1138         HV_X64_MSR_VP_INDEX,
1139         HV_X64_MSR_VP_RUNTIME,
1140         HV_X64_MSR_SCONTROL,
1141         HV_X64_MSR_STIMER0_CONFIG,
1142         HV_X64_MSR_VP_ASSIST_PAGE,
1143         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1144         HV_X64_MSR_TSC_EMULATION_STATUS,
1145
1146         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1147         MSR_KVM_PV_EOI_EN,
1148
1149         MSR_IA32_TSC_ADJUST,
1150         MSR_IA32_TSCDEADLINE,
1151         MSR_IA32_MISC_ENABLE,
1152         MSR_IA32_MCG_STATUS,
1153         MSR_IA32_MCG_CTL,
1154         MSR_IA32_MCG_EXT_CTL,
1155         MSR_IA32_SMBASE,
1156         MSR_SMI_COUNT,
1157         MSR_PLATFORM_INFO,
1158         MSR_MISC_FEATURES_ENABLES,
1159         MSR_AMD64_VIRT_SPEC_CTRL,
1160 };
1161
1162 static unsigned num_emulated_msrs;
1163
1164 /*
1165  * List of msr numbers which are used to expose MSR-based features that
1166  * can be used by a hypervisor to validate requested CPU features.
1167  */
1168 static u32 msr_based_features[] = {
1169         MSR_IA32_VMX_BASIC,
1170         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1171         MSR_IA32_VMX_PINBASED_CTLS,
1172         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1173         MSR_IA32_VMX_PROCBASED_CTLS,
1174         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1175         MSR_IA32_VMX_EXIT_CTLS,
1176         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1177         MSR_IA32_VMX_ENTRY_CTLS,
1178         MSR_IA32_VMX_MISC,
1179         MSR_IA32_VMX_CR0_FIXED0,
1180         MSR_IA32_VMX_CR0_FIXED1,
1181         MSR_IA32_VMX_CR4_FIXED0,
1182         MSR_IA32_VMX_CR4_FIXED1,
1183         MSR_IA32_VMX_VMCS_ENUM,
1184         MSR_IA32_VMX_PROCBASED_CTLS2,
1185         MSR_IA32_VMX_EPT_VPID_CAP,
1186         MSR_IA32_VMX_VMFUNC,
1187
1188         MSR_F10H_DECFG,
1189         MSR_IA32_UCODE_REV,
1190         MSR_IA32_ARCH_CAPABILITIES,
1191 };
1192
1193 static unsigned int num_msr_based_features;
1194
1195 u64 kvm_get_arch_capabilities(void)
1196 {
1197         u64 data;
1198
1199         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1200
1201         /*
1202          * If we're doing cache flushes (either "always" or "cond")
1203          * we will do one whenever the guest does a vmlaunch/vmresume.
1204          * If an outer hypervisor is doing the cache flush for us
1205          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206          * capability to the guest too, and if EPT is disabled we're not
1207          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1208          * require a nested hypervisor to do a flush of its own.
1209          */
1210         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1211                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1212
1213         return data;
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1216
1217 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1218 {
1219         switch (msr->index) {
1220         case MSR_IA32_ARCH_CAPABILITIES:
1221                 msr->data = kvm_get_arch_capabilities();
1222                 break;
1223         case MSR_IA32_UCODE_REV:
1224                 rdmsrl_safe(msr->index, &msr->data);
1225                 break;
1226         default:
1227                 if (kvm_x86_ops->get_msr_feature(msr))
1228                         return 1;
1229         }
1230         return 0;
1231 }
1232
1233 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1234 {
1235         struct kvm_msr_entry msr;
1236         int r;
1237
1238         msr.index = index;
1239         r = kvm_get_msr_feature(&msr);
1240         if (r)
1241                 return r;
1242
1243         *data = msr.data;
1244
1245         return 0;
1246 }
1247
1248 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1249 {
1250         if (efer & efer_reserved_bits)
1251                 return false;
1252
1253         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1254                         return false;
1255
1256         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1257                         return false;
1258
1259         return true;
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1262
1263 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1264 {
1265         u64 old_efer = vcpu->arch.efer;
1266
1267         if (!kvm_valid_efer(vcpu, efer))
1268                 return 1;
1269
1270         if (is_paging(vcpu)
1271             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1272                 return 1;
1273
1274         efer &= ~EFER_LMA;
1275         efer |= vcpu->arch.efer & EFER_LMA;
1276
1277         kvm_x86_ops->set_efer(vcpu, efer);
1278
1279         /* Update reserved bits */
1280         if ((efer ^ old_efer) & EFER_NX)
1281                 kvm_mmu_reset_context(vcpu);
1282
1283         return 0;
1284 }
1285
1286 void kvm_enable_efer_bits(u64 mask)
1287 {
1288        efer_reserved_bits &= ~mask;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1291
1292 /*
1293  * Writes msr value into into the appropriate "register".
1294  * Returns 0 on success, non-0 otherwise.
1295  * Assumes vcpu_load() was already called.
1296  */
1297 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1298 {
1299         switch (msr->index) {
1300         case MSR_FS_BASE:
1301         case MSR_GS_BASE:
1302         case MSR_KERNEL_GS_BASE:
1303         case MSR_CSTAR:
1304         case MSR_LSTAR:
1305                 if (is_noncanonical_address(msr->data, vcpu))
1306                         return 1;
1307                 break;
1308         case MSR_IA32_SYSENTER_EIP:
1309         case MSR_IA32_SYSENTER_ESP:
1310                 /*
1311                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312                  * non-canonical address is written on Intel but not on
1313                  * AMD (which ignores the top 32-bits, because it does
1314                  * not implement 64-bit SYSENTER).
1315                  *
1316                  * 64-bit code should hence be able to write a non-canonical
1317                  * value on AMD.  Making the address canonical ensures that
1318                  * vmentry does not fail on Intel after writing a non-canonical
1319                  * value, and that something deterministic happens if the guest
1320                  * invokes 64-bit SYSENTER.
1321                  */
1322                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1323         }
1324         return kvm_x86_ops->set_msr(vcpu, msr);
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_set_msr);
1327
1328 /*
1329  * Adapt set_msr() to msr_io()'s calling convention
1330  */
1331 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1332 {
1333         struct msr_data msr;
1334         int r;
1335
1336         msr.index = index;
1337         msr.host_initiated = true;
1338         r = kvm_get_msr(vcpu, &msr);
1339         if (r)
1340                 return r;
1341
1342         *data = msr.data;
1343         return 0;
1344 }
1345
1346 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1347 {
1348         struct msr_data msr;
1349
1350         msr.data = *data;
1351         msr.index = index;
1352         msr.host_initiated = true;
1353         return kvm_set_msr(vcpu, &msr);
1354 }
1355
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data {
1358         seqcount_t      seq;
1359
1360         struct { /* extract of a clocksource struct */
1361                 int vclock_mode;
1362                 u64     cycle_last;
1363                 u64     mask;
1364                 u32     mult;
1365                 u32     shift;
1366         } clock;
1367
1368         u64             boot_ns;
1369         u64             nsec_base;
1370         u64             wall_time_sec;
1371 };
1372
1373 static struct pvclock_gtod_data pvclock_gtod_data;
1374
1375 static void update_pvclock_gtod(struct timekeeper *tk)
1376 {
1377         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1378         u64 boot_ns;
1379
1380         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1381
1382         write_seqcount_begin(&vdata->seq);
1383
1384         /* copy pvclock gtod data */
1385         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1386         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1387         vdata->clock.mask               = tk->tkr_mono.mask;
1388         vdata->clock.mult               = tk->tkr_mono.mult;
1389         vdata->clock.shift              = tk->tkr_mono.shift;
1390
1391         vdata->boot_ns                  = boot_ns;
1392         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1393
1394         vdata->wall_time_sec            = tk->xtime_sec;
1395
1396         write_seqcount_end(&vdata->seq);
1397 }
1398 #endif
1399
1400 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1401 {
1402         /*
1403          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404          * vcpu_enter_guest.  This function is only called from
1405          * the physical CPU that is running vcpu.
1406          */
1407         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1408 }
1409
1410 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1411 {
1412         int version;
1413         int r;
1414         struct pvclock_wall_clock wc;
1415         struct timespec64 boot;
1416
1417         if (!wall_clock)
1418                 return;
1419
1420         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1421         if (r)
1422                 return;
1423
1424         if (version & 1)
1425                 ++version;  /* first time write, random junk */
1426
1427         ++version;
1428
1429         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1430                 return;
1431
1432         /*
1433          * The guest calculates current wall clock time by adding
1434          * system time (updated by kvm_guest_time_update below) to the
1435          * wall clock specified here.  guest system time equals host
1436          * system time for us, thus we must fill in host boot time here.
1437          */
1438         getboottime64(&boot);
1439
1440         if (kvm->arch.kvmclock_offset) {
1441                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1442                 boot = timespec64_sub(boot, ts);
1443         }
1444         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1445         wc.nsec = boot.tv_nsec;
1446         wc.version = version;
1447
1448         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1449
1450         version++;
1451         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1452 }
1453
1454 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1455 {
1456         do_shl32_div32(dividend, divisor);
1457         return dividend;
1458 }
1459
1460 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1461                                s8 *pshift, u32 *pmultiplier)
1462 {
1463         uint64_t scaled64;
1464         int32_t  shift = 0;
1465         uint64_t tps64;
1466         uint32_t tps32;
1467
1468         tps64 = base_hz;
1469         scaled64 = scaled_hz;
1470         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1471                 tps64 >>= 1;
1472                 shift--;
1473         }
1474
1475         tps32 = (uint32_t)tps64;
1476         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1477                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1478                         scaled64 >>= 1;
1479                 else
1480                         tps32 <<= 1;
1481                 shift++;
1482         }
1483
1484         *pshift = shift;
1485         *pmultiplier = div_frac(scaled64, tps32);
1486
1487         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1489 }
1490
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1493 #endif
1494
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1496 static unsigned long max_tsc_khz;
1497
1498 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1499 {
1500         u64 v = (u64)khz * (1000000 + ppm);
1501         do_div(v, 1000000);
1502         return v;
1503 }
1504
1505 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1506 {
1507         u64 ratio;
1508
1509         /* Guest TSC same frequency as host TSC? */
1510         if (!scale) {
1511                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1512                 return 0;
1513         }
1514
1515         /* TSC scaling supported? */
1516         if (!kvm_has_tsc_control) {
1517                 if (user_tsc_khz > tsc_khz) {
1518                         vcpu->arch.tsc_catchup = 1;
1519                         vcpu->arch.tsc_always_catchup = 1;
1520                         return 0;
1521                 } else {
1522                         WARN(1, "user requested TSC rate below hardware speed\n");
1523                         return -1;
1524                 }
1525         }
1526
1527         /* TSC scaling required  - calculate ratio */
1528         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1529                                 user_tsc_khz, tsc_khz);
1530
1531         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1532                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1533                           user_tsc_khz);
1534                 return -1;
1535         }
1536
1537         vcpu->arch.tsc_scaling_ratio = ratio;
1538         return 0;
1539 }
1540
1541 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1542 {
1543         u32 thresh_lo, thresh_hi;
1544         int use_scaling = 0;
1545
1546         /* tsc_khz can be zero if TSC calibration fails */
1547         if (user_tsc_khz == 0) {
1548                 /* set tsc_scaling_ratio to a safe value */
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return -1;
1551         }
1552
1553         /* Compute a scale to convert nanoseconds in TSC cycles */
1554         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1555                            &vcpu->arch.virtual_tsc_shift,
1556                            &vcpu->arch.virtual_tsc_mult);
1557         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1558
1559         /*
1560          * Compute the variation in TSC rate which is acceptable
1561          * within the range of tolerance and decide if the
1562          * rate being applied is within that bounds of the hardware
1563          * rate.  If so, no scaling or compensation need be done.
1564          */
1565         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1566         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1567         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1568                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1569                 use_scaling = 1;
1570         }
1571         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1572 }
1573
1574 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1575 {
1576         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1577                                       vcpu->arch.virtual_tsc_mult,
1578                                       vcpu->arch.virtual_tsc_shift);
1579         tsc += vcpu->arch.this_tsc_write;
1580         return tsc;
1581 }
1582
1583 static inline int gtod_is_based_on_tsc(int mode)
1584 {
1585         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1586 }
1587
1588 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1589 {
1590 #ifdef CONFIG_X86_64
1591         bool vcpus_matched;
1592         struct kvm_arch *ka = &vcpu->kvm->arch;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1596                          atomic_read(&vcpu->kvm->online_vcpus));
1597
1598         /*
1599          * Once the masterclock is enabled, always perform request in
1600          * order to update it.
1601          *
1602          * In order to enable masterclock, the host clocksource must be TSC
1603          * and the vcpus need to have matched TSCs.  When that happens,
1604          * perform request to enable masterclock.
1605          */
1606         if (ka->use_master_clock ||
1607             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1608                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1609
1610         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1611                             atomic_read(&vcpu->kvm->online_vcpus),
1612                             ka->use_master_clock, gtod->clock.vclock_mode);
1613 #endif
1614 }
1615
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1617 {
1618         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1619         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1620 }
1621
1622 /*
1623  * Multiply tsc by a fixed point number represented by ratio.
1624  *
1625  * The most significant 64-N bits (mult) of ratio represent the
1626  * integral part of the fixed point number; the remaining N bits
1627  * (frac) represent the fractional part, ie. ratio represents a fixed
1628  * point number (mult + frac * 2^(-N)).
1629  *
1630  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1631  */
1632 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1633 {
1634         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1635 }
1636
1637 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1638 {
1639         u64 _tsc = tsc;
1640         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1641
1642         if (ratio != kvm_default_tsc_scaling_ratio)
1643                 _tsc = __scale_tsc(ratio, tsc);
1644
1645         return _tsc;
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1648
1649 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1650 {
1651         u64 tsc;
1652
1653         tsc = kvm_scale_tsc(vcpu, rdtsc());
1654
1655         return target_tsc - tsc;
1656 }
1657
1658 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1659 {
1660         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1661
1662         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1665
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1667 {
1668         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1669         vcpu->arch.tsc_offset = offset;
1670 }
1671
1672 static inline bool kvm_check_tsc_unstable(void)
1673 {
1674 #ifdef CONFIG_X86_64
1675         /*
1676          * TSC is marked unstable when we're running on Hyper-V,
1677          * 'TSC page' clocksource is good.
1678          */
1679         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1680                 return false;
1681 #endif
1682         return check_tsc_unstable();
1683 }
1684
1685 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1686 {
1687         struct kvm *kvm = vcpu->kvm;
1688         u64 offset, ns, elapsed;
1689         unsigned long flags;
1690         bool matched;
1691         bool already_matched;
1692         u64 data = msr->data;
1693         bool synchronizing = false;
1694
1695         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1696         offset = kvm_compute_tsc_offset(vcpu, data);
1697         ns = ktime_get_boot_ns();
1698         elapsed = ns - kvm->arch.last_tsc_nsec;
1699
1700         if (vcpu->arch.virtual_tsc_khz) {
1701                 if (data == 0 && msr->host_initiated) {
1702                         /*
1703                          * detection of vcpu initialization -- need to sync
1704                          * with other vCPUs. This particularly helps to keep
1705                          * kvm_clock stable after CPU hotplug
1706                          */
1707                         synchronizing = true;
1708                 } else {
1709                         u64 tsc_exp = kvm->arch.last_tsc_write +
1710                                                 nsec_to_cycles(vcpu, elapsed);
1711                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1712                         /*
1713                          * Special case: TSC write with a small delta (1 second)
1714                          * of virtual cycle time against real time is
1715                          * interpreted as an attempt to synchronize the CPU.
1716                          */
1717                         synchronizing = data < tsc_exp + tsc_hz &&
1718                                         data + tsc_hz > tsc_exp;
1719                 }
1720         }
1721
1722         /*
1723          * For a reliable TSC, we can match TSC offsets, and for an unstable
1724          * TSC, we add elapsed time in this computation.  We could let the
1725          * compensation code attempt to catch up if we fall behind, but
1726          * it's better to try to match offsets from the beginning.
1727          */
1728         if (synchronizing &&
1729             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1730                 if (!kvm_check_tsc_unstable()) {
1731                         offset = kvm->arch.cur_tsc_offset;
1732                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1733                 } else {
1734                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1735                         data += delta;
1736                         offset = kvm_compute_tsc_offset(vcpu, data);
1737                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1738                 }
1739                 matched = true;
1740                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1741         } else {
1742                 /*
1743                  * We split periods of matched TSC writes into generations.
1744                  * For each generation, we track the original measured
1745                  * nanosecond time, offset, and write, so if TSCs are in
1746                  * sync, we can match exact offset, and if not, we can match
1747                  * exact software computation in compute_guest_tsc()
1748                  *
1749                  * These values are tracked in kvm->arch.cur_xxx variables.
1750                  */
1751                 kvm->arch.cur_tsc_generation++;
1752                 kvm->arch.cur_tsc_nsec = ns;
1753                 kvm->arch.cur_tsc_write = data;
1754                 kvm->arch.cur_tsc_offset = offset;
1755                 matched = false;
1756                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1757                          kvm->arch.cur_tsc_generation, data);
1758         }
1759
1760         /*
1761          * We also track th most recent recorded KHZ, write and time to
1762          * allow the matching interval to be extended at each write.
1763          */
1764         kvm->arch.last_tsc_nsec = ns;
1765         kvm->arch.last_tsc_write = data;
1766         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1767
1768         vcpu->arch.last_guest_tsc = data;
1769
1770         /* Keep track of which generation this VCPU has synchronized to */
1771         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1772         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1773         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1774
1775         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1776                 update_ia32_tsc_adjust_msr(vcpu, offset);
1777
1778         kvm_vcpu_write_tsc_offset(vcpu, offset);
1779         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1780
1781         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1782         if (!matched) {
1783                 kvm->arch.nr_vcpus_matched_tsc = 0;
1784         } else if (!already_matched) {
1785                 kvm->arch.nr_vcpus_matched_tsc++;
1786         }
1787
1788         kvm_track_tsc_matching(vcpu);
1789         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1790 }
1791
1792 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1793
1794 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1795                                            s64 adjustment)
1796 {
1797         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1798 }
1799
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1801 {
1802         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1803                 WARN_ON(adjustment < 0);
1804         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1805         adjust_tsc_offset_guest(vcpu, adjustment);
1806 }
1807
1808 #ifdef CONFIG_X86_64
1809
1810 static u64 read_tsc(void)
1811 {
1812         u64 ret = (u64)rdtsc_ordered();
1813         u64 last = pvclock_gtod_data.clock.cycle_last;
1814
1815         if (likely(ret >= last))
1816                 return ret;
1817
1818         /*
1819          * GCC likes to generate cmov here, but this branch is extremely
1820          * predictable (it's just a function of time and the likely is
1821          * very likely) and there's a data dependence, so force GCC
1822          * to generate a branch instead.  I don't barrier() because
1823          * we don't actually need a barrier, and if this function
1824          * ever gets inlined it will generate worse code.
1825          */
1826         asm volatile ("");
1827         return last;
1828 }
1829
1830 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1831 {
1832         long v;
1833         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1834         u64 tsc_pg_val;
1835
1836         switch (gtod->clock.vclock_mode) {
1837         case VCLOCK_HVCLOCK:
1838                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1839                                                   tsc_timestamp);
1840                 if (tsc_pg_val != U64_MAX) {
1841                         /* TSC page valid */
1842                         *mode = VCLOCK_HVCLOCK;
1843                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1844                                 gtod->clock.mask;
1845                 } else {
1846                         /* TSC page invalid */
1847                         *mode = VCLOCK_NONE;
1848                 }
1849                 break;
1850         case VCLOCK_TSC:
1851                 *mode = VCLOCK_TSC;
1852                 *tsc_timestamp = read_tsc();
1853                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1854                         gtod->clock.mask;
1855                 break;
1856         default:
1857                 *mode = VCLOCK_NONE;
1858         }
1859
1860         if (*mode == VCLOCK_NONE)
1861                 *tsc_timestamp = v = 0;
1862
1863         return v * gtod->clock.mult;
1864 }
1865
1866 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1867 {
1868         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1869         unsigned long seq;
1870         int mode;
1871         u64 ns;
1872
1873         do {
1874                 seq = read_seqcount_begin(&gtod->seq);
1875                 ns = gtod->nsec_base;
1876                 ns += vgettsc(tsc_timestamp, &mode);
1877                 ns >>= gtod->clock.shift;
1878                 ns += gtod->boot_ns;
1879         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1880         *t = ns;
1881
1882         return mode;
1883 }
1884
1885 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1886 {
1887         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888         unsigned long seq;
1889         int mode;
1890         u64 ns;
1891
1892         do {
1893                 seq = read_seqcount_begin(&gtod->seq);
1894                 ts->tv_sec = gtod->wall_time_sec;
1895                 ns = gtod->nsec_base;
1896                 ns += vgettsc(tsc_timestamp, &mode);
1897                 ns >>= gtod->clock.shift;
1898         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1899
1900         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1901         ts->tv_nsec = ns;
1902
1903         return mode;
1904 }
1905
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1908 {
1909         /* checked again under seqlock below */
1910         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1911                 return false;
1912
1913         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1914                                                       tsc_timestamp));
1915 }
1916
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1919                                            u64 *tsc_timestamp)
1920 {
1921         /* checked again under seqlock below */
1922         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1923                 return false;
1924
1925         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1926 }
1927 #endif
1928
1929 /*
1930  *
1931  * Assuming a stable TSC across physical CPUS, and a stable TSC
1932  * across virtual CPUs, the following condition is possible.
1933  * Each numbered line represents an event visible to both
1934  * CPUs at the next numbered event.
1935  *
1936  * "timespecX" represents host monotonic time. "tscX" represents
1937  * RDTSC value.
1938  *
1939  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1940  *
1941  * 1.  read timespec0,tsc0
1942  * 2.                                   | timespec1 = timespec0 + N
1943  *                                      | tsc1 = tsc0 + M
1944  * 3. transition to guest               | transition to guest
1945  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1947  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1948  *
1949  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1950  *
1951  *      - ret0 < ret1
1952  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1953  *              ...
1954  *      - 0 < N - M => M < N
1955  *
1956  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957  * always the case (the difference between two distinct xtime instances
1958  * might be smaller then the difference between corresponding TSC reads,
1959  * when updating guest vcpus pvclock areas).
1960  *
1961  * To avoid that problem, do not allow visibility of distinct
1962  * system_timestamp/tsc_timestamp values simultaneously: use a master
1963  * copy of host monotonic time values. Update that master copy
1964  * in lockstep.
1965  *
1966  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1967  *
1968  */
1969
1970 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1971 {
1972 #ifdef CONFIG_X86_64
1973         struct kvm_arch *ka = &kvm->arch;
1974         int vclock_mode;
1975         bool host_tsc_clocksource, vcpus_matched;
1976
1977         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1978                         atomic_read(&kvm->online_vcpus));
1979
1980         /*
1981          * If the host uses TSC clock, then passthrough TSC as stable
1982          * to the guest.
1983          */
1984         host_tsc_clocksource = kvm_get_time_and_clockread(
1985                                         &ka->master_kernel_ns,
1986                                         &ka->master_cycle_now);
1987
1988         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1989                                 && !ka->backwards_tsc_observed
1990                                 && !ka->boot_vcpu_runs_old_kvmclock;
1991
1992         if (ka->use_master_clock)
1993                 atomic_set(&kvm_guest_has_master_clock, 1);
1994
1995         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1996         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1997                                         vcpus_matched);
1998 #endif
1999 }
2000
2001 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2002 {
2003         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2004 }
2005
2006 static void kvm_gen_update_masterclock(struct kvm *kvm)
2007 {
2008 #ifdef CONFIG_X86_64
2009         int i;
2010         struct kvm_vcpu *vcpu;
2011         struct kvm_arch *ka = &kvm->arch;
2012
2013         spin_lock(&ka->pvclock_gtod_sync_lock);
2014         kvm_make_mclock_inprogress_request(kvm);
2015         /* no guest entries from this point */
2016         pvclock_update_vm_gtod_copy(kvm);
2017
2018         kvm_for_each_vcpu(i, vcpu, kvm)
2019                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2020
2021         /* guest entries allowed */
2022         kvm_for_each_vcpu(i, vcpu, kvm)
2023                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2024
2025         spin_unlock(&ka->pvclock_gtod_sync_lock);
2026 #endif
2027 }
2028
2029 u64 get_kvmclock_ns(struct kvm *kvm)
2030 {
2031         struct kvm_arch *ka = &kvm->arch;
2032         struct pvclock_vcpu_time_info hv_clock;
2033         u64 ret;
2034
2035         spin_lock(&ka->pvclock_gtod_sync_lock);
2036         if (!ka->use_master_clock) {
2037                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2038                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2039         }
2040
2041         hv_clock.tsc_timestamp = ka->master_cycle_now;
2042         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2043         spin_unlock(&ka->pvclock_gtod_sync_lock);
2044
2045         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2046         get_cpu();
2047
2048         if (__this_cpu_read(cpu_tsc_khz)) {
2049                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2050                                    &hv_clock.tsc_shift,
2051                                    &hv_clock.tsc_to_system_mul);
2052                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2053         } else
2054                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2055
2056         put_cpu();
2057
2058         return ret;
2059 }
2060
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2062 {
2063         struct kvm_vcpu_arch *vcpu = &v->arch;
2064         struct pvclock_vcpu_time_info guest_hv_clock;
2065
2066         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2067                 &guest_hv_clock, sizeof(guest_hv_clock))))
2068                 return;
2069
2070         /* This VCPU is paused, but it's legal for a guest to read another
2071          * VCPU's kvmclock, so we really have to follow the specification where
2072          * it says that version is odd if data is being modified, and even after
2073          * it is consistent.
2074          *
2075          * Version field updates must be kept separate.  This is because
2076          * kvm_write_guest_cached might use a "rep movs" instruction, and
2077          * writes within a string instruction are weakly ordered.  So there
2078          * are three writes overall.
2079          *
2080          * As a small optimization, only write the version field in the first
2081          * and third write.  The vcpu->pv_time cache is still valid, because the
2082          * version field is the first in the struct.
2083          */
2084         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2085
2086         if (guest_hv_clock.version & 1)
2087                 ++guest_hv_clock.version;  /* first time write, random junk */
2088
2089         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2090         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2091                                 &vcpu->hv_clock,
2092                                 sizeof(vcpu->hv_clock.version));
2093
2094         smp_wmb();
2095
2096         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2098
2099         if (vcpu->pvclock_set_guest_stopped_request) {
2100                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2101                 vcpu->pvclock_set_guest_stopped_request = false;
2102         }
2103
2104         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2105
2106         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2107                                 &vcpu->hv_clock,
2108                                 sizeof(vcpu->hv_clock));
2109
2110         smp_wmb();
2111
2112         vcpu->hv_clock.version++;
2113         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2114                                 &vcpu->hv_clock,
2115                                 sizeof(vcpu->hv_clock.version));
2116 }
2117
2118 static int kvm_guest_time_update(struct kvm_vcpu *v)
2119 {
2120         unsigned long flags, tgt_tsc_khz;
2121         struct kvm_vcpu_arch *vcpu = &v->arch;
2122         struct kvm_arch *ka = &v->kvm->arch;
2123         s64 kernel_ns;
2124         u64 tsc_timestamp, host_tsc;
2125         u8 pvclock_flags;
2126         bool use_master_clock;
2127
2128         kernel_ns = 0;
2129         host_tsc = 0;
2130
2131         /*
2132          * If the host uses TSC clock, then passthrough TSC as stable
2133          * to the guest.
2134          */
2135         spin_lock(&ka->pvclock_gtod_sync_lock);
2136         use_master_clock = ka->use_master_clock;
2137         if (use_master_clock) {
2138                 host_tsc = ka->master_cycle_now;
2139                 kernel_ns = ka->master_kernel_ns;
2140         }
2141         spin_unlock(&ka->pvclock_gtod_sync_lock);
2142
2143         /* Keep irq disabled to prevent changes to the clock */
2144         local_irq_save(flags);
2145         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2146         if (unlikely(tgt_tsc_khz == 0)) {
2147                 local_irq_restore(flags);
2148                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2149                 return 1;
2150         }
2151         if (!use_master_clock) {
2152                 host_tsc = rdtsc();
2153                 kernel_ns = ktime_get_boot_ns();
2154         }
2155
2156         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2157
2158         /*
2159          * We may have to catch up the TSC to match elapsed wall clock
2160          * time for two reasons, even if kvmclock is used.
2161          *   1) CPU could have been running below the maximum TSC rate
2162          *   2) Broken TSC compensation resets the base at each VCPU
2163          *      entry to avoid unknown leaps of TSC even when running
2164          *      again on the same CPU.  This may cause apparent elapsed
2165          *      time to disappear, and the guest to stand still or run
2166          *      very slowly.
2167          */
2168         if (vcpu->tsc_catchup) {
2169                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2170                 if (tsc > tsc_timestamp) {
2171                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2172                         tsc_timestamp = tsc;
2173                 }
2174         }
2175
2176         local_irq_restore(flags);
2177
2178         /* With all the info we got, fill in the values */
2179
2180         if (kvm_has_tsc_control)
2181                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2182
2183         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2184                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2185                                    &vcpu->hv_clock.tsc_shift,
2186                                    &vcpu->hv_clock.tsc_to_system_mul);
2187                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2188         }
2189
2190         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2191         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2192         vcpu->last_guest_tsc = tsc_timestamp;
2193
2194         /* If the host uses TSC clocksource, then it is stable */
2195         pvclock_flags = 0;
2196         if (use_master_clock)
2197                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2198
2199         vcpu->hv_clock.flags = pvclock_flags;
2200
2201         if (vcpu->pv_time_enabled)
2202                 kvm_setup_pvclock_page(v);
2203         if (v == kvm_get_vcpu(v->kvm, 0))
2204                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2205         return 0;
2206 }
2207
2208 /*
2209  * kvmclock updates which are isolated to a given vcpu, such as
2210  * vcpu->cpu migration, should not allow system_timestamp from
2211  * the rest of the vcpus to remain static. Otherwise ntp frequency
2212  * correction applies to one vcpu's system_timestamp but not
2213  * the others.
2214  *
2215  * So in those cases, request a kvmclock update for all vcpus.
2216  * We need to rate-limit these requests though, as they can
2217  * considerably slow guests that have a large number of vcpus.
2218  * The time for a remote vcpu to update its kvmclock is bound
2219  * by the delay we use to rate-limit the updates.
2220  */
2221
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2223
2224 static void kvmclock_update_fn(struct work_struct *work)
2225 {
2226         int i;
2227         struct delayed_work *dwork = to_delayed_work(work);
2228         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2229                                            kvmclock_update_work);
2230         struct kvm *kvm = container_of(ka, struct kvm, arch);
2231         struct kvm_vcpu *vcpu;
2232
2233         kvm_for_each_vcpu(i, vcpu, kvm) {
2234                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2235                 kvm_vcpu_kick(vcpu);
2236         }
2237 }
2238
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2240 {
2241         struct kvm *kvm = v->kvm;
2242
2243         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2244         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2245                                         KVMCLOCK_UPDATE_DELAY);
2246 }
2247
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2249
2250 static void kvmclock_sync_fn(struct work_struct *work)
2251 {
2252         struct delayed_work *dwork = to_delayed_work(work);
2253         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2254                                            kvmclock_sync_work);
2255         struct kvm *kvm = container_of(ka, struct kvm, arch);
2256
2257         if (!kvmclock_periodic_sync)
2258                 return;
2259
2260         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2261         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2262                                         KVMCLOCK_SYNC_PERIOD);
2263 }
2264
2265 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2266 {
2267         u64 mcg_cap = vcpu->arch.mcg_cap;
2268         unsigned bank_num = mcg_cap & 0xff;
2269         u32 msr = msr_info->index;
2270         u64 data = msr_info->data;
2271
2272         switch (msr) {
2273         case MSR_IA32_MCG_STATUS:
2274                 vcpu->arch.mcg_status = data;
2275                 break;
2276         case MSR_IA32_MCG_CTL:
2277                 if (!(mcg_cap & MCG_CTL_P) &&
2278                     (data || !msr_info->host_initiated))
2279                         return 1;
2280                 if (data != 0 && data != ~(u64)0)
2281                         return 1;
2282                 vcpu->arch.mcg_ctl = data;
2283                 break;
2284         default:
2285                 if (msr >= MSR_IA32_MC0_CTL &&
2286                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2287                         u32 offset = msr - MSR_IA32_MC0_CTL;
2288                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2289                          * some Linux kernels though clear bit 10 in bank 4 to
2290                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291                          * this to avoid an uncatched #GP in the guest
2292                          */
2293                         if ((offset & 0x3) == 0 &&
2294                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2295                                 return -1;
2296                         if (!msr_info->host_initiated &&
2297                                 (offset & 0x3) == 1 && data != 0)
2298                                 return -1;
2299                         vcpu->arch.mce_banks[offset] = data;
2300                         break;
2301                 }
2302                 return 1;
2303         }
2304         return 0;
2305 }
2306
2307 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2308 {
2309         struct kvm *kvm = vcpu->kvm;
2310         int lm = is_long_mode(vcpu);
2311         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2312                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2313         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2314                 : kvm->arch.xen_hvm_config.blob_size_32;
2315         u32 page_num = data & ~PAGE_MASK;
2316         u64 page_addr = data & PAGE_MASK;
2317         u8 *page;
2318         int r;
2319
2320         r = -E2BIG;
2321         if (page_num >= blob_size)
2322                 goto out;
2323         r = -ENOMEM;
2324         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2325         if (IS_ERR(page)) {
2326                 r = PTR_ERR(page);
2327                 goto out;
2328         }
2329         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2330                 goto out_free;
2331         r = 0;
2332 out_free:
2333         kfree(page);
2334 out:
2335         return r;
2336 }
2337
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2339 {
2340         gpa_t gpa = data & ~0x3f;
2341
2342         /* Bits 3:5 are reserved, Should be zero */
2343         if (data & 0x38)
2344                 return 1;
2345
2346         vcpu->arch.apf.msr_val = data;
2347
2348         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2349                 kvm_clear_async_pf_completion_queue(vcpu);
2350                 kvm_async_pf_hash_reset(vcpu);
2351                 return 0;
2352         }
2353
2354         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2355                                         sizeof(u32)))
2356                 return 1;
2357
2358         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2359         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2360         kvm_async_pf_wakeup_all(vcpu);
2361         return 0;
2362 }
2363
2364 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2365 {
2366         vcpu->arch.pv_time_enabled = false;
2367 }
2368
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2370 {
2371         ++vcpu->stat.tlb_flush;
2372         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2373 }
2374
2375 static void record_steal_time(struct kvm_vcpu *vcpu)
2376 {
2377         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2378                 return;
2379
2380         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2381                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2382                 return;
2383
2384         /*
2385          * Doing a TLB flush here, on the guest's behalf, can avoid
2386          * expensive IPIs.
2387          */
2388         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2389                 kvm_vcpu_flush_tlb(vcpu, false);
2390
2391         if (vcpu->arch.st.steal.version & 1)
2392                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2393
2394         vcpu->arch.st.steal.version += 1;
2395
2396         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2397                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2398
2399         smp_wmb();
2400
2401         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2402                 vcpu->arch.st.last_steal;
2403         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2404
2405         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2406                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2407
2408         smp_wmb();
2409
2410         vcpu->arch.st.steal.version += 1;
2411
2412         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2413                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2414 }
2415
2416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2417 {
2418         bool pr = false;
2419         u32 msr = msr_info->index;
2420         u64 data = msr_info->data;
2421
2422         switch (msr) {
2423         case MSR_AMD64_NB_CFG:
2424         case MSR_IA32_UCODE_WRITE:
2425         case MSR_VM_HSAVE_PA:
2426         case MSR_AMD64_PATCH_LOADER:
2427         case MSR_AMD64_BU_CFG2:
2428         case MSR_AMD64_DC_CFG:
2429                 break;
2430
2431         case MSR_IA32_UCODE_REV:
2432                 if (msr_info->host_initiated)
2433                         vcpu->arch.microcode_version = data;
2434                 break;
2435         case MSR_EFER:
2436                 return set_efer(vcpu, data);
2437         case MSR_K7_HWCR:
2438                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2439                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2440                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2441                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2442                 if (data != 0) {
2443                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2444                                     data);
2445                         return 1;
2446                 }
2447                 break;
2448         case MSR_FAM10H_MMIO_CONF_BASE:
2449                 if (data != 0) {
2450                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2451                                     "0x%llx\n", data);
2452                         return 1;
2453                 }
2454                 break;
2455         case MSR_IA32_DEBUGCTLMSR:
2456                 if (!data) {
2457                         /* We support the non-activated case already */
2458                         break;
2459                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2460                         /* Values other than LBR and BTF are vendor-specific,
2461                            thus reserved and should throw a #GP */
2462                         return 1;
2463                 }
2464                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2465                             __func__, data);
2466                 break;
2467         case 0x200 ... 0x2ff:
2468                 return kvm_mtrr_set_msr(vcpu, msr, data);
2469         case MSR_IA32_APICBASE:
2470                 return kvm_set_apic_base(vcpu, msr_info);
2471         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2472                 return kvm_x2apic_msr_write(vcpu, msr, data);
2473         case MSR_IA32_TSCDEADLINE:
2474                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2475                 break;
2476         case MSR_IA32_TSC_ADJUST:
2477                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2478                         if (!msr_info->host_initiated) {
2479                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2480                                 adjust_tsc_offset_guest(vcpu, adj);
2481                         }
2482                         vcpu->arch.ia32_tsc_adjust_msr = data;
2483                 }
2484                 break;
2485         case MSR_IA32_MISC_ENABLE:
2486                 vcpu->arch.ia32_misc_enable_msr = data;
2487                 break;
2488         case MSR_IA32_SMBASE:
2489                 if (!msr_info->host_initiated)
2490                         return 1;
2491                 vcpu->arch.smbase = data;
2492                 break;
2493         case MSR_IA32_TSC:
2494                 kvm_write_tsc(vcpu, msr_info);
2495                 break;
2496         case MSR_SMI_COUNT:
2497                 if (!msr_info->host_initiated)
2498                         return 1;
2499                 vcpu->arch.smi_count = data;
2500                 break;
2501         case MSR_KVM_WALL_CLOCK_NEW:
2502         case MSR_KVM_WALL_CLOCK:
2503                 vcpu->kvm->arch.wall_clock = data;
2504                 kvm_write_wall_clock(vcpu->kvm, data);
2505                 break;
2506         case MSR_KVM_SYSTEM_TIME_NEW:
2507         case MSR_KVM_SYSTEM_TIME: {
2508                 struct kvm_arch *ka = &vcpu->kvm->arch;
2509
2510                 kvmclock_reset(vcpu);
2511
2512                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2513                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2514
2515                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2516                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2517
2518                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2519                 }
2520
2521                 vcpu->arch.time = data;
2522                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2523
2524                 /* we verify if the enable bit is set... */
2525                 if (!(data & 1))
2526                         break;
2527
2528                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2529                      &vcpu->arch.pv_time, data & ~1ULL,
2530                      sizeof(struct pvclock_vcpu_time_info)))
2531                         vcpu->arch.pv_time_enabled = false;
2532                 else
2533                         vcpu->arch.pv_time_enabled = true;
2534
2535                 break;
2536         }
2537         case MSR_KVM_ASYNC_PF_EN:
2538                 if (kvm_pv_enable_async_pf(vcpu, data))
2539                         return 1;
2540                 break;
2541         case MSR_KVM_STEAL_TIME:
2542
2543                 if (unlikely(!sched_info_on()))
2544                         return 1;
2545
2546                 if (data & KVM_STEAL_RESERVED_MASK)
2547                         return 1;
2548
2549                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2550                                                 data & KVM_STEAL_VALID_BITS,
2551                                                 sizeof(struct kvm_steal_time)))
2552                         return 1;
2553
2554                 vcpu->arch.st.msr_val = data;
2555
2556                 if (!(data & KVM_MSR_ENABLED))
2557                         break;
2558
2559                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2560
2561                 break;
2562         case MSR_KVM_PV_EOI_EN:
2563                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2564                         return 1;
2565                 break;
2566
2567         case MSR_IA32_MCG_CTL:
2568         case MSR_IA32_MCG_STATUS:
2569         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570                 return set_msr_mce(vcpu, msr_info);
2571
2572         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2573         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2574                 pr = true; /* fall through */
2575         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2576         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2577                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2578                         return kvm_pmu_set_msr(vcpu, msr_info);
2579
2580                 if (pr || data != 0)
2581                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2582                                     "0x%x data 0x%llx\n", msr, data);
2583                 break;
2584         case MSR_K7_CLK_CTL:
2585                 /*
2586                  * Ignore all writes to this no longer documented MSR.
2587                  * Writes are only relevant for old K7 processors,
2588                  * all pre-dating SVM, but a recommended workaround from
2589                  * AMD for these chips. It is possible to specify the
2590                  * affected processor models on the command line, hence
2591                  * the need to ignore the workaround.
2592                  */
2593                 break;
2594         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596         case HV_X64_MSR_CRASH_CTL:
2597         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2599         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2600         case HV_X64_MSR_TSC_EMULATION_STATUS:
2601                 return kvm_hv_set_msr_common(vcpu, msr, data,
2602                                              msr_info->host_initiated);
2603         case MSR_IA32_BBL_CR_CTL3:
2604                 /* Drop writes to this legacy MSR -- see rdmsr
2605                  * counterpart for further detail.
2606                  */
2607                 if (report_ignored_msrs)
2608                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2609                                 msr, data);
2610                 break;
2611         case MSR_AMD64_OSVW_ID_LENGTH:
2612                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2613                         return 1;
2614                 vcpu->arch.osvw.length = data;
2615                 break;
2616         case MSR_AMD64_OSVW_STATUS:
2617                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2618                         return 1;
2619                 vcpu->arch.osvw.status = data;
2620                 break;
2621         case MSR_PLATFORM_INFO:
2622                 if (!msr_info->host_initiated ||
2623                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2624                      cpuid_fault_enabled(vcpu)))
2625                         return 1;
2626                 vcpu->arch.msr_platform_info = data;
2627                 break;
2628         case MSR_MISC_FEATURES_ENABLES:
2629                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2630                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2631                      !supports_cpuid_fault(vcpu)))
2632                         return 1;
2633                 vcpu->arch.msr_misc_features_enables = data;
2634                 break;
2635         default:
2636                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2637                         return xen_hvm_config(vcpu, data);
2638                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2639                         return kvm_pmu_set_msr(vcpu, msr_info);
2640                 if (!ignore_msrs) {
2641                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2642                                     msr, data);
2643                         return 1;
2644                 } else {
2645                         if (report_ignored_msrs)
2646                                 vcpu_unimpl(vcpu,
2647                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2648                                         msr, data);
2649                         break;
2650                 }
2651         }
2652         return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2655
2656
2657 /*
2658  * Reads an msr value (of 'msr_index') into 'pdata'.
2659  * Returns 0 on success, non-0 otherwise.
2660  * Assumes vcpu_load() was already called.
2661  */
2662 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2663 {
2664         return kvm_x86_ops->get_msr(vcpu, msr);
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_get_msr);
2667
2668 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2669 {
2670         u64 data;
2671         u64 mcg_cap = vcpu->arch.mcg_cap;
2672         unsigned bank_num = mcg_cap & 0xff;
2673
2674         switch (msr) {
2675         case MSR_IA32_P5_MC_ADDR:
2676         case MSR_IA32_P5_MC_TYPE:
2677                 data = 0;
2678                 break;
2679         case MSR_IA32_MCG_CAP:
2680                 data = vcpu->arch.mcg_cap;
2681                 break;
2682         case MSR_IA32_MCG_CTL:
2683                 if (!(mcg_cap & MCG_CTL_P) && !host)
2684                         return 1;
2685                 data = vcpu->arch.mcg_ctl;
2686                 break;
2687         case MSR_IA32_MCG_STATUS:
2688                 data = vcpu->arch.mcg_status;
2689                 break;
2690         default:
2691                 if (msr >= MSR_IA32_MC0_CTL &&
2692                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2693                         u32 offset = msr - MSR_IA32_MC0_CTL;
2694                         data = vcpu->arch.mce_banks[offset];
2695                         break;
2696                 }
2697                 return 1;
2698         }
2699         *pdata = data;
2700         return 0;
2701 }
2702
2703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2704 {
2705         switch (msr_info->index) {
2706         case MSR_IA32_PLATFORM_ID:
2707         case MSR_IA32_EBL_CR_POWERON:
2708         case MSR_IA32_DEBUGCTLMSR:
2709         case MSR_IA32_LASTBRANCHFROMIP:
2710         case MSR_IA32_LASTBRANCHTOIP:
2711         case MSR_IA32_LASTINTFROMIP:
2712         case MSR_IA32_LASTINTTOIP:
2713         case MSR_K8_SYSCFG:
2714         case MSR_K8_TSEG_ADDR:
2715         case MSR_K8_TSEG_MASK:
2716         case MSR_K7_HWCR:
2717         case MSR_VM_HSAVE_PA:
2718         case MSR_K8_INT_PENDING_MSG:
2719         case MSR_AMD64_NB_CFG:
2720         case MSR_FAM10H_MMIO_CONF_BASE:
2721         case MSR_AMD64_BU_CFG2:
2722         case MSR_IA32_PERF_CTL:
2723         case MSR_AMD64_DC_CFG:
2724                 msr_info->data = 0;
2725                 break;
2726         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2727         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2728         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2729         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2730         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2731                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2733                 msr_info->data = 0;
2734                 break;
2735         case MSR_IA32_UCODE_REV:
2736                 msr_info->data = vcpu->arch.microcode_version;
2737                 break;
2738         case MSR_IA32_TSC:
2739                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2740                 break;
2741         case MSR_MTRRcap:
2742         case 0x200 ... 0x2ff:
2743                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2744         case 0xcd: /* fsb frequency */
2745                 msr_info->data = 3;
2746                 break;
2747                 /*
2748                  * MSR_EBC_FREQUENCY_ID
2749                  * Conservative value valid for even the basic CPU models.
2750                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752                  * and 266MHz for model 3, or 4. Set Core Clock
2753                  * Frequency to System Bus Frequency Ratio to 1 (bits
2754                  * 31:24) even though these are only valid for CPU
2755                  * models > 2, however guests may end up dividing or
2756                  * multiplying by zero otherwise.
2757                  */
2758         case MSR_EBC_FREQUENCY_ID:
2759                 msr_info->data = 1 << 24;
2760                 break;
2761         case MSR_IA32_APICBASE:
2762                 msr_info->data = kvm_get_apic_base(vcpu);
2763                 break;
2764         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2766                 break;
2767         case MSR_IA32_TSCDEADLINE:
2768                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2769                 break;
2770         case MSR_IA32_TSC_ADJUST:
2771                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2772                 break;
2773         case MSR_IA32_MISC_ENABLE:
2774                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2775                 break;
2776         case MSR_IA32_SMBASE:
2777                 if (!msr_info->host_initiated)
2778                         return 1;
2779                 msr_info->data = vcpu->arch.smbase;
2780                 break;
2781         case MSR_SMI_COUNT:
2782                 msr_info->data = vcpu->arch.smi_count;
2783                 break;
2784         case MSR_IA32_PERF_STATUS:
2785                 /* TSC increment by tick */
2786                 msr_info->data = 1000ULL;
2787                 /* CPU multiplier */
2788                 msr_info->data |= (((uint64_t)4ULL) << 40);
2789                 break;
2790         case MSR_EFER:
2791                 msr_info->data = vcpu->arch.efer;
2792                 break;
2793         case MSR_KVM_WALL_CLOCK:
2794         case MSR_KVM_WALL_CLOCK_NEW:
2795                 msr_info->data = vcpu->kvm->arch.wall_clock;
2796                 break;
2797         case MSR_KVM_SYSTEM_TIME:
2798         case MSR_KVM_SYSTEM_TIME_NEW:
2799                 msr_info->data = vcpu->arch.time;
2800                 break;
2801         case MSR_KVM_ASYNC_PF_EN:
2802                 msr_info->data = vcpu->arch.apf.msr_val;
2803                 break;
2804         case MSR_KVM_STEAL_TIME:
2805                 msr_info->data = vcpu->arch.st.msr_val;
2806                 break;
2807         case MSR_KVM_PV_EOI_EN:
2808                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2809                 break;
2810         case MSR_IA32_P5_MC_ADDR:
2811         case MSR_IA32_P5_MC_TYPE:
2812         case MSR_IA32_MCG_CAP:
2813         case MSR_IA32_MCG_CTL:
2814         case MSR_IA32_MCG_STATUS:
2815         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2816                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2817                                    msr_info->host_initiated);
2818         case MSR_K7_CLK_CTL:
2819                 /*
2820                  * Provide expected ramp-up count for K7. All other
2821                  * are set to zero, indicating minimum divisors for
2822                  * every field.
2823                  *
2824                  * This prevents guest kernels on AMD host with CPU
2825                  * type 6, model 8 and higher from exploding due to
2826                  * the rdmsr failing.
2827                  */
2828                 msr_info->data = 0x20000000;
2829                 break;
2830         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2831         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2832         case HV_X64_MSR_CRASH_CTL:
2833         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2834         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2835         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2836         case HV_X64_MSR_TSC_EMULATION_STATUS:
2837                 return kvm_hv_get_msr_common(vcpu,
2838                                              msr_info->index, &msr_info->data,
2839                                              msr_info->host_initiated);
2840                 break;
2841         case MSR_IA32_BBL_CR_CTL3:
2842                 /* This legacy MSR exists but isn't fully documented in current
2843                  * silicon.  It is however accessed by winxp in very narrow
2844                  * scenarios where it sets bit #19, itself documented as
2845                  * a "reserved" bit.  Best effort attempt to source coherent
2846                  * read data here should the balance of the register be
2847                  * interpreted by the guest:
2848                  *
2849                  * L2 cache control register 3: 64GB range, 256KB size,
2850                  * enabled, latency 0x1, configured
2851                  */
2852                 msr_info->data = 0xbe702111;
2853                 break;
2854         case MSR_AMD64_OSVW_ID_LENGTH:
2855                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2856                         return 1;
2857                 msr_info->data = vcpu->arch.osvw.length;
2858                 break;
2859         case MSR_AMD64_OSVW_STATUS:
2860                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861                         return 1;
2862                 msr_info->data = vcpu->arch.osvw.status;
2863                 break;
2864         case MSR_PLATFORM_INFO:
2865                 if (!msr_info->host_initiated &&
2866                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2867                         return 1;
2868                 msr_info->data = vcpu->arch.msr_platform_info;
2869                 break;
2870         case MSR_MISC_FEATURES_ENABLES:
2871                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2872                 break;
2873         default:
2874                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2875                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2876                 if (!ignore_msrs) {
2877                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2878                                                msr_info->index);
2879                         return 1;
2880                 } else {
2881                         if (report_ignored_msrs)
2882                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2883                                         msr_info->index);
2884                         msr_info->data = 0;
2885                 }
2886                 break;
2887         }
2888         return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2891
2892 /*
2893  * Read or write a bunch of msrs. All parameters are kernel addresses.
2894  *
2895  * @return number of msrs set successfully.
2896  */
2897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2898                     struct kvm_msr_entry *entries,
2899                     int (*do_msr)(struct kvm_vcpu *vcpu,
2900                                   unsigned index, u64 *data))
2901 {
2902         int i;
2903
2904         for (i = 0; i < msrs->nmsrs; ++i)
2905                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2906                         break;
2907
2908         return i;
2909 }
2910
2911 /*
2912  * Read or write a bunch of msrs. Parameters are user addresses.
2913  *
2914  * @return number of msrs set successfully.
2915  */
2916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2917                   int (*do_msr)(struct kvm_vcpu *vcpu,
2918                                 unsigned index, u64 *data),
2919                   int writeback)
2920 {
2921         struct kvm_msrs msrs;
2922         struct kvm_msr_entry *entries;
2923         int r, n;
2924         unsigned size;
2925
2926         r = -EFAULT;
2927         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2928                 goto out;
2929
2930         r = -E2BIG;
2931         if (msrs.nmsrs >= MAX_IO_MSRS)
2932                 goto out;
2933
2934         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2935         entries = memdup_user(user_msrs->entries, size);
2936         if (IS_ERR(entries)) {
2937                 r = PTR_ERR(entries);
2938                 goto out;
2939         }
2940
2941         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2942         if (r < 0)
2943                 goto out_free;
2944
2945         r = -EFAULT;
2946         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2947                 goto out_free;
2948
2949         r = n;
2950
2951 out_free:
2952         kfree(entries);
2953 out:
2954         return r;
2955 }
2956
2957 static inline bool kvm_can_mwait_in_guest(void)
2958 {
2959         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2960                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2961                 boot_cpu_has(X86_FEATURE_ARAT);
2962 }
2963
2964 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2965 {
2966         int r = 0;
2967
2968         switch (ext) {
2969         case KVM_CAP_IRQCHIP:
2970         case KVM_CAP_HLT:
2971         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2972         case KVM_CAP_SET_TSS_ADDR:
2973         case KVM_CAP_EXT_CPUID:
2974         case KVM_CAP_EXT_EMUL_CPUID:
2975         case KVM_CAP_CLOCKSOURCE:
2976         case KVM_CAP_PIT:
2977         case KVM_CAP_NOP_IO_DELAY:
2978         case KVM_CAP_MP_STATE:
2979         case KVM_CAP_SYNC_MMU:
2980         case KVM_CAP_USER_NMI:
2981         case KVM_CAP_REINJECT_CONTROL:
2982         case KVM_CAP_IRQ_INJECT_STATUS:
2983         case KVM_CAP_IOEVENTFD:
2984         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2985         case KVM_CAP_PIT2:
2986         case KVM_CAP_PIT_STATE2:
2987         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2988         case KVM_CAP_XEN_HVM:
2989         case KVM_CAP_VCPU_EVENTS:
2990         case KVM_CAP_HYPERV:
2991         case KVM_CAP_HYPERV_VAPIC:
2992         case KVM_CAP_HYPERV_SPIN:
2993         case KVM_CAP_HYPERV_SYNIC:
2994         case KVM_CAP_HYPERV_SYNIC2:
2995         case KVM_CAP_HYPERV_VP_INDEX:
2996         case KVM_CAP_HYPERV_EVENTFD:
2997         case KVM_CAP_HYPERV_TLBFLUSH:
2998         case KVM_CAP_HYPERV_SEND_IPI:
2999         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3000         case KVM_CAP_PCI_SEGMENT:
3001         case KVM_CAP_DEBUGREGS:
3002         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3003         case KVM_CAP_XSAVE:
3004         case KVM_CAP_ASYNC_PF:
3005         case KVM_CAP_GET_TSC_KHZ:
3006         case KVM_CAP_KVMCLOCK_CTRL:
3007         case KVM_CAP_READONLY_MEM:
3008         case KVM_CAP_HYPERV_TIME:
3009         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3010         case KVM_CAP_TSC_DEADLINE_TIMER:
3011         case KVM_CAP_ENABLE_CAP_VM:
3012         case KVM_CAP_DISABLE_QUIRKS:
3013         case KVM_CAP_SET_BOOT_CPU_ID:
3014         case KVM_CAP_SPLIT_IRQCHIP:
3015         case KVM_CAP_IMMEDIATE_EXIT:
3016         case KVM_CAP_GET_MSR_FEATURES:
3017         case KVM_CAP_MSR_PLATFORM_INFO:
3018                 r = 1;
3019                 break;
3020         case KVM_CAP_SYNC_REGS:
3021                 r = KVM_SYNC_X86_VALID_FIELDS;
3022                 break;
3023         case KVM_CAP_ADJUST_CLOCK:
3024                 r = KVM_CLOCK_TSC_STABLE;
3025                 break;
3026         case KVM_CAP_X86_DISABLE_EXITS:
3027                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3028                 if(kvm_can_mwait_in_guest())
3029                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3030                 break;
3031         case KVM_CAP_X86_SMM:
3032                 /* SMBASE is usually relocated above 1M on modern chipsets,
3033                  * and SMM handlers might indeed rely on 4G segment limits,
3034                  * so do not report SMM to be available if real mode is
3035                  * emulated via vm86 mode.  Still, do not go to great lengths
3036                  * to avoid userspace's usage of the feature, because it is a
3037                  * fringe case that is not enabled except via specific settings
3038                  * of the module parameters.
3039                  */
3040                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3041                 break;
3042         case KVM_CAP_VAPIC:
3043                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3044                 break;
3045         case KVM_CAP_NR_VCPUS:
3046                 r = KVM_SOFT_MAX_VCPUS;
3047                 break;
3048         case KVM_CAP_MAX_VCPUS:
3049                 r = KVM_MAX_VCPUS;
3050                 break;
3051         case KVM_CAP_NR_MEMSLOTS:
3052                 r = KVM_USER_MEM_SLOTS;
3053                 break;
3054         case KVM_CAP_PV_MMU:    /* obsolete */
3055                 r = 0;
3056                 break;
3057         case KVM_CAP_MCE:
3058                 r = KVM_MAX_MCE_BANKS;
3059                 break;
3060         case KVM_CAP_XCRS:
3061                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3062                 break;
3063         case KVM_CAP_TSC_CONTROL:
3064                 r = kvm_has_tsc_control;
3065                 break;
3066         case KVM_CAP_X2APIC_API:
3067                 r = KVM_X2APIC_API_VALID_FLAGS;
3068                 break;
3069         case KVM_CAP_NESTED_STATE:
3070                 r = kvm_x86_ops->get_nested_state ?
3071                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3072                 break;
3073         default:
3074                 break;
3075         }
3076         return r;
3077
3078 }
3079
3080 long kvm_arch_dev_ioctl(struct file *filp,
3081                         unsigned int ioctl, unsigned long arg)
3082 {
3083         void __user *argp = (void __user *)arg;
3084         long r;
3085
3086         switch (ioctl) {
3087         case KVM_GET_MSR_INDEX_LIST: {
3088                 struct kvm_msr_list __user *user_msr_list = argp;
3089                 struct kvm_msr_list msr_list;
3090                 unsigned n;
3091
3092                 r = -EFAULT;
3093                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3094                         goto out;
3095                 n = msr_list.nmsrs;
3096                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3097                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3098                         goto out;
3099                 r = -E2BIG;
3100                 if (n < msr_list.nmsrs)
3101                         goto out;
3102                 r = -EFAULT;
3103                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3104                                  num_msrs_to_save * sizeof(u32)))
3105                         goto out;
3106                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3107                                  &emulated_msrs,
3108                                  num_emulated_msrs * sizeof(u32)))
3109                         goto out;
3110                 r = 0;
3111                 break;
3112         }
3113         case KVM_GET_SUPPORTED_CPUID:
3114         case KVM_GET_EMULATED_CPUID: {
3115                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3116                 struct kvm_cpuid2 cpuid;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3120                         goto out;
3121
3122                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3123                                             ioctl);
3124                 if (r)
3125                         goto out;
3126
3127                 r = -EFAULT;
3128                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3129                         goto out;
3130                 r = 0;
3131                 break;
3132         }
3133         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3134                 r = -EFAULT;
3135                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3136                                  sizeof(kvm_mce_cap_supported)))
3137                         goto out;
3138                 r = 0;
3139                 break;
3140         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3141                 struct kvm_msr_list __user *user_msr_list = argp;
3142                 struct kvm_msr_list msr_list;
3143                 unsigned int n;
3144
3145                 r = -EFAULT;
3146                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3147                         goto out;
3148                 n = msr_list.nmsrs;
3149                 msr_list.nmsrs = num_msr_based_features;
3150                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3151                         goto out;
3152                 r = -E2BIG;
3153                 if (n < msr_list.nmsrs)
3154                         goto out;
3155                 r = -EFAULT;
3156                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3157                                  num_msr_based_features * sizeof(u32)))
3158                         goto out;
3159                 r = 0;
3160                 break;
3161         }
3162         case KVM_GET_MSRS:
3163                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3164                 break;
3165         }
3166         default:
3167                 r = -EINVAL;
3168         }
3169 out:
3170         return r;
3171 }
3172
3173 static void wbinvd_ipi(void *garbage)
3174 {
3175         wbinvd();
3176 }
3177
3178 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3179 {
3180         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3181 }
3182
3183 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3184 {
3185         /* Address WBINVD may be executed by guest */
3186         if (need_emulate_wbinvd(vcpu)) {
3187                 if (kvm_x86_ops->has_wbinvd_exit())
3188                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3189                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3190                         smp_call_function_single(vcpu->cpu,
3191                                         wbinvd_ipi, NULL, 1);
3192         }
3193
3194         kvm_x86_ops->vcpu_load(vcpu, cpu);
3195
3196         /* Apply any externally detected TSC adjustments (due to suspend) */
3197         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3198                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3199                 vcpu->arch.tsc_offset_adjustment = 0;
3200                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3201         }
3202
3203         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3204                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3205                                 rdtsc() - vcpu->arch.last_host_tsc;
3206                 if (tsc_delta < 0)
3207                         mark_tsc_unstable("KVM discovered backwards TSC");
3208
3209                 if (kvm_check_tsc_unstable()) {
3210                         u64 offset = kvm_compute_tsc_offset(vcpu,
3211                                                 vcpu->arch.last_guest_tsc);
3212                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3213                         vcpu->arch.tsc_catchup = 1;
3214                 }
3215
3216                 if (kvm_lapic_hv_timer_in_use(vcpu))
3217                         kvm_lapic_restart_hv_timer(vcpu);
3218
3219                 /*
3220                  * On a host with synchronized TSC, there is no need to update
3221                  * kvmclock on vcpu->cpu migration
3222                  */
3223                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3224                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3225                 if (vcpu->cpu != cpu)
3226                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3227                 vcpu->cpu = cpu;
3228         }
3229
3230         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3231 }
3232
3233 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3234 {
3235         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3236                 return;
3237
3238         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3239
3240         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3241                         &vcpu->arch.st.steal.preempted,
3242                         offsetof(struct kvm_steal_time, preempted),
3243                         sizeof(vcpu->arch.st.steal.preempted));
3244 }
3245
3246 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3247 {
3248         int idx;
3249
3250         if (vcpu->preempted)
3251                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3252
3253         /*
3254          * Disable page faults because we're in atomic context here.
3255          * kvm_write_guest_offset_cached() would call might_fault()
3256          * that relies on pagefault_disable() to tell if there's a
3257          * bug. NOTE: the write to guest memory may not go through if
3258          * during postcopy live migration or if there's heavy guest
3259          * paging.
3260          */
3261         pagefault_disable();
3262         /*
3263          * kvm_memslots() will be called by
3264          * kvm_write_guest_offset_cached() so take the srcu lock.
3265          */
3266         idx = srcu_read_lock(&vcpu->kvm->srcu);
3267         kvm_steal_time_set_preempted(vcpu);
3268         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3269         pagefault_enable();
3270         kvm_x86_ops->vcpu_put(vcpu);
3271         vcpu->arch.last_host_tsc = rdtsc();
3272         /*
3273          * Here dr6 is either zero or, if the guest has run and userspace
3274          * has not set any breakpoints or watchpoints, it can be set to
3275          * the guest dr6 (stored in vcpu->arch.dr6). do_debug expects dr6
3276          * to be cleared after it runs, so clear the host register.  However,
3277          * MOV to DR can be expensive when running nested, omit it if
3278          * vcpu->arch.dr6 is already zero: in that case, the host dr6 cannot
3279          * currently be nonzero.
3280          */
3281         if (vcpu->arch.dr6)
3282                 set_debugreg(0, 6);
3283 }
3284
3285 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3286                                     struct kvm_lapic_state *s)
3287 {
3288         if (vcpu->arch.apicv_active)
3289                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3290
3291         return kvm_apic_get_state(vcpu, s);
3292 }
3293
3294 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3295                                     struct kvm_lapic_state *s)
3296 {
3297         int r;
3298
3299         r = kvm_apic_set_state(vcpu, s);
3300         if (r)
3301                 return r;
3302         update_cr8_intercept(vcpu);
3303
3304         return 0;
3305 }
3306
3307 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3308 {
3309         return (!lapic_in_kernel(vcpu) ||
3310                 kvm_apic_accept_pic_intr(vcpu));
3311 }
3312
3313 /*
3314  * if userspace requested an interrupt window, check that the
3315  * interrupt window is open.
3316  *
3317  * No need to exit to userspace if we already have an interrupt queued.
3318  */
3319 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3320 {
3321         return kvm_arch_interrupt_allowed(vcpu) &&
3322                 !kvm_cpu_has_interrupt(vcpu) &&
3323                 !kvm_event_needs_reinjection(vcpu) &&
3324                 kvm_cpu_accept_dm_intr(vcpu);
3325 }
3326
3327 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3328                                     struct kvm_interrupt *irq)
3329 {
3330         if (irq->irq >= KVM_NR_INTERRUPTS)
3331                 return -EINVAL;
3332
3333         if (!irqchip_in_kernel(vcpu->kvm)) {
3334                 kvm_queue_interrupt(vcpu, irq->irq, false);
3335                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3336                 return 0;
3337         }
3338
3339         /*
3340          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3341          * fail for in-kernel 8259.
3342          */
3343         if (pic_in_kernel(vcpu->kvm))
3344                 return -ENXIO;
3345
3346         if (vcpu->arch.pending_external_vector != -1)
3347                 return -EEXIST;
3348
3349         vcpu->arch.pending_external_vector = irq->irq;
3350         kvm_make_request(KVM_REQ_EVENT, vcpu);
3351         return 0;
3352 }
3353
3354 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3355 {
3356         kvm_inject_nmi(vcpu);
3357
3358         return 0;
3359 }
3360
3361 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3362 {
3363         kvm_make_request(KVM_REQ_SMI, vcpu);
3364
3365         return 0;
3366 }
3367
3368 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3369                                            struct kvm_tpr_access_ctl *tac)
3370 {
3371         if (tac->flags)
3372                 return -EINVAL;
3373         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3374         return 0;
3375 }
3376
3377 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3378                                         u64 mcg_cap)
3379 {
3380         int r;
3381         unsigned bank_num = mcg_cap & 0xff, bank;
3382
3383         r = -EINVAL;
3384         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3385                 goto out;
3386         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3387                 goto out;
3388         r = 0;
3389         vcpu->arch.mcg_cap = mcg_cap;
3390         /* Init IA32_MCG_CTL to all 1s */
3391         if (mcg_cap & MCG_CTL_P)
3392                 vcpu->arch.mcg_ctl = ~(u64)0;
3393         /* Init IA32_MCi_CTL to all 1s */
3394         for (bank = 0; bank < bank_num; bank++)
3395                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3396
3397         if (kvm_x86_ops->setup_mce)
3398                 kvm_x86_ops->setup_mce(vcpu);
3399 out:
3400         return r;
3401 }
3402
3403 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3404                                       struct kvm_x86_mce *mce)
3405 {
3406         u64 mcg_cap = vcpu->arch.mcg_cap;
3407         unsigned bank_num = mcg_cap & 0xff;
3408         u64 *banks = vcpu->arch.mce_banks;
3409
3410         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3411                 return -EINVAL;
3412         /*
3413          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3414          * reporting is disabled
3415          */
3416         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3417             vcpu->arch.mcg_ctl != ~(u64)0)
3418                 return 0;
3419         banks += 4 * mce->bank;
3420         /*
3421          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3422          * reporting is disabled for the bank
3423          */
3424         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3425                 return 0;
3426         if (mce->status & MCI_STATUS_UC) {
3427                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3428                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3429                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3430                         return 0;
3431                 }
3432                 if (banks[1] & MCI_STATUS_VAL)
3433                         mce->status |= MCI_STATUS_OVER;
3434                 banks[2] = mce->addr;
3435                 banks[3] = mce->misc;
3436                 vcpu->arch.mcg_status = mce->mcg_status;
3437                 banks[1] = mce->status;
3438                 kvm_queue_exception(vcpu, MC_VECTOR);
3439         } else if (!(banks[1] & MCI_STATUS_VAL)
3440                    || !(banks[1] & MCI_STATUS_UC)) {
3441                 if (banks[1] & MCI_STATUS_VAL)
3442                         mce->status |= MCI_STATUS_OVER;
3443                 banks[2] = mce->addr;
3444                 banks[3] = mce->misc;
3445                 banks[1] = mce->status;
3446         } else
3447                 banks[1] |= MCI_STATUS_OVER;
3448         return 0;
3449 }
3450
3451 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3452                                                struct kvm_vcpu_events *events)
3453 {
3454         process_nmi(vcpu);
3455
3456         /*
3457          * The API doesn't provide the instruction length for software
3458          * exceptions, so don't report them. As long as the guest RIP
3459          * isn't advanced, we should expect to encounter the exception
3460          * again.
3461          */
3462         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3463                 events->exception.injected = 0;
3464                 events->exception.pending = 0;
3465         } else {
3466                 events->exception.injected = vcpu->arch.exception.injected;
3467                 events->exception.pending = vcpu->arch.exception.pending;
3468                 /*
3469                  * For ABI compatibility, deliberately conflate
3470                  * pending and injected exceptions when
3471                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3472                  */
3473                 if (!vcpu->kvm->arch.exception_payload_enabled)
3474                         events->exception.injected |=
3475                                 vcpu->arch.exception.pending;
3476         }
3477         events->exception.nr = vcpu->arch.exception.nr;
3478         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3479         events->exception.error_code = vcpu->arch.exception.error_code;
3480         events->exception_has_payload = vcpu->arch.exception.has_payload;
3481         events->exception_payload = vcpu->arch.exception.payload;
3482
3483         events->interrupt.injected =
3484                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3485         events->interrupt.nr = vcpu->arch.interrupt.nr;
3486         events->interrupt.soft = 0;
3487         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3488
3489         events->nmi.injected = vcpu->arch.nmi_injected;
3490         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3491         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3492         events->nmi.pad = 0;
3493
3494         events->sipi_vector = 0; /* never valid when reporting to user space */
3495
3496         events->smi.smm = is_smm(vcpu);
3497         events->smi.pending = vcpu->arch.smi_pending;
3498         events->smi.smm_inside_nmi =
3499                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3500         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3501
3502         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3503                          | KVM_VCPUEVENT_VALID_SHADOW
3504                          | KVM_VCPUEVENT_VALID_SMM);
3505         if (vcpu->kvm->arch.exception_payload_enabled)
3506                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3507
3508         memset(&events->reserved, 0, sizeof(events->reserved));
3509 }
3510
3511 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3512
3513 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3514                                               struct kvm_vcpu_events *events)
3515 {
3516         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3517                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3518                               | KVM_VCPUEVENT_VALID_SHADOW
3519                               | KVM_VCPUEVENT_VALID_SMM
3520                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3521                 return -EINVAL;
3522
3523         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3524                 if (!vcpu->kvm->arch.exception_payload_enabled)
3525                         return -EINVAL;
3526                 if (events->exception.pending)
3527                         events->exception.injected = 0;
3528                 else
3529                         events->exception_has_payload = 0;
3530         } else {
3531                 events->exception.pending = 0;
3532                 events->exception_has_payload = 0;
3533         }
3534
3535         if ((events->exception.injected || events->exception.pending) &&
3536             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3537                 return -EINVAL;
3538
3539         /* INITs are latched while in SMM */
3540         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3541             (events->smi.smm || events->smi.pending) &&
3542             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3543                 return -EINVAL;
3544
3545         process_nmi(vcpu);
3546         vcpu->arch.exception.injected = events->exception.injected;
3547         vcpu->arch.exception.pending = events->exception.pending;
3548         vcpu->arch.exception.nr = events->exception.nr;
3549         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3550         vcpu->arch.exception.error_code = events->exception.error_code;
3551         vcpu->arch.exception.has_payload = events->exception_has_payload;
3552         vcpu->arch.exception.payload = events->exception_payload;
3553
3554         vcpu->arch.interrupt.injected = events->interrupt.injected;
3555         vcpu->arch.interrupt.nr = events->interrupt.nr;
3556         vcpu->arch.interrupt.soft = events->interrupt.soft;
3557         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3558                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3559                                                   events->interrupt.shadow);
3560
3561         vcpu->arch.nmi_injected = events->nmi.injected;
3562         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3563                 vcpu->arch.nmi_pending = events->nmi.pending;
3564         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3565
3566         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3567             lapic_in_kernel(vcpu))
3568                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3569
3570         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3571                 u32 hflags = vcpu->arch.hflags;
3572                 if (events->smi.smm)
3573                         hflags |= HF_SMM_MASK;
3574                 else
3575                         hflags &= ~HF_SMM_MASK;
3576                 kvm_set_hflags(vcpu, hflags);
3577
3578                 vcpu->arch.smi_pending = events->smi.pending;
3579
3580                 if (events->smi.smm) {
3581                         if (events->smi.smm_inside_nmi)
3582                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3583                         else
3584                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3585                         if (lapic_in_kernel(vcpu)) {
3586                                 if (events->smi.latched_init)
3587                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3588                                 else
3589                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3590                         }
3591                 }
3592         }
3593
3594         kvm_make_request(KVM_REQ_EVENT, vcpu);
3595
3596         return 0;
3597 }
3598
3599 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3600                                              struct kvm_debugregs *dbgregs)
3601 {
3602         unsigned long val;
3603
3604         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3605         kvm_get_dr(vcpu, 6, &val);
3606         dbgregs->dr6 = val;
3607         dbgregs->dr7 = vcpu->arch.dr7;
3608         dbgregs->flags = 0;
3609         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3610 }
3611
3612 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3613                                             struct kvm_debugregs *dbgregs)
3614 {
3615         if (dbgregs->flags)
3616                 return -EINVAL;
3617
3618         if (dbgregs->dr6 & ~0xffffffffull)
3619                 return -EINVAL;
3620         if (dbgregs->dr7 & ~0xffffffffull)
3621                 return -EINVAL;
3622
3623         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3624         kvm_update_dr0123(vcpu);
3625         vcpu->arch.dr6 = dbgregs->dr6;
3626         kvm_update_dr6(vcpu);
3627         vcpu->arch.dr7 = dbgregs->dr7;
3628         kvm_update_dr7(vcpu);
3629
3630         return 0;
3631 }
3632
3633 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3634
3635 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3636 {
3637         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3638         u64 xstate_bv = xsave->header.xfeatures;
3639         u64 valid;
3640
3641         /*
3642          * Copy legacy XSAVE area, to avoid complications with CPUID
3643          * leaves 0 and 1 in the loop below.
3644          */
3645         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3646
3647         /* Set XSTATE_BV */
3648         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3649         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3650
3651         /*
3652          * Copy each region from the possibly compacted offset to the
3653          * non-compacted offset.
3654          */
3655         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3656         while (valid) {
3657                 u64 feature = valid & -valid;
3658                 int index = fls64(feature) - 1;
3659                 void *src = get_xsave_addr(xsave, feature);
3660
3661                 if (src) {
3662                         u32 size, offset, ecx, edx;
3663                         cpuid_count(XSTATE_CPUID, index,
3664                                     &size, &offset, &ecx, &edx);
3665                         if (feature == XFEATURE_MASK_PKRU)
3666                                 memcpy(dest + offset, &vcpu->arch.pkru,
3667                                        sizeof(vcpu->arch.pkru));
3668                         else
3669                                 memcpy(dest + offset, src, size);
3670
3671                 }
3672
3673                 valid -= feature;
3674         }
3675 }
3676
3677 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3678 {
3679         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3680         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3681         u64 valid;
3682
3683         /*
3684          * Copy legacy XSAVE area, to avoid complications with CPUID
3685          * leaves 0 and 1 in the loop below.
3686          */
3687         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3688
3689         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3690         xsave->header.xfeatures = xstate_bv;
3691         if (boot_cpu_has(X86_FEATURE_XSAVES))
3692                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3693
3694         /*
3695          * Copy each region from the non-compacted offset to the
3696          * possibly compacted offset.
3697          */
3698         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3699         while (valid) {
3700                 u64 feature = valid & -valid;
3701                 int index = fls64(feature) - 1;
3702                 void *dest = get_xsave_addr(xsave, feature);
3703
3704                 if (dest) {
3705                         u32 size, offset, ecx, edx;
3706                         cpuid_count(XSTATE_CPUID, index,
3707                                     &size, &offset, &ecx, &edx);
3708                         if (feature == XFEATURE_MASK_PKRU)
3709                                 memcpy(&vcpu->arch.pkru, src + offset,
3710                                        sizeof(vcpu->arch.pkru));
3711                         else
3712                                 memcpy(dest, src + offset, size);
3713                 }
3714
3715                 valid -= feature;
3716         }
3717 }
3718
3719 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3720                                          struct kvm_xsave *guest_xsave)
3721 {
3722         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3723                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3724                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3725         } else {
3726                 memcpy(guest_xsave->region,
3727                         &vcpu->arch.guest_fpu.state.fxsave,
3728                         sizeof(struct fxregs_state));
3729                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3730                         XFEATURE_MASK_FPSSE;
3731         }
3732 }
3733
3734 #define XSAVE_MXCSR_OFFSET 24
3735
3736 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3737                                         struct kvm_xsave *guest_xsave)
3738 {
3739         u64 xstate_bv =
3740                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3741         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3742
3743         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3744                 /*
3745                  * Here we allow setting states that are not present in
3746                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3747                  * with old userspace.
3748                  */
3749                 if (xstate_bv & ~kvm_supported_xcr0() ||
3750                         mxcsr & ~mxcsr_feature_mask)
3751                         return -EINVAL;
3752                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3753         } else {
3754                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3755                         mxcsr & ~mxcsr_feature_mask)
3756                         return -EINVAL;
3757                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3758                         guest_xsave->region, sizeof(struct fxregs_state));
3759         }
3760         return 0;
3761 }
3762
3763 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3764                                         struct kvm_xcrs *guest_xcrs)
3765 {
3766         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3767                 guest_xcrs->nr_xcrs = 0;
3768                 return;
3769         }
3770
3771         guest_xcrs->nr_xcrs = 1;
3772         guest_xcrs->flags = 0;
3773         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3774         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3775 }
3776
3777 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3778                                        struct kvm_xcrs *guest_xcrs)
3779 {
3780         int i, r = 0;
3781
3782         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3783                 return -EINVAL;
3784
3785         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3786                 return -EINVAL;
3787
3788         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3789                 /* Only support XCR0 currently */
3790                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3791                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3792                                 guest_xcrs->xcrs[i].value);
3793                         break;
3794                 }
3795         if (r)
3796                 r = -EINVAL;
3797         return r;
3798 }
3799
3800 /*
3801  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3802  * stopped by the hypervisor.  This function will be called from the host only.
3803  * EINVAL is returned when the host attempts to set the flag for a guest that
3804  * does not support pv clocks.
3805  */
3806 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3807 {
3808         if (!vcpu->arch.pv_time_enabled)
3809                 return -EINVAL;
3810         vcpu->arch.pvclock_set_guest_stopped_request = true;
3811         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3812         return 0;
3813 }
3814
3815 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3816                                      struct kvm_enable_cap *cap)
3817 {
3818         int r;
3819         uint16_t vmcs_version;
3820         void __user *user_ptr;
3821
3822         if (cap->flags)
3823                 return -EINVAL;
3824
3825         switch (cap->cap) {
3826         case KVM_CAP_HYPERV_SYNIC2:
3827                 if (cap->args[0])
3828                         return -EINVAL;
3829         case KVM_CAP_HYPERV_SYNIC:
3830                 if (!irqchip_in_kernel(vcpu->kvm))
3831                         return -EINVAL;
3832                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3833                                              KVM_CAP_HYPERV_SYNIC2);
3834         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3835                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3836                 if (!r) {
3837                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3838                         if (copy_to_user(user_ptr, &vmcs_version,
3839                                          sizeof(vmcs_version)))
3840                                 r = -EFAULT;
3841                 }
3842                 return r;
3843
3844         default:
3845                 return -EINVAL;
3846         }
3847 }
3848
3849 long kvm_arch_vcpu_ioctl(struct file *filp,
3850                          unsigned int ioctl, unsigned long arg)
3851 {
3852         struct kvm_vcpu *vcpu = filp->private_data;
3853         void __user *argp = (void __user *)arg;
3854         int r;
3855         union {
3856                 struct kvm_lapic_state *lapic;
3857                 struct kvm_xsave *xsave;
3858                 struct kvm_xcrs *xcrs;
3859                 void *buffer;
3860         } u;
3861
3862         vcpu_load(vcpu);
3863
3864         u.buffer = NULL;
3865         switch (ioctl) {
3866         case KVM_GET_LAPIC: {
3867                 r = -EINVAL;
3868                 if (!lapic_in_kernel(vcpu))
3869                         goto out;
3870                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3871
3872                 r = -ENOMEM;
3873                 if (!u.lapic)
3874                         goto out;
3875                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3876                 if (r)
3877                         goto out;
3878                 r = -EFAULT;
3879                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3880                         goto out;
3881                 r = 0;
3882                 break;
3883         }
3884         case KVM_SET_LAPIC: {
3885                 r = -EINVAL;
3886                 if (!lapic_in_kernel(vcpu))
3887                         goto out;
3888                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3889                 if (IS_ERR(u.lapic)) {
3890                         r = PTR_ERR(u.lapic);
3891                         goto out_nofree;
3892                 }
3893
3894                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3895                 break;
3896         }
3897         case KVM_INTERRUPT: {
3898                 struct kvm_interrupt irq;
3899
3900                 r = -EFAULT;
3901                 if (copy_from_user(&irq, argp, sizeof irq))
3902                         goto out;
3903                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3904                 break;
3905         }
3906         case KVM_NMI: {
3907                 r = kvm_vcpu_ioctl_nmi(vcpu);
3908                 break;
3909         }
3910         case KVM_SMI: {
3911                 r = kvm_vcpu_ioctl_smi(vcpu);
3912                 break;
3913         }
3914         case KVM_SET_CPUID: {
3915                 struct kvm_cpuid __user *cpuid_arg = argp;
3916                 struct kvm_cpuid cpuid;
3917
3918                 r = -EFAULT;
3919                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3920                         goto out;
3921                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3922                 break;
3923         }
3924         case KVM_SET_CPUID2: {
3925                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3926                 struct kvm_cpuid2 cpuid;
3927
3928                 r = -EFAULT;
3929                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3930                         goto out;
3931                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3932                                               cpuid_arg->entries);
3933                 break;
3934         }
3935         case KVM_GET_CPUID2: {
3936                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3937                 struct kvm_cpuid2 cpuid;
3938
3939                 r = -EFAULT;
3940                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3941                         goto out;
3942                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3943                                               cpuid_arg->entries);
3944                 if (r)
3945                         goto out;
3946                 r = -EFAULT;
3947                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3948                         goto out;
3949                 r = 0;
3950                 break;
3951         }
3952         case KVM_GET_MSRS: {
3953                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3954                 r = msr_io(vcpu, argp, do_get_msr, 1);
3955                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3956                 break;
3957         }
3958         case KVM_SET_MSRS: {
3959                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3960                 r = msr_io(vcpu, argp, do_set_msr, 0);
3961                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3962                 break;
3963         }
3964         case KVM_TPR_ACCESS_REPORTING: {
3965                 struct kvm_tpr_access_ctl tac;
3966
3967                 r = -EFAULT;
3968                 if (copy_from_user(&tac, argp, sizeof tac))
3969                         goto out;
3970                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3971                 if (r)
3972                         goto out;
3973                 r = -EFAULT;
3974                 if (copy_to_user(argp, &tac, sizeof tac))
3975                         goto out;
3976                 r = 0;
3977                 break;
3978         };
3979         case KVM_SET_VAPIC_ADDR: {
3980                 struct kvm_vapic_addr va;
3981                 int idx;
3982
3983                 r = -EINVAL;
3984                 if (!lapic_in_kernel(vcpu))
3985                         goto out;
3986                 r = -EFAULT;
3987                 if (copy_from_user(&va, argp, sizeof va))
3988                         goto out;
3989                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3990                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3991                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3992                 break;
3993         }
3994         case KVM_X86_SETUP_MCE: {
3995                 u64 mcg_cap;
3996
3997                 r = -EFAULT;
3998                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3999                         goto out;
4000                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4001                 break;
4002         }
4003         case KVM_X86_SET_MCE: {
4004                 struct kvm_x86_mce mce;
4005
4006                 r = -EFAULT;
4007                 if (copy_from_user(&mce, argp, sizeof mce))
4008                         goto out;
4009                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4010                 break;
4011         }
4012         case KVM_GET_VCPU_EVENTS: {
4013                 struct kvm_vcpu_events events;
4014
4015                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4016
4017                 r = -EFAULT;
4018                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4019                         break;
4020                 r = 0;
4021                 break;
4022         }
4023         case KVM_SET_VCPU_EVENTS: {
4024                 struct kvm_vcpu_events events;
4025
4026                 r = -EFAULT;
4027                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4028                         break;
4029
4030                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4031                 break;
4032         }
4033         case KVM_GET_DEBUGREGS: {
4034                 struct kvm_debugregs dbgregs;
4035
4036                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4037
4038                 r = -EFAULT;
4039                 if (copy_to_user(argp, &dbgregs,
4040                                  sizeof(struct kvm_debugregs)))
4041                         break;
4042                 r = 0;
4043                 break;
4044         }
4045         case KVM_SET_DEBUGREGS: {
4046                 struct kvm_debugregs dbgregs;
4047
4048                 r = -EFAULT;
4049                 if (copy_from_user(&dbgregs, argp,
4050                                    sizeof(struct kvm_debugregs)))
4051                         break;
4052
4053                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4054                 break;
4055         }
4056         case KVM_GET_XSAVE: {
4057                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4058                 r = -ENOMEM;
4059                 if (!u.xsave)
4060                         break;
4061
4062                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4063
4064                 r = -EFAULT;
4065                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4066                         break;
4067                 r = 0;
4068                 break;
4069         }
4070         case KVM_SET_XSAVE: {
4071                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4072                 if (IS_ERR(u.xsave)) {
4073                         r = PTR_ERR(u.xsave);
4074                         goto out_nofree;
4075                 }
4076
4077                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4078                 break;
4079         }
4080         case KVM_GET_XCRS: {
4081                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4082                 r = -ENOMEM;
4083                 if (!u.xcrs)
4084                         break;
4085
4086                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4087
4088                 r = -EFAULT;
4089                 if (copy_to_user(argp, u.xcrs,
4090                                  sizeof(struct kvm_xcrs)))
4091                         break;
4092                 r = 0;
4093                 break;
4094         }
4095         case KVM_SET_XCRS: {
4096                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4097                 if (IS_ERR(u.xcrs)) {
4098                         r = PTR_ERR(u.xcrs);
4099                         goto out_nofree;
4100                 }
4101
4102                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4103                 break;
4104         }
4105         case KVM_SET_TSC_KHZ: {
4106                 u32 user_tsc_khz;
4107
4108                 r = -EINVAL;
4109                 user_tsc_khz = (u32)arg;
4110
4111                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4112                         goto out;
4113
4114                 if (user_tsc_khz == 0)
4115                         user_tsc_khz = tsc_khz;
4116
4117                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4118                         r = 0;
4119
4120                 goto out;
4121         }
4122         case KVM_GET_TSC_KHZ: {
4123                 r = vcpu->arch.virtual_tsc_khz;
4124                 goto out;
4125         }
4126         case KVM_KVMCLOCK_CTRL: {
4127                 r = kvm_set_guest_paused(vcpu);
4128                 goto out;
4129         }
4130         case KVM_ENABLE_CAP: {
4131                 struct kvm_enable_cap cap;
4132
4133                 r = -EFAULT;
4134                 if (copy_from_user(&cap, argp, sizeof(cap)))
4135                         goto out;
4136                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4137                 break;
4138         }
4139         case KVM_GET_NESTED_STATE: {
4140                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4141                 u32 user_data_size;
4142
4143                 r = -EINVAL;
4144                 if (!kvm_x86_ops->get_nested_state)
4145                         break;
4146
4147                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4148                 r = -EFAULT;
4149                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4150                         break;
4151
4152                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4153                                                   user_data_size);
4154                 if (r < 0)
4155                         break;
4156
4157                 if (r > user_data_size) {
4158                         if (put_user(r, &user_kvm_nested_state->size))
4159                                 r = -EFAULT;
4160                         else
4161                                 r = -E2BIG;
4162                         break;
4163                 }
4164
4165                 r = 0;
4166                 break;
4167         }
4168         case KVM_SET_NESTED_STATE: {
4169                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4170                 struct kvm_nested_state kvm_state;
4171
4172                 r = -EINVAL;
4173                 if (!kvm_x86_ops->set_nested_state)
4174                         break;
4175
4176                 r = -EFAULT;
4177                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4178                         break;
4179
4180                 r = -EINVAL;
4181                 if (kvm_state.size < sizeof(kvm_state))
4182                         break;
4183
4184                 if (kvm_state.flags &
4185                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4186                       | KVM_STATE_NESTED_EVMCS))
4187                         break;
4188
4189                 /* nested_run_pending implies guest_mode.  */
4190                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4191                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4192                         break;
4193
4194                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4195                 break;
4196         }
4197         default:
4198                 r = -EINVAL;
4199         }
4200 out:
4201         kfree(u.buffer);
4202 out_nofree:
4203         vcpu_put(vcpu);
4204         return r;
4205 }
4206
4207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4208 {
4209         return VM_FAULT_SIGBUS;
4210 }
4211
4212 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4213 {
4214         int ret;
4215
4216         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4217                 return -EINVAL;
4218         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4219         return ret;
4220 }
4221
4222 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4223                                               u64 ident_addr)
4224 {
4225         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4226 }
4227
4228 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4229                                           u32 kvm_nr_mmu_pages)
4230 {
4231         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4232                 return -EINVAL;
4233
4234         mutex_lock(&kvm->slots_lock);
4235
4236         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4237         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4238
4239         mutex_unlock(&kvm->slots_lock);
4240         return 0;
4241 }
4242
4243 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4244 {
4245         return kvm->arch.n_max_mmu_pages;
4246 }
4247
4248 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4249 {
4250         struct kvm_pic *pic = kvm->arch.vpic;
4251         int r;
4252
4253         r = 0;
4254         switch (chip->chip_id) {
4255         case KVM_IRQCHIP_PIC_MASTER:
4256                 memcpy(&chip->chip.pic, &pic->pics[0],
4257                         sizeof(struct kvm_pic_state));
4258                 break;
4259         case KVM_IRQCHIP_PIC_SLAVE:
4260                 memcpy(&chip->chip.pic, &pic->pics[1],
4261                         sizeof(struct kvm_pic_state));
4262                 break;
4263         case KVM_IRQCHIP_IOAPIC:
4264                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4265                 break;
4266         default:
4267                 r = -EINVAL;
4268                 break;
4269         }
4270         return r;
4271 }
4272
4273 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4274 {
4275         struct kvm_pic *pic = kvm->arch.vpic;
4276         int r;
4277
4278         r = 0;
4279         switch (chip->chip_id) {
4280         case KVM_IRQCHIP_PIC_MASTER:
4281                 spin_lock(&pic->lock);
4282                 memcpy(&pic->pics[0], &chip->chip.pic,
4283                         sizeof(struct kvm_pic_state));
4284                 spin_unlock(&pic->lock);
4285                 break;
4286         case KVM_IRQCHIP_PIC_SLAVE:
4287                 spin_lock(&pic->lock);
4288                 memcpy(&pic->pics[1], &chip->chip.pic,
4289                         sizeof(struct kvm_pic_state));
4290                 spin_unlock(&pic->lock);
4291                 break;
4292         case KVM_IRQCHIP_IOAPIC:
4293                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4294                 break;
4295         default:
4296                 r = -EINVAL;
4297                 break;
4298         }
4299         kvm_pic_update_irq(pic);
4300         return r;
4301 }
4302
4303 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4304 {
4305         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4306
4307         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4308
4309         mutex_lock(&kps->lock);
4310         memcpy(ps, &kps->channels, sizeof(*ps));
4311         mutex_unlock(&kps->lock);
4312         return 0;
4313 }
4314
4315 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4316 {
4317         int i;
4318         struct kvm_pit *pit = kvm->arch.vpit;
4319
4320         mutex_lock(&pit->pit_state.lock);
4321         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4322         for (i = 0; i < 3; i++)
4323                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4324         mutex_unlock(&pit->pit_state.lock);
4325         return 0;
4326 }
4327
4328 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4329 {
4330         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4331         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4332                 sizeof(ps->channels));
4333         ps->flags = kvm->arch.vpit->pit_state.flags;
4334         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4335         memset(&ps->reserved, 0, sizeof(ps->reserved));
4336         return 0;
4337 }
4338
4339 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4340 {
4341         int start = 0;
4342         int i;
4343         u32 prev_legacy, cur_legacy;
4344         struct kvm_pit *pit = kvm->arch.vpit;
4345
4346         mutex_lock(&pit->pit_state.lock);
4347         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4348         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4349         if (!prev_legacy && cur_legacy)
4350                 start = 1;
4351         memcpy(&pit->pit_state.channels, &ps->channels,
4352                sizeof(pit->pit_state.channels));
4353         pit->pit_state.flags = ps->flags;
4354         for (i = 0; i < 3; i++)
4355                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4356                                    start && i == 0);
4357         mutex_unlock(&pit->pit_state.lock);
4358         return 0;
4359 }
4360
4361 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4362                                  struct kvm_reinject_control *control)
4363 {
4364         struct kvm_pit *pit = kvm->arch.vpit;
4365
4366         if (!pit)
4367                 return -ENXIO;
4368
4369         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4370          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4371          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4372          */
4373         mutex_lock(&pit->pit_state.lock);
4374         kvm_pit_set_reinject(pit, control->pit_reinject);
4375         mutex_unlock(&pit->pit_state.lock);
4376
4377         return 0;
4378 }
4379
4380 /**
4381  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4382  * @kvm: kvm instance
4383  * @log: slot id and address to which we copy the log
4384  *
4385  * Steps 1-4 below provide general overview of dirty page logging. See
4386  * kvm_get_dirty_log_protect() function description for additional details.
4387  *
4388  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4389  * always flush the TLB (step 4) even if previous step failed  and the dirty
4390  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4391  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4392  * writes will be marked dirty for next log read.
4393  *
4394  *   1. Take a snapshot of the bit and clear it if needed.
4395  *   2. Write protect the corresponding page.
4396  *   3. Copy the snapshot to the userspace.
4397  *   4. Flush TLB's if needed.
4398  */
4399 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4400 {
4401         bool is_dirty = false;
4402         int r;
4403
4404         mutex_lock(&kvm->slots_lock);
4405
4406         /*
4407          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4408          */
4409         if (kvm_x86_ops->flush_log_dirty)
4410                 kvm_x86_ops->flush_log_dirty(kvm);
4411
4412         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4413
4414         /*
4415          * All the TLBs can be flushed out of mmu lock, see the comments in
4416          * kvm_mmu_slot_remove_write_access().
4417          */
4418         lockdep_assert_held(&kvm->slots_lock);
4419         if (is_dirty)
4420                 kvm_flush_remote_tlbs(kvm);
4421
4422         mutex_unlock(&kvm->slots_lock);
4423         return r;
4424 }
4425
4426 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4427                         bool line_status)
4428 {
4429         if (!irqchip_in_kernel(kvm))
4430                 return -ENXIO;
4431
4432         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4433                                         irq_event->irq, irq_event->level,
4434                                         line_status);
4435         return 0;
4436 }
4437
4438 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4439                                    struct kvm_enable_cap *cap)
4440 {
4441         int r;
4442
4443         if (cap->flags)
4444                 return -EINVAL;
4445
4446         switch (cap->cap) {
4447         case KVM_CAP_DISABLE_QUIRKS:
4448                 kvm->arch.disabled_quirks = cap->args[0];
4449                 r = 0;
4450                 break;
4451         case KVM_CAP_SPLIT_IRQCHIP: {
4452                 mutex_lock(&kvm->lock);
4453                 r = -EINVAL;
4454                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4455                         goto split_irqchip_unlock;
4456                 r = -EEXIST;
4457                 if (irqchip_in_kernel(kvm))
4458                         goto split_irqchip_unlock;
4459                 if (kvm->created_vcpus)
4460                         goto split_irqchip_unlock;
4461                 r = kvm_setup_empty_irq_routing(kvm);
4462                 if (r)
4463                         goto split_irqchip_unlock;
4464                 /* Pairs with irqchip_in_kernel. */
4465                 smp_wmb();
4466                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4467                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4468                 r = 0;
4469 split_irqchip_unlock:
4470                 mutex_unlock(&kvm->lock);
4471                 break;
4472         }
4473         case KVM_CAP_X2APIC_API:
4474                 r = -EINVAL;
4475                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4476                         break;
4477
4478                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4479                         kvm->arch.x2apic_format = true;
4480                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4481                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4482
4483                 r = 0;
4484                 break;
4485         case KVM_CAP_X86_DISABLE_EXITS:
4486                 r = -EINVAL;
4487                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4488                         break;
4489
4490                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4491                         kvm_can_mwait_in_guest())
4492                         kvm->arch.mwait_in_guest = true;
4493                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4494                         kvm->arch.hlt_in_guest = true;
4495                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4496                         kvm->arch.pause_in_guest = true;
4497                 r = 0;
4498                 break;
4499         case KVM_CAP_MSR_PLATFORM_INFO:
4500                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4501                 r = 0;
4502                 break;
4503         default:
4504                 r = -EINVAL;
4505                 break;
4506         }
4507         return r;
4508 }
4509
4510 long kvm_arch_vm_ioctl(struct file *filp,
4511                        unsigned int ioctl, unsigned long arg)
4512 {
4513         struct kvm *kvm = filp->private_data;
4514         void __user *argp = (void __user *)arg;
4515         int r = -ENOTTY;
4516         /*
4517          * This union makes it completely explicit to gcc-3.x
4518          * that these two variables' stack usage should be
4519          * combined, not added together.
4520          */
4521         union {
4522                 struct kvm_pit_state ps;
4523                 struct kvm_pit_state2 ps2;
4524                 struct kvm_pit_config pit_config;
4525         } u;
4526
4527         switch (ioctl) {
4528         case KVM_SET_TSS_ADDR:
4529                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4530                 break;
4531         case KVM_SET_IDENTITY_MAP_ADDR: {
4532                 u64 ident_addr;
4533
4534                 mutex_lock(&kvm->lock);
4535                 r = -EINVAL;
4536                 if (kvm->created_vcpus)
4537                         goto set_identity_unlock;
4538                 r = -EFAULT;
4539                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4540                         goto set_identity_unlock;
4541                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4542 set_identity_unlock:
4543                 mutex_unlock(&kvm->lock);
4544                 break;
4545         }
4546         case KVM_SET_NR_MMU_PAGES:
4547                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4548                 break;
4549         case KVM_GET_NR_MMU_PAGES:
4550                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4551                 break;
4552         case KVM_CREATE_IRQCHIP: {
4553                 mutex_lock(&kvm->lock);
4554
4555                 r = -EEXIST;
4556                 if (irqchip_in_kernel(kvm))
4557                         goto create_irqchip_unlock;
4558
4559                 r = -EINVAL;
4560                 if (kvm->created_vcpus)
4561                         goto create_irqchip_unlock;
4562
4563                 r = kvm_pic_init(kvm);
4564                 if (r)
4565                         goto create_irqchip_unlock;
4566
4567                 r = kvm_ioapic_init(kvm);
4568                 if (r) {
4569                         kvm_pic_destroy(kvm);
4570                         goto create_irqchip_unlock;
4571                 }
4572
4573                 r = kvm_setup_default_irq_routing(kvm);
4574                 if (r) {
4575                         kvm_ioapic_destroy(kvm);
4576                         kvm_pic_destroy(kvm);
4577                         goto create_irqchip_unlock;
4578                 }
4579                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4580                 smp_wmb();
4581                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4582         create_irqchip_unlock:
4583                 mutex_unlock(&kvm->lock);
4584                 break;
4585         }
4586         case KVM_CREATE_PIT:
4587                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4588                 goto create_pit;
4589         case KVM_CREATE_PIT2:
4590                 r = -EFAULT;
4591                 if (copy_from_user(&u.pit_config, argp,
4592                                    sizeof(struct kvm_pit_config)))
4593                         goto out;
4594         create_pit:
4595                 mutex_lock(&kvm->lock);
4596                 r = -EEXIST;
4597                 if (kvm->arch.vpit)
4598                         goto create_pit_unlock;
4599                 r = -ENOMEM;
4600                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4601                 if (kvm->arch.vpit)
4602                         r = 0;
4603         create_pit_unlock:
4604                 mutex_unlock(&kvm->lock);
4605                 break;
4606         case KVM_GET_IRQCHIP: {
4607                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4608                 struct kvm_irqchip *chip;
4609
4610                 chip = memdup_user(argp, sizeof(*chip));
4611                 if (IS_ERR(chip)) {
4612                         r = PTR_ERR(chip);
4613                         goto out;
4614                 }
4615
4616                 r = -ENXIO;
4617                 if (!irqchip_kernel(kvm))
4618                         goto get_irqchip_out;
4619                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4620                 if (r)
4621                         goto get_irqchip_out;
4622                 r = -EFAULT;
4623                 if (copy_to_user(argp, chip, sizeof *chip))
4624                         goto get_irqchip_out;
4625                 r = 0;
4626         get_irqchip_out:
4627                 kfree(chip);
4628                 break;
4629         }
4630         case KVM_SET_IRQCHIP: {
4631                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4632                 struct kvm_irqchip *chip;
4633
4634                 chip = memdup_user(argp, sizeof(*chip));
4635                 if (IS_ERR(chip)) {
4636                         r = PTR_ERR(chip);
4637                         goto out;
4638                 }
4639
4640                 r = -ENXIO;
4641                 if (!irqchip_kernel(kvm))
4642                         goto set_irqchip_out;
4643                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4644                 if (r)
4645                         goto set_irqchip_out;
4646                 r = 0;
4647         set_irqchip_out:
4648                 kfree(chip);
4649                 break;
4650         }
4651         case KVM_GET_PIT: {
4652                 r = -EFAULT;
4653                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4654                         goto out;
4655                 r = -ENXIO;
4656                 if (!kvm->arch.vpit)
4657                         goto out;
4658                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4659                 if (r)
4660                         goto out;
4661                 r = -EFAULT;
4662                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4663                         goto out;
4664                 r = 0;
4665                 break;
4666         }
4667         case KVM_SET_PIT: {
4668                 r = -EFAULT;
4669                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4670                         goto out;
4671                 r = -ENXIO;
4672                 if (!kvm->arch.vpit)
4673                         goto out;
4674                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4675                 break;
4676         }
4677         case KVM_GET_PIT2: {
4678                 r = -ENXIO;
4679                 if (!kvm->arch.vpit)
4680                         goto out;
4681                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4682                 if (r)
4683                         goto out;
4684                 r = -EFAULT;
4685                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4686                         goto out;
4687                 r = 0;
4688                 break;
4689         }
4690         case KVM_SET_PIT2: {
4691                 r = -EFAULT;
4692                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4693                         goto out;
4694                 r = -ENXIO;
4695                 if (!kvm->arch.vpit)
4696                         goto out;
4697                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4698                 break;
4699         }
4700         case KVM_REINJECT_CONTROL: {
4701                 struct kvm_reinject_control control;
4702                 r =  -EFAULT;
4703                 if (copy_from_user(&control, argp, sizeof(control)))
4704                         goto out;
4705                 r = kvm_vm_ioctl_reinject(kvm, &control);
4706                 break;
4707         }
4708         case KVM_SET_BOOT_CPU_ID:
4709                 r = 0;
4710                 mutex_lock(&kvm->lock);
4711                 if (kvm->created_vcpus)
4712                         r = -EBUSY;
4713                 else
4714                         kvm->arch.bsp_vcpu_id = arg;
4715                 mutex_unlock(&kvm->lock);
4716                 break;
4717         case KVM_XEN_HVM_CONFIG: {
4718                 struct kvm_xen_hvm_config xhc;
4719                 r = -EFAULT;
4720                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4721                         goto out;
4722                 r = -EINVAL;
4723                 if (xhc.flags)
4724                         goto out;
4725                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4726                 r = 0;
4727                 break;
4728         }
4729         case KVM_SET_CLOCK: {
4730                 struct kvm_clock_data user_ns;
4731                 u64 now_ns;
4732
4733                 r = -EFAULT;
4734                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4735                         goto out;
4736
4737                 r = -EINVAL;
4738                 if (user_ns.flags)
4739                         goto out;
4740
4741                 r = 0;
4742                 /*
4743                  * TODO: userspace has to take care of races with VCPU_RUN, so
4744                  * kvm_gen_update_masterclock() can be cut down to locked
4745                  * pvclock_update_vm_gtod_copy().
4746                  */
4747                 kvm_gen_update_masterclock(kvm);
4748                 now_ns = get_kvmclock_ns(kvm);
4749                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4750                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4751                 break;
4752         }
4753         case KVM_GET_CLOCK: {
4754                 struct kvm_clock_data user_ns;
4755                 u64 now_ns;
4756
4757                 now_ns = get_kvmclock_ns(kvm);
4758                 user_ns.clock = now_ns;
4759                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4760                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4761
4762                 r = -EFAULT;
4763                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4764                         goto out;
4765                 r = 0;
4766                 break;
4767         }
4768         case KVM_ENABLE_CAP: {
4769                 struct kvm_enable_cap cap;
4770
4771                 r = -EFAULT;
4772                 if (copy_from_user(&cap, argp, sizeof(cap)))
4773                         goto out;
4774                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4775                 break;
4776         }
4777         case KVM_MEMORY_ENCRYPT_OP: {
4778                 r = -ENOTTY;
4779                 if (kvm_x86_ops->mem_enc_op)
4780                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4781                 break;
4782         }
4783         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4784                 struct kvm_enc_region region;
4785
4786                 r = -EFAULT;
4787                 if (copy_from_user(&region, argp, sizeof(region)))
4788                         goto out;
4789
4790                 r = -ENOTTY;
4791                 if (kvm_x86_ops->mem_enc_reg_region)
4792                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4793                 break;
4794         }
4795         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4796                 struct kvm_enc_region region;
4797
4798                 r = -EFAULT;
4799                 if (copy_from_user(&region, argp, sizeof(region)))
4800                         goto out;
4801
4802                 r = -ENOTTY;
4803                 if (kvm_x86_ops->mem_enc_unreg_region)
4804                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4805                 break;
4806         }
4807         case KVM_HYPERV_EVENTFD: {
4808                 struct kvm_hyperv_eventfd hvevfd;
4809
4810                 r = -EFAULT;
4811                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4812                         goto out;
4813                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4814                 break;
4815         }
4816         default:
4817                 r = -ENOTTY;
4818         }
4819 out:
4820         return r;
4821 }
4822
4823 static void kvm_init_msr_list(void)
4824 {
4825         u32 dummy[2];
4826         unsigned i, j;
4827
4828         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4829                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4830                         continue;
4831
4832                 /*
4833                  * Even MSRs that are valid in the host may not be exposed
4834                  * to the guests in some cases.
4835                  */
4836                 switch (msrs_to_save[i]) {
4837                 case MSR_IA32_BNDCFGS:
4838                         if (!kvm_mpx_supported())
4839                                 continue;
4840                         break;
4841                 case MSR_TSC_AUX:
4842                         if (!kvm_x86_ops->rdtscp_supported())
4843                                 continue;
4844                         break;
4845                 default:
4846                         break;
4847                 }
4848
4849                 if (j < i)
4850                         msrs_to_save[j] = msrs_to_save[i];
4851                 j++;
4852         }
4853         num_msrs_to_save = j;
4854
4855         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4856                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4857                         continue;
4858
4859                 if (j < i)
4860                         emulated_msrs[j] = emulated_msrs[i];
4861                 j++;
4862         }
4863         num_emulated_msrs = j;
4864
4865         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4866                 struct kvm_msr_entry msr;
4867
4868                 msr.index = msr_based_features[i];
4869                 if (kvm_get_msr_feature(&msr))
4870                         continue;
4871
4872                 if (j < i)
4873                         msr_based_features[j] = msr_based_features[i];
4874                 j++;
4875         }
4876         num_msr_based_features = j;
4877 }
4878
4879 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4880                            const void *v)
4881 {
4882         int handled = 0;
4883         int n;
4884
4885         do {
4886                 n = min(len, 8);
4887                 if (!(lapic_in_kernel(vcpu) &&
4888                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4889                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4890                         break;
4891                 handled += n;
4892                 addr += n;
4893                 len -= n;
4894                 v += n;
4895         } while (len);
4896
4897         return handled;
4898 }
4899
4900 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4901 {
4902         int handled = 0;
4903         int n;
4904
4905         do {
4906                 n = min(len, 8);
4907                 if (!(lapic_in_kernel(vcpu) &&
4908                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4909                                          addr, n, v))
4910                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4911                         break;
4912                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4913                 handled += n;
4914                 addr += n;
4915                 len -= n;
4916                 v += n;
4917         } while (len);
4918
4919         return handled;
4920 }
4921
4922 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4923                         struct kvm_segment *var, int seg)
4924 {
4925         kvm_x86_ops->set_segment(vcpu, var, seg);
4926 }
4927
4928 void kvm_get_segment(struct kvm_vcpu *vcpu,
4929                      struct kvm_segment *var, int seg)
4930 {
4931         kvm_x86_ops->get_segment(vcpu, var, seg);
4932 }
4933
4934 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4935                            struct x86_exception *exception)
4936 {
4937         gpa_t t_gpa;
4938
4939         BUG_ON(!mmu_is_nested(vcpu));
4940
4941         /* NPT walks are always user-walks */
4942         access |= PFERR_USER_MASK;
4943         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4944
4945         return t_gpa;
4946 }
4947
4948 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4949                               struct x86_exception *exception)
4950 {
4951         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4952         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4953 }
4954
4955  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4956                                 struct x86_exception *exception)
4957 {
4958         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4959         access |= PFERR_FETCH_MASK;
4960         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4961 }
4962
4963 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4964                                struct x86_exception *exception)
4965 {
4966         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4967         access |= PFERR_WRITE_MASK;
4968         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4969 }
4970
4971 /* uses this to access any guest's mapped memory without checking CPL */
4972 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4973                                 struct x86_exception *exception)
4974 {
4975         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4976 }
4977
4978 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4979                                       struct kvm_vcpu *vcpu, u32 access,
4980                                       struct x86_exception *exception)
4981 {
4982         void *data = val;
4983         int r = X86EMUL_CONTINUE;
4984
4985         while (bytes) {
4986                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4987                                                             exception);
4988                 unsigned offset = addr & (PAGE_SIZE-1);
4989                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4990                 int ret;
4991
4992                 if (gpa == UNMAPPED_GVA)
4993                         return X86EMUL_PROPAGATE_FAULT;
4994                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4995                                                offset, toread);
4996                 if (ret < 0) {
4997                         r = X86EMUL_IO_NEEDED;
4998                         goto out;
4999                 }
5000
5001                 bytes -= toread;
5002                 data += toread;
5003                 addr += toread;
5004         }
5005 out:
5006         return r;
5007 }
5008
5009 /* used for instruction fetching */
5010 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5011                                 gva_t addr, void *val, unsigned int bytes,
5012                                 struct x86_exception *exception)
5013 {
5014         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5015         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5016         unsigned offset;
5017         int ret;
5018
5019         /* Inline kvm_read_guest_virt_helper for speed.  */
5020         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5021                                                     exception);
5022         if (unlikely(gpa == UNMAPPED_GVA))
5023                 return X86EMUL_PROPAGATE_FAULT;
5024
5025         offset = addr & (PAGE_SIZE-1);
5026         if (WARN_ON(offset + bytes > PAGE_SIZE))
5027                 bytes = (unsigned)PAGE_SIZE - offset;
5028         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5029                                        offset, bytes);
5030         if (unlikely(ret < 0))
5031                 return X86EMUL_IO_NEEDED;
5032
5033         return X86EMUL_CONTINUE;
5034 }
5035
5036 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5037                                gva_t addr, void *val, unsigned int bytes,
5038                                struct x86_exception *exception)
5039 {
5040         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5041
5042         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5043                                           exception);
5044 }
5045 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5046
5047 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5048                              gva_t addr, void *val, unsigned int bytes,
5049                              struct x86_exception *exception, bool system)
5050 {
5051         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5052         u32 access = 0;
5053
5054         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5055                 access |= PFERR_USER_MASK;
5056
5057         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5058 }
5059
5060 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5061                 unsigned long addr, void *val, unsigned int bytes)
5062 {
5063         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5064         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5065
5066         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5067 }
5068
5069 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5070                                       struct kvm_vcpu *vcpu, u32 access,
5071                                       struct x86_exception *exception)
5072 {
5073         void *data = val;
5074         int r = X86EMUL_CONTINUE;
5075
5076         while (bytes) {
5077                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5078                                                              access,
5079                                                              exception);
5080                 unsigned offset = addr & (PAGE_SIZE-1);
5081                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5082                 int ret;
5083
5084                 if (gpa == UNMAPPED_GVA)
5085                         return X86EMUL_PROPAGATE_FAULT;
5086                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5087                 if (ret < 0) {
5088                         r = X86EMUL_IO_NEEDED;
5089                         goto out;
5090                 }
5091
5092                 bytes -= towrite;
5093                 data += towrite;
5094                 addr += towrite;
5095         }
5096 out:
5097         return r;
5098 }
5099
5100 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5101                               unsigned int bytes, struct x86_exception *exception,
5102                               bool system)
5103 {
5104         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5105         u32 access = PFERR_WRITE_MASK;
5106
5107         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5108                 access |= PFERR_USER_MASK;
5109
5110         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5111                                            access, exception);
5112 }
5113
5114 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5115                                 unsigned int bytes, struct x86_exception *exception)
5116 {
5117         /* kvm_write_guest_virt_system can pull in tons of pages. */
5118         vcpu->arch.l1tf_flush_l1d = true;
5119
5120         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5121                                            PFERR_WRITE_MASK, exception);
5122 }
5123 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5124
5125 int handle_ud(struct kvm_vcpu *vcpu)
5126 {
5127         int emul_type = EMULTYPE_TRAP_UD;
5128         enum emulation_result er;
5129         char sig[5]; /* ud2; .ascii "kvm" */
5130         struct x86_exception e;
5131
5132         if (force_emulation_prefix &&
5133             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5134                                 sig, sizeof(sig), &e) == 0 &&
5135             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5136                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5137                 emul_type = 0;
5138         }
5139
5140         er = kvm_emulate_instruction(vcpu, emul_type);
5141         if (er == EMULATE_USER_EXIT)
5142                 return 0;
5143         if (er != EMULATE_DONE)
5144                 kvm_queue_exception(vcpu, UD_VECTOR);
5145         return 1;
5146 }
5147 EXPORT_SYMBOL_GPL(handle_ud);
5148
5149 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5150                             gpa_t gpa, bool write)
5151 {
5152         /* For APIC access vmexit */
5153         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5154                 return 1;
5155
5156         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5157                 trace_vcpu_match_mmio(gva, gpa, write, true);
5158                 return 1;
5159         }
5160
5161         return 0;
5162 }
5163
5164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5165                                 gpa_t *gpa, struct x86_exception *exception,
5166                                 bool write)
5167 {
5168         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5169                 | (write ? PFERR_WRITE_MASK : 0);
5170
5171         /*
5172          * currently PKRU is only applied to ept enabled guest so
5173          * there is no pkey in EPT page table for L1 guest or EPT
5174          * shadow page table for L2 guest.
5175          */
5176         if (vcpu_match_mmio_gva(vcpu, gva)
5177             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5178                                  vcpu->arch.access, 0, access)) {
5179                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5180                                         (gva & (PAGE_SIZE - 1));
5181                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5182                 return 1;
5183         }
5184
5185         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5186
5187         if (*gpa == UNMAPPED_GVA)
5188                 return -1;
5189
5190         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5191 }
5192
5193 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5194                         const void *val, int bytes)
5195 {
5196         int ret;
5197
5198         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5199         if (ret < 0)
5200                 return 0;
5201         kvm_page_track_write(vcpu, gpa, val, bytes);
5202         return 1;
5203 }
5204
5205 struct read_write_emulator_ops {
5206         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5207                                   int bytes);
5208         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5209                                   void *val, int bytes);
5210         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5211                                int bytes, void *val);
5212         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5213                                     void *val, int bytes);
5214         bool write;
5215 };
5216
5217 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5218 {
5219         if (vcpu->mmio_read_completed) {
5220                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5221                                vcpu->mmio_fragments[0].gpa, val);
5222                 vcpu->mmio_read_completed = 0;
5223                 return 1;
5224         }
5225
5226         return 0;
5227 }
5228
5229 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5230                         void *val, int bytes)
5231 {
5232         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5233 }
5234
5235 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5236                          void *val, int bytes)
5237 {
5238         return emulator_write_phys(vcpu, gpa, val, bytes);
5239 }
5240
5241 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5242 {
5243         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5244         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5245 }
5246
5247 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5248                           void *val, int bytes)
5249 {
5250         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5251         return X86EMUL_IO_NEEDED;
5252 }
5253
5254 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5255                            void *val, int bytes)
5256 {
5257         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5258
5259         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5260         return X86EMUL_CONTINUE;
5261 }
5262
5263 static const struct read_write_emulator_ops read_emultor = {
5264         .read_write_prepare = read_prepare,
5265         .read_write_emulate = read_emulate,
5266         .read_write_mmio = vcpu_mmio_read,
5267         .read_write_exit_mmio = read_exit_mmio,
5268 };
5269
5270 static const struct read_write_emulator_ops write_emultor = {
5271         .read_write_emulate = write_emulate,
5272         .read_write_mmio = write_mmio,
5273         .read_write_exit_mmio = write_exit_mmio,
5274         .write = true,
5275 };
5276
5277 static int emulator_read_write_onepage(unsigned long addr, void *val,
5278                                        unsigned int bytes,
5279                                        struct x86_exception *exception,
5280                                        struct kvm_vcpu *vcpu,
5281                                        const struct read_write_emulator_ops *ops)
5282 {
5283         gpa_t gpa;
5284         int handled, ret;
5285         bool write = ops->write;
5286         struct kvm_mmio_fragment *frag;
5287         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5288
5289         /*
5290          * If the exit was due to a NPF we may already have a GPA.
5291          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5292          * Note, this cannot be used on string operations since string
5293          * operation using rep will only have the initial GPA from the NPF
5294          * occurred.
5295          */
5296         if (vcpu->arch.gpa_available &&
5297             emulator_can_use_gpa(ctxt) &&
5298             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5299                 gpa = vcpu->arch.gpa_val;
5300                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5301         } else {
5302                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5303                 if (ret < 0)
5304                         return X86EMUL_PROPAGATE_FAULT;
5305         }
5306
5307         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5308                 return X86EMUL_CONTINUE;
5309
5310         /*
5311          * Is this MMIO handled locally?
5312          */
5313         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5314         if (handled == bytes)
5315                 return X86EMUL_CONTINUE;
5316
5317         gpa += handled;
5318         bytes -= handled;
5319         val += handled;
5320
5321         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5322         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5323         frag->gpa = gpa;
5324         frag->data = val;
5325         frag->len = bytes;
5326         return X86EMUL_CONTINUE;
5327 }
5328
5329 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5330                         unsigned long addr,
5331                         void *val, unsigned int bytes,
5332                         struct x86_exception *exception,
5333                         const struct read_write_emulator_ops *ops)
5334 {
5335         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5336         gpa_t gpa;
5337         int rc;
5338
5339         if (ops->read_write_prepare &&
5340                   ops->read_write_prepare(vcpu, val, bytes))
5341                 return X86EMUL_CONTINUE;
5342
5343         vcpu->mmio_nr_fragments = 0;
5344
5345         /* Crossing a page boundary? */
5346         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5347                 int now;
5348
5349                 now = -addr & ~PAGE_MASK;
5350                 rc = emulator_read_write_onepage(addr, val, now, exception,
5351                                                  vcpu, ops);
5352
5353                 if (rc != X86EMUL_CONTINUE)
5354                         return rc;
5355                 addr += now;
5356                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5357                         addr = (u32)addr;
5358                 val += now;
5359                 bytes -= now;
5360         }
5361
5362         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5363                                          vcpu, ops);
5364         if (rc != X86EMUL_CONTINUE)
5365                 return rc;
5366
5367         if (!vcpu->mmio_nr_fragments)
5368                 return rc;
5369
5370         gpa = vcpu->mmio_fragments[0].gpa;
5371
5372         vcpu->mmio_needed = 1;
5373         vcpu->mmio_cur_fragment = 0;
5374
5375         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5376         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5377         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5378         vcpu->run->mmio.phys_addr = gpa;
5379
5380         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5381 }
5382
5383 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5384                                   unsigned long addr,
5385                                   void *val,
5386                                   unsigned int bytes,
5387                                   struct x86_exception *exception)
5388 {
5389         return emulator_read_write(ctxt, addr, val, bytes,
5390                                    exception, &read_emultor);
5391 }
5392
5393 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5394                             unsigned long addr,
5395                             const void *val,
5396                             unsigned int bytes,
5397                             struct x86_exception *exception)
5398 {
5399         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5400                                    exception, &write_emultor);
5401 }
5402
5403 #define CMPXCHG_TYPE(t, ptr, old, new) \
5404         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5405
5406 #ifdef CONFIG_X86_64
5407 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5408 #else
5409 #  define CMPXCHG64(ptr, old, new) \
5410         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5411 #endif
5412
5413 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5414                                      unsigned long addr,
5415                                      const void *old,
5416                                      const void *new,
5417                                      unsigned int bytes,
5418                                      struct x86_exception *exception)
5419 {
5420         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5421         gpa_t gpa;
5422         struct page *page;
5423         char *kaddr;
5424         bool exchanged;
5425
5426         /* guests cmpxchg8b have to be emulated atomically */
5427         if (bytes > 8 || (bytes & (bytes - 1)))
5428                 goto emul_write;
5429
5430         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5431
5432         if (gpa == UNMAPPED_GVA ||
5433             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5434                 goto emul_write;
5435
5436         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5437                 goto emul_write;
5438
5439         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5440         if (is_error_page(page))
5441                 goto emul_write;
5442
5443         kaddr = kmap_atomic(page);
5444         kaddr += offset_in_page(gpa);
5445         switch (bytes) {
5446         case 1:
5447                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5448                 break;
5449         case 2:
5450                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5451                 break;
5452         case 4:
5453                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5454                 break;
5455         case 8:
5456                 exchanged = CMPXCHG64(kaddr, old, new);
5457                 break;
5458         default:
5459                 BUG();
5460         }
5461         kunmap_atomic(kaddr);
5462         kvm_release_page_dirty(page);
5463
5464         if (!exchanged)
5465                 return X86EMUL_CMPXCHG_FAILED;
5466
5467         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5468         kvm_page_track_write(vcpu, gpa, new, bytes);
5469
5470         return X86EMUL_CONTINUE;
5471
5472 emul_write:
5473         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5474
5475         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5476 }
5477
5478 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5479 {
5480         int r = 0, i;
5481
5482         for (i = 0; i < vcpu->arch.pio.count; i++) {
5483                 if (vcpu->arch.pio.in)
5484                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5485                                             vcpu->arch.pio.size, pd);
5486                 else
5487                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5488                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5489                                              pd);
5490                 if (r)
5491                         break;
5492                 pd += vcpu->arch.pio.size;
5493         }
5494         return r;
5495 }
5496
5497 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5498                                unsigned short port, void *val,
5499                                unsigned int count, bool in)
5500 {
5501         vcpu->arch.pio.port = port;
5502         vcpu->arch.pio.in = in;
5503         vcpu->arch.pio.count  = count;
5504         vcpu->arch.pio.size = size;
5505
5506         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5507                 vcpu->arch.pio.count = 0;
5508                 return 1;
5509         }
5510
5511         vcpu->run->exit_reason = KVM_EXIT_IO;
5512         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5513         vcpu->run->io.size = size;
5514         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5515         vcpu->run->io.count = count;
5516         vcpu->run->io.port = port;
5517
5518         return 0;
5519 }
5520
5521 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5522                                     int size, unsigned short port, void *val,
5523                                     unsigned int count)
5524 {
5525         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5526         int ret;
5527
5528         if (vcpu->arch.pio.count)
5529                 goto data_avail;
5530
5531         memset(vcpu->arch.pio_data, 0, size * count);
5532
5533         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5534         if (ret) {
5535 data_avail:
5536                 memcpy(val, vcpu->arch.pio_data, size * count);
5537                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5538                 vcpu->arch.pio.count = 0;
5539                 return 1;
5540         }
5541
5542         return 0;
5543 }
5544
5545 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5546                                      int size, unsigned short port,
5547                                      const void *val, unsigned int count)
5548 {
5549         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5550
5551         memcpy(vcpu->arch.pio_data, val, size * count);
5552         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5553         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5554 }
5555
5556 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5557 {
5558         return kvm_x86_ops->get_segment_base(vcpu, seg);
5559 }
5560
5561 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5562 {
5563         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5564 }
5565
5566 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5567 {
5568         if (!need_emulate_wbinvd(vcpu))
5569                 return X86EMUL_CONTINUE;
5570
5571         if (kvm_x86_ops->has_wbinvd_exit()) {
5572                 int cpu = get_cpu();
5573
5574                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5575                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5576                                 wbinvd_ipi, NULL, 1);
5577                 put_cpu();
5578                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5579         } else
5580                 wbinvd();
5581         return X86EMUL_CONTINUE;
5582 }
5583
5584 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5585 {
5586         kvm_emulate_wbinvd_noskip(vcpu);
5587         return kvm_skip_emulated_instruction(vcpu);
5588 }
5589 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5590
5591
5592
5593 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5594 {
5595         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5596 }
5597
5598 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5599                            unsigned long *dest)
5600 {
5601         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5602 }
5603
5604 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5605                            unsigned long value)
5606 {
5607
5608         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5609 }
5610
5611 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5612 {
5613         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5614 }
5615
5616 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5617 {
5618         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5619         unsigned long value;
5620
5621         switch (cr) {
5622         case 0:
5623                 value = kvm_read_cr0(vcpu);
5624                 break;
5625         case 2:
5626                 value = vcpu->arch.cr2;
5627                 break;
5628         case 3:
5629                 value = kvm_read_cr3(vcpu);
5630                 break;
5631         case 4:
5632                 value = kvm_read_cr4(vcpu);
5633                 break;
5634         case 8:
5635                 value = kvm_get_cr8(vcpu);
5636                 break;
5637         default:
5638                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5639                 return 0;
5640         }
5641
5642         return value;
5643 }
5644
5645 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5646 {
5647         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5648         int res = 0;
5649
5650         switch (cr) {
5651         case 0:
5652                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5653                 break;
5654         case 2:
5655                 vcpu->arch.cr2 = val;
5656                 break;
5657         case 3:
5658                 res = kvm_set_cr3(vcpu, val);
5659                 break;
5660         case 4:
5661                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5662                 break;
5663         case 8:
5664                 res = kvm_set_cr8(vcpu, val);
5665                 break;
5666         default:
5667                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5668                 res = -1;
5669         }
5670
5671         return res;
5672 }
5673
5674 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5675 {
5676         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5677 }
5678
5679 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5680 {
5681         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5682 }
5683
5684 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5685 {
5686         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5687 }
5688
5689 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5690 {
5691         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5692 }
5693
5694 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5695 {
5696         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5697 }
5698
5699 static unsigned long emulator_get_cached_segment_base(
5700         struct x86_emulate_ctxt *ctxt, int seg)
5701 {
5702         return get_segment_base(emul_to_vcpu(ctxt), seg);
5703 }
5704
5705 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5706                                  struct desc_struct *desc, u32 *base3,
5707                                  int seg)
5708 {
5709         struct kvm_segment var;
5710
5711         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5712         *selector = var.selector;
5713
5714         if (var.unusable) {
5715                 memset(desc, 0, sizeof(*desc));
5716                 if (base3)
5717                         *base3 = 0;
5718                 return false;
5719         }
5720
5721         if (var.g)
5722                 var.limit >>= 12;
5723         set_desc_limit(desc, var.limit);
5724         set_desc_base(desc, (unsigned long)var.base);
5725 #ifdef CONFIG_X86_64
5726         if (base3)
5727                 *base3 = var.base >> 32;
5728 #endif
5729         desc->type = var.type;
5730         desc->s = var.s;
5731         desc->dpl = var.dpl;
5732         desc->p = var.present;
5733         desc->avl = var.avl;
5734         desc->l = var.l;
5735         desc->d = var.db;
5736         desc->g = var.g;
5737
5738         return true;
5739 }
5740
5741 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5742                                  struct desc_struct *desc, u32 base3,
5743                                  int seg)
5744 {
5745         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5746         struct kvm_segment var;
5747
5748         var.selector = selector;
5749         var.base = get_desc_base(desc);
5750 #ifdef CONFIG_X86_64
5751         var.base |= ((u64)base3) << 32;
5752 #endif
5753         var.limit = get_desc_limit(desc);
5754         if (desc->g)
5755                 var.limit = (var.limit << 12) | 0xfff;
5756         var.type = desc->type;
5757         var.dpl = desc->dpl;
5758         var.db = desc->d;
5759         var.s = desc->s;
5760         var.l = desc->l;
5761         var.g = desc->g;
5762         var.avl = desc->avl;
5763         var.present = desc->p;
5764         var.unusable = !var.present;
5765         var.padding = 0;
5766
5767         kvm_set_segment(vcpu, &var, seg);
5768         return;
5769 }
5770
5771 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5772                             u32 msr_index, u64 *pdata)
5773 {
5774         struct msr_data msr;
5775         int r;
5776
5777         msr.index = msr_index;
5778         msr.host_initiated = false;
5779         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5780         if (r)
5781                 return r;
5782
5783         *pdata = msr.data;
5784         return 0;
5785 }
5786
5787 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5788                             u32 msr_index, u64 data)
5789 {
5790         struct msr_data msr;
5791
5792         msr.data = data;
5793         msr.index = msr_index;
5794         msr.host_initiated = false;
5795         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5796 }
5797
5798 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5799 {
5800         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5801
5802         return vcpu->arch.smbase;
5803 }
5804
5805 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5806 {
5807         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5808
5809         vcpu->arch.smbase = smbase;
5810 }
5811
5812 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5813                               u32 pmc)
5814 {
5815         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5816 }
5817
5818 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5819                              u32 pmc, u64 *pdata)
5820 {
5821         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5822 }
5823
5824 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5825 {
5826         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5827 }
5828
5829 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5830                               struct x86_instruction_info *info,
5831                               enum x86_intercept_stage stage)
5832 {
5833         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5834 }
5835
5836 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5837                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5838 {
5839         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5840 }
5841
5842 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5843 {
5844         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5845 }
5846
5847 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5848 {
5849         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5850 }
5851
5852 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5853 {
5854         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5855 }
5856
5857 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5858 {
5859         return emul_to_vcpu(ctxt)->arch.hflags;
5860 }
5861
5862 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5863 {
5864         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5865 }
5866
5867 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5868 {
5869         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5870 }
5871
5872 static const struct x86_emulate_ops emulate_ops = {
5873         .read_gpr            = emulator_read_gpr,
5874         .write_gpr           = emulator_write_gpr,
5875         .read_std            = emulator_read_std,
5876         .write_std           = emulator_write_std,
5877         .read_phys           = kvm_read_guest_phys_system,
5878         .fetch               = kvm_fetch_guest_virt,
5879         .read_emulated       = emulator_read_emulated,
5880         .write_emulated      = emulator_write_emulated,
5881         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5882         .invlpg              = emulator_invlpg,
5883         .pio_in_emulated     = emulator_pio_in_emulated,
5884         .pio_out_emulated    = emulator_pio_out_emulated,
5885         .get_segment         = emulator_get_segment,
5886         .set_segment         = emulator_set_segment,
5887         .get_cached_segment_base = emulator_get_cached_segment_base,
5888         .get_gdt             = emulator_get_gdt,
5889         .get_idt             = emulator_get_idt,
5890         .set_gdt             = emulator_set_gdt,
5891         .set_idt             = emulator_set_idt,
5892         .get_cr              = emulator_get_cr,
5893         .set_cr              = emulator_set_cr,
5894         .cpl                 = emulator_get_cpl,
5895         .get_dr              = emulator_get_dr,
5896         .set_dr              = emulator_set_dr,
5897         .get_smbase          = emulator_get_smbase,
5898         .set_smbase          = emulator_set_smbase,
5899         .set_msr             = emulator_set_msr,
5900         .get_msr             = emulator_get_msr,
5901         .check_pmc           = emulator_check_pmc,
5902         .read_pmc            = emulator_read_pmc,
5903         .halt                = emulator_halt,
5904         .wbinvd              = emulator_wbinvd,
5905         .fix_hypercall       = emulator_fix_hypercall,
5906         .intercept           = emulator_intercept,
5907         .get_cpuid           = emulator_get_cpuid,
5908         .set_nmi_mask        = emulator_set_nmi_mask,
5909         .get_hflags          = emulator_get_hflags,
5910         .set_hflags          = emulator_set_hflags,
5911         .pre_leave_smm       = emulator_pre_leave_smm,
5912 };
5913
5914 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5915 {
5916         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5917         /*
5918          * an sti; sti; sequence only disable interrupts for the first
5919          * instruction. So, if the last instruction, be it emulated or
5920          * not, left the system with the INT_STI flag enabled, it
5921          * means that the last instruction is an sti. We should not
5922          * leave the flag on in this case. The same goes for mov ss
5923          */
5924         if (int_shadow & mask)
5925                 mask = 0;
5926         if (unlikely(int_shadow || mask)) {
5927                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5928                 if (!mask)
5929                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5930         }
5931 }
5932
5933 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5934 {
5935         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5936         if (ctxt->exception.vector == PF_VECTOR)
5937                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5938
5939         if (ctxt->exception.error_code_valid)
5940                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5941                                       ctxt->exception.error_code);
5942         else
5943                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5944         return false;
5945 }
5946
5947 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5948 {
5949         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5950         int cs_db, cs_l;
5951
5952         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5953
5954         ctxt->eflags = kvm_get_rflags(vcpu);
5955         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5956
5957         ctxt->eip = kvm_rip_read(vcpu);
5958         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5959                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5960                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5961                      cs_db                              ? X86EMUL_MODE_PROT32 :
5962                                                           X86EMUL_MODE_PROT16;
5963         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5964         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5965         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5966
5967         init_decode_cache(ctxt);
5968         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5969 }
5970
5971 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5972 {
5973         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5974         int ret;
5975
5976         init_emulate_ctxt(vcpu);
5977
5978         ctxt->op_bytes = 2;
5979         ctxt->ad_bytes = 2;
5980         ctxt->_eip = ctxt->eip + inc_eip;
5981         ret = emulate_int_real(ctxt, irq);
5982
5983         if (ret != X86EMUL_CONTINUE)
5984                 return EMULATE_FAIL;
5985
5986         ctxt->eip = ctxt->_eip;
5987         kvm_rip_write(vcpu, ctxt->eip);
5988         kvm_set_rflags(vcpu, ctxt->eflags);
5989
5990         return EMULATE_DONE;
5991 }
5992 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5993
5994 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5995 {
5996         int r = EMULATE_DONE;
5997
5998         ++vcpu->stat.insn_emulation_fail;
5999         trace_kvm_emulate_insn_failed(vcpu);
6000
6001         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6002                 return EMULATE_FAIL;
6003
6004         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6005                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6006                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6007                 vcpu->run->internal.ndata = 0;
6008                 r = EMULATE_USER_EXIT;
6009         }
6010
6011         kvm_queue_exception(vcpu, UD_VECTOR);
6012
6013         return r;
6014 }
6015
6016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6017                                   bool write_fault_to_shadow_pgtable,
6018                                   int emulation_type)
6019 {
6020         gpa_t gpa = cr2;
6021         kvm_pfn_t pfn;
6022
6023         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6024                 return false;
6025
6026         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6027                 return false;
6028
6029         if (!vcpu->arch.mmu->direct_map) {
6030                 /*
6031                  * Write permission should be allowed since only
6032                  * write access need to be emulated.
6033                  */
6034                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6035
6036                 /*
6037                  * If the mapping is invalid in guest, let cpu retry
6038                  * it to generate fault.
6039                  */
6040                 if (gpa == UNMAPPED_GVA)
6041                         return true;
6042         }
6043
6044         /*
6045          * Do not retry the unhandleable instruction if it faults on the
6046          * readonly host memory, otherwise it will goto a infinite loop:
6047          * retry instruction -> write #PF -> emulation fail -> retry
6048          * instruction -> ...
6049          */
6050         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6051
6052         /*
6053          * If the instruction failed on the error pfn, it can not be fixed,
6054          * report the error to userspace.
6055          */
6056         if (is_error_noslot_pfn(pfn))
6057                 return false;
6058
6059         kvm_release_pfn_clean(pfn);
6060
6061         /* The instructions are well-emulated on direct mmu. */
6062         if (vcpu->arch.mmu->direct_map) {
6063                 unsigned int indirect_shadow_pages;
6064
6065                 spin_lock(&vcpu->kvm->mmu_lock);
6066                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6067                 spin_unlock(&vcpu->kvm->mmu_lock);
6068
6069                 if (indirect_shadow_pages)
6070                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6071
6072                 return true;
6073         }
6074
6075         /*
6076          * if emulation was due to access to shadowed page table
6077          * and it failed try to unshadow page and re-enter the
6078          * guest to let CPU execute the instruction.
6079          */
6080         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6081
6082         /*
6083          * If the access faults on its page table, it can not
6084          * be fixed by unprotecting shadow page and it should
6085          * be reported to userspace.
6086          */
6087         return !write_fault_to_shadow_pgtable;
6088 }
6089
6090 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6091                               unsigned long cr2,  int emulation_type)
6092 {
6093         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6094         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6095
6096         last_retry_eip = vcpu->arch.last_retry_eip;
6097         last_retry_addr = vcpu->arch.last_retry_addr;
6098
6099         /*
6100          * If the emulation is caused by #PF and it is non-page_table
6101          * writing instruction, it means the VM-EXIT is caused by shadow
6102          * page protected, we can zap the shadow page and retry this
6103          * instruction directly.
6104          *
6105          * Note: if the guest uses a non-page-table modifying instruction
6106          * on the PDE that points to the instruction, then we will unmap
6107          * the instruction and go to an infinite loop. So, we cache the
6108          * last retried eip and the last fault address, if we meet the eip
6109          * and the address again, we can break out of the potential infinite
6110          * loop.
6111          */
6112         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6113
6114         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6115                 return false;
6116
6117         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6118                 return false;
6119
6120         if (x86_page_table_writing_insn(ctxt))
6121                 return false;
6122
6123         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6124                 return false;
6125
6126         vcpu->arch.last_retry_eip = ctxt->eip;
6127         vcpu->arch.last_retry_addr = cr2;
6128
6129         if (!vcpu->arch.mmu->direct_map)
6130                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6131
6132         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6133
6134         return true;
6135 }
6136
6137 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6138 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6139
6140 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6141 {
6142         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6143                 /* This is a good place to trace that we are exiting SMM.  */
6144                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6145
6146                 /* Process a latched INIT or SMI, if any.  */
6147                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6148         }
6149
6150         kvm_mmu_reset_context(vcpu);
6151 }
6152
6153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6154 {
6155         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6156
6157         vcpu->arch.hflags = emul_flags;
6158
6159         if (changed & HF_SMM_MASK)
6160                 kvm_smm_changed(vcpu);
6161 }
6162
6163 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6164                                 unsigned long *db)
6165 {
6166         u32 dr6 = 0;
6167         int i;
6168         u32 enable, rwlen;
6169
6170         enable = dr7;
6171         rwlen = dr7 >> 16;
6172         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6173                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6174                         dr6 |= (1 << i);
6175         return dr6;
6176 }
6177
6178 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6179 {
6180         struct kvm_run *kvm_run = vcpu->run;
6181
6182         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6183                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6184                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6185                 kvm_run->debug.arch.exception = DB_VECTOR;
6186                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6187                 *r = EMULATE_USER_EXIT;
6188         } else {
6189                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6190         }
6191 }
6192
6193 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6194 {
6195         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6196         int r = EMULATE_DONE;
6197
6198         kvm_x86_ops->skip_emulated_instruction(vcpu);
6199
6200         /*
6201          * rflags is the old, "raw" value of the flags.  The new value has
6202          * not been saved yet.
6203          *
6204          * This is correct even for TF set by the guest, because "the
6205          * processor will not generate this exception after the instruction
6206          * that sets the TF flag".
6207          */
6208         if (unlikely(rflags & X86_EFLAGS_TF))
6209                 kvm_vcpu_do_singlestep(vcpu, &r);
6210         return r == EMULATE_DONE;
6211 }
6212 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6213
6214 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6215 {
6216         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6217             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6218                 struct kvm_run *kvm_run = vcpu->run;
6219                 unsigned long eip = kvm_get_linear_rip(vcpu);
6220                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6221                                            vcpu->arch.guest_debug_dr7,
6222                                            vcpu->arch.eff_db);
6223
6224                 if (dr6 != 0) {
6225                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6226                         kvm_run->debug.arch.pc = eip;
6227                         kvm_run->debug.arch.exception = DB_VECTOR;
6228                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6229                         *r = EMULATE_USER_EXIT;
6230                         return true;
6231                 }
6232         }
6233
6234         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6235             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6236                 unsigned long eip = kvm_get_linear_rip(vcpu);
6237                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6238                                            vcpu->arch.dr7,
6239                                            vcpu->arch.db);
6240
6241                 if (dr6 != 0) {
6242                         vcpu->arch.dr6 &= ~15;
6243                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6244                         kvm_queue_exception(vcpu, DB_VECTOR);
6245                         *r = EMULATE_DONE;
6246                         return true;
6247                 }
6248         }
6249
6250         return false;
6251 }
6252
6253 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6254 {
6255         switch (ctxt->opcode_len) {
6256         case 1:
6257                 switch (ctxt->b) {
6258                 case 0xe4:      /* IN */
6259                 case 0xe5:
6260                 case 0xec:
6261                 case 0xed:
6262                 case 0xe6:      /* OUT */
6263                 case 0xe7:
6264                 case 0xee:
6265                 case 0xef:
6266                 case 0x6c:      /* INS */
6267                 case 0x6d:
6268                 case 0x6e:      /* OUTS */
6269                 case 0x6f:
6270                         return true;
6271                 }
6272                 break;
6273         case 2:
6274                 switch (ctxt->b) {
6275                 case 0x33:      /* RDPMC */
6276                         return true;
6277                 }
6278                 break;
6279         }
6280
6281         return false;
6282 }
6283
6284 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6285                             unsigned long cr2,
6286                             int emulation_type,
6287                             void *insn,
6288                             int insn_len)
6289 {
6290         int r;
6291         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6292         bool writeback = true;
6293         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6294
6295         vcpu->arch.l1tf_flush_l1d = true;
6296
6297         /*
6298          * Clear write_fault_to_shadow_pgtable here to ensure it is
6299          * never reused.
6300          */
6301         vcpu->arch.write_fault_to_shadow_pgtable = false;
6302         kvm_clear_exception_queue(vcpu);
6303
6304         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6305                 init_emulate_ctxt(vcpu);
6306
6307                 /*
6308                  * We will reenter on the same instruction since
6309                  * we do not set complete_userspace_io.  This does not
6310                  * handle watchpoints yet, those would be handled in
6311                  * the emulate_ops.
6312                  */
6313                 if (!(emulation_type & EMULTYPE_SKIP) &&
6314                     kvm_vcpu_check_breakpoint(vcpu, &r))
6315                         return r;
6316
6317                 ctxt->interruptibility = 0;
6318                 ctxt->have_exception = false;
6319                 ctxt->exception.vector = -1;
6320                 ctxt->perm_ok = false;
6321
6322                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6323
6324                 r = x86_decode_insn(ctxt, insn, insn_len);
6325
6326                 trace_kvm_emulate_insn_start(vcpu);
6327                 ++vcpu->stat.insn_emulation;
6328                 if (r != EMULATION_OK)  {
6329                         if (emulation_type & EMULTYPE_TRAP_UD)
6330                                 return EMULATE_FAIL;
6331                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6332                                                 emulation_type))
6333                                 return EMULATE_DONE;
6334                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6335                                 return EMULATE_DONE;
6336                         if (emulation_type & EMULTYPE_SKIP)
6337                                 return EMULATE_FAIL;
6338                         return handle_emulation_failure(vcpu, emulation_type);
6339                 }
6340         }
6341
6342         if ((emulation_type & EMULTYPE_VMWARE) &&
6343             !is_vmware_backdoor_opcode(ctxt))
6344                 return EMULATE_FAIL;
6345
6346         if (emulation_type & EMULTYPE_SKIP) {
6347                 kvm_rip_write(vcpu, ctxt->_eip);
6348                 if (ctxt->eflags & X86_EFLAGS_RF)
6349                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6350                 return EMULATE_DONE;
6351         }
6352
6353         if (retry_instruction(ctxt, cr2, emulation_type))
6354                 return EMULATE_DONE;
6355
6356         /* this is needed for vmware backdoor interface to work since it
6357            changes registers values  during IO operation */
6358         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6359                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6360                 emulator_invalidate_register_cache(ctxt);
6361         }
6362
6363 restart:
6364         /* Save the faulting GPA (cr2) in the address field */
6365         ctxt->exception.address = cr2;
6366
6367         r = x86_emulate_insn(ctxt);
6368
6369         if (r == EMULATION_INTERCEPTED)
6370                 return EMULATE_DONE;
6371
6372         if (r == EMULATION_FAILED) {
6373                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6374                                         emulation_type))
6375                         return EMULATE_DONE;
6376
6377                 return handle_emulation_failure(vcpu, emulation_type);
6378         }
6379
6380         if (ctxt->have_exception) {
6381                 r = EMULATE_DONE;
6382                 if (inject_emulated_exception(vcpu))
6383                         return r;
6384         } else if (vcpu->arch.pio.count) {
6385                 if (!vcpu->arch.pio.in) {
6386                         /* FIXME: return into emulator if single-stepping.  */
6387                         vcpu->arch.pio.count = 0;
6388                 } else {
6389                         writeback = false;
6390                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6391                 }
6392                 r = EMULATE_USER_EXIT;
6393         } else if (vcpu->mmio_needed) {
6394                 if (!vcpu->mmio_is_write)
6395                         writeback = false;
6396                 r = EMULATE_USER_EXIT;
6397                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6398         } else if (r == EMULATION_RESTART)
6399                 goto restart;
6400         else
6401                 r = EMULATE_DONE;
6402
6403         if (writeback) {
6404                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6405                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6406                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6407                 kvm_rip_write(vcpu, ctxt->eip);
6408                 if (r == EMULATE_DONE &&
6409                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6410                         kvm_vcpu_do_singlestep(vcpu, &r);
6411                 if (!ctxt->have_exception ||
6412                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6413                         __kvm_set_rflags(vcpu, ctxt->eflags);
6414
6415                 /*
6416                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6417                  * do nothing, and it will be requested again as soon as
6418                  * the shadow expires.  But we still need to check here,
6419                  * because POPF has no interrupt shadow.
6420                  */
6421                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6422                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6423         } else
6424                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6425
6426         return r;
6427 }
6428
6429 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6430 {
6431         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6432 }
6433 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6434
6435 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6436                                         void *insn, int insn_len)
6437 {
6438         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6441
6442 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6443                             unsigned short port)
6444 {
6445         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6446         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6447                                             size, port, &val, 1);
6448         /* do not return to emulator after return from userspace */
6449         vcpu->arch.pio.count = 0;
6450         return ret;
6451 }
6452
6453 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6454 {
6455         unsigned long val;
6456
6457         /* We should only ever be called with arch.pio.count equal to 1 */
6458         BUG_ON(vcpu->arch.pio.count != 1);
6459
6460         /* For size less than 4 we merge, else we zero extend */
6461         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6462                                         : 0;
6463
6464         /*
6465          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6466          * the copy and tracing
6467          */
6468         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6469                                  vcpu->arch.pio.port, &val, 1);
6470         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6471
6472         return 1;
6473 }
6474
6475 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6476                            unsigned short port)
6477 {
6478         unsigned long val;
6479         int ret;
6480
6481         /* For size less than 4 we merge, else we zero extend */
6482         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6483
6484         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6485                                        &val, 1);
6486         if (ret) {
6487                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6488                 return ret;
6489         }
6490
6491         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6492
6493         return 0;
6494 }
6495
6496 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6497 {
6498         int ret = kvm_skip_emulated_instruction(vcpu);
6499
6500         /*
6501          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6502          * KVM_EXIT_DEBUG here.
6503          */
6504         if (in)
6505                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6506         else
6507                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6508 }
6509 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6510
6511 static int kvmclock_cpu_down_prep(unsigned int cpu)
6512 {
6513         __this_cpu_write(cpu_tsc_khz, 0);
6514         return 0;
6515 }
6516
6517 static void tsc_khz_changed(void *data)
6518 {
6519         struct cpufreq_freqs *freq = data;
6520         unsigned long khz = 0;
6521
6522         if (data)
6523                 khz = freq->new;
6524         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6525                 khz = cpufreq_quick_get(raw_smp_processor_id());
6526         if (!khz)
6527                 khz = tsc_khz;
6528         __this_cpu_write(cpu_tsc_khz, khz);
6529 }
6530
6531 #ifdef CONFIG_X86_64
6532 static void kvm_hyperv_tsc_notifier(void)
6533 {
6534         struct kvm *kvm;
6535         struct kvm_vcpu *vcpu;
6536         int cpu;
6537
6538         spin_lock(&kvm_lock);
6539         list_for_each_entry(kvm, &vm_list, vm_list)
6540                 kvm_make_mclock_inprogress_request(kvm);
6541
6542         hyperv_stop_tsc_emulation();
6543
6544         /* TSC frequency always matches when on Hyper-V */
6545         for_each_present_cpu(cpu)
6546                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6547         kvm_max_guest_tsc_khz = tsc_khz;
6548
6549         list_for_each_entry(kvm, &vm_list, vm_list) {
6550                 struct kvm_arch *ka = &kvm->arch;
6551
6552                 spin_lock(&ka->pvclock_gtod_sync_lock);
6553
6554                 pvclock_update_vm_gtod_copy(kvm);
6555
6556                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6557                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6558
6559                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6560                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6561
6562                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6563         }
6564         spin_unlock(&kvm_lock);
6565 }
6566 #endif
6567
6568 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6569                                      void *data)
6570 {
6571         struct cpufreq_freqs *freq = data;
6572         struct kvm *kvm;
6573         struct kvm_vcpu *vcpu;
6574         int i, send_ipi = 0;
6575
6576         /*
6577          * We allow guests to temporarily run on slowing clocks,
6578          * provided we notify them after, or to run on accelerating
6579          * clocks, provided we notify them before.  Thus time never
6580          * goes backwards.
6581          *
6582          * However, we have a problem.  We can't atomically update
6583          * the frequency of a given CPU from this function; it is
6584          * merely a notifier, which can be called from any CPU.
6585          * Changing the TSC frequency at arbitrary points in time
6586          * requires a recomputation of local variables related to
6587          * the TSC for each VCPU.  We must flag these local variables
6588          * to be updated and be sure the update takes place with the
6589          * new frequency before any guests proceed.
6590          *
6591          * Unfortunately, the combination of hotplug CPU and frequency
6592          * change creates an intractable locking scenario; the order
6593          * of when these callouts happen is undefined with respect to
6594          * CPU hotplug, and they can race with each other.  As such,
6595          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6596          * undefined; you can actually have a CPU frequency change take
6597          * place in between the computation of X and the setting of the
6598          * variable.  To protect against this problem, all updates of
6599          * the per_cpu tsc_khz variable are done in an interrupt
6600          * protected IPI, and all callers wishing to update the value
6601          * must wait for a synchronous IPI to complete (which is trivial
6602          * if the caller is on the CPU already).  This establishes the
6603          * necessary total order on variable updates.
6604          *
6605          * Note that because a guest time update may take place
6606          * anytime after the setting of the VCPU's request bit, the
6607          * correct TSC value must be set before the request.  However,
6608          * to ensure the update actually makes it to any guest which
6609          * starts running in hardware virtualization between the set
6610          * and the acquisition of the spinlock, we must also ping the
6611          * CPU after setting the request bit.
6612          *
6613          */
6614
6615         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6616                 return 0;
6617         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6618                 return 0;
6619
6620         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6621
6622         spin_lock(&kvm_lock);
6623         list_for_each_entry(kvm, &vm_list, vm_list) {
6624                 kvm_for_each_vcpu(i, vcpu, kvm) {
6625                         if (vcpu->cpu != freq->cpu)
6626                                 continue;
6627                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6628                         if (vcpu->cpu != smp_processor_id())
6629                                 send_ipi = 1;
6630                 }
6631         }
6632         spin_unlock(&kvm_lock);
6633
6634         if (freq->old < freq->new && send_ipi) {
6635                 /*
6636                  * We upscale the frequency.  Must make the guest
6637                  * doesn't see old kvmclock values while running with
6638                  * the new frequency, otherwise we risk the guest sees
6639                  * time go backwards.
6640                  *
6641                  * In case we update the frequency for another cpu
6642                  * (which might be in guest context) send an interrupt
6643                  * to kick the cpu out of guest context.  Next time
6644                  * guest context is entered kvmclock will be updated,
6645                  * so the guest will not see stale values.
6646                  */
6647                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6648         }
6649         return 0;
6650 }
6651
6652 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6653         .notifier_call  = kvmclock_cpufreq_notifier
6654 };
6655
6656 static int kvmclock_cpu_online(unsigned int cpu)
6657 {
6658         tsc_khz_changed(NULL);
6659         return 0;
6660 }
6661
6662 static void kvm_timer_init(void)
6663 {
6664         max_tsc_khz = tsc_khz;
6665
6666         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6667 #ifdef CONFIG_CPU_FREQ
6668                 struct cpufreq_policy policy;
6669                 int cpu;
6670
6671                 memset(&policy, 0, sizeof(policy));
6672                 cpu = get_cpu();
6673                 cpufreq_get_policy(&policy, cpu);
6674                 if (policy.cpuinfo.max_freq)
6675                         max_tsc_khz = policy.cpuinfo.max_freq;
6676                 put_cpu();
6677 #endif
6678                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6679                                           CPUFREQ_TRANSITION_NOTIFIER);
6680         }
6681         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6682
6683         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6684                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6685 }
6686
6687 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6688 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6689
6690 int kvm_is_in_guest(void)
6691 {
6692         return __this_cpu_read(current_vcpu) != NULL;
6693 }
6694
6695 static int kvm_is_user_mode(void)
6696 {
6697         int user_mode = 3;
6698
6699         if (__this_cpu_read(current_vcpu))
6700                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6701
6702         return user_mode != 0;
6703 }
6704
6705 static unsigned long kvm_get_guest_ip(void)
6706 {
6707         unsigned long ip = 0;
6708
6709         if (__this_cpu_read(current_vcpu))
6710                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6711
6712         return ip;
6713 }
6714
6715 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6716         .is_in_guest            = kvm_is_in_guest,
6717         .is_user_mode           = kvm_is_user_mode,
6718         .get_guest_ip           = kvm_get_guest_ip,
6719 };
6720
6721 static void kvm_set_mmio_spte_mask(void)
6722 {
6723         u64 mask;
6724         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6725
6726         /*
6727          * Set the reserved bits and the present bit of an paging-structure
6728          * entry to generate page fault with PFER.RSV = 1.
6729          */
6730
6731         /*
6732          * Mask the uppermost physical address bit, which would be reserved as
6733          * long as the supported physical address width is less than 52.
6734          */
6735         mask = 1ull << 51;
6736
6737         /* Set the present bit. */
6738         mask |= 1ull;
6739
6740         /*
6741          * If reserved bit is not supported, clear the present bit to disable
6742          * mmio page fault.
6743          */
6744         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6745                 mask &= ~1ull;
6746
6747         kvm_mmu_set_mmio_spte_mask(mask, mask);
6748 }
6749
6750 #ifdef CONFIG_X86_64
6751 static void pvclock_gtod_update_fn(struct work_struct *work)
6752 {
6753         struct kvm *kvm;
6754
6755         struct kvm_vcpu *vcpu;
6756         int i;
6757
6758         spin_lock(&kvm_lock);
6759         list_for_each_entry(kvm, &vm_list, vm_list)
6760                 kvm_for_each_vcpu(i, vcpu, kvm)
6761                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6762         atomic_set(&kvm_guest_has_master_clock, 0);
6763         spin_unlock(&kvm_lock);
6764 }
6765
6766 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6767
6768 /*
6769  * Notification about pvclock gtod data update.
6770  */
6771 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6772                                void *priv)
6773 {
6774         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6775         struct timekeeper *tk = priv;
6776
6777         update_pvclock_gtod(tk);
6778
6779         /* disable master clock if host does not trust, or does not
6780          * use, TSC based clocksource.
6781          */
6782         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6783             atomic_read(&kvm_guest_has_master_clock) != 0)
6784                 queue_work(system_long_wq, &pvclock_gtod_work);
6785
6786         return 0;
6787 }
6788
6789 static struct notifier_block pvclock_gtod_notifier = {
6790         .notifier_call = pvclock_gtod_notify,
6791 };
6792 #endif
6793
6794 int kvm_arch_init(void *opaque)
6795 {
6796         int r;
6797         struct kvm_x86_ops *ops = opaque;
6798
6799         if (kvm_x86_ops) {
6800                 printk(KERN_ERR "kvm: already loaded the other module\n");
6801                 r = -EEXIST;
6802                 goto out;
6803         }
6804
6805         if (!ops->cpu_has_kvm_support()) {
6806                 printk(KERN_ERR "kvm: no hardware support\n");
6807                 r = -EOPNOTSUPP;
6808                 goto out;
6809         }
6810         if (ops->disabled_by_bios()) {
6811                 printk(KERN_ERR "kvm: disabled by bios\n");
6812                 r = -EOPNOTSUPP;
6813                 goto out;
6814         }
6815
6816         r = -ENOMEM;
6817         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6818         if (!shared_msrs) {
6819                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6820                 goto out;
6821         }
6822
6823         r = kvm_mmu_module_init();
6824         if (r)
6825                 goto out_free_percpu;
6826
6827         kvm_set_mmio_spte_mask();
6828
6829         kvm_x86_ops = ops;
6830
6831         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6832                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6833                         PT_PRESENT_MASK, 0, sme_me_mask);
6834         kvm_timer_init();
6835
6836         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6837
6838         if (boot_cpu_has(X86_FEATURE_XSAVE))
6839                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6840
6841         kvm_lapic_init();
6842 #ifdef CONFIG_X86_64
6843         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6844
6845         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6846                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6847 #endif
6848
6849         return 0;
6850
6851 out_free_percpu:
6852         free_percpu(shared_msrs);
6853 out:
6854         return r;
6855 }
6856
6857 void kvm_arch_exit(void)
6858 {
6859 #ifdef CONFIG_X86_64
6860         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6861                 clear_hv_tscchange_cb();
6862 #endif
6863         kvm_lapic_exit();
6864         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6865
6866         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6867                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6868                                             CPUFREQ_TRANSITION_NOTIFIER);
6869         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6870 #ifdef CONFIG_X86_64
6871         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6872 #endif
6873         kvm_x86_ops = NULL;
6874         kvm_mmu_module_exit();
6875         free_percpu(shared_msrs);
6876 }
6877
6878 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6879 {
6880         ++vcpu->stat.halt_exits;
6881         if (lapic_in_kernel(vcpu)) {
6882                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6883                 return 1;
6884         } else {
6885                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6886                 return 0;
6887         }
6888 }
6889 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6890
6891 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6892 {
6893         int ret = kvm_skip_emulated_instruction(vcpu);
6894         /*
6895          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6896          * KVM_EXIT_DEBUG here.
6897          */
6898         return kvm_vcpu_halt(vcpu) && ret;
6899 }
6900 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6901
6902 #ifdef CONFIG_X86_64
6903 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6904                                 unsigned long clock_type)
6905 {
6906         struct kvm_clock_pairing clock_pairing;
6907         struct timespec64 ts;
6908         u64 cycle;
6909         int ret;
6910
6911         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6912                 return -KVM_EOPNOTSUPP;
6913
6914         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6915                 return -KVM_EOPNOTSUPP;
6916
6917         clock_pairing.sec = ts.tv_sec;
6918         clock_pairing.nsec = ts.tv_nsec;
6919         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6920         clock_pairing.flags = 0;
6921
6922         ret = 0;
6923         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6924                             sizeof(struct kvm_clock_pairing)))
6925                 ret = -KVM_EFAULT;
6926
6927         return ret;
6928 }
6929 #endif
6930
6931 /*
6932  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6933  *
6934  * @apicid - apicid of vcpu to be kicked.
6935  */
6936 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6937 {
6938         struct kvm_lapic_irq lapic_irq;
6939
6940         lapic_irq.shorthand = 0;
6941         lapic_irq.dest_mode = 0;
6942         lapic_irq.level = 0;
6943         lapic_irq.dest_id = apicid;
6944         lapic_irq.msi_redir_hint = false;
6945
6946         lapic_irq.delivery_mode = APIC_DM_REMRD;
6947         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6948 }
6949
6950 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6951 {
6952         vcpu->arch.apicv_active = false;
6953         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6954 }
6955
6956 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6957 {
6958         unsigned long nr, a0, a1, a2, a3, ret;
6959         int op_64_bit;
6960
6961         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6962                 return kvm_hv_hypercall(vcpu);
6963
6964         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6965         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6966         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6967         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6968         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6969
6970         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6971
6972         op_64_bit = is_64_bit_mode(vcpu);
6973         if (!op_64_bit) {
6974                 nr &= 0xFFFFFFFF;
6975                 a0 &= 0xFFFFFFFF;
6976                 a1 &= 0xFFFFFFFF;
6977                 a2 &= 0xFFFFFFFF;
6978                 a3 &= 0xFFFFFFFF;
6979         }
6980
6981         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6982                 ret = -KVM_EPERM;
6983                 goto out;
6984         }
6985
6986         switch (nr) {
6987         case KVM_HC_VAPIC_POLL_IRQ:
6988                 ret = 0;
6989                 break;
6990         case KVM_HC_KICK_CPU:
6991                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6992                 ret = 0;
6993                 break;
6994 #ifdef CONFIG_X86_64
6995         case KVM_HC_CLOCK_PAIRING:
6996                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6997                 break;
6998         case KVM_HC_SEND_IPI:
6999                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7000                 break;
7001 #endif
7002         default:
7003                 ret = -KVM_ENOSYS;
7004                 break;
7005         }
7006 out:
7007         if (!op_64_bit)
7008                 ret = (u32)ret;
7009         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7010
7011         ++vcpu->stat.hypercalls;
7012         return kvm_skip_emulated_instruction(vcpu);
7013 }
7014 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7015
7016 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7017 {
7018         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7019         char instruction[3];
7020         unsigned long rip = kvm_rip_read(vcpu);
7021
7022         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7023
7024         return emulator_write_emulated(ctxt, rip, instruction, 3,
7025                 &ctxt->exception);
7026 }
7027
7028 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7029 {
7030         return vcpu->run->request_interrupt_window &&
7031                 likely(!pic_in_kernel(vcpu->kvm));
7032 }
7033
7034 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7035 {
7036         struct kvm_run *kvm_run = vcpu->run;
7037
7038         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7039         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7040         kvm_run->cr8 = kvm_get_cr8(vcpu);
7041         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7042         kvm_run->ready_for_interrupt_injection =
7043                 pic_in_kernel(vcpu->kvm) ||
7044                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7045 }
7046
7047 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7048 {
7049         int max_irr, tpr;
7050
7051         if (!kvm_x86_ops->update_cr8_intercept)
7052                 return;
7053
7054         if (!lapic_in_kernel(vcpu))
7055                 return;
7056
7057         if (vcpu->arch.apicv_active)
7058                 return;
7059
7060         if (!vcpu->arch.apic->vapic_addr)
7061                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7062         else
7063                 max_irr = -1;
7064
7065         if (max_irr != -1)
7066                 max_irr >>= 4;
7067
7068         tpr = kvm_lapic_get_cr8(vcpu);
7069
7070         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7071 }
7072
7073 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7074 {
7075         int r;
7076
7077         /* try to reinject previous events if any */
7078
7079         if (vcpu->arch.exception.injected)
7080                 kvm_x86_ops->queue_exception(vcpu);
7081         /*
7082          * Do not inject an NMI or interrupt if there is a pending
7083          * exception.  Exceptions and interrupts are recognized at
7084          * instruction boundaries, i.e. the start of an instruction.
7085          * Trap-like exceptions, e.g. #DB, have higher priority than
7086          * NMIs and interrupts, i.e. traps are recognized before an
7087          * NMI/interrupt that's pending on the same instruction.
7088          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7089          * priority, but are only generated (pended) during instruction
7090          * execution, i.e. a pending fault-like exception means the
7091          * fault occurred on the *previous* instruction and must be
7092          * serviced prior to recognizing any new events in order to
7093          * fully complete the previous instruction.
7094          */
7095         else if (!vcpu->arch.exception.pending) {
7096                 if (vcpu->arch.nmi_injected)
7097                         kvm_x86_ops->set_nmi(vcpu);
7098                 else if (vcpu->arch.interrupt.injected)
7099                         kvm_x86_ops->set_irq(vcpu);
7100         }
7101
7102         /*
7103          * Call check_nested_events() even if we reinjected a previous event
7104          * in order for caller to determine if it should require immediate-exit
7105          * from L2 to L1 due to pending L1 events which require exit
7106          * from L2 to L1.
7107          */
7108         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7109                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7110                 if (r != 0)
7111                         return r;
7112         }
7113
7114         /* try to inject new event if pending */
7115         if (vcpu->arch.exception.pending) {
7116                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7117                                         vcpu->arch.exception.has_error_code,
7118                                         vcpu->arch.exception.error_code);
7119
7120                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7121                 vcpu->arch.exception.pending = false;
7122                 vcpu->arch.exception.injected = true;
7123
7124                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7125                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7126                                              X86_EFLAGS_RF);
7127
7128                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7129                         /*
7130                          * This code assumes that nSVM doesn't use
7131                          * check_nested_events(). If it does, the
7132                          * DR6/DR7 changes should happen before L1
7133                          * gets a #VMEXIT for an intercepted #DB in
7134                          * L2.  (Under VMX, on the other hand, the
7135                          * DR6/DR7 changes should not happen in the
7136                          * event of a VM-exit to L1 for an intercepted
7137                          * #DB in L2.)
7138                          */
7139                         kvm_deliver_exception_payload(vcpu);
7140                         if (vcpu->arch.dr7 & DR7_GD) {
7141                                 vcpu->arch.dr7 &= ~DR7_GD;
7142                                 kvm_update_dr7(vcpu);
7143                         }
7144                 }
7145
7146                 kvm_x86_ops->queue_exception(vcpu);
7147         }
7148
7149         /* Don't consider new event if we re-injected an event */
7150         if (kvm_event_needs_reinjection(vcpu))
7151                 return 0;
7152
7153         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7154             kvm_x86_ops->smi_allowed(vcpu)) {
7155                 vcpu->arch.smi_pending = false;
7156                 ++vcpu->arch.smi_count;
7157                 enter_smm(vcpu);
7158         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7159                 --vcpu->arch.nmi_pending;
7160                 vcpu->arch.nmi_injected = true;
7161                 kvm_x86_ops->set_nmi(vcpu);
7162         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7163                 /*
7164                  * Because interrupts can be injected asynchronously, we are
7165                  * calling check_nested_events again here to avoid a race condition.
7166                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7167                  * proposal and current concerns.  Perhaps we should be setting
7168                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7169                  */
7170                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7171                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7172                         if (r != 0)
7173                                 return r;
7174                 }
7175                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7176                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7177                                             false);
7178                         kvm_x86_ops->set_irq(vcpu);
7179                 }
7180         }
7181
7182         return 0;
7183 }
7184
7185 static void process_nmi(struct kvm_vcpu *vcpu)
7186 {
7187         unsigned limit = 2;
7188
7189         /*
7190          * x86 is limited to one NMI running, and one NMI pending after it.
7191          * If an NMI is already in progress, limit further NMIs to just one.
7192          * Otherwise, allow two (and we'll inject the first one immediately).
7193          */
7194         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7195                 limit = 1;
7196
7197         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7198         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7199         kvm_make_request(KVM_REQ_EVENT, vcpu);
7200 }
7201
7202 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7203 {
7204         u32 flags = 0;
7205         flags |= seg->g       << 23;
7206         flags |= seg->db      << 22;
7207         flags |= seg->l       << 21;
7208         flags |= seg->avl     << 20;
7209         flags |= seg->present << 15;
7210         flags |= seg->dpl     << 13;
7211         flags |= seg->s       << 12;
7212         flags |= seg->type    << 8;
7213         return flags;
7214 }
7215
7216 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7217 {
7218         struct kvm_segment seg;
7219         int offset;
7220
7221         kvm_get_segment(vcpu, &seg, n);
7222         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7223
7224         if (n < 3)
7225                 offset = 0x7f84 + n * 12;
7226         else
7227                 offset = 0x7f2c + (n - 3) * 12;
7228
7229         put_smstate(u32, buf, offset + 8, seg.base);
7230         put_smstate(u32, buf, offset + 4, seg.limit);
7231         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7232 }
7233
7234 #ifdef CONFIG_X86_64
7235 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7236 {
7237         struct kvm_segment seg;
7238         int offset;
7239         u16 flags;
7240
7241         kvm_get_segment(vcpu, &seg, n);
7242         offset = 0x7e00 + n * 16;
7243
7244         flags = enter_smm_get_segment_flags(&seg) >> 8;
7245         put_smstate(u16, buf, offset, seg.selector);
7246         put_smstate(u16, buf, offset + 2, flags);
7247         put_smstate(u32, buf, offset + 4, seg.limit);
7248         put_smstate(u64, buf, offset + 8, seg.base);
7249 }
7250 #endif
7251
7252 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7253 {
7254         struct desc_ptr dt;
7255         struct kvm_segment seg;
7256         unsigned long val;
7257         int i;
7258
7259         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7260         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7261         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7262         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7263
7264         for (i = 0; i < 8; i++)
7265                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7266
7267         kvm_get_dr(vcpu, 6, &val);
7268         put_smstate(u32, buf, 0x7fcc, (u32)val);
7269         kvm_get_dr(vcpu, 7, &val);
7270         put_smstate(u32, buf, 0x7fc8, (u32)val);
7271
7272         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7273         put_smstate(u32, buf, 0x7fc4, seg.selector);
7274         put_smstate(u32, buf, 0x7f64, seg.base);
7275         put_smstate(u32, buf, 0x7f60, seg.limit);
7276         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7277
7278         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7279         put_smstate(u32, buf, 0x7fc0, seg.selector);
7280         put_smstate(u32, buf, 0x7f80, seg.base);
7281         put_smstate(u32, buf, 0x7f7c, seg.limit);
7282         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7283
7284         kvm_x86_ops->get_gdt(vcpu, &dt);
7285         put_smstate(u32, buf, 0x7f74, dt.address);
7286         put_smstate(u32, buf, 0x7f70, dt.size);
7287
7288         kvm_x86_ops->get_idt(vcpu, &dt);
7289         put_smstate(u32, buf, 0x7f58, dt.address);
7290         put_smstate(u32, buf, 0x7f54, dt.size);
7291
7292         for (i = 0; i < 6; i++)
7293                 enter_smm_save_seg_32(vcpu, buf, i);
7294
7295         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7296
7297         /* revision id */
7298         put_smstate(u32, buf, 0x7efc, 0x00020000);
7299         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7300 }
7301
7302 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7303 {
7304 #ifdef CONFIG_X86_64
7305         struct desc_ptr dt;
7306         struct kvm_segment seg;
7307         unsigned long val;
7308         int i;
7309
7310         for (i = 0; i < 16; i++)
7311                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7312
7313         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7314         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7315
7316         kvm_get_dr(vcpu, 6, &val);
7317         put_smstate(u64, buf, 0x7f68, val);
7318         kvm_get_dr(vcpu, 7, &val);
7319         put_smstate(u64, buf, 0x7f60, val);
7320
7321         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7322         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7323         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7324
7325         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7326
7327         /* revision id */
7328         put_smstate(u32, buf, 0x7efc, 0x00020064);
7329
7330         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7331
7332         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7333         put_smstate(u16, buf, 0x7e90, seg.selector);
7334         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7335         put_smstate(u32, buf, 0x7e94, seg.limit);
7336         put_smstate(u64, buf, 0x7e98, seg.base);
7337
7338         kvm_x86_ops->get_idt(vcpu, &dt);
7339         put_smstate(u32, buf, 0x7e84, dt.size);
7340         put_smstate(u64, buf, 0x7e88, dt.address);
7341
7342         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7343         put_smstate(u16, buf, 0x7e70, seg.selector);
7344         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7345         put_smstate(u32, buf, 0x7e74, seg.limit);
7346         put_smstate(u64, buf, 0x7e78, seg.base);
7347
7348         kvm_x86_ops->get_gdt(vcpu, &dt);
7349         put_smstate(u32, buf, 0x7e64, dt.size);
7350         put_smstate(u64, buf, 0x7e68, dt.address);
7351
7352         for (i = 0; i < 6; i++)
7353                 enter_smm_save_seg_64(vcpu, buf, i);
7354 #else
7355         WARN_ON_ONCE(1);
7356 #endif
7357 }
7358
7359 static void enter_smm(struct kvm_vcpu *vcpu)
7360 {
7361         struct kvm_segment cs, ds;
7362         struct desc_ptr dt;
7363         char buf[512];
7364         u32 cr0;
7365
7366         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7367         memset(buf, 0, 512);
7368         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7369                 enter_smm_save_state_64(vcpu, buf);
7370         else
7371                 enter_smm_save_state_32(vcpu, buf);
7372
7373         /*
7374          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7375          * vCPU state (e.g. leave guest mode) after we've saved the state into
7376          * the SMM state-save area.
7377          */
7378         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7379
7380         vcpu->arch.hflags |= HF_SMM_MASK;
7381         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7382
7383         if (kvm_x86_ops->get_nmi_mask(vcpu))
7384                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7385         else
7386                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7387
7388         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7389         kvm_rip_write(vcpu, 0x8000);
7390
7391         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7392         kvm_x86_ops->set_cr0(vcpu, cr0);
7393         vcpu->arch.cr0 = cr0;
7394
7395         kvm_x86_ops->set_cr4(vcpu, 0);
7396
7397         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7398         dt.address = dt.size = 0;
7399         kvm_x86_ops->set_idt(vcpu, &dt);
7400
7401         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7402
7403         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7404         cs.base = vcpu->arch.smbase;
7405
7406         ds.selector = 0;
7407         ds.base = 0;
7408
7409         cs.limit    = ds.limit = 0xffffffff;
7410         cs.type     = ds.type = 0x3;
7411         cs.dpl      = ds.dpl = 0;
7412         cs.db       = ds.db = 0;
7413         cs.s        = ds.s = 1;
7414         cs.l        = ds.l = 0;
7415         cs.g        = ds.g = 1;
7416         cs.avl      = ds.avl = 0;
7417         cs.present  = ds.present = 1;
7418         cs.unusable = ds.unusable = 0;
7419         cs.padding  = ds.padding = 0;
7420
7421         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7422         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7423         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7424         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7425         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7426         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7427
7428         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7429                 kvm_x86_ops->set_efer(vcpu, 0);
7430
7431         kvm_update_cpuid(vcpu);
7432         kvm_mmu_reset_context(vcpu);
7433 }
7434
7435 static void process_smi(struct kvm_vcpu *vcpu)
7436 {
7437         vcpu->arch.smi_pending = true;
7438         kvm_make_request(KVM_REQ_EVENT, vcpu);
7439 }
7440
7441 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7442 {
7443         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7444 }
7445
7446 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7447 {
7448         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7449                 return;
7450
7451         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7452
7453         if (irqchip_split(vcpu->kvm))
7454                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7455         else {
7456                 if (vcpu->arch.apicv_active)
7457                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7458                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7459         }
7460
7461         if (is_guest_mode(vcpu))
7462                 vcpu->arch.load_eoi_exitmap_pending = true;
7463         else
7464                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7465 }
7466
7467 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7468 {
7469         u64 eoi_exit_bitmap[4];
7470
7471         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7472                 return;
7473
7474         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7475                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7476         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7477 }
7478
7479 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7480                 unsigned long start, unsigned long end,
7481                 bool blockable)
7482 {
7483         unsigned long apic_address;
7484
7485         /*
7486          * The physical address of apic access page is stored in the VMCS.
7487          * Update it when it becomes invalid.
7488          */
7489         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7490         if (start <= apic_address && apic_address < end)
7491                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7492
7493         return 0;
7494 }
7495
7496 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7497 {
7498         struct page *page = NULL;
7499
7500         if (!lapic_in_kernel(vcpu))
7501                 return;
7502
7503         if (!kvm_x86_ops->set_apic_access_page_addr)
7504                 return;
7505
7506         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7507         if (is_error_page(page))
7508                 return;
7509         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7510
7511         /*
7512          * Do not pin apic access page in memory, the MMU notifier
7513          * will call us again if it is migrated or swapped out.
7514          */
7515         put_page(page);
7516 }
7517 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7518
7519 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7520 {
7521         smp_send_reschedule(vcpu->cpu);
7522 }
7523 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7524
7525 /*
7526  * Returns 1 to let vcpu_run() continue the guest execution loop without
7527  * exiting to the userspace.  Otherwise, the value will be returned to the
7528  * userspace.
7529  */
7530 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7531 {
7532         int r;
7533         bool req_int_win =
7534                 dm_request_for_irq_injection(vcpu) &&
7535                 kvm_cpu_accept_dm_intr(vcpu);
7536
7537         bool req_immediate_exit = false;
7538
7539         if (kvm_request_pending(vcpu)) {
7540                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7541                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7542                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7543                         kvm_mmu_unload(vcpu);
7544                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7545                         __kvm_migrate_timers(vcpu);
7546                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7547                         kvm_gen_update_masterclock(vcpu->kvm);
7548                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7549                         kvm_gen_kvmclock_update(vcpu);
7550                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7551                         r = kvm_guest_time_update(vcpu);
7552                         if (unlikely(r))
7553                                 goto out;
7554                 }
7555                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7556                         kvm_mmu_sync_roots(vcpu);
7557                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7558                         kvm_mmu_load_cr3(vcpu);
7559                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7560                         kvm_vcpu_flush_tlb(vcpu, true);
7561                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7562                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7563                         r = 0;
7564                         goto out;
7565                 }
7566                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7567                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7568                         vcpu->mmio_needed = 0;
7569                         r = 0;
7570                         goto out;
7571                 }
7572                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7573                         /* Page is swapped out. Do synthetic halt */
7574                         vcpu->arch.apf.halted = true;
7575                         r = 1;
7576                         goto out;
7577                 }
7578                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7579                         record_steal_time(vcpu);
7580                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7581                         process_smi(vcpu);
7582                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7583                         process_nmi(vcpu);
7584                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7585                         kvm_pmu_handle_event(vcpu);
7586                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7587                         kvm_pmu_deliver_pmi(vcpu);
7588                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7589                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7590                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7591                                      vcpu->arch.ioapic_handled_vectors)) {
7592                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7593                                 vcpu->run->eoi.vector =
7594                                                 vcpu->arch.pending_ioapic_eoi;
7595                                 r = 0;
7596                                 goto out;
7597                         }
7598                 }
7599                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7600                         vcpu_scan_ioapic(vcpu);
7601                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7602                         vcpu_load_eoi_exitmap(vcpu);
7603                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7604                         kvm_vcpu_reload_apic_access_page(vcpu);
7605                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7606                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7607                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7608                         r = 0;
7609                         goto out;
7610                 }
7611                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7612                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7613                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7614                         r = 0;
7615                         goto out;
7616                 }
7617                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7618                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7619                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7620                         r = 0;
7621                         goto out;
7622                 }
7623
7624                 /*
7625                  * KVM_REQ_HV_STIMER has to be processed after
7626                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7627                  * depend on the guest clock being up-to-date
7628                  */
7629                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7630                         kvm_hv_process_stimers(vcpu);
7631         }
7632
7633         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7634                 ++vcpu->stat.req_event;
7635                 kvm_apic_accept_events(vcpu);
7636                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7637                         r = 1;
7638                         goto out;
7639                 }
7640
7641                 if (inject_pending_event(vcpu, req_int_win) != 0)
7642                         req_immediate_exit = true;
7643                 else {
7644                         /* Enable SMI/NMI/IRQ window open exits if needed.
7645                          *
7646                          * SMIs have three cases:
7647                          * 1) They can be nested, and then there is nothing to
7648                          *    do here because RSM will cause a vmexit anyway.
7649                          * 2) There is an ISA-specific reason why SMI cannot be
7650                          *    injected, and the moment when this changes can be
7651                          *    intercepted.
7652                          * 3) Or the SMI can be pending because
7653                          *    inject_pending_event has completed the injection
7654                          *    of an IRQ or NMI from the previous vmexit, and
7655                          *    then we request an immediate exit to inject the
7656                          *    SMI.
7657                          */
7658                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7659                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7660                                         req_immediate_exit = true;
7661                         if (vcpu->arch.nmi_pending)
7662                                 kvm_x86_ops->enable_nmi_window(vcpu);
7663                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7664                                 kvm_x86_ops->enable_irq_window(vcpu);
7665                         WARN_ON(vcpu->arch.exception.pending);
7666                 }
7667
7668                 if (kvm_lapic_enabled(vcpu)) {
7669                         update_cr8_intercept(vcpu);
7670                         kvm_lapic_sync_to_vapic(vcpu);
7671                 }
7672         }
7673
7674         r = kvm_mmu_reload(vcpu);
7675         if (unlikely(r)) {
7676                 goto cancel_injection;
7677         }
7678
7679         preempt_disable();
7680
7681         kvm_x86_ops->prepare_guest_switch(vcpu);
7682
7683         /*
7684          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7685          * IPI are then delayed after guest entry, which ensures that they
7686          * result in virtual interrupt delivery.
7687          */
7688         local_irq_disable();
7689         vcpu->mode = IN_GUEST_MODE;
7690
7691         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7692
7693         /*
7694          * 1) We should set ->mode before checking ->requests.  Please see
7695          * the comment in kvm_vcpu_exiting_guest_mode().
7696          *
7697          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7698          * pairs with the memory barrier implicit in pi_test_and_set_on
7699          * (see vmx_deliver_posted_interrupt).
7700          *
7701          * 3) This also orders the write to mode from any reads to the page
7702          * tables done while the VCPU is running.  Please see the comment
7703          * in kvm_flush_remote_tlbs.
7704          */
7705         smp_mb__after_srcu_read_unlock();
7706
7707         /*
7708          * This handles the case where a posted interrupt was
7709          * notified with kvm_vcpu_kick.
7710          */
7711         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7712                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7713
7714         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7715             || need_resched() || signal_pending(current)) {
7716                 vcpu->mode = OUTSIDE_GUEST_MODE;
7717                 smp_wmb();
7718                 local_irq_enable();
7719                 preempt_enable();
7720                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7721                 r = 1;
7722                 goto cancel_injection;
7723         }
7724
7725         kvm_load_guest_xcr0(vcpu);
7726
7727         if (req_immediate_exit) {
7728                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7729                 kvm_x86_ops->request_immediate_exit(vcpu);
7730         }
7731
7732         trace_kvm_entry(vcpu->vcpu_id);
7733         if (lapic_timer_advance_ns)
7734                 wait_lapic_expire(vcpu);
7735         guest_enter_irqoff();
7736
7737         if (unlikely(vcpu->arch.switch_db_regs)) {
7738                 set_debugreg(0, 7);
7739                 set_debugreg(vcpu->arch.eff_db[0], 0);
7740                 set_debugreg(vcpu->arch.eff_db[1], 1);
7741                 set_debugreg(vcpu->arch.eff_db[2], 2);
7742                 set_debugreg(vcpu->arch.eff_db[3], 3);
7743                 set_debugreg(vcpu->arch.dr6, 6);
7744                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7745         }
7746
7747         kvm_x86_ops->run(vcpu);
7748
7749         /*
7750          * Do this here before restoring debug registers on the host.  And
7751          * since we do this before handling the vmexit, a DR access vmexit
7752          * can (a) read the correct value of the debug registers, (b) set
7753          * KVM_DEBUGREG_WONT_EXIT again.
7754          */
7755         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7756                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7757                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7758                 kvm_update_dr0123(vcpu);
7759                 kvm_update_dr6(vcpu);
7760                 kvm_update_dr7(vcpu);
7761                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7762         }
7763
7764         /*
7765          * If the guest has used debug registers, at least dr7
7766          * will be disabled while returning to the host.
7767          * If we don't have active breakpoints in the host, we don't
7768          * care about the messed up debug address registers. But if
7769          * we have some of them active, restore the old state.
7770          */
7771         if (hw_breakpoint_active())
7772                 hw_breakpoint_restore();
7773
7774         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7775
7776         vcpu->mode = OUTSIDE_GUEST_MODE;
7777         smp_wmb();
7778
7779         kvm_put_guest_xcr0(vcpu);
7780
7781         kvm_before_interrupt(vcpu);
7782         kvm_x86_ops->handle_external_intr(vcpu);
7783         kvm_after_interrupt(vcpu);
7784
7785         ++vcpu->stat.exits;
7786
7787         guest_exit_irqoff();
7788
7789         local_irq_enable();
7790         preempt_enable();
7791
7792         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7793
7794         /*
7795          * Profile KVM exit RIPs:
7796          */
7797         if (unlikely(prof_on == KVM_PROFILING)) {
7798                 unsigned long rip = kvm_rip_read(vcpu);
7799                 profile_hit(KVM_PROFILING, (void *)rip);
7800         }
7801
7802         if (unlikely(vcpu->arch.tsc_always_catchup))
7803                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7804
7805         if (vcpu->arch.apic_attention)
7806                 kvm_lapic_sync_from_vapic(vcpu);
7807
7808         vcpu->arch.gpa_available = false;
7809         r = kvm_x86_ops->handle_exit(vcpu);
7810         return r;
7811
7812 cancel_injection:
7813         kvm_x86_ops->cancel_injection(vcpu);
7814         if (unlikely(vcpu->arch.apic_attention))
7815                 kvm_lapic_sync_from_vapic(vcpu);
7816 out:
7817         return r;
7818 }
7819
7820 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7821 {
7822         if (!kvm_arch_vcpu_runnable(vcpu) &&
7823             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7824                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7825                 kvm_vcpu_block(vcpu);
7826                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7827
7828                 if (kvm_x86_ops->post_block)
7829                         kvm_x86_ops->post_block(vcpu);
7830
7831                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7832                         return 1;
7833         }
7834
7835         kvm_apic_accept_events(vcpu);
7836         switch(vcpu->arch.mp_state) {
7837         case KVM_MP_STATE_HALTED:
7838                 vcpu->arch.pv.pv_unhalted = false;
7839                 vcpu->arch.mp_state =
7840                         KVM_MP_STATE_RUNNABLE;
7841         case KVM_MP_STATE_RUNNABLE:
7842                 vcpu->arch.apf.halted = false;
7843                 break;
7844         case KVM_MP_STATE_INIT_RECEIVED:
7845                 break;
7846         default:
7847                 return -EINTR;
7848                 break;
7849         }
7850         return 1;
7851 }
7852
7853 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7854 {
7855         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7856                 kvm_x86_ops->check_nested_events(vcpu, false);
7857
7858         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7859                 !vcpu->arch.apf.halted);
7860 }
7861
7862 static int vcpu_run(struct kvm_vcpu *vcpu)
7863 {
7864         int r;
7865         struct kvm *kvm = vcpu->kvm;
7866
7867         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7868         vcpu->arch.l1tf_flush_l1d = true;
7869
7870         for (;;) {
7871                 if (kvm_vcpu_running(vcpu)) {
7872                         r = vcpu_enter_guest(vcpu);
7873                 } else {
7874                         r = vcpu_block(kvm, vcpu);
7875                 }
7876
7877                 if (r <= 0)
7878                         break;
7879
7880                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7881                 if (kvm_cpu_has_pending_timer(vcpu))
7882                         kvm_inject_pending_timer_irqs(vcpu);
7883
7884                 if (dm_request_for_irq_injection(vcpu) &&
7885                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7886                         r = 0;
7887                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7888                         ++vcpu->stat.request_irq_exits;
7889                         break;
7890                 }
7891
7892                 kvm_check_async_pf_completion(vcpu);
7893
7894                 if (signal_pending(current)) {
7895                         r = -EINTR;
7896                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7897                         ++vcpu->stat.signal_exits;
7898                         break;
7899                 }
7900                 if (need_resched()) {
7901                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7902                         cond_resched();
7903                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7904                 }
7905         }
7906
7907         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7908
7909         return r;
7910 }
7911
7912 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7913 {
7914         int r;
7915         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7916         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7917         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7918         if (r != EMULATE_DONE)
7919                 return 0;
7920         return 1;
7921 }
7922
7923 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7924 {
7925         BUG_ON(!vcpu->arch.pio.count);
7926
7927         return complete_emulated_io(vcpu);
7928 }
7929
7930 /*
7931  * Implements the following, as a state machine:
7932  *
7933  * read:
7934  *   for each fragment
7935  *     for each mmio piece in the fragment
7936  *       write gpa, len
7937  *       exit
7938  *       copy data
7939  *   execute insn
7940  *
7941  * write:
7942  *   for each fragment
7943  *     for each mmio piece in the fragment
7944  *       write gpa, len
7945  *       copy data
7946  *       exit
7947  */
7948 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7949 {
7950         struct kvm_run *run = vcpu->run;
7951         struct kvm_mmio_fragment *frag;
7952         unsigned len;
7953
7954         BUG_ON(!vcpu->mmio_needed);
7955
7956         /* Complete previous fragment */
7957         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7958         len = min(8u, frag->len);
7959         if (!vcpu->mmio_is_write)
7960                 memcpy(frag->data, run->mmio.data, len);
7961
7962         if (frag->len <= 8) {
7963                 /* Switch to the next fragment. */
7964                 frag++;
7965                 vcpu->mmio_cur_fragment++;
7966         } else {
7967                 /* Go forward to the next mmio piece. */
7968                 frag->data += len;
7969                 frag->gpa += len;
7970                 frag->len -= len;
7971         }
7972
7973         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7974                 vcpu->mmio_needed = 0;
7975
7976                 /* FIXME: return into emulator if single-stepping.  */
7977                 if (vcpu->mmio_is_write)
7978                         return 1;
7979                 vcpu->mmio_read_completed = 1;
7980                 return complete_emulated_io(vcpu);
7981         }
7982
7983         run->exit_reason = KVM_EXIT_MMIO;
7984         run->mmio.phys_addr = frag->gpa;
7985         if (vcpu->mmio_is_write)
7986                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7987         run->mmio.len = min(8u, frag->len);
7988         run->mmio.is_write = vcpu->mmio_is_write;
7989         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7990         return 0;
7991 }
7992
7993 /* Swap (qemu) user FPU context for the guest FPU context. */
7994 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7995 {
7996         preempt_disable();
7997         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7998         /* PKRU is separately restored in kvm_x86_ops->run.  */
7999         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8000                                 ~XFEATURE_MASK_PKRU);
8001         preempt_enable();
8002         trace_kvm_fpu(1);
8003 }
8004
8005 /* When vcpu_run ends, restore user space FPU context. */
8006 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8007 {
8008         preempt_disable();
8009         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8010         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8011         preempt_enable();
8012         ++vcpu->stat.fpu_reload;
8013         trace_kvm_fpu(0);
8014 }
8015
8016 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8017 {
8018         int r;
8019
8020         vcpu_load(vcpu);
8021         kvm_sigset_activate(vcpu);
8022         kvm_load_guest_fpu(vcpu);
8023
8024         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8025                 if (kvm_run->immediate_exit) {
8026                         r = -EINTR;
8027                         goto out;
8028                 }
8029                 kvm_vcpu_block(vcpu);
8030                 kvm_apic_accept_events(vcpu);
8031                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8032                 r = -EAGAIN;
8033                 if (signal_pending(current)) {
8034                         r = -EINTR;
8035                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8036                         ++vcpu->stat.signal_exits;
8037                 }
8038                 goto out;
8039         }
8040
8041         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8042                 r = -EINVAL;
8043                 goto out;
8044         }
8045
8046         if (vcpu->run->kvm_dirty_regs) {
8047                 r = sync_regs(vcpu);
8048                 if (r != 0)
8049                         goto out;
8050         }
8051
8052         /* re-sync apic's tpr */
8053         if (!lapic_in_kernel(vcpu)) {
8054                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8055                         r = -EINVAL;
8056                         goto out;
8057                 }
8058         }
8059
8060         if (unlikely(vcpu->arch.complete_userspace_io)) {
8061                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8062                 vcpu->arch.complete_userspace_io = NULL;
8063                 r = cui(vcpu);
8064                 if (r <= 0)
8065                         goto out;
8066         } else
8067                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8068
8069         if (kvm_run->immediate_exit)
8070                 r = -EINTR;
8071         else
8072                 r = vcpu_run(vcpu);
8073
8074 out:
8075         kvm_put_guest_fpu(vcpu);
8076         if (vcpu->run->kvm_valid_regs)
8077                 store_regs(vcpu);
8078         post_kvm_run_save(vcpu);
8079         kvm_sigset_deactivate(vcpu);
8080
8081         vcpu_put(vcpu);
8082         return r;
8083 }
8084
8085 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8086 {
8087         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8088                 /*
8089                  * We are here if userspace calls get_regs() in the middle of
8090                  * instruction emulation. Registers state needs to be copied
8091                  * back from emulation context to vcpu. Userspace shouldn't do
8092                  * that usually, but some bad designed PV devices (vmware
8093                  * backdoor interface) need this to work
8094                  */
8095                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8096                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8097         }
8098         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8099         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8100         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8101         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8102         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8103         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8104         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8105         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8106 #ifdef CONFIG_X86_64
8107         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8108         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8109         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8110         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8111         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8112         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8113         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8114         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8115 #endif
8116
8117         regs->rip = kvm_rip_read(vcpu);
8118         regs->rflags = kvm_get_rflags(vcpu);
8119 }
8120
8121 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8122 {
8123         vcpu_load(vcpu);
8124         __get_regs(vcpu, regs);
8125         vcpu_put(vcpu);
8126         return 0;
8127 }
8128
8129 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8130 {
8131         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8132         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8133
8134         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8135         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8136         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8137         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8138         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8139         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8140         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8141         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8142 #ifdef CONFIG_X86_64
8143         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8144         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8145         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8146         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8147         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8148         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8149         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8150         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8151 #endif
8152
8153         kvm_rip_write(vcpu, regs->rip);
8154         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8155
8156         vcpu->arch.exception.pending = false;
8157
8158         kvm_make_request(KVM_REQ_EVENT, vcpu);
8159 }
8160
8161 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8162 {
8163         vcpu_load(vcpu);
8164         __set_regs(vcpu, regs);
8165         vcpu_put(vcpu);
8166         return 0;
8167 }
8168
8169 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8170 {
8171         struct kvm_segment cs;
8172
8173         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8174         *db = cs.db;
8175         *l = cs.l;
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8178
8179 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8180 {
8181         struct desc_ptr dt;
8182
8183         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8184         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8185         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8186         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8187         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8188         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8189
8190         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8191         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8192
8193         kvm_x86_ops->get_idt(vcpu, &dt);
8194         sregs->idt.limit = dt.size;
8195         sregs->idt.base = dt.address;
8196         kvm_x86_ops->get_gdt(vcpu, &dt);
8197         sregs->gdt.limit = dt.size;
8198         sregs->gdt.base = dt.address;
8199
8200         sregs->cr0 = kvm_read_cr0(vcpu);
8201         sregs->cr2 = vcpu->arch.cr2;
8202         sregs->cr3 = kvm_read_cr3(vcpu);
8203         sregs->cr4 = kvm_read_cr4(vcpu);
8204         sregs->cr8 = kvm_get_cr8(vcpu);
8205         sregs->efer = vcpu->arch.efer;
8206         sregs->apic_base = kvm_get_apic_base(vcpu);
8207
8208         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8209
8210         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8211                 set_bit(vcpu->arch.interrupt.nr,
8212                         (unsigned long *)sregs->interrupt_bitmap);
8213 }
8214
8215 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8216                                   struct kvm_sregs *sregs)
8217 {
8218         vcpu_load(vcpu);
8219         __get_sregs(vcpu, sregs);
8220         vcpu_put(vcpu);
8221         return 0;
8222 }
8223
8224 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8225                                     struct kvm_mp_state *mp_state)
8226 {
8227         vcpu_load(vcpu);
8228
8229         kvm_apic_accept_events(vcpu);
8230         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8231                                         vcpu->arch.pv.pv_unhalted)
8232                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8233         else
8234                 mp_state->mp_state = vcpu->arch.mp_state;
8235
8236         vcpu_put(vcpu);
8237         return 0;
8238 }
8239
8240 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8241                                     struct kvm_mp_state *mp_state)
8242 {
8243         int ret = -EINVAL;
8244
8245         vcpu_load(vcpu);
8246
8247         if (!lapic_in_kernel(vcpu) &&
8248             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8249                 goto out;
8250
8251         /* INITs are latched while in SMM */
8252         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8253             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8254              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8255                 goto out;
8256
8257         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8258                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8259                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8260         } else
8261                 vcpu->arch.mp_state = mp_state->mp_state;
8262         kvm_make_request(KVM_REQ_EVENT, vcpu);
8263
8264         ret = 0;
8265 out:
8266         vcpu_put(vcpu);
8267         return ret;
8268 }
8269
8270 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8271                     int reason, bool has_error_code, u32 error_code)
8272 {
8273         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8274         int ret;
8275
8276         init_emulate_ctxt(vcpu);
8277
8278         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8279                                    has_error_code, error_code);
8280
8281         if (ret)
8282                 return EMULATE_FAIL;
8283
8284         kvm_rip_write(vcpu, ctxt->eip);
8285         kvm_set_rflags(vcpu, ctxt->eflags);
8286         kvm_make_request(KVM_REQ_EVENT, vcpu);
8287         return EMULATE_DONE;
8288 }
8289 EXPORT_SYMBOL_GPL(kvm_task_switch);
8290
8291 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8292 {
8293         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8294                         (sregs->cr4 & X86_CR4_OSXSAVE))
8295                 return  -EINVAL;
8296
8297         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8298                 /*
8299                  * When EFER.LME and CR0.PG are set, the processor is in
8300                  * 64-bit mode (though maybe in a 32-bit code segment).
8301                  * CR4.PAE and EFER.LMA must be set.
8302                  */
8303                 if (!(sregs->cr4 & X86_CR4_PAE)
8304                     || !(sregs->efer & EFER_LMA))
8305                         return -EINVAL;
8306         } else {
8307                 /*
8308                  * Not in 64-bit mode: EFER.LMA is clear and the code
8309                  * segment cannot be 64-bit.
8310                  */
8311                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8312                         return -EINVAL;
8313         }
8314
8315         return 0;
8316 }
8317
8318 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8319 {
8320         struct msr_data apic_base_msr;
8321         int mmu_reset_needed = 0;
8322         int cpuid_update_needed = 0;
8323         int pending_vec, max_bits, idx;
8324         struct desc_ptr dt;
8325         int ret = -EINVAL;
8326
8327         if (kvm_valid_sregs(vcpu, sregs))
8328                 goto out;
8329
8330         apic_base_msr.data = sregs->apic_base;
8331         apic_base_msr.host_initiated = true;
8332         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8333                 goto out;
8334
8335         dt.size = sregs->idt.limit;
8336         dt.address = sregs->idt.base;
8337         kvm_x86_ops->set_idt(vcpu, &dt);
8338         dt.size = sregs->gdt.limit;
8339         dt.address = sregs->gdt.base;
8340         kvm_x86_ops->set_gdt(vcpu, &dt);
8341
8342         vcpu->arch.cr2 = sregs->cr2;
8343         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8344         vcpu->arch.cr3 = sregs->cr3;
8345         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8346
8347         kvm_set_cr8(vcpu, sregs->cr8);
8348
8349         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8350         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8351
8352         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8353         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8354         vcpu->arch.cr0 = sregs->cr0;
8355
8356         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8357         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8358                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8359         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8360         if (cpuid_update_needed)
8361                 kvm_update_cpuid(vcpu);
8362
8363         idx = srcu_read_lock(&vcpu->kvm->srcu);
8364         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8365                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8366                 mmu_reset_needed = 1;
8367         }
8368         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8369
8370         if (mmu_reset_needed)
8371                 kvm_mmu_reset_context(vcpu);
8372
8373         max_bits = KVM_NR_INTERRUPTS;
8374         pending_vec = find_first_bit(
8375                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8376         if (pending_vec < max_bits) {
8377                 kvm_queue_interrupt(vcpu, pending_vec, false);
8378                 pr_debug("Set back pending irq %d\n", pending_vec);
8379         }
8380
8381         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8382         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8383         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8384         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8385         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8386         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8387
8388         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8389         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8390
8391         update_cr8_intercept(vcpu);
8392
8393         /* Older userspace won't unhalt the vcpu on reset. */
8394         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8395             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8396             !is_protmode(vcpu))
8397                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8398
8399         kvm_make_request(KVM_REQ_EVENT, vcpu);
8400
8401         ret = 0;
8402 out:
8403         return ret;
8404 }
8405
8406 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8407                                   struct kvm_sregs *sregs)
8408 {
8409         int ret;
8410
8411         vcpu_load(vcpu);
8412         ret = __set_sregs(vcpu, sregs);
8413         vcpu_put(vcpu);
8414         return ret;
8415 }
8416
8417 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8418                                         struct kvm_guest_debug *dbg)
8419 {
8420         unsigned long rflags;
8421         int i, r;
8422
8423         vcpu_load(vcpu);
8424
8425         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8426                 r = -EBUSY;
8427                 if (vcpu->arch.exception.pending)
8428                         goto out;
8429                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8430                         kvm_queue_exception(vcpu, DB_VECTOR);
8431                 else
8432                         kvm_queue_exception(vcpu, BP_VECTOR);
8433         }
8434
8435         /*
8436          * Read rflags as long as potentially injected trace flags are still
8437          * filtered out.
8438          */
8439         rflags = kvm_get_rflags(vcpu);
8440
8441         vcpu->guest_debug = dbg->control;
8442         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8443                 vcpu->guest_debug = 0;
8444
8445         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8446                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8447                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8448                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8449         } else {
8450                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8451                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8452         }
8453         kvm_update_dr7(vcpu);
8454
8455         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8456                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8457                         get_segment_base(vcpu, VCPU_SREG_CS);
8458
8459         /*
8460          * Trigger an rflags update that will inject or remove the trace
8461          * flags.
8462          */
8463         kvm_set_rflags(vcpu, rflags);
8464
8465         kvm_x86_ops->update_bp_intercept(vcpu);
8466
8467         r = 0;
8468
8469 out:
8470         vcpu_put(vcpu);
8471         return r;
8472 }
8473
8474 /*
8475  * Translate a guest virtual address to a guest physical address.
8476  */
8477 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8478                                     struct kvm_translation *tr)
8479 {
8480         unsigned long vaddr = tr->linear_address;
8481         gpa_t gpa;
8482         int idx;
8483
8484         vcpu_load(vcpu);
8485
8486         idx = srcu_read_lock(&vcpu->kvm->srcu);
8487         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8488         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8489         tr->physical_address = gpa;
8490         tr->valid = gpa != UNMAPPED_GVA;
8491         tr->writeable = 1;
8492         tr->usermode = 0;
8493
8494         vcpu_put(vcpu);
8495         return 0;
8496 }
8497
8498 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8499 {
8500         struct fxregs_state *fxsave;
8501
8502         vcpu_load(vcpu);
8503
8504         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8505         memcpy(fpu->fpr, fxsave->st_space, 128);
8506         fpu->fcw = fxsave->cwd;
8507         fpu->fsw = fxsave->swd;
8508         fpu->ftwx = fxsave->twd;
8509         fpu->last_opcode = fxsave->fop;
8510         fpu->last_ip = fxsave->rip;
8511         fpu->last_dp = fxsave->rdp;
8512         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8513
8514         vcpu_put(vcpu);
8515         return 0;
8516 }
8517
8518 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8519 {
8520         struct fxregs_state *fxsave;
8521
8522         vcpu_load(vcpu);
8523
8524         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8525
8526         memcpy(fxsave->st_space, fpu->fpr, 128);
8527         fxsave->cwd = fpu->fcw;
8528         fxsave->swd = fpu->fsw;
8529         fxsave->twd = fpu->ftwx;
8530         fxsave->fop = fpu->last_opcode;
8531         fxsave->rip = fpu->last_ip;
8532         fxsave->rdp = fpu->last_dp;
8533         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8534
8535         vcpu_put(vcpu);
8536         return 0;
8537 }
8538
8539 static void store_regs(struct kvm_vcpu *vcpu)
8540 {
8541         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8542
8543         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8544                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8545
8546         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8547                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8548
8549         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8550                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8551                                 vcpu, &vcpu->run->s.regs.events);
8552 }
8553
8554 static int sync_regs(struct kvm_vcpu *vcpu)
8555 {
8556         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8557                 return -EINVAL;
8558
8559         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8560                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8561                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8562         }
8563         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8564                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8565                         return -EINVAL;
8566                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8567         }
8568         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8569                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8570                                 vcpu, &vcpu->run->s.regs.events))
8571                         return -EINVAL;
8572                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8573         }
8574
8575         return 0;
8576 }
8577
8578 static void fx_init(struct kvm_vcpu *vcpu)
8579 {
8580         fpstate_init(&vcpu->arch.guest_fpu.state);
8581         if (boot_cpu_has(X86_FEATURE_XSAVES))
8582                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8583                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8584
8585         /*
8586          * Ensure guest xcr0 is valid for loading
8587          */
8588         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8589
8590         vcpu->arch.cr0 |= X86_CR0_ET;
8591 }
8592
8593 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8594 {
8595         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8596
8597         kvmclock_reset(vcpu);
8598
8599         kvm_x86_ops->vcpu_free(vcpu);
8600         free_cpumask_var(wbinvd_dirty_mask);
8601 }
8602
8603 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8604                                                 unsigned int id)
8605 {
8606         struct kvm_vcpu *vcpu;
8607
8608         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8609                 printk_once(KERN_WARNING
8610                 "kvm: SMP vm created on host with unstable TSC; "
8611                 "guest TSC will not be reliable\n");
8612
8613         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8614
8615         return vcpu;
8616 }
8617
8618 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8619 {
8620         kvm_vcpu_mtrr_init(vcpu);
8621         vcpu_load(vcpu);
8622         kvm_vcpu_reset(vcpu, false);
8623         kvm_init_mmu(vcpu, false);
8624         vcpu_put(vcpu);
8625         return 0;
8626 }
8627
8628 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8629 {
8630         struct msr_data msr;
8631         struct kvm *kvm = vcpu->kvm;
8632
8633         kvm_hv_vcpu_postcreate(vcpu);
8634
8635         if (mutex_lock_killable(&vcpu->mutex))
8636                 return;
8637         vcpu_load(vcpu);
8638         msr.data = 0x0;
8639         msr.index = MSR_IA32_TSC;
8640         msr.host_initiated = true;
8641         kvm_write_tsc(vcpu, &msr);
8642         vcpu_put(vcpu);
8643         mutex_unlock(&vcpu->mutex);
8644
8645         if (!kvmclock_periodic_sync)
8646                 return;
8647
8648         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8649                                         KVMCLOCK_SYNC_PERIOD);
8650 }
8651
8652 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8653 {
8654         vcpu->arch.apf.msr_val = 0;
8655
8656         vcpu_load(vcpu);
8657         kvm_mmu_unload(vcpu);
8658         vcpu_put(vcpu);
8659
8660         kvm_x86_ops->vcpu_free(vcpu);
8661 }
8662
8663 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8664 {
8665         kvm_lapic_reset(vcpu, init_event);
8666
8667         vcpu->arch.hflags = 0;
8668
8669         vcpu->arch.smi_pending = 0;
8670         vcpu->arch.smi_count = 0;
8671         atomic_set(&vcpu->arch.nmi_queued, 0);
8672         vcpu->arch.nmi_pending = 0;
8673         vcpu->arch.nmi_injected = false;
8674         kvm_clear_interrupt_queue(vcpu);
8675         kvm_clear_exception_queue(vcpu);
8676         vcpu->arch.exception.pending = false;
8677
8678         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8679         kvm_update_dr0123(vcpu);
8680         vcpu->arch.dr6 = DR6_INIT;
8681         kvm_update_dr6(vcpu);
8682         vcpu->arch.dr7 = DR7_FIXED_1;
8683         kvm_update_dr7(vcpu);
8684
8685         vcpu->arch.cr2 = 0;
8686
8687         kvm_make_request(KVM_REQ_EVENT, vcpu);
8688         vcpu->arch.apf.msr_val = 0;
8689         vcpu->arch.st.msr_val = 0;
8690
8691         kvmclock_reset(vcpu);
8692
8693         kvm_clear_async_pf_completion_queue(vcpu);
8694         kvm_async_pf_hash_reset(vcpu);
8695         vcpu->arch.apf.halted = false;
8696
8697         if (kvm_mpx_supported()) {
8698                 void *mpx_state_buffer;
8699
8700                 /*
8701                  * To avoid have the INIT path from kvm_apic_has_events() that be
8702                  * called with loaded FPU and does not let userspace fix the state.
8703                  */
8704                 if (init_event)
8705                         kvm_put_guest_fpu(vcpu);
8706                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8707                                         XFEATURE_MASK_BNDREGS);
8708                 if (mpx_state_buffer)
8709                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8710                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8711                                         XFEATURE_MASK_BNDCSR);
8712                 if (mpx_state_buffer)
8713                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8714                 if (init_event)
8715                         kvm_load_guest_fpu(vcpu);
8716         }
8717
8718         if (!init_event) {
8719                 kvm_pmu_reset(vcpu);
8720                 vcpu->arch.smbase = 0x30000;
8721
8722                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8723                 vcpu->arch.msr_misc_features_enables = 0;
8724
8725                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8726         }
8727
8728         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8729         vcpu->arch.regs_avail = ~0;
8730         vcpu->arch.regs_dirty = ~0;
8731
8732         vcpu->arch.ia32_xss = 0;
8733
8734         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8735 }
8736
8737 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8738 {
8739         struct kvm_segment cs;
8740
8741         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8742         cs.selector = vector << 8;
8743         cs.base = vector << 12;
8744         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8745         kvm_rip_write(vcpu, 0);
8746 }
8747
8748 int kvm_arch_hardware_enable(void)
8749 {
8750         struct kvm *kvm;
8751         struct kvm_vcpu *vcpu;
8752         int i;
8753         int ret;
8754         u64 local_tsc;
8755         u64 max_tsc = 0;
8756         bool stable, backwards_tsc = false;
8757
8758         kvm_shared_msr_cpu_online();
8759         ret = kvm_x86_ops->hardware_enable();
8760         if (ret != 0)
8761                 return ret;
8762
8763         local_tsc = rdtsc();
8764         stable = !kvm_check_tsc_unstable();
8765         list_for_each_entry(kvm, &vm_list, vm_list) {
8766                 kvm_for_each_vcpu(i, vcpu, kvm) {
8767                         if (!stable && vcpu->cpu == smp_processor_id())
8768                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8769                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8770                                 backwards_tsc = true;
8771                                 if (vcpu->arch.last_host_tsc > max_tsc)
8772                                         max_tsc = vcpu->arch.last_host_tsc;
8773                         }
8774                 }
8775         }
8776
8777         /*
8778          * Sometimes, even reliable TSCs go backwards.  This happens on
8779          * platforms that reset TSC during suspend or hibernate actions, but
8780          * maintain synchronization.  We must compensate.  Fortunately, we can
8781          * detect that condition here, which happens early in CPU bringup,
8782          * before any KVM threads can be running.  Unfortunately, we can't
8783          * bring the TSCs fully up to date with real time, as we aren't yet far
8784          * enough into CPU bringup that we know how much real time has actually
8785          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8786          * variables that haven't been updated yet.
8787          *
8788          * So we simply find the maximum observed TSC above, then record the
8789          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8790          * the adjustment will be applied.  Note that we accumulate
8791          * adjustments, in case multiple suspend cycles happen before some VCPU
8792          * gets a chance to run again.  In the event that no KVM threads get a
8793          * chance to run, we will miss the entire elapsed period, as we'll have
8794          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8795          * loose cycle time.  This isn't too big a deal, since the loss will be
8796          * uniform across all VCPUs (not to mention the scenario is extremely
8797          * unlikely). It is possible that a second hibernate recovery happens
8798          * much faster than a first, causing the observed TSC here to be
8799          * smaller; this would require additional padding adjustment, which is
8800          * why we set last_host_tsc to the local tsc observed here.
8801          *
8802          * N.B. - this code below runs only on platforms with reliable TSC,
8803          * as that is the only way backwards_tsc is set above.  Also note
8804          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8805          * have the same delta_cyc adjustment applied if backwards_tsc
8806          * is detected.  Note further, this adjustment is only done once,
8807          * as we reset last_host_tsc on all VCPUs to stop this from being
8808          * called multiple times (one for each physical CPU bringup).
8809          *
8810          * Platforms with unreliable TSCs don't have to deal with this, they
8811          * will be compensated by the logic in vcpu_load, which sets the TSC to
8812          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8813          * guarantee that they stay in perfect synchronization.
8814          */
8815         if (backwards_tsc) {
8816                 u64 delta_cyc = max_tsc - local_tsc;
8817                 list_for_each_entry(kvm, &vm_list, vm_list) {
8818                         kvm->arch.backwards_tsc_observed = true;
8819                         kvm_for_each_vcpu(i, vcpu, kvm) {
8820                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8821                                 vcpu->arch.last_host_tsc = local_tsc;
8822                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8823                         }
8824
8825                         /*
8826                          * We have to disable TSC offset matching.. if you were
8827                          * booting a VM while issuing an S4 host suspend....
8828                          * you may have some problem.  Solving this issue is
8829                          * left as an exercise to the reader.
8830                          */
8831                         kvm->arch.last_tsc_nsec = 0;
8832                         kvm->arch.last_tsc_write = 0;
8833                 }
8834
8835         }
8836         return 0;
8837 }
8838
8839 void kvm_arch_hardware_disable(void)
8840 {
8841         kvm_x86_ops->hardware_disable();
8842         drop_user_return_notifiers();
8843 }
8844
8845 int kvm_arch_hardware_setup(void)
8846 {
8847         int r;
8848
8849         r = kvm_x86_ops->hardware_setup();
8850         if (r != 0)
8851                 return r;
8852
8853         if (kvm_has_tsc_control) {
8854                 /*
8855                  * Make sure the user can only configure tsc_khz values that
8856                  * fit into a signed integer.
8857                  * A min value is not calculated because it will always
8858                  * be 1 on all machines.
8859                  */
8860                 u64 max = min(0x7fffffffULL,
8861                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8862                 kvm_max_guest_tsc_khz = max;
8863
8864                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8865         }
8866
8867         kvm_init_msr_list();
8868         return 0;
8869 }
8870
8871 void kvm_arch_hardware_unsetup(void)
8872 {
8873         kvm_x86_ops->hardware_unsetup();
8874 }
8875
8876 void kvm_arch_check_processor_compat(void *rtn)
8877 {
8878         kvm_x86_ops->check_processor_compatibility(rtn);
8879 }
8880
8881 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8882 {
8883         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8884 }
8885 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8886
8887 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8888 {
8889         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8890 }
8891
8892 struct static_key kvm_no_apic_vcpu __read_mostly;
8893 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8894
8895 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8896 {
8897         struct page *page;
8898         int r;
8899
8900         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8901         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8902         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8903                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8904         else
8905                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8906
8907         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8908         if (!page) {
8909                 r = -ENOMEM;
8910                 goto fail;
8911         }
8912         vcpu->arch.pio_data = page_address(page);
8913
8914         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8915
8916         r = kvm_mmu_create(vcpu);
8917         if (r < 0)
8918                 goto fail_free_pio_data;
8919
8920         if (irqchip_in_kernel(vcpu->kvm)) {
8921                 r = kvm_create_lapic(vcpu);
8922                 if (r < 0)
8923                         goto fail_mmu_destroy;
8924         } else
8925                 static_key_slow_inc(&kvm_no_apic_vcpu);
8926
8927         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8928                                        GFP_KERNEL);
8929         if (!vcpu->arch.mce_banks) {
8930                 r = -ENOMEM;
8931                 goto fail_free_lapic;
8932         }
8933         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8934
8935         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8936                 r = -ENOMEM;
8937                 goto fail_free_mce_banks;
8938         }
8939
8940         fx_init(vcpu);
8941
8942         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8943
8944         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8945
8946         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8947
8948         kvm_async_pf_hash_reset(vcpu);
8949         kvm_pmu_init(vcpu);
8950
8951         vcpu->arch.pending_external_vector = -1;
8952         vcpu->arch.preempted_in_kernel = false;
8953
8954         kvm_hv_vcpu_init(vcpu);
8955
8956         return 0;
8957
8958 fail_free_mce_banks:
8959         kfree(vcpu->arch.mce_banks);
8960 fail_free_lapic:
8961         kvm_free_lapic(vcpu);
8962 fail_mmu_destroy:
8963         kvm_mmu_destroy(vcpu);
8964 fail_free_pio_data:
8965         free_page((unsigned long)vcpu->arch.pio_data);
8966 fail:
8967         return r;
8968 }
8969
8970 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8971 {
8972         int idx;
8973
8974         kvm_hv_vcpu_uninit(vcpu);
8975         kvm_pmu_destroy(vcpu);
8976         kfree(vcpu->arch.mce_banks);
8977         kvm_free_lapic(vcpu);
8978         idx = srcu_read_lock(&vcpu->kvm->srcu);
8979         kvm_mmu_destroy(vcpu);
8980         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8981         free_page((unsigned long)vcpu->arch.pio_data);
8982         if (!lapic_in_kernel(vcpu))
8983                 static_key_slow_dec(&kvm_no_apic_vcpu);
8984 }
8985
8986 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8987 {
8988         vcpu->arch.l1tf_flush_l1d = true;
8989         kvm_x86_ops->sched_in(vcpu, cpu);
8990 }
8991
8992 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8993 {
8994         if (type)
8995                 return -EINVAL;
8996
8997         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8998         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8999         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9000         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9001         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9002
9003         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9004         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9005         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9006         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9007                 &kvm->arch.irq_sources_bitmap);
9008
9009         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9010         mutex_init(&kvm->arch.apic_map_lock);
9011         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9012
9013         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9014         pvclock_update_vm_gtod_copy(kvm);
9015
9016         kvm->arch.guest_can_read_msr_platform_info = true;
9017
9018         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9019         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9020
9021         kvm_hv_init_vm(kvm);
9022         kvm_page_track_init(kvm);
9023         kvm_mmu_init_vm(kvm);
9024
9025         if (kvm_x86_ops->vm_init)
9026                 return kvm_x86_ops->vm_init(kvm);
9027
9028         return 0;
9029 }
9030
9031 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9032 {
9033         vcpu_load(vcpu);
9034         kvm_mmu_unload(vcpu);
9035         vcpu_put(vcpu);
9036 }
9037
9038 static void kvm_free_vcpus(struct kvm *kvm)
9039 {
9040         unsigned int i;
9041         struct kvm_vcpu *vcpu;
9042
9043         /*
9044          * Unpin any mmu pages first.
9045          */
9046         kvm_for_each_vcpu(i, vcpu, kvm) {
9047                 kvm_clear_async_pf_completion_queue(vcpu);
9048                 kvm_unload_vcpu_mmu(vcpu);
9049         }
9050         kvm_for_each_vcpu(i, vcpu, kvm)
9051                 kvm_arch_vcpu_free(vcpu);
9052
9053         mutex_lock(&kvm->lock);
9054         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9055                 kvm->vcpus[i] = NULL;
9056
9057         atomic_set(&kvm->online_vcpus, 0);
9058         mutex_unlock(&kvm->lock);
9059 }
9060
9061 void kvm_arch_sync_events(struct kvm *kvm)
9062 {
9063         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9064         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9065         kvm_free_pit(kvm);
9066 }
9067
9068 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9069 {
9070         int i, r;
9071         unsigned long hva;
9072         struct kvm_memslots *slots = kvm_memslots(kvm);
9073         struct kvm_memory_slot *slot, old;
9074
9075         /* Called with kvm->slots_lock held.  */
9076         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9077                 return -EINVAL;
9078
9079         slot = id_to_memslot(slots, id);
9080         if (size) {
9081                 if (slot->npages)
9082                         return -EEXIST;
9083
9084                 /*
9085                  * MAP_SHARED to prevent internal slot pages from being moved
9086                  * by fork()/COW.
9087                  */
9088                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9089                               MAP_SHARED | MAP_ANONYMOUS, 0);
9090                 if (IS_ERR((void *)hva))
9091                         return PTR_ERR((void *)hva);
9092         } else {
9093                 if (!slot->npages)
9094                         return 0;
9095
9096                 hva = 0;
9097         }
9098
9099         old = *slot;
9100         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9101                 struct kvm_userspace_memory_region m;
9102
9103                 m.slot = id | (i << 16);
9104                 m.flags = 0;
9105                 m.guest_phys_addr = gpa;
9106                 m.userspace_addr = hva;
9107                 m.memory_size = size;
9108                 r = __kvm_set_memory_region(kvm, &m);
9109                 if (r < 0)
9110                         return r;
9111         }
9112
9113         if (!size)
9114                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9115
9116         return 0;
9117 }
9118 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9119
9120 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9121 {
9122         int r;
9123
9124         mutex_lock(&kvm->slots_lock);
9125         r = __x86_set_memory_region(kvm, id, gpa, size);
9126         mutex_unlock(&kvm->slots_lock);
9127
9128         return r;
9129 }
9130 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9131
9132 void kvm_arch_destroy_vm(struct kvm *kvm)
9133 {
9134         if (current->mm == kvm->mm) {
9135                 /*
9136                  * Free memory regions allocated on behalf of userspace,
9137                  * unless the the memory map has changed due to process exit
9138                  * or fd copying.
9139                  */
9140                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9141                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9142                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9143         }
9144         if (kvm_x86_ops->vm_destroy)
9145                 kvm_x86_ops->vm_destroy(kvm);
9146         kvm_pic_destroy(kvm);
9147         kvm_ioapic_destroy(kvm);
9148         kvm_free_vcpus(kvm);
9149         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9150         kvm_mmu_uninit_vm(kvm);
9151         kvm_page_track_cleanup(kvm);
9152         kvm_hv_destroy_vm(kvm);
9153 }
9154
9155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9156                            struct kvm_memory_slot *dont)
9157 {
9158         int i;
9159
9160         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9161                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9162                         kvfree(free->arch.rmap[i]);
9163                         free->arch.rmap[i] = NULL;
9164                 }
9165                 if (i == 0)
9166                         continue;
9167
9168                 if (!dont || free->arch.lpage_info[i - 1] !=
9169                              dont->arch.lpage_info[i - 1]) {
9170                         kvfree(free->arch.lpage_info[i - 1]);
9171                         free->arch.lpage_info[i - 1] = NULL;
9172                 }
9173         }
9174
9175         kvm_page_track_free_memslot(free, dont);
9176 }
9177
9178 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9179                             unsigned long npages)
9180 {
9181         int i;
9182
9183         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9184                 struct kvm_lpage_info *linfo;
9185                 unsigned long ugfn;
9186                 int lpages;
9187                 int level = i + 1;
9188
9189                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9190                                       slot->base_gfn, level) + 1;
9191
9192                 slot->arch.rmap[i] =
9193                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9194                                  GFP_KERNEL);
9195                 if (!slot->arch.rmap[i])
9196                         goto out_free;
9197                 if (i == 0)
9198                         continue;
9199
9200                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9201                 if (!linfo)
9202                         goto out_free;
9203
9204                 slot->arch.lpage_info[i - 1] = linfo;
9205
9206                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9207                         linfo[0].disallow_lpage = 1;
9208                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9209                         linfo[lpages - 1].disallow_lpage = 1;
9210                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9211                 /*
9212                  * If the gfn and userspace address are not aligned wrt each
9213                  * other, or if explicitly asked to, disable large page
9214                  * support for this slot
9215                  */
9216                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9217                     !kvm_largepages_enabled()) {
9218                         unsigned long j;
9219
9220                         for (j = 0; j < lpages; ++j)
9221                                 linfo[j].disallow_lpage = 1;
9222                 }
9223         }
9224
9225         if (kvm_page_track_create_memslot(slot, npages))
9226                 goto out_free;
9227
9228         return 0;
9229
9230 out_free:
9231         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9232                 kvfree(slot->arch.rmap[i]);
9233                 slot->arch.rmap[i] = NULL;
9234                 if (i == 0)
9235                         continue;
9236
9237                 kvfree(slot->arch.lpage_info[i - 1]);
9238                 slot->arch.lpage_info[i - 1] = NULL;
9239         }
9240         return -ENOMEM;
9241 }
9242
9243 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9244 {
9245         /*
9246          * memslots->generation has been incremented.
9247          * mmio generation may have reached its maximum value.
9248          */
9249         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9250 }
9251
9252 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9253                                 struct kvm_memory_slot *memslot,
9254                                 const struct kvm_userspace_memory_region *mem,
9255                                 enum kvm_mr_change change)
9256 {
9257         return 0;
9258 }
9259
9260 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9261                                      struct kvm_memory_slot *new)
9262 {
9263         /* Still write protect RO slot */
9264         if (new->flags & KVM_MEM_READONLY) {
9265                 kvm_mmu_slot_remove_write_access(kvm, new);
9266                 return;
9267         }
9268
9269         /*
9270          * Call kvm_x86_ops dirty logging hooks when they are valid.
9271          *
9272          * kvm_x86_ops->slot_disable_log_dirty is called when:
9273          *
9274          *  - KVM_MR_CREATE with dirty logging is disabled
9275          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9276          *
9277          * The reason is, in case of PML, we need to set D-bit for any slots
9278          * with dirty logging disabled in order to eliminate unnecessary GPA
9279          * logging in PML buffer (and potential PML buffer full VMEXT). This
9280          * guarantees leaving PML enabled during guest's lifetime won't have
9281          * any additonal overhead from PML when guest is running with dirty
9282          * logging disabled for memory slots.
9283          *
9284          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9285          * to dirty logging mode.
9286          *
9287          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9288          *
9289          * In case of write protect:
9290          *
9291          * Write protect all pages for dirty logging.
9292          *
9293          * All the sptes including the large sptes which point to this
9294          * slot are set to readonly. We can not create any new large
9295          * spte on this slot until the end of the logging.
9296          *
9297          * See the comments in fast_page_fault().
9298          */
9299         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9300                 if (kvm_x86_ops->slot_enable_log_dirty)
9301                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9302                 else
9303                         kvm_mmu_slot_remove_write_access(kvm, new);
9304         } else {
9305                 if (kvm_x86_ops->slot_disable_log_dirty)
9306                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9307         }
9308 }
9309
9310 void kvm_arch_commit_memory_region(struct kvm *kvm,
9311                                 const struct kvm_userspace_memory_region *mem,
9312                                 const struct kvm_memory_slot *old,
9313                                 const struct kvm_memory_slot *new,
9314                                 enum kvm_mr_change change)
9315 {
9316         int nr_mmu_pages = 0;
9317
9318         if (!kvm->arch.n_requested_mmu_pages)
9319                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9320
9321         if (nr_mmu_pages)
9322                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9323
9324         /*
9325          * Dirty logging tracks sptes in 4k granularity, meaning that large
9326          * sptes have to be split.  If live migration is successful, the guest
9327          * in the source machine will be destroyed and large sptes will be
9328          * created in the destination. However, if the guest continues to run
9329          * in the source machine (for example if live migration fails), small
9330          * sptes will remain around and cause bad performance.
9331          *
9332          * Scan sptes if dirty logging has been stopped, dropping those
9333          * which can be collapsed into a single large-page spte.  Later
9334          * page faults will create the large-page sptes.
9335          */
9336         if ((change != KVM_MR_DELETE) &&
9337                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9338                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9339                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9340
9341         /*
9342          * Set up write protection and/or dirty logging for the new slot.
9343          *
9344          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9345          * been zapped so no dirty logging staff is needed for old slot. For
9346          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9347          * new and it's also covered when dealing with the new slot.
9348          *
9349          * FIXME: const-ify all uses of struct kvm_memory_slot.
9350          */
9351         if (change != KVM_MR_DELETE)
9352                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9353 }
9354
9355 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9356 {
9357         kvm_mmu_invalidate_zap_all_pages(kvm);
9358 }
9359
9360 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9361                                    struct kvm_memory_slot *slot)
9362 {
9363         kvm_page_track_flush_slot(kvm, slot);
9364 }
9365
9366 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9367 {
9368         return (is_guest_mode(vcpu) &&
9369                         kvm_x86_ops->guest_apic_has_interrupt &&
9370                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9371 }
9372
9373 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9374 {
9375         if (!list_empty_careful(&vcpu->async_pf.done))
9376                 return true;
9377
9378         if (kvm_apic_has_events(vcpu))
9379                 return true;
9380
9381         if (vcpu->arch.pv.pv_unhalted)
9382                 return true;
9383
9384         if (vcpu->arch.exception.pending)
9385                 return true;
9386
9387         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9388             (vcpu->arch.nmi_pending &&
9389              kvm_x86_ops->nmi_allowed(vcpu)))
9390                 return true;
9391
9392         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9393             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9394                 return true;
9395
9396         if (kvm_arch_interrupt_allowed(vcpu) &&
9397             (kvm_cpu_has_interrupt(vcpu) ||
9398             kvm_guest_apic_has_interrupt(vcpu)))
9399                 return true;
9400
9401         if (kvm_hv_has_stimer_pending(vcpu))
9402                 return true;
9403
9404         return false;
9405 }
9406
9407 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9408 {
9409         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9410 }
9411
9412 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9413 {
9414         return vcpu->arch.preempted_in_kernel;
9415 }
9416
9417 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9418 {
9419         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9420 }
9421
9422 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9423 {
9424         return kvm_x86_ops->interrupt_allowed(vcpu);
9425 }
9426
9427 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9428 {
9429         if (is_64_bit_mode(vcpu))
9430                 return kvm_rip_read(vcpu);
9431         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9432                      kvm_rip_read(vcpu));
9433 }
9434 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9435
9436 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9437 {
9438         return kvm_get_linear_rip(vcpu) == linear_rip;
9439 }
9440 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9441
9442 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9443 {
9444         unsigned long rflags;
9445
9446         rflags = kvm_x86_ops->get_rflags(vcpu);
9447         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9448                 rflags &= ~X86_EFLAGS_TF;
9449         return rflags;
9450 }
9451 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9452
9453 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9454 {
9455         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9456             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9457                 rflags |= X86_EFLAGS_TF;
9458         kvm_x86_ops->set_rflags(vcpu, rflags);
9459 }
9460
9461 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9462 {
9463         __kvm_set_rflags(vcpu, rflags);
9464         kvm_make_request(KVM_REQ_EVENT, vcpu);
9465 }
9466 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9467
9468 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9469 {
9470         int r;
9471
9472         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9473               work->wakeup_all)
9474                 return;
9475
9476         r = kvm_mmu_reload(vcpu);
9477         if (unlikely(r))
9478                 return;
9479
9480         if (!vcpu->arch.mmu->direct_map &&
9481               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9482                 return;
9483
9484         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9485 }
9486
9487 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9488 {
9489         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9490 }
9491
9492 static inline u32 kvm_async_pf_next_probe(u32 key)
9493 {
9494         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9495 }
9496
9497 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9498 {
9499         u32 key = kvm_async_pf_hash_fn(gfn);
9500
9501         while (vcpu->arch.apf.gfns[key] != ~0)
9502                 key = kvm_async_pf_next_probe(key);
9503
9504         vcpu->arch.apf.gfns[key] = gfn;
9505 }
9506
9507 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9508 {
9509         int i;
9510         u32 key = kvm_async_pf_hash_fn(gfn);
9511
9512         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9513                      (vcpu->arch.apf.gfns[key] != gfn &&
9514                       vcpu->arch.apf.gfns[key] != ~0); i++)
9515                 key = kvm_async_pf_next_probe(key);
9516
9517         return key;
9518 }
9519
9520 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9521 {
9522         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9523 }
9524
9525 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9526 {
9527         u32 i, j, k;
9528
9529         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9530         while (true) {
9531                 vcpu->arch.apf.gfns[i] = ~0;
9532                 do {
9533                         j = kvm_async_pf_next_probe(j);
9534                         if (vcpu->arch.apf.gfns[j] == ~0)
9535                                 return;
9536                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9537                         /*
9538                          * k lies cyclically in ]i,j]
9539                          * |    i.k.j |
9540                          * |....j i.k.| or  |.k..j i...|
9541                          */
9542                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9543                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9544                 i = j;
9545         }
9546 }
9547
9548 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9549 {
9550
9551         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9552                                       sizeof(val));
9553 }
9554
9555 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9556 {
9557
9558         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9559                                       sizeof(u32));
9560 }
9561
9562 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9563                                      struct kvm_async_pf *work)
9564 {
9565         struct x86_exception fault;
9566
9567         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9568         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9569
9570         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9571             (vcpu->arch.apf.send_user_only &&
9572              kvm_x86_ops->get_cpl(vcpu) == 0))
9573                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9574         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9575                 fault.vector = PF_VECTOR;
9576                 fault.error_code_valid = true;
9577                 fault.error_code = 0;
9578                 fault.nested_page_fault = false;
9579                 fault.address = work->arch.token;
9580                 fault.async_page_fault = true;
9581                 kvm_inject_page_fault(vcpu, &fault);
9582         }
9583 }
9584
9585 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9586                                  struct kvm_async_pf *work)
9587 {
9588         struct x86_exception fault;
9589         u32 val;
9590
9591         if (work->wakeup_all)
9592                 work->arch.token = ~0; /* broadcast wakeup */
9593         else
9594                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9595         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9596
9597         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9598             !apf_get_user(vcpu, &val)) {
9599                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9600                     vcpu->arch.exception.pending &&
9601                     vcpu->arch.exception.nr == PF_VECTOR &&
9602                     !apf_put_user(vcpu, 0)) {
9603                         vcpu->arch.exception.injected = false;
9604                         vcpu->arch.exception.pending = false;
9605                         vcpu->arch.exception.nr = 0;
9606                         vcpu->arch.exception.has_error_code = false;
9607                         vcpu->arch.exception.error_code = 0;
9608                         vcpu->arch.exception.has_payload = false;
9609                         vcpu->arch.exception.payload = 0;
9610                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9611                         fault.vector = PF_VECTOR;
9612                         fault.error_code_valid = true;
9613                         fault.error_code = 0;
9614                         fault.nested_page_fault = false;
9615                         fault.address = work->arch.token;
9616                         fault.async_page_fault = true;
9617                         kvm_inject_page_fault(vcpu, &fault);
9618                 }
9619         }
9620         vcpu->arch.apf.halted = false;
9621         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9622 }
9623
9624 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9625 {
9626         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9627                 return true;
9628         else
9629                 return kvm_can_do_async_pf(vcpu);
9630 }
9631
9632 void kvm_arch_start_assignment(struct kvm *kvm)
9633 {
9634         atomic_inc(&kvm->arch.assigned_device_count);
9635 }
9636 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9637
9638 void kvm_arch_end_assignment(struct kvm *kvm)
9639 {
9640         atomic_dec(&kvm->arch.assigned_device_count);
9641 }
9642 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9643
9644 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9645 {
9646         return atomic_read(&kvm->arch.assigned_device_count);
9647 }
9648 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9649
9650 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9651 {
9652         atomic_inc(&kvm->arch.noncoherent_dma_count);
9653 }
9654 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9655
9656 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9657 {
9658         atomic_dec(&kvm->arch.noncoherent_dma_count);
9659 }
9660 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9661
9662 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9663 {
9664         return atomic_read(&kvm->arch.noncoherent_dma_count);
9665 }
9666 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9667
9668 bool kvm_arch_has_irq_bypass(void)
9669 {
9670         return kvm_x86_ops->update_pi_irte != NULL;
9671 }
9672
9673 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9674                                       struct irq_bypass_producer *prod)
9675 {
9676         struct kvm_kernel_irqfd *irqfd =
9677                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9678
9679         irqfd->producer = prod;
9680
9681         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9682                                            prod->irq, irqfd->gsi, 1);
9683 }
9684
9685 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9686                                       struct irq_bypass_producer *prod)
9687 {
9688         int ret;
9689         struct kvm_kernel_irqfd *irqfd =
9690                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9691
9692         WARN_ON(irqfd->producer != prod);
9693         irqfd->producer = NULL;
9694
9695         /*
9696          * When producer of consumer is unregistered, we change back to
9697          * remapped mode, so we can re-use the current implementation
9698          * when the irq is masked/disabled or the consumer side (KVM
9699          * int this case doesn't want to receive the interrupts.
9700         */
9701         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9702         if (ret)
9703                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9704                        " fails: %d\n", irqfd->consumer.token, ret);
9705 }
9706
9707 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9708                                    uint32_t guest_irq, bool set)
9709 {
9710         if (!kvm_x86_ops->update_pi_irte)
9711                 return -EINVAL;
9712
9713         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9714 }
9715
9716 bool kvm_vector_hashing_enabled(void)
9717 {
9718         return vector_hashing;
9719 }
9720 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9721
9722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);