KVM: x86: move kvm_inject_gp up from kvm_set_dr to callers
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87
88 #define emul_to_vcpu(ctxt) \
89         ((struct kvm_vcpu *)(ctxt)->vcpu)
90
91 /* EFER defaults:
92  * - enable syscall per default because its emulated by KVM
93  * - enable LME and LMA per default on 64 bit KVM
94  */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117
118 #define KVM_X86_OP(func)                                             \
119         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
120                                 *(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32  __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64  __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156
157 /*
158  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
159  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
160  * advancement entirely.  Any other value is used as-is and disables adaptive
161  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
162  */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178
179 /*
180  * Restoring the host value for MSRs that are only consumed when running in
181  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182  * returns to userspace, i.e. the kernel can run with the guest's value.
183  */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185
186 struct kvm_user_return_msrs_global {
187         int nr;
188         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190
191 struct kvm_user_return_msrs {
192         struct user_return_notifier urn;
193         bool registered;
194         struct kvm_user_return_msr_values {
195                 u64 host;
196                 u64 curr;
197         } values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202
203 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206                                 | XFEATURE_MASK_PKRU)
207
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220         VCPU_STAT("pf_fixed", pf_fixed),
221         VCPU_STAT("pf_guest", pf_guest),
222         VCPU_STAT("tlb_flush", tlb_flush),
223         VCPU_STAT("invlpg", invlpg),
224         VCPU_STAT("exits", exits),
225         VCPU_STAT("io_exits", io_exits),
226         VCPU_STAT("mmio_exits", mmio_exits),
227         VCPU_STAT("signal_exits", signal_exits),
228         VCPU_STAT("irq_window", irq_window_exits),
229         VCPU_STAT("nmi_window", nmi_window_exits),
230         VCPU_STAT("halt_exits", halt_exits),
231         VCPU_STAT("halt_successful_poll", halt_successful_poll),
232         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234         VCPU_STAT("halt_wakeup", halt_wakeup),
235         VCPU_STAT("hypercalls", hypercalls),
236         VCPU_STAT("request_irq", request_irq_exits),
237         VCPU_STAT("irq_exits", irq_exits),
238         VCPU_STAT("host_state_reload", host_state_reload),
239         VCPU_STAT("fpu_reload", fpu_reload),
240         VCPU_STAT("insn_emulation", insn_emulation),
241         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242         VCPU_STAT("irq_injections", irq_injections),
243         VCPU_STAT("nmi_injections", nmi_injections),
244         VCPU_STAT("req_event", req_event),
245         VCPU_STAT("l1d_flush", l1d_flush),
246         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249         VM_STAT("mmu_pte_write", mmu_pte_write),
250         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251         VM_STAT("mmu_flooded", mmu_flooded),
252         VM_STAT("mmu_recycled", mmu_recycled),
253         VM_STAT("mmu_cache_miss", mmu_cache_miss),
254         VM_STAT("mmu_unsync", mmu_unsync),
255         VM_STAT("remote_tlb_flush", remote_tlb_flush),
256         VM_STAT("largepages", lpages, .mode = 0444),
257         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259         { NULL }
260 };
261
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265
266 static struct kmem_cache *x86_fpu_cache;
267
268 static struct kmem_cache *x86_emulator_cache;
269
270 /*
271  * When called, it means the previous get/set msr reached an invalid msr.
272  * Return true if we want to ignore/silent this failed msr access.
273  */
274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
275                                   u64 data, bool write)
276 {
277         const char *op = write ? "wrmsr" : "rdmsr";
278
279         if (ignore_msrs) {
280                 if (report_ignored_msrs)
281                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282                                       op, msr, data);
283                 /* Mask the error */
284                 return true;
285         } else {
286                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287                                       op, msr, data);
288                 return false;
289         }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295         unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297         return kmem_cache_create_usercopy("x86_emulator", size,
298                                           __alignof__(struct x86_emulate_ctxt),
299                                           SLAB_ACCOUNT, useroffset,
300                                           size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307         int i;
308         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309                 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314         unsigned slot;
315         struct kvm_user_return_msrs *msrs
316                 = container_of(urn, struct kvm_user_return_msrs, urn);
317         struct kvm_user_return_msr_values *values;
318         unsigned long flags;
319
320         /*
321          * Disabling irqs at this point since the following code could be
322          * interrupted and executed through kvm_arch_hardware_disable()
323          */
324         local_irq_save(flags);
325         if (msrs->registered) {
326                 msrs->registered = false;
327                 user_return_notifier_unregister(urn);
328         }
329         local_irq_restore(flags);
330         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
331                 values = &msrs->values[slot];
332                 if (values->host != values->curr) {
333                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
334                         values->curr = values->host;
335                 }
336         }
337 }
338
339 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 {
341         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
342         user_return_msrs_global.msrs[slot] = msr;
343         if (slot >= user_return_msrs_global.nr)
344                 user_return_msrs_global.nr = slot + 1;
345 }
346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347
348 static void kvm_user_return_msr_cpu_online(void)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         u64 value;
353         int i;
354
355         for (i = 0; i < user_return_msrs_global.nr; ++i) {
356                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
357                 msrs->values[i].host = value;
358                 msrs->values[i].curr = value;
359         }
360 }
361
362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 {
364         unsigned int cpu = smp_processor_id();
365         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
366         int err;
367
368         value = (value & mask) | (msrs->values[slot].host & ~mask);
369         if (value == msrs->values[slot].curr)
370                 return 0;
371         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
372         if (err)
373                 return 1;
374
375         msrs->values[slot].curr = value;
376         if (!msrs->registered) {
377                 msrs->urn.on_user_return = kvm_on_user_return;
378                 user_return_notifier_register(&msrs->urn);
379                 msrs->registered = true;
380         }
381         return 0;
382 }
383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384
385 static void drop_user_return_notifiers(void)
386 {
387         unsigned int cpu = smp_processor_id();
388         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389
390         if (msrs->registered)
391                 kvm_on_user_return(&msrs->urn);
392 }
393
394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 {
396         return vcpu->arch.apic_base;
397 }
398 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399
400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 {
402         return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 }
404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405
406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
409         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
410         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
411                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412
413         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414                 return 1;
415         if (!msr_info->host_initiated) {
416                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417                         return 1;
418                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
419                         return 1;
420         }
421
422         kvm_lapic_set_base(vcpu, msr_info->data);
423         kvm_recalculate_apic_map(vcpu->kvm);
424         return 0;
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427
428 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 {
430         /* Fault while not rebooting.  We want the trace. */
431         BUG_ON(!kvm_rebooting);
432 }
433 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434
435 #define EXCPT_BENIGN            0
436 #define EXCPT_CONTRIBUTORY      1
437 #define EXCPT_PF                2
438
439 static int exception_class(int vector)
440 {
441         switch (vector) {
442         case PF_VECTOR:
443                 return EXCPT_PF;
444         case DE_VECTOR:
445         case TS_VECTOR:
446         case NP_VECTOR:
447         case SS_VECTOR:
448         case GP_VECTOR:
449                 return EXCPT_CONTRIBUTORY;
450         default:
451                 break;
452         }
453         return EXCPT_BENIGN;
454 }
455
456 #define EXCPT_FAULT             0
457 #define EXCPT_TRAP              1
458 #define EXCPT_ABORT             2
459 #define EXCPT_INTERRUPT         3
460
461 static int exception_type(int vector)
462 {
463         unsigned int mask;
464
465         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
466                 return EXCPT_INTERRUPT;
467
468         mask = 1 << vector;
469
470         /* #DB is trap, as instruction watchpoints are handled elsewhere */
471         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
472                 return EXCPT_TRAP;
473
474         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
475                 return EXCPT_ABORT;
476
477         /* Reserved exceptions will result in fault */
478         return EXCPT_FAULT;
479 }
480
481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 {
483         unsigned nr = vcpu->arch.exception.nr;
484         bool has_payload = vcpu->arch.exception.has_payload;
485         unsigned long payload = vcpu->arch.exception.payload;
486
487         if (!has_payload)
488                 return;
489
490         switch (nr) {
491         case DB_VECTOR:
492                 /*
493                  * "Certain debug exceptions may clear bit 0-3.  The
494                  * remaining contents of the DR6 register are never
495                  * cleared by the processor".
496                  */
497                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498                 /*
499                  * In order to reflect the #DB exception payload in guest
500                  * dr6, three components need to be considered: active low
501                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502                  * DR6_BS and DR6_BT)
503                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
504                  * In the target guest dr6:
505                  * FIXED_1 bits should always be set.
506                  * Active low bits should be cleared if 1-setting in payload.
507                  * Active high bits should be set if 1-setting in payload.
508                  *
509                  * Note, the payload is compatible with the pending debug
510                  * exceptions/exit qualification under VMX, that active_low bits
511                  * are active high in payload.
512                  * So they need to be flipped for DR6.
513                  */
514                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
515                 vcpu->arch.dr6 |= payload;
516                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
517
518                 /*
519                  * The #DB payload is defined as compatible with the 'pending
520                  * debug exceptions' field under VMX, not DR6. While bit 12 is
521                  * defined in the 'pending debug exceptions' field (enabled
522                  * breakpoint), it is reserved and must be zero in DR6.
523                  */
524                 vcpu->arch.dr6 &= ~BIT(12);
525                 break;
526         case PF_VECTOR:
527                 vcpu->arch.cr2 = payload;
528                 break;
529         }
530
531         vcpu->arch.exception.has_payload = false;
532         vcpu->arch.exception.payload = 0;
533 }
534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535
536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
537                 unsigned nr, bool has_error, u32 error_code,
538                 bool has_payload, unsigned long payload, bool reinject)
539 {
540         u32 prev_nr;
541         int class1, class2;
542
543         kvm_make_request(KVM_REQ_EVENT, vcpu);
544
545         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546         queue:
547                 if (has_error && !is_protmode(vcpu))
548                         has_error = false;
549                 if (reinject) {
550                         /*
551                          * On vmentry, vcpu->arch.exception.pending is only
552                          * true if an event injection was blocked by
553                          * nested_run_pending.  In that case, however,
554                          * vcpu_enter_guest requests an immediate exit,
555                          * and the guest shouldn't proceed far enough to
556                          * need reinjection.
557                          */
558                         WARN_ON_ONCE(vcpu->arch.exception.pending);
559                         vcpu->arch.exception.injected = true;
560                         if (WARN_ON_ONCE(has_payload)) {
561                                 /*
562                                  * A reinjected event has already
563                                  * delivered its payload.
564                                  */
565                                 has_payload = false;
566                                 payload = 0;
567                         }
568                 } else {
569                         vcpu->arch.exception.pending = true;
570                         vcpu->arch.exception.injected = false;
571                 }
572                 vcpu->arch.exception.has_error_code = has_error;
573                 vcpu->arch.exception.nr = nr;
574                 vcpu->arch.exception.error_code = error_code;
575                 vcpu->arch.exception.has_payload = has_payload;
576                 vcpu->arch.exception.payload = payload;
577                 if (!is_guest_mode(vcpu))
578                         kvm_deliver_exception_payload(vcpu);
579                 return;
580         }
581
582         /* to check exception */
583         prev_nr = vcpu->arch.exception.nr;
584         if (prev_nr == DF_VECTOR) {
585                 /* triple fault -> shutdown */
586                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
587                 return;
588         }
589         class1 = exception_class(prev_nr);
590         class2 = exception_class(nr);
591         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
592                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593                 /*
594                  * Generate double fault per SDM Table 5-5.  Set
595                  * exception.pending = true so that the double fault
596                  * can trigger a nested vmexit.
597                  */
598                 vcpu->arch.exception.pending = true;
599                 vcpu->arch.exception.injected = false;
600                 vcpu->arch.exception.has_error_code = true;
601                 vcpu->arch.exception.nr = DF_VECTOR;
602                 vcpu->arch.exception.error_code = 0;
603                 vcpu->arch.exception.has_payload = false;
604                 vcpu->arch.exception.payload = 0;
605         } else
606                 /* replace previous exception with a new one in a hope
607                    that instruction re-execution will regenerate lost
608                    exception */
609                 goto queue;
610 }
611
612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 {
614         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617
618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 {
620         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623
624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
625                            unsigned long payload)
626 {
627         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 }
629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630
631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
632                                     u32 error_code, unsigned long payload)
633 {
634         kvm_multiple_exception(vcpu, nr, true, error_code,
635                                true, payload, false);
636 }
637
638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
639 {
640         if (err)
641                 kvm_inject_gp(vcpu, 0);
642         else
643                 return kvm_skip_emulated_instruction(vcpu);
644
645         return 1;
646 }
647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648
649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 {
651         ++vcpu->stat.pf_guest;
652         vcpu->arch.exception.nested_apf =
653                 is_guest_mode(vcpu) && fault->async_page_fault;
654         if (vcpu->arch.exception.nested_apf) {
655                 vcpu->arch.apf.nested_apf_token = fault->address;
656                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657         } else {
658                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
659                                         fault->address);
660         }
661 }
662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663
664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
665                                     struct x86_exception *fault)
666 {
667         struct kvm_mmu *fault_mmu;
668         WARN_ON_ONCE(fault->vector != PF_VECTOR);
669
670         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
671                                                vcpu->arch.walk_mmu;
672
673         /*
674          * Invalidate the TLB entry for the faulting address, if it exists,
675          * else the access will fault indefinitely (and to emulate hardware).
676          */
677         if ((fault->error_code & PFERR_PRESENT_MASK) &&
678             !(fault->error_code & PFERR_RSVD_MASK))
679                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
680                                        fault_mmu->root_hpa);
681
682         fault_mmu->inject_page_fault(vcpu, fault);
683         return fault->nested_page_fault;
684 }
685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686
687 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 {
689         atomic_inc(&vcpu->arch.nmi_queued);
690         kvm_make_request(KVM_REQ_NMI, vcpu);
691 }
692 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693
694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 {
696         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699
700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 {
702         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 }
704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
705
706 /*
707  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
708  * a #GP and return false.
709  */
710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 {
712         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713                 return true;
714         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
715         return false;
716 }
717 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718
719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 {
721         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
722                 return true;
723
724         kvm_queue_exception(vcpu, UD_VECTOR);
725         return false;
726 }
727 EXPORT_SYMBOL_GPL(kvm_require_dr);
728
729 /*
730  * This function will be used to read from the physical memory of the currently
731  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
732  * can read from guest physical or from the guest's guest physical memory.
733  */
734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
735                             gfn_t ngfn, void *data, int offset, int len,
736                             u32 access)
737 {
738         struct x86_exception exception;
739         gfn_t real_gfn;
740         gpa_t ngpa;
741
742         ngpa     = gfn_to_gpa(ngfn);
743         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
744         if (real_gfn == UNMAPPED_GVA)
745                 return -EFAULT;
746
747         real_gfn = gpa_to_gfn(real_gfn);
748
749         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 }
751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752
753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
754                                void *data, int offset, int len, u32 access)
755 {
756         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
757                                        data, offset, len, access);
758 }
759
760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 {
762         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
763 }
764
765 /*
766  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
767  */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772         int i;
773         int ret;
774         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775
776         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777                                       offset * sizeof(u64), sizeof(pdpte),
778                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
779         if (ret < 0) {
780                 ret = 0;
781                 goto out;
782         }
783         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784                 if ((pdpte[i] & PT_PRESENT_MASK) &&
785                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786                         ret = 0;
787                         goto out;
788                 }
789         }
790         ret = 1;
791
792         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794
795 out:
796
797         return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804         int offset;
805         gfn_t gfn;
806         int r;
807
808         if (!is_pae_paging(vcpu))
809                 return false;
810
811         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812                 return true;
813
814         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
818         if (r < 0)
819                 return true;
820
821         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828
829         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830                 kvm_clear_async_pf_completion_queue(vcpu);
831                 kvm_async_pf_hash_reset(vcpu);
832         }
833
834         if ((cr0 ^ old_cr0) & update_bits)
835                 kvm_mmu_reset_context(vcpu);
836
837         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846         unsigned long old_cr0 = kvm_read_cr0(vcpu);
847         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848
849         cr0 |= X86_CR0_ET;
850
851 #ifdef CONFIG_X86_64
852         if (cr0 & 0xffffffff00000000UL)
853                 return 1;
854 #endif
855
856         cr0 &= ~CR0_RESERVED_BITS;
857
858         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859                 return 1;
860
861         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862                 return 1;
863
864 #ifdef CONFIG_X86_64
865         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866             (cr0 & X86_CR0_PG)) {
867                 int cs_db, cs_l;
868
869                 if (!is_pae(vcpu))
870                         return 1;
871                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872                 if (cs_l)
873                         return 1;
874         }
875 #endif
876         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879                 return 1;
880
881         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882                 return 1;
883
884         static_call(kvm_x86_set_cr0)(vcpu, cr0);
885
886         kvm_post_set_cr0(vcpu, old_cr0, cr0);
887
888         return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900         if (vcpu->arch.guest_state_protected)
901                 return;
902
903         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905                 if (vcpu->arch.xcr0 != host_xcr0)
906                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907
908                 if (vcpu->arch.xsaves_enabled &&
909                     vcpu->arch.ia32_xss != host_xss)
910                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911         }
912
913         if (static_cpu_has(X86_FEATURE_PKU) &&
914             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916             vcpu->arch.pkru != vcpu->arch.host_pkru)
917                 __write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923         if (vcpu->arch.guest_state_protected)
924                 return;
925
926         if (static_cpu_has(X86_FEATURE_PKU) &&
927             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929                 vcpu->arch.pkru = rdpkru();
930                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931                         __write_pkru(vcpu->arch.host_pkru);
932         }
933
934         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935
936                 if (vcpu->arch.xcr0 != host_xcr0)
937                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938
939                 if (vcpu->arch.xsaves_enabled &&
940                     vcpu->arch.ia32_xss != host_xss)
941                         wrmsrl(MSR_IA32_XSS, host_xss);
942         }
943
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949         u64 xcr0 = xcr;
950         u64 old_xcr0 = vcpu->arch.xcr0;
951         u64 valid_bits;
952
953         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
954         if (index != XCR_XFEATURE_ENABLED_MASK)
955                 return 1;
956         if (!(xcr0 & XFEATURE_MASK_FP))
957                 return 1;
958         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959                 return 1;
960
961         /*
962          * Do not allow the guest to set bits that we do not support
963          * saving.  However, xcr0 bit 0 is always set, even if the
964          * emulated CPU does not support XSAVE (see fx_init).
965          */
966         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967         if (xcr0 & ~valid_bits)
968                 return 1;
969
970         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972                 return 1;
973
974         if (xcr0 & XFEATURE_MASK_AVX512) {
975                 if (!(xcr0 & XFEATURE_MASK_YMM))
976                         return 1;
977                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978                         return 1;
979         }
980         vcpu->arch.xcr0 = xcr0;
981
982         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983                 kvm_update_cpuid_runtime(vcpu);
984         return 0;
985 }
986
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989         if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
990                 return __kvm_set_xcr(vcpu, index, xcr);
991
992         return 1;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995
996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998         if (cr4 & cr4_reserved_bits)
999                 return false;
1000
1001         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1002                 return false;
1003
1004         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007
1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 {
1010         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1011                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012
1013         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015                 kvm_mmu_reset_context(vcpu);
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018
1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 {
1021         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1022         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1023                                    X86_CR4_SMEP;
1024
1025         if (!kvm_is_valid_cr4(vcpu, cr4))
1026                 return 1;
1027
1028         if (is_long_mode(vcpu)) {
1029                 if (!(cr4 & X86_CR4_PAE))
1030                         return 1;
1031                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032                         return 1;
1033         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1034                    && ((cr4 ^ old_cr4) & pdptr_bits)
1035                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1036                                    kvm_read_cr3(vcpu)))
1037                 return 1;
1038
1039         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1040                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1041                         return 1;
1042
1043                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1044                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1045                         return 1;
1046         }
1047
1048         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049
1050         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1051
1052         return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055
1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058         bool skip_tlb_flush = false;
1059 #ifdef CONFIG_X86_64
1060         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1061
1062         if (pcid_enabled) {
1063                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1064                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1065         }
1066 #endif
1067
1068         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1069                 if (!skip_tlb_flush) {
1070                         kvm_mmu_sync_roots(vcpu);
1071                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1072                 }
1073                 return 0;
1074         }
1075
1076         if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077                 return 1;
1078         else if (is_pae_paging(vcpu) &&
1079                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1080                 return 1;
1081
1082         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1083         vcpu->arch.cr3 = cr3;
1084         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1085
1086         return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089
1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 {
1092         if (cr8 & CR8_RESERVED_BITS)
1093                 return 1;
1094         if (lapic_in_kernel(vcpu))
1095                 kvm_lapic_set_tpr(vcpu, cr8);
1096         else
1097                 vcpu->arch.cr8 = cr8;
1098         return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101
1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 {
1104         if (lapic_in_kernel(vcpu))
1105                 return kvm_lapic_get_cr8(vcpu);
1106         else
1107                 return vcpu->arch.cr8;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110
1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1112 {
1113         int i;
1114
1115         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1116                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1117                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1118                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1119         }
1120 }
1121
1122 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1123 {
1124         unsigned long dr7;
1125
1126         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127                 dr7 = vcpu->arch.guest_debug_dr7;
1128         else
1129                 dr7 = vcpu->arch.dr7;
1130         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1131         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1132         if (dr7 & DR7_BP_EN_MASK)
1133                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136
1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 {
1139         u64 fixed = DR6_FIXED_1;
1140
1141         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1142                 fixed |= DR6_RTM;
1143         return fixed;
1144 }
1145
1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 {
1148         size_t size = ARRAY_SIZE(vcpu->arch.db);
1149
1150         switch (dr) {
1151         case 0 ... 3:
1152                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1153                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1154                         vcpu->arch.eff_db[dr] = val;
1155                 break;
1156         case 4:
1157         case 6:
1158                 if (!kvm_dr6_valid(val))
1159                         return 1; /* #GP */
1160                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1161                 break;
1162         case 5:
1163         default: /* 7 */
1164                 if (!kvm_dr7_valid(val))
1165                         return 1; /* #GP */
1166                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1167                 kvm_update_dr7(vcpu);
1168                 break;
1169         }
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174
1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 {
1177         size_t size = ARRAY_SIZE(vcpu->arch.db);
1178
1179         switch (dr) {
1180         case 0 ... 3:
1181                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1182                 break;
1183         case 4:
1184         case 6:
1185                 *val = vcpu->arch.dr6;
1186                 break;
1187         case 5:
1188         default: /* 7 */
1189                 *val = vcpu->arch.dr7;
1190                 break;
1191         }
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194
1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 {
1197         u32 ecx = kvm_rcx_read(vcpu);
1198         u64 data;
1199         int err;
1200
1201         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1202         if (err)
1203                 return err;
1204         kvm_rax_write(vcpu, (u32)data);
1205         kvm_rdx_write(vcpu, data >> 32);
1206         return err;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1209
1210 /*
1211  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1212  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213  *
1214  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1215  * extract the supported MSRs from the related const lists.
1216  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1217  * capabilities of the host cpu. This capabilities test skips MSRs that are
1218  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1219  * may depend on host virtualization features rather than host cpu features.
1220  */
1221
1222 static const u32 msrs_to_save_all[] = {
1223         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224         MSR_STAR,
1225 #ifdef CONFIG_X86_64
1226         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 #endif
1228         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1229         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230         MSR_IA32_SPEC_CTRL,
1231         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1232         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1233         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1234         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1235         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1236         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1237         MSR_IA32_UMWAIT_CONTROL,
1238
1239         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1240         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1241         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1242         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1243         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1244         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1245         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1246         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1247         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1248         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1249         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1250         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1251         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1252         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1253         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1254         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1255         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1256         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1257         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1258         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1259         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1260         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1261 };
1262
1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1264 static unsigned num_msrs_to_save;
1265
1266 static const u32 emulated_msrs_all[] = {
1267         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1268         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1269         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1270         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1271         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1272         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1273         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274         HV_X64_MSR_RESET,
1275         HV_X64_MSR_VP_INDEX,
1276         HV_X64_MSR_VP_RUNTIME,
1277         HV_X64_MSR_SCONTROL,
1278         HV_X64_MSR_STIMER0_CONFIG,
1279         HV_X64_MSR_VP_ASSIST_PAGE,
1280         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1281         HV_X64_MSR_TSC_EMULATION_STATUS,
1282         HV_X64_MSR_SYNDBG_OPTIONS,
1283         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1284         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1285         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286
1287         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1288         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289
1290         MSR_IA32_TSC_ADJUST,
1291         MSR_IA32_TSCDEADLINE,
1292         MSR_IA32_ARCH_CAPABILITIES,
1293         MSR_IA32_PERF_CAPABILITIES,
1294         MSR_IA32_MISC_ENABLE,
1295         MSR_IA32_MCG_STATUS,
1296         MSR_IA32_MCG_CTL,
1297         MSR_IA32_MCG_EXT_CTL,
1298         MSR_IA32_SMBASE,
1299         MSR_SMI_COUNT,
1300         MSR_PLATFORM_INFO,
1301         MSR_MISC_FEATURES_ENABLES,
1302         MSR_AMD64_VIRT_SPEC_CTRL,
1303         MSR_IA32_POWER_CTL,
1304         MSR_IA32_UCODE_REV,
1305
1306         /*
1307          * The following list leaves out MSRs whose values are determined
1308          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1309          * We always support the "true" VMX control MSRs, even if the host
1310          * processor does not, so I am putting these registers here rather
1311          * than in msrs_to_save_all.
1312          */
1313         MSR_IA32_VMX_BASIC,
1314         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1315         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318         MSR_IA32_VMX_MISC,
1319         MSR_IA32_VMX_CR0_FIXED0,
1320         MSR_IA32_VMX_CR4_FIXED0,
1321         MSR_IA32_VMX_VMCS_ENUM,
1322         MSR_IA32_VMX_PROCBASED_CTLS2,
1323         MSR_IA32_VMX_EPT_VPID_CAP,
1324         MSR_IA32_VMX_VMFUNC,
1325
1326         MSR_K7_HWCR,
1327         MSR_KVM_POLL_CONTROL,
1328 };
1329
1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1331 static unsigned num_emulated_msrs;
1332
1333 /*
1334  * List of msr numbers which are used to expose MSR-based features that
1335  * can be used by a hypervisor to validate requested CPU features.
1336  */
1337 static const u32 msr_based_features_all[] = {
1338         MSR_IA32_VMX_BASIC,
1339         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1340         MSR_IA32_VMX_PINBASED_CTLS,
1341         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1342         MSR_IA32_VMX_PROCBASED_CTLS,
1343         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1344         MSR_IA32_VMX_EXIT_CTLS,
1345         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1346         MSR_IA32_VMX_ENTRY_CTLS,
1347         MSR_IA32_VMX_MISC,
1348         MSR_IA32_VMX_CR0_FIXED0,
1349         MSR_IA32_VMX_CR0_FIXED1,
1350         MSR_IA32_VMX_CR4_FIXED0,
1351         MSR_IA32_VMX_CR4_FIXED1,
1352         MSR_IA32_VMX_VMCS_ENUM,
1353         MSR_IA32_VMX_PROCBASED_CTLS2,
1354         MSR_IA32_VMX_EPT_VPID_CAP,
1355         MSR_IA32_VMX_VMFUNC,
1356
1357         MSR_F10H_DECFG,
1358         MSR_IA32_UCODE_REV,
1359         MSR_IA32_ARCH_CAPABILITIES,
1360         MSR_IA32_PERF_CAPABILITIES,
1361 };
1362
1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1364 static unsigned int num_msr_based_features;
1365
1366 static u64 kvm_get_arch_capabilities(void)
1367 {
1368         u64 data = 0;
1369
1370         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1371                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1372
1373         /*
1374          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1375          * the nested hypervisor runs with NX huge pages.  If it is not,
1376          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1377          * L1 guests, so it need not worry about its own (L2) guests.
1378          */
1379         data |= ARCH_CAP_PSCHANGE_MC_NO;
1380
1381         /*
1382          * If we're doing cache flushes (either "always" or "cond")
1383          * we will do one whenever the guest does a vmlaunch/vmresume.
1384          * If an outer hypervisor is doing the cache flush for us
1385          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1386          * capability to the guest too, and if EPT is disabled we're not
1387          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1388          * require a nested hypervisor to do a flush of its own.
1389          */
1390         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1391                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392
1393         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1394                 data |= ARCH_CAP_RDCL_NO;
1395         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1396                 data |= ARCH_CAP_SSB_NO;
1397         if (!boot_cpu_has_bug(X86_BUG_MDS))
1398                 data |= ARCH_CAP_MDS_NO;
1399
1400         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401                 /*
1402                  * If RTM=0 because the kernel has disabled TSX, the host might
1403                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1404                  * and therefore knows that there cannot be TAA) but keep
1405                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1406                  * and we want to allow migrating those guests to tsx=off hosts.
1407                  */
1408                 data &= ~ARCH_CAP_TAA_NO;
1409         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1410                 data |= ARCH_CAP_TAA_NO;
1411         } else {
1412                 /*
1413                  * Nothing to do here; we emulate TSX_CTRL if present on the
1414                  * host so the guest can choose between disabling TSX or
1415                  * using VERW to clear CPU buffers.
1416                  */
1417         }
1418
1419         return data;
1420 }
1421
1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 {
1424         switch (msr->index) {
1425         case MSR_IA32_ARCH_CAPABILITIES:
1426                 msr->data = kvm_get_arch_capabilities();
1427                 break;
1428         case MSR_IA32_UCODE_REV:
1429                 rdmsrl_safe(msr->index, &msr->data);
1430                 break;
1431         default:
1432                 return static_call(kvm_x86_get_msr_feature)(msr);
1433         }
1434         return 0;
1435 }
1436
1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 {
1439         struct kvm_msr_entry msr;
1440         int r;
1441
1442         msr.index = index;
1443         r = kvm_get_msr_feature(&msr);
1444
1445         if (r == KVM_MSR_RET_INVALID) {
1446                 /* Unconditionally clear the output for simplicity */
1447                 *data = 0;
1448                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1449                         r = 0;
1450         }
1451
1452         if (r)
1453                 return r;
1454
1455         *data = msr.data;
1456
1457         return 0;
1458 }
1459
1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 {
1462         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1463                 return false;
1464
1465         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1466                 return false;
1467
1468         if (efer & (EFER_LME | EFER_LMA) &&
1469             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1470                 return false;
1471
1472         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1473                 return false;
1474
1475         return true;
1476
1477 }
1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 {
1480         if (efer & efer_reserved_bits)
1481                 return false;
1482
1483         return __kvm_valid_efer(vcpu, efer);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486
1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 {
1489         u64 old_efer = vcpu->arch.efer;
1490         u64 efer = msr_info->data;
1491         int r;
1492
1493         if (efer & efer_reserved_bits)
1494                 return 1;
1495
1496         if (!msr_info->host_initiated) {
1497                 if (!__kvm_valid_efer(vcpu, efer))
1498                         return 1;
1499
1500                 if (is_paging(vcpu) &&
1501                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1502                         return 1;
1503         }
1504
1505         efer &= ~EFER_LMA;
1506         efer |= vcpu->arch.efer & EFER_LMA;
1507
1508         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1509         if (r) {
1510                 WARN_ON(r > 0);
1511                 return r;
1512         }
1513
1514         /* Update reserved bits */
1515         if ((efer ^ old_efer) & EFER_NX)
1516                 kvm_mmu_reset_context(vcpu);
1517
1518         return 0;
1519 }
1520
1521 void kvm_enable_efer_bits(u64 mask)
1522 {
1523        efer_reserved_bits &= ~mask;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526
1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 {
1529         struct kvm *kvm = vcpu->kvm;
1530         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1531         u32 count = kvm->arch.msr_filter.count;
1532         u32 i;
1533         bool r = kvm->arch.msr_filter.default_allow;
1534         int idx;
1535
1536         /* MSR filtering not set up or x2APIC enabled, allow everything */
1537         if (!count || (index >= 0x800 && index <= 0x8ff))
1538                 return true;
1539
1540         /* Prevent collision with set_msr_filter */
1541         idx = srcu_read_lock(&kvm->srcu);
1542
1543         for (i = 0; i < count; i++) {
1544                 u32 start = ranges[i].base;
1545                 u32 end = start + ranges[i].nmsrs;
1546                 u32 flags = ranges[i].flags;
1547                 unsigned long *bitmap = ranges[i].bitmap;
1548
1549                 if ((index >= start) && (index < end) && (flags & type)) {
1550                         r = !!test_bit(index - start, bitmap);
1551                         break;
1552                 }
1553         }
1554
1555         srcu_read_unlock(&kvm->srcu, idx);
1556
1557         return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1560
1561 /*
1562  * Write @data into the MSR specified by @index.  Select MSR specific fault
1563  * checks are bypassed if @host_initiated is %true.
1564  * Returns 0 on success, non-0 otherwise.
1565  * Assumes vcpu_load() was already called.
1566  */
1567 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1568                          bool host_initiated)
1569 {
1570         struct msr_data msr;
1571
1572         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1573                 return KVM_MSR_RET_FILTERED;
1574
1575         switch (index) {
1576         case MSR_FS_BASE:
1577         case MSR_GS_BASE:
1578         case MSR_KERNEL_GS_BASE:
1579         case MSR_CSTAR:
1580         case MSR_LSTAR:
1581                 if (is_noncanonical_address(data, vcpu))
1582                         return 1;
1583                 break;
1584         case MSR_IA32_SYSENTER_EIP:
1585         case MSR_IA32_SYSENTER_ESP:
1586                 /*
1587                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1588                  * non-canonical address is written on Intel but not on
1589                  * AMD (which ignores the top 32-bits, because it does
1590                  * not implement 64-bit SYSENTER).
1591                  *
1592                  * 64-bit code should hence be able to write a non-canonical
1593                  * value on AMD.  Making the address canonical ensures that
1594                  * vmentry does not fail on Intel after writing a non-canonical
1595                  * value, and that something deterministic happens if the guest
1596                  * invokes 64-bit SYSENTER.
1597                  */
1598                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1599         }
1600
1601         msr.data = data;
1602         msr.index = index;
1603         msr.host_initiated = host_initiated;
1604
1605         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1606 }
1607
1608 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1609                                      u32 index, u64 data, bool host_initiated)
1610 {
1611         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1612
1613         if (ret == KVM_MSR_RET_INVALID)
1614                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1615                         ret = 0;
1616
1617         return ret;
1618 }
1619
1620 /*
1621  * Read the MSR specified by @index into @data.  Select MSR specific fault
1622  * checks are bypassed if @host_initiated is %true.
1623  * Returns 0 on success, non-0 otherwise.
1624  * Assumes vcpu_load() was already called.
1625  */
1626 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1627                   bool host_initiated)
1628 {
1629         struct msr_data msr;
1630         int ret;
1631
1632         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1633                 return KVM_MSR_RET_FILTERED;
1634
1635         msr.index = index;
1636         msr.host_initiated = host_initiated;
1637
1638         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1639         if (!ret)
1640                 *data = msr.data;
1641         return ret;
1642 }
1643
1644 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1645                                      u32 index, u64 *data, bool host_initiated)
1646 {
1647         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1648
1649         if (ret == KVM_MSR_RET_INVALID) {
1650                 /* Unconditionally clear *data for simplicity */
1651                 *data = 0;
1652                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1653                         ret = 0;
1654         }
1655
1656         return ret;
1657 }
1658
1659 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1660 {
1661         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_get_msr);
1664
1665 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1666 {
1667         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr);
1670
1671 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1672 {
1673         int err = vcpu->run->msr.error;
1674         if (!err) {
1675                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1676                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1677         }
1678
1679         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1680 }
1681
1682 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1683 {
1684         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1685 }
1686
1687 static u64 kvm_msr_reason(int r)
1688 {
1689         switch (r) {
1690         case KVM_MSR_RET_INVALID:
1691                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1692         case KVM_MSR_RET_FILTERED:
1693                 return KVM_MSR_EXIT_REASON_FILTER;
1694         default:
1695                 return KVM_MSR_EXIT_REASON_INVAL;
1696         }
1697 }
1698
1699 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1700                               u32 exit_reason, u64 data,
1701                               int (*completion)(struct kvm_vcpu *vcpu),
1702                               int r)
1703 {
1704         u64 msr_reason = kvm_msr_reason(r);
1705
1706         /* Check if the user wanted to know about this MSR fault */
1707         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1708                 return 0;
1709
1710         vcpu->run->exit_reason = exit_reason;
1711         vcpu->run->msr.error = 0;
1712         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1713         vcpu->run->msr.reason = msr_reason;
1714         vcpu->run->msr.index = index;
1715         vcpu->run->msr.data = data;
1716         vcpu->arch.complete_userspace_io = completion;
1717
1718         return 1;
1719 }
1720
1721 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1722 {
1723         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1724                                    complete_emulated_rdmsr, r);
1725 }
1726
1727 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1728 {
1729         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1730                                    complete_emulated_wrmsr, r);
1731 }
1732
1733 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1734 {
1735         u32 ecx = kvm_rcx_read(vcpu);
1736         u64 data;
1737         int r;
1738
1739         r = kvm_get_msr(vcpu, ecx, &data);
1740
1741         /* MSR read failed? See if we should ask user space */
1742         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1743                 /* Bounce to user space */
1744                 return 0;
1745         }
1746
1747         if (!r) {
1748                 trace_kvm_msr_read(ecx, data);
1749
1750                 kvm_rax_write(vcpu, data & -1u);
1751                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1752         } else {
1753                 trace_kvm_msr_read_ex(ecx);
1754         }
1755
1756         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1759
1760 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1761 {
1762         u32 ecx = kvm_rcx_read(vcpu);
1763         u64 data = kvm_read_edx_eax(vcpu);
1764         int r;
1765
1766         r = kvm_set_msr(vcpu, ecx, data);
1767
1768         /* MSR write failed? See if we should ask user space */
1769         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1770                 /* Bounce to user space */
1771                 return 0;
1772
1773         /* Signal all other negative errors to userspace */
1774         if (r < 0)
1775                 return r;
1776
1777         if (!r)
1778                 trace_kvm_msr_write(ecx, data);
1779         else
1780                 trace_kvm_msr_write_ex(ecx, data);
1781
1782         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1785
1786 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1787 {
1788         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1789                 xfer_to_guest_mode_work_pending();
1790 }
1791
1792 /*
1793  * The fast path for frequent and performance sensitive wrmsr emulation,
1794  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1795  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1796  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1797  * other cases which must be called after interrupts are enabled on the host.
1798  */
1799 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1800 {
1801         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1802                 return 1;
1803
1804         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1805                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1806                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1807                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1808
1809                 data &= ~(1 << 12);
1810                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1811                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1812                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1813                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1814                 return 0;
1815         }
1816
1817         return 1;
1818 }
1819
1820 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1821 {
1822         if (!kvm_can_use_hv_timer(vcpu))
1823                 return 1;
1824
1825         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1826         return 0;
1827 }
1828
1829 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1830 {
1831         u32 msr = kvm_rcx_read(vcpu);
1832         u64 data;
1833         fastpath_t ret = EXIT_FASTPATH_NONE;
1834
1835         switch (msr) {
1836         case APIC_BASE_MSR + (APIC_ICR >> 4):
1837                 data = kvm_read_edx_eax(vcpu);
1838                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1839                         kvm_skip_emulated_instruction(vcpu);
1840                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1841                 }
1842                 break;
1843         case MSR_IA32_TSCDEADLINE:
1844                 data = kvm_read_edx_eax(vcpu);
1845                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1846                         kvm_skip_emulated_instruction(vcpu);
1847                         ret = EXIT_FASTPATH_REENTER_GUEST;
1848                 }
1849                 break;
1850         default:
1851                 break;
1852         }
1853
1854         if (ret != EXIT_FASTPATH_NONE)
1855                 trace_kvm_msr_write(msr, data);
1856
1857         return ret;
1858 }
1859 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1860
1861 /*
1862  * Adapt set_msr() to msr_io()'s calling convention
1863  */
1864 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1865 {
1866         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1867 }
1868
1869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1870 {
1871         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1872 }
1873
1874 #ifdef CONFIG_X86_64
1875 struct pvclock_clock {
1876         int vclock_mode;
1877         u64 cycle_last;
1878         u64 mask;
1879         u32 mult;
1880         u32 shift;
1881         u64 base_cycles;
1882         u64 offset;
1883 };
1884
1885 struct pvclock_gtod_data {
1886         seqcount_t      seq;
1887
1888         struct pvclock_clock clock; /* extract of a clocksource struct */
1889         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1890
1891         ktime_t         offs_boot;
1892         u64             wall_time_sec;
1893 };
1894
1895 static struct pvclock_gtod_data pvclock_gtod_data;
1896
1897 static void update_pvclock_gtod(struct timekeeper *tk)
1898 {
1899         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1900
1901         write_seqcount_begin(&vdata->seq);
1902
1903         /* copy pvclock gtod data */
1904         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1905         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1906         vdata->clock.mask               = tk->tkr_mono.mask;
1907         vdata->clock.mult               = tk->tkr_mono.mult;
1908         vdata->clock.shift              = tk->tkr_mono.shift;
1909         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1910         vdata->clock.offset             = tk->tkr_mono.base;
1911
1912         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1913         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1914         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1915         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1916         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1917         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1918         vdata->raw_clock.offset         = tk->tkr_raw.base;
1919
1920         vdata->wall_time_sec            = tk->xtime_sec;
1921
1922         vdata->offs_boot                = tk->offs_boot;
1923
1924         write_seqcount_end(&vdata->seq);
1925 }
1926
1927 static s64 get_kvmclock_base_ns(void)
1928 {
1929         /* Count up from boot time, but with the frequency of the raw clock.  */
1930         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1931 }
1932 #else
1933 static s64 get_kvmclock_base_ns(void)
1934 {
1935         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1936         return ktime_get_boottime_ns();
1937 }
1938 #endif
1939
1940 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1941 {
1942         int version;
1943         int r;
1944         struct pvclock_wall_clock wc;
1945         u32 wc_sec_hi;
1946         u64 wall_nsec;
1947
1948         if (!wall_clock)
1949                 return;
1950
1951         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1952         if (r)
1953                 return;
1954
1955         if (version & 1)
1956                 ++version;  /* first time write, random junk */
1957
1958         ++version;
1959
1960         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1961                 return;
1962
1963         /*
1964          * The guest calculates current wall clock time by adding
1965          * system time (updated by kvm_guest_time_update below) to the
1966          * wall clock specified here.  We do the reverse here.
1967          */
1968         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1969
1970         wc.nsec = do_div(wall_nsec, 1000000000);
1971         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1972         wc.version = version;
1973
1974         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1975
1976         if (sec_hi_ofs) {
1977                 wc_sec_hi = wall_nsec >> 32;
1978                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1979                                 &wc_sec_hi, sizeof(wc_sec_hi));
1980         }
1981
1982         version++;
1983         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1984 }
1985
1986 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1987                                   bool old_msr, bool host_initiated)
1988 {
1989         struct kvm_arch *ka = &vcpu->kvm->arch;
1990
1991         if (vcpu->vcpu_id == 0 && !host_initiated) {
1992                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1993                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1994
1995                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1996         }
1997
1998         vcpu->arch.time = system_time;
1999         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2000
2001         /* we verify if the enable bit is set... */
2002         vcpu->arch.pv_time_enabled = false;
2003         if (!(system_time & 1))
2004                 return;
2005
2006         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2007                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2008                                        sizeof(struct pvclock_vcpu_time_info)))
2009                 vcpu->arch.pv_time_enabled = true;
2010
2011         return;
2012 }
2013
2014 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2015 {
2016         do_shl32_div32(dividend, divisor);
2017         return dividend;
2018 }
2019
2020 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2021                                s8 *pshift, u32 *pmultiplier)
2022 {
2023         uint64_t scaled64;
2024         int32_t  shift = 0;
2025         uint64_t tps64;
2026         uint32_t tps32;
2027
2028         tps64 = base_hz;
2029         scaled64 = scaled_hz;
2030         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2031                 tps64 >>= 1;
2032                 shift--;
2033         }
2034
2035         tps32 = (uint32_t)tps64;
2036         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2037                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2038                         scaled64 >>= 1;
2039                 else
2040                         tps32 <<= 1;
2041                 shift++;
2042         }
2043
2044         *pshift = shift;
2045         *pmultiplier = div_frac(scaled64, tps32);
2046 }
2047
2048 #ifdef CONFIG_X86_64
2049 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2050 #endif
2051
2052 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2053 static unsigned long max_tsc_khz;
2054
2055 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2056 {
2057         u64 v = (u64)khz * (1000000 + ppm);
2058         do_div(v, 1000000);
2059         return v;
2060 }
2061
2062 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2063 {
2064         u64 ratio;
2065
2066         /* Guest TSC same frequency as host TSC? */
2067         if (!scale) {
2068                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2069                 return 0;
2070         }
2071
2072         /* TSC scaling supported? */
2073         if (!kvm_has_tsc_control) {
2074                 if (user_tsc_khz > tsc_khz) {
2075                         vcpu->arch.tsc_catchup = 1;
2076                         vcpu->arch.tsc_always_catchup = 1;
2077                         return 0;
2078                 } else {
2079                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2080                         return -1;
2081                 }
2082         }
2083
2084         /* TSC scaling required  - calculate ratio */
2085         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2086                                 user_tsc_khz, tsc_khz);
2087
2088         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2089                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2090                                     user_tsc_khz);
2091                 return -1;
2092         }
2093
2094         vcpu->arch.tsc_scaling_ratio = ratio;
2095         return 0;
2096 }
2097
2098 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2099 {
2100         u32 thresh_lo, thresh_hi;
2101         int use_scaling = 0;
2102
2103         /* tsc_khz can be zero if TSC calibration fails */
2104         if (user_tsc_khz == 0) {
2105                 /* set tsc_scaling_ratio to a safe value */
2106                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2107                 return -1;
2108         }
2109
2110         /* Compute a scale to convert nanoseconds in TSC cycles */
2111         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2112                            &vcpu->arch.virtual_tsc_shift,
2113                            &vcpu->arch.virtual_tsc_mult);
2114         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2115
2116         /*
2117          * Compute the variation in TSC rate which is acceptable
2118          * within the range of tolerance and decide if the
2119          * rate being applied is within that bounds of the hardware
2120          * rate.  If so, no scaling or compensation need be done.
2121          */
2122         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2123         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2124         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2125                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2126                 use_scaling = 1;
2127         }
2128         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2129 }
2130
2131 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2132 {
2133         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2134                                       vcpu->arch.virtual_tsc_mult,
2135                                       vcpu->arch.virtual_tsc_shift);
2136         tsc += vcpu->arch.this_tsc_write;
2137         return tsc;
2138 }
2139
2140 static inline int gtod_is_based_on_tsc(int mode)
2141 {
2142         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2143 }
2144
2145 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2146 {
2147 #ifdef CONFIG_X86_64
2148         bool vcpus_matched;
2149         struct kvm_arch *ka = &vcpu->kvm->arch;
2150         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2151
2152         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2153                          atomic_read(&vcpu->kvm->online_vcpus));
2154
2155         /*
2156          * Once the masterclock is enabled, always perform request in
2157          * order to update it.
2158          *
2159          * In order to enable masterclock, the host clocksource must be TSC
2160          * and the vcpus need to have matched TSCs.  When that happens,
2161          * perform request to enable masterclock.
2162          */
2163         if (ka->use_master_clock ||
2164             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2165                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2166
2167         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2168                             atomic_read(&vcpu->kvm->online_vcpus),
2169                             ka->use_master_clock, gtod->clock.vclock_mode);
2170 #endif
2171 }
2172
2173 /*
2174  * Multiply tsc by a fixed point number represented by ratio.
2175  *
2176  * The most significant 64-N bits (mult) of ratio represent the
2177  * integral part of the fixed point number; the remaining N bits
2178  * (frac) represent the fractional part, ie. ratio represents a fixed
2179  * point number (mult + frac * 2^(-N)).
2180  *
2181  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2182  */
2183 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2184 {
2185         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2186 }
2187
2188 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2189 {
2190         u64 _tsc = tsc;
2191         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2192
2193         if (ratio != kvm_default_tsc_scaling_ratio)
2194                 _tsc = __scale_tsc(ratio, tsc);
2195
2196         return _tsc;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2199
2200 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2201 {
2202         u64 tsc;
2203
2204         tsc = kvm_scale_tsc(vcpu, rdtsc());
2205
2206         return target_tsc - tsc;
2207 }
2208
2209 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2210 {
2211         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2214
2215 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2216 {
2217         vcpu->arch.l1_tsc_offset = offset;
2218         vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2219 }
2220
2221 static inline bool kvm_check_tsc_unstable(void)
2222 {
2223 #ifdef CONFIG_X86_64
2224         /*
2225          * TSC is marked unstable when we're running on Hyper-V,
2226          * 'TSC page' clocksource is good.
2227          */
2228         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2229                 return false;
2230 #endif
2231         return check_tsc_unstable();
2232 }
2233
2234 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2235 {
2236         struct kvm *kvm = vcpu->kvm;
2237         u64 offset, ns, elapsed;
2238         unsigned long flags;
2239         bool matched;
2240         bool already_matched;
2241         bool synchronizing = false;
2242
2243         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2244         offset = kvm_compute_tsc_offset(vcpu, data);
2245         ns = get_kvmclock_base_ns();
2246         elapsed = ns - kvm->arch.last_tsc_nsec;
2247
2248         if (vcpu->arch.virtual_tsc_khz) {
2249                 if (data == 0) {
2250                         /*
2251                          * detection of vcpu initialization -- need to sync
2252                          * with other vCPUs. This particularly helps to keep
2253                          * kvm_clock stable after CPU hotplug
2254                          */
2255                         synchronizing = true;
2256                 } else {
2257                         u64 tsc_exp = kvm->arch.last_tsc_write +
2258                                                 nsec_to_cycles(vcpu, elapsed);
2259                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2260                         /*
2261                          * Special case: TSC write with a small delta (1 second)
2262                          * of virtual cycle time against real time is
2263                          * interpreted as an attempt to synchronize the CPU.
2264                          */
2265                         synchronizing = data < tsc_exp + tsc_hz &&
2266                                         data + tsc_hz > tsc_exp;
2267                 }
2268         }
2269
2270         /*
2271          * For a reliable TSC, we can match TSC offsets, and for an unstable
2272          * TSC, we add elapsed time in this computation.  We could let the
2273          * compensation code attempt to catch up if we fall behind, but
2274          * it's better to try to match offsets from the beginning.
2275          */
2276         if (synchronizing &&
2277             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2278                 if (!kvm_check_tsc_unstable()) {
2279                         offset = kvm->arch.cur_tsc_offset;
2280                 } else {
2281                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2282                         data += delta;
2283                         offset = kvm_compute_tsc_offset(vcpu, data);
2284                 }
2285                 matched = true;
2286                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2287         } else {
2288                 /*
2289                  * We split periods of matched TSC writes into generations.
2290                  * For each generation, we track the original measured
2291                  * nanosecond time, offset, and write, so if TSCs are in
2292                  * sync, we can match exact offset, and if not, we can match
2293                  * exact software computation in compute_guest_tsc()
2294                  *
2295                  * These values are tracked in kvm->arch.cur_xxx variables.
2296                  */
2297                 kvm->arch.cur_tsc_generation++;
2298                 kvm->arch.cur_tsc_nsec = ns;
2299                 kvm->arch.cur_tsc_write = data;
2300                 kvm->arch.cur_tsc_offset = offset;
2301                 matched = false;
2302         }
2303
2304         /*
2305          * We also track th most recent recorded KHZ, write and time to
2306          * allow the matching interval to be extended at each write.
2307          */
2308         kvm->arch.last_tsc_nsec = ns;
2309         kvm->arch.last_tsc_write = data;
2310         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2311
2312         vcpu->arch.last_guest_tsc = data;
2313
2314         /* Keep track of which generation this VCPU has synchronized to */
2315         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2316         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2317         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2318
2319         kvm_vcpu_write_tsc_offset(vcpu, offset);
2320         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2321
2322         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2323         if (!matched) {
2324                 kvm->arch.nr_vcpus_matched_tsc = 0;
2325         } else if (!already_matched) {
2326                 kvm->arch.nr_vcpus_matched_tsc++;
2327         }
2328
2329         kvm_track_tsc_matching(vcpu);
2330         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2331 }
2332
2333 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2334                                            s64 adjustment)
2335 {
2336         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2337         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2338 }
2339
2340 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2341 {
2342         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2343                 WARN_ON(adjustment < 0);
2344         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2345         adjust_tsc_offset_guest(vcpu, adjustment);
2346 }
2347
2348 #ifdef CONFIG_X86_64
2349
2350 static u64 read_tsc(void)
2351 {
2352         u64 ret = (u64)rdtsc_ordered();
2353         u64 last = pvclock_gtod_data.clock.cycle_last;
2354
2355         if (likely(ret >= last))
2356                 return ret;
2357
2358         /*
2359          * GCC likes to generate cmov here, but this branch is extremely
2360          * predictable (it's just a function of time and the likely is
2361          * very likely) and there's a data dependence, so force GCC
2362          * to generate a branch instead.  I don't barrier() because
2363          * we don't actually need a barrier, and if this function
2364          * ever gets inlined it will generate worse code.
2365          */
2366         asm volatile ("");
2367         return last;
2368 }
2369
2370 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2371                           int *mode)
2372 {
2373         long v;
2374         u64 tsc_pg_val;
2375
2376         switch (clock->vclock_mode) {
2377         case VDSO_CLOCKMODE_HVCLOCK:
2378                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2379                                                   tsc_timestamp);
2380                 if (tsc_pg_val != U64_MAX) {
2381                         /* TSC page valid */
2382                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2383                         v = (tsc_pg_val - clock->cycle_last) &
2384                                 clock->mask;
2385                 } else {
2386                         /* TSC page invalid */
2387                         *mode = VDSO_CLOCKMODE_NONE;
2388                 }
2389                 break;
2390         case VDSO_CLOCKMODE_TSC:
2391                 *mode = VDSO_CLOCKMODE_TSC;
2392                 *tsc_timestamp = read_tsc();
2393                 v = (*tsc_timestamp - clock->cycle_last) &
2394                         clock->mask;
2395                 break;
2396         default:
2397                 *mode = VDSO_CLOCKMODE_NONE;
2398         }
2399
2400         if (*mode == VDSO_CLOCKMODE_NONE)
2401                 *tsc_timestamp = v = 0;
2402
2403         return v * clock->mult;
2404 }
2405
2406 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2407 {
2408         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2409         unsigned long seq;
2410         int mode;
2411         u64 ns;
2412
2413         do {
2414                 seq = read_seqcount_begin(&gtod->seq);
2415                 ns = gtod->raw_clock.base_cycles;
2416                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2417                 ns >>= gtod->raw_clock.shift;
2418                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2419         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2420         *t = ns;
2421
2422         return mode;
2423 }
2424
2425 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2426 {
2427         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2428         unsigned long seq;
2429         int mode;
2430         u64 ns;
2431
2432         do {
2433                 seq = read_seqcount_begin(&gtod->seq);
2434                 ts->tv_sec = gtod->wall_time_sec;
2435                 ns = gtod->clock.base_cycles;
2436                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2437                 ns >>= gtod->clock.shift;
2438         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2439
2440         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2441         ts->tv_nsec = ns;
2442
2443         return mode;
2444 }
2445
2446 /* returns true if host is using TSC based clocksource */
2447 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2448 {
2449         /* checked again under seqlock below */
2450         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2451                 return false;
2452
2453         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2454                                                       tsc_timestamp));
2455 }
2456
2457 /* returns true if host is using TSC based clocksource */
2458 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2459                                            u64 *tsc_timestamp)
2460 {
2461         /* checked again under seqlock below */
2462         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2463                 return false;
2464
2465         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2466 }
2467 #endif
2468
2469 /*
2470  *
2471  * Assuming a stable TSC across physical CPUS, and a stable TSC
2472  * across virtual CPUs, the following condition is possible.
2473  * Each numbered line represents an event visible to both
2474  * CPUs at the next numbered event.
2475  *
2476  * "timespecX" represents host monotonic time. "tscX" represents
2477  * RDTSC value.
2478  *
2479  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2480  *
2481  * 1.  read timespec0,tsc0
2482  * 2.                                   | timespec1 = timespec0 + N
2483  *                                      | tsc1 = tsc0 + M
2484  * 3. transition to guest               | transition to guest
2485  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2486  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2487  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2488  *
2489  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2490  *
2491  *      - ret0 < ret1
2492  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2493  *              ...
2494  *      - 0 < N - M => M < N
2495  *
2496  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2497  * always the case (the difference between two distinct xtime instances
2498  * might be smaller then the difference between corresponding TSC reads,
2499  * when updating guest vcpus pvclock areas).
2500  *
2501  * To avoid that problem, do not allow visibility of distinct
2502  * system_timestamp/tsc_timestamp values simultaneously: use a master
2503  * copy of host monotonic time values. Update that master copy
2504  * in lockstep.
2505  *
2506  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2507  *
2508  */
2509
2510 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2511 {
2512 #ifdef CONFIG_X86_64
2513         struct kvm_arch *ka = &kvm->arch;
2514         int vclock_mode;
2515         bool host_tsc_clocksource, vcpus_matched;
2516
2517         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2518                         atomic_read(&kvm->online_vcpus));
2519
2520         /*
2521          * If the host uses TSC clock, then passthrough TSC as stable
2522          * to the guest.
2523          */
2524         host_tsc_clocksource = kvm_get_time_and_clockread(
2525                                         &ka->master_kernel_ns,
2526                                         &ka->master_cycle_now);
2527
2528         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2529                                 && !ka->backwards_tsc_observed
2530                                 && !ka->boot_vcpu_runs_old_kvmclock;
2531
2532         if (ka->use_master_clock)
2533                 atomic_set(&kvm_guest_has_master_clock, 1);
2534
2535         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2536         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2537                                         vcpus_matched);
2538 #endif
2539 }
2540
2541 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2542 {
2543         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2544 }
2545
2546 static void kvm_gen_update_masterclock(struct kvm *kvm)
2547 {
2548 #ifdef CONFIG_X86_64
2549         int i;
2550         struct kvm_vcpu *vcpu;
2551         struct kvm_arch *ka = &kvm->arch;
2552
2553         spin_lock(&ka->pvclock_gtod_sync_lock);
2554         kvm_make_mclock_inprogress_request(kvm);
2555         /* no guest entries from this point */
2556         pvclock_update_vm_gtod_copy(kvm);
2557
2558         kvm_for_each_vcpu(i, vcpu, kvm)
2559                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2560
2561         /* guest entries allowed */
2562         kvm_for_each_vcpu(i, vcpu, kvm)
2563                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2564
2565         spin_unlock(&ka->pvclock_gtod_sync_lock);
2566 #endif
2567 }
2568
2569 u64 get_kvmclock_ns(struct kvm *kvm)
2570 {
2571         struct kvm_arch *ka = &kvm->arch;
2572         struct pvclock_vcpu_time_info hv_clock;
2573         u64 ret;
2574
2575         spin_lock(&ka->pvclock_gtod_sync_lock);
2576         if (!ka->use_master_clock) {
2577                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2578                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2579         }
2580
2581         hv_clock.tsc_timestamp = ka->master_cycle_now;
2582         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2583         spin_unlock(&ka->pvclock_gtod_sync_lock);
2584
2585         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2586         get_cpu();
2587
2588         if (__this_cpu_read(cpu_tsc_khz)) {
2589                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2590                                    &hv_clock.tsc_shift,
2591                                    &hv_clock.tsc_to_system_mul);
2592                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2593         } else
2594                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2595
2596         put_cpu();
2597
2598         return ret;
2599 }
2600
2601 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2602                                    struct gfn_to_hva_cache *cache,
2603                                    unsigned int offset)
2604 {
2605         struct kvm_vcpu_arch *vcpu = &v->arch;
2606         struct pvclock_vcpu_time_info guest_hv_clock;
2607
2608         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2609                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2610                 return;
2611
2612         /* This VCPU is paused, but it's legal for a guest to read another
2613          * VCPU's kvmclock, so we really have to follow the specification where
2614          * it says that version is odd if data is being modified, and even after
2615          * it is consistent.
2616          *
2617          * Version field updates must be kept separate.  This is because
2618          * kvm_write_guest_cached might use a "rep movs" instruction, and
2619          * writes within a string instruction are weakly ordered.  So there
2620          * are three writes overall.
2621          *
2622          * As a small optimization, only write the version field in the first
2623          * and third write.  The vcpu->pv_time cache is still valid, because the
2624          * version field is the first in the struct.
2625          */
2626         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2627
2628         if (guest_hv_clock.version & 1)
2629                 ++guest_hv_clock.version;  /* first time write, random junk */
2630
2631         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2632         kvm_write_guest_offset_cached(v->kvm, cache,
2633                                       &vcpu->hv_clock, offset,
2634                                       sizeof(vcpu->hv_clock.version));
2635
2636         smp_wmb();
2637
2638         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2639         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2640
2641         if (vcpu->pvclock_set_guest_stopped_request) {
2642                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2643                 vcpu->pvclock_set_guest_stopped_request = false;
2644         }
2645
2646         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2647
2648         kvm_write_guest_offset_cached(v->kvm, cache,
2649                                       &vcpu->hv_clock, offset,
2650                                       sizeof(vcpu->hv_clock));
2651
2652         smp_wmb();
2653
2654         vcpu->hv_clock.version++;
2655         kvm_write_guest_offset_cached(v->kvm, cache,
2656                                      &vcpu->hv_clock, offset,
2657                                      sizeof(vcpu->hv_clock.version));
2658 }
2659
2660 static int kvm_guest_time_update(struct kvm_vcpu *v)
2661 {
2662         unsigned long flags, tgt_tsc_khz;
2663         struct kvm_vcpu_arch *vcpu = &v->arch;
2664         struct kvm_arch *ka = &v->kvm->arch;
2665         s64 kernel_ns;
2666         u64 tsc_timestamp, host_tsc;
2667         u8 pvclock_flags;
2668         bool use_master_clock;
2669
2670         kernel_ns = 0;
2671         host_tsc = 0;
2672
2673         /*
2674          * If the host uses TSC clock, then passthrough TSC as stable
2675          * to the guest.
2676          */
2677         spin_lock(&ka->pvclock_gtod_sync_lock);
2678         use_master_clock = ka->use_master_clock;
2679         if (use_master_clock) {
2680                 host_tsc = ka->master_cycle_now;
2681                 kernel_ns = ka->master_kernel_ns;
2682         }
2683         spin_unlock(&ka->pvclock_gtod_sync_lock);
2684
2685         /* Keep irq disabled to prevent changes to the clock */
2686         local_irq_save(flags);
2687         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2688         if (unlikely(tgt_tsc_khz == 0)) {
2689                 local_irq_restore(flags);
2690                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2691                 return 1;
2692         }
2693         if (!use_master_clock) {
2694                 host_tsc = rdtsc();
2695                 kernel_ns = get_kvmclock_base_ns();
2696         }
2697
2698         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2699
2700         /*
2701          * We may have to catch up the TSC to match elapsed wall clock
2702          * time for two reasons, even if kvmclock is used.
2703          *   1) CPU could have been running below the maximum TSC rate
2704          *   2) Broken TSC compensation resets the base at each VCPU
2705          *      entry to avoid unknown leaps of TSC even when running
2706          *      again on the same CPU.  This may cause apparent elapsed
2707          *      time to disappear, and the guest to stand still or run
2708          *      very slowly.
2709          */
2710         if (vcpu->tsc_catchup) {
2711                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2712                 if (tsc > tsc_timestamp) {
2713                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2714                         tsc_timestamp = tsc;
2715                 }
2716         }
2717
2718         local_irq_restore(flags);
2719
2720         /* With all the info we got, fill in the values */
2721
2722         if (kvm_has_tsc_control)
2723                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2724
2725         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2726                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2727                                    &vcpu->hv_clock.tsc_shift,
2728                                    &vcpu->hv_clock.tsc_to_system_mul);
2729                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2730         }
2731
2732         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2733         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2734         vcpu->last_guest_tsc = tsc_timestamp;
2735
2736         /* If the host uses TSC clocksource, then it is stable */
2737         pvclock_flags = 0;
2738         if (use_master_clock)
2739                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2740
2741         vcpu->hv_clock.flags = pvclock_flags;
2742
2743         if (vcpu->pv_time_enabled)
2744                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2745         if (vcpu->xen.vcpu_info_set)
2746                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2747                                        offsetof(struct compat_vcpu_info, time));
2748         if (vcpu->xen.vcpu_time_info_set)
2749                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2750         if (v == kvm_get_vcpu(v->kvm, 0))
2751                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2752         return 0;
2753 }
2754
2755 /*
2756  * kvmclock updates which are isolated to a given vcpu, such as
2757  * vcpu->cpu migration, should not allow system_timestamp from
2758  * the rest of the vcpus to remain static. Otherwise ntp frequency
2759  * correction applies to one vcpu's system_timestamp but not
2760  * the others.
2761  *
2762  * So in those cases, request a kvmclock update for all vcpus.
2763  * We need to rate-limit these requests though, as they can
2764  * considerably slow guests that have a large number of vcpus.
2765  * The time for a remote vcpu to update its kvmclock is bound
2766  * by the delay we use to rate-limit the updates.
2767  */
2768
2769 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2770
2771 static void kvmclock_update_fn(struct work_struct *work)
2772 {
2773         int i;
2774         struct delayed_work *dwork = to_delayed_work(work);
2775         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2776                                            kvmclock_update_work);
2777         struct kvm *kvm = container_of(ka, struct kvm, arch);
2778         struct kvm_vcpu *vcpu;
2779
2780         kvm_for_each_vcpu(i, vcpu, kvm) {
2781                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2782                 kvm_vcpu_kick(vcpu);
2783         }
2784 }
2785
2786 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2787 {
2788         struct kvm *kvm = v->kvm;
2789
2790         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2791         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2792                                         KVMCLOCK_UPDATE_DELAY);
2793 }
2794
2795 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2796
2797 static void kvmclock_sync_fn(struct work_struct *work)
2798 {
2799         struct delayed_work *dwork = to_delayed_work(work);
2800         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2801                                            kvmclock_sync_work);
2802         struct kvm *kvm = container_of(ka, struct kvm, arch);
2803
2804         if (!kvmclock_periodic_sync)
2805                 return;
2806
2807         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2808         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2809                                         KVMCLOCK_SYNC_PERIOD);
2810 }
2811
2812 /*
2813  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2814  */
2815 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2816 {
2817         /* McStatusWrEn enabled? */
2818         if (guest_cpuid_is_amd_or_hygon(vcpu))
2819                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2820
2821         return false;
2822 }
2823
2824 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2825 {
2826         u64 mcg_cap = vcpu->arch.mcg_cap;
2827         unsigned bank_num = mcg_cap & 0xff;
2828         u32 msr = msr_info->index;
2829         u64 data = msr_info->data;
2830
2831         switch (msr) {
2832         case MSR_IA32_MCG_STATUS:
2833                 vcpu->arch.mcg_status = data;
2834                 break;
2835         case MSR_IA32_MCG_CTL:
2836                 if (!(mcg_cap & MCG_CTL_P) &&
2837                     (data || !msr_info->host_initiated))
2838                         return 1;
2839                 if (data != 0 && data != ~(u64)0)
2840                         return 1;
2841                 vcpu->arch.mcg_ctl = data;
2842                 break;
2843         default:
2844                 if (msr >= MSR_IA32_MC0_CTL &&
2845                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2846                         u32 offset = array_index_nospec(
2847                                 msr - MSR_IA32_MC0_CTL,
2848                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2849
2850                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2851                          * some Linux kernels though clear bit 10 in bank 4 to
2852                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2853                          * this to avoid an uncatched #GP in the guest
2854                          */
2855                         if ((offset & 0x3) == 0 &&
2856                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2857                                 return -1;
2858
2859                         /* MCi_STATUS */
2860                         if (!msr_info->host_initiated &&
2861                             (offset & 0x3) == 1 && data != 0) {
2862                                 if (!can_set_mci_status(vcpu))
2863                                         return -1;
2864                         }
2865
2866                         vcpu->arch.mce_banks[offset] = data;
2867                         break;
2868                 }
2869                 return 1;
2870         }
2871         return 0;
2872 }
2873
2874 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2875 {
2876         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2877
2878         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2879 }
2880
2881 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2882 {
2883         gpa_t gpa = data & ~0x3f;
2884
2885         /* Bits 4:5 are reserved, Should be zero */
2886         if (data & 0x30)
2887                 return 1;
2888
2889         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2890             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2891                 return 1;
2892
2893         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2894             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2895                 return 1;
2896
2897         if (!lapic_in_kernel(vcpu))
2898                 return data ? 1 : 0;
2899
2900         vcpu->arch.apf.msr_en_val = data;
2901
2902         if (!kvm_pv_async_pf_enabled(vcpu)) {
2903                 kvm_clear_async_pf_completion_queue(vcpu);
2904                 kvm_async_pf_hash_reset(vcpu);
2905                 return 0;
2906         }
2907
2908         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2909                                         sizeof(u64)))
2910                 return 1;
2911
2912         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2913         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2914
2915         kvm_async_pf_wakeup_all(vcpu);
2916
2917         return 0;
2918 }
2919
2920 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2921 {
2922         /* Bits 8-63 are reserved */
2923         if (data >> 8)
2924                 return 1;
2925
2926         if (!lapic_in_kernel(vcpu))
2927                 return 1;
2928
2929         vcpu->arch.apf.msr_int_val = data;
2930
2931         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2932
2933         return 0;
2934 }
2935
2936 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2937 {
2938         vcpu->arch.pv_time_enabled = false;
2939         vcpu->arch.time = 0;
2940 }
2941
2942 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2943 {
2944         ++vcpu->stat.tlb_flush;
2945         static_call(kvm_x86_tlb_flush_all)(vcpu);
2946 }
2947
2948 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2949 {
2950         ++vcpu->stat.tlb_flush;
2951         static_call(kvm_x86_tlb_flush_guest)(vcpu);
2952 }
2953
2954 static void record_steal_time(struct kvm_vcpu *vcpu)
2955 {
2956         struct kvm_host_map map;
2957         struct kvm_steal_time *st;
2958
2959         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2960                 return;
2961
2962         /* -EAGAIN is returned in atomic context so we can just return. */
2963         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2964                         &map, &vcpu->arch.st.cache, false))
2965                 return;
2966
2967         st = map.hva +
2968                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2969
2970         /*
2971          * Doing a TLB flush here, on the guest's behalf, can avoid
2972          * expensive IPIs.
2973          */
2974         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2975                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2976                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2977                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2978                         kvm_vcpu_flush_tlb_guest(vcpu);
2979         }
2980
2981         vcpu->arch.st.preempted = 0;
2982
2983         if (st->version & 1)
2984                 st->version += 1;  /* first time write, random junk */
2985
2986         st->version += 1;
2987
2988         smp_wmb();
2989
2990         st->steal += current->sched_info.run_delay -
2991                 vcpu->arch.st.last_steal;
2992         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2993
2994         smp_wmb();
2995
2996         st->version += 1;
2997
2998         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2999 }
3000
3001 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3002 {
3003         bool pr = false;
3004         u32 msr = msr_info->index;
3005         u64 data = msr_info->data;
3006
3007         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3008                 return kvm_xen_write_hypercall_page(vcpu, data);
3009
3010         switch (msr) {
3011         case MSR_AMD64_NB_CFG:
3012         case MSR_IA32_UCODE_WRITE:
3013         case MSR_VM_HSAVE_PA:
3014         case MSR_AMD64_PATCH_LOADER:
3015         case MSR_AMD64_BU_CFG2:
3016         case MSR_AMD64_DC_CFG:
3017         case MSR_F15H_EX_CFG:
3018                 break;
3019
3020         case MSR_IA32_UCODE_REV:
3021                 if (msr_info->host_initiated)
3022                         vcpu->arch.microcode_version = data;
3023                 break;
3024         case MSR_IA32_ARCH_CAPABILITIES:
3025                 if (!msr_info->host_initiated)
3026                         return 1;
3027                 vcpu->arch.arch_capabilities = data;
3028                 break;
3029         case MSR_IA32_PERF_CAPABILITIES: {
3030                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3031
3032                 if (!msr_info->host_initiated)
3033                         return 1;
3034                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3035                         return 1;
3036                 if (data & ~msr_ent.data)
3037                         return 1;
3038
3039                 vcpu->arch.perf_capabilities = data;
3040
3041                 return 0;
3042                 }
3043         case MSR_EFER:
3044                 return set_efer(vcpu, msr_info);
3045         case MSR_K7_HWCR:
3046                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3047                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3048                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3049
3050                 /* Handle McStatusWrEn */
3051                 if (data == BIT_ULL(18)) {
3052                         vcpu->arch.msr_hwcr = data;
3053                 } else if (data != 0) {
3054                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3055                                     data);
3056                         return 1;
3057                 }
3058                 break;
3059         case MSR_FAM10H_MMIO_CONF_BASE:
3060                 if (data != 0) {
3061                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3062                                     "0x%llx\n", data);
3063                         return 1;
3064                 }
3065                 break;
3066         case 0x200 ... 0x2ff:
3067                 return kvm_mtrr_set_msr(vcpu, msr, data);
3068         case MSR_IA32_APICBASE:
3069                 return kvm_set_apic_base(vcpu, msr_info);
3070         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3071                 return kvm_x2apic_msr_write(vcpu, msr, data);
3072         case MSR_IA32_TSCDEADLINE:
3073                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3074                 break;
3075         case MSR_IA32_TSC_ADJUST:
3076                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3077                         if (!msr_info->host_initiated) {
3078                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3079                                 adjust_tsc_offset_guest(vcpu, adj);
3080                         }
3081                         vcpu->arch.ia32_tsc_adjust_msr = data;
3082                 }
3083                 break;
3084         case MSR_IA32_MISC_ENABLE:
3085                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3086                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3087                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3088                                 return 1;
3089                         vcpu->arch.ia32_misc_enable_msr = data;
3090                         kvm_update_cpuid_runtime(vcpu);
3091                 } else {
3092                         vcpu->arch.ia32_misc_enable_msr = data;
3093                 }
3094                 break;
3095         case MSR_IA32_SMBASE:
3096                 if (!msr_info->host_initiated)
3097                         return 1;
3098                 vcpu->arch.smbase = data;
3099                 break;
3100         case MSR_IA32_POWER_CTL:
3101                 vcpu->arch.msr_ia32_power_ctl = data;
3102                 break;
3103         case MSR_IA32_TSC:
3104                 if (msr_info->host_initiated) {
3105                         kvm_synchronize_tsc(vcpu, data);
3106                 } else {
3107                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3108                         adjust_tsc_offset_guest(vcpu, adj);
3109                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3110                 }
3111                 break;
3112         case MSR_IA32_XSS:
3113                 if (!msr_info->host_initiated &&
3114                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3115                         return 1;
3116                 /*
3117                  * KVM supports exposing PT to the guest, but does not support
3118                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3119                  * XSAVES/XRSTORS to save/restore PT MSRs.
3120                  */
3121                 if (data & ~supported_xss)
3122                         return 1;
3123                 vcpu->arch.ia32_xss = data;
3124                 break;
3125         case MSR_SMI_COUNT:
3126                 if (!msr_info->host_initiated)
3127                         return 1;
3128                 vcpu->arch.smi_count = data;
3129                 break;
3130         case MSR_KVM_WALL_CLOCK_NEW:
3131                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3132                         return 1;
3133
3134                 vcpu->kvm->arch.wall_clock = data;
3135                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3136                 break;
3137         case MSR_KVM_WALL_CLOCK:
3138                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3139                         return 1;
3140
3141                 vcpu->kvm->arch.wall_clock = data;
3142                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3143                 break;
3144         case MSR_KVM_SYSTEM_TIME_NEW:
3145                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3146                         return 1;
3147
3148                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3149                 break;
3150         case MSR_KVM_SYSTEM_TIME:
3151                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3152                         return 1;
3153
3154                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3155                 break;
3156         case MSR_KVM_ASYNC_PF_EN:
3157                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3158                         return 1;
3159
3160                 if (kvm_pv_enable_async_pf(vcpu, data))
3161                         return 1;
3162                 break;
3163         case MSR_KVM_ASYNC_PF_INT:
3164                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3165                         return 1;
3166
3167                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3168                         return 1;
3169                 break;
3170         case MSR_KVM_ASYNC_PF_ACK:
3171                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3172                         return 1;
3173                 if (data & 0x1) {
3174                         vcpu->arch.apf.pageready_pending = false;
3175                         kvm_check_async_pf_completion(vcpu);
3176                 }
3177                 break;
3178         case MSR_KVM_STEAL_TIME:
3179                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3180                         return 1;
3181
3182                 if (unlikely(!sched_info_on()))
3183                         return 1;
3184
3185                 if (data & KVM_STEAL_RESERVED_MASK)
3186                         return 1;
3187
3188                 vcpu->arch.st.msr_val = data;
3189
3190                 if (!(data & KVM_MSR_ENABLED))
3191                         break;
3192
3193                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3194
3195                 break;
3196         case MSR_KVM_PV_EOI_EN:
3197                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3198                         return 1;
3199
3200                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3201                         return 1;
3202                 break;
3203
3204         case MSR_KVM_POLL_CONTROL:
3205                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3206                         return 1;
3207
3208                 /* only enable bit supported */
3209                 if (data & (-1ULL << 1))
3210                         return 1;
3211
3212                 vcpu->arch.msr_kvm_poll_control = data;
3213                 break;
3214
3215         case MSR_IA32_MCG_CTL:
3216         case MSR_IA32_MCG_STATUS:
3217         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3218                 return set_msr_mce(vcpu, msr_info);
3219
3220         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3221         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3222                 pr = true;
3223                 fallthrough;
3224         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3225         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3226                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3227                         return kvm_pmu_set_msr(vcpu, msr_info);
3228
3229                 if (pr || data != 0)
3230                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3231                                     "0x%x data 0x%llx\n", msr, data);
3232                 break;
3233         case MSR_K7_CLK_CTL:
3234                 /*
3235                  * Ignore all writes to this no longer documented MSR.
3236                  * Writes are only relevant for old K7 processors,
3237                  * all pre-dating SVM, but a recommended workaround from
3238                  * AMD for these chips. It is possible to specify the
3239                  * affected processor models on the command line, hence
3240                  * the need to ignore the workaround.
3241                  */
3242                 break;
3243         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3244         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3245         case HV_X64_MSR_SYNDBG_OPTIONS:
3246         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3247         case HV_X64_MSR_CRASH_CTL:
3248         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3249         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3250         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3251         case HV_X64_MSR_TSC_EMULATION_STATUS:
3252                 return kvm_hv_set_msr_common(vcpu, msr, data,
3253                                              msr_info->host_initiated);
3254         case MSR_IA32_BBL_CR_CTL3:
3255                 /* Drop writes to this legacy MSR -- see rdmsr
3256                  * counterpart for further detail.
3257                  */
3258                 if (report_ignored_msrs)
3259                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3260                                 msr, data);
3261                 break;
3262         case MSR_AMD64_OSVW_ID_LENGTH:
3263                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3264                         return 1;
3265                 vcpu->arch.osvw.length = data;
3266                 break;
3267         case MSR_AMD64_OSVW_STATUS:
3268                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3269                         return 1;
3270                 vcpu->arch.osvw.status = data;
3271                 break;
3272         case MSR_PLATFORM_INFO:
3273                 if (!msr_info->host_initiated ||
3274                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3275                      cpuid_fault_enabled(vcpu)))
3276                         return 1;
3277                 vcpu->arch.msr_platform_info = data;
3278                 break;
3279         case MSR_MISC_FEATURES_ENABLES:
3280                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3281                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3282                      !supports_cpuid_fault(vcpu)))
3283                         return 1;
3284                 vcpu->arch.msr_misc_features_enables = data;
3285                 break;
3286         default:
3287                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3288                         return kvm_pmu_set_msr(vcpu, msr_info);
3289                 return KVM_MSR_RET_INVALID;
3290         }
3291         return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3294
3295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3296 {
3297         u64 data;
3298         u64 mcg_cap = vcpu->arch.mcg_cap;
3299         unsigned bank_num = mcg_cap & 0xff;
3300
3301         switch (msr) {
3302         case MSR_IA32_P5_MC_ADDR:
3303         case MSR_IA32_P5_MC_TYPE:
3304                 data = 0;
3305                 break;
3306         case MSR_IA32_MCG_CAP:
3307                 data = vcpu->arch.mcg_cap;
3308                 break;
3309         case MSR_IA32_MCG_CTL:
3310                 if (!(mcg_cap & MCG_CTL_P) && !host)
3311                         return 1;
3312                 data = vcpu->arch.mcg_ctl;
3313                 break;
3314         case MSR_IA32_MCG_STATUS:
3315                 data = vcpu->arch.mcg_status;
3316                 break;
3317         default:
3318                 if (msr >= MSR_IA32_MC0_CTL &&
3319                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3320                         u32 offset = array_index_nospec(
3321                                 msr - MSR_IA32_MC0_CTL,
3322                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3323
3324                         data = vcpu->arch.mce_banks[offset];
3325                         break;
3326                 }
3327                 return 1;
3328         }
3329         *pdata = data;
3330         return 0;
3331 }
3332
3333 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3334 {
3335         switch (msr_info->index) {
3336         case MSR_IA32_PLATFORM_ID:
3337         case MSR_IA32_EBL_CR_POWERON:
3338         case MSR_IA32_LASTBRANCHFROMIP:
3339         case MSR_IA32_LASTBRANCHTOIP:
3340         case MSR_IA32_LASTINTFROMIP:
3341         case MSR_IA32_LASTINTTOIP:
3342         case MSR_K8_SYSCFG:
3343         case MSR_K8_TSEG_ADDR:
3344         case MSR_K8_TSEG_MASK:
3345         case MSR_VM_HSAVE_PA:
3346         case MSR_K8_INT_PENDING_MSG:
3347         case MSR_AMD64_NB_CFG:
3348         case MSR_FAM10H_MMIO_CONF_BASE:
3349         case MSR_AMD64_BU_CFG2:
3350         case MSR_IA32_PERF_CTL:
3351         case MSR_AMD64_DC_CFG:
3352         case MSR_F15H_EX_CFG:
3353         /*
3354          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3355          * limit) MSRs. Just return 0, as we do not want to expose the host
3356          * data here. Do not conditionalize this on CPUID, as KVM does not do
3357          * so for existing CPU-specific MSRs.
3358          */
3359         case MSR_RAPL_POWER_UNIT:
3360         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3361         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3362         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3363         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3364                 msr_info->data = 0;
3365                 break;
3366         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3367         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3368         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3369         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3370         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3371                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3372                         return kvm_pmu_get_msr(vcpu, msr_info);
3373                 msr_info->data = 0;
3374                 break;
3375         case MSR_IA32_UCODE_REV:
3376                 msr_info->data = vcpu->arch.microcode_version;
3377                 break;
3378         case MSR_IA32_ARCH_CAPABILITIES:
3379                 if (!msr_info->host_initiated &&
3380                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3381                         return 1;
3382                 msr_info->data = vcpu->arch.arch_capabilities;
3383                 break;
3384         case MSR_IA32_PERF_CAPABILITIES:
3385                 if (!msr_info->host_initiated &&
3386                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3387                         return 1;
3388                 msr_info->data = vcpu->arch.perf_capabilities;
3389                 break;
3390         case MSR_IA32_POWER_CTL:
3391                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3392                 break;
3393         case MSR_IA32_TSC: {
3394                 /*
3395                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3396                  * even when not intercepted. AMD manual doesn't explicitly
3397                  * state this but appears to behave the same.
3398                  *
3399                  * On userspace reads and writes, however, we unconditionally
3400                  * return L1's TSC value to ensure backwards-compatible
3401                  * behavior for migration.
3402                  */
3403                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3404                                                             vcpu->arch.tsc_offset;
3405
3406                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3407                 break;
3408         }
3409         case MSR_MTRRcap:
3410         case 0x200 ... 0x2ff:
3411                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3412         case 0xcd: /* fsb frequency */
3413                 msr_info->data = 3;
3414                 break;
3415                 /*
3416                  * MSR_EBC_FREQUENCY_ID
3417                  * Conservative value valid for even the basic CPU models.
3418                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3419                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3420                  * and 266MHz for model 3, or 4. Set Core Clock
3421                  * Frequency to System Bus Frequency Ratio to 1 (bits
3422                  * 31:24) even though these are only valid for CPU
3423                  * models > 2, however guests may end up dividing or
3424                  * multiplying by zero otherwise.
3425                  */
3426         case MSR_EBC_FREQUENCY_ID:
3427                 msr_info->data = 1 << 24;
3428                 break;
3429         case MSR_IA32_APICBASE:
3430                 msr_info->data = kvm_get_apic_base(vcpu);
3431                 break;
3432         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3433                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3434         case MSR_IA32_TSCDEADLINE:
3435                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3436                 break;
3437         case MSR_IA32_TSC_ADJUST:
3438                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3439                 break;
3440         case MSR_IA32_MISC_ENABLE:
3441                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3442                 break;
3443         case MSR_IA32_SMBASE:
3444                 if (!msr_info->host_initiated)
3445                         return 1;
3446                 msr_info->data = vcpu->arch.smbase;
3447                 break;
3448         case MSR_SMI_COUNT:
3449                 msr_info->data = vcpu->arch.smi_count;
3450                 break;
3451         case MSR_IA32_PERF_STATUS:
3452                 /* TSC increment by tick */
3453                 msr_info->data = 1000ULL;
3454                 /* CPU multiplier */
3455                 msr_info->data |= (((uint64_t)4ULL) << 40);
3456                 break;
3457         case MSR_EFER:
3458                 msr_info->data = vcpu->arch.efer;
3459                 break;
3460         case MSR_KVM_WALL_CLOCK:
3461                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3462                         return 1;
3463
3464                 msr_info->data = vcpu->kvm->arch.wall_clock;
3465                 break;
3466         case MSR_KVM_WALL_CLOCK_NEW:
3467                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3468                         return 1;
3469
3470                 msr_info->data = vcpu->kvm->arch.wall_clock;
3471                 break;
3472         case MSR_KVM_SYSTEM_TIME:
3473                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3474                         return 1;
3475
3476                 msr_info->data = vcpu->arch.time;
3477                 break;
3478         case MSR_KVM_SYSTEM_TIME_NEW:
3479                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3480                         return 1;
3481
3482                 msr_info->data = vcpu->arch.time;
3483                 break;
3484         case MSR_KVM_ASYNC_PF_EN:
3485                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3486                         return 1;
3487
3488                 msr_info->data = vcpu->arch.apf.msr_en_val;
3489                 break;
3490         case MSR_KVM_ASYNC_PF_INT:
3491                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3492                         return 1;
3493
3494                 msr_info->data = vcpu->arch.apf.msr_int_val;
3495                 break;
3496         case MSR_KVM_ASYNC_PF_ACK:
3497                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3498                         return 1;
3499
3500                 msr_info->data = 0;
3501                 break;
3502         case MSR_KVM_STEAL_TIME:
3503                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3504                         return 1;
3505
3506                 msr_info->data = vcpu->arch.st.msr_val;
3507                 break;
3508         case MSR_KVM_PV_EOI_EN:
3509                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3510                         return 1;
3511
3512                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3513                 break;
3514         case MSR_KVM_POLL_CONTROL:
3515                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3516                         return 1;
3517
3518                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3519                 break;
3520         case MSR_IA32_P5_MC_ADDR:
3521         case MSR_IA32_P5_MC_TYPE:
3522         case MSR_IA32_MCG_CAP:
3523         case MSR_IA32_MCG_CTL:
3524         case MSR_IA32_MCG_STATUS:
3525         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3526                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3527                                    msr_info->host_initiated);
3528         case MSR_IA32_XSS:
3529                 if (!msr_info->host_initiated &&
3530                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3531                         return 1;
3532                 msr_info->data = vcpu->arch.ia32_xss;
3533                 break;
3534         case MSR_K7_CLK_CTL:
3535                 /*
3536                  * Provide expected ramp-up count for K7. All other
3537                  * are set to zero, indicating minimum divisors for
3538                  * every field.
3539                  *
3540                  * This prevents guest kernels on AMD host with CPU
3541                  * type 6, model 8 and higher from exploding due to
3542                  * the rdmsr failing.
3543                  */
3544                 msr_info->data = 0x20000000;
3545                 break;
3546         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3547         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3548         case HV_X64_MSR_SYNDBG_OPTIONS:
3549         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3550         case HV_X64_MSR_CRASH_CTL:
3551         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3552         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3553         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3554         case HV_X64_MSR_TSC_EMULATION_STATUS:
3555                 return kvm_hv_get_msr_common(vcpu,
3556                                              msr_info->index, &msr_info->data,
3557                                              msr_info->host_initiated);
3558         case MSR_IA32_BBL_CR_CTL3:
3559                 /* This legacy MSR exists but isn't fully documented in current
3560                  * silicon.  It is however accessed by winxp in very narrow
3561                  * scenarios where it sets bit #19, itself documented as
3562                  * a "reserved" bit.  Best effort attempt to source coherent
3563                  * read data here should the balance of the register be
3564                  * interpreted by the guest:
3565                  *
3566                  * L2 cache control register 3: 64GB range, 256KB size,
3567                  * enabled, latency 0x1, configured
3568                  */
3569                 msr_info->data = 0xbe702111;
3570                 break;
3571         case MSR_AMD64_OSVW_ID_LENGTH:
3572                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3573                         return 1;
3574                 msr_info->data = vcpu->arch.osvw.length;
3575                 break;
3576         case MSR_AMD64_OSVW_STATUS:
3577                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3578                         return 1;
3579                 msr_info->data = vcpu->arch.osvw.status;
3580                 break;
3581         case MSR_PLATFORM_INFO:
3582                 if (!msr_info->host_initiated &&
3583                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3584                         return 1;
3585                 msr_info->data = vcpu->arch.msr_platform_info;
3586                 break;
3587         case MSR_MISC_FEATURES_ENABLES:
3588                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3589                 break;
3590         case MSR_K7_HWCR:
3591                 msr_info->data = vcpu->arch.msr_hwcr;
3592                 break;
3593         default:
3594                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3595                         return kvm_pmu_get_msr(vcpu, msr_info);
3596                 return KVM_MSR_RET_INVALID;
3597         }
3598         return 0;
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3601
3602 /*
3603  * Read or write a bunch of msrs. All parameters are kernel addresses.
3604  *
3605  * @return number of msrs set successfully.
3606  */
3607 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3608                     struct kvm_msr_entry *entries,
3609                     int (*do_msr)(struct kvm_vcpu *vcpu,
3610                                   unsigned index, u64 *data))
3611 {
3612         int i;
3613
3614         for (i = 0; i < msrs->nmsrs; ++i)
3615                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3616                         break;
3617
3618         return i;
3619 }
3620
3621 /*
3622  * Read or write a bunch of msrs. Parameters are user addresses.
3623  *
3624  * @return number of msrs set successfully.
3625  */
3626 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3627                   int (*do_msr)(struct kvm_vcpu *vcpu,
3628                                 unsigned index, u64 *data),
3629                   int writeback)
3630 {
3631         struct kvm_msrs msrs;
3632         struct kvm_msr_entry *entries;
3633         int r, n;
3634         unsigned size;
3635
3636         r = -EFAULT;
3637         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3638                 goto out;
3639
3640         r = -E2BIG;
3641         if (msrs.nmsrs >= MAX_IO_MSRS)
3642                 goto out;
3643
3644         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3645         entries = memdup_user(user_msrs->entries, size);
3646         if (IS_ERR(entries)) {
3647                 r = PTR_ERR(entries);
3648                 goto out;
3649         }
3650
3651         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3652         if (r < 0)
3653                 goto out_free;
3654
3655         r = -EFAULT;
3656         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3657                 goto out_free;
3658
3659         r = n;
3660
3661 out_free:
3662         kfree(entries);
3663 out:
3664         return r;
3665 }
3666
3667 static inline bool kvm_can_mwait_in_guest(void)
3668 {
3669         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3670                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3671                 boot_cpu_has(X86_FEATURE_ARAT);
3672 }
3673
3674 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3675                                             struct kvm_cpuid2 __user *cpuid_arg)
3676 {
3677         struct kvm_cpuid2 cpuid;
3678         int r;
3679
3680         r = -EFAULT;
3681         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3682                 return r;
3683
3684         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3685         if (r)
3686                 return r;
3687
3688         r = -EFAULT;
3689         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3690                 return r;
3691
3692         return 0;
3693 }
3694
3695 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3696 {
3697         int r = 0;
3698
3699         switch (ext) {
3700         case KVM_CAP_IRQCHIP:
3701         case KVM_CAP_HLT:
3702         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3703         case KVM_CAP_SET_TSS_ADDR:
3704         case KVM_CAP_EXT_CPUID:
3705         case KVM_CAP_EXT_EMUL_CPUID:
3706         case KVM_CAP_CLOCKSOURCE:
3707         case KVM_CAP_PIT:
3708         case KVM_CAP_NOP_IO_DELAY:
3709         case KVM_CAP_MP_STATE:
3710         case KVM_CAP_SYNC_MMU:
3711         case KVM_CAP_USER_NMI:
3712         case KVM_CAP_REINJECT_CONTROL:
3713         case KVM_CAP_IRQ_INJECT_STATUS:
3714         case KVM_CAP_IOEVENTFD:
3715         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3716         case KVM_CAP_PIT2:
3717         case KVM_CAP_PIT_STATE2:
3718         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3719         case KVM_CAP_VCPU_EVENTS:
3720         case KVM_CAP_HYPERV:
3721         case KVM_CAP_HYPERV_VAPIC:
3722         case KVM_CAP_HYPERV_SPIN:
3723         case KVM_CAP_HYPERV_SYNIC:
3724         case KVM_CAP_HYPERV_SYNIC2:
3725         case KVM_CAP_HYPERV_VP_INDEX:
3726         case KVM_CAP_HYPERV_EVENTFD:
3727         case KVM_CAP_HYPERV_TLBFLUSH:
3728         case KVM_CAP_HYPERV_SEND_IPI:
3729         case KVM_CAP_HYPERV_CPUID:
3730         case KVM_CAP_SYS_HYPERV_CPUID:
3731         case KVM_CAP_PCI_SEGMENT:
3732         case KVM_CAP_DEBUGREGS:
3733         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3734         case KVM_CAP_XSAVE:
3735         case KVM_CAP_ASYNC_PF:
3736         case KVM_CAP_ASYNC_PF_INT:
3737         case KVM_CAP_GET_TSC_KHZ:
3738         case KVM_CAP_KVMCLOCK_CTRL:
3739         case KVM_CAP_READONLY_MEM:
3740         case KVM_CAP_HYPERV_TIME:
3741         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3742         case KVM_CAP_TSC_DEADLINE_TIMER:
3743         case KVM_CAP_DISABLE_QUIRKS:
3744         case KVM_CAP_SET_BOOT_CPU_ID:
3745         case KVM_CAP_SPLIT_IRQCHIP:
3746         case KVM_CAP_IMMEDIATE_EXIT:
3747         case KVM_CAP_PMU_EVENT_FILTER:
3748         case KVM_CAP_GET_MSR_FEATURES:
3749         case KVM_CAP_MSR_PLATFORM_INFO:
3750         case KVM_CAP_EXCEPTION_PAYLOAD:
3751         case KVM_CAP_SET_GUEST_DEBUG:
3752         case KVM_CAP_LAST_CPU:
3753         case KVM_CAP_X86_USER_SPACE_MSR:
3754         case KVM_CAP_X86_MSR_FILTER:
3755         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3756                 r = 1;
3757                 break;
3758         case KVM_CAP_XEN_HVM:
3759                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3760                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3761                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
3762                 break;
3763         case KVM_CAP_SYNC_REGS:
3764                 r = KVM_SYNC_X86_VALID_FIELDS;
3765                 break;
3766         case KVM_CAP_ADJUST_CLOCK:
3767                 r = KVM_CLOCK_TSC_STABLE;
3768                 break;
3769         case KVM_CAP_X86_DISABLE_EXITS:
3770                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3771                       KVM_X86_DISABLE_EXITS_CSTATE;
3772                 if(kvm_can_mwait_in_guest())
3773                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3774                 break;
3775         case KVM_CAP_X86_SMM:
3776                 /* SMBASE is usually relocated above 1M on modern chipsets,
3777                  * and SMM handlers might indeed rely on 4G segment limits,
3778                  * so do not report SMM to be available if real mode is
3779                  * emulated via vm86 mode.  Still, do not go to great lengths
3780                  * to avoid userspace's usage of the feature, because it is a
3781                  * fringe case that is not enabled except via specific settings
3782                  * of the module parameters.
3783                  */
3784                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3785                 break;
3786         case KVM_CAP_VAPIC:
3787                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3788                 break;
3789         case KVM_CAP_NR_VCPUS:
3790                 r = KVM_SOFT_MAX_VCPUS;
3791                 break;
3792         case KVM_CAP_MAX_VCPUS:
3793                 r = KVM_MAX_VCPUS;
3794                 break;
3795         case KVM_CAP_MAX_VCPU_ID:
3796                 r = KVM_MAX_VCPU_ID;
3797                 break;
3798         case KVM_CAP_PV_MMU:    /* obsolete */
3799                 r = 0;
3800                 break;
3801         case KVM_CAP_MCE:
3802                 r = KVM_MAX_MCE_BANKS;
3803                 break;
3804         case KVM_CAP_XCRS:
3805                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3806                 break;
3807         case KVM_CAP_TSC_CONTROL:
3808                 r = kvm_has_tsc_control;
3809                 break;
3810         case KVM_CAP_X2APIC_API:
3811                 r = KVM_X2APIC_API_VALID_FLAGS;
3812                 break;
3813         case KVM_CAP_NESTED_STATE:
3814                 r = kvm_x86_ops.nested_ops->get_state ?
3815                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3816                 break;
3817         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3818                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3819                 break;
3820         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3821                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3822                 break;
3823         case KVM_CAP_SMALLER_MAXPHYADDR:
3824                 r = (int) allow_smaller_maxphyaddr;
3825                 break;
3826         case KVM_CAP_STEAL_TIME:
3827                 r = sched_info_on();
3828                 break;
3829         case KVM_CAP_X86_BUS_LOCK_EXIT:
3830                 if (kvm_has_bus_lock_exit)
3831                         r = KVM_BUS_LOCK_DETECTION_OFF |
3832                             KVM_BUS_LOCK_DETECTION_EXIT;
3833                 else
3834                         r = 0;
3835                 break;
3836         default:
3837                 break;
3838         }
3839         return r;
3840
3841 }
3842
3843 long kvm_arch_dev_ioctl(struct file *filp,
3844                         unsigned int ioctl, unsigned long arg)
3845 {
3846         void __user *argp = (void __user *)arg;
3847         long r;
3848
3849         switch (ioctl) {
3850         case KVM_GET_MSR_INDEX_LIST: {
3851                 struct kvm_msr_list __user *user_msr_list = argp;
3852                 struct kvm_msr_list msr_list;
3853                 unsigned n;
3854
3855                 r = -EFAULT;
3856                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3857                         goto out;
3858                 n = msr_list.nmsrs;
3859                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3860                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3861                         goto out;
3862                 r = -E2BIG;
3863                 if (n < msr_list.nmsrs)
3864                         goto out;
3865                 r = -EFAULT;
3866                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3867                                  num_msrs_to_save * sizeof(u32)))
3868                         goto out;
3869                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3870                                  &emulated_msrs,
3871                                  num_emulated_msrs * sizeof(u32)))
3872                         goto out;
3873                 r = 0;
3874                 break;
3875         }
3876         case KVM_GET_SUPPORTED_CPUID:
3877         case KVM_GET_EMULATED_CPUID: {
3878                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3879                 struct kvm_cpuid2 cpuid;
3880
3881                 r = -EFAULT;
3882                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3883                         goto out;
3884
3885                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3886                                             ioctl);
3887                 if (r)
3888                         goto out;
3889
3890                 r = -EFAULT;
3891                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3892                         goto out;
3893                 r = 0;
3894                 break;
3895         }
3896         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3897                 r = -EFAULT;
3898                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3899                                  sizeof(kvm_mce_cap_supported)))
3900                         goto out;
3901                 r = 0;
3902                 break;
3903         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3904                 struct kvm_msr_list __user *user_msr_list = argp;
3905                 struct kvm_msr_list msr_list;
3906                 unsigned int n;
3907
3908                 r = -EFAULT;
3909                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3910                         goto out;
3911                 n = msr_list.nmsrs;
3912                 msr_list.nmsrs = num_msr_based_features;
3913                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3914                         goto out;
3915                 r = -E2BIG;
3916                 if (n < msr_list.nmsrs)
3917                         goto out;
3918                 r = -EFAULT;
3919                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3920                                  num_msr_based_features * sizeof(u32)))
3921                         goto out;
3922                 r = 0;
3923                 break;
3924         }
3925         case KVM_GET_MSRS:
3926                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3927                 break;
3928         case KVM_GET_SUPPORTED_HV_CPUID:
3929                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3930                 break;
3931         default:
3932                 r = -EINVAL;
3933                 break;
3934         }
3935 out:
3936         return r;
3937 }
3938
3939 static void wbinvd_ipi(void *garbage)
3940 {
3941         wbinvd();
3942 }
3943
3944 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3945 {
3946         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3947 }
3948
3949 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3950 {
3951         /* Address WBINVD may be executed by guest */
3952         if (need_emulate_wbinvd(vcpu)) {
3953                 if (static_call(kvm_x86_has_wbinvd_exit)())
3954                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3955                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3956                         smp_call_function_single(vcpu->cpu,
3957                                         wbinvd_ipi, NULL, 1);
3958         }
3959
3960         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3961
3962         /* Save host pkru register if supported */
3963         vcpu->arch.host_pkru = read_pkru();
3964
3965         /* Apply any externally detected TSC adjustments (due to suspend) */
3966         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3967                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3968                 vcpu->arch.tsc_offset_adjustment = 0;
3969                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3970         }
3971
3972         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3973                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3974                                 rdtsc() - vcpu->arch.last_host_tsc;
3975                 if (tsc_delta < 0)
3976                         mark_tsc_unstable("KVM discovered backwards TSC");
3977
3978                 if (kvm_check_tsc_unstable()) {
3979                         u64 offset = kvm_compute_tsc_offset(vcpu,
3980                                                 vcpu->arch.last_guest_tsc);
3981                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3982                         vcpu->arch.tsc_catchup = 1;
3983                 }
3984
3985                 if (kvm_lapic_hv_timer_in_use(vcpu))
3986                         kvm_lapic_restart_hv_timer(vcpu);
3987
3988                 /*
3989                  * On a host with synchronized TSC, there is no need to update
3990                  * kvmclock on vcpu->cpu migration
3991                  */
3992                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3993                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3994                 if (vcpu->cpu != cpu)
3995                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3996                 vcpu->cpu = cpu;
3997         }
3998
3999         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4000 }
4001
4002 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4003 {
4004         struct kvm_host_map map;
4005         struct kvm_steal_time *st;
4006         int idx;
4007
4008         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4009                 return;
4010
4011         if (vcpu->arch.st.preempted)
4012                 return;
4013
4014         /*
4015          * Take the srcu lock as memslots will be accessed to check the gfn
4016          * cache generation against the memslots generation.
4017          */
4018         idx = srcu_read_lock(&vcpu->kvm->srcu);
4019
4020         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4021                         &vcpu->arch.st.cache, true))
4022                 goto out;
4023
4024         st = map.hva +
4025                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4026
4027         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4028
4029         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4030
4031 out:
4032         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4033 }
4034
4035 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4036 {
4037         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4038                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4039
4040         kvm_steal_time_set_preempted(vcpu);
4041         static_call(kvm_x86_vcpu_put)(vcpu);
4042         vcpu->arch.last_host_tsc = rdtsc();
4043         /*
4044          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4045          * on every vmexit, but if not, we might have a stale dr6 from the
4046          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4047          */
4048         set_debugreg(0, 6);
4049 }
4050
4051 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4052                                     struct kvm_lapic_state *s)
4053 {
4054         if (vcpu->arch.apicv_active)
4055                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4056
4057         return kvm_apic_get_state(vcpu, s);
4058 }
4059
4060 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4061                                     struct kvm_lapic_state *s)
4062 {
4063         int r;
4064
4065         r = kvm_apic_set_state(vcpu, s);
4066         if (r)
4067                 return r;
4068         update_cr8_intercept(vcpu);
4069
4070         return 0;
4071 }
4072
4073 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4074 {
4075         /*
4076          * We can accept userspace's request for interrupt injection
4077          * as long as we have a place to store the interrupt number.
4078          * The actual injection will happen when the CPU is able to
4079          * deliver the interrupt.
4080          */
4081         if (kvm_cpu_has_extint(vcpu))
4082                 return false;
4083
4084         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4085         return (!lapic_in_kernel(vcpu) ||
4086                 kvm_apic_accept_pic_intr(vcpu));
4087 }
4088
4089 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4090 {
4091         return kvm_arch_interrupt_allowed(vcpu) &&
4092                 kvm_cpu_accept_dm_intr(vcpu);
4093 }
4094
4095 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4096                                     struct kvm_interrupt *irq)
4097 {
4098         if (irq->irq >= KVM_NR_INTERRUPTS)
4099                 return -EINVAL;
4100
4101         if (!irqchip_in_kernel(vcpu->kvm)) {
4102                 kvm_queue_interrupt(vcpu, irq->irq, false);
4103                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4104                 return 0;
4105         }
4106
4107         /*
4108          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4109          * fail for in-kernel 8259.
4110          */
4111         if (pic_in_kernel(vcpu->kvm))
4112                 return -ENXIO;
4113
4114         if (vcpu->arch.pending_external_vector != -1)
4115                 return -EEXIST;
4116
4117         vcpu->arch.pending_external_vector = irq->irq;
4118         kvm_make_request(KVM_REQ_EVENT, vcpu);
4119         return 0;
4120 }
4121
4122 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4123 {
4124         kvm_inject_nmi(vcpu);
4125
4126         return 0;
4127 }
4128
4129 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4130 {
4131         kvm_make_request(KVM_REQ_SMI, vcpu);
4132
4133         return 0;
4134 }
4135
4136 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4137                                            struct kvm_tpr_access_ctl *tac)
4138 {
4139         if (tac->flags)
4140                 return -EINVAL;
4141         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4142         return 0;
4143 }
4144
4145 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4146                                         u64 mcg_cap)
4147 {
4148         int r;
4149         unsigned bank_num = mcg_cap & 0xff, bank;
4150
4151         r = -EINVAL;
4152         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4153                 goto out;
4154         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4155                 goto out;
4156         r = 0;
4157         vcpu->arch.mcg_cap = mcg_cap;
4158         /* Init IA32_MCG_CTL to all 1s */
4159         if (mcg_cap & MCG_CTL_P)
4160                 vcpu->arch.mcg_ctl = ~(u64)0;
4161         /* Init IA32_MCi_CTL to all 1s */
4162         for (bank = 0; bank < bank_num; bank++)
4163                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4164
4165         static_call(kvm_x86_setup_mce)(vcpu);
4166 out:
4167         return r;
4168 }
4169
4170 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4171                                       struct kvm_x86_mce *mce)
4172 {
4173         u64 mcg_cap = vcpu->arch.mcg_cap;
4174         unsigned bank_num = mcg_cap & 0xff;
4175         u64 *banks = vcpu->arch.mce_banks;
4176
4177         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4178                 return -EINVAL;
4179         /*
4180          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4181          * reporting is disabled
4182          */
4183         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4184             vcpu->arch.mcg_ctl != ~(u64)0)
4185                 return 0;
4186         banks += 4 * mce->bank;
4187         /*
4188          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4189          * reporting is disabled for the bank
4190          */
4191         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4192                 return 0;
4193         if (mce->status & MCI_STATUS_UC) {
4194                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4195                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4196                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4197                         return 0;
4198                 }
4199                 if (banks[1] & MCI_STATUS_VAL)
4200                         mce->status |= MCI_STATUS_OVER;
4201                 banks[2] = mce->addr;
4202                 banks[3] = mce->misc;
4203                 vcpu->arch.mcg_status = mce->mcg_status;
4204                 banks[1] = mce->status;
4205                 kvm_queue_exception(vcpu, MC_VECTOR);
4206         } else if (!(banks[1] & MCI_STATUS_VAL)
4207                    || !(banks[1] & MCI_STATUS_UC)) {
4208                 if (banks[1] & MCI_STATUS_VAL)
4209                         mce->status |= MCI_STATUS_OVER;
4210                 banks[2] = mce->addr;
4211                 banks[3] = mce->misc;
4212                 banks[1] = mce->status;
4213         } else
4214                 banks[1] |= MCI_STATUS_OVER;
4215         return 0;
4216 }
4217
4218 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4219                                                struct kvm_vcpu_events *events)
4220 {
4221         process_nmi(vcpu);
4222
4223         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4224                 process_smi(vcpu);
4225
4226         /*
4227          * In guest mode, payload delivery should be deferred,
4228          * so that the L1 hypervisor can intercept #PF before
4229          * CR2 is modified (or intercept #DB before DR6 is
4230          * modified under nVMX). Unless the per-VM capability,
4231          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4232          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4233          * opportunistically defer the exception payload, deliver it if the
4234          * capability hasn't been requested before processing a
4235          * KVM_GET_VCPU_EVENTS.
4236          */
4237         if (!vcpu->kvm->arch.exception_payload_enabled &&
4238             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4239                 kvm_deliver_exception_payload(vcpu);
4240
4241         /*
4242          * The API doesn't provide the instruction length for software
4243          * exceptions, so don't report them. As long as the guest RIP
4244          * isn't advanced, we should expect to encounter the exception
4245          * again.
4246          */
4247         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4248                 events->exception.injected = 0;
4249                 events->exception.pending = 0;
4250         } else {
4251                 events->exception.injected = vcpu->arch.exception.injected;
4252                 events->exception.pending = vcpu->arch.exception.pending;
4253                 /*
4254                  * For ABI compatibility, deliberately conflate
4255                  * pending and injected exceptions when
4256                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4257                  */
4258                 if (!vcpu->kvm->arch.exception_payload_enabled)
4259                         events->exception.injected |=
4260                                 vcpu->arch.exception.pending;
4261         }
4262         events->exception.nr = vcpu->arch.exception.nr;
4263         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4264         events->exception.error_code = vcpu->arch.exception.error_code;
4265         events->exception_has_payload = vcpu->arch.exception.has_payload;
4266         events->exception_payload = vcpu->arch.exception.payload;
4267
4268         events->interrupt.injected =
4269                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4270         events->interrupt.nr = vcpu->arch.interrupt.nr;
4271         events->interrupt.soft = 0;
4272         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4273
4274         events->nmi.injected = vcpu->arch.nmi_injected;
4275         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4276         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4277         events->nmi.pad = 0;
4278
4279         events->sipi_vector = 0; /* never valid when reporting to user space */
4280
4281         events->smi.smm = is_smm(vcpu);
4282         events->smi.pending = vcpu->arch.smi_pending;
4283         events->smi.smm_inside_nmi =
4284                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4285         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4286
4287         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4288                          | KVM_VCPUEVENT_VALID_SHADOW
4289                          | KVM_VCPUEVENT_VALID_SMM);
4290         if (vcpu->kvm->arch.exception_payload_enabled)
4291                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4292
4293         memset(&events->reserved, 0, sizeof(events->reserved));
4294 }
4295
4296 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4297
4298 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4299                                               struct kvm_vcpu_events *events)
4300 {
4301         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4302                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4303                               | KVM_VCPUEVENT_VALID_SHADOW
4304                               | KVM_VCPUEVENT_VALID_SMM
4305                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4306                 return -EINVAL;
4307
4308         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4309                 if (!vcpu->kvm->arch.exception_payload_enabled)
4310                         return -EINVAL;
4311                 if (events->exception.pending)
4312                         events->exception.injected = 0;
4313                 else
4314                         events->exception_has_payload = 0;
4315         } else {
4316                 events->exception.pending = 0;
4317                 events->exception_has_payload = 0;
4318         }
4319
4320         if ((events->exception.injected || events->exception.pending) &&
4321             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4322                 return -EINVAL;
4323
4324         /* INITs are latched while in SMM */
4325         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4326             (events->smi.smm || events->smi.pending) &&
4327             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4328                 return -EINVAL;
4329
4330         process_nmi(vcpu);
4331         vcpu->arch.exception.injected = events->exception.injected;
4332         vcpu->arch.exception.pending = events->exception.pending;
4333         vcpu->arch.exception.nr = events->exception.nr;
4334         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4335         vcpu->arch.exception.error_code = events->exception.error_code;
4336         vcpu->arch.exception.has_payload = events->exception_has_payload;
4337         vcpu->arch.exception.payload = events->exception_payload;
4338
4339         vcpu->arch.interrupt.injected = events->interrupt.injected;
4340         vcpu->arch.interrupt.nr = events->interrupt.nr;
4341         vcpu->arch.interrupt.soft = events->interrupt.soft;
4342         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4343                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4344                                                 events->interrupt.shadow);
4345
4346         vcpu->arch.nmi_injected = events->nmi.injected;
4347         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4348                 vcpu->arch.nmi_pending = events->nmi.pending;
4349         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4350
4351         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4352             lapic_in_kernel(vcpu))
4353                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4354
4355         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4356                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4357                         if (events->smi.smm)
4358                                 vcpu->arch.hflags |= HF_SMM_MASK;
4359                         else
4360                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4361                         kvm_smm_changed(vcpu);
4362                 }
4363
4364                 vcpu->arch.smi_pending = events->smi.pending;
4365
4366                 if (events->smi.smm) {
4367                         if (events->smi.smm_inside_nmi)
4368                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4369                         else
4370                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4371                 }
4372
4373                 if (lapic_in_kernel(vcpu)) {
4374                         if (events->smi.latched_init)
4375                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4376                         else
4377                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4378                 }
4379         }
4380
4381         kvm_make_request(KVM_REQ_EVENT, vcpu);
4382
4383         return 0;
4384 }
4385
4386 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4387                                              struct kvm_debugregs *dbgregs)
4388 {
4389         unsigned long val;
4390
4391         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4392         kvm_get_dr(vcpu, 6, &val);
4393         dbgregs->dr6 = val;
4394         dbgregs->dr7 = vcpu->arch.dr7;
4395         dbgregs->flags = 0;
4396         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4397 }
4398
4399 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4400                                             struct kvm_debugregs *dbgregs)
4401 {
4402         if (dbgregs->flags)
4403                 return -EINVAL;
4404
4405         if (!kvm_dr6_valid(dbgregs->dr6))
4406                 return -EINVAL;
4407         if (!kvm_dr7_valid(dbgregs->dr7))
4408                 return -EINVAL;
4409
4410         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4411         kvm_update_dr0123(vcpu);
4412         vcpu->arch.dr6 = dbgregs->dr6;
4413         vcpu->arch.dr7 = dbgregs->dr7;
4414         kvm_update_dr7(vcpu);
4415
4416         return 0;
4417 }
4418
4419 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4420
4421 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4422 {
4423         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4424         u64 xstate_bv = xsave->header.xfeatures;
4425         u64 valid;
4426
4427         /*
4428          * Copy legacy XSAVE area, to avoid complications with CPUID
4429          * leaves 0 and 1 in the loop below.
4430          */
4431         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4432
4433         /* Set XSTATE_BV */
4434         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4435         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4436
4437         /*
4438          * Copy each region from the possibly compacted offset to the
4439          * non-compacted offset.
4440          */
4441         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4442         while (valid) {
4443                 u64 xfeature_mask = valid & -valid;
4444                 int xfeature_nr = fls64(xfeature_mask) - 1;
4445                 void *src = get_xsave_addr(xsave, xfeature_nr);
4446
4447                 if (src) {
4448                         u32 size, offset, ecx, edx;
4449                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4450                                     &size, &offset, &ecx, &edx);
4451                         if (xfeature_nr == XFEATURE_PKRU)
4452                                 memcpy(dest + offset, &vcpu->arch.pkru,
4453                                        sizeof(vcpu->arch.pkru));
4454                         else
4455                                 memcpy(dest + offset, src, size);
4456
4457                 }
4458
4459                 valid -= xfeature_mask;
4460         }
4461 }
4462
4463 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4464 {
4465         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4466         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4467         u64 valid;
4468
4469         /*
4470          * Copy legacy XSAVE area, to avoid complications with CPUID
4471          * leaves 0 and 1 in the loop below.
4472          */
4473         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4474
4475         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4476         xsave->header.xfeatures = xstate_bv;
4477         if (boot_cpu_has(X86_FEATURE_XSAVES))
4478                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4479
4480         /*
4481          * Copy each region from the non-compacted offset to the
4482          * possibly compacted offset.
4483          */
4484         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4485         while (valid) {
4486                 u64 xfeature_mask = valid & -valid;
4487                 int xfeature_nr = fls64(xfeature_mask) - 1;
4488                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4489
4490                 if (dest) {
4491                         u32 size, offset, ecx, edx;
4492                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4493                                     &size, &offset, &ecx, &edx);
4494                         if (xfeature_nr == XFEATURE_PKRU)
4495                                 memcpy(&vcpu->arch.pkru, src + offset,
4496                                        sizeof(vcpu->arch.pkru));
4497                         else
4498                                 memcpy(dest, src + offset, size);
4499                 }
4500
4501                 valid -= xfeature_mask;
4502         }
4503 }
4504
4505 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4506                                          struct kvm_xsave *guest_xsave)
4507 {
4508         if (!vcpu->arch.guest_fpu)
4509                 return;
4510
4511         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4512                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4513                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4514         } else {
4515                 memcpy(guest_xsave->region,
4516                         &vcpu->arch.guest_fpu->state.fxsave,
4517                         sizeof(struct fxregs_state));
4518                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4519                         XFEATURE_MASK_FPSSE;
4520         }
4521 }
4522
4523 #define XSAVE_MXCSR_OFFSET 24
4524
4525 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4526                                         struct kvm_xsave *guest_xsave)
4527 {
4528         u64 xstate_bv;
4529         u32 mxcsr;
4530
4531         if (!vcpu->arch.guest_fpu)
4532                 return 0;
4533
4534         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4535         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4536
4537         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4538                 /*
4539                  * Here we allow setting states that are not present in
4540                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4541                  * with old userspace.
4542                  */
4543                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4544                         return -EINVAL;
4545                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4546         } else {
4547                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4548                         mxcsr & ~mxcsr_feature_mask)
4549                         return -EINVAL;
4550                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4551                         guest_xsave->region, sizeof(struct fxregs_state));
4552         }
4553         return 0;
4554 }
4555
4556 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4557                                         struct kvm_xcrs *guest_xcrs)
4558 {
4559         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4560                 guest_xcrs->nr_xcrs = 0;
4561                 return;
4562         }
4563
4564         guest_xcrs->nr_xcrs = 1;
4565         guest_xcrs->flags = 0;
4566         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4567         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4568 }
4569
4570 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4571                                        struct kvm_xcrs *guest_xcrs)
4572 {
4573         int i, r = 0;
4574
4575         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4576                 return -EINVAL;
4577
4578         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4579                 return -EINVAL;
4580
4581         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4582                 /* Only support XCR0 currently */
4583                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4584                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4585                                 guest_xcrs->xcrs[i].value);
4586                         break;
4587                 }
4588         if (r)
4589                 r = -EINVAL;
4590         return r;
4591 }
4592
4593 /*
4594  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4595  * stopped by the hypervisor.  This function will be called from the host only.
4596  * EINVAL is returned when the host attempts to set the flag for a guest that
4597  * does not support pv clocks.
4598  */
4599 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4600 {
4601         if (!vcpu->arch.pv_time_enabled)
4602                 return -EINVAL;
4603         vcpu->arch.pvclock_set_guest_stopped_request = true;
4604         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4605         return 0;
4606 }
4607
4608 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4609                                      struct kvm_enable_cap *cap)
4610 {
4611         int r;
4612         uint16_t vmcs_version;
4613         void __user *user_ptr;
4614
4615         if (cap->flags)
4616                 return -EINVAL;
4617
4618         switch (cap->cap) {
4619         case KVM_CAP_HYPERV_SYNIC2:
4620                 if (cap->args[0])
4621                         return -EINVAL;
4622                 fallthrough;
4623
4624         case KVM_CAP_HYPERV_SYNIC:
4625                 if (!irqchip_in_kernel(vcpu->kvm))
4626                         return -EINVAL;
4627                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4628                                              KVM_CAP_HYPERV_SYNIC2);
4629         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4630                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4631                         return -ENOTTY;
4632                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4633                 if (!r) {
4634                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4635                         if (copy_to_user(user_ptr, &vmcs_version,
4636                                          sizeof(vmcs_version)))
4637                                 r = -EFAULT;
4638                 }
4639                 return r;
4640         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4641                 if (!kvm_x86_ops.enable_direct_tlbflush)
4642                         return -ENOTTY;
4643
4644                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4645
4646         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4647                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4648                 if (vcpu->arch.pv_cpuid.enforce)
4649                         kvm_update_pv_runtime(vcpu);
4650
4651                 return 0;
4652
4653         default:
4654                 return -EINVAL;
4655         }
4656 }
4657
4658 long kvm_arch_vcpu_ioctl(struct file *filp,
4659                          unsigned int ioctl, unsigned long arg)
4660 {
4661         struct kvm_vcpu *vcpu = filp->private_data;
4662         void __user *argp = (void __user *)arg;
4663         int r;
4664         union {
4665                 struct kvm_lapic_state *lapic;
4666                 struct kvm_xsave *xsave;
4667                 struct kvm_xcrs *xcrs;
4668                 void *buffer;
4669         } u;
4670
4671         vcpu_load(vcpu);
4672
4673         u.buffer = NULL;
4674         switch (ioctl) {
4675         case KVM_GET_LAPIC: {
4676                 r = -EINVAL;
4677                 if (!lapic_in_kernel(vcpu))
4678                         goto out;
4679                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4680                                 GFP_KERNEL_ACCOUNT);
4681
4682                 r = -ENOMEM;
4683                 if (!u.lapic)
4684                         goto out;
4685                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4686                 if (r)
4687                         goto out;
4688                 r = -EFAULT;
4689                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4690                         goto out;
4691                 r = 0;
4692                 break;
4693         }
4694         case KVM_SET_LAPIC: {
4695                 r = -EINVAL;
4696                 if (!lapic_in_kernel(vcpu))
4697                         goto out;
4698                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4699                 if (IS_ERR(u.lapic)) {
4700                         r = PTR_ERR(u.lapic);
4701                         goto out_nofree;
4702                 }
4703
4704                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4705                 break;
4706         }
4707         case KVM_INTERRUPT: {
4708                 struct kvm_interrupt irq;
4709
4710                 r = -EFAULT;
4711                 if (copy_from_user(&irq, argp, sizeof(irq)))
4712                         goto out;
4713                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4714                 break;
4715         }
4716         case KVM_NMI: {
4717                 r = kvm_vcpu_ioctl_nmi(vcpu);
4718                 break;
4719         }
4720         case KVM_SMI: {
4721                 r = kvm_vcpu_ioctl_smi(vcpu);
4722                 break;
4723         }
4724         case KVM_SET_CPUID: {
4725                 struct kvm_cpuid __user *cpuid_arg = argp;
4726                 struct kvm_cpuid cpuid;
4727
4728                 r = -EFAULT;
4729                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4730                         goto out;
4731                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4732                 break;
4733         }
4734         case KVM_SET_CPUID2: {
4735                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4736                 struct kvm_cpuid2 cpuid;
4737
4738                 r = -EFAULT;
4739                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4740                         goto out;
4741                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4742                                               cpuid_arg->entries);
4743                 break;
4744         }
4745         case KVM_GET_CPUID2: {
4746                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4747                 struct kvm_cpuid2 cpuid;
4748
4749                 r = -EFAULT;
4750                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4751                         goto out;
4752                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4753                                               cpuid_arg->entries);
4754                 if (r)
4755                         goto out;
4756                 r = -EFAULT;
4757                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4758                         goto out;
4759                 r = 0;
4760                 break;
4761         }
4762         case KVM_GET_MSRS: {
4763                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4764                 r = msr_io(vcpu, argp, do_get_msr, 1);
4765                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4766                 break;
4767         }
4768         case KVM_SET_MSRS: {
4769                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4770                 r = msr_io(vcpu, argp, do_set_msr, 0);
4771                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4772                 break;
4773         }
4774         case KVM_TPR_ACCESS_REPORTING: {
4775                 struct kvm_tpr_access_ctl tac;
4776
4777                 r = -EFAULT;
4778                 if (copy_from_user(&tac, argp, sizeof(tac)))
4779                         goto out;
4780                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4781                 if (r)
4782                         goto out;
4783                 r = -EFAULT;
4784                 if (copy_to_user(argp, &tac, sizeof(tac)))
4785                         goto out;
4786                 r = 0;
4787                 break;
4788         };
4789         case KVM_SET_VAPIC_ADDR: {
4790                 struct kvm_vapic_addr va;
4791                 int idx;
4792
4793                 r = -EINVAL;
4794                 if (!lapic_in_kernel(vcpu))
4795                         goto out;
4796                 r = -EFAULT;
4797                 if (copy_from_user(&va, argp, sizeof(va)))
4798                         goto out;
4799                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4800                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4801                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4802                 break;
4803         }
4804         case KVM_X86_SETUP_MCE: {
4805                 u64 mcg_cap;
4806
4807                 r = -EFAULT;
4808                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4809                         goto out;
4810                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4811                 break;
4812         }
4813         case KVM_X86_SET_MCE: {
4814                 struct kvm_x86_mce mce;
4815
4816                 r = -EFAULT;
4817                 if (copy_from_user(&mce, argp, sizeof(mce)))
4818                         goto out;
4819                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4820                 break;
4821         }
4822         case KVM_GET_VCPU_EVENTS: {
4823                 struct kvm_vcpu_events events;
4824
4825                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4826
4827                 r = -EFAULT;
4828                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4829                         break;
4830                 r = 0;
4831                 break;
4832         }
4833         case KVM_SET_VCPU_EVENTS: {
4834                 struct kvm_vcpu_events events;
4835
4836                 r = -EFAULT;
4837                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4838                         break;
4839
4840                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4841                 break;
4842         }
4843         case KVM_GET_DEBUGREGS: {
4844                 struct kvm_debugregs dbgregs;
4845
4846                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4847
4848                 r = -EFAULT;
4849                 if (copy_to_user(argp, &dbgregs,
4850                                  sizeof(struct kvm_debugregs)))
4851                         break;
4852                 r = 0;
4853                 break;
4854         }
4855         case KVM_SET_DEBUGREGS: {
4856                 struct kvm_debugregs dbgregs;
4857
4858                 r = -EFAULT;
4859                 if (copy_from_user(&dbgregs, argp,
4860                                    sizeof(struct kvm_debugregs)))
4861                         break;
4862
4863                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4864                 break;
4865         }
4866         case KVM_GET_XSAVE: {
4867                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4868                 r = -ENOMEM;
4869                 if (!u.xsave)
4870                         break;
4871
4872                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4873
4874                 r = -EFAULT;
4875                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4876                         break;
4877                 r = 0;
4878                 break;
4879         }
4880         case KVM_SET_XSAVE: {
4881                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4882                 if (IS_ERR(u.xsave)) {
4883                         r = PTR_ERR(u.xsave);
4884                         goto out_nofree;
4885                 }
4886
4887                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4888                 break;
4889         }
4890         case KVM_GET_XCRS: {
4891                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4892                 r = -ENOMEM;
4893                 if (!u.xcrs)
4894                         break;
4895
4896                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4897
4898                 r = -EFAULT;
4899                 if (copy_to_user(argp, u.xcrs,
4900                                  sizeof(struct kvm_xcrs)))
4901                         break;
4902                 r = 0;
4903                 break;
4904         }
4905         case KVM_SET_XCRS: {
4906                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4907                 if (IS_ERR(u.xcrs)) {
4908                         r = PTR_ERR(u.xcrs);
4909                         goto out_nofree;
4910                 }
4911
4912                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4913                 break;
4914         }
4915         case KVM_SET_TSC_KHZ: {
4916                 u32 user_tsc_khz;
4917
4918                 r = -EINVAL;
4919                 user_tsc_khz = (u32)arg;
4920
4921                 if (kvm_has_tsc_control &&
4922                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4923                         goto out;
4924
4925                 if (user_tsc_khz == 0)
4926                         user_tsc_khz = tsc_khz;
4927
4928                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4929                         r = 0;
4930
4931                 goto out;
4932         }
4933         case KVM_GET_TSC_KHZ: {
4934                 r = vcpu->arch.virtual_tsc_khz;
4935                 goto out;
4936         }
4937         case KVM_KVMCLOCK_CTRL: {
4938                 r = kvm_set_guest_paused(vcpu);
4939                 goto out;
4940         }
4941         case KVM_ENABLE_CAP: {
4942                 struct kvm_enable_cap cap;
4943
4944                 r = -EFAULT;
4945                 if (copy_from_user(&cap, argp, sizeof(cap)))
4946                         goto out;
4947                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4948                 break;
4949         }
4950         case KVM_GET_NESTED_STATE: {
4951                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4952                 u32 user_data_size;
4953
4954                 r = -EINVAL;
4955                 if (!kvm_x86_ops.nested_ops->get_state)
4956                         break;
4957
4958                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4959                 r = -EFAULT;
4960                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4961                         break;
4962
4963                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4964                                                      user_data_size);
4965                 if (r < 0)
4966                         break;
4967
4968                 if (r > user_data_size) {
4969                         if (put_user(r, &user_kvm_nested_state->size))
4970                                 r = -EFAULT;
4971                         else
4972                                 r = -E2BIG;
4973                         break;
4974                 }
4975
4976                 r = 0;
4977                 break;
4978         }
4979         case KVM_SET_NESTED_STATE: {
4980                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4981                 struct kvm_nested_state kvm_state;
4982                 int idx;
4983
4984                 r = -EINVAL;
4985                 if (!kvm_x86_ops.nested_ops->set_state)
4986                         break;
4987
4988                 r = -EFAULT;
4989                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4990                         break;
4991
4992                 r = -EINVAL;
4993                 if (kvm_state.size < sizeof(kvm_state))
4994                         break;
4995
4996                 if (kvm_state.flags &
4997                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4998                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4999                       | KVM_STATE_NESTED_GIF_SET))
5000                         break;
5001
5002                 /* nested_run_pending implies guest_mode.  */
5003                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5004                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5005                         break;
5006
5007                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5008                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5009                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5010                 break;
5011         }
5012         case KVM_GET_SUPPORTED_HV_CPUID:
5013                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5014                 break;
5015         case KVM_XEN_VCPU_GET_ATTR: {
5016                 struct kvm_xen_vcpu_attr xva;
5017
5018                 r = -EFAULT;
5019                 if (copy_from_user(&xva, argp, sizeof(xva)))
5020                         goto out;
5021                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5022                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5023                         r = -EFAULT;
5024                 break;
5025         }
5026         case KVM_XEN_VCPU_SET_ATTR: {
5027                 struct kvm_xen_vcpu_attr xva;
5028
5029                 r = -EFAULT;
5030                 if (copy_from_user(&xva, argp, sizeof(xva)))
5031                         goto out;
5032                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5033                 break;
5034         }
5035         default:
5036                 r = -EINVAL;
5037         }
5038 out:
5039         kfree(u.buffer);
5040 out_nofree:
5041         vcpu_put(vcpu);
5042         return r;
5043 }
5044
5045 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5046 {
5047         return VM_FAULT_SIGBUS;
5048 }
5049
5050 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5051 {
5052         int ret;
5053
5054         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5055                 return -EINVAL;
5056         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5057         return ret;
5058 }
5059
5060 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5061                                               u64 ident_addr)
5062 {
5063         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5064 }
5065
5066 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5067                                          unsigned long kvm_nr_mmu_pages)
5068 {
5069         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5070                 return -EINVAL;
5071
5072         mutex_lock(&kvm->slots_lock);
5073
5074         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5075         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5076
5077         mutex_unlock(&kvm->slots_lock);
5078         return 0;
5079 }
5080
5081 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5082 {
5083         return kvm->arch.n_max_mmu_pages;
5084 }
5085
5086 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5087 {
5088         struct kvm_pic *pic = kvm->arch.vpic;
5089         int r;
5090
5091         r = 0;
5092         switch (chip->chip_id) {
5093         case KVM_IRQCHIP_PIC_MASTER:
5094                 memcpy(&chip->chip.pic, &pic->pics[0],
5095                         sizeof(struct kvm_pic_state));
5096                 break;
5097         case KVM_IRQCHIP_PIC_SLAVE:
5098                 memcpy(&chip->chip.pic, &pic->pics[1],
5099                         sizeof(struct kvm_pic_state));
5100                 break;
5101         case KVM_IRQCHIP_IOAPIC:
5102                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5103                 break;
5104         default:
5105                 r = -EINVAL;
5106                 break;
5107         }
5108         return r;
5109 }
5110
5111 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5112 {
5113         struct kvm_pic *pic = kvm->arch.vpic;
5114         int r;
5115
5116         r = 0;
5117         switch (chip->chip_id) {
5118         case KVM_IRQCHIP_PIC_MASTER:
5119                 spin_lock(&pic->lock);
5120                 memcpy(&pic->pics[0], &chip->chip.pic,
5121                         sizeof(struct kvm_pic_state));
5122                 spin_unlock(&pic->lock);
5123                 break;
5124         case KVM_IRQCHIP_PIC_SLAVE:
5125                 spin_lock(&pic->lock);
5126                 memcpy(&pic->pics[1], &chip->chip.pic,
5127                         sizeof(struct kvm_pic_state));
5128                 spin_unlock(&pic->lock);
5129                 break;
5130         case KVM_IRQCHIP_IOAPIC:
5131                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5132                 break;
5133         default:
5134                 r = -EINVAL;
5135                 break;
5136         }
5137         kvm_pic_update_irq(pic);
5138         return r;
5139 }
5140
5141 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5142 {
5143         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5144
5145         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5146
5147         mutex_lock(&kps->lock);
5148         memcpy(ps, &kps->channels, sizeof(*ps));
5149         mutex_unlock(&kps->lock);
5150         return 0;
5151 }
5152
5153 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5154 {
5155         int i;
5156         struct kvm_pit *pit = kvm->arch.vpit;
5157
5158         mutex_lock(&pit->pit_state.lock);
5159         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5160         for (i = 0; i < 3; i++)
5161                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5162         mutex_unlock(&pit->pit_state.lock);
5163         return 0;
5164 }
5165
5166 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5167 {
5168         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5169         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5170                 sizeof(ps->channels));
5171         ps->flags = kvm->arch.vpit->pit_state.flags;
5172         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5173         memset(&ps->reserved, 0, sizeof(ps->reserved));
5174         return 0;
5175 }
5176
5177 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5178 {
5179         int start = 0;
5180         int i;
5181         u32 prev_legacy, cur_legacy;
5182         struct kvm_pit *pit = kvm->arch.vpit;
5183
5184         mutex_lock(&pit->pit_state.lock);
5185         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5186         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5187         if (!prev_legacy && cur_legacy)
5188                 start = 1;
5189         memcpy(&pit->pit_state.channels, &ps->channels,
5190                sizeof(pit->pit_state.channels));
5191         pit->pit_state.flags = ps->flags;
5192         for (i = 0; i < 3; i++)
5193                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5194                                    start && i == 0);
5195         mutex_unlock(&pit->pit_state.lock);
5196         return 0;
5197 }
5198
5199 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5200                                  struct kvm_reinject_control *control)
5201 {
5202         struct kvm_pit *pit = kvm->arch.vpit;
5203
5204         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5205          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5206          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5207          */
5208         mutex_lock(&pit->pit_state.lock);
5209         kvm_pit_set_reinject(pit, control->pit_reinject);
5210         mutex_unlock(&pit->pit_state.lock);
5211
5212         return 0;
5213 }
5214
5215 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5216 {
5217         /*
5218          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5219          */
5220         static_call_cond(kvm_x86_flush_log_dirty)(kvm);
5221 }
5222
5223 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5224                         bool line_status)
5225 {
5226         if (!irqchip_in_kernel(kvm))
5227                 return -ENXIO;
5228
5229         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5230                                         irq_event->irq, irq_event->level,
5231                                         line_status);
5232         return 0;
5233 }
5234
5235 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5236                             struct kvm_enable_cap *cap)
5237 {
5238         int r;
5239
5240         if (cap->flags)
5241                 return -EINVAL;
5242
5243         switch (cap->cap) {
5244         case KVM_CAP_DISABLE_QUIRKS:
5245                 kvm->arch.disabled_quirks = cap->args[0];
5246                 r = 0;
5247                 break;
5248         case KVM_CAP_SPLIT_IRQCHIP: {
5249                 mutex_lock(&kvm->lock);
5250                 r = -EINVAL;
5251                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5252                         goto split_irqchip_unlock;
5253                 r = -EEXIST;
5254                 if (irqchip_in_kernel(kvm))
5255                         goto split_irqchip_unlock;
5256                 if (kvm->created_vcpus)
5257                         goto split_irqchip_unlock;
5258                 r = kvm_setup_empty_irq_routing(kvm);
5259                 if (r)
5260                         goto split_irqchip_unlock;
5261                 /* Pairs with irqchip_in_kernel. */
5262                 smp_wmb();
5263                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5264                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5265                 r = 0;
5266 split_irqchip_unlock:
5267                 mutex_unlock(&kvm->lock);
5268                 break;
5269         }
5270         case KVM_CAP_X2APIC_API:
5271                 r = -EINVAL;
5272                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5273                         break;
5274
5275                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5276                         kvm->arch.x2apic_format = true;
5277                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5278                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5279
5280                 r = 0;
5281                 break;
5282         case KVM_CAP_X86_DISABLE_EXITS:
5283                 r = -EINVAL;
5284                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5285                         break;
5286
5287                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5288                         kvm_can_mwait_in_guest())
5289                         kvm->arch.mwait_in_guest = true;
5290                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5291                         kvm->arch.hlt_in_guest = true;
5292                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5293                         kvm->arch.pause_in_guest = true;
5294                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5295                         kvm->arch.cstate_in_guest = true;
5296                 r = 0;
5297                 break;
5298         case KVM_CAP_MSR_PLATFORM_INFO:
5299                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5300                 r = 0;
5301                 break;
5302         case KVM_CAP_EXCEPTION_PAYLOAD:
5303                 kvm->arch.exception_payload_enabled = cap->args[0];
5304                 r = 0;
5305                 break;
5306         case KVM_CAP_X86_USER_SPACE_MSR:
5307                 kvm->arch.user_space_msr_mask = cap->args[0];
5308                 r = 0;
5309                 break;
5310         case KVM_CAP_X86_BUS_LOCK_EXIT:
5311                 r = -EINVAL;
5312                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5313                         break;
5314
5315                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5316                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5317                         break;
5318
5319                 if (kvm_has_bus_lock_exit &&
5320                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5321                         kvm->arch.bus_lock_detection_enabled = true;
5322                 r = 0;
5323                 break;
5324         default:
5325                 r = -EINVAL;
5326                 break;
5327         }
5328         return r;
5329 }
5330
5331 static void kvm_clear_msr_filter(struct kvm *kvm)
5332 {
5333         u32 i;
5334         u32 count = kvm->arch.msr_filter.count;
5335         struct msr_bitmap_range ranges[16];
5336
5337         mutex_lock(&kvm->lock);
5338         kvm->arch.msr_filter.count = 0;
5339         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5340         mutex_unlock(&kvm->lock);
5341         synchronize_srcu(&kvm->srcu);
5342
5343         for (i = 0; i < count; i++)
5344                 kfree(ranges[i].bitmap);
5345 }
5346
5347 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5348 {
5349         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5350         struct msr_bitmap_range range;
5351         unsigned long *bitmap = NULL;
5352         size_t bitmap_size;
5353         int r;
5354
5355         if (!user_range->nmsrs)
5356                 return 0;
5357
5358         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5359         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5360                 return -EINVAL;
5361
5362         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5363         if (IS_ERR(bitmap))
5364                 return PTR_ERR(bitmap);
5365
5366         range = (struct msr_bitmap_range) {
5367                 .flags = user_range->flags,
5368                 .base = user_range->base,
5369                 .nmsrs = user_range->nmsrs,
5370                 .bitmap = bitmap,
5371         };
5372
5373         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5374                 r = -EINVAL;
5375                 goto err;
5376         }
5377
5378         if (!range.flags) {
5379                 r = -EINVAL;
5380                 goto err;
5381         }
5382
5383         /* Everything ok, add this range identifier to our global pool */
5384         ranges[kvm->arch.msr_filter.count] = range;
5385         /* Make sure we filled the array before we tell anyone to walk it */
5386         smp_wmb();
5387         kvm->arch.msr_filter.count++;
5388
5389         return 0;
5390 err:
5391         kfree(bitmap);
5392         return r;
5393 }
5394
5395 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5396 {
5397         struct kvm_msr_filter __user *user_msr_filter = argp;
5398         struct kvm_msr_filter filter;
5399         bool default_allow;
5400         int r = 0;
5401         bool empty = true;
5402         u32 i;
5403
5404         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5405                 return -EFAULT;
5406
5407         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5408                 empty &= !filter.ranges[i].nmsrs;
5409
5410         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5411         if (empty && !default_allow)
5412                 return -EINVAL;
5413
5414         kvm_clear_msr_filter(kvm);
5415
5416         kvm->arch.msr_filter.default_allow = default_allow;
5417
5418         /*
5419          * Protect from concurrent calls to this function that could trigger
5420          * a TOCTOU violation on kvm->arch.msr_filter.count.
5421          */
5422         mutex_lock(&kvm->lock);
5423         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5424                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5425                 if (r)
5426                         break;
5427         }
5428
5429         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5430         mutex_unlock(&kvm->lock);
5431
5432         return r;
5433 }
5434
5435 long kvm_arch_vm_ioctl(struct file *filp,
5436                        unsigned int ioctl, unsigned long arg)
5437 {
5438         struct kvm *kvm = filp->private_data;
5439         void __user *argp = (void __user *)arg;
5440         int r = -ENOTTY;
5441         /*
5442          * This union makes it completely explicit to gcc-3.x
5443          * that these two variables' stack usage should be
5444          * combined, not added together.
5445          */
5446         union {
5447                 struct kvm_pit_state ps;
5448                 struct kvm_pit_state2 ps2;
5449                 struct kvm_pit_config pit_config;
5450         } u;
5451
5452         switch (ioctl) {
5453         case KVM_SET_TSS_ADDR:
5454                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5455                 break;
5456         case KVM_SET_IDENTITY_MAP_ADDR: {
5457                 u64 ident_addr;
5458
5459                 mutex_lock(&kvm->lock);
5460                 r = -EINVAL;
5461                 if (kvm->created_vcpus)
5462                         goto set_identity_unlock;
5463                 r = -EFAULT;
5464                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5465                         goto set_identity_unlock;
5466                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5467 set_identity_unlock:
5468                 mutex_unlock(&kvm->lock);
5469                 break;
5470         }
5471         case KVM_SET_NR_MMU_PAGES:
5472                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5473                 break;
5474         case KVM_GET_NR_MMU_PAGES:
5475                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5476                 break;
5477         case KVM_CREATE_IRQCHIP: {
5478                 mutex_lock(&kvm->lock);
5479
5480                 r = -EEXIST;
5481                 if (irqchip_in_kernel(kvm))
5482                         goto create_irqchip_unlock;
5483
5484                 r = -EINVAL;
5485                 if (kvm->created_vcpus)
5486                         goto create_irqchip_unlock;
5487
5488                 r = kvm_pic_init(kvm);
5489                 if (r)
5490                         goto create_irqchip_unlock;
5491
5492                 r = kvm_ioapic_init(kvm);
5493                 if (r) {
5494                         kvm_pic_destroy(kvm);
5495                         goto create_irqchip_unlock;
5496                 }
5497
5498                 r = kvm_setup_default_irq_routing(kvm);
5499                 if (r) {
5500                         kvm_ioapic_destroy(kvm);
5501                         kvm_pic_destroy(kvm);
5502                         goto create_irqchip_unlock;
5503                 }
5504                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5505                 smp_wmb();
5506                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5507         create_irqchip_unlock:
5508                 mutex_unlock(&kvm->lock);
5509                 break;
5510         }
5511         case KVM_CREATE_PIT:
5512                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5513                 goto create_pit;
5514         case KVM_CREATE_PIT2:
5515                 r = -EFAULT;
5516                 if (copy_from_user(&u.pit_config, argp,
5517                                    sizeof(struct kvm_pit_config)))
5518                         goto out;
5519         create_pit:
5520                 mutex_lock(&kvm->lock);
5521                 r = -EEXIST;
5522                 if (kvm->arch.vpit)
5523                         goto create_pit_unlock;
5524                 r = -ENOMEM;
5525                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5526                 if (kvm->arch.vpit)
5527                         r = 0;
5528         create_pit_unlock:
5529                 mutex_unlock(&kvm->lock);
5530                 break;
5531         case KVM_GET_IRQCHIP: {
5532                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5533                 struct kvm_irqchip *chip;
5534
5535                 chip = memdup_user(argp, sizeof(*chip));
5536                 if (IS_ERR(chip)) {
5537                         r = PTR_ERR(chip);
5538                         goto out;
5539                 }
5540
5541                 r = -ENXIO;
5542                 if (!irqchip_kernel(kvm))
5543                         goto get_irqchip_out;
5544                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5545                 if (r)
5546                         goto get_irqchip_out;
5547                 r = -EFAULT;
5548                 if (copy_to_user(argp, chip, sizeof(*chip)))
5549                         goto get_irqchip_out;
5550                 r = 0;
5551         get_irqchip_out:
5552                 kfree(chip);
5553                 break;
5554         }
5555         case KVM_SET_IRQCHIP: {
5556                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5557                 struct kvm_irqchip *chip;
5558
5559                 chip = memdup_user(argp, sizeof(*chip));
5560                 if (IS_ERR(chip)) {
5561                         r = PTR_ERR(chip);
5562                         goto out;
5563                 }
5564
5565                 r = -ENXIO;
5566                 if (!irqchip_kernel(kvm))
5567                         goto set_irqchip_out;
5568                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5569         set_irqchip_out:
5570                 kfree(chip);
5571                 break;
5572         }
5573         case KVM_GET_PIT: {
5574                 r = -EFAULT;
5575                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5576                         goto out;
5577                 r = -ENXIO;
5578                 if (!kvm->arch.vpit)
5579                         goto out;
5580                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5581                 if (r)
5582                         goto out;
5583                 r = -EFAULT;
5584                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5585                         goto out;
5586                 r = 0;
5587                 break;
5588         }
5589         case KVM_SET_PIT: {
5590                 r = -EFAULT;
5591                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5592                         goto out;
5593                 mutex_lock(&kvm->lock);
5594                 r = -ENXIO;
5595                 if (!kvm->arch.vpit)
5596                         goto set_pit_out;
5597                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5598 set_pit_out:
5599                 mutex_unlock(&kvm->lock);
5600                 break;
5601         }
5602         case KVM_GET_PIT2: {
5603                 r = -ENXIO;
5604                 if (!kvm->arch.vpit)
5605                         goto out;
5606                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5607                 if (r)
5608                         goto out;
5609                 r = -EFAULT;
5610                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5611                         goto out;
5612                 r = 0;
5613                 break;
5614         }
5615         case KVM_SET_PIT2: {
5616                 r = -EFAULT;
5617                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5618                         goto out;
5619                 mutex_lock(&kvm->lock);
5620                 r = -ENXIO;
5621                 if (!kvm->arch.vpit)
5622                         goto set_pit2_out;
5623                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5624 set_pit2_out:
5625                 mutex_unlock(&kvm->lock);
5626                 break;
5627         }
5628         case KVM_REINJECT_CONTROL: {
5629                 struct kvm_reinject_control control;
5630                 r =  -EFAULT;
5631                 if (copy_from_user(&control, argp, sizeof(control)))
5632                         goto out;
5633                 r = -ENXIO;
5634                 if (!kvm->arch.vpit)
5635                         goto out;
5636                 r = kvm_vm_ioctl_reinject(kvm, &control);
5637                 break;
5638         }
5639         case KVM_SET_BOOT_CPU_ID:
5640                 r = 0;
5641                 mutex_lock(&kvm->lock);
5642                 if (kvm->created_vcpus)
5643                         r = -EBUSY;
5644                 else
5645                         kvm->arch.bsp_vcpu_id = arg;
5646                 mutex_unlock(&kvm->lock);
5647                 break;
5648         case KVM_XEN_HVM_CONFIG: {
5649                 struct kvm_xen_hvm_config xhc;
5650                 r = -EFAULT;
5651                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5652                         goto out;
5653                 r = kvm_xen_hvm_config(kvm, &xhc);
5654                 break;
5655         }
5656         case KVM_XEN_HVM_GET_ATTR: {
5657                 struct kvm_xen_hvm_attr xha;
5658
5659                 r = -EFAULT;
5660                 if (copy_from_user(&xha, argp, sizeof(xha)))
5661                         goto out;
5662                 r = kvm_xen_hvm_get_attr(kvm, &xha);
5663                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5664                         r = -EFAULT;
5665                 break;
5666         }
5667         case KVM_XEN_HVM_SET_ATTR: {
5668                 struct kvm_xen_hvm_attr xha;
5669
5670                 r = -EFAULT;
5671                 if (copy_from_user(&xha, argp, sizeof(xha)))
5672                         goto out;
5673                 r = kvm_xen_hvm_set_attr(kvm, &xha);
5674                 break;
5675         }
5676         case KVM_SET_CLOCK: {
5677                 struct kvm_clock_data user_ns;
5678                 u64 now_ns;
5679
5680                 r = -EFAULT;
5681                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5682                         goto out;
5683
5684                 r = -EINVAL;
5685                 if (user_ns.flags)
5686                         goto out;
5687
5688                 r = 0;
5689                 /*
5690                  * TODO: userspace has to take care of races with VCPU_RUN, so
5691                  * kvm_gen_update_masterclock() can be cut down to locked
5692                  * pvclock_update_vm_gtod_copy().
5693                  */
5694                 kvm_gen_update_masterclock(kvm);
5695                 now_ns = get_kvmclock_ns(kvm);
5696                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5697                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5698                 break;
5699         }
5700         case KVM_GET_CLOCK: {
5701                 struct kvm_clock_data user_ns;
5702                 u64 now_ns;
5703
5704                 now_ns = get_kvmclock_ns(kvm);
5705                 user_ns.clock = now_ns;
5706                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5707                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5708
5709                 r = -EFAULT;
5710                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5711                         goto out;
5712                 r = 0;
5713                 break;
5714         }
5715         case KVM_MEMORY_ENCRYPT_OP: {
5716                 r = -ENOTTY;
5717                 if (kvm_x86_ops.mem_enc_op)
5718                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5719                 break;
5720         }
5721         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5722                 struct kvm_enc_region region;
5723
5724                 r = -EFAULT;
5725                 if (copy_from_user(&region, argp, sizeof(region)))
5726                         goto out;
5727
5728                 r = -ENOTTY;
5729                 if (kvm_x86_ops.mem_enc_reg_region)
5730                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5731                 break;
5732         }
5733         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5734                 struct kvm_enc_region region;
5735
5736                 r = -EFAULT;
5737                 if (copy_from_user(&region, argp, sizeof(region)))
5738                         goto out;
5739
5740                 r = -ENOTTY;
5741                 if (kvm_x86_ops.mem_enc_unreg_region)
5742                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5743                 break;
5744         }
5745         case KVM_HYPERV_EVENTFD: {
5746                 struct kvm_hyperv_eventfd hvevfd;
5747
5748                 r = -EFAULT;
5749                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5750                         goto out;
5751                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5752                 break;
5753         }
5754         case KVM_SET_PMU_EVENT_FILTER:
5755                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5756                 break;
5757         case KVM_X86_SET_MSR_FILTER:
5758                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5759                 break;
5760         default:
5761                 r = -ENOTTY;
5762         }
5763 out:
5764         return r;
5765 }
5766
5767 static void kvm_init_msr_list(void)
5768 {
5769         struct x86_pmu_capability x86_pmu;
5770         u32 dummy[2];
5771         unsigned i;
5772
5773         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5774                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5775
5776         perf_get_x86_pmu_capability(&x86_pmu);
5777
5778         num_msrs_to_save = 0;
5779         num_emulated_msrs = 0;
5780         num_msr_based_features = 0;
5781
5782         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5783                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5784                         continue;
5785
5786                 /*
5787                  * Even MSRs that are valid in the host may not be exposed
5788                  * to the guests in some cases.
5789                  */
5790                 switch (msrs_to_save_all[i]) {
5791                 case MSR_IA32_BNDCFGS:
5792                         if (!kvm_mpx_supported())
5793                                 continue;
5794                         break;
5795                 case MSR_TSC_AUX:
5796                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5797                                 continue;
5798                         break;
5799                 case MSR_IA32_UMWAIT_CONTROL:
5800                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5801                                 continue;
5802                         break;
5803                 case MSR_IA32_RTIT_CTL:
5804                 case MSR_IA32_RTIT_STATUS:
5805                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5806                                 continue;
5807                         break;
5808                 case MSR_IA32_RTIT_CR3_MATCH:
5809                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5810                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5811                                 continue;
5812                         break;
5813                 case MSR_IA32_RTIT_OUTPUT_BASE:
5814                 case MSR_IA32_RTIT_OUTPUT_MASK:
5815                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5816                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5817                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5818                                 continue;
5819                         break;
5820                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5821                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5822                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5823                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5824                                 continue;
5825                         break;
5826                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5827                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5828                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5829                                 continue;
5830                         break;
5831                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5832                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5833                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5834                                 continue;
5835                         break;
5836                 default:
5837                         break;
5838                 }
5839
5840                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5841         }
5842
5843         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5844                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5845                         continue;
5846
5847                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5848         }
5849
5850         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5851                 struct kvm_msr_entry msr;
5852
5853                 msr.index = msr_based_features_all[i];
5854                 if (kvm_get_msr_feature(&msr))
5855                         continue;
5856
5857                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5858         }
5859 }
5860
5861 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5862                            const void *v)
5863 {
5864         int handled = 0;
5865         int n;
5866
5867         do {
5868                 n = min(len, 8);
5869                 if (!(lapic_in_kernel(vcpu) &&
5870                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5871                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5872                         break;
5873                 handled += n;
5874                 addr += n;
5875                 len -= n;
5876                 v += n;
5877         } while (len);
5878
5879         return handled;
5880 }
5881
5882 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5883 {
5884         int handled = 0;
5885         int n;
5886
5887         do {
5888                 n = min(len, 8);
5889                 if (!(lapic_in_kernel(vcpu) &&
5890                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5891                                          addr, n, v))
5892                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5893                         break;
5894                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5895                 handled += n;
5896                 addr += n;
5897                 len -= n;
5898                 v += n;
5899         } while (len);
5900
5901         return handled;
5902 }
5903
5904 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5905                         struct kvm_segment *var, int seg)
5906 {
5907         static_call(kvm_x86_set_segment)(vcpu, var, seg);
5908 }
5909
5910 void kvm_get_segment(struct kvm_vcpu *vcpu,
5911                      struct kvm_segment *var, int seg)
5912 {
5913         static_call(kvm_x86_get_segment)(vcpu, var, seg);
5914 }
5915
5916 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5917                            struct x86_exception *exception)
5918 {
5919         gpa_t t_gpa;
5920
5921         BUG_ON(!mmu_is_nested(vcpu));
5922
5923         /* NPT walks are always user-walks */
5924         access |= PFERR_USER_MASK;
5925         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5926
5927         return t_gpa;
5928 }
5929
5930 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5931                               struct x86_exception *exception)
5932 {
5933         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5934         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5935 }
5936
5937  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5938                                 struct x86_exception *exception)
5939 {
5940         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5941         access |= PFERR_FETCH_MASK;
5942         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5943 }
5944
5945 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5946                                struct x86_exception *exception)
5947 {
5948         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5949         access |= PFERR_WRITE_MASK;
5950         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5951 }
5952
5953 /* uses this to access any guest's mapped memory without checking CPL */
5954 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5955                                 struct x86_exception *exception)
5956 {
5957         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5958 }
5959
5960 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5961                                       struct kvm_vcpu *vcpu, u32 access,
5962                                       struct x86_exception *exception)
5963 {
5964         void *data = val;
5965         int r = X86EMUL_CONTINUE;
5966
5967         while (bytes) {
5968                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5969                                                             exception);
5970                 unsigned offset = addr & (PAGE_SIZE-1);
5971                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5972                 int ret;
5973
5974                 if (gpa == UNMAPPED_GVA)
5975                         return X86EMUL_PROPAGATE_FAULT;
5976                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5977                                                offset, toread);
5978                 if (ret < 0) {
5979                         r = X86EMUL_IO_NEEDED;
5980                         goto out;
5981                 }
5982
5983                 bytes -= toread;
5984                 data += toread;
5985                 addr += toread;
5986         }
5987 out:
5988         return r;
5989 }
5990
5991 /* used for instruction fetching */
5992 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5993                                 gva_t addr, void *val, unsigned int bytes,
5994                                 struct x86_exception *exception)
5995 {
5996         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5997         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5998         unsigned offset;
5999         int ret;
6000
6001         /* Inline kvm_read_guest_virt_helper for speed.  */
6002         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6003                                                     exception);
6004         if (unlikely(gpa == UNMAPPED_GVA))
6005                 return X86EMUL_PROPAGATE_FAULT;
6006
6007         offset = addr & (PAGE_SIZE-1);
6008         if (WARN_ON(offset + bytes > PAGE_SIZE))
6009                 bytes = (unsigned)PAGE_SIZE - offset;
6010         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6011                                        offset, bytes);
6012         if (unlikely(ret < 0))
6013                 return X86EMUL_IO_NEEDED;
6014
6015         return X86EMUL_CONTINUE;
6016 }
6017
6018 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6019                                gva_t addr, void *val, unsigned int bytes,
6020                                struct x86_exception *exception)
6021 {
6022         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6023
6024         /*
6025          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6026          * is returned, but our callers are not ready for that and they blindly
6027          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6028          * uninitialized kernel stack memory into cr2 and error code.
6029          */
6030         memset(exception, 0, sizeof(*exception));
6031         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6032                                           exception);
6033 }
6034 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6035
6036 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6037                              gva_t addr, void *val, unsigned int bytes,
6038                              struct x86_exception *exception, bool system)
6039 {
6040         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6041         u32 access = 0;
6042
6043         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6044                 access |= PFERR_USER_MASK;
6045
6046         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6047 }
6048
6049 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6050                 unsigned long addr, void *val, unsigned int bytes)
6051 {
6052         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6053         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6054
6055         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6056 }
6057
6058 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6059                                       struct kvm_vcpu *vcpu, u32 access,
6060                                       struct x86_exception *exception)
6061 {
6062         void *data = val;
6063         int r = X86EMUL_CONTINUE;
6064
6065         while (bytes) {
6066                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6067                                                              access,
6068                                                              exception);
6069                 unsigned offset = addr & (PAGE_SIZE-1);
6070                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6071                 int ret;
6072
6073                 if (gpa == UNMAPPED_GVA)
6074                         return X86EMUL_PROPAGATE_FAULT;
6075                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6076                 if (ret < 0) {
6077                         r = X86EMUL_IO_NEEDED;
6078                         goto out;
6079                 }
6080
6081                 bytes -= towrite;
6082                 data += towrite;
6083                 addr += towrite;
6084         }
6085 out:
6086         return r;
6087 }
6088
6089 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6090                               unsigned int bytes, struct x86_exception *exception,
6091                               bool system)
6092 {
6093         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6094         u32 access = PFERR_WRITE_MASK;
6095
6096         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6097                 access |= PFERR_USER_MASK;
6098
6099         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6100                                            access, exception);
6101 }
6102
6103 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6104                                 unsigned int bytes, struct x86_exception *exception)
6105 {
6106         /* kvm_write_guest_virt_system can pull in tons of pages. */
6107         vcpu->arch.l1tf_flush_l1d = true;
6108
6109         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6110                                            PFERR_WRITE_MASK, exception);
6111 }
6112 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6113
6114 int handle_ud(struct kvm_vcpu *vcpu)
6115 {
6116         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6117         int emul_type = EMULTYPE_TRAP_UD;
6118         char sig[5]; /* ud2; .ascii "kvm" */
6119         struct x86_exception e;
6120
6121         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6122                 return 1;
6123
6124         if (force_emulation_prefix &&
6125             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6126                                 sig, sizeof(sig), &e) == 0 &&
6127             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6128                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6129                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6130         }
6131
6132         return kvm_emulate_instruction(vcpu, emul_type);
6133 }
6134 EXPORT_SYMBOL_GPL(handle_ud);
6135
6136 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6137                             gpa_t gpa, bool write)
6138 {
6139         /* For APIC access vmexit */
6140         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6141                 return 1;
6142
6143         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6144                 trace_vcpu_match_mmio(gva, gpa, write, true);
6145                 return 1;
6146         }
6147
6148         return 0;
6149 }
6150
6151 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6152                                 gpa_t *gpa, struct x86_exception *exception,
6153                                 bool write)
6154 {
6155         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6156                 | (write ? PFERR_WRITE_MASK : 0);
6157
6158         /*
6159          * currently PKRU is only applied to ept enabled guest so
6160          * there is no pkey in EPT page table for L1 guest or EPT
6161          * shadow page table for L2 guest.
6162          */
6163         if (vcpu_match_mmio_gva(vcpu, gva)
6164             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6165                                  vcpu->arch.mmio_access, 0, access)) {
6166                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6167                                         (gva & (PAGE_SIZE - 1));
6168                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6169                 return 1;
6170         }
6171
6172         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6173
6174         if (*gpa == UNMAPPED_GVA)
6175                 return -1;
6176
6177         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6178 }
6179
6180 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6181                         const void *val, int bytes)
6182 {
6183         int ret;
6184
6185         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6186         if (ret < 0)
6187                 return 0;
6188         kvm_page_track_write(vcpu, gpa, val, bytes);
6189         return 1;
6190 }
6191
6192 struct read_write_emulator_ops {
6193         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6194                                   int bytes);
6195         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6196                                   void *val, int bytes);
6197         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6198                                int bytes, void *val);
6199         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6200                                     void *val, int bytes);
6201         bool write;
6202 };
6203
6204 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6205 {
6206         if (vcpu->mmio_read_completed) {
6207                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6208                                vcpu->mmio_fragments[0].gpa, val);
6209                 vcpu->mmio_read_completed = 0;
6210                 return 1;
6211         }
6212
6213         return 0;
6214 }
6215
6216 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6217                         void *val, int bytes)
6218 {
6219         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6220 }
6221
6222 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6223                          void *val, int bytes)
6224 {
6225         return emulator_write_phys(vcpu, gpa, val, bytes);
6226 }
6227
6228 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6229 {
6230         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6231         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6232 }
6233
6234 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6235                           void *val, int bytes)
6236 {
6237         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6238         return X86EMUL_IO_NEEDED;
6239 }
6240
6241 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6242                            void *val, int bytes)
6243 {
6244         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6245
6246         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6247         return X86EMUL_CONTINUE;
6248 }
6249
6250 static const struct read_write_emulator_ops read_emultor = {
6251         .read_write_prepare = read_prepare,
6252         .read_write_emulate = read_emulate,
6253         .read_write_mmio = vcpu_mmio_read,
6254         .read_write_exit_mmio = read_exit_mmio,
6255 };
6256
6257 static const struct read_write_emulator_ops write_emultor = {
6258         .read_write_emulate = write_emulate,
6259         .read_write_mmio = write_mmio,
6260         .read_write_exit_mmio = write_exit_mmio,
6261         .write = true,
6262 };
6263
6264 static int emulator_read_write_onepage(unsigned long addr, void *val,
6265                                        unsigned int bytes,
6266                                        struct x86_exception *exception,
6267                                        struct kvm_vcpu *vcpu,
6268                                        const struct read_write_emulator_ops *ops)
6269 {
6270         gpa_t gpa;
6271         int handled, ret;
6272         bool write = ops->write;
6273         struct kvm_mmio_fragment *frag;
6274         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6275
6276         /*
6277          * If the exit was due to a NPF we may already have a GPA.
6278          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6279          * Note, this cannot be used on string operations since string
6280          * operation using rep will only have the initial GPA from the NPF
6281          * occurred.
6282          */
6283         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6284             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6285                 gpa = ctxt->gpa_val;
6286                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6287         } else {
6288                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6289                 if (ret < 0)
6290                         return X86EMUL_PROPAGATE_FAULT;
6291         }
6292
6293         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6294                 return X86EMUL_CONTINUE;
6295
6296         /*
6297          * Is this MMIO handled locally?
6298          */
6299         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6300         if (handled == bytes)
6301                 return X86EMUL_CONTINUE;
6302
6303         gpa += handled;
6304         bytes -= handled;
6305         val += handled;
6306
6307         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6308         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6309         frag->gpa = gpa;
6310         frag->data = val;
6311         frag->len = bytes;
6312         return X86EMUL_CONTINUE;
6313 }
6314
6315 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6316                         unsigned long addr,
6317                         void *val, unsigned int bytes,
6318                         struct x86_exception *exception,
6319                         const struct read_write_emulator_ops *ops)
6320 {
6321         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6322         gpa_t gpa;
6323         int rc;
6324
6325         if (ops->read_write_prepare &&
6326                   ops->read_write_prepare(vcpu, val, bytes))
6327                 return X86EMUL_CONTINUE;
6328
6329         vcpu->mmio_nr_fragments = 0;
6330
6331         /* Crossing a page boundary? */
6332         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6333                 int now;
6334
6335                 now = -addr & ~PAGE_MASK;
6336                 rc = emulator_read_write_onepage(addr, val, now, exception,
6337                                                  vcpu, ops);
6338
6339                 if (rc != X86EMUL_CONTINUE)
6340                         return rc;
6341                 addr += now;
6342                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6343                         addr = (u32)addr;
6344                 val += now;
6345                 bytes -= now;
6346         }
6347
6348         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6349                                          vcpu, ops);
6350         if (rc != X86EMUL_CONTINUE)
6351                 return rc;
6352
6353         if (!vcpu->mmio_nr_fragments)
6354                 return rc;
6355
6356         gpa = vcpu->mmio_fragments[0].gpa;
6357
6358         vcpu->mmio_needed = 1;
6359         vcpu->mmio_cur_fragment = 0;
6360
6361         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6362         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6363         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6364         vcpu->run->mmio.phys_addr = gpa;
6365
6366         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6367 }
6368
6369 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6370                                   unsigned long addr,
6371                                   void *val,
6372                                   unsigned int bytes,
6373                                   struct x86_exception *exception)
6374 {
6375         return emulator_read_write(ctxt, addr, val, bytes,
6376                                    exception, &read_emultor);
6377 }
6378
6379 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6380                             unsigned long addr,
6381                             const void *val,
6382                             unsigned int bytes,
6383                             struct x86_exception *exception)
6384 {
6385         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6386                                    exception, &write_emultor);
6387 }
6388
6389 #define CMPXCHG_TYPE(t, ptr, old, new) \
6390         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6391
6392 #ifdef CONFIG_X86_64
6393 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6394 #else
6395 #  define CMPXCHG64(ptr, old, new) \
6396         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6397 #endif
6398
6399 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6400                                      unsigned long addr,
6401                                      const void *old,
6402                                      const void *new,
6403                                      unsigned int bytes,
6404                                      struct x86_exception *exception)
6405 {
6406         struct kvm_host_map map;
6407         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6408         u64 page_line_mask;
6409         gpa_t gpa;
6410         char *kaddr;
6411         bool exchanged;
6412
6413         /* guests cmpxchg8b have to be emulated atomically */
6414         if (bytes > 8 || (bytes & (bytes - 1)))
6415                 goto emul_write;
6416
6417         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6418
6419         if (gpa == UNMAPPED_GVA ||
6420             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6421                 goto emul_write;
6422
6423         /*
6424          * Emulate the atomic as a straight write to avoid #AC if SLD is
6425          * enabled in the host and the access splits a cache line.
6426          */
6427         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6428                 page_line_mask = ~(cache_line_size() - 1);
6429         else
6430                 page_line_mask = PAGE_MASK;
6431
6432         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6433                 goto emul_write;
6434
6435         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6436                 goto emul_write;
6437
6438         kaddr = map.hva + offset_in_page(gpa);
6439
6440         switch (bytes) {
6441         case 1:
6442                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6443                 break;
6444         case 2:
6445                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6446                 break;
6447         case 4:
6448                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6449                 break;
6450         case 8:
6451                 exchanged = CMPXCHG64(kaddr, old, new);
6452                 break;
6453         default:
6454                 BUG();
6455         }
6456
6457         kvm_vcpu_unmap(vcpu, &map, true);
6458
6459         if (!exchanged)
6460                 return X86EMUL_CMPXCHG_FAILED;
6461
6462         kvm_page_track_write(vcpu, gpa, new, bytes);
6463
6464         return X86EMUL_CONTINUE;
6465
6466 emul_write:
6467         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6468
6469         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6470 }
6471
6472 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6473 {
6474         int r = 0, i;
6475
6476         for (i = 0; i < vcpu->arch.pio.count; i++) {
6477                 if (vcpu->arch.pio.in)
6478                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6479                                             vcpu->arch.pio.size, pd);
6480                 else
6481                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6482                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6483                                              pd);
6484                 if (r)
6485                         break;
6486                 pd += vcpu->arch.pio.size;
6487         }
6488         return r;
6489 }
6490
6491 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6492                                unsigned short port, void *val,
6493                                unsigned int count, bool in)
6494 {
6495         vcpu->arch.pio.port = port;
6496         vcpu->arch.pio.in = in;
6497         vcpu->arch.pio.count  = count;
6498         vcpu->arch.pio.size = size;
6499
6500         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6501                 vcpu->arch.pio.count = 0;
6502                 return 1;
6503         }
6504
6505         vcpu->run->exit_reason = KVM_EXIT_IO;
6506         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6507         vcpu->run->io.size = size;
6508         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6509         vcpu->run->io.count = count;
6510         vcpu->run->io.port = port;
6511
6512         return 0;
6513 }
6514
6515 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6516                            unsigned short port, void *val, unsigned int count)
6517 {
6518         int ret;
6519
6520         if (vcpu->arch.pio.count)
6521                 goto data_avail;
6522
6523         memset(vcpu->arch.pio_data, 0, size * count);
6524
6525         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6526         if (ret) {
6527 data_avail:
6528                 memcpy(val, vcpu->arch.pio_data, size * count);
6529                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6530                 vcpu->arch.pio.count = 0;
6531                 return 1;
6532         }
6533
6534         return 0;
6535 }
6536
6537 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6538                                     int size, unsigned short port, void *val,
6539                                     unsigned int count)
6540 {
6541         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6542
6543 }
6544
6545 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6546                             unsigned short port, const void *val,
6547                             unsigned int count)
6548 {
6549         memcpy(vcpu->arch.pio_data, val, size * count);
6550         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6551         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6552 }
6553
6554 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6555                                      int size, unsigned short port,
6556                                      const void *val, unsigned int count)
6557 {
6558         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6559 }
6560
6561 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6562 {
6563         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6564 }
6565
6566 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6567 {
6568         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6569 }
6570
6571 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6572 {
6573         if (!need_emulate_wbinvd(vcpu))
6574                 return X86EMUL_CONTINUE;
6575
6576         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6577                 int cpu = get_cpu();
6578
6579                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6580                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6581                                 wbinvd_ipi, NULL, 1);
6582                 put_cpu();
6583                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6584         } else
6585                 wbinvd();
6586         return X86EMUL_CONTINUE;
6587 }
6588
6589 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6590 {
6591         kvm_emulate_wbinvd_noskip(vcpu);
6592         return kvm_skip_emulated_instruction(vcpu);
6593 }
6594 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6595
6596
6597
6598 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6599 {
6600         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6601 }
6602
6603 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6604                             unsigned long *dest)
6605 {
6606         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6607 }
6608
6609 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6610                            unsigned long value)
6611 {
6612
6613         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6614 }
6615
6616 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6617 {
6618         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6619 }
6620
6621 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6622 {
6623         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6624         unsigned long value;
6625
6626         switch (cr) {
6627         case 0:
6628                 value = kvm_read_cr0(vcpu);
6629                 break;
6630         case 2:
6631                 value = vcpu->arch.cr2;
6632                 break;
6633         case 3:
6634                 value = kvm_read_cr3(vcpu);
6635                 break;
6636         case 4:
6637                 value = kvm_read_cr4(vcpu);
6638                 break;
6639         case 8:
6640                 value = kvm_get_cr8(vcpu);
6641                 break;
6642         default:
6643                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6644                 return 0;
6645         }
6646
6647         return value;
6648 }
6649
6650 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6651 {
6652         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6653         int res = 0;
6654
6655         switch (cr) {
6656         case 0:
6657                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6658                 break;
6659         case 2:
6660                 vcpu->arch.cr2 = val;
6661                 break;
6662         case 3:
6663                 res = kvm_set_cr3(vcpu, val);
6664                 break;
6665         case 4:
6666                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6667                 break;
6668         case 8:
6669                 res = kvm_set_cr8(vcpu, val);
6670                 break;
6671         default:
6672                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6673                 res = -1;
6674         }
6675
6676         return res;
6677 }
6678
6679 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6680 {
6681         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6682 }
6683
6684 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6685 {
6686         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6687 }
6688
6689 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6690 {
6691         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6692 }
6693
6694 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6695 {
6696         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6697 }
6698
6699 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6700 {
6701         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6702 }
6703
6704 static unsigned long emulator_get_cached_segment_base(
6705         struct x86_emulate_ctxt *ctxt, int seg)
6706 {
6707         return get_segment_base(emul_to_vcpu(ctxt), seg);
6708 }
6709
6710 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6711                                  struct desc_struct *desc, u32 *base3,
6712                                  int seg)
6713 {
6714         struct kvm_segment var;
6715
6716         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6717         *selector = var.selector;
6718
6719         if (var.unusable) {
6720                 memset(desc, 0, sizeof(*desc));
6721                 if (base3)
6722                         *base3 = 0;
6723                 return false;
6724         }
6725
6726         if (var.g)
6727                 var.limit >>= 12;
6728         set_desc_limit(desc, var.limit);
6729         set_desc_base(desc, (unsigned long)var.base);
6730 #ifdef CONFIG_X86_64
6731         if (base3)
6732                 *base3 = var.base >> 32;
6733 #endif
6734         desc->type = var.type;
6735         desc->s = var.s;
6736         desc->dpl = var.dpl;
6737         desc->p = var.present;
6738         desc->avl = var.avl;
6739         desc->l = var.l;
6740         desc->d = var.db;
6741         desc->g = var.g;
6742
6743         return true;
6744 }
6745
6746 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6747                                  struct desc_struct *desc, u32 base3,
6748                                  int seg)
6749 {
6750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751         struct kvm_segment var;
6752
6753         var.selector = selector;
6754         var.base = get_desc_base(desc);
6755 #ifdef CONFIG_X86_64
6756         var.base |= ((u64)base3) << 32;
6757 #endif
6758         var.limit = get_desc_limit(desc);
6759         if (desc->g)
6760                 var.limit = (var.limit << 12) | 0xfff;
6761         var.type = desc->type;
6762         var.dpl = desc->dpl;
6763         var.db = desc->d;
6764         var.s = desc->s;
6765         var.l = desc->l;
6766         var.g = desc->g;
6767         var.avl = desc->avl;
6768         var.present = desc->p;
6769         var.unusable = !var.present;
6770         var.padding = 0;
6771
6772         kvm_set_segment(vcpu, &var, seg);
6773         return;
6774 }
6775
6776 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6777                             u32 msr_index, u64 *pdata)
6778 {
6779         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6780         int r;
6781
6782         r = kvm_get_msr(vcpu, msr_index, pdata);
6783
6784         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6785                 /* Bounce to user space */
6786                 return X86EMUL_IO_NEEDED;
6787         }
6788
6789         return r;
6790 }
6791
6792 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6793                             u32 msr_index, u64 data)
6794 {
6795         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6796         int r;
6797
6798         r = kvm_set_msr(vcpu, msr_index, data);
6799
6800         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6801                 /* Bounce to user space */
6802                 return X86EMUL_IO_NEEDED;
6803         }
6804
6805         return r;
6806 }
6807
6808 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6809 {
6810         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6811
6812         return vcpu->arch.smbase;
6813 }
6814
6815 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6816 {
6817         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6818
6819         vcpu->arch.smbase = smbase;
6820 }
6821
6822 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6823                               u32 pmc)
6824 {
6825         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6826 }
6827
6828 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6829                              u32 pmc, u64 *pdata)
6830 {
6831         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6832 }
6833
6834 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6835 {
6836         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6837 }
6838
6839 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6840                               struct x86_instruction_info *info,
6841                               enum x86_intercept_stage stage)
6842 {
6843         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6844                                             &ctxt->exception);
6845 }
6846
6847 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6848                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6849                               bool exact_only)
6850 {
6851         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6852 }
6853
6854 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6855 {
6856         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6857 }
6858
6859 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6860 {
6861         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6862 }
6863
6864 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6865 {
6866         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6867 }
6868
6869 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6870 {
6871         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6872 }
6873
6874 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6875 {
6876         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6877 }
6878
6879 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6880 {
6881         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6882 }
6883
6884 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6885 {
6886         return emul_to_vcpu(ctxt)->arch.hflags;
6887 }
6888
6889 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6890 {
6891         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6892 }
6893
6894 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6895                                   const char *smstate)
6896 {
6897         return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6898 }
6899
6900 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6901 {
6902         kvm_smm_changed(emul_to_vcpu(ctxt));
6903 }
6904
6905 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6906 {
6907         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6908 }
6909
6910 static const struct x86_emulate_ops emulate_ops = {
6911         .read_gpr            = emulator_read_gpr,
6912         .write_gpr           = emulator_write_gpr,
6913         .read_std            = emulator_read_std,
6914         .write_std           = emulator_write_std,
6915         .read_phys           = kvm_read_guest_phys_system,
6916         .fetch               = kvm_fetch_guest_virt,
6917         .read_emulated       = emulator_read_emulated,
6918         .write_emulated      = emulator_write_emulated,
6919         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6920         .invlpg              = emulator_invlpg,
6921         .pio_in_emulated     = emulator_pio_in_emulated,
6922         .pio_out_emulated    = emulator_pio_out_emulated,
6923         .get_segment         = emulator_get_segment,
6924         .set_segment         = emulator_set_segment,
6925         .get_cached_segment_base = emulator_get_cached_segment_base,
6926         .get_gdt             = emulator_get_gdt,
6927         .get_idt             = emulator_get_idt,
6928         .set_gdt             = emulator_set_gdt,
6929         .set_idt             = emulator_set_idt,
6930         .get_cr              = emulator_get_cr,
6931         .set_cr              = emulator_set_cr,
6932         .cpl                 = emulator_get_cpl,
6933         .get_dr              = emulator_get_dr,
6934         .set_dr              = emulator_set_dr,
6935         .get_smbase          = emulator_get_smbase,
6936         .set_smbase          = emulator_set_smbase,
6937         .set_msr             = emulator_set_msr,
6938         .get_msr             = emulator_get_msr,
6939         .check_pmc           = emulator_check_pmc,
6940         .read_pmc            = emulator_read_pmc,
6941         .halt                = emulator_halt,
6942         .wbinvd              = emulator_wbinvd,
6943         .fix_hypercall       = emulator_fix_hypercall,
6944         .intercept           = emulator_intercept,
6945         .get_cpuid           = emulator_get_cpuid,
6946         .guest_has_long_mode = emulator_guest_has_long_mode,
6947         .guest_has_movbe     = emulator_guest_has_movbe,
6948         .guest_has_fxsr      = emulator_guest_has_fxsr,
6949         .set_nmi_mask        = emulator_set_nmi_mask,
6950         .get_hflags          = emulator_get_hflags,
6951         .set_hflags          = emulator_set_hflags,
6952         .pre_leave_smm       = emulator_pre_leave_smm,
6953         .post_leave_smm      = emulator_post_leave_smm,
6954         .set_xcr             = emulator_set_xcr,
6955 };
6956
6957 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6958 {
6959         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
6960         /*
6961          * an sti; sti; sequence only disable interrupts for the first
6962          * instruction. So, if the last instruction, be it emulated or
6963          * not, left the system with the INT_STI flag enabled, it
6964          * means that the last instruction is an sti. We should not
6965          * leave the flag on in this case. The same goes for mov ss
6966          */
6967         if (int_shadow & mask)
6968                 mask = 0;
6969         if (unlikely(int_shadow || mask)) {
6970                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6971                 if (!mask)
6972                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6973         }
6974 }
6975
6976 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6977 {
6978         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6979         if (ctxt->exception.vector == PF_VECTOR)
6980                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6981
6982         if (ctxt->exception.error_code_valid)
6983                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6984                                       ctxt->exception.error_code);
6985         else
6986                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6987         return false;
6988 }
6989
6990 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6991 {
6992         struct x86_emulate_ctxt *ctxt;
6993
6994         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6995         if (!ctxt) {
6996                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6997                 return NULL;
6998         }
6999
7000         ctxt->vcpu = vcpu;
7001         ctxt->ops = &emulate_ops;
7002         vcpu->arch.emulate_ctxt = ctxt;
7003
7004         return ctxt;
7005 }
7006
7007 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7008 {
7009         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7010         int cs_db, cs_l;
7011
7012         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7013
7014         ctxt->gpa_available = false;
7015         ctxt->eflags = kvm_get_rflags(vcpu);
7016         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7017
7018         ctxt->eip = kvm_rip_read(vcpu);
7019         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7020                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7021                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7022                      cs_db                              ? X86EMUL_MODE_PROT32 :
7023                                                           X86EMUL_MODE_PROT16;
7024         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7025         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7026         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7027
7028         init_decode_cache(ctxt);
7029         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7030 }
7031
7032 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7033 {
7034         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7035         int ret;
7036
7037         init_emulate_ctxt(vcpu);
7038
7039         ctxt->op_bytes = 2;
7040         ctxt->ad_bytes = 2;
7041         ctxt->_eip = ctxt->eip + inc_eip;
7042         ret = emulate_int_real(ctxt, irq);
7043
7044         if (ret != X86EMUL_CONTINUE) {
7045                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7046         } else {
7047                 ctxt->eip = ctxt->_eip;
7048                 kvm_rip_write(vcpu, ctxt->eip);
7049                 kvm_set_rflags(vcpu, ctxt->eflags);
7050         }
7051 }
7052 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7053
7054 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7055 {
7056         ++vcpu->stat.insn_emulation_fail;
7057         trace_kvm_emulate_insn_failed(vcpu);
7058
7059         if (emulation_type & EMULTYPE_VMWARE_GP) {
7060                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7061                 return 1;
7062         }
7063
7064         if (emulation_type & EMULTYPE_SKIP) {
7065                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7066                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7067                 vcpu->run->internal.ndata = 0;
7068                 return 0;
7069         }
7070
7071         kvm_queue_exception(vcpu, UD_VECTOR);
7072
7073         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7074                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7075                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7076                 vcpu->run->internal.ndata = 0;
7077                 return 0;
7078         }
7079
7080         return 1;
7081 }
7082
7083 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7084                                   bool write_fault_to_shadow_pgtable,
7085                                   int emulation_type)
7086 {
7087         gpa_t gpa = cr2_or_gpa;
7088         kvm_pfn_t pfn;
7089
7090         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7091                 return false;
7092
7093         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7094             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7095                 return false;
7096
7097         if (!vcpu->arch.mmu->direct_map) {
7098                 /*
7099                  * Write permission should be allowed since only
7100                  * write access need to be emulated.
7101                  */
7102                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7103
7104                 /*
7105                  * If the mapping is invalid in guest, let cpu retry
7106                  * it to generate fault.
7107                  */
7108                 if (gpa == UNMAPPED_GVA)
7109                         return true;
7110         }
7111
7112         /*
7113          * Do not retry the unhandleable instruction if it faults on the
7114          * readonly host memory, otherwise it will goto a infinite loop:
7115          * retry instruction -> write #PF -> emulation fail -> retry
7116          * instruction -> ...
7117          */
7118         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7119
7120         /*
7121          * If the instruction failed on the error pfn, it can not be fixed,
7122          * report the error to userspace.
7123          */
7124         if (is_error_noslot_pfn(pfn))
7125                 return false;
7126
7127         kvm_release_pfn_clean(pfn);
7128
7129         /* The instructions are well-emulated on direct mmu. */
7130         if (vcpu->arch.mmu->direct_map) {
7131                 unsigned int indirect_shadow_pages;
7132
7133                 write_lock(&vcpu->kvm->mmu_lock);
7134                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7135                 write_unlock(&vcpu->kvm->mmu_lock);
7136
7137                 if (indirect_shadow_pages)
7138                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7139
7140                 return true;
7141         }
7142
7143         /*
7144          * if emulation was due to access to shadowed page table
7145          * and it failed try to unshadow page and re-enter the
7146          * guest to let CPU execute the instruction.
7147          */
7148         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7149
7150         /*
7151          * If the access faults on its page table, it can not
7152          * be fixed by unprotecting shadow page and it should
7153          * be reported to userspace.
7154          */
7155         return !write_fault_to_shadow_pgtable;
7156 }
7157
7158 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7159                               gpa_t cr2_or_gpa,  int emulation_type)
7160 {
7161         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7162         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7163
7164         last_retry_eip = vcpu->arch.last_retry_eip;
7165         last_retry_addr = vcpu->arch.last_retry_addr;
7166
7167         /*
7168          * If the emulation is caused by #PF and it is non-page_table
7169          * writing instruction, it means the VM-EXIT is caused by shadow
7170          * page protected, we can zap the shadow page and retry this
7171          * instruction directly.
7172          *
7173          * Note: if the guest uses a non-page-table modifying instruction
7174          * on the PDE that points to the instruction, then we will unmap
7175          * the instruction and go to an infinite loop. So, we cache the
7176          * last retried eip and the last fault address, if we meet the eip
7177          * and the address again, we can break out of the potential infinite
7178          * loop.
7179          */
7180         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7181
7182         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7183                 return false;
7184
7185         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7186             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7187                 return false;
7188
7189         if (x86_page_table_writing_insn(ctxt))
7190                 return false;
7191
7192         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7193                 return false;
7194
7195         vcpu->arch.last_retry_eip = ctxt->eip;
7196         vcpu->arch.last_retry_addr = cr2_or_gpa;
7197
7198         if (!vcpu->arch.mmu->direct_map)
7199                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7200
7201         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7202
7203         return true;
7204 }
7205
7206 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7207 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7208
7209 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7210 {
7211         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7212                 /* This is a good place to trace that we are exiting SMM.  */
7213                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7214
7215                 /* Process a latched INIT or SMI, if any.  */
7216                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7217         }
7218
7219         kvm_mmu_reset_context(vcpu);
7220 }
7221
7222 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7223                                 unsigned long *db)
7224 {
7225         u32 dr6 = 0;
7226         int i;
7227         u32 enable, rwlen;
7228
7229         enable = dr7;
7230         rwlen = dr7 >> 16;
7231         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7232                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7233                         dr6 |= (1 << i);
7234         return dr6;
7235 }
7236
7237 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7238 {
7239         struct kvm_run *kvm_run = vcpu->run;
7240
7241         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7242                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7243                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7244                 kvm_run->debug.arch.exception = DB_VECTOR;
7245                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7246                 return 0;
7247         }
7248         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7249         return 1;
7250 }
7251
7252 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7253 {
7254         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7255         int r;
7256
7257         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7258         if (unlikely(!r))
7259                 return 0;
7260
7261         /*
7262          * rflags is the old, "raw" value of the flags.  The new value has
7263          * not been saved yet.
7264          *
7265          * This is correct even for TF set by the guest, because "the
7266          * processor will not generate this exception after the instruction
7267          * that sets the TF flag".
7268          */
7269         if (unlikely(rflags & X86_EFLAGS_TF))
7270                 r = kvm_vcpu_do_singlestep(vcpu);
7271         return r;
7272 }
7273 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7274
7275 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7276 {
7277         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7278             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7279                 struct kvm_run *kvm_run = vcpu->run;
7280                 unsigned long eip = kvm_get_linear_rip(vcpu);
7281                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7282                                            vcpu->arch.guest_debug_dr7,
7283                                            vcpu->arch.eff_db);
7284
7285                 if (dr6 != 0) {
7286                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7287                         kvm_run->debug.arch.pc = eip;
7288                         kvm_run->debug.arch.exception = DB_VECTOR;
7289                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7290                         *r = 0;
7291                         return true;
7292                 }
7293         }
7294
7295         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7296             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7297                 unsigned long eip = kvm_get_linear_rip(vcpu);
7298                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7299                                            vcpu->arch.dr7,
7300                                            vcpu->arch.db);
7301
7302                 if (dr6 != 0) {
7303                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7304                         *r = 1;
7305                         return true;
7306                 }
7307         }
7308
7309         return false;
7310 }
7311
7312 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7313 {
7314         switch (ctxt->opcode_len) {
7315         case 1:
7316                 switch (ctxt->b) {
7317                 case 0xe4:      /* IN */
7318                 case 0xe5:
7319                 case 0xec:
7320                 case 0xed:
7321                 case 0xe6:      /* OUT */
7322                 case 0xe7:
7323                 case 0xee:
7324                 case 0xef:
7325                 case 0x6c:      /* INS */
7326                 case 0x6d:
7327                 case 0x6e:      /* OUTS */
7328                 case 0x6f:
7329                         return true;
7330                 }
7331                 break;
7332         case 2:
7333                 switch (ctxt->b) {
7334                 case 0x33:      /* RDPMC */
7335                         return true;
7336                 }
7337                 break;
7338         }
7339
7340         return false;
7341 }
7342
7343 /*
7344  * Decode to be emulated instruction. Return EMULATION_OK if success.
7345  */
7346 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7347                                     void *insn, int insn_len)
7348 {
7349         int r = EMULATION_OK;
7350         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7351
7352         init_emulate_ctxt(vcpu);
7353
7354         /*
7355          * We will reenter on the same instruction since we do not set
7356          * complete_userspace_io. This does not handle watchpoints yet,
7357          * those would be handled in the emulate_ops.
7358          */
7359         if (!(emulation_type & EMULTYPE_SKIP) &&
7360             kvm_vcpu_check_breakpoint(vcpu, &r))
7361                 return r;
7362
7363         ctxt->interruptibility = 0;
7364         ctxt->have_exception = false;
7365         ctxt->exception.vector = -1;
7366         ctxt->perm_ok = false;
7367
7368         ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7369
7370         r = x86_decode_insn(ctxt, insn, insn_len);
7371
7372         trace_kvm_emulate_insn_start(vcpu);
7373         ++vcpu->stat.insn_emulation;
7374
7375         return r;
7376 }
7377 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7378
7379 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7380                             int emulation_type, void *insn, int insn_len)
7381 {
7382         int r;
7383         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7384         bool writeback = true;
7385         bool write_fault_to_spt;
7386
7387         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7388                 return 1;
7389
7390         vcpu->arch.l1tf_flush_l1d = true;
7391
7392         /*
7393          * Clear write_fault_to_shadow_pgtable here to ensure it is
7394          * never reused.
7395          */
7396         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7397         vcpu->arch.write_fault_to_shadow_pgtable = false;
7398
7399         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7400                 kvm_clear_exception_queue(vcpu);
7401
7402                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7403                                                     insn, insn_len);
7404                 if (r != EMULATION_OK)  {
7405                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7406                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7407                                 kvm_queue_exception(vcpu, UD_VECTOR);
7408                                 return 1;
7409                         }
7410                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7411                                                   write_fault_to_spt,
7412                                                   emulation_type))
7413                                 return 1;
7414                         if (ctxt->have_exception) {
7415                                 /*
7416                                  * #UD should result in just EMULATION_FAILED, and trap-like
7417                                  * exception should not be encountered during decode.
7418                                  */
7419                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7420                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7421                                 inject_emulated_exception(vcpu);
7422                                 return 1;
7423                         }
7424                         return handle_emulation_failure(vcpu, emulation_type);
7425                 }
7426         }
7427
7428         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7429             !is_vmware_backdoor_opcode(ctxt)) {
7430                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7431                 return 1;
7432         }
7433
7434         /*
7435          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7436          * for kvm_skip_emulated_instruction().  The caller is responsible for
7437          * updating interruptibility state and injecting single-step #DBs.
7438          */
7439         if (emulation_type & EMULTYPE_SKIP) {
7440                 kvm_rip_write(vcpu, ctxt->_eip);
7441                 if (ctxt->eflags & X86_EFLAGS_RF)
7442                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7443                 return 1;
7444         }
7445
7446         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7447                 return 1;
7448
7449         /* this is needed for vmware backdoor interface to work since it
7450            changes registers values  during IO operation */
7451         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7452                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7453                 emulator_invalidate_register_cache(ctxt);
7454         }
7455
7456 restart:
7457         if (emulation_type & EMULTYPE_PF) {
7458                 /* Save the faulting GPA (cr2) in the address field */
7459                 ctxt->exception.address = cr2_or_gpa;
7460
7461                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7462                 if (vcpu->arch.mmu->direct_map) {
7463                         ctxt->gpa_available = true;
7464                         ctxt->gpa_val = cr2_or_gpa;
7465                 }
7466         } else {
7467                 /* Sanitize the address out of an abundance of paranoia. */
7468                 ctxt->exception.address = 0;
7469         }
7470
7471         r = x86_emulate_insn(ctxt);
7472
7473         if (r == EMULATION_INTERCEPTED)
7474                 return 1;
7475
7476         if (r == EMULATION_FAILED) {
7477                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7478                                         emulation_type))
7479                         return 1;
7480
7481                 return handle_emulation_failure(vcpu, emulation_type);
7482         }
7483
7484         if (ctxt->have_exception) {
7485                 r = 1;
7486                 if (inject_emulated_exception(vcpu))
7487                         return r;
7488         } else if (vcpu->arch.pio.count) {
7489                 if (!vcpu->arch.pio.in) {
7490                         /* FIXME: return into emulator if single-stepping.  */
7491                         vcpu->arch.pio.count = 0;
7492                 } else {
7493                         writeback = false;
7494                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7495                 }
7496                 r = 0;
7497         } else if (vcpu->mmio_needed) {
7498                 ++vcpu->stat.mmio_exits;
7499
7500                 if (!vcpu->mmio_is_write)
7501                         writeback = false;
7502                 r = 0;
7503                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7504         } else if (r == EMULATION_RESTART)
7505                 goto restart;
7506         else
7507                 r = 1;
7508
7509         if (writeback) {
7510                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7511                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7512                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7513                 if (!ctxt->have_exception ||
7514                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7515                         kvm_rip_write(vcpu, ctxt->eip);
7516                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7517                                 r = kvm_vcpu_do_singlestep(vcpu);
7518                         if (kvm_x86_ops.update_emulated_instruction)
7519                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7520                         __kvm_set_rflags(vcpu, ctxt->eflags);
7521                 }
7522
7523                 /*
7524                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7525                  * do nothing, and it will be requested again as soon as
7526                  * the shadow expires.  But we still need to check here,
7527                  * because POPF has no interrupt shadow.
7528                  */
7529                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7530                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7531         } else
7532                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7533
7534         return r;
7535 }
7536
7537 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7538 {
7539         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7540 }
7541 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7542
7543 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7544                                         void *insn, int insn_len)
7545 {
7546         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7547 }
7548 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7549
7550 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7551 {
7552         vcpu->arch.pio.count = 0;
7553         return 1;
7554 }
7555
7556 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7557 {
7558         vcpu->arch.pio.count = 0;
7559
7560         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7561                 return 1;
7562
7563         return kvm_skip_emulated_instruction(vcpu);
7564 }
7565
7566 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7567                             unsigned short port)
7568 {
7569         unsigned long val = kvm_rax_read(vcpu);
7570         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7571
7572         if (ret)
7573                 return ret;
7574
7575         /*
7576          * Workaround userspace that relies on old KVM behavior of %rip being
7577          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7578          */
7579         if (port == 0x7e &&
7580             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7581                 vcpu->arch.complete_userspace_io =
7582                         complete_fast_pio_out_port_0x7e;
7583                 kvm_skip_emulated_instruction(vcpu);
7584         } else {
7585                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7586                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7587         }
7588         return 0;
7589 }
7590
7591 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7592 {
7593         unsigned long val;
7594
7595         /* We should only ever be called with arch.pio.count equal to 1 */
7596         BUG_ON(vcpu->arch.pio.count != 1);
7597
7598         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7599                 vcpu->arch.pio.count = 0;
7600                 return 1;
7601         }
7602
7603         /* For size less than 4 we merge, else we zero extend */
7604         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7605
7606         /*
7607          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7608          * the copy and tracing
7609          */
7610         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7611         kvm_rax_write(vcpu, val);
7612
7613         return kvm_skip_emulated_instruction(vcpu);
7614 }
7615
7616 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7617                            unsigned short port)
7618 {
7619         unsigned long val;
7620         int ret;
7621
7622         /* For size less than 4 we merge, else we zero extend */
7623         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7624
7625         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7626         if (ret) {
7627                 kvm_rax_write(vcpu, val);
7628                 return ret;
7629         }
7630
7631         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7632         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7633
7634         return 0;
7635 }
7636
7637 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7638 {
7639         int ret;
7640
7641         if (in)
7642                 ret = kvm_fast_pio_in(vcpu, size, port);
7643         else
7644                 ret = kvm_fast_pio_out(vcpu, size, port);
7645         return ret && kvm_skip_emulated_instruction(vcpu);
7646 }
7647 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7648
7649 static int kvmclock_cpu_down_prep(unsigned int cpu)
7650 {
7651         __this_cpu_write(cpu_tsc_khz, 0);
7652         return 0;
7653 }
7654
7655 static void tsc_khz_changed(void *data)
7656 {
7657         struct cpufreq_freqs *freq = data;
7658         unsigned long khz = 0;
7659
7660         if (data)
7661                 khz = freq->new;
7662         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7663                 khz = cpufreq_quick_get(raw_smp_processor_id());
7664         if (!khz)
7665                 khz = tsc_khz;
7666         __this_cpu_write(cpu_tsc_khz, khz);
7667 }
7668
7669 #ifdef CONFIG_X86_64
7670 static void kvm_hyperv_tsc_notifier(void)
7671 {
7672         struct kvm *kvm;
7673         struct kvm_vcpu *vcpu;
7674         int cpu;
7675
7676         mutex_lock(&kvm_lock);
7677         list_for_each_entry(kvm, &vm_list, vm_list)
7678                 kvm_make_mclock_inprogress_request(kvm);
7679
7680         hyperv_stop_tsc_emulation();
7681
7682         /* TSC frequency always matches when on Hyper-V */
7683         for_each_present_cpu(cpu)
7684                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7685         kvm_max_guest_tsc_khz = tsc_khz;
7686
7687         list_for_each_entry(kvm, &vm_list, vm_list) {
7688                 struct kvm_arch *ka = &kvm->arch;
7689
7690                 spin_lock(&ka->pvclock_gtod_sync_lock);
7691
7692                 pvclock_update_vm_gtod_copy(kvm);
7693
7694                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7695                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7696
7697                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7698                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7699
7700                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7701         }
7702         mutex_unlock(&kvm_lock);
7703 }
7704 #endif
7705
7706 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7707 {
7708         struct kvm *kvm;
7709         struct kvm_vcpu *vcpu;
7710         int i, send_ipi = 0;
7711
7712         /*
7713          * We allow guests to temporarily run on slowing clocks,
7714          * provided we notify them after, or to run on accelerating
7715          * clocks, provided we notify them before.  Thus time never
7716          * goes backwards.
7717          *
7718          * However, we have a problem.  We can't atomically update
7719          * the frequency of a given CPU from this function; it is
7720          * merely a notifier, which can be called from any CPU.
7721          * Changing the TSC frequency at arbitrary points in time
7722          * requires a recomputation of local variables related to
7723          * the TSC for each VCPU.  We must flag these local variables
7724          * to be updated and be sure the update takes place with the
7725          * new frequency before any guests proceed.
7726          *
7727          * Unfortunately, the combination of hotplug CPU and frequency
7728          * change creates an intractable locking scenario; the order
7729          * of when these callouts happen is undefined with respect to
7730          * CPU hotplug, and they can race with each other.  As such,
7731          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7732          * undefined; you can actually have a CPU frequency change take
7733          * place in between the computation of X and the setting of the
7734          * variable.  To protect against this problem, all updates of
7735          * the per_cpu tsc_khz variable are done in an interrupt
7736          * protected IPI, and all callers wishing to update the value
7737          * must wait for a synchronous IPI to complete (which is trivial
7738          * if the caller is on the CPU already).  This establishes the
7739          * necessary total order on variable updates.
7740          *
7741          * Note that because a guest time update may take place
7742          * anytime after the setting of the VCPU's request bit, the
7743          * correct TSC value must be set before the request.  However,
7744          * to ensure the update actually makes it to any guest which
7745          * starts running in hardware virtualization between the set
7746          * and the acquisition of the spinlock, we must also ping the
7747          * CPU after setting the request bit.
7748          *
7749          */
7750
7751         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7752
7753         mutex_lock(&kvm_lock);
7754         list_for_each_entry(kvm, &vm_list, vm_list) {
7755                 kvm_for_each_vcpu(i, vcpu, kvm) {
7756                         if (vcpu->cpu != cpu)
7757                                 continue;
7758                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7759                         if (vcpu->cpu != raw_smp_processor_id())
7760                                 send_ipi = 1;
7761                 }
7762         }
7763         mutex_unlock(&kvm_lock);
7764
7765         if (freq->old < freq->new && send_ipi) {
7766                 /*
7767                  * We upscale the frequency.  Must make the guest
7768                  * doesn't see old kvmclock values while running with
7769                  * the new frequency, otherwise we risk the guest sees
7770                  * time go backwards.
7771                  *
7772                  * In case we update the frequency for another cpu
7773                  * (which might be in guest context) send an interrupt
7774                  * to kick the cpu out of guest context.  Next time
7775                  * guest context is entered kvmclock will be updated,
7776                  * so the guest will not see stale values.
7777                  */
7778                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7779         }
7780 }
7781
7782 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7783                                      void *data)
7784 {
7785         struct cpufreq_freqs *freq = data;
7786         int cpu;
7787
7788         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7789                 return 0;
7790         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7791                 return 0;
7792
7793         for_each_cpu(cpu, freq->policy->cpus)
7794                 __kvmclock_cpufreq_notifier(freq, cpu);
7795
7796         return 0;
7797 }
7798
7799 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7800         .notifier_call  = kvmclock_cpufreq_notifier
7801 };
7802
7803 static int kvmclock_cpu_online(unsigned int cpu)
7804 {
7805         tsc_khz_changed(NULL);
7806         return 0;
7807 }
7808
7809 static void kvm_timer_init(void)
7810 {
7811         max_tsc_khz = tsc_khz;
7812
7813         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7814 #ifdef CONFIG_CPU_FREQ
7815                 struct cpufreq_policy *policy;
7816                 int cpu;
7817
7818                 cpu = get_cpu();
7819                 policy = cpufreq_cpu_get(cpu);
7820                 if (policy) {
7821                         if (policy->cpuinfo.max_freq)
7822                                 max_tsc_khz = policy->cpuinfo.max_freq;
7823                         cpufreq_cpu_put(policy);
7824                 }
7825                 put_cpu();
7826 #endif
7827                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7828                                           CPUFREQ_TRANSITION_NOTIFIER);
7829         }
7830
7831         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7832                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7833 }
7834
7835 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7836 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7837
7838 int kvm_is_in_guest(void)
7839 {
7840         return __this_cpu_read(current_vcpu) != NULL;
7841 }
7842
7843 static int kvm_is_user_mode(void)
7844 {
7845         int user_mode = 3;
7846
7847         if (__this_cpu_read(current_vcpu))
7848                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7849
7850         return user_mode != 0;
7851 }
7852
7853 static unsigned long kvm_get_guest_ip(void)
7854 {
7855         unsigned long ip = 0;
7856
7857         if (__this_cpu_read(current_vcpu))
7858                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7859
7860         return ip;
7861 }
7862
7863 static void kvm_handle_intel_pt_intr(void)
7864 {
7865         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7866
7867         kvm_make_request(KVM_REQ_PMI, vcpu);
7868         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7869                         (unsigned long *)&vcpu->arch.pmu.global_status);
7870 }
7871
7872 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7873         .is_in_guest            = kvm_is_in_guest,
7874         .is_user_mode           = kvm_is_user_mode,
7875         .get_guest_ip           = kvm_get_guest_ip,
7876         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7877 };
7878
7879 #ifdef CONFIG_X86_64
7880 static void pvclock_gtod_update_fn(struct work_struct *work)
7881 {
7882         struct kvm *kvm;
7883
7884         struct kvm_vcpu *vcpu;
7885         int i;
7886
7887         mutex_lock(&kvm_lock);
7888         list_for_each_entry(kvm, &vm_list, vm_list)
7889                 kvm_for_each_vcpu(i, vcpu, kvm)
7890                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7891         atomic_set(&kvm_guest_has_master_clock, 0);
7892         mutex_unlock(&kvm_lock);
7893 }
7894
7895 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7896
7897 /*
7898  * Notification about pvclock gtod data update.
7899  */
7900 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7901                                void *priv)
7902 {
7903         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7904         struct timekeeper *tk = priv;
7905
7906         update_pvclock_gtod(tk);
7907
7908         /* disable master clock if host does not trust, or does not
7909          * use, TSC based clocksource.
7910          */
7911         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7912             atomic_read(&kvm_guest_has_master_clock) != 0)
7913                 queue_work(system_long_wq, &pvclock_gtod_work);
7914
7915         return 0;
7916 }
7917
7918 static struct notifier_block pvclock_gtod_notifier = {
7919         .notifier_call = pvclock_gtod_notify,
7920 };
7921 #endif
7922
7923 int kvm_arch_init(void *opaque)
7924 {
7925         struct kvm_x86_init_ops *ops = opaque;
7926         int r;
7927
7928         if (kvm_x86_ops.hardware_enable) {
7929                 printk(KERN_ERR "kvm: already loaded the other module\n");
7930                 r = -EEXIST;
7931                 goto out;
7932         }
7933
7934         if (!ops->cpu_has_kvm_support()) {
7935                 pr_err_ratelimited("kvm: no hardware support\n");
7936                 r = -EOPNOTSUPP;
7937                 goto out;
7938         }
7939         if (ops->disabled_by_bios()) {
7940                 pr_err_ratelimited("kvm: disabled by bios\n");
7941                 r = -EOPNOTSUPP;
7942                 goto out;
7943         }
7944
7945         /*
7946          * KVM explicitly assumes that the guest has an FPU and
7947          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7948          * vCPU's FPU state as a fxregs_state struct.
7949          */
7950         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7951                 printk(KERN_ERR "kvm: inadequate fpu\n");
7952                 r = -EOPNOTSUPP;
7953                 goto out;
7954         }
7955
7956         r = -ENOMEM;
7957         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7958                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7959                                           NULL);
7960         if (!x86_fpu_cache) {
7961                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7962                 goto out;
7963         }
7964
7965         x86_emulator_cache = kvm_alloc_emulator_cache();
7966         if (!x86_emulator_cache) {
7967                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7968                 goto out_free_x86_fpu_cache;
7969         }
7970
7971         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7972         if (!user_return_msrs) {
7973                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7974                 goto out_free_x86_emulator_cache;
7975         }
7976
7977         r = kvm_mmu_module_init();
7978         if (r)
7979                 goto out_free_percpu;
7980
7981         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7982                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7983                         PT_PRESENT_MASK, 0, sme_me_mask);
7984         kvm_timer_init();
7985
7986         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7987
7988         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7989                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7990                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7991         }
7992
7993         if (pi_inject_timer == -1)
7994                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7995 #ifdef CONFIG_X86_64
7996         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7997
7998         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7999                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8000 #endif
8001
8002         return 0;
8003
8004 out_free_percpu:
8005         free_percpu(user_return_msrs);
8006 out_free_x86_emulator_cache:
8007         kmem_cache_destroy(x86_emulator_cache);
8008 out_free_x86_fpu_cache:
8009         kmem_cache_destroy(x86_fpu_cache);
8010 out:
8011         return r;
8012 }
8013
8014 void kvm_arch_exit(void)
8015 {
8016 #ifdef CONFIG_X86_64
8017         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8018                 clear_hv_tscchange_cb();
8019 #endif
8020         kvm_lapic_exit();
8021         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8022
8023         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8024                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8025                                             CPUFREQ_TRANSITION_NOTIFIER);
8026         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8027 #ifdef CONFIG_X86_64
8028         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8029 #endif
8030         kvm_x86_ops.hardware_enable = NULL;
8031         kvm_mmu_module_exit();
8032         free_percpu(user_return_msrs);
8033         kmem_cache_destroy(x86_fpu_cache);
8034         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8035 }
8036
8037 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8038 {
8039         ++vcpu->stat.halt_exits;
8040         if (lapic_in_kernel(vcpu)) {
8041                 vcpu->arch.mp_state = state;
8042                 return 1;
8043         } else {
8044                 vcpu->run->exit_reason = reason;
8045                 return 0;
8046         }
8047 }
8048
8049 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8050 {
8051         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8052 }
8053 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8054
8055 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8056 {
8057         int ret = kvm_skip_emulated_instruction(vcpu);
8058         /*
8059          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8060          * KVM_EXIT_DEBUG here.
8061          */
8062         return kvm_vcpu_halt(vcpu) && ret;
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8065
8066 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8067 {
8068         int ret = kvm_skip_emulated_instruction(vcpu);
8069
8070         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8071 }
8072 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8073
8074 #ifdef CONFIG_X86_64
8075 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8076                                 unsigned long clock_type)
8077 {
8078         struct kvm_clock_pairing clock_pairing;
8079         struct timespec64 ts;
8080         u64 cycle;
8081         int ret;
8082
8083         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8084                 return -KVM_EOPNOTSUPP;
8085
8086         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8087                 return -KVM_EOPNOTSUPP;
8088
8089         clock_pairing.sec = ts.tv_sec;
8090         clock_pairing.nsec = ts.tv_nsec;
8091         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8092         clock_pairing.flags = 0;
8093         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8094
8095         ret = 0;
8096         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8097                             sizeof(struct kvm_clock_pairing)))
8098                 ret = -KVM_EFAULT;
8099
8100         return ret;
8101 }
8102 #endif
8103
8104 /*
8105  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8106  *
8107  * @apicid - apicid of vcpu to be kicked.
8108  */
8109 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8110 {
8111         struct kvm_lapic_irq lapic_irq;
8112
8113         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8114         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8115         lapic_irq.level = 0;
8116         lapic_irq.dest_id = apicid;
8117         lapic_irq.msi_redir_hint = false;
8118
8119         lapic_irq.delivery_mode = APIC_DM_REMRD;
8120         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8121 }
8122
8123 bool kvm_apicv_activated(struct kvm *kvm)
8124 {
8125         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8126 }
8127 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8128
8129 void kvm_apicv_init(struct kvm *kvm, bool enable)
8130 {
8131         if (enable)
8132                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8133                           &kvm->arch.apicv_inhibit_reasons);
8134         else
8135                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8136                         &kvm->arch.apicv_inhibit_reasons);
8137 }
8138 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8139
8140 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8141 {
8142         struct kvm_vcpu *target = NULL;
8143         struct kvm_apic_map *map;
8144
8145         rcu_read_lock();
8146         map = rcu_dereference(kvm->arch.apic_map);
8147
8148         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8149                 target = map->phys_map[dest_id]->vcpu;
8150
8151         rcu_read_unlock();
8152
8153         if (target && READ_ONCE(target->ready))
8154                 kvm_vcpu_yield_to(target);
8155 }
8156
8157 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8158 {
8159         unsigned long nr, a0, a1, a2, a3, ret;
8160         int op_64_bit;
8161
8162         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8163                 return kvm_xen_hypercall(vcpu);
8164
8165         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8166                 return kvm_hv_hypercall(vcpu);
8167
8168         nr = kvm_rax_read(vcpu);
8169         a0 = kvm_rbx_read(vcpu);
8170         a1 = kvm_rcx_read(vcpu);
8171         a2 = kvm_rdx_read(vcpu);
8172         a3 = kvm_rsi_read(vcpu);
8173
8174         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8175
8176         op_64_bit = is_64_bit_mode(vcpu);
8177         if (!op_64_bit) {
8178                 nr &= 0xFFFFFFFF;
8179                 a0 &= 0xFFFFFFFF;
8180                 a1 &= 0xFFFFFFFF;
8181                 a2 &= 0xFFFFFFFF;
8182                 a3 &= 0xFFFFFFFF;
8183         }
8184
8185         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8186                 ret = -KVM_EPERM;
8187                 goto out;
8188         }
8189
8190         ret = -KVM_ENOSYS;
8191
8192         switch (nr) {
8193         case KVM_HC_VAPIC_POLL_IRQ:
8194                 ret = 0;
8195                 break;
8196         case KVM_HC_KICK_CPU:
8197                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8198                         break;
8199
8200                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8201                 kvm_sched_yield(vcpu->kvm, a1);
8202                 ret = 0;
8203                 break;
8204 #ifdef CONFIG_X86_64
8205         case KVM_HC_CLOCK_PAIRING:
8206                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8207                 break;
8208 #endif
8209         case KVM_HC_SEND_IPI:
8210                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8211                         break;
8212
8213                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8214                 break;
8215         case KVM_HC_SCHED_YIELD:
8216                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8217                         break;
8218
8219                 kvm_sched_yield(vcpu->kvm, a0);
8220                 ret = 0;
8221                 break;
8222         default:
8223                 ret = -KVM_ENOSYS;
8224                 break;
8225         }
8226 out:
8227         if (!op_64_bit)
8228                 ret = (u32)ret;
8229         kvm_rax_write(vcpu, ret);
8230
8231         ++vcpu->stat.hypercalls;
8232         return kvm_skip_emulated_instruction(vcpu);
8233 }
8234 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8235
8236 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8237 {
8238         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8239         char instruction[3];
8240         unsigned long rip = kvm_rip_read(vcpu);
8241
8242         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8243
8244         return emulator_write_emulated(ctxt, rip, instruction, 3,
8245                 &ctxt->exception);
8246 }
8247
8248 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8249 {
8250         return vcpu->run->request_interrupt_window &&
8251                 likely(!pic_in_kernel(vcpu->kvm));
8252 }
8253
8254 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8255 {
8256         struct kvm_run *kvm_run = vcpu->run;
8257
8258         /*
8259          * if_flag is obsolete and useless, so do not bother
8260          * setting it for SEV-ES guests.  Userspace can just
8261          * use kvm_run->ready_for_interrupt_injection.
8262          */
8263         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8264                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8265
8266         kvm_run->cr8 = kvm_get_cr8(vcpu);
8267         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8268         kvm_run->ready_for_interrupt_injection =
8269                 pic_in_kernel(vcpu->kvm) ||
8270                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8271
8272         if (is_smm(vcpu))
8273                 kvm_run->flags |= KVM_RUN_X86_SMM;
8274 }
8275
8276 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8277 {
8278         int max_irr, tpr;
8279
8280         if (!kvm_x86_ops.update_cr8_intercept)
8281                 return;
8282
8283         if (!lapic_in_kernel(vcpu))
8284                 return;
8285
8286         if (vcpu->arch.apicv_active)
8287                 return;
8288
8289         if (!vcpu->arch.apic->vapic_addr)
8290                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8291         else
8292                 max_irr = -1;
8293
8294         if (max_irr != -1)
8295                 max_irr >>= 4;
8296
8297         tpr = kvm_lapic_get_cr8(vcpu);
8298
8299         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8300 }
8301
8302 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8303 {
8304         int r;
8305         bool can_inject = true;
8306
8307         /* try to reinject previous events if any */
8308
8309         if (vcpu->arch.exception.injected) {
8310                 static_call(kvm_x86_queue_exception)(vcpu);
8311                 can_inject = false;
8312         }
8313         /*
8314          * Do not inject an NMI or interrupt if there is a pending
8315          * exception.  Exceptions and interrupts are recognized at
8316          * instruction boundaries, i.e. the start of an instruction.
8317          * Trap-like exceptions, e.g. #DB, have higher priority than
8318          * NMIs and interrupts, i.e. traps are recognized before an
8319          * NMI/interrupt that's pending on the same instruction.
8320          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8321          * priority, but are only generated (pended) during instruction
8322          * execution, i.e. a pending fault-like exception means the
8323          * fault occurred on the *previous* instruction and must be
8324          * serviced prior to recognizing any new events in order to
8325          * fully complete the previous instruction.
8326          */
8327         else if (!vcpu->arch.exception.pending) {
8328                 if (vcpu->arch.nmi_injected) {
8329                         static_call(kvm_x86_set_nmi)(vcpu);
8330                         can_inject = false;
8331                 } else if (vcpu->arch.interrupt.injected) {
8332                         static_call(kvm_x86_set_irq)(vcpu);
8333                         can_inject = false;
8334                 }
8335         }
8336
8337         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8338                      vcpu->arch.exception.pending);
8339
8340         /*
8341          * Call check_nested_events() even if we reinjected a previous event
8342          * in order for caller to determine if it should require immediate-exit
8343          * from L2 to L1 due to pending L1 events which require exit
8344          * from L2 to L1.
8345          */
8346         if (is_guest_mode(vcpu)) {
8347                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8348                 if (r < 0)
8349                         goto busy;
8350         }
8351
8352         /* try to inject new event if pending */
8353         if (vcpu->arch.exception.pending) {
8354                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8355                                         vcpu->arch.exception.has_error_code,
8356                                         vcpu->arch.exception.error_code);
8357
8358                 vcpu->arch.exception.pending = false;
8359                 vcpu->arch.exception.injected = true;
8360
8361                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8362                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8363                                              X86_EFLAGS_RF);
8364
8365                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8366                         kvm_deliver_exception_payload(vcpu);
8367                         if (vcpu->arch.dr7 & DR7_GD) {
8368                                 vcpu->arch.dr7 &= ~DR7_GD;
8369                                 kvm_update_dr7(vcpu);
8370                         }
8371                 }
8372
8373                 static_call(kvm_x86_queue_exception)(vcpu);
8374                 can_inject = false;
8375         }
8376
8377         /*
8378          * Finally, inject interrupt events.  If an event cannot be injected
8379          * due to architectural conditions (e.g. IF=0) a window-open exit
8380          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8381          * and can architecturally be injected, but we cannot do it right now:
8382          * an interrupt could have arrived just now and we have to inject it
8383          * as a vmexit, or there could already an event in the queue, which is
8384          * indicated by can_inject.  In that case we request an immediate exit
8385          * in order to make progress and get back here for another iteration.
8386          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8387          */
8388         if (vcpu->arch.smi_pending) {
8389                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8390                 if (r < 0)
8391                         goto busy;
8392                 if (r) {
8393                         vcpu->arch.smi_pending = false;
8394                         ++vcpu->arch.smi_count;
8395                         enter_smm(vcpu);
8396                         can_inject = false;
8397                 } else
8398                         static_call(kvm_x86_enable_smi_window)(vcpu);
8399         }
8400
8401         if (vcpu->arch.nmi_pending) {
8402                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8403                 if (r < 0)
8404                         goto busy;
8405                 if (r) {
8406                         --vcpu->arch.nmi_pending;
8407                         vcpu->arch.nmi_injected = true;
8408                         static_call(kvm_x86_set_nmi)(vcpu);
8409                         can_inject = false;
8410                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8411                 }
8412                 if (vcpu->arch.nmi_pending)
8413                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8414         }
8415
8416         if (kvm_cpu_has_injectable_intr(vcpu)) {
8417                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8418                 if (r < 0)
8419                         goto busy;
8420                 if (r) {
8421                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8422                         static_call(kvm_x86_set_irq)(vcpu);
8423                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8424                 }
8425                 if (kvm_cpu_has_injectable_intr(vcpu))
8426                         static_call(kvm_x86_enable_irq_window)(vcpu);
8427         }
8428
8429         if (is_guest_mode(vcpu) &&
8430             kvm_x86_ops.nested_ops->hv_timer_pending &&
8431             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8432                 *req_immediate_exit = true;
8433
8434         WARN_ON(vcpu->arch.exception.pending);
8435         return;
8436
8437 busy:
8438         *req_immediate_exit = true;
8439         return;
8440 }
8441
8442 static void process_nmi(struct kvm_vcpu *vcpu)
8443 {
8444         unsigned limit = 2;
8445
8446         /*
8447          * x86 is limited to one NMI running, and one NMI pending after it.
8448          * If an NMI is already in progress, limit further NMIs to just one.
8449          * Otherwise, allow two (and we'll inject the first one immediately).
8450          */
8451         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8452                 limit = 1;
8453
8454         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8455         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8456         kvm_make_request(KVM_REQ_EVENT, vcpu);
8457 }
8458
8459 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8460 {
8461         u32 flags = 0;
8462         flags |= seg->g       << 23;
8463         flags |= seg->db      << 22;
8464         flags |= seg->l       << 21;
8465         flags |= seg->avl     << 20;
8466         flags |= seg->present << 15;
8467         flags |= seg->dpl     << 13;
8468         flags |= seg->s       << 12;
8469         flags |= seg->type    << 8;
8470         return flags;
8471 }
8472
8473 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8474 {
8475         struct kvm_segment seg;
8476         int offset;
8477
8478         kvm_get_segment(vcpu, &seg, n);
8479         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8480
8481         if (n < 3)
8482                 offset = 0x7f84 + n * 12;
8483         else
8484                 offset = 0x7f2c + (n - 3) * 12;
8485
8486         put_smstate(u32, buf, offset + 8, seg.base);
8487         put_smstate(u32, buf, offset + 4, seg.limit);
8488         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8489 }
8490
8491 #ifdef CONFIG_X86_64
8492 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8493 {
8494         struct kvm_segment seg;
8495         int offset;
8496         u16 flags;
8497
8498         kvm_get_segment(vcpu, &seg, n);
8499         offset = 0x7e00 + n * 16;
8500
8501         flags = enter_smm_get_segment_flags(&seg) >> 8;
8502         put_smstate(u16, buf, offset, seg.selector);
8503         put_smstate(u16, buf, offset + 2, flags);
8504         put_smstate(u32, buf, offset + 4, seg.limit);
8505         put_smstate(u64, buf, offset + 8, seg.base);
8506 }
8507 #endif
8508
8509 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8510 {
8511         struct desc_ptr dt;
8512         struct kvm_segment seg;
8513         unsigned long val;
8514         int i;
8515
8516         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8517         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8518         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8519         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8520
8521         for (i = 0; i < 8; i++)
8522                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8523
8524         kvm_get_dr(vcpu, 6, &val);
8525         put_smstate(u32, buf, 0x7fcc, (u32)val);
8526         kvm_get_dr(vcpu, 7, &val);
8527         put_smstate(u32, buf, 0x7fc8, (u32)val);
8528
8529         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8530         put_smstate(u32, buf, 0x7fc4, seg.selector);
8531         put_smstate(u32, buf, 0x7f64, seg.base);
8532         put_smstate(u32, buf, 0x7f60, seg.limit);
8533         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8534
8535         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8536         put_smstate(u32, buf, 0x7fc0, seg.selector);
8537         put_smstate(u32, buf, 0x7f80, seg.base);
8538         put_smstate(u32, buf, 0x7f7c, seg.limit);
8539         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8540
8541         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8542         put_smstate(u32, buf, 0x7f74, dt.address);
8543         put_smstate(u32, buf, 0x7f70, dt.size);
8544
8545         static_call(kvm_x86_get_idt)(vcpu, &dt);
8546         put_smstate(u32, buf, 0x7f58, dt.address);
8547         put_smstate(u32, buf, 0x7f54, dt.size);
8548
8549         for (i = 0; i < 6; i++)
8550                 enter_smm_save_seg_32(vcpu, buf, i);
8551
8552         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8553
8554         /* revision id */
8555         put_smstate(u32, buf, 0x7efc, 0x00020000);
8556         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8557 }
8558
8559 #ifdef CONFIG_X86_64
8560 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8561 {
8562         struct desc_ptr dt;
8563         struct kvm_segment seg;
8564         unsigned long val;
8565         int i;
8566
8567         for (i = 0; i < 16; i++)
8568                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8569
8570         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8571         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8572
8573         kvm_get_dr(vcpu, 6, &val);
8574         put_smstate(u64, buf, 0x7f68, val);
8575         kvm_get_dr(vcpu, 7, &val);
8576         put_smstate(u64, buf, 0x7f60, val);
8577
8578         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8579         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8580         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8581
8582         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8583
8584         /* revision id */
8585         put_smstate(u32, buf, 0x7efc, 0x00020064);
8586
8587         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8588
8589         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8590         put_smstate(u16, buf, 0x7e90, seg.selector);
8591         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8592         put_smstate(u32, buf, 0x7e94, seg.limit);
8593         put_smstate(u64, buf, 0x7e98, seg.base);
8594
8595         static_call(kvm_x86_get_idt)(vcpu, &dt);
8596         put_smstate(u32, buf, 0x7e84, dt.size);
8597         put_smstate(u64, buf, 0x7e88, dt.address);
8598
8599         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8600         put_smstate(u16, buf, 0x7e70, seg.selector);
8601         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8602         put_smstate(u32, buf, 0x7e74, seg.limit);
8603         put_smstate(u64, buf, 0x7e78, seg.base);
8604
8605         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8606         put_smstate(u32, buf, 0x7e64, dt.size);
8607         put_smstate(u64, buf, 0x7e68, dt.address);
8608
8609         for (i = 0; i < 6; i++)
8610                 enter_smm_save_seg_64(vcpu, buf, i);
8611 }
8612 #endif
8613
8614 static void enter_smm(struct kvm_vcpu *vcpu)
8615 {
8616         struct kvm_segment cs, ds;
8617         struct desc_ptr dt;
8618         char buf[512];
8619         u32 cr0;
8620
8621         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8622         memset(buf, 0, 512);
8623 #ifdef CONFIG_X86_64
8624         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8625                 enter_smm_save_state_64(vcpu, buf);
8626         else
8627 #endif
8628                 enter_smm_save_state_32(vcpu, buf);
8629
8630         /*
8631          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8632          * vCPU state (e.g. leave guest mode) after we've saved the state into
8633          * the SMM state-save area.
8634          */
8635         static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8636
8637         vcpu->arch.hflags |= HF_SMM_MASK;
8638         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8639
8640         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8641                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8642         else
8643                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8644
8645         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8646         kvm_rip_write(vcpu, 0x8000);
8647
8648         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8649         static_call(kvm_x86_set_cr0)(vcpu, cr0);
8650         vcpu->arch.cr0 = cr0;
8651
8652         static_call(kvm_x86_set_cr4)(vcpu, 0);
8653
8654         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8655         dt.address = dt.size = 0;
8656         static_call(kvm_x86_set_idt)(vcpu, &dt);
8657
8658         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8659
8660         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8661         cs.base = vcpu->arch.smbase;
8662
8663         ds.selector = 0;
8664         ds.base = 0;
8665
8666         cs.limit    = ds.limit = 0xffffffff;
8667         cs.type     = ds.type = 0x3;
8668         cs.dpl      = ds.dpl = 0;
8669         cs.db       = ds.db = 0;
8670         cs.s        = ds.s = 1;
8671         cs.l        = ds.l = 0;
8672         cs.g        = ds.g = 1;
8673         cs.avl      = ds.avl = 0;
8674         cs.present  = ds.present = 1;
8675         cs.unusable = ds.unusable = 0;
8676         cs.padding  = ds.padding = 0;
8677
8678         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8679         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8680         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8681         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8682         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8683         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8684
8685 #ifdef CONFIG_X86_64
8686         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8687                 static_call(kvm_x86_set_efer)(vcpu, 0);
8688 #endif
8689
8690         kvm_update_cpuid_runtime(vcpu);
8691         kvm_mmu_reset_context(vcpu);
8692 }
8693
8694 static void process_smi(struct kvm_vcpu *vcpu)
8695 {
8696         vcpu->arch.smi_pending = true;
8697         kvm_make_request(KVM_REQ_EVENT, vcpu);
8698 }
8699
8700 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8701                                        unsigned long *vcpu_bitmap)
8702 {
8703         cpumask_var_t cpus;
8704
8705         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8706
8707         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8708                                     NULL, vcpu_bitmap, cpus);
8709
8710         free_cpumask_var(cpus);
8711 }
8712
8713 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8714 {
8715         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8716 }
8717
8718 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8719 {
8720         if (!lapic_in_kernel(vcpu))
8721                 return;
8722
8723         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8724         kvm_apic_update_apicv(vcpu);
8725         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8726 }
8727 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8728
8729 /*
8730  * NOTE: Do not hold any lock prior to calling this.
8731  *
8732  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8733  * locked, because it calls __x86_set_memory_region() which does
8734  * synchronize_srcu(&kvm->srcu).
8735  */
8736 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8737 {
8738         struct kvm_vcpu *except;
8739         unsigned long old, new, expected;
8740
8741         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8742             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8743                 return;
8744
8745         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8746         do {
8747                 expected = new = old;
8748                 if (activate)
8749                         __clear_bit(bit, &new);
8750                 else
8751                         __set_bit(bit, &new);
8752                 if (new == old)
8753                         break;
8754                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8755         } while (old != expected);
8756
8757         if (!!old == !!new)
8758                 return;
8759
8760         trace_kvm_apicv_update_request(activate, bit);
8761         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8762                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8763
8764         /*
8765          * Sending request to update APICV for all other vcpus,
8766          * while update the calling vcpu immediately instead of
8767          * waiting for another #VMEXIT to handle the request.
8768          */
8769         except = kvm_get_running_vcpu();
8770         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8771                                          except);
8772         if (except)
8773                 kvm_vcpu_update_apicv(except);
8774 }
8775 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8776
8777 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8778 {
8779         if (!kvm_apic_present(vcpu))
8780                 return;
8781
8782         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8783
8784         if (irqchip_split(vcpu->kvm))
8785                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8786         else {
8787                 if (vcpu->arch.apicv_active)
8788                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8789                 if (ioapic_in_kernel(vcpu->kvm))
8790                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8791         }
8792
8793         if (is_guest_mode(vcpu))
8794                 vcpu->arch.load_eoi_exitmap_pending = true;
8795         else
8796                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8797 }
8798
8799 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8800 {
8801         u64 eoi_exit_bitmap[4];
8802
8803         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8804                 return;
8805
8806         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8807                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8808         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8809 }
8810
8811 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8812                                             unsigned long start, unsigned long end)
8813 {
8814         unsigned long apic_address;
8815
8816         /*
8817          * The physical address of apic access page is stored in the VMCS.
8818          * Update it when it becomes invalid.
8819          */
8820         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8821         if (start <= apic_address && apic_address < end)
8822                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8823 }
8824
8825 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8826 {
8827         if (!lapic_in_kernel(vcpu))
8828                 return;
8829
8830         if (!kvm_x86_ops.set_apic_access_page_addr)
8831                 return;
8832
8833         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8834 }
8835
8836 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8837 {
8838         smp_send_reschedule(vcpu->cpu);
8839 }
8840 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8841
8842 /*
8843  * Returns 1 to let vcpu_run() continue the guest execution loop without
8844  * exiting to the userspace.  Otherwise, the value will be returned to the
8845  * userspace.
8846  */
8847 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8848 {
8849         int r;
8850         bool req_int_win =
8851                 dm_request_for_irq_injection(vcpu) &&
8852                 kvm_cpu_accept_dm_intr(vcpu);
8853         fastpath_t exit_fastpath;
8854
8855         bool req_immediate_exit = false;
8856
8857         /* Forbid vmenter if vcpu dirty ring is soft-full */
8858         if (unlikely(vcpu->kvm->dirty_ring_size &&
8859                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8860                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8861                 trace_kvm_dirty_ring_exit(vcpu);
8862                 r = 0;
8863                 goto out;
8864         }
8865
8866         if (kvm_request_pending(vcpu)) {
8867                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8868                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8869                                 r = 0;
8870                                 goto out;
8871                         }
8872                 }
8873                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8874                         kvm_mmu_unload(vcpu);
8875                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8876                         __kvm_migrate_timers(vcpu);
8877                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8878                         kvm_gen_update_masterclock(vcpu->kvm);
8879                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8880                         kvm_gen_kvmclock_update(vcpu);
8881                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8882                         r = kvm_guest_time_update(vcpu);
8883                         if (unlikely(r))
8884                                 goto out;
8885                 }
8886                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8887                         kvm_mmu_sync_roots(vcpu);
8888                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8889                         kvm_mmu_load_pgd(vcpu);
8890                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8891                         kvm_vcpu_flush_tlb_all(vcpu);
8892
8893                         /* Flushing all ASIDs flushes the current ASID... */
8894                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8895                 }
8896                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8897                         kvm_vcpu_flush_tlb_current(vcpu);
8898                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8899                         kvm_vcpu_flush_tlb_guest(vcpu);
8900
8901                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8902                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8903                         r = 0;
8904                         goto out;
8905                 }
8906                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8907                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8908                         vcpu->mmio_needed = 0;
8909                         r = 0;
8910                         goto out;
8911                 }
8912                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8913                         /* Page is swapped out. Do synthetic halt */
8914                         vcpu->arch.apf.halted = true;
8915                         r = 1;
8916                         goto out;
8917                 }
8918                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8919                         record_steal_time(vcpu);
8920                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8921                         process_smi(vcpu);
8922                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8923                         process_nmi(vcpu);
8924                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8925                         kvm_pmu_handle_event(vcpu);
8926                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8927                         kvm_pmu_deliver_pmi(vcpu);
8928                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8929                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8930                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8931                                      vcpu->arch.ioapic_handled_vectors)) {
8932                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8933                                 vcpu->run->eoi.vector =
8934                                                 vcpu->arch.pending_ioapic_eoi;
8935                                 r = 0;
8936                                 goto out;
8937                         }
8938                 }
8939                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8940                         vcpu_scan_ioapic(vcpu);
8941                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8942                         vcpu_load_eoi_exitmap(vcpu);
8943                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8944                         kvm_vcpu_reload_apic_access_page(vcpu);
8945                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8946                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8947                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8948                         r = 0;
8949                         goto out;
8950                 }
8951                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8952                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8953                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8954                         r = 0;
8955                         goto out;
8956                 }
8957                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8958                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8959                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8960                         r = 0;
8961                         goto out;
8962                 }
8963
8964                 /*
8965                  * KVM_REQ_HV_STIMER has to be processed after
8966                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8967                  * depend on the guest clock being up-to-date
8968                  */
8969                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8970                         kvm_hv_process_stimers(vcpu);
8971                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8972                         kvm_vcpu_update_apicv(vcpu);
8973                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8974                         kvm_check_async_pf_completion(vcpu);
8975                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8976                         static_call(kvm_x86_msr_filter_changed)(vcpu);
8977         }
8978
8979         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
8980             kvm_xen_has_interrupt(vcpu)) {
8981                 ++vcpu->stat.req_event;
8982                 kvm_apic_accept_events(vcpu);
8983                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8984                         r = 1;
8985                         goto out;
8986                 }
8987
8988                 inject_pending_event(vcpu, &req_immediate_exit);
8989                 if (req_int_win)
8990                         static_call(kvm_x86_enable_irq_window)(vcpu);
8991
8992                 if (kvm_lapic_enabled(vcpu)) {
8993                         update_cr8_intercept(vcpu);
8994                         kvm_lapic_sync_to_vapic(vcpu);
8995                 }
8996         }
8997
8998         r = kvm_mmu_reload(vcpu);
8999         if (unlikely(r)) {
9000                 goto cancel_injection;
9001         }
9002
9003         preempt_disable();
9004
9005         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9006
9007         /*
9008          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9009          * IPI are then delayed after guest entry, which ensures that they
9010          * result in virtual interrupt delivery.
9011          */
9012         local_irq_disable();
9013         vcpu->mode = IN_GUEST_MODE;
9014
9015         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9016
9017         /*
9018          * 1) We should set ->mode before checking ->requests.  Please see
9019          * the comment in kvm_vcpu_exiting_guest_mode().
9020          *
9021          * 2) For APICv, we should set ->mode before checking PID.ON. This
9022          * pairs with the memory barrier implicit in pi_test_and_set_on
9023          * (see vmx_deliver_posted_interrupt).
9024          *
9025          * 3) This also orders the write to mode from any reads to the page
9026          * tables done while the VCPU is running.  Please see the comment
9027          * in kvm_flush_remote_tlbs.
9028          */
9029         smp_mb__after_srcu_read_unlock();
9030
9031         /*
9032          * This handles the case where a posted interrupt was
9033          * notified with kvm_vcpu_kick.
9034          */
9035         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9036                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9037
9038         if (kvm_vcpu_exit_request(vcpu)) {
9039                 vcpu->mode = OUTSIDE_GUEST_MODE;
9040                 smp_wmb();
9041                 local_irq_enable();
9042                 preempt_enable();
9043                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9044                 r = 1;
9045                 goto cancel_injection;
9046         }
9047
9048         if (req_immediate_exit) {
9049                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9050                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9051         }
9052
9053         fpregs_assert_state_consistent();
9054         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9055                 switch_fpu_return();
9056
9057         if (unlikely(vcpu->arch.switch_db_regs)) {
9058                 set_debugreg(0, 7);
9059                 set_debugreg(vcpu->arch.eff_db[0], 0);
9060                 set_debugreg(vcpu->arch.eff_db[1], 1);
9061                 set_debugreg(vcpu->arch.eff_db[2], 2);
9062                 set_debugreg(vcpu->arch.eff_db[3], 3);
9063                 set_debugreg(vcpu->arch.dr6, 6);
9064                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9065         }
9066
9067         for (;;) {
9068                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9069                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9070                         break;
9071
9072                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9073                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9074                         break;
9075                 }
9076
9077                 if (vcpu->arch.apicv_active)
9078                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9079         }
9080
9081         /*
9082          * Do this here before restoring debug registers on the host.  And
9083          * since we do this before handling the vmexit, a DR access vmexit
9084          * can (a) read the correct value of the debug registers, (b) set
9085          * KVM_DEBUGREG_WONT_EXIT again.
9086          */
9087         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9088                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9089                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9090                 kvm_update_dr0123(vcpu);
9091                 kvm_update_dr7(vcpu);
9092                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9093         }
9094
9095         /*
9096          * If the guest has used debug registers, at least dr7
9097          * will be disabled while returning to the host.
9098          * If we don't have active breakpoints in the host, we don't
9099          * care about the messed up debug address registers. But if
9100          * we have some of them active, restore the old state.
9101          */
9102         if (hw_breakpoint_active())
9103                 hw_breakpoint_restore();
9104
9105         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9106         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9107
9108         vcpu->mode = OUTSIDE_GUEST_MODE;
9109         smp_wmb();
9110
9111         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9112
9113         /*
9114          * Consume any pending interrupts, including the possible source of
9115          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9116          * An instruction is required after local_irq_enable() to fully unblock
9117          * interrupts on processors that implement an interrupt shadow, the
9118          * stat.exits increment will do nicely.
9119          */
9120         kvm_before_interrupt(vcpu);
9121         local_irq_enable();
9122         ++vcpu->stat.exits;
9123         local_irq_disable();
9124         kvm_after_interrupt(vcpu);
9125
9126         if (lapic_in_kernel(vcpu)) {
9127                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9128                 if (delta != S64_MIN) {
9129                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9130                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9131                 }
9132         }
9133
9134         local_irq_enable();
9135         preempt_enable();
9136
9137         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9138
9139         /*
9140          * Profile KVM exit RIPs:
9141          */
9142         if (unlikely(prof_on == KVM_PROFILING)) {
9143                 unsigned long rip = kvm_rip_read(vcpu);
9144                 profile_hit(KVM_PROFILING, (void *)rip);
9145         }
9146
9147         if (unlikely(vcpu->arch.tsc_always_catchup))
9148                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9149
9150         if (vcpu->arch.apic_attention)
9151                 kvm_lapic_sync_from_vapic(vcpu);
9152
9153         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9154         return r;
9155
9156 cancel_injection:
9157         if (req_immediate_exit)
9158                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9159         static_call(kvm_x86_cancel_injection)(vcpu);
9160         if (unlikely(vcpu->arch.apic_attention))
9161                 kvm_lapic_sync_from_vapic(vcpu);
9162 out:
9163         return r;
9164 }
9165
9166 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9167 {
9168         if (!kvm_arch_vcpu_runnable(vcpu) &&
9169             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9170                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9171                 kvm_vcpu_block(vcpu);
9172                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9173
9174                 if (kvm_x86_ops.post_block)
9175                         static_call(kvm_x86_post_block)(vcpu);
9176
9177                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9178                         return 1;
9179         }
9180
9181         kvm_apic_accept_events(vcpu);
9182         switch(vcpu->arch.mp_state) {
9183         case KVM_MP_STATE_HALTED:
9184         case KVM_MP_STATE_AP_RESET_HOLD:
9185                 vcpu->arch.pv.pv_unhalted = false;
9186                 vcpu->arch.mp_state =
9187                         KVM_MP_STATE_RUNNABLE;
9188                 fallthrough;
9189         case KVM_MP_STATE_RUNNABLE:
9190                 vcpu->arch.apf.halted = false;
9191                 break;
9192         case KVM_MP_STATE_INIT_RECEIVED:
9193                 break;
9194         default:
9195                 return -EINTR;
9196         }
9197         return 1;
9198 }
9199
9200 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9201 {
9202         if (is_guest_mode(vcpu))
9203                 kvm_x86_ops.nested_ops->check_events(vcpu);
9204
9205         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9206                 !vcpu->arch.apf.halted);
9207 }
9208
9209 static int vcpu_run(struct kvm_vcpu *vcpu)
9210 {
9211         int r;
9212         struct kvm *kvm = vcpu->kvm;
9213
9214         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9215         vcpu->arch.l1tf_flush_l1d = true;
9216
9217         for (;;) {
9218                 if (kvm_vcpu_running(vcpu)) {
9219                         r = vcpu_enter_guest(vcpu);
9220                 } else {
9221                         r = vcpu_block(kvm, vcpu);
9222                 }
9223
9224                 if (r <= 0)
9225                         break;
9226
9227                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9228                 if (kvm_cpu_has_pending_timer(vcpu))
9229                         kvm_inject_pending_timer_irqs(vcpu);
9230
9231                 if (dm_request_for_irq_injection(vcpu) &&
9232                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9233                         r = 0;
9234                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9235                         ++vcpu->stat.request_irq_exits;
9236                         break;
9237                 }
9238
9239                 if (__xfer_to_guest_mode_work_pending()) {
9240                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9241                         r = xfer_to_guest_mode_handle_work(vcpu);
9242                         if (r)
9243                                 return r;
9244                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9245                 }
9246         }
9247
9248         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9249
9250         return r;
9251 }
9252
9253 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9254 {
9255         int r;
9256
9257         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9258         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9259         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9260         return r;
9261 }
9262
9263 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9264 {
9265         BUG_ON(!vcpu->arch.pio.count);
9266
9267         return complete_emulated_io(vcpu);
9268 }
9269
9270 /*
9271  * Implements the following, as a state machine:
9272  *
9273  * read:
9274  *   for each fragment
9275  *     for each mmio piece in the fragment
9276  *       write gpa, len
9277  *       exit
9278  *       copy data
9279  *   execute insn
9280  *
9281  * write:
9282  *   for each fragment
9283  *     for each mmio piece in the fragment
9284  *       write gpa, len
9285  *       copy data
9286  *       exit
9287  */
9288 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9289 {
9290         struct kvm_run *run = vcpu->run;
9291         struct kvm_mmio_fragment *frag;
9292         unsigned len;
9293
9294         BUG_ON(!vcpu->mmio_needed);
9295
9296         /* Complete previous fragment */
9297         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9298         len = min(8u, frag->len);
9299         if (!vcpu->mmio_is_write)
9300                 memcpy(frag->data, run->mmio.data, len);
9301
9302         if (frag->len <= 8) {
9303                 /* Switch to the next fragment. */
9304                 frag++;
9305                 vcpu->mmio_cur_fragment++;
9306         } else {
9307                 /* Go forward to the next mmio piece. */
9308                 frag->data += len;
9309                 frag->gpa += len;
9310                 frag->len -= len;
9311         }
9312
9313         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9314                 vcpu->mmio_needed = 0;
9315
9316                 /* FIXME: return into emulator if single-stepping.  */
9317                 if (vcpu->mmio_is_write)
9318                         return 1;
9319                 vcpu->mmio_read_completed = 1;
9320                 return complete_emulated_io(vcpu);
9321         }
9322
9323         run->exit_reason = KVM_EXIT_MMIO;
9324         run->mmio.phys_addr = frag->gpa;
9325         if (vcpu->mmio_is_write)
9326                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9327         run->mmio.len = min(8u, frag->len);
9328         run->mmio.is_write = vcpu->mmio_is_write;
9329         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9330         return 0;
9331 }
9332
9333 static void kvm_save_current_fpu(struct fpu *fpu)
9334 {
9335         /*
9336          * If the target FPU state is not resident in the CPU registers, just
9337          * memcpy() from current, else save CPU state directly to the target.
9338          */
9339         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9340                 memcpy(&fpu->state, &current->thread.fpu.state,
9341                        fpu_kernel_xstate_size);
9342         else
9343                 copy_fpregs_to_fpstate(fpu);
9344 }
9345
9346 /* Swap (qemu) user FPU context for the guest FPU context. */
9347 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9348 {
9349         fpregs_lock();
9350
9351         kvm_save_current_fpu(vcpu->arch.user_fpu);
9352
9353         /*
9354          * Guests with protected state can't have it set by the hypervisor,
9355          * so skip trying to set it.
9356          */
9357         if (vcpu->arch.guest_fpu)
9358                 /* PKRU is separately restored in kvm_x86_ops.run. */
9359                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9360                                         ~XFEATURE_MASK_PKRU);
9361
9362         fpregs_mark_activate();
9363         fpregs_unlock();
9364
9365         trace_kvm_fpu(1);
9366 }
9367
9368 /* When vcpu_run ends, restore user space FPU context. */
9369 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9370 {
9371         fpregs_lock();
9372
9373         /*
9374          * Guests with protected state can't have it read by the hypervisor,
9375          * so skip trying to save it.
9376          */
9377         if (vcpu->arch.guest_fpu)
9378                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9379
9380         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9381
9382         fpregs_mark_activate();
9383         fpregs_unlock();
9384
9385         ++vcpu->stat.fpu_reload;
9386         trace_kvm_fpu(0);
9387 }
9388
9389 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9390 {
9391         struct kvm_run *kvm_run = vcpu->run;
9392         int r;
9393
9394         vcpu_load(vcpu);
9395         kvm_sigset_activate(vcpu);
9396         kvm_run->flags = 0;
9397         kvm_load_guest_fpu(vcpu);
9398
9399         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9400                 if (kvm_run->immediate_exit) {
9401                         r = -EINTR;
9402                         goto out;
9403                 }
9404                 kvm_vcpu_block(vcpu);
9405                 kvm_apic_accept_events(vcpu);
9406                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9407                 r = -EAGAIN;
9408                 if (signal_pending(current)) {
9409                         r = -EINTR;
9410                         kvm_run->exit_reason = KVM_EXIT_INTR;
9411                         ++vcpu->stat.signal_exits;
9412                 }
9413                 goto out;
9414         }
9415
9416         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9417                 r = -EINVAL;
9418                 goto out;
9419         }
9420
9421         if (kvm_run->kvm_dirty_regs) {
9422                 r = sync_regs(vcpu);
9423                 if (r != 0)
9424                         goto out;
9425         }
9426
9427         /* re-sync apic's tpr */
9428         if (!lapic_in_kernel(vcpu)) {
9429                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9430                         r = -EINVAL;
9431                         goto out;
9432                 }
9433         }
9434
9435         if (unlikely(vcpu->arch.complete_userspace_io)) {
9436                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9437                 vcpu->arch.complete_userspace_io = NULL;
9438                 r = cui(vcpu);
9439                 if (r <= 0)
9440                         goto out;
9441         } else
9442                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9443
9444         if (kvm_run->immediate_exit)
9445                 r = -EINTR;
9446         else
9447                 r = vcpu_run(vcpu);
9448
9449 out:
9450         kvm_put_guest_fpu(vcpu);
9451         if (kvm_run->kvm_valid_regs)
9452                 store_regs(vcpu);
9453         post_kvm_run_save(vcpu);
9454         kvm_sigset_deactivate(vcpu);
9455
9456         vcpu_put(vcpu);
9457         return r;
9458 }
9459
9460 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9461 {
9462         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9463                 /*
9464                  * We are here if userspace calls get_regs() in the middle of
9465                  * instruction emulation. Registers state needs to be copied
9466                  * back from emulation context to vcpu. Userspace shouldn't do
9467                  * that usually, but some bad designed PV devices (vmware
9468                  * backdoor interface) need this to work
9469                  */
9470                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9471                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9472         }
9473         regs->rax = kvm_rax_read(vcpu);
9474         regs->rbx = kvm_rbx_read(vcpu);
9475         regs->rcx = kvm_rcx_read(vcpu);
9476         regs->rdx = kvm_rdx_read(vcpu);
9477         regs->rsi = kvm_rsi_read(vcpu);
9478         regs->rdi = kvm_rdi_read(vcpu);
9479         regs->rsp = kvm_rsp_read(vcpu);
9480         regs->rbp = kvm_rbp_read(vcpu);
9481 #ifdef CONFIG_X86_64
9482         regs->r8 = kvm_r8_read(vcpu);
9483         regs->r9 = kvm_r9_read(vcpu);
9484         regs->r10 = kvm_r10_read(vcpu);
9485         regs->r11 = kvm_r11_read(vcpu);
9486         regs->r12 = kvm_r12_read(vcpu);
9487         regs->r13 = kvm_r13_read(vcpu);
9488         regs->r14 = kvm_r14_read(vcpu);
9489         regs->r15 = kvm_r15_read(vcpu);
9490 #endif
9491
9492         regs->rip = kvm_rip_read(vcpu);
9493         regs->rflags = kvm_get_rflags(vcpu);
9494 }
9495
9496 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9497 {
9498         vcpu_load(vcpu);
9499         __get_regs(vcpu, regs);
9500         vcpu_put(vcpu);
9501         return 0;
9502 }
9503
9504 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9505 {
9506         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9507         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9508
9509         kvm_rax_write(vcpu, regs->rax);
9510         kvm_rbx_write(vcpu, regs->rbx);
9511         kvm_rcx_write(vcpu, regs->rcx);
9512         kvm_rdx_write(vcpu, regs->rdx);
9513         kvm_rsi_write(vcpu, regs->rsi);
9514         kvm_rdi_write(vcpu, regs->rdi);
9515         kvm_rsp_write(vcpu, regs->rsp);
9516         kvm_rbp_write(vcpu, regs->rbp);
9517 #ifdef CONFIG_X86_64
9518         kvm_r8_write(vcpu, regs->r8);
9519         kvm_r9_write(vcpu, regs->r9);
9520         kvm_r10_write(vcpu, regs->r10);
9521         kvm_r11_write(vcpu, regs->r11);
9522         kvm_r12_write(vcpu, regs->r12);
9523         kvm_r13_write(vcpu, regs->r13);
9524         kvm_r14_write(vcpu, regs->r14);
9525         kvm_r15_write(vcpu, regs->r15);
9526 #endif
9527
9528         kvm_rip_write(vcpu, regs->rip);
9529         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9530
9531         vcpu->arch.exception.pending = false;
9532
9533         kvm_make_request(KVM_REQ_EVENT, vcpu);
9534 }
9535
9536 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9537 {
9538         vcpu_load(vcpu);
9539         __set_regs(vcpu, regs);
9540         vcpu_put(vcpu);
9541         return 0;
9542 }
9543
9544 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9545 {
9546         struct kvm_segment cs;
9547
9548         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9549         *db = cs.db;
9550         *l = cs.l;
9551 }
9552 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9553
9554 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9555 {
9556         struct desc_ptr dt;
9557
9558         if (vcpu->arch.guest_state_protected)
9559                 goto skip_protected_regs;
9560
9561         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9562         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9563         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9564         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9565         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9566         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9567
9568         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9569         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9570
9571         static_call(kvm_x86_get_idt)(vcpu, &dt);
9572         sregs->idt.limit = dt.size;
9573         sregs->idt.base = dt.address;
9574         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9575         sregs->gdt.limit = dt.size;
9576         sregs->gdt.base = dt.address;
9577
9578         sregs->cr2 = vcpu->arch.cr2;
9579         sregs->cr3 = kvm_read_cr3(vcpu);
9580
9581 skip_protected_regs:
9582         sregs->cr0 = kvm_read_cr0(vcpu);
9583         sregs->cr4 = kvm_read_cr4(vcpu);
9584         sregs->cr8 = kvm_get_cr8(vcpu);
9585         sregs->efer = vcpu->arch.efer;
9586         sregs->apic_base = kvm_get_apic_base(vcpu);
9587
9588         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9589
9590         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9591                 set_bit(vcpu->arch.interrupt.nr,
9592                         (unsigned long *)sregs->interrupt_bitmap);
9593 }
9594
9595 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9596                                   struct kvm_sregs *sregs)
9597 {
9598         vcpu_load(vcpu);
9599         __get_sregs(vcpu, sregs);
9600         vcpu_put(vcpu);
9601         return 0;
9602 }
9603
9604 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9605                                     struct kvm_mp_state *mp_state)
9606 {
9607         vcpu_load(vcpu);
9608         if (kvm_mpx_supported())
9609                 kvm_load_guest_fpu(vcpu);
9610
9611         kvm_apic_accept_events(vcpu);
9612         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9613              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9614             vcpu->arch.pv.pv_unhalted)
9615                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9616         else
9617                 mp_state->mp_state = vcpu->arch.mp_state;
9618
9619         if (kvm_mpx_supported())
9620                 kvm_put_guest_fpu(vcpu);
9621         vcpu_put(vcpu);
9622         return 0;
9623 }
9624
9625 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9626                                     struct kvm_mp_state *mp_state)
9627 {
9628         int ret = -EINVAL;
9629
9630         vcpu_load(vcpu);
9631
9632         if (!lapic_in_kernel(vcpu) &&
9633             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9634                 goto out;
9635
9636         /*
9637          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9638          * INIT state; latched init should be reported using
9639          * KVM_SET_VCPU_EVENTS, so reject it here.
9640          */
9641         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9642             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9643              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9644                 goto out;
9645
9646         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9647                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9648                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9649         } else
9650                 vcpu->arch.mp_state = mp_state->mp_state;
9651         kvm_make_request(KVM_REQ_EVENT, vcpu);
9652
9653         ret = 0;
9654 out:
9655         vcpu_put(vcpu);
9656         return ret;
9657 }
9658
9659 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9660                     int reason, bool has_error_code, u32 error_code)
9661 {
9662         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9663         int ret;
9664
9665         init_emulate_ctxt(vcpu);
9666
9667         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9668                                    has_error_code, error_code);
9669         if (ret) {
9670                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9671                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9672                 vcpu->run->internal.ndata = 0;
9673                 return 0;
9674         }
9675
9676         kvm_rip_write(vcpu, ctxt->eip);
9677         kvm_set_rflags(vcpu, ctxt->eflags);
9678         return 1;
9679 }
9680 EXPORT_SYMBOL_GPL(kvm_task_switch);
9681
9682 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9683 {
9684         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9685                 /*
9686                  * When EFER.LME and CR0.PG are set, the processor is in
9687                  * 64-bit mode (though maybe in a 32-bit code segment).
9688                  * CR4.PAE and EFER.LMA must be set.
9689                  */
9690                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9691                         return false;
9692                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9693                         return false;
9694         } else {
9695                 /*
9696                  * Not in 64-bit mode: EFER.LMA is clear and the code
9697                  * segment cannot be 64-bit.
9698                  */
9699                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9700                         return false;
9701         }
9702
9703         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9704 }
9705
9706 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9707 {
9708         struct msr_data apic_base_msr;
9709         int mmu_reset_needed = 0;
9710         int pending_vec, max_bits, idx;
9711         struct desc_ptr dt;
9712         int ret = -EINVAL;
9713
9714         if (!kvm_is_valid_sregs(vcpu, sregs))
9715                 goto out;
9716
9717         apic_base_msr.data = sregs->apic_base;
9718         apic_base_msr.host_initiated = true;
9719         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9720                 goto out;
9721
9722         if (vcpu->arch.guest_state_protected)
9723                 goto skip_protected_regs;
9724
9725         dt.size = sregs->idt.limit;
9726         dt.address = sregs->idt.base;
9727         static_call(kvm_x86_set_idt)(vcpu, &dt);
9728         dt.size = sregs->gdt.limit;
9729         dt.address = sregs->gdt.base;
9730         static_call(kvm_x86_set_gdt)(vcpu, &dt);
9731
9732         vcpu->arch.cr2 = sregs->cr2;
9733         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9734         vcpu->arch.cr3 = sregs->cr3;
9735         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9736
9737         kvm_set_cr8(vcpu, sregs->cr8);
9738
9739         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9740         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9741
9742         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9743         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9744         vcpu->arch.cr0 = sregs->cr0;
9745
9746         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9747         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9748
9749         idx = srcu_read_lock(&vcpu->kvm->srcu);
9750         if (is_pae_paging(vcpu)) {
9751                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9752                 mmu_reset_needed = 1;
9753         }
9754         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9755
9756         if (mmu_reset_needed)
9757                 kvm_mmu_reset_context(vcpu);
9758
9759         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9760         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9761         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9762         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9763         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9764         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9765
9766         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9767         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9768
9769         update_cr8_intercept(vcpu);
9770
9771         /* Older userspace won't unhalt the vcpu on reset. */
9772         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9773             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9774             !is_protmode(vcpu))
9775                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9776
9777 skip_protected_regs:
9778         max_bits = KVM_NR_INTERRUPTS;
9779         pending_vec = find_first_bit(
9780                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9781         if (pending_vec < max_bits) {
9782                 kvm_queue_interrupt(vcpu, pending_vec, false);
9783                 pr_debug("Set back pending irq %d\n", pending_vec);
9784         }
9785
9786         kvm_make_request(KVM_REQ_EVENT, vcpu);
9787
9788         ret = 0;
9789 out:
9790         return ret;
9791 }
9792
9793 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9794                                   struct kvm_sregs *sregs)
9795 {
9796         int ret;
9797
9798         vcpu_load(vcpu);
9799         ret = __set_sregs(vcpu, sregs);
9800         vcpu_put(vcpu);
9801         return ret;
9802 }
9803
9804 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9805                                         struct kvm_guest_debug *dbg)
9806 {
9807         unsigned long rflags;
9808         int i, r;
9809
9810         if (vcpu->arch.guest_state_protected)
9811                 return -EINVAL;
9812
9813         vcpu_load(vcpu);
9814
9815         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9816                 r = -EBUSY;
9817                 if (vcpu->arch.exception.pending)
9818                         goto out;
9819                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9820                         kvm_queue_exception(vcpu, DB_VECTOR);
9821                 else
9822                         kvm_queue_exception(vcpu, BP_VECTOR);
9823         }
9824
9825         /*
9826          * Read rflags as long as potentially injected trace flags are still
9827          * filtered out.
9828          */
9829         rflags = kvm_get_rflags(vcpu);
9830
9831         vcpu->guest_debug = dbg->control;
9832         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9833                 vcpu->guest_debug = 0;
9834
9835         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9836                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9837                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9838                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9839         } else {
9840                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9841                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9842         }
9843         kvm_update_dr7(vcpu);
9844
9845         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9846                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9847                         get_segment_base(vcpu, VCPU_SREG_CS);
9848
9849         /*
9850          * Trigger an rflags update that will inject or remove the trace
9851          * flags.
9852          */
9853         kvm_set_rflags(vcpu, rflags);
9854
9855         static_call(kvm_x86_update_exception_bitmap)(vcpu);
9856
9857         r = 0;
9858
9859 out:
9860         vcpu_put(vcpu);
9861         return r;
9862 }
9863
9864 /*
9865  * Translate a guest virtual address to a guest physical address.
9866  */
9867 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9868                                     struct kvm_translation *tr)
9869 {
9870         unsigned long vaddr = tr->linear_address;
9871         gpa_t gpa;
9872         int idx;
9873
9874         vcpu_load(vcpu);
9875
9876         idx = srcu_read_lock(&vcpu->kvm->srcu);
9877         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9878         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9879         tr->physical_address = gpa;
9880         tr->valid = gpa != UNMAPPED_GVA;
9881         tr->writeable = 1;
9882         tr->usermode = 0;
9883
9884         vcpu_put(vcpu);
9885         return 0;
9886 }
9887
9888 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9889 {
9890         struct fxregs_state *fxsave;
9891
9892         if (!vcpu->arch.guest_fpu)
9893                 return 0;
9894
9895         vcpu_load(vcpu);
9896
9897         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9898         memcpy(fpu->fpr, fxsave->st_space, 128);
9899         fpu->fcw = fxsave->cwd;
9900         fpu->fsw = fxsave->swd;
9901         fpu->ftwx = fxsave->twd;
9902         fpu->last_opcode = fxsave->fop;
9903         fpu->last_ip = fxsave->rip;
9904         fpu->last_dp = fxsave->rdp;
9905         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9906
9907         vcpu_put(vcpu);
9908         return 0;
9909 }
9910
9911 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9912 {
9913         struct fxregs_state *fxsave;
9914
9915         if (!vcpu->arch.guest_fpu)
9916                 return 0;
9917
9918         vcpu_load(vcpu);
9919
9920         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9921
9922         memcpy(fxsave->st_space, fpu->fpr, 128);
9923         fxsave->cwd = fpu->fcw;
9924         fxsave->swd = fpu->fsw;
9925         fxsave->twd = fpu->ftwx;
9926         fxsave->fop = fpu->last_opcode;
9927         fxsave->rip = fpu->last_ip;
9928         fxsave->rdp = fpu->last_dp;
9929         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9930
9931         vcpu_put(vcpu);
9932         return 0;
9933 }
9934
9935 static void store_regs(struct kvm_vcpu *vcpu)
9936 {
9937         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9938
9939         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9940                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9941
9942         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9943                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9944
9945         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9946                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9947                                 vcpu, &vcpu->run->s.regs.events);
9948 }
9949
9950 static int sync_regs(struct kvm_vcpu *vcpu)
9951 {
9952         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9953                 return -EINVAL;
9954
9955         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9956                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9957                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9958         }
9959         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9960                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9961                         return -EINVAL;
9962                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9963         }
9964         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9965                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9966                                 vcpu, &vcpu->run->s.regs.events))
9967                         return -EINVAL;
9968                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9969         }
9970
9971         return 0;
9972 }
9973
9974 static void fx_init(struct kvm_vcpu *vcpu)
9975 {
9976         if (!vcpu->arch.guest_fpu)
9977                 return;
9978
9979         fpstate_init(&vcpu->arch.guest_fpu->state);
9980         if (boot_cpu_has(X86_FEATURE_XSAVES))
9981                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9982                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9983
9984         /*
9985          * Ensure guest xcr0 is valid for loading
9986          */
9987         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9988
9989         vcpu->arch.cr0 |= X86_CR0_ET;
9990 }
9991
9992 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9993 {
9994         if (vcpu->arch.guest_fpu) {
9995                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9996                 vcpu->arch.guest_fpu = NULL;
9997         }
9998 }
9999 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10000
10001 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10002 {
10003         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10004                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10005                              "guest TSC will not be reliable\n");
10006
10007         return 0;
10008 }
10009
10010 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10011 {
10012         struct page *page;
10013         int r;
10014
10015         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10016                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10017         else
10018                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10019
10020         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10021
10022         r = kvm_mmu_create(vcpu);
10023         if (r < 0)
10024                 return r;
10025
10026         if (irqchip_in_kernel(vcpu->kvm)) {
10027                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10028                 if (r < 0)
10029                         goto fail_mmu_destroy;
10030                 if (kvm_apicv_activated(vcpu->kvm))
10031                         vcpu->arch.apicv_active = true;
10032         } else
10033                 static_branch_inc(&kvm_has_noapic_vcpu);
10034
10035         r = -ENOMEM;
10036
10037         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10038         if (!page)
10039                 goto fail_free_lapic;
10040         vcpu->arch.pio_data = page_address(page);
10041
10042         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10043                                        GFP_KERNEL_ACCOUNT);
10044         if (!vcpu->arch.mce_banks)
10045                 goto fail_free_pio_data;
10046         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10047
10048         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10049                                 GFP_KERNEL_ACCOUNT))
10050                 goto fail_free_mce_banks;
10051
10052         if (!alloc_emulate_ctxt(vcpu))
10053                 goto free_wbinvd_dirty_mask;
10054
10055         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10056                                                 GFP_KERNEL_ACCOUNT);
10057         if (!vcpu->arch.user_fpu) {
10058                 pr_err("kvm: failed to allocate userspace's fpu\n");
10059                 goto free_emulate_ctxt;
10060         }
10061
10062         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10063                                                  GFP_KERNEL_ACCOUNT);
10064         if (!vcpu->arch.guest_fpu) {
10065                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10066                 goto free_user_fpu;
10067         }
10068         fx_init(vcpu);
10069
10070         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10071         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10072
10073         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10074
10075         kvm_async_pf_hash_reset(vcpu);
10076         kvm_pmu_init(vcpu);
10077
10078         vcpu->arch.pending_external_vector = -1;
10079         vcpu->arch.preempted_in_kernel = false;
10080
10081         kvm_hv_vcpu_init(vcpu);
10082
10083         r = static_call(kvm_x86_vcpu_create)(vcpu);
10084         if (r)
10085                 goto free_guest_fpu;
10086
10087         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10088         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10089         kvm_vcpu_mtrr_init(vcpu);
10090         vcpu_load(vcpu);
10091         kvm_vcpu_reset(vcpu, false);
10092         kvm_init_mmu(vcpu, false);
10093         vcpu_put(vcpu);
10094         return 0;
10095
10096 free_guest_fpu:
10097         kvm_free_guest_fpu(vcpu);
10098 free_user_fpu:
10099         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10100 free_emulate_ctxt:
10101         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10102 free_wbinvd_dirty_mask:
10103         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10104 fail_free_mce_banks:
10105         kfree(vcpu->arch.mce_banks);
10106 fail_free_pio_data:
10107         free_page((unsigned long)vcpu->arch.pio_data);
10108 fail_free_lapic:
10109         kvm_free_lapic(vcpu);
10110 fail_mmu_destroy:
10111         kvm_mmu_destroy(vcpu);
10112         return r;
10113 }
10114
10115 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10116 {
10117         struct kvm *kvm = vcpu->kvm;
10118
10119         kvm_hv_vcpu_postcreate(vcpu);
10120
10121         if (mutex_lock_killable(&vcpu->mutex))
10122                 return;
10123         vcpu_load(vcpu);
10124         kvm_synchronize_tsc(vcpu, 0);
10125         vcpu_put(vcpu);
10126
10127         /* poll control enabled by default */
10128         vcpu->arch.msr_kvm_poll_control = 1;
10129
10130         mutex_unlock(&vcpu->mutex);
10131
10132         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10133                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10134                                                 KVMCLOCK_SYNC_PERIOD);
10135 }
10136
10137 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10138 {
10139         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10140         int idx;
10141
10142         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10143
10144         kvmclock_reset(vcpu);
10145
10146         static_call(kvm_x86_vcpu_free)(vcpu);
10147
10148         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10149         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10150         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10151         kvm_free_guest_fpu(vcpu);
10152
10153         kvm_hv_vcpu_uninit(vcpu);
10154         kvm_pmu_destroy(vcpu);
10155         kfree(vcpu->arch.mce_banks);
10156         kvm_free_lapic(vcpu);
10157         idx = srcu_read_lock(&vcpu->kvm->srcu);
10158         kvm_mmu_destroy(vcpu);
10159         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10160         free_page((unsigned long)vcpu->arch.pio_data);
10161         kvfree(vcpu->arch.cpuid_entries);
10162         if (!lapic_in_kernel(vcpu))
10163                 static_branch_dec(&kvm_has_noapic_vcpu);
10164 }
10165
10166 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10167 {
10168         kvm_lapic_reset(vcpu, init_event);
10169
10170         vcpu->arch.hflags = 0;
10171
10172         vcpu->arch.smi_pending = 0;
10173         vcpu->arch.smi_count = 0;
10174         atomic_set(&vcpu->arch.nmi_queued, 0);
10175         vcpu->arch.nmi_pending = 0;
10176         vcpu->arch.nmi_injected = false;
10177         kvm_clear_interrupt_queue(vcpu);
10178         kvm_clear_exception_queue(vcpu);
10179
10180         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10181         kvm_update_dr0123(vcpu);
10182         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10183         vcpu->arch.dr7 = DR7_FIXED_1;
10184         kvm_update_dr7(vcpu);
10185
10186         vcpu->arch.cr2 = 0;
10187
10188         kvm_make_request(KVM_REQ_EVENT, vcpu);
10189         vcpu->arch.apf.msr_en_val = 0;
10190         vcpu->arch.apf.msr_int_val = 0;
10191         vcpu->arch.st.msr_val = 0;
10192
10193         kvmclock_reset(vcpu);
10194
10195         kvm_clear_async_pf_completion_queue(vcpu);
10196         kvm_async_pf_hash_reset(vcpu);
10197         vcpu->arch.apf.halted = false;
10198
10199         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10200                 void *mpx_state_buffer;
10201
10202                 /*
10203                  * To avoid have the INIT path from kvm_apic_has_events() that be
10204                  * called with loaded FPU and does not let userspace fix the state.
10205                  */
10206                 if (init_event)
10207                         kvm_put_guest_fpu(vcpu);
10208                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10209                                         XFEATURE_BNDREGS);
10210                 if (mpx_state_buffer)
10211                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10212                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10213                                         XFEATURE_BNDCSR);
10214                 if (mpx_state_buffer)
10215                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10216                 if (init_event)
10217                         kvm_load_guest_fpu(vcpu);
10218         }
10219
10220         if (!init_event) {
10221                 kvm_pmu_reset(vcpu);
10222                 vcpu->arch.smbase = 0x30000;
10223
10224                 vcpu->arch.msr_misc_features_enables = 0;
10225
10226                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10227         }
10228
10229         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10230         vcpu->arch.regs_avail = ~0;
10231         vcpu->arch.regs_dirty = ~0;
10232
10233         vcpu->arch.ia32_xss = 0;
10234
10235         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10236 }
10237
10238 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10239 {
10240         struct kvm_segment cs;
10241
10242         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10243         cs.selector = vector << 8;
10244         cs.base = vector << 12;
10245         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10246         kvm_rip_write(vcpu, 0);
10247 }
10248 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10249
10250 int kvm_arch_hardware_enable(void)
10251 {
10252         struct kvm *kvm;
10253         struct kvm_vcpu *vcpu;
10254         int i;
10255         int ret;
10256         u64 local_tsc;
10257         u64 max_tsc = 0;
10258         bool stable, backwards_tsc = false;
10259
10260         kvm_user_return_msr_cpu_online();
10261         ret = static_call(kvm_x86_hardware_enable)();
10262         if (ret != 0)
10263                 return ret;
10264
10265         local_tsc = rdtsc();
10266         stable = !kvm_check_tsc_unstable();
10267         list_for_each_entry(kvm, &vm_list, vm_list) {
10268                 kvm_for_each_vcpu(i, vcpu, kvm) {
10269                         if (!stable && vcpu->cpu == smp_processor_id())
10270                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10271                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10272                                 backwards_tsc = true;
10273                                 if (vcpu->arch.last_host_tsc > max_tsc)
10274                                         max_tsc = vcpu->arch.last_host_tsc;
10275                         }
10276                 }
10277         }
10278
10279         /*
10280          * Sometimes, even reliable TSCs go backwards.  This happens on
10281          * platforms that reset TSC during suspend or hibernate actions, but
10282          * maintain synchronization.  We must compensate.  Fortunately, we can
10283          * detect that condition here, which happens early in CPU bringup,
10284          * before any KVM threads can be running.  Unfortunately, we can't
10285          * bring the TSCs fully up to date with real time, as we aren't yet far
10286          * enough into CPU bringup that we know how much real time has actually
10287          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10288          * variables that haven't been updated yet.
10289          *
10290          * So we simply find the maximum observed TSC above, then record the
10291          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10292          * the adjustment will be applied.  Note that we accumulate
10293          * adjustments, in case multiple suspend cycles happen before some VCPU
10294          * gets a chance to run again.  In the event that no KVM threads get a
10295          * chance to run, we will miss the entire elapsed period, as we'll have
10296          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10297          * loose cycle time.  This isn't too big a deal, since the loss will be
10298          * uniform across all VCPUs (not to mention the scenario is extremely
10299          * unlikely). It is possible that a second hibernate recovery happens
10300          * much faster than a first, causing the observed TSC here to be
10301          * smaller; this would require additional padding adjustment, which is
10302          * why we set last_host_tsc to the local tsc observed here.
10303          *
10304          * N.B. - this code below runs only on platforms with reliable TSC,
10305          * as that is the only way backwards_tsc is set above.  Also note
10306          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10307          * have the same delta_cyc adjustment applied if backwards_tsc
10308          * is detected.  Note further, this adjustment is only done once,
10309          * as we reset last_host_tsc on all VCPUs to stop this from being
10310          * called multiple times (one for each physical CPU bringup).
10311          *
10312          * Platforms with unreliable TSCs don't have to deal with this, they
10313          * will be compensated by the logic in vcpu_load, which sets the TSC to
10314          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10315          * guarantee that they stay in perfect synchronization.
10316          */
10317         if (backwards_tsc) {
10318                 u64 delta_cyc = max_tsc - local_tsc;
10319                 list_for_each_entry(kvm, &vm_list, vm_list) {
10320                         kvm->arch.backwards_tsc_observed = true;
10321                         kvm_for_each_vcpu(i, vcpu, kvm) {
10322                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10323                                 vcpu->arch.last_host_tsc = local_tsc;
10324                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10325                         }
10326
10327                         /*
10328                          * We have to disable TSC offset matching.. if you were
10329                          * booting a VM while issuing an S4 host suspend....
10330                          * you may have some problem.  Solving this issue is
10331                          * left as an exercise to the reader.
10332                          */
10333                         kvm->arch.last_tsc_nsec = 0;
10334                         kvm->arch.last_tsc_write = 0;
10335                 }
10336
10337         }
10338         return 0;
10339 }
10340
10341 void kvm_arch_hardware_disable(void)
10342 {
10343         static_call(kvm_x86_hardware_disable)();
10344         drop_user_return_notifiers();
10345 }
10346
10347 int kvm_arch_hardware_setup(void *opaque)
10348 {
10349         struct kvm_x86_init_ops *ops = opaque;
10350         int r;
10351
10352         rdmsrl_safe(MSR_EFER, &host_efer);
10353
10354         if (boot_cpu_has(X86_FEATURE_XSAVES))
10355                 rdmsrl(MSR_IA32_XSS, host_xss);
10356
10357         r = ops->hardware_setup();
10358         if (r != 0)
10359                 return r;
10360
10361         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10362         kvm_ops_static_call_update();
10363
10364         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10365                 supported_xss = 0;
10366
10367 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10368         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10369 #undef __kvm_cpu_cap_has
10370
10371         if (kvm_has_tsc_control) {
10372                 /*
10373                  * Make sure the user can only configure tsc_khz values that
10374                  * fit into a signed integer.
10375                  * A min value is not calculated because it will always
10376                  * be 1 on all machines.
10377                  */
10378                 u64 max = min(0x7fffffffULL,
10379                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10380                 kvm_max_guest_tsc_khz = max;
10381
10382                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10383         }
10384
10385         kvm_init_msr_list();
10386         return 0;
10387 }
10388
10389 void kvm_arch_hardware_unsetup(void)
10390 {
10391         static_call(kvm_x86_hardware_unsetup)();
10392 }
10393
10394 int kvm_arch_check_processor_compat(void *opaque)
10395 {
10396         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10397         struct kvm_x86_init_ops *ops = opaque;
10398
10399         WARN_ON(!irqs_disabled());
10400
10401         if (__cr4_reserved_bits(cpu_has, c) !=
10402             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10403                 return -EIO;
10404
10405         return ops->check_processor_compatibility();
10406 }
10407
10408 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10409 {
10410         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10411 }
10412 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10413
10414 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10415 {
10416         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10417 }
10418
10419 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10420 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10421
10422 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10423 {
10424         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10425
10426         vcpu->arch.l1tf_flush_l1d = true;
10427         if (pmu->version && unlikely(pmu->event_count)) {
10428                 pmu->need_cleanup = true;
10429                 kvm_make_request(KVM_REQ_PMU, vcpu);
10430         }
10431         static_call(kvm_x86_sched_in)(vcpu, cpu);
10432 }
10433
10434 void kvm_arch_free_vm(struct kvm *kvm)
10435 {
10436         kfree(kvm->arch.hyperv.hv_pa_pg);
10437         vfree(kvm);
10438 }
10439
10440
10441 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10442 {
10443         if (type)
10444                 return -EINVAL;
10445
10446         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10447         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10448         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10449         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10450         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10451         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10452
10453         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10454         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10455         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10456         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10457                 &kvm->arch.irq_sources_bitmap);
10458
10459         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10460         mutex_init(&kvm->arch.apic_map_lock);
10461         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10462
10463         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10464         pvclock_update_vm_gtod_copy(kvm);
10465
10466         kvm->arch.guest_can_read_msr_platform_info = true;
10467
10468         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10469         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10470
10471         kvm_hv_init_vm(kvm);
10472         kvm_page_track_init(kvm);
10473         kvm_mmu_init_vm(kvm);
10474
10475         return static_call(kvm_x86_vm_init)(kvm);
10476 }
10477
10478 int kvm_arch_post_init_vm(struct kvm *kvm)
10479 {
10480         return kvm_mmu_post_init_vm(kvm);
10481 }
10482
10483 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10484 {
10485         vcpu_load(vcpu);
10486         kvm_mmu_unload(vcpu);
10487         vcpu_put(vcpu);
10488 }
10489
10490 static void kvm_free_vcpus(struct kvm *kvm)
10491 {
10492         unsigned int i;
10493         struct kvm_vcpu *vcpu;
10494
10495         /*
10496          * Unpin any mmu pages first.
10497          */
10498         kvm_for_each_vcpu(i, vcpu, kvm) {
10499                 kvm_clear_async_pf_completion_queue(vcpu);
10500                 kvm_unload_vcpu_mmu(vcpu);
10501         }
10502         kvm_for_each_vcpu(i, vcpu, kvm)
10503                 kvm_vcpu_destroy(vcpu);
10504
10505         mutex_lock(&kvm->lock);
10506         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10507                 kvm->vcpus[i] = NULL;
10508
10509         atomic_set(&kvm->online_vcpus, 0);
10510         mutex_unlock(&kvm->lock);
10511 }
10512
10513 void kvm_arch_sync_events(struct kvm *kvm)
10514 {
10515         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10516         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10517         kvm_free_pit(kvm);
10518 }
10519
10520 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10521
10522 /**
10523  * __x86_set_memory_region: Setup KVM internal memory slot
10524  *
10525  * @kvm: the kvm pointer to the VM.
10526  * @id: the slot ID to setup.
10527  * @gpa: the GPA to install the slot (unused when @size == 0).
10528  * @size: the size of the slot. Set to zero to uninstall a slot.
10529  *
10530  * This function helps to setup a KVM internal memory slot.  Specify
10531  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10532  * slot.  The return code can be one of the following:
10533  *
10534  *   HVA:           on success (uninstall will return a bogus HVA)
10535  *   -errno:        on error
10536  *
10537  * The caller should always use IS_ERR() to check the return value
10538  * before use.  Note, the KVM internal memory slots are guaranteed to
10539  * remain valid and unchanged until the VM is destroyed, i.e., the
10540  * GPA->HVA translation will not change.  However, the HVA is a user
10541  * address, i.e. its accessibility is not guaranteed, and must be
10542  * accessed via __copy_{to,from}_user().
10543  */
10544 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10545                                       u32 size)
10546 {
10547         int i, r;
10548         unsigned long hva, old_npages;
10549         struct kvm_memslots *slots = kvm_memslots(kvm);
10550         struct kvm_memory_slot *slot;
10551
10552         /* Called with kvm->slots_lock held.  */
10553         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10554                 return ERR_PTR_USR(-EINVAL);
10555
10556         slot = id_to_memslot(slots, id);
10557         if (size) {
10558                 if (slot && slot->npages)
10559                         return ERR_PTR_USR(-EEXIST);
10560
10561                 /*
10562                  * MAP_SHARED to prevent internal slot pages from being moved
10563                  * by fork()/COW.
10564                  */
10565                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10566                               MAP_SHARED | MAP_ANONYMOUS, 0);
10567                 if (IS_ERR((void *)hva))
10568                         return (void __user *)hva;
10569         } else {
10570                 if (!slot || !slot->npages)
10571                         return 0;
10572
10573                 old_npages = slot->npages;
10574                 hva = slot->userspace_addr;
10575         }
10576
10577         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10578                 struct kvm_userspace_memory_region m;
10579
10580                 m.slot = id | (i << 16);
10581                 m.flags = 0;
10582                 m.guest_phys_addr = gpa;
10583                 m.userspace_addr = hva;
10584                 m.memory_size = size;
10585                 r = __kvm_set_memory_region(kvm, &m);
10586                 if (r < 0)
10587                         return ERR_PTR_USR(r);
10588         }
10589
10590         if (!size)
10591                 vm_munmap(hva, old_npages * PAGE_SIZE);
10592
10593         return (void __user *)hva;
10594 }
10595 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10596
10597 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10598 {
10599         kvm_mmu_pre_destroy_vm(kvm);
10600 }
10601
10602 void kvm_arch_destroy_vm(struct kvm *kvm)
10603 {
10604         u32 i;
10605
10606         if (current->mm == kvm->mm) {
10607                 /*
10608                  * Free memory regions allocated on behalf of userspace,
10609                  * unless the the memory map has changed due to process exit
10610                  * or fd copying.
10611                  */
10612                 mutex_lock(&kvm->slots_lock);
10613                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10614                                         0, 0);
10615                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10616                                         0, 0);
10617                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10618                 mutex_unlock(&kvm->slots_lock);
10619         }
10620         static_call_cond(kvm_x86_vm_destroy)(kvm);
10621         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10622                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10623         kvm_pic_destroy(kvm);
10624         kvm_ioapic_destroy(kvm);
10625         kvm_free_vcpus(kvm);
10626         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10627         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10628         kvm_mmu_uninit_vm(kvm);
10629         kvm_page_track_cleanup(kvm);
10630         kvm_xen_destroy_vm(kvm);
10631         kvm_hv_destroy_vm(kvm);
10632 }
10633
10634 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10635 {
10636         int i;
10637
10638         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10639                 kvfree(slot->arch.rmap[i]);
10640                 slot->arch.rmap[i] = NULL;
10641
10642                 if (i == 0)
10643                         continue;
10644
10645                 kvfree(slot->arch.lpage_info[i - 1]);
10646                 slot->arch.lpage_info[i - 1] = NULL;
10647         }
10648
10649         kvm_page_track_free_memslot(slot);
10650 }
10651
10652 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10653                                       unsigned long npages)
10654 {
10655         int i;
10656
10657         /*
10658          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10659          * old arrays will be freed by __kvm_set_memory_region() if installing
10660          * the new memslot is successful.
10661          */
10662         memset(&slot->arch, 0, sizeof(slot->arch));
10663
10664         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10665                 struct kvm_lpage_info *linfo;
10666                 unsigned long ugfn;
10667                 int lpages;
10668                 int level = i + 1;
10669
10670                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10671                                       slot->base_gfn, level) + 1;
10672
10673                 slot->arch.rmap[i] =
10674                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10675                                  GFP_KERNEL_ACCOUNT);
10676                 if (!slot->arch.rmap[i])
10677                         goto out_free;
10678                 if (i == 0)
10679                         continue;
10680
10681                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10682                 if (!linfo)
10683                         goto out_free;
10684
10685                 slot->arch.lpage_info[i - 1] = linfo;
10686
10687                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10688                         linfo[0].disallow_lpage = 1;
10689                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10690                         linfo[lpages - 1].disallow_lpage = 1;
10691                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10692                 /*
10693                  * If the gfn and userspace address are not aligned wrt each
10694                  * other, disable large page support for this slot.
10695                  */
10696                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10697                         unsigned long j;
10698
10699                         for (j = 0; j < lpages; ++j)
10700                                 linfo[j].disallow_lpage = 1;
10701                 }
10702         }
10703
10704         if (kvm_page_track_create_memslot(slot, npages))
10705                 goto out_free;
10706
10707         return 0;
10708
10709 out_free:
10710         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10711                 kvfree(slot->arch.rmap[i]);
10712                 slot->arch.rmap[i] = NULL;
10713                 if (i == 0)
10714                         continue;
10715
10716                 kvfree(slot->arch.lpage_info[i - 1]);
10717                 slot->arch.lpage_info[i - 1] = NULL;
10718         }
10719         return -ENOMEM;
10720 }
10721
10722 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10723 {
10724         struct kvm_vcpu *vcpu;
10725         int i;
10726
10727         /*
10728          * memslots->generation has been incremented.
10729          * mmio generation may have reached its maximum value.
10730          */
10731         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10732
10733         /* Force re-initialization of steal_time cache */
10734         kvm_for_each_vcpu(i, vcpu, kvm)
10735                 kvm_vcpu_kick(vcpu);
10736 }
10737
10738 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10739                                 struct kvm_memory_slot *memslot,
10740                                 const struct kvm_userspace_memory_region *mem,
10741                                 enum kvm_mr_change change)
10742 {
10743         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10744                 return kvm_alloc_memslot_metadata(memslot,
10745                                                   mem->memory_size >> PAGE_SHIFT);
10746         return 0;
10747 }
10748
10749 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10750                                      struct kvm_memory_slot *old,
10751                                      struct kvm_memory_slot *new,
10752                                      enum kvm_mr_change change)
10753 {
10754         /*
10755          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10756          * See comments below.
10757          */
10758         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10759                 return;
10760
10761         /*
10762          * Dirty logging tracks sptes in 4k granularity, meaning that large
10763          * sptes have to be split.  If live migration is successful, the guest
10764          * in the source machine will be destroyed and large sptes will be
10765          * created in the destination. However, if the guest continues to run
10766          * in the source machine (for example if live migration fails), small
10767          * sptes will remain around and cause bad performance.
10768          *
10769          * Scan sptes if dirty logging has been stopped, dropping those
10770          * which can be collapsed into a single large-page spte.  Later
10771          * page faults will create the large-page sptes.
10772          *
10773          * There is no need to do this in any of the following cases:
10774          * CREATE:      No dirty mappings will already exist.
10775          * MOVE/DELETE: The old mappings will already have been cleaned up by
10776          *              kvm_arch_flush_shadow_memslot()
10777          */
10778         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10779             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10780                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10781
10782         /*
10783          * Enable or disable dirty logging for the slot.
10784          *
10785          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10786          * slot have been zapped so no dirty logging updates are needed for
10787          * the old slot.
10788          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10789          * any mappings that might be created in it will consume the
10790          * properties of the new slot and do not need to be updated here.
10791          *
10792          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10793          * called to enable/disable dirty logging.
10794          *
10795          * When disabling dirty logging with PML enabled, the D-bit is set
10796          * for sptes in the slot in order to prevent unnecessary GPA
10797          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10798          * This guarantees leaving PML enabled for the guest's lifetime
10799          * won't have any additional overhead from PML when the guest is
10800          * running with dirty logging disabled.
10801          *
10802          * When enabling dirty logging, large sptes are write-protected
10803          * so they can be split on first write.  New large sptes cannot
10804          * be created for this slot until the end of the logging.
10805          * See the comments in fast_page_fault().
10806          * For small sptes, nothing is done if the dirty log is in the
10807          * initial-all-set state.  Otherwise, depending on whether pml
10808          * is enabled the D-bit or the W-bit will be cleared.
10809          */
10810         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10811                 if (kvm_x86_ops.slot_enable_log_dirty) {
10812                         static_call(kvm_x86_slot_enable_log_dirty)(kvm, new);
10813                 } else {
10814                         int level =
10815                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10816                                 PG_LEVEL_2M : PG_LEVEL_4K;
10817
10818                         /*
10819                          * If we're with initial-all-set, we don't need
10820                          * to write protect any small page because
10821                          * they're reported as dirty already.  However
10822                          * we still need to write-protect huge pages
10823                          * so that the page split can happen lazily on
10824                          * the first write to the huge page.
10825                          */
10826                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10827                 }
10828         } else {
10829                 static_call_cond(kvm_x86_slot_disable_log_dirty)(kvm, new);
10830         }
10831 }
10832
10833 void kvm_arch_commit_memory_region(struct kvm *kvm,
10834                                 const struct kvm_userspace_memory_region *mem,
10835                                 struct kvm_memory_slot *old,
10836                                 const struct kvm_memory_slot *new,
10837                                 enum kvm_mr_change change)
10838 {
10839         if (!kvm->arch.n_requested_mmu_pages)
10840                 kvm_mmu_change_mmu_pages(kvm,
10841                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10842
10843         /*
10844          * FIXME: const-ify all uses of struct kvm_memory_slot.
10845          */
10846         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10847
10848         /* Free the arrays associated with the old memslot. */
10849         if (change == KVM_MR_MOVE)
10850                 kvm_arch_free_memslot(kvm, old);
10851 }
10852
10853 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10854 {
10855         kvm_mmu_zap_all(kvm);
10856 }
10857
10858 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10859                                    struct kvm_memory_slot *slot)
10860 {
10861         kvm_page_track_flush_slot(kvm, slot);
10862 }
10863
10864 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10865 {
10866         return (is_guest_mode(vcpu) &&
10867                         kvm_x86_ops.guest_apic_has_interrupt &&
10868                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10869 }
10870
10871 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10872 {
10873         if (!list_empty_careful(&vcpu->async_pf.done))
10874                 return true;
10875
10876         if (kvm_apic_has_events(vcpu))
10877                 return true;
10878
10879         if (vcpu->arch.pv.pv_unhalted)
10880                 return true;
10881
10882         if (vcpu->arch.exception.pending)
10883                 return true;
10884
10885         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10886             (vcpu->arch.nmi_pending &&
10887              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10888                 return true;
10889
10890         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10891             (vcpu->arch.smi_pending &&
10892              static_call(kvm_x86_smi_allowed)(vcpu, false)))
10893                 return true;
10894
10895         if (kvm_arch_interrupt_allowed(vcpu) &&
10896             (kvm_cpu_has_interrupt(vcpu) ||
10897             kvm_guest_apic_has_interrupt(vcpu)))
10898                 return true;
10899
10900         if (kvm_hv_has_stimer_pending(vcpu))
10901                 return true;
10902
10903         if (is_guest_mode(vcpu) &&
10904             kvm_x86_ops.nested_ops->hv_timer_pending &&
10905             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10906                 return true;
10907
10908         return false;
10909 }
10910
10911 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10912 {
10913         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10914 }
10915
10916 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10917 {
10918         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10919                 return true;
10920
10921         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10922                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10923                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10924                 return true;
10925
10926         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
10927                 return true;
10928
10929         return false;
10930 }
10931
10932 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10933 {
10934         return vcpu->arch.preempted_in_kernel;
10935 }
10936
10937 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10938 {
10939         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10940 }
10941
10942 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10943 {
10944         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
10945 }
10946
10947 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10948 {
10949         /* Can't read the RIP when guest state is protected, just return 0 */
10950         if (vcpu->arch.guest_state_protected)
10951                 return 0;
10952
10953         if (is_64_bit_mode(vcpu))
10954                 return kvm_rip_read(vcpu);
10955         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10956                      kvm_rip_read(vcpu));
10957 }
10958 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10959
10960 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10961 {
10962         return kvm_get_linear_rip(vcpu) == linear_rip;
10963 }
10964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10965
10966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10967 {
10968         unsigned long rflags;
10969
10970         rflags = static_call(kvm_x86_get_rflags)(vcpu);
10971         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10972                 rflags &= ~X86_EFLAGS_TF;
10973         return rflags;
10974 }
10975 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10976
10977 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10978 {
10979         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10980             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10981                 rflags |= X86_EFLAGS_TF;
10982         static_call(kvm_x86_set_rflags)(vcpu, rflags);
10983 }
10984
10985 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10986 {
10987         __kvm_set_rflags(vcpu, rflags);
10988         kvm_make_request(KVM_REQ_EVENT, vcpu);
10989 }
10990 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10991
10992 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10993 {
10994         int r;
10995
10996         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10997               work->wakeup_all)
10998                 return;
10999
11000         r = kvm_mmu_reload(vcpu);
11001         if (unlikely(r))
11002                 return;
11003
11004         if (!vcpu->arch.mmu->direct_map &&
11005               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11006                 return;
11007
11008         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11009 }
11010
11011 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11012 {
11013         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11014
11015         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11016 }
11017
11018 static inline u32 kvm_async_pf_next_probe(u32 key)
11019 {
11020         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11021 }
11022
11023 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11024 {
11025         u32 key = kvm_async_pf_hash_fn(gfn);
11026
11027         while (vcpu->arch.apf.gfns[key] != ~0)
11028                 key = kvm_async_pf_next_probe(key);
11029
11030         vcpu->arch.apf.gfns[key] = gfn;
11031 }
11032
11033 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11034 {
11035         int i;
11036         u32 key = kvm_async_pf_hash_fn(gfn);
11037
11038         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11039                      (vcpu->arch.apf.gfns[key] != gfn &&
11040                       vcpu->arch.apf.gfns[key] != ~0); i++)
11041                 key = kvm_async_pf_next_probe(key);
11042
11043         return key;
11044 }
11045
11046 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11047 {
11048         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11049 }
11050
11051 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11052 {
11053         u32 i, j, k;
11054
11055         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11056
11057         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11058                 return;
11059
11060         while (true) {
11061                 vcpu->arch.apf.gfns[i] = ~0;
11062                 do {
11063                         j = kvm_async_pf_next_probe(j);
11064                         if (vcpu->arch.apf.gfns[j] == ~0)
11065                                 return;
11066                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11067                         /*
11068                          * k lies cyclically in ]i,j]
11069                          * |    i.k.j |
11070                          * |....j i.k.| or  |.k..j i...|
11071                          */
11072                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11073                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11074                 i = j;
11075         }
11076 }
11077
11078 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11079 {
11080         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11081
11082         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11083                                       sizeof(reason));
11084 }
11085
11086 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11087 {
11088         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11089
11090         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11091                                              &token, offset, sizeof(token));
11092 }
11093
11094 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11095 {
11096         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11097         u32 val;
11098
11099         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11100                                          &val, offset, sizeof(val)))
11101                 return false;
11102
11103         return !val;
11104 }
11105
11106 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11107 {
11108         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11109                 return false;
11110
11111         if (!kvm_pv_async_pf_enabled(vcpu) ||
11112             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11113                 return false;
11114
11115         return true;
11116 }
11117
11118 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11119 {
11120         if (unlikely(!lapic_in_kernel(vcpu) ||
11121                      kvm_event_needs_reinjection(vcpu) ||
11122                      vcpu->arch.exception.pending))
11123                 return false;
11124
11125         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11126                 return false;
11127
11128         /*
11129          * If interrupts are off we cannot even use an artificial
11130          * halt state.
11131          */
11132         return kvm_arch_interrupt_allowed(vcpu);
11133 }
11134
11135 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11136                                      struct kvm_async_pf *work)
11137 {
11138         struct x86_exception fault;
11139
11140         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11141         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11142
11143         if (kvm_can_deliver_async_pf(vcpu) &&
11144             !apf_put_user_notpresent(vcpu)) {
11145                 fault.vector = PF_VECTOR;
11146                 fault.error_code_valid = true;
11147                 fault.error_code = 0;
11148                 fault.nested_page_fault = false;
11149                 fault.address = work->arch.token;
11150                 fault.async_page_fault = true;
11151                 kvm_inject_page_fault(vcpu, &fault);
11152                 return true;
11153         } else {
11154                 /*
11155                  * It is not possible to deliver a paravirtualized asynchronous
11156                  * page fault, but putting the guest in an artificial halt state
11157                  * can be beneficial nevertheless: if an interrupt arrives, we
11158                  * can deliver it timely and perhaps the guest will schedule
11159                  * another process.  When the instruction that triggered a page
11160                  * fault is retried, hopefully the page will be ready in the host.
11161                  */
11162                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11163                 return false;
11164         }
11165 }
11166
11167 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11168                                  struct kvm_async_pf *work)
11169 {
11170         struct kvm_lapic_irq irq = {
11171                 .delivery_mode = APIC_DM_FIXED,
11172                 .vector = vcpu->arch.apf.vec
11173         };
11174
11175         if (work->wakeup_all)
11176                 work->arch.token = ~0; /* broadcast wakeup */
11177         else
11178                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11179         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11180
11181         if ((work->wakeup_all || work->notpresent_injected) &&
11182             kvm_pv_async_pf_enabled(vcpu) &&
11183             !apf_put_user_ready(vcpu, work->arch.token)) {
11184                 vcpu->arch.apf.pageready_pending = true;
11185                 kvm_apic_set_irq(vcpu, &irq, NULL);
11186         }
11187
11188         vcpu->arch.apf.halted = false;
11189         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11190 }
11191
11192 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11193 {
11194         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11195         if (!vcpu->arch.apf.pageready_pending)
11196                 kvm_vcpu_kick(vcpu);
11197 }
11198
11199 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11200 {
11201         if (!kvm_pv_async_pf_enabled(vcpu))
11202                 return true;
11203         else
11204                 return apf_pageready_slot_free(vcpu);
11205 }
11206
11207 void kvm_arch_start_assignment(struct kvm *kvm)
11208 {
11209         atomic_inc(&kvm->arch.assigned_device_count);
11210 }
11211 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11212
11213 void kvm_arch_end_assignment(struct kvm *kvm)
11214 {
11215         atomic_dec(&kvm->arch.assigned_device_count);
11216 }
11217 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11218
11219 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11220 {
11221         return atomic_read(&kvm->arch.assigned_device_count);
11222 }
11223 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11224
11225 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11226 {
11227         atomic_inc(&kvm->arch.noncoherent_dma_count);
11228 }
11229 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11230
11231 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11232 {
11233         atomic_dec(&kvm->arch.noncoherent_dma_count);
11234 }
11235 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11236
11237 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11238 {
11239         return atomic_read(&kvm->arch.noncoherent_dma_count);
11240 }
11241 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11242
11243 bool kvm_arch_has_irq_bypass(void)
11244 {
11245         return true;
11246 }
11247
11248 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11249                                       struct irq_bypass_producer *prod)
11250 {
11251         struct kvm_kernel_irqfd *irqfd =
11252                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11253         int ret;
11254
11255         irqfd->producer = prod;
11256         kvm_arch_start_assignment(irqfd->kvm);
11257         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11258                                          prod->irq, irqfd->gsi, 1);
11259
11260         if (ret)
11261                 kvm_arch_end_assignment(irqfd->kvm);
11262
11263         return ret;
11264 }
11265
11266 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11267                                       struct irq_bypass_producer *prod)
11268 {
11269         int ret;
11270         struct kvm_kernel_irqfd *irqfd =
11271                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11272
11273         WARN_ON(irqfd->producer != prod);
11274         irqfd->producer = NULL;
11275
11276         /*
11277          * When producer of consumer is unregistered, we change back to
11278          * remapped mode, so we can re-use the current implementation
11279          * when the irq is masked/disabled or the consumer side (KVM
11280          * int this case doesn't want to receive the interrupts.
11281         */
11282         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11283         if (ret)
11284                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11285                        " fails: %d\n", irqfd->consumer.token, ret);
11286
11287         kvm_arch_end_assignment(irqfd->kvm);
11288 }
11289
11290 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11291                                    uint32_t guest_irq, bool set)
11292 {
11293         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11294 }
11295
11296 bool kvm_vector_hashing_enabled(void)
11297 {
11298         return vector_hashing;
11299 }
11300
11301 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11302 {
11303         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11304 }
11305 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11306
11307
11308 int kvm_spec_ctrl_test_value(u64 value)
11309 {
11310         /*
11311          * test that setting IA32_SPEC_CTRL to given value
11312          * is allowed by the host processor
11313          */
11314
11315         u64 saved_value;
11316         unsigned long flags;
11317         int ret = 0;
11318
11319         local_irq_save(flags);
11320
11321         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11322                 ret = 1;
11323         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11324                 ret = 1;
11325         else
11326                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11327
11328         local_irq_restore(flags);
11329
11330         return ret;
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11333
11334 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11335 {
11336         struct x86_exception fault;
11337         u32 access = error_code &
11338                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11339
11340         if (!(error_code & PFERR_PRESENT_MASK) ||
11341             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11342                 /*
11343                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11344                  * tables probably do not match the TLB.  Just proceed
11345                  * with the error code that the processor gave.
11346                  */
11347                 fault.vector = PF_VECTOR;
11348                 fault.error_code_valid = true;
11349                 fault.error_code = error_code;
11350                 fault.nested_page_fault = false;
11351                 fault.address = gva;
11352         }
11353         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11354 }
11355 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11356
11357 /*
11358  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11359  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11360  * indicates whether exit to userspace is needed.
11361  */
11362 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11363                               struct x86_exception *e)
11364 {
11365         if (r == X86EMUL_PROPAGATE_FAULT) {
11366                 kvm_inject_emulated_page_fault(vcpu, e);
11367                 return 1;
11368         }
11369
11370         /*
11371          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11372          * while handling a VMX instruction KVM could've handled the request
11373          * correctly by exiting to userspace and performing I/O but there
11374          * doesn't seem to be a real use-case behind such requests, just return
11375          * KVM_EXIT_INTERNAL_ERROR for now.
11376          */
11377         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11378         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11379         vcpu->run->internal.ndata = 0;
11380
11381         return 0;
11382 }
11383 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11384
11385 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11386 {
11387         bool pcid_enabled;
11388         struct x86_exception e;
11389         unsigned i;
11390         unsigned long roots_to_free = 0;
11391         struct {
11392                 u64 pcid;
11393                 u64 gla;
11394         } operand;
11395         int r;
11396
11397         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11398         if (r != X86EMUL_CONTINUE)
11399                 return kvm_handle_memory_failure(vcpu, r, &e);
11400
11401         if (operand.pcid >> 12 != 0) {
11402                 kvm_inject_gp(vcpu, 0);
11403                 return 1;
11404         }
11405
11406         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11407
11408         switch (type) {
11409         case INVPCID_TYPE_INDIV_ADDR:
11410                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11411                     is_noncanonical_address(operand.gla, vcpu)) {
11412                         kvm_inject_gp(vcpu, 0);
11413                         return 1;
11414                 }
11415                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11416                 return kvm_skip_emulated_instruction(vcpu);
11417
11418         case INVPCID_TYPE_SINGLE_CTXT:
11419                 if (!pcid_enabled && (operand.pcid != 0)) {
11420                         kvm_inject_gp(vcpu, 0);
11421                         return 1;
11422                 }
11423
11424                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11425                         kvm_mmu_sync_roots(vcpu);
11426                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11427                 }
11428
11429                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11430                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11431                             == operand.pcid)
11432                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11433
11434                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11435                 /*
11436                  * If neither the current cr3 nor any of the prev_roots use the
11437                  * given PCID, then nothing needs to be done here because a
11438                  * resync will happen anyway before switching to any other CR3.
11439                  */
11440
11441                 return kvm_skip_emulated_instruction(vcpu);
11442
11443         case INVPCID_TYPE_ALL_NON_GLOBAL:
11444                 /*
11445                  * Currently, KVM doesn't mark global entries in the shadow
11446                  * page tables, so a non-global flush just degenerates to a
11447                  * global flush. If needed, we could optimize this later by
11448                  * keeping track of global entries in shadow page tables.
11449                  */
11450
11451                 fallthrough;
11452         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11453                 kvm_mmu_unload(vcpu);
11454                 return kvm_skip_emulated_instruction(vcpu);
11455
11456         default:
11457                 BUG(); /* We have already checked above that type <= 3 */
11458         }
11459 }
11460 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11461
11462 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11463 {
11464         struct kvm_run *run = vcpu->run;
11465         struct kvm_mmio_fragment *frag;
11466         unsigned int len;
11467
11468         BUG_ON(!vcpu->mmio_needed);
11469
11470         /* Complete previous fragment */
11471         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11472         len = min(8u, frag->len);
11473         if (!vcpu->mmio_is_write)
11474                 memcpy(frag->data, run->mmio.data, len);
11475
11476         if (frag->len <= 8) {
11477                 /* Switch to the next fragment. */
11478                 frag++;
11479                 vcpu->mmio_cur_fragment++;
11480         } else {
11481                 /* Go forward to the next mmio piece. */
11482                 frag->data += len;
11483                 frag->gpa += len;
11484                 frag->len -= len;
11485         }
11486
11487         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11488                 vcpu->mmio_needed = 0;
11489
11490                 // VMG change, at this point, we're always done
11491                 // RIP has already been advanced
11492                 return 1;
11493         }
11494
11495         // More MMIO is needed
11496         run->mmio.phys_addr = frag->gpa;
11497         run->mmio.len = min(8u, frag->len);
11498         run->mmio.is_write = vcpu->mmio_is_write;
11499         if (run->mmio.is_write)
11500                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11501         run->exit_reason = KVM_EXIT_MMIO;
11502
11503         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11504
11505         return 0;
11506 }
11507
11508 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11509                           void *data)
11510 {
11511         int handled;
11512         struct kvm_mmio_fragment *frag;
11513
11514         if (!data)
11515                 return -EINVAL;
11516
11517         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11518         if (handled == bytes)
11519                 return 1;
11520
11521         bytes -= handled;
11522         gpa += handled;
11523         data += handled;
11524
11525         /*TODO: Check if need to increment number of frags */
11526         frag = vcpu->mmio_fragments;
11527         vcpu->mmio_nr_fragments = 1;
11528         frag->len = bytes;
11529         frag->gpa = gpa;
11530         frag->data = data;
11531
11532         vcpu->mmio_needed = 1;
11533         vcpu->mmio_cur_fragment = 0;
11534
11535         vcpu->run->mmio.phys_addr = gpa;
11536         vcpu->run->mmio.len = min(8u, frag->len);
11537         vcpu->run->mmio.is_write = 1;
11538         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11539         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11540
11541         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11542
11543         return 0;
11544 }
11545 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11546
11547 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11548                          void *data)
11549 {
11550         int handled;
11551         struct kvm_mmio_fragment *frag;
11552
11553         if (!data)
11554                 return -EINVAL;
11555
11556         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11557         if (handled == bytes)
11558                 return 1;
11559
11560         bytes -= handled;
11561         gpa += handled;
11562         data += handled;
11563
11564         /*TODO: Check if need to increment number of frags */
11565         frag = vcpu->mmio_fragments;
11566         vcpu->mmio_nr_fragments = 1;
11567         frag->len = bytes;
11568         frag->gpa = gpa;
11569         frag->data = data;
11570
11571         vcpu->mmio_needed = 1;
11572         vcpu->mmio_cur_fragment = 0;
11573
11574         vcpu->run->mmio.phys_addr = gpa;
11575         vcpu->run->mmio.len = min(8u, frag->len);
11576         vcpu->run->mmio.is_write = 0;
11577         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11578
11579         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11580
11581         return 0;
11582 }
11583 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11584
11585 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11586 {
11587         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11588                vcpu->arch.pio.count * vcpu->arch.pio.size);
11589         vcpu->arch.pio.count = 0;
11590
11591         return 1;
11592 }
11593
11594 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11595                            unsigned int port, void *data,  unsigned int count)
11596 {
11597         int ret;
11598
11599         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11600                                         data, count);
11601         if (ret)
11602                 return ret;
11603
11604         vcpu->arch.pio.count = 0;
11605
11606         return 0;
11607 }
11608
11609 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11610                           unsigned int port, void *data, unsigned int count)
11611 {
11612         int ret;
11613
11614         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11615                                        data, count);
11616         if (ret) {
11617                 vcpu->arch.pio.count = 0;
11618         } else {
11619                 vcpu->arch.guest_ins_data = data;
11620                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11621         }
11622
11623         return 0;
11624 }
11625
11626 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11627                          unsigned int port, void *data,  unsigned int count,
11628                          int in)
11629 {
11630         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11631                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11632 }
11633 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11634
11635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);