780224e767232c424507c8ad60def2bf3c2f1c27
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
97
98 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
99 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
100
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
110
111 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
113
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
116
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
119
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
122
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
125
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32  __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64  __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
136
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140
141 /*
142  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
143  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
144  * advancement entirely.  Any other value is used as-is and disables adaptive
145  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
146  */
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
149
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
152
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
156
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
159
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
162
163 #define KVM_NR_SHARED_MSRS 16
164
165 struct kvm_shared_msrs_global {
166         int nr;
167         u32 msrs[KVM_NR_SHARED_MSRS];
168 };
169
170 struct kvm_shared_msrs {
171         struct user_return_notifier urn;
172         bool registered;
173         struct kvm_shared_msr_values {
174                 u64 host;
175                 u64 curr;
176         } values[KVM_NR_SHARED_MSRS];
177 };
178
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
181
182 static u64 __read_mostly host_xss;
183
184 struct kvm_stats_debugfs_item debugfs_entries[] = {
185         { "pf_fixed", VCPU_STAT(pf_fixed) },
186         { "pf_guest", VCPU_STAT(pf_guest) },
187         { "tlb_flush", VCPU_STAT(tlb_flush) },
188         { "invlpg", VCPU_STAT(invlpg) },
189         { "exits", VCPU_STAT(exits) },
190         { "io_exits", VCPU_STAT(io_exits) },
191         { "mmio_exits", VCPU_STAT(mmio_exits) },
192         { "signal_exits", VCPU_STAT(signal_exits) },
193         { "irq_window", VCPU_STAT(irq_window_exits) },
194         { "nmi_window", VCPU_STAT(nmi_window_exits) },
195         { "halt_exits", VCPU_STAT(halt_exits) },
196         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
197         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
198         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
199         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
200         { "hypercalls", VCPU_STAT(hypercalls) },
201         { "request_irq", VCPU_STAT(request_irq_exits) },
202         { "irq_exits", VCPU_STAT(irq_exits) },
203         { "host_state_reload", VCPU_STAT(host_state_reload) },
204         { "fpu_reload", VCPU_STAT(fpu_reload) },
205         { "insn_emulation", VCPU_STAT(insn_emulation) },
206         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
207         { "irq_injections", VCPU_STAT(irq_injections) },
208         { "nmi_injections", VCPU_STAT(nmi_injections) },
209         { "req_event", VCPU_STAT(req_event) },
210         { "l1d_flush", VCPU_STAT(l1d_flush) },
211         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
212         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
213         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
214         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
215         { "mmu_flooded", VM_STAT(mmu_flooded) },
216         { "mmu_recycled", VM_STAT(mmu_recycled) },
217         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
218         { "mmu_unsync", VM_STAT(mmu_unsync) },
219         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
220         { "largepages", VM_STAT(lpages, .mode = 0444) },
221         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
222         { "max_mmu_page_hash_collisions",
223                 VM_STAT(max_mmu_page_hash_collisions) },
224         { NULL }
225 };
226
227 u64 __read_mostly host_xcr0;
228
229 struct kmem_cache *x86_fpu_cache;
230 EXPORT_SYMBOL_GPL(x86_fpu_cache);
231
232 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
233
234 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
235 {
236         int i;
237         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
238                 vcpu->arch.apf.gfns[i] = ~0;
239 }
240
241 static void kvm_on_user_return(struct user_return_notifier *urn)
242 {
243         unsigned slot;
244         struct kvm_shared_msrs *locals
245                 = container_of(urn, struct kvm_shared_msrs, urn);
246         struct kvm_shared_msr_values *values;
247         unsigned long flags;
248
249         /*
250          * Disabling irqs at this point since the following code could be
251          * interrupted and executed through kvm_arch_hardware_disable()
252          */
253         local_irq_save(flags);
254         if (locals->registered) {
255                 locals->registered = false;
256                 user_return_notifier_unregister(urn);
257         }
258         local_irq_restore(flags);
259         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
260                 values = &locals->values[slot];
261                 if (values->host != values->curr) {
262                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
263                         values->curr = values->host;
264                 }
265         }
266 }
267
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
269 {
270         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271         shared_msrs_global.msrs[slot] = msr;
272         if (slot >= shared_msrs_global.nr)
273                 shared_msrs_global.nr = slot + 1;
274 }
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
276
277 static void kvm_shared_msr_cpu_online(void)
278 {
279         unsigned int cpu = smp_processor_id();
280         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
281         u64 value;
282         int i;
283
284         for (i = 0; i < shared_msrs_global.nr; ++i) {
285                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
286                 smsr->values[i].host = value;
287                 smsr->values[i].curr = value;
288         }
289 }
290
291 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
292 {
293         unsigned int cpu = smp_processor_id();
294         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
295         int err;
296
297         value = (value & mask) | (smsr->values[slot].host & ~mask);
298         if (value == smsr->values[slot].curr)
299                 return 0;
300         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
301         if (err)
302                 return 1;
303
304         smsr->values[slot].curr = value;
305         if (!smsr->registered) {
306                 smsr->urn.on_user_return = kvm_on_user_return;
307                 user_return_notifier_register(&smsr->urn);
308                 smsr->registered = true;
309         }
310         return 0;
311 }
312 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
313
314 static void drop_user_return_notifiers(void)
315 {
316         unsigned int cpu = smp_processor_id();
317         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
318
319         if (smsr->registered)
320                 kvm_on_user_return(&smsr->urn);
321 }
322
323 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
324 {
325         return vcpu->arch.apic_base;
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
328
329 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
330 {
331         return kvm_apic_mode(kvm_get_apic_base(vcpu));
332 }
333 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
334
335 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
336 {
337         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
338         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
339         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
340                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
341
342         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
343                 return 1;
344         if (!msr_info->host_initiated) {
345                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
346                         return 1;
347                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
348                         return 1;
349         }
350
351         kvm_lapic_set_base(vcpu, msr_info->data);
352         return 0;
353 }
354 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
355
356 asmlinkage __visible void kvm_spurious_fault(void)
357 {
358         /* Fault while not rebooting.  We want the trace. */
359         BUG_ON(!kvm_rebooting);
360 }
361 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
362
363 #define EXCPT_BENIGN            0
364 #define EXCPT_CONTRIBUTORY      1
365 #define EXCPT_PF                2
366
367 static int exception_class(int vector)
368 {
369         switch (vector) {
370         case PF_VECTOR:
371                 return EXCPT_PF;
372         case DE_VECTOR:
373         case TS_VECTOR:
374         case NP_VECTOR:
375         case SS_VECTOR:
376         case GP_VECTOR:
377                 return EXCPT_CONTRIBUTORY;
378         default:
379                 break;
380         }
381         return EXCPT_BENIGN;
382 }
383
384 #define EXCPT_FAULT             0
385 #define EXCPT_TRAP              1
386 #define EXCPT_ABORT             2
387 #define EXCPT_INTERRUPT         3
388
389 static int exception_type(int vector)
390 {
391         unsigned int mask;
392
393         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
394                 return EXCPT_INTERRUPT;
395
396         mask = 1 << vector;
397
398         /* #DB is trap, as instruction watchpoints are handled elsewhere */
399         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
400                 return EXCPT_TRAP;
401
402         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
403                 return EXCPT_ABORT;
404
405         /* Reserved exceptions will result in fault */
406         return EXCPT_FAULT;
407 }
408
409 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
410 {
411         unsigned nr = vcpu->arch.exception.nr;
412         bool has_payload = vcpu->arch.exception.has_payload;
413         unsigned long payload = vcpu->arch.exception.payload;
414
415         if (!has_payload)
416                 return;
417
418         switch (nr) {
419         case DB_VECTOR:
420                 /*
421                  * "Certain debug exceptions may clear bit 0-3.  The
422                  * remaining contents of the DR6 register are never
423                  * cleared by the processor".
424                  */
425                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
426                 /*
427                  * DR6.RTM is set by all #DB exceptions that don't clear it.
428                  */
429                 vcpu->arch.dr6 |= DR6_RTM;
430                 vcpu->arch.dr6 |= payload;
431                 /*
432                  * Bit 16 should be set in the payload whenever the #DB
433                  * exception should clear DR6.RTM. This makes the payload
434                  * compatible with the pending debug exceptions under VMX.
435                  * Though not currently documented in the SDM, this also
436                  * makes the payload compatible with the exit qualification
437                  * for #DB exceptions under VMX.
438                  */
439                 vcpu->arch.dr6 ^= payload & DR6_RTM;
440                 break;
441         case PF_VECTOR:
442                 vcpu->arch.cr2 = payload;
443                 break;
444         }
445
446         vcpu->arch.exception.has_payload = false;
447         vcpu->arch.exception.payload = 0;
448 }
449 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
450
451 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
452                 unsigned nr, bool has_error, u32 error_code,
453                 bool has_payload, unsigned long payload, bool reinject)
454 {
455         u32 prev_nr;
456         int class1, class2;
457
458         kvm_make_request(KVM_REQ_EVENT, vcpu);
459
460         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
461         queue:
462                 if (has_error && !is_protmode(vcpu))
463                         has_error = false;
464                 if (reinject) {
465                         /*
466                          * On vmentry, vcpu->arch.exception.pending is only
467                          * true if an event injection was blocked by
468                          * nested_run_pending.  In that case, however,
469                          * vcpu_enter_guest requests an immediate exit,
470                          * and the guest shouldn't proceed far enough to
471                          * need reinjection.
472                          */
473                         WARN_ON_ONCE(vcpu->arch.exception.pending);
474                         vcpu->arch.exception.injected = true;
475                         if (WARN_ON_ONCE(has_payload)) {
476                                 /*
477                                  * A reinjected event has already
478                                  * delivered its payload.
479                                  */
480                                 has_payload = false;
481                                 payload = 0;
482                         }
483                 } else {
484                         vcpu->arch.exception.pending = true;
485                         vcpu->arch.exception.injected = false;
486                 }
487                 vcpu->arch.exception.has_error_code = has_error;
488                 vcpu->arch.exception.nr = nr;
489                 vcpu->arch.exception.error_code = error_code;
490                 vcpu->arch.exception.has_payload = has_payload;
491                 vcpu->arch.exception.payload = payload;
492                 /*
493                  * In guest mode, payload delivery should be deferred,
494                  * so that the L1 hypervisor can intercept #PF before
495                  * CR2 is modified (or intercept #DB before DR6 is
496                  * modified under nVMX).  However, for ABI
497                  * compatibility with KVM_GET_VCPU_EVENTS and
498                  * KVM_SET_VCPU_EVENTS, we can't delay payload
499                  * delivery unless userspace has enabled this
500                  * functionality via the per-VM capability,
501                  * KVM_CAP_EXCEPTION_PAYLOAD.
502                  */
503                 if (!vcpu->kvm->arch.exception_payload_enabled ||
504                     !is_guest_mode(vcpu))
505                         kvm_deliver_exception_payload(vcpu);
506                 return;
507         }
508
509         /* to check exception */
510         prev_nr = vcpu->arch.exception.nr;
511         if (prev_nr == DF_VECTOR) {
512                 /* triple fault -> shutdown */
513                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
514                 return;
515         }
516         class1 = exception_class(prev_nr);
517         class2 = exception_class(nr);
518         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
519                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
520                 /*
521                  * Generate double fault per SDM Table 5-5.  Set
522                  * exception.pending = true so that the double fault
523                  * can trigger a nested vmexit.
524                  */
525                 vcpu->arch.exception.pending = true;
526                 vcpu->arch.exception.injected = false;
527                 vcpu->arch.exception.has_error_code = true;
528                 vcpu->arch.exception.nr = DF_VECTOR;
529                 vcpu->arch.exception.error_code = 0;
530                 vcpu->arch.exception.has_payload = false;
531                 vcpu->arch.exception.payload = 0;
532         } else
533                 /* replace previous exception with a new one in a hope
534                    that instruction re-execution will regenerate lost
535                    exception */
536                 goto queue;
537 }
538
539 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
540 {
541         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
542 }
543 EXPORT_SYMBOL_GPL(kvm_queue_exception);
544
545 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
546 {
547         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
548 }
549 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
550
551 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
552                                   unsigned long payload)
553 {
554         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
555 }
556
557 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
558                                     u32 error_code, unsigned long payload)
559 {
560         kvm_multiple_exception(vcpu, nr, true, error_code,
561                                true, payload, false);
562 }
563
564 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
565 {
566         if (err)
567                 kvm_inject_gp(vcpu, 0);
568         else
569                 return kvm_skip_emulated_instruction(vcpu);
570
571         return 1;
572 }
573 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
574
575 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
576 {
577         ++vcpu->stat.pf_guest;
578         vcpu->arch.exception.nested_apf =
579                 is_guest_mode(vcpu) && fault->async_page_fault;
580         if (vcpu->arch.exception.nested_apf) {
581                 vcpu->arch.apf.nested_apf_token = fault->address;
582                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
583         } else {
584                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
585                                         fault->address);
586         }
587 }
588 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
589
590 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
591 {
592         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
593                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
594         else
595                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
596
597         return fault->nested_page_fault;
598 }
599
600 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
601 {
602         atomic_inc(&vcpu->arch.nmi_queued);
603         kvm_make_request(KVM_REQ_NMI, vcpu);
604 }
605 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
606
607 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
608 {
609         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
610 }
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
612
613 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
614 {
615         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
616 }
617 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
618
619 /*
620  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
621  * a #GP and return false.
622  */
623 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
624 {
625         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
626                 return true;
627         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
628         return false;
629 }
630 EXPORT_SYMBOL_GPL(kvm_require_cpl);
631
632 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
633 {
634         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
635                 return true;
636
637         kvm_queue_exception(vcpu, UD_VECTOR);
638         return false;
639 }
640 EXPORT_SYMBOL_GPL(kvm_require_dr);
641
642 /*
643  * This function will be used to read from the physical memory of the currently
644  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
645  * can read from guest physical or from the guest's guest physical memory.
646  */
647 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
648                             gfn_t ngfn, void *data, int offset, int len,
649                             u32 access)
650 {
651         struct x86_exception exception;
652         gfn_t real_gfn;
653         gpa_t ngpa;
654
655         ngpa     = gfn_to_gpa(ngfn);
656         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
657         if (real_gfn == UNMAPPED_GVA)
658                 return -EFAULT;
659
660         real_gfn = gpa_to_gfn(real_gfn);
661
662         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
663 }
664 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
665
666 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
667                                void *data, int offset, int len, u32 access)
668 {
669         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
670                                        data, offset, len, access);
671 }
672
673 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
674 {
675         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
676                rsvd_bits(1, 2);
677 }
678
679 /*
680  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
681  */
682 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
683 {
684         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
685         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
686         int i;
687         int ret;
688         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
689
690         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
691                                       offset * sizeof(u64), sizeof(pdpte),
692                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
693         if (ret < 0) {
694                 ret = 0;
695                 goto out;
696         }
697         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
698                 if ((pdpte[i] & PT_PRESENT_MASK) &&
699                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
700                         ret = 0;
701                         goto out;
702                 }
703         }
704         ret = 1;
705
706         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
707         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
708
709 out:
710
711         return ret;
712 }
713 EXPORT_SYMBOL_GPL(load_pdptrs);
714
715 bool pdptrs_changed(struct kvm_vcpu *vcpu)
716 {
717         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
718         int offset;
719         gfn_t gfn;
720         int r;
721
722         if (!is_pae_paging(vcpu))
723                 return false;
724
725         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
726                 return true;
727
728         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
729         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
730         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
731                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
732         if (r < 0)
733                 return true;
734
735         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 }
737 EXPORT_SYMBOL_GPL(pdptrs_changed);
738
739 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
740 {
741         unsigned long old_cr0 = kvm_read_cr0(vcpu);
742         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
743
744         cr0 |= X86_CR0_ET;
745
746 #ifdef CONFIG_X86_64
747         if (cr0 & 0xffffffff00000000UL)
748                 return 1;
749 #endif
750
751         cr0 &= ~CR0_RESERVED_BITS;
752
753         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
754                 return 1;
755
756         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
757                 return 1;
758
759         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
760 #ifdef CONFIG_X86_64
761                 if ((vcpu->arch.efer & EFER_LME)) {
762                         int cs_db, cs_l;
763
764                         if (!is_pae(vcpu))
765                                 return 1;
766                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
767                         if (cs_l)
768                                 return 1;
769                 } else
770 #endif
771                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
772                                                  kvm_read_cr3(vcpu)))
773                         return 1;
774         }
775
776         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
777                 return 1;
778
779         kvm_x86_ops->set_cr0(vcpu, cr0);
780
781         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
782                 kvm_clear_async_pf_completion_queue(vcpu);
783                 kvm_async_pf_hash_reset(vcpu);
784         }
785
786         if ((cr0 ^ old_cr0) & update_bits)
787                 kvm_mmu_reset_context(vcpu);
788
789         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
790             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
791             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
792                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
793
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr0);
797
798 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
799 {
800         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
801 }
802 EXPORT_SYMBOL_GPL(kvm_lmsw);
803
804 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
805 {
806         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
807
808                 if (vcpu->arch.xcr0 != host_xcr0)
809                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
810
811                 if (vcpu->arch.xsaves_enabled &&
812                     vcpu->arch.ia32_xss != host_xss)
813                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
814         }
815 }
816 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
817
818 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
819 {
820         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
821
822                 if (vcpu->arch.xcr0 != host_xcr0)
823                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824
825                 if (vcpu->arch.xsaves_enabled &&
826                     vcpu->arch.ia32_xss != host_xss)
827                         wrmsrl(MSR_IA32_XSS, host_xss);
828         }
829
830 }
831 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
832
833 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
834 {
835         u64 xcr0 = xcr;
836         u64 old_xcr0 = vcpu->arch.xcr0;
837         u64 valid_bits;
838
839         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
840         if (index != XCR_XFEATURE_ENABLED_MASK)
841                 return 1;
842         if (!(xcr0 & XFEATURE_MASK_FP))
843                 return 1;
844         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
845                 return 1;
846
847         /*
848          * Do not allow the guest to set bits that we do not support
849          * saving.  However, xcr0 bit 0 is always set, even if the
850          * emulated CPU does not support XSAVE (see fx_init).
851          */
852         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
853         if (xcr0 & ~valid_bits)
854                 return 1;
855
856         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
857             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
858                 return 1;
859
860         if (xcr0 & XFEATURE_MASK_AVX512) {
861                 if (!(xcr0 & XFEATURE_MASK_YMM))
862                         return 1;
863                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
864                         return 1;
865         }
866         vcpu->arch.xcr0 = xcr0;
867
868         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
869                 kvm_update_cpuid(vcpu);
870         return 0;
871 }
872
873 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
874 {
875         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
876             __kvm_set_xcr(vcpu, index, xcr)) {
877                 kvm_inject_gp(vcpu, 0);
878                 return 1;
879         }
880         return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_xcr);
883
884 #define __cr4_reserved_bits(__cpu_has, __c)             \
885 ({                                                      \
886         u64 __reserved_bits = CR4_RESERVED_BITS;        \
887                                                         \
888         if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
889                 __reserved_bits |= X86_CR4_OSXSAVE;     \
890         if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
891                 __reserved_bits |= X86_CR4_SMEP;        \
892         if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
893                 __reserved_bits |= X86_CR4_SMAP;        \
894         if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
895                 __reserved_bits |= X86_CR4_FSGSBASE;    \
896         if (!__cpu_has(__c, X86_FEATURE_PKU))           \
897                 __reserved_bits |= X86_CR4_PKE;         \
898         if (!__cpu_has(__c, X86_FEATURE_LA57))          \
899                 __reserved_bits |= X86_CR4_LA57;        \
900         __reserved_bits;                                \
901 })
902
903 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
904 {
905         u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
906
907         if (cpuid_ecx(0x7) & feature_bit(LA57))
908                 reserved_bits &= ~X86_CR4_LA57;
909
910         if (kvm_x86_ops->umip_emulated())
911                 reserved_bits &= ~X86_CR4_UMIP;
912
913         return reserved_bits;
914 }
915
916 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
917 {
918         if (cr4 & cr4_reserved_bits)
919                 return -EINVAL;
920
921         if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
922                 return -EINVAL;
923
924         return 0;
925 }
926
927 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
928 {
929         unsigned long old_cr4 = kvm_read_cr4(vcpu);
930         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
931                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
932
933         if (kvm_valid_cr4(vcpu, cr4))
934                 return 1;
935
936         if (is_long_mode(vcpu)) {
937                 if (!(cr4 & X86_CR4_PAE))
938                         return 1;
939         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
940                    && ((cr4 ^ old_cr4) & pdptr_bits)
941                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
942                                    kvm_read_cr3(vcpu)))
943                 return 1;
944
945         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
946                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
947                         return 1;
948
949                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
950                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
951                         return 1;
952         }
953
954         if (kvm_x86_ops->set_cr4(vcpu, cr4))
955                 return 1;
956
957         if (((cr4 ^ old_cr4) & pdptr_bits) ||
958             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
959                 kvm_mmu_reset_context(vcpu);
960
961         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
962                 kvm_update_cpuid(vcpu);
963
964         return 0;
965 }
966 EXPORT_SYMBOL_GPL(kvm_set_cr4);
967
968 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
969 {
970         bool skip_tlb_flush = false;
971 #ifdef CONFIG_X86_64
972         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
973
974         if (pcid_enabled) {
975                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
976                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
977         }
978 #endif
979
980         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
981                 if (!skip_tlb_flush) {
982                         kvm_mmu_sync_roots(vcpu);
983                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
984                 }
985                 return 0;
986         }
987
988         if (is_long_mode(vcpu) &&
989             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
990                 return 1;
991         else if (is_pae_paging(vcpu) &&
992                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
993                 return 1;
994
995         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
996         vcpu->arch.cr3 = cr3;
997         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
998
999         return 0;
1000 }
1001 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1002
1003 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1004 {
1005         if (cr8 & CR8_RESERVED_BITS)
1006                 return 1;
1007         if (lapic_in_kernel(vcpu))
1008                 kvm_lapic_set_tpr(vcpu, cr8);
1009         else
1010                 vcpu->arch.cr8 = cr8;
1011         return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1014
1015 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1016 {
1017         if (lapic_in_kernel(vcpu))
1018                 return kvm_lapic_get_cr8(vcpu);
1019         else
1020                 return vcpu->arch.cr8;
1021 }
1022 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1023
1024 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1025 {
1026         int i;
1027
1028         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1029                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1030                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1031                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1032         }
1033 }
1034
1035 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1036 {
1037         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1038                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1039 }
1040
1041 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1042 {
1043         unsigned long dr7;
1044
1045         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1046                 dr7 = vcpu->arch.guest_debug_dr7;
1047         else
1048                 dr7 = vcpu->arch.dr7;
1049         kvm_x86_ops->set_dr7(vcpu, dr7);
1050         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1051         if (dr7 & DR7_BP_EN_MASK)
1052                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1053 }
1054
1055 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1056 {
1057         u64 fixed = DR6_FIXED_1;
1058
1059         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1060                 fixed |= DR6_RTM;
1061         return fixed;
1062 }
1063
1064 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1065 {
1066         size_t size = ARRAY_SIZE(vcpu->arch.db);
1067
1068         switch (dr) {
1069         case 0 ... 3:
1070                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1071                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1072                         vcpu->arch.eff_db[dr] = val;
1073                 break;
1074         case 4:
1075                 /* fall through */
1076         case 6:
1077                 if (val & 0xffffffff00000000ULL)
1078                         return -1; /* #GP */
1079                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1080                 kvm_update_dr6(vcpu);
1081                 break;
1082         case 5:
1083                 /* fall through */
1084         default: /* 7 */
1085                 if (val & 0xffffffff00000000ULL)
1086                         return -1; /* #GP */
1087                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1088                 kvm_update_dr7(vcpu);
1089                 break;
1090         }
1091
1092         return 0;
1093 }
1094
1095 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1096 {
1097         if (__kvm_set_dr(vcpu, dr, val)) {
1098                 kvm_inject_gp(vcpu, 0);
1099                 return 1;
1100         }
1101         return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_set_dr);
1104
1105 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1106 {
1107         size_t size = ARRAY_SIZE(vcpu->arch.db);
1108
1109         switch (dr) {
1110         case 0 ... 3:
1111                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1112                 break;
1113         case 4:
1114                 /* fall through */
1115         case 6:
1116                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1117                         *val = vcpu->arch.dr6;
1118                 else
1119                         *val = kvm_x86_ops->get_dr6(vcpu);
1120                 break;
1121         case 5:
1122                 /* fall through */
1123         default: /* 7 */
1124                 *val = vcpu->arch.dr7;
1125                 break;
1126         }
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dr);
1130
1131 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1132 {
1133         u32 ecx = kvm_rcx_read(vcpu);
1134         u64 data;
1135         int err;
1136
1137         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1138         if (err)
1139                 return err;
1140         kvm_rax_write(vcpu, (u32)data);
1141         kvm_rdx_write(vcpu, data >> 32);
1142         return err;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1145
1146 /*
1147  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1148  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1149  *
1150  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1151  * extract the supported MSRs from the related const lists.
1152  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1153  * capabilities of the host cpu. This capabilities test skips MSRs that are
1154  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1155  * may depend on host virtualization features rather than host cpu features.
1156  */
1157
1158 static const u32 msrs_to_save_all[] = {
1159         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1160         MSR_STAR,
1161 #ifdef CONFIG_X86_64
1162         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1163 #endif
1164         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1165         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1166         MSR_IA32_SPEC_CTRL,
1167         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1168         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1169         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1170         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1171         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1172         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1173         MSR_IA32_UMWAIT_CONTROL,
1174
1175         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1176         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1177         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1178         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1179         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1180         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1181         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1182         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1183         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1184         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1185         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1186         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1187         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1188         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1189         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1190         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1191         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1192         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1193         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1194         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1195         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1196         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1197 };
1198
1199 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1200 static unsigned num_msrs_to_save;
1201
1202 static const u32 emulated_msrs_all[] = {
1203         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1204         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1205         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1206         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1207         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1208         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1209         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1210         HV_X64_MSR_RESET,
1211         HV_X64_MSR_VP_INDEX,
1212         HV_X64_MSR_VP_RUNTIME,
1213         HV_X64_MSR_SCONTROL,
1214         HV_X64_MSR_STIMER0_CONFIG,
1215         HV_X64_MSR_VP_ASSIST_PAGE,
1216         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1217         HV_X64_MSR_TSC_EMULATION_STATUS,
1218
1219         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1220         MSR_KVM_PV_EOI_EN,
1221
1222         MSR_IA32_TSC_ADJUST,
1223         MSR_IA32_TSCDEADLINE,
1224         MSR_IA32_ARCH_CAPABILITIES,
1225         MSR_IA32_MISC_ENABLE,
1226         MSR_IA32_MCG_STATUS,
1227         MSR_IA32_MCG_CTL,
1228         MSR_IA32_MCG_EXT_CTL,
1229         MSR_IA32_SMBASE,
1230         MSR_SMI_COUNT,
1231         MSR_PLATFORM_INFO,
1232         MSR_MISC_FEATURES_ENABLES,
1233         MSR_AMD64_VIRT_SPEC_CTRL,
1234         MSR_IA32_POWER_CTL,
1235         MSR_IA32_UCODE_REV,
1236
1237         /*
1238          * The following list leaves out MSRs whose values are determined
1239          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1240          * We always support the "true" VMX control MSRs, even if the host
1241          * processor does not, so I am putting these registers here rather
1242          * than in msrs_to_save_all.
1243          */
1244         MSR_IA32_VMX_BASIC,
1245         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1246         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1247         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1248         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1249         MSR_IA32_VMX_MISC,
1250         MSR_IA32_VMX_CR0_FIXED0,
1251         MSR_IA32_VMX_CR4_FIXED0,
1252         MSR_IA32_VMX_VMCS_ENUM,
1253         MSR_IA32_VMX_PROCBASED_CTLS2,
1254         MSR_IA32_VMX_EPT_VPID_CAP,
1255         MSR_IA32_VMX_VMFUNC,
1256
1257         MSR_K7_HWCR,
1258         MSR_KVM_POLL_CONTROL,
1259 };
1260
1261 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1262 static unsigned num_emulated_msrs;
1263
1264 /*
1265  * List of msr numbers which are used to expose MSR-based features that
1266  * can be used by a hypervisor to validate requested CPU features.
1267  */
1268 static const u32 msr_based_features_all[] = {
1269         MSR_IA32_VMX_BASIC,
1270         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1271         MSR_IA32_VMX_PINBASED_CTLS,
1272         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1273         MSR_IA32_VMX_PROCBASED_CTLS,
1274         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1275         MSR_IA32_VMX_EXIT_CTLS,
1276         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1277         MSR_IA32_VMX_ENTRY_CTLS,
1278         MSR_IA32_VMX_MISC,
1279         MSR_IA32_VMX_CR0_FIXED0,
1280         MSR_IA32_VMX_CR0_FIXED1,
1281         MSR_IA32_VMX_CR4_FIXED0,
1282         MSR_IA32_VMX_CR4_FIXED1,
1283         MSR_IA32_VMX_VMCS_ENUM,
1284         MSR_IA32_VMX_PROCBASED_CTLS2,
1285         MSR_IA32_VMX_EPT_VPID_CAP,
1286         MSR_IA32_VMX_VMFUNC,
1287
1288         MSR_F10H_DECFG,
1289         MSR_IA32_UCODE_REV,
1290         MSR_IA32_ARCH_CAPABILITIES,
1291 };
1292
1293 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1294 static unsigned int num_msr_based_features;
1295
1296 static u64 kvm_get_arch_capabilities(void)
1297 {
1298         u64 data = 0;
1299
1300         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1301                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1302
1303         /*
1304          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1305          * the nested hypervisor runs with NX huge pages.  If it is not,
1306          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1307          * L1 guests, so it need not worry about its own (L2) guests.
1308          */
1309         data |= ARCH_CAP_PSCHANGE_MC_NO;
1310
1311         /*
1312          * If we're doing cache flushes (either "always" or "cond")
1313          * we will do one whenever the guest does a vmlaunch/vmresume.
1314          * If an outer hypervisor is doing the cache flush for us
1315          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1316          * capability to the guest too, and if EPT is disabled we're not
1317          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1318          * require a nested hypervisor to do a flush of its own.
1319          */
1320         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1321                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1322
1323         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1324                 data |= ARCH_CAP_RDCL_NO;
1325         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1326                 data |= ARCH_CAP_SSB_NO;
1327         if (!boot_cpu_has_bug(X86_BUG_MDS))
1328                 data |= ARCH_CAP_MDS_NO;
1329
1330         /*
1331          * On TAA affected systems:
1332          *      - nothing to do if TSX is disabled on the host.
1333          *      - we emulate TSX_CTRL if present on the host.
1334          *        This lets the guest use VERW to clear CPU buffers.
1335          */
1336         if (!boot_cpu_has(X86_FEATURE_RTM))
1337                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1338         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1339                 data |= ARCH_CAP_TAA_NO;
1340
1341         return data;
1342 }
1343
1344 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1345 {
1346         switch (msr->index) {
1347         case MSR_IA32_ARCH_CAPABILITIES:
1348                 msr->data = kvm_get_arch_capabilities();
1349                 break;
1350         case MSR_IA32_UCODE_REV:
1351                 rdmsrl_safe(msr->index, &msr->data);
1352                 break;
1353         default:
1354                 if (kvm_x86_ops->get_msr_feature(msr))
1355                         return 1;
1356         }
1357         return 0;
1358 }
1359
1360 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1361 {
1362         struct kvm_msr_entry msr;
1363         int r;
1364
1365         msr.index = index;
1366         r = kvm_get_msr_feature(&msr);
1367         if (r)
1368                 return r;
1369
1370         *data = msr.data;
1371
1372         return 0;
1373 }
1374
1375 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1376 {
1377         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1378                 return false;
1379
1380         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1381                 return false;
1382
1383         if (efer & (EFER_LME | EFER_LMA) &&
1384             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1385                 return false;
1386
1387         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1388                 return false;
1389
1390         return true;
1391
1392 }
1393 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1394 {
1395         if (efer & efer_reserved_bits)
1396                 return false;
1397
1398         return __kvm_valid_efer(vcpu, efer);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1401
1402 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1403 {
1404         u64 old_efer = vcpu->arch.efer;
1405         u64 efer = msr_info->data;
1406
1407         if (efer & efer_reserved_bits)
1408                 return 1;
1409
1410         if (!msr_info->host_initiated) {
1411                 if (!__kvm_valid_efer(vcpu, efer))
1412                         return 1;
1413
1414                 if (is_paging(vcpu) &&
1415                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1416                         return 1;
1417         }
1418
1419         efer &= ~EFER_LMA;
1420         efer |= vcpu->arch.efer & EFER_LMA;
1421
1422         kvm_x86_ops->set_efer(vcpu, efer);
1423
1424         /* Update reserved bits */
1425         if ((efer ^ old_efer) & EFER_NX)
1426                 kvm_mmu_reset_context(vcpu);
1427
1428         return 0;
1429 }
1430
1431 void kvm_enable_efer_bits(u64 mask)
1432 {
1433        efer_reserved_bits &= ~mask;
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1436
1437 /*
1438  * Write @data into the MSR specified by @index.  Select MSR specific fault
1439  * checks are bypassed if @host_initiated is %true.
1440  * Returns 0 on success, non-0 otherwise.
1441  * Assumes vcpu_load() was already called.
1442  */
1443 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1444                          bool host_initiated)
1445 {
1446         struct msr_data msr;
1447
1448         switch (index) {
1449         case MSR_FS_BASE:
1450         case MSR_GS_BASE:
1451         case MSR_KERNEL_GS_BASE:
1452         case MSR_CSTAR:
1453         case MSR_LSTAR:
1454                 if (is_noncanonical_address(data, vcpu))
1455                         return 1;
1456                 break;
1457         case MSR_IA32_SYSENTER_EIP:
1458         case MSR_IA32_SYSENTER_ESP:
1459                 /*
1460                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1461                  * non-canonical address is written on Intel but not on
1462                  * AMD (which ignores the top 32-bits, because it does
1463                  * not implement 64-bit SYSENTER).
1464                  *
1465                  * 64-bit code should hence be able to write a non-canonical
1466                  * value on AMD.  Making the address canonical ensures that
1467                  * vmentry does not fail on Intel after writing a non-canonical
1468                  * value, and that something deterministic happens if the guest
1469                  * invokes 64-bit SYSENTER.
1470                  */
1471                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1472         }
1473
1474         msr.data = data;
1475         msr.index = index;
1476         msr.host_initiated = host_initiated;
1477
1478         return kvm_x86_ops->set_msr(vcpu, &msr);
1479 }
1480
1481 /*
1482  * Read the MSR specified by @index into @data.  Select MSR specific fault
1483  * checks are bypassed if @host_initiated is %true.
1484  * Returns 0 on success, non-0 otherwise.
1485  * Assumes vcpu_load() was already called.
1486  */
1487 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1488                   bool host_initiated)
1489 {
1490         struct msr_data msr;
1491         int ret;
1492
1493         msr.index = index;
1494         msr.host_initiated = host_initiated;
1495
1496         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1497         if (!ret)
1498                 *data = msr.data;
1499         return ret;
1500 }
1501
1502 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1503 {
1504         return __kvm_get_msr(vcpu, index, data, false);
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_get_msr);
1507
1508 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1509 {
1510         return __kvm_set_msr(vcpu, index, data, false);
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_set_msr);
1513
1514 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1515 {
1516         u32 ecx = kvm_rcx_read(vcpu);
1517         u64 data;
1518
1519         if (kvm_get_msr(vcpu, ecx, &data)) {
1520                 trace_kvm_msr_read_ex(ecx);
1521                 kvm_inject_gp(vcpu, 0);
1522                 return 1;
1523         }
1524
1525         trace_kvm_msr_read(ecx, data);
1526
1527         kvm_rax_write(vcpu, data & -1u);
1528         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1529         return kvm_skip_emulated_instruction(vcpu);
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1532
1533 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1534 {
1535         u32 ecx = kvm_rcx_read(vcpu);
1536         u64 data = kvm_read_edx_eax(vcpu);
1537
1538         if (kvm_set_msr(vcpu, ecx, data)) {
1539                 trace_kvm_msr_write_ex(ecx, data);
1540                 kvm_inject_gp(vcpu, 0);
1541                 return 1;
1542         }
1543
1544         trace_kvm_msr_write(ecx, data);
1545         return kvm_skip_emulated_instruction(vcpu);
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1548
1549 /*
1550  * The fast path for frequent and performance sensitive wrmsr emulation,
1551  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1552  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1553  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1554  * other cases which must be called after interrupts are enabled on the host.
1555  */
1556 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1557 {
1558         if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1559                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1560                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1561
1562                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1563                 return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data);
1564         }
1565
1566         return 1;
1567 }
1568
1569 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1570 {
1571         u32 msr = kvm_rcx_read(vcpu);
1572         u64 data = kvm_read_edx_eax(vcpu);
1573         int ret = 0;
1574
1575         switch (msr) {
1576         case APIC_BASE_MSR + (APIC_ICR >> 4):
1577                 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1578                 break;
1579         default:
1580                 return EXIT_FASTPATH_NONE;
1581         }
1582
1583         if (!ret) {
1584                 trace_kvm_msr_write(msr, data);
1585                 return EXIT_FASTPATH_SKIP_EMUL_INS;
1586         }
1587
1588         return EXIT_FASTPATH_NONE;
1589 }
1590 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1591
1592 /*
1593  * Adapt set_msr() to msr_io()'s calling convention
1594  */
1595 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1596 {
1597         return __kvm_get_msr(vcpu, index, data, true);
1598 }
1599
1600 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1601 {
1602         return __kvm_set_msr(vcpu, index, *data, true);
1603 }
1604
1605 #ifdef CONFIG_X86_64
1606 struct pvclock_clock {
1607         int vclock_mode;
1608         u64 cycle_last;
1609         u64 mask;
1610         u32 mult;
1611         u32 shift;
1612 };
1613
1614 struct pvclock_gtod_data {
1615         seqcount_t      seq;
1616
1617         struct pvclock_clock clock; /* extract of a clocksource struct */
1618         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1619
1620         u64             boot_ns_raw;
1621         u64             boot_ns;
1622         u64             nsec_base;
1623         u64             wall_time_sec;
1624         u64             monotonic_raw_nsec;
1625 };
1626
1627 static struct pvclock_gtod_data pvclock_gtod_data;
1628
1629 static void update_pvclock_gtod(struct timekeeper *tk)
1630 {
1631         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1632         u64 boot_ns, boot_ns_raw;
1633
1634         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1635         boot_ns_raw = ktime_to_ns(ktime_add(tk->tkr_raw.base, tk->offs_boot));
1636
1637         write_seqcount_begin(&vdata->seq);
1638
1639         /* copy pvclock gtod data */
1640         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1641         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1642         vdata->clock.mask               = tk->tkr_mono.mask;
1643         vdata->clock.mult               = tk->tkr_mono.mult;
1644         vdata->clock.shift              = tk->tkr_mono.shift;
1645
1646         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->archdata.vclock_mode;
1647         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1648         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1649         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1650         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1651
1652         vdata->boot_ns                  = boot_ns;
1653         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1654
1655         vdata->wall_time_sec            = tk->xtime_sec;
1656
1657         vdata->boot_ns_raw              = boot_ns_raw;
1658         vdata->monotonic_raw_nsec       = tk->tkr_raw.xtime_nsec;
1659
1660         write_seqcount_end(&vdata->seq);
1661 }
1662 #endif
1663
1664 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1665 {
1666         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1667         kvm_vcpu_kick(vcpu);
1668 }
1669
1670 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1671 {
1672         int version;
1673         int r;
1674         struct pvclock_wall_clock wc;
1675         struct timespec64 boot;
1676
1677         if (!wall_clock)
1678                 return;
1679
1680         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1681         if (r)
1682                 return;
1683
1684         if (version & 1)
1685                 ++version;  /* first time write, random junk */
1686
1687         ++version;
1688
1689         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1690                 return;
1691
1692         /*
1693          * The guest calculates current wall clock time by adding
1694          * system time (updated by kvm_guest_time_update below) to the
1695          * wall clock specified here.  guest system time equals host
1696          * system time for us, thus we must fill in host boot time here.
1697          */
1698         getboottime64(&boot);
1699
1700         if (kvm->arch.kvmclock_offset) {
1701                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1702                 boot = timespec64_sub(boot, ts);
1703         }
1704         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1705         wc.nsec = boot.tv_nsec;
1706         wc.version = version;
1707
1708         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1709
1710         version++;
1711         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1712 }
1713
1714 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1715 {
1716         do_shl32_div32(dividend, divisor);
1717         return dividend;
1718 }
1719
1720 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1721                                s8 *pshift, u32 *pmultiplier)
1722 {
1723         uint64_t scaled64;
1724         int32_t  shift = 0;
1725         uint64_t tps64;
1726         uint32_t tps32;
1727
1728         tps64 = base_hz;
1729         scaled64 = scaled_hz;
1730         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1731                 tps64 >>= 1;
1732                 shift--;
1733         }
1734
1735         tps32 = (uint32_t)tps64;
1736         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1737                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1738                         scaled64 >>= 1;
1739                 else
1740                         tps32 <<= 1;
1741                 shift++;
1742         }
1743
1744         *pshift = shift;
1745         *pmultiplier = div_frac(scaled64, tps32);
1746 }
1747
1748 #ifdef CONFIG_X86_64
1749 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1750 #endif
1751
1752 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1753 static unsigned long max_tsc_khz;
1754
1755 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1756 {
1757         u64 v = (u64)khz * (1000000 + ppm);
1758         do_div(v, 1000000);
1759         return v;
1760 }
1761
1762 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1763 {
1764         u64 ratio;
1765
1766         /* Guest TSC same frequency as host TSC? */
1767         if (!scale) {
1768                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1769                 return 0;
1770         }
1771
1772         /* TSC scaling supported? */
1773         if (!kvm_has_tsc_control) {
1774                 if (user_tsc_khz > tsc_khz) {
1775                         vcpu->arch.tsc_catchup = 1;
1776                         vcpu->arch.tsc_always_catchup = 1;
1777                         return 0;
1778                 } else {
1779                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1780                         return -1;
1781                 }
1782         }
1783
1784         /* TSC scaling required  - calculate ratio */
1785         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1786                                 user_tsc_khz, tsc_khz);
1787
1788         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1789                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1790                                     user_tsc_khz);
1791                 return -1;
1792         }
1793
1794         vcpu->arch.tsc_scaling_ratio = ratio;
1795         return 0;
1796 }
1797
1798 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1799 {
1800         u32 thresh_lo, thresh_hi;
1801         int use_scaling = 0;
1802
1803         /* tsc_khz can be zero if TSC calibration fails */
1804         if (user_tsc_khz == 0) {
1805                 /* set tsc_scaling_ratio to a safe value */
1806                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1807                 return -1;
1808         }
1809
1810         /* Compute a scale to convert nanoseconds in TSC cycles */
1811         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1812                            &vcpu->arch.virtual_tsc_shift,
1813                            &vcpu->arch.virtual_tsc_mult);
1814         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1815
1816         /*
1817          * Compute the variation in TSC rate which is acceptable
1818          * within the range of tolerance and decide if the
1819          * rate being applied is within that bounds of the hardware
1820          * rate.  If so, no scaling or compensation need be done.
1821          */
1822         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1823         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1824         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1825                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1826                 use_scaling = 1;
1827         }
1828         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1829 }
1830
1831 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1832 {
1833         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1834                                       vcpu->arch.virtual_tsc_mult,
1835                                       vcpu->arch.virtual_tsc_shift);
1836         tsc += vcpu->arch.this_tsc_write;
1837         return tsc;
1838 }
1839
1840 static inline int gtod_is_based_on_tsc(int mode)
1841 {
1842         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1843 }
1844
1845 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1846 {
1847 #ifdef CONFIG_X86_64
1848         bool vcpus_matched;
1849         struct kvm_arch *ka = &vcpu->kvm->arch;
1850         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1851
1852         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1853                          atomic_read(&vcpu->kvm->online_vcpus));
1854
1855         /*
1856          * Once the masterclock is enabled, always perform request in
1857          * order to update it.
1858          *
1859          * In order to enable masterclock, the host clocksource must be TSC
1860          * and the vcpus need to have matched TSCs.  When that happens,
1861          * perform request to enable masterclock.
1862          */
1863         if (ka->use_master_clock ||
1864             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1865                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1866
1867         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1868                             atomic_read(&vcpu->kvm->online_vcpus),
1869                             ka->use_master_clock, gtod->clock.vclock_mode);
1870 #endif
1871 }
1872
1873 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1874 {
1875         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1876         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1877 }
1878
1879 /*
1880  * Multiply tsc by a fixed point number represented by ratio.
1881  *
1882  * The most significant 64-N bits (mult) of ratio represent the
1883  * integral part of the fixed point number; the remaining N bits
1884  * (frac) represent the fractional part, ie. ratio represents a fixed
1885  * point number (mult + frac * 2^(-N)).
1886  *
1887  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1888  */
1889 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1890 {
1891         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1892 }
1893
1894 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1895 {
1896         u64 _tsc = tsc;
1897         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1898
1899         if (ratio != kvm_default_tsc_scaling_ratio)
1900                 _tsc = __scale_tsc(ratio, tsc);
1901
1902         return _tsc;
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1905
1906 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1907 {
1908         u64 tsc;
1909
1910         tsc = kvm_scale_tsc(vcpu, rdtsc());
1911
1912         return target_tsc - tsc;
1913 }
1914
1915 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1916 {
1917         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1918
1919         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1920 }
1921 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1922
1923 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1924 {
1925         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1926 }
1927
1928 static inline bool kvm_check_tsc_unstable(void)
1929 {
1930 #ifdef CONFIG_X86_64
1931         /*
1932          * TSC is marked unstable when we're running on Hyper-V,
1933          * 'TSC page' clocksource is good.
1934          */
1935         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1936                 return false;
1937 #endif
1938         return check_tsc_unstable();
1939 }
1940
1941 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1942 {
1943         struct kvm *kvm = vcpu->kvm;
1944         u64 offset, ns, elapsed;
1945         unsigned long flags;
1946         bool matched;
1947         bool already_matched;
1948         u64 data = msr->data;
1949         bool synchronizing = false;
1950
1951         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1952         offset = kvm_compute_tsc_offset(vcpu, data);
1953         ns = ktime_get_boottime_ns();
1954         elapsed = ns - kvm->arch.last_tsc_nsec;
1955
1956         if (vcpu->arch.virtual_tsc_khz) {
1957                 if (data == 0 && msr->host_initiated) {
1958                         /*
1959                          * detection of vcpu initialization -- need to sync
1960                          * with other vCPUs. This particularly helps to keep
1961                          * kvm_clock stable after CPU hotplug
1962                          */
1963                         synchronizing = true;
1964                 } else {
1965                         u64 tsc_exp = kvm->arch.last_tsc_write +
1966                                                 nsec_to_cycles(vcpu, elapsed);
1967                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1968                         /*
1969                          * Special case: TSC write with a small delta (1 second)
1970                          * of virtual cycle time against real time is
1971                          * interpreted as an attempt to synchronize the CPU.
1972                          */
1973                         synchronizing = data < tsc_exp + tsc_hz &&
1974                                         data + tsc_hz > tsc_exp;
1975                 }
1976         }
1977
1978         /*
1979          * For a reliable TSC, we can match TSC offsets, and for an unstable
1980          * TSC, we add elapsed time in this computation.  We could let the
1981          * compensation code attempt to catch up if we fall behind, but
1982          * it's better to try to match offsets from the beginning.
1983          */
1984         if (synchronizing &&
1985             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1986                 if (!kvm_check_tsc_unstable()) {
1987                         offset = kvm->arch.cur_tsc_offset;
1988                 } else {
1989                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1990                         data += delta;
1991                         offset = kvm_compute_tsc_offset(vcpu, data);
1992                 }
1993                 matched = true;
1994                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1995         } else {
1996                 /*
1997                  * We split periods of matched TSC writes into generations.
1998                  * For each generation, we track the original measured
1999                  * nanosecond time, offset, and write, so if TSCs are in
2000                  * sync, we can match exact offset, and if not, we can match
2001                  * exact software computation in compute_guest_tsc()
2002                  *
2003                  * These values are tracked in kvm->arch.cur_xxx variables.
2004                  */
2005                 kvm->arch.cur_tsc_generation++;
2006                 kvm->arch.cur_tsc_nsec = ns;
2007                 kvm->arch.cur_tsc_write = data;
2008                 kvm->arch.cur_tsc_offset = offset;
2009                 matched = false;
2010         }
2011
2012         /*
2013          * We also track th most recent recorded KHZ, write and time to
2014          * allow the matching interval to be extended at each write.
2015          */
2016         kvm->arch.last_tsc_nsec = ns;
2017         kvm->arch.last_tsc_write = data;
2018         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2019
2020         vcpu->arch.last_guest_tsc = data;
2021
2022         /* Keep track of which generation this VCPU has synchronized to */
2023         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2024         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2025         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2026
2027         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2028                 update_ia32_tsc_adjust_msr(vcpu, offset);
2029
2030         kvm_vcpu_write_tsc_offset(vcpu, offset);
2031         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2032
2033         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2034         if (!matched) {
2035                 kvm->arch.nr_vcpus_matched_tsc = 0;
2036         } else if (!already_matched) {
2037                 kvm->arch.nr_vcpus_matched_tsc++;
2038         }
2039
2040         kvm_track_tsc_matching(vcpu);
2041         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2042 }
2043
2044 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2045
2046 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2047                                            s64 adjustment)
2048 {
2049         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2050         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2051 }
2052
2053 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2054 {
2055         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2056                 WARN_ON(adjustment < 0);
2057         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2058         adjust_tsc_offset_guest(vcpu, adjustment);
2059 }
2060
2061 #ifdef CONFIG_X86_64
2062
2063 static u64 read_tsc(void)
2064 {
2065         u64 ret = (u64)rdtsc_ordered();
2066         u64 last = pvclock_gtod_data.clock.cycle_last;
2067
2068         if (likely(ret >= last))
2069                 return ret;
2070
2071         /*
2072          * GCC likes to generate cmov here, but this branch is extremely
2073          * predictable (it's just a function of time and the likely is
2074          * very likely) and there's a data dependence, so force GCC
2075          * to generate a branch instead.  I don't barrier() because
2076          * we don't actually need a barrier, and if this function
2077          * ever gets inlined it will generate worse code.
2078          */
2079         asm volatile ("");
2080         return last;
2081 }
2082
2083 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2084                           int *mode)
2085 {
2086         long v;
2087         u64 tsc_pg_val;
2088
2089         switch (clock->vclock_mode) {
2090         case VCLOCK_HVCLOCK:
2091                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2092                                                   tsc_timestamp);
2093                 if (tsc_pg_val != U64_MAX) {
2094                         /* TSC page valid */
2095                         *mode = VCLOCK_HVCLOCK;
2096                         v = (tsc_pg_val - clock->cycle_last) &
2097                                 clock->mask;
2098                 } else {
2099                         /* TSC page invalid */
2100                         *mode = VCLOCK_NONE;
2101                 }
2102                 break;
2103         case VCLOCK_TSC:
2104                 *mode = VCLOCK_TSC;
2105                 *tsc_timestamp = read_tsc();
2106                 v = (*tsc_timestamp - clock->cycle_last) &
2107                         clock->mask;
2108                 break;
2109         default:
2110                 *mode = VCLOCK_NONE;
2111         }
2112
2113         if (*mode == VCLOCK_NONE)
2114                 *tsc_timestamp = v = 0;
2115
2116         return v * clock->mult;
2117 }
2118
2119 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2120 {
2121         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2122         unsigned long seq;
2123         int mode;
2124         u64 ns;
2125
2126         do {
2127                 seq = read_seqcount_begin(&gtod->seq);
2128                 ns = gtod->monotonic_raw_nsec;
2129                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2130                 ns >>= gtod->clock.shift;
2131                 ns += gtod->boot_ns_raw;
2132         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2133         *t = ns;
2134
2135         return mode;
2136 }
2137
2138 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2139 {
2140         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2141         unsigned long seq;
2142         int mode;
2143         u64 ns;
2144
2145         do {
2146                 seq = read_seqcount_begin(&gtod->seq);
2147                 ts->tv_sec = gtod->wall_time_sec;
2148                 ns = gtod->nsec_base;
2149                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2150                 ns >>= gtod->clock.shift;
2151         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2152
2153         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2154         ts->tv_nsec = ns;
2155
2156         return mode;
2157 }
2158
2159 /* returns true if host is using TSC based clocksource */
2160 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2161 {
2162         /* checked again under seqlock below */
2163         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2164                 return false;
2165
2166         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2167                                                       tsc_timestamp));
2168 }
2169
2170 /* returns true if host is using TSC based clocksource */
2171 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2172                                            u64 *tsc_timestamp)
2173 {
2174         /* checked again under seqlock below */
2175         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2176                 return false;
2177
2178         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2179 }
2180 #endif
2181
2182 /*
2183  *
2184  * Assuming a stable TSC across physical CPUS, and a stable TSC
2185  * across virtual CPUs, the following condition is possible.
2186  * Each numbered line represents an event visible to both
2187  * CPUs at the next numbered event.
2188  *
2189  * "timespecX" represents host monotonic time. "tscX" represents
2190  * RDTSC value.
2191  *
2192  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2193  *
2194  * 1.  read timespec0,tsc0
2195  * 2.                                   | timespec1 = timespec0 + N
2196  *                                      | tsc1 = tsc0 + M
2197  * 3. transition to guest               | transition to guest
2198  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2199  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2200  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2201  *
2202  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2203  *
2204  *      - ret0 < ret1
2205  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2206  *              ...
2207  *      - 0 < N - M => M < N
2208  *
2209  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2210  * always the case (the difference between two distinct xtime instances
2211  * might be smaller then the difference between corresponding TSC reads,
2212  * when updating guest vcpus pvclock areas).
2213  *
2214  * To avoid that problem, do not allow visibility of distinct
2215  * system_timestamp/tsc_timestamp values simultaneously: use a master
2216  * copy of host monotonic time values. Update that master copy
2217  * in lockstep.
2218  *
2219  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2220  *
2221  */
2222
2223 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2224 {
2225 #ifdef CONFIG_X86_64
2226         struct kvm_arch *ka = &kvm->arch;
2227         int vclock_mode;
2228         bool host_tsc_clocksource, vcpus_matched;
2229
2230         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2231                         atomic_read(&kvm->online_vcpus));
2232
2233         /*
2234          * If the host uses TSC clock, then passthrough TSC as stable
2235          * to the guest.
2236          */
2237         host_tsc_clocksource = kvm_get_time_and_clockread(
2238                                         &ka->master_kernel_ns,
2239                                         &ka->master_cycle_now);
2240
2241         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2242                                 && !ka->backwards_tsc_observed
2243                                 && !ka->boot_vcpu_runs_old_kvmclock;
2244
2245         if (ka->use_master_clock)
2246                 atomic_set(&kvm_guest_has_master_clock, 1);
2247
2248         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2249         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2250                                         vcpus_matched);
2251 #endif
2252 }
2253
2254 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2255 {
2256         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2257 }
2258
2259 static void kvm_gen_update_masterclock(struct kvm *kvm)
2260 {
2261 #ifdef CONFIG_X86_64
2262         int i;
2263         struct kvm_vcpu *vcpu;
2264         struct kvm_arch *ka = &kvm->arch;
2265
2266         spin_lock(&ka->pvclock_gtod_sync_lock);
2267         kvm_make_mclock_inprogress_request(kvm);
2268         /* no guest entries from this point */
2269         pvclock_update_vm_gtod_copy(kvm);
2270
2271         kvm_for_each_vcpu(i, vcpu, kvm)
2272                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273
2274         /* guest entries allowed */
2275         kvm_for_each_vcpu(i, vcpu, kvm)
2276                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2277
2278         spin_unlock(&ka->pvclock_gtod_sync_lock);
2279 #endif
2280 }
2281
2282 u64 get_kvmclock_ns(struct kvm *kvm)
2283 {
2284         struct kvm_arch *ka = &kvm->arch;
2285         struct pvclock_vcpu_time_info hv_clock;
2286         u64 ret;
2287
2288         spin_lock(&ka->pvclock_gtod_sync_lock);
2289         if (!ka->use_master_clock) {
2290                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2291                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2292         }
2293
2294         hv_clock.tsc_timestamp = ka->master_cycle_now;
2295         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2296         spin_unlock(&ka->pvclock_gtod_sync_lock);
2297
2298         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2299         get_cpu();
2300
2301         if (__this_cpu_read(cpu_tsc_khz)) {
2302                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2303                                    &hv_clock.tsc_shift,
2304                                    &hv_clock.tsc_to_system_mul);
2305                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2306         } else
2307                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2308
2309         put_cpu();
2310
2311         return ret;
2312 }
2313
2314 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2315 {
2316         struct kvm_vcpu_arch *vcpu = &v->arch;
2317         struct pvclock_vcpu_time_info guest_hv_clock;
2318
2319         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2320                 &guest_hv_clock, sizeof(guest_hv_clock))))
2321                 return;
2322
2323         /* This VCPU is paused, but it's legal for a guest to read another
2324          * VCPU's kvmclock, so we really have to follow the specification where
2325          * it says that version is odd if data is being modified, and even after
2326          * it is consistent.
2327          *
2328          * Version field updates must be kept separate.  This is because
2329          * kvm_write_guest_cached might use a "rep movs" instruction, and
2330          * writes within a string instruction are weakly ordered.  So there
2331          * are three writes overall.
2332          *
2333          * As a small optimization, only write the version field in the first
2334          * and third write.  The vcpu->pv_time cache is still valid, because the
2335          * version field is the first in the struct.
2336          */
2337         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2338
2339         if (guest_hv_clock.version & 1)
2340                 ++guest_hv_clock.version;  /* first time write, random junk */
2341
2342         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2343         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2344                                 &vcpu->hv_clock,
2345                                 sizeof(vcpu->hv_clock.version));
2346
2347         smp_wmb();
2348
2349         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2350         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2351
2352         if (vcpu->pvclock_set_guest_stopped_request) {
2353                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2354                 vcpu->pvclock_set_guest_stopped_request = false;
2355         }
2356
2357         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2358
2359         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2360                                 &vcpu->hv_clock,
2361                                 sizeof(vcpu->hv_clock));
2362
2363         smp_wmb();
2364
2365         vcpu->hv_clock.version++;
2366         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2367                                 &vcpu->hv_clock,
2368                                 sizeof(vcpu->hv_clock.version));
2369 }
2370
2371 static int kvm_guest_time_update(struct kvm_vcpu *v)
2372 {
2373         unsigned long flags, tgt_tsc_khz;
2374         struct kvm_vcpu_arch *vcpu = &v->arch;
2375         struct kvm_arch *ka = &v->kvm->arch;
2376         s64 kernel_ns;
2377         u64 tsc_timestamp, host_tsc;
2378         u8 pvclock_flags;
2379         bool use_master_clock;
2380
2381         kernel_ns = 0;
2382         host_tsc = 0;
2383
2384         /*
2385          * If the host uses TSC clock, then passthrough TSC as stable
2386          * to the guest.
2387          */
2388         spin_lock(&ka->pvclock_gtod_sync_lock);
2389         use_master_clock = ka->use_master_clock;
2390         if (use_master_clock) {
2391                 host_tsc = ka->master_cycle_now;
2392                 kernel_ns = ka->master_kernel_ns;
2393         }
2394         spin_unlock(&ka->pvclock_gtod_sync_lock);
2395
2396         /* Keep irq disabled to prevent changes to the clock */
2397         local_irq_save(flags);
2398         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2399         if (unlikely(tgt_tsc_khz == 0)) {
2400                 local_irq_restore(flags);
2401                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2402                 return 1;
2403         }
2404         if (!use_master_clock) {
2405                 host_tsc = rdtsc();
2406                 kernel_ns = ktime_get_boottime_ns();
2407         }
2408
2409         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2410
2411         /*
2412          * We may have to catch up the TSC to match elapsed wall clock
2413          * time for two reasons, even if kvmclock is used.
2414          *   1) CPU could have been running below the maximum TSC rate
2415          *   2) Broken TSC compensation resets the base at each VCPU
2416          *      entry to avoid unknown leaps of TSC even when running
2417          *      again on the same CPU.  This may cause apparent elapsed
2418          *      time to disappear, and the guest to stand still or run
2419          *      very slowly.
2420          */
2421         if (vcpu->tsc_catchup) {
2422                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2423                 if (tsc > tsc_timestamp) {
2424                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2425                         tsc_timestamp = tsc;
2426                 }
2427         }
2428
2429         local_irq_restore(flags);
2430
2431         /* With all the info we got, fill in the values */
2432
2433         if (kvm_has_tsc_control)
2434                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2435
2436         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2437                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2438                                    &vcpu->hv_clock.tsc_shift,
2439                                    &vcpu->hv_clock.tsc_to_system_mul);
2440                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2441         }
2442
2443         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2444         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2445         vcpu->last_guest_tsc = tsc_timestamp;
2446
2447         /* If the host uses TSC clocksource, then it is stable */
2448         pvclock_flags = 0;
2449         if (use_master_clock)
2450                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2451
2452         vcpu->hv_clock.flags = pvclock_flags;
2453
2454         if (vcpu->pv_time_enabled)
2455                 kvm_setup_pvclock_page(v);
2456         if (v == kvm_get_vcpu(v->kvm, 0))
2457                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2458         return 0;
2459 }
2460
2461 /*
2462  * kvmclock updates which are isolated to a given vcpu, such as
2463  * vcpu->cpu migration, should not allow system_timestamp from
2464  * the rest of the vcpus to remain static. Otherwise ntp frequency
2465  * correction applies to one vcpu's system_timestamp but not
2466  * the others.
2467  *
2468  * So in those cases, request a kvmclock update for all vcpus.
2469  * We need to rate-limit these requests though, as they can
2470  * considerably slow guests that have a large number of vcpus.
2471  * The time for a remote vcpu to update its kvmclock is bound
2472  * by the delay we use to rate-limit the updates.
2473  */
2474
2475 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2476
2477 static void kvmclock_update_fn(struct work_struct *work)
2478 {
2479         int i;
2480         struct delayed_work *dwork = to_delayed_work(work);
2481         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2482                                            kvmclock_update_work);
2483         struct kvm *kvm = container_of(ka, struct kvm, arch);
2484         struct kvm_vcpu *vcpu;
2485
2486         kvm_for_each_vcpu(i, vcpu, kvm) {
2487                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2488                 kvm_vcpu_kick(vcpu);
2489         }
2490 }
2491
2492 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2493 {
2494         struct kvm *kvm = v->kvm;
2495
2496         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2497         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2498                                         KVMCLOCK_UPDATE_DELAY);
2499 }
2500
2501 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2502
2503 static void kvmclock_sync_fn(struct work_struct *work)
2504 {
2505         struct delayed_work *dwork = to_delayed_work(work);
2506         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2507                                            kvmclock_sync_work);
2508         struct kvm *kvm = container_of(ka, struct kvm, arch);
2509
2510         if (!kvmclock_periodic_sync)
2511                 return;
2512
2513         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2514         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2515                                         KVMCLOCK_SYNC_PERIOD);
2516 }
2517
2518 /*
2519  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2520  */
2521 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2522 {
2523         /* McStatusWrEn enabled? */
2524         if (guest_cpuid_is_amd(vcpu))
2525                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2526
2527         return false;
2528 }
2529
2530 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2531 {
2532         u64 mcg_cap = vcpu->arch.mcg_cap;
2533         unsigned bank_num = mcg_cap & 0xff;
2534         u32 msr = msr_info->index;
2535         u64 data = msr_info->data;
2536
2537         switch (msr) {
2538         case MSR_IA32_MCG_STATUS:
2539                 vcpu->arch.mcg_status = data;
2540                 break;
2541         case MSR_IA32_MCG_CTL:
2542                 if (!(mcg_cap & MCG_CTL_P) &&
2543                     (data || !msr_info->host_initiated))
2544                         return 1;
2545                 if (data != 0 && data != ~(u64)0)
2546                         return 1;
2547                 vcpu->arch.mcg_ctl = data;
2548                 break;
2549         default:
2550                 if (msr >= MSR_IA32_MC0_CTL &&
2551                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2552                         u32 offset = array_index_nospec(
2553                                 msr - MSR_IA32_MC0_CTL,
2554                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2555
2556                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2557                          * some Linux kernels though clear bit 10 in bank 4 to
2558                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2559                          * this to avoid an uncatched #GP in the guest
2560                          */
2561                         if ((offset & 0x3) == 0 &&
2562                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2563                                 return -1;
2564
2565                         /* MCi_STATUS */
2566                         if (!msr_info->host_initiated &&
2567                             (offset & 0x3) == 1 && data != 0) {
2568                                 if (!can_set_mci_status(vcpu))
2569                                         return -1;
2570                         }
2571
2572                         vcpu->arch.mce_banks[offset] = data;
2573                         break;
2574                 }
2575                 return 1;
2576         }
2577         return 0;
2578 }
2579
2580 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2581 {
2582         struct kvm *kvm = vcpu->kvm;
2583         int lm = is_long_mode(vcpu);
2584         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2585                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2586         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2587                 : kvm->arch.xen_hvm_config.blob_size_32;
2588         u32 page_num = data & ~PAGE_MASK;
2589         u64 page_addr = data & PAGE_MASK;
2590         u8 *page;
2591         int r;
2592
2593         r = -E2BIG;
2594         if (page_num >= blob_size)
2595                 goto out;
2596         r = -ENOMEM;
2597         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2598         if (IS_ERR(page)) {
2599                 r = PTR_ERR(page);
2600                 goto out;
2601         }
2602         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2603                 goto out_free;
2604         r = 0;
2605 out_free:
2606         kfree(page);
2607 out:
2608         return r;
2609 }
2610
2611 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2612 {
2613         gpa_t gpa = data & ~0x3f;
2614
2615         /* Bits 3:5 are reserved, Should be zero */
2616         if (data & 0x38)
2617                 return 1;
2618
2619         vcpu->arch.apf.msr_val = data;
2620
2621         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2622                 kvm_clear_async_pf_completion_queue(vcpu);
2623                 kvm_async_pf_hash_reset(vcpu);
2624                 return 0;
2625         }
2626
2627         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2628                                         sizeof(u32)))
2629                 return 1;
2630
2631         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2632         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2633         kvm_async_pf_wakeup_all(vcpu);
2634         return 0;
2635 }
2636
2637 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2638 {
2639         vcpu->arch.pv_time_enabled = false;
2640         vcpu->arch.time = 0;
2641 }
2642
2643 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2644 {
2645         ++vcpu->stat.tlb_flush;
2646         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2647 }
2648
2649 static void record_steal_time(struct kvm_vcpu *vcpu)
2650 {
2651         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2652                 return;
2653
2654         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2655                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2656                 return;
2657
2658         /*
2659          * Doing a TLB flush here, on the guest's behalf, can avoid
2660          * expensive IPIs.
2661          */
2662         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2663                 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2664         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2665                 kvm_vcpu_flush_tlb(vcpu, false);
2666
2667         if (vcpu->arch.st.steal.version & 1)
2668                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2669
2670         vcpu->arch.st.steal.version += 1;
2671
2672         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2673                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2674
2675         smp_wmb();
2676
2677         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2678                 vcpu->arch.st.last_steal;
2679         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2680
2681         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2682                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2683
2684         smp_wmb();
2685
2686         vcpu->arch.st.steal.version += 1;
2687
2688         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2689                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2690 }
2691
2692 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2693 {
2694         bool pr = false;
2695         u32 msr = msr_info->index;
2696         u64 data = msr_info->data;
2697
2698         switch (msr) {
2699         case MSR_AMD64_NB_CFG:
2700         case MSR_IA32_UCODE_WRITE:
2701         case MSR_VM_HSAVE_PA:
2702         case MSR_AMD64_PATCH_LOADER:
2703         case MSR_AMD64_BU_CFG2:
2704         case MSR_AMD64_DC_CFG:
2705         case MSR_F15H_EX_CFG:
2706                 break;
2707
2708         case MSR_IA32_UCODE_REV:
2709                 if (msr_info->host_initiated)
2710                         vcpu->arch.microcode_version = data;
2711                 break;
2712         case MSR_IA32_ARCH_CAPABILITIES:
2713                 if (!msr_info->host_initiated)
2714                         return 1;
2715                 vcpu->arch.arch_capabilities = data;
2716                 break;
2717         case MSR_EFER:
2718                 return set_efer(vcpu, msr_info);
2719         case MSR_K7_HWCR:
2720                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2721                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2722                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2723
2724                 /* Handle McStatusWrEn */
2725                 if (data == BIT_ULL(18)) {
2726                         vcpu->arch.msr_hwcr = data;
2727                 } else if (data != 0) {
2728                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2729                                     data);
2730                         return 1;
2731                 }
2732                 break;
2733         case MSR_FAM10H_MMIO_CONF_BASE:
2734                 if (data != 0) {
2735                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2736                                     "0x%llx\n", data);
2737                         return 1;
2738                 }
2739                 break;
2740         case MSR_IA32_DEBUGCTLMSR:
2741                 if (!data) {
2742                         /* We support the non-activated case already */
2743                         break;
2744                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2745                         /* Values other than LBR and BTF are vendor-specific,
2746                            thus reserved and should throw a #GP */
2747                         return 1;
2748                 }
2749                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2750                             __func__, data);
2751                 break;
2752         case 0x200 ... 0x2ff:
2753                 return kvm_mtrr_set_msr(vcpu, msr, data);
2754         case MSR_IA32_APICBASE:
2755                 return kvm_set_apic_base(vcpu, msr_info);
2756         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2757                 return kvm_x2apic_msr_write(vcpu, msr, data);
2758         case MSR_IA32_TSCDEADLINE:
2759                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2760                 break;
2761         case MSR_IA32_TSC_ADJUST:
2762                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2763                         if (!msr_info->host_initiated) {
2764                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2765                                 adjust_tsc_offset_guest(vcpu, adj);
2766                         }
2767                         vcpu->arch.ia32_tsc_adjust_msr = data;
2768                 }
2769                 break;
2770         case MSR_IA32_MISC_ENABLE:
2771                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2772                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2773                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2774                                 return 1;
2775                         vcpu->arch.ia32_misc_enable_msr = data;
2776                         kvm_update_cpuid(vcpu);
2777                 } else {
2778                         vcpu->arch.ia32_misc_enable_msr = data;
2779                 }
2780                 break;
2781         case MSR_IA32_SMBASE:
2782                 if (!msr_info->host_initiated)
2783                         return 1;
2784                 vcpu->arch.smbase = data;
2785                 break;
2786         case MSR_IA32_POWER_CTL:
2787                 vcpu->arch.msr_ia32_power_ctl = data;
2788                 break;
2789         case MSR_IA32_TSC:
2790                 kvm_write_tsc(vcpu, msr_info);
2791                 break;
2792         case MSR_IA32_XSS:
2793                 if (!msr_info->host_initiated &&
2794                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2795                         return 1;
2796                 /*
2797                  * We do support PT if kvm_x86_ops->pt_supported(), but we do
2798                  * not support IA32_XSS[bit 8]. Guests will have to use
2799                  * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2800                  * MSRs.
2801                  */
2802                 if (data != 0)
2803                         return 1;
2804                 vcpu->arch.ia32_xss = data;
2805                 break;
2806         case MSR_SMI_COUNT:
2807                 if (!msr_info->host_initiated)
2808                         return 1;
2809                 vcpu->arch.smi_count = data;
2810                 break;
2811         case MSR_KVM_WALL_CLOCK_NEW:
2812         case MSR_KVM_WALL_CLOCK:
2813                 vcpu->kvm->arch.wall_clock = data;
2814                 kvm_write_wall_clock(vcpu->kvm, data);
2815                 break;
2816         case MSR_KVM_SYSTEM_TIME_NEW:
2817         case MSR_KVM_SYSTEM_TIME: {
2818                 struct kvm_arch *ka = &vcpu->kvm->arch;
2819
2820                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2821                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2822
2823                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2824                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2825
2826                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2827                 }
2828
2829                 vcpu->arch.time = data;
2830                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2831
2832                 /* we verify if the enable bit is set... */
2833                 vcpu->arch.pv_time_enabled = false;
2834                 if (!(data & 1))
2835                         break;
2836
2837                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2838                      &vcpu->arch.pv_time, data & ~1ULL,
2839                      sizeof(struct pvclock_vcpu_time_info)))
2840                         vcpu->arch.pv_time_enabled = true;
2841
2842                 break;
2843         }
2844         case MSR_KVM_ASYNC_PF_EN:
2845                 if (kvm_pv_enable_async_pf(vcpu, data))
2846                         return 1;
2847                 break;
2848         case MSR_KVM_STEAL_TIME:
2849
2850                 if (unlikely(!sched_info_on()))
2851                         return 1;
2852
2853                 if (data & KVM_STEAL_RESERVED_MASK)
2854                         return 1;
2855
2856                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2857                                                 data & KVM_STEAL_VALID_BITS,
2858                                                 sizeof(struct kvm_steal_time)))
2859                         return 1;
2860
2861                 vcpu->arch.st.msr_val = data;
2862
2863                 if (!(data & KVM_MSR_ENABLED))
2864                         break;
2865
2866                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2867
2868                 break;
2869         case MSR_KVM_PV_EOI_EN:
2870                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2871                         return 1;
2872                 break;
2873
2874         case MSR_KVM_POLL_CONTROL:
2875                 /* only enable bit supported */
2876                 if (data & (-1ULL << 1))
2877                         return 1;
2878
2879                 vcpu->arch.msr_kvm_poll_control = data;
2880                 break;
2881
2882         case MSR_IA32_MCG_CTL:
2883         case MSR_IA32_MCG_STATUS:
2884         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2885                 return set_msr_mce(vcpu, msr_info);
2886
2887         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2888         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2889                 pr = true; /* fall through */
2890         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2891         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2892                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2893                         return kvm_pmu_set_msr(vcpu, msr_info);
2894
2895                 if (pr || data != 0)
2896                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2897                                     "0x%x data 0x%llx\n", msr, data);
2898                 break;
2899         case MSR_K7_CLK_CTL:
2900                 /*
2901                  * Ignore all writes to this no longer documented MSR.
2902                  * Writes are only relevant for old K7 processors,
2903                  * all pre-dating SVM, but a recommended workaround from
2904                  * AMD for these chips. It is possible to specify the
2905                  * affected processor models on the command line, hence
2906                  * the need to ignore the workaround.
2907                  */
2908                 break;
2909         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2910         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2911         case HV_X64_MSR_CRASH_CTL:
2912         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2913         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2914         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2915         case HV_X64_MSR_TSC_EMULATION_STATUS:
2916                 return kvm_hv_set_msr_common(vcpu, msr, data,
2917                                              msr_info->host_initiated);
2918         case MSR_IA32_BBL_CR_CTL3:
2919                 /* Drop writes to this legacy MSR -- see rdmsr
2920                  * counterpart for further detail.
2921                  */
2922                 if (report_ignored_msrs)
2923                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2924                                 msr, data);
2925                 break;
2926         case MSR_AMD64_OSVW_ID_LENGTH:
2927                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2928                         return 1;
2929                 vcpu->arch.osvw.length = data;
2930                 break;
2931         case MSR_AMD64_OSVW_STATUS:
2932                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2933                         return 1;
2934                 vcpu->arch.osvw.status = data;
2935                 break;
2936         case MSR_PLATFORM_INFO:
2937                 if (!msr_info->host_initiated ||
2938                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2939                      cpuid_fault_enabled(vcpu)))
2940                         return 1;
2941                 vcpu->arch.msr_platform_info = data;
2942                 break;
2943         case MSR_MISC_FEATURES_ENABLES:
2944                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2945                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2946                      !supports_cpuid_fault(vcpu)))
2947                         return 1;
2948                 vcpu->arch.msr_misc_features_enables = data;
2949                 break;
2950         default:
2951                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2952                         return xen_hvm_config(vcpu, data);
2953                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2954                         return kvm_pmu_set_msr(vcpu, msr_info);
2955                 if (!ignore_msrs) {
2956                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2957                                     msr, data);
2958                         return 1;
2959                 } else {
2960                         if (report_ignored_msrs)
2961                                 vcpu_unimpl(vcpu,
2962                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2963                                         msr, data);
2964                         break;
2965                 }
2966         }
2967         return 0;
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2970
2971 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2972 {
2973         u64 data;
2974         u64 mcg_cap = vcpu->arch.mcg_cap;
2975         unsigned bank_num = mcg_cap & 0xff;
2976
2977         switch (msr) {
2978         case MSR_IA32_P5_MC_ADDR:
2979         case MSR_IA32_P5_MC_TYPE:
2980                 data = 0;
2981                 break;
2982         case MSR_IA32_MCG_CAP:
2983                 data = vcpu->arch.mcg_cap;
2984                 break;
2985         case MSR_IA32_MCG_CTL:
2986                 if (!(mcg_cap & MCG_CTL_P) && !host)
2987                         return 1;
2988                 data = vcpu->arch.mcg_ctl;
2989                 break;
2990         case MSR_IA32_MCG_STATUS:
2991                 data = vcpu->arch.mcg_status;
2992                 break;
2993         default:
2994                 if (msr >= MSR_IA32_MC0_CTL &&
2995                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2996                         u32 offset = array_index_nospec(
2997                                 msr - MSR_IA32_MC0_CTL,
2998                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2999
3000                         data = vcpu->arch.mce_banks[offset];
3001                         break;
3002                 }
3003                 return 1;
3004         }
3005         *pdata = data;
3006         return 0;
3007 }
3008
3009 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3010 {
3011         switch (msr_info->index) {
3012         case MSR_IA32_PLATFORM_ID:
3013         case MSR_IA32_EBL_CR_POWERON:
3014         case MSR_IA32_DEBUGCTLMSR:
3015         case MSR_IA32_LASTBRANCHFROMIP:
3016         case MSR_IA32_LASTBRANCHTOIP:
3017         case MSR_IA32_LASTINTFROMIP:
3018         case MSR_IA32_LASTINTTOIP:
3019         case MSR_K8_SYSCFG:
3020         case MSR_K8_TSEG_ADDR:
3021         case MSR_K8_TSEG_MASK:
3022         case MSR_VM_HSAVE_PA:
3023         case MSR_K8_INT_PENDING_MSG:
3024         case MSR_AMD64_NB_CFG:
3025         case MSR_FAM10H_MMIO_CONF_BASE:
3026         case MSR_AMD64_BU_CFG2:
3027         case MSR_IA32_PERF_CTL:
3028         case MSR_AMD64_DC_CFG:
3029         case MSR_F15H_EX_CFG:
3030                 msr_info->data = 0;
3031                 break;
3032         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3033         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3034         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3035         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3036         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3037                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3038                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3039                 msr_info->data = 0;
3040                 break;
3041         case MSR_IA32_UCODE_REV:
3042                 msr_info->data = vcpu->arch.microcode_version;
3043                 break;
3044         case MSR_IA32_ARCH_CAPABILITIES:
3045                 if (!msr_info->host_initiated &&
3046                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3047                         return 1;
3048                 msr_info->data = vcpu->arch.arch_capabilities;
3049                 break;
3050         case MSR_IA32_POWER_CTL:
3051                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3052                 break;
3053         case MSR_IA32_TSC:
3054                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3055                 break;
3056         case MSR_MTRRcap:
3057         case 0x200 ... 0x2ff:
3058                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3059         case 0xcd: /* fsb frequency */
3060                 msr_info->data = 3;
3061                 break;
3062                 /*
3063                  * MSR_EBC_FREQUENCY_ID
3064                  * Conservative value valid for even the basic CPU models.
3065                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3066                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3067                  * and 266MHz for model 3, or 4. Set Core Clock
3068                  * Frequency to System Bus Frequency Ratio to 1 (bits
3069                  * 31:24) even though these are only valid for CPU
3070                  * models > 2, however guests may end up dividing or
3071                  * multiplying by zero otherwise.
3072                  */
3073         case MSR_EBC_FREQUENCY_ID:
3074                 msr_info->data = 1 << 24;
3075                 break;
3076         case MSR_IA32_APICBASE:
3077                 msr_info->data = kvm_get_apic_base(vcpu);
3078                 break;
3079         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3080                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3081                 break;
3082         case MSR_IA32_TSCDEADLINE:
3083                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3084                 break;
3085         case MSR_IA32_TSC_ADJUST:
3086                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3087                 break;
3088         case MSR_IA32_MISC_ENABLE:
3089                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3090                 break;
3091         case MSR_IA32_SMBASE:
3092                 if (!msr_info->host_initiated)
3093                         return 1;
3094                 msr_info->data = vcpu->arch.smbase;
3095                 break;
3096         case MSR_SMI_COUNT:
3097                 msr_info->data = vcpu->arch.smi_count;
3098                 break;
3099         case MSR_IA32_PERF_STATUS:
3100                 /* TSC increment by tick */
3101                 msr_info->data = 1000ULL;
3102                 /* CPU multiplier */
3103                 msr_info->data |= (((uint64_t)4ULL) << 40);
3104                 break;
3105         case MSR_EFER:
3106                 msr_info->data = vcpu->arch.efer;
3107                 break;
3108         case MSR_KVM_WALL_CLOCK:
3109         case MSR_KVM_WALL_CLOCK_NEW:
3110                 msr_info->data = vcpu->kvm->arch.wall_clock;
3111                 break;
3112         case MSR_KVM_SYSTEM_TIME:
3113         case MSR_KVM_SYSTEM_TIME_NEW:
3114                 msr_info->data = vcpu->arch.time;
3115                 break;
3116         case MSR_KVM_ASYNC_PF_EN:
3117                 msr_info->data = vcpu->arch.apf.msr_val;
3118                 break;
3119         case MSR_KVM_STEAL_TIME:
3120                 msr_info->data = vcpu->arch.st.msr_val;
3121                 break;
3122         case MSR_KVM_PV_EOI_EN:
3123                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3124                 break;
3125         case MSR_KVM_POLL_CONTROL:
3126                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3127                 break;
3128         case MSR_IA32_P5_MC_ADDR:
3129         case MSR_IA32_P5_MC_TYPE:
3130         case MSR_IA32_MCG_CAP:
3131         case MSR_IA32_MCG_CTL:
3132         case MSR_IA32_MCG_STATUS:
3133         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3134                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3135                                    msr_info->host_initiated);
3136         case MSR_IA32_XSS:
3137                 if (!msr_info->host_initiated &&
3138                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3139                         return 1;
3140                 msr_info->data = vcpu->arch.ia32_xss;
3141                 break;
3142         case MSR_K7_CLK_CTL:
3143                 /*
3144                  * Provide expected ramp-up count for K7. All other
3145                  * are set to zero, indicating minimum divisors for
3146                  * every field.
3147                  *
3148                  * This prevents guest kernels on AMD host with CPU
3149                  * type 6, model 8 and higher from exploding due to
3150                  * the rdmsr failing.
3151                  */
3152                 msr_info->data = 0x20000000;
3153                 break;
3154         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3155         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3156         case HV_X64_MSR_CRASH_CTL:
3157         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3158         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3159         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3160         case HV_X64_MSR_TSC_EMULATION_STATUS:
3161                 return kvm_hv_get_msr_common(vcpu,
3162                                              msr_info->index, &msr_info->data,
3163                                              msr_info->host_initiated);
3164                 break;
3165         case MSR_IA32_BBL_CR_CTL3:
3166                 /* This legacy MSR exists but isn't fully documented in current
3167                  * silicon.  It is however accessed by winxp in very narrow
3168                  * scenarios where it sets bit #19, itself documented as
3169                  * a "reserved" bit.  Best effort attempt to source coherent
3170                  * read data here should the balance of the register be
3171                  * interpreted by the guest:
3172                  *
3173                  * L2 cache control register 3: 64GB range, 256KB size,
3174                  * enabled, latency 0x1, configured
3175                  */
3176                 msr_info->data = 0xbe702111;
3177                 break;
3178         case MSR_AMD64_OSVW_ID_LENGTH:
3179                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3180                         return 1;
3181                 msr_info->data = vcpu->arch.osvw.length;
3182                 break;
3183         case MSR_AMD64_OSVW_STATUS:
3184                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3185                         return 1;
3186                 msr_info->data = vcpu->arch.osvw.status;
3187                 break;
3188         case MSR_PLATFORM_INFO:
3189                 if (!msr_info->host_initiated &&
3190                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3191                         return 1;
3192                 msr_info->data = vcpu->arch.msr_platform_info;
3193                 break;
3194         case MSR_MISC_FEATURES_ENABLES:
3195                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3196                 break;
3197         case MSR_K7_HWCR:
3198                 msr_info->data = vcpu->arch.msr_hwcr;
3199                 break;
3200         default:
3201                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3202                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3203                 if (!ignore_msrs) {
3204                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3205                                                msr_info->index);
3206                         return 1;
3207                 } else {
3208                         if (report_ignored_msrs)
3209                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3210                                         msr_info->index);
3211                         msr_info->data = 0;
3212                 }
3213                 break;
3214         }
3215         return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3218
3219 /*
3220  * Read or write a bunch of msrs. All parameters are kernel addresses.
3221  *
3222  * @return number of msrs set successfully.
3223  */
3224 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3225                     struct kvm_msr_entry *entries,
3226                     int (*do_msr)(struct kvm_vcpu *vcpu,
3227                                   unsigned index, u64 *data))
3228 {
3229         int i;
3230
3231         for (i = 0; i < msrs->nmsrs; ++i)
3232                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3233                         break;
3234
3235         return i;
3236 }
3237
3238 /*
3239  * Read or write a bunch of msrs. Parameters are user addresses.
3240  *
3241  * @return number of msrs set successfully.
3242  */
3243 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3244                   int (*do_msr)(struct kvm_vcpu *vcpu,
3245                                 unsigned index, u64 *data),
3246                   int writeback)
3247 {
3248         struct kvm_msrs msrs;
3249         struct kvm_msr_entry *entries;
3250         int r, n;
3251         unsigned size;
3252
3253         r = -EFAULT;
3254         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3255                 goto out;
3256
3257         r = -E2BIG;
3258         if (msrs.nmsrs >= MAX_IO_MSRS)
3259                 goto out;
3260
3261         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3262         entries = memdup_user(user_msrs->entries, size);
3263         if (IS_ERR(entries)) {
3264                 r = PTR_ERR(entries);
3265                 goto out;
3266         }
3267
3268         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3269         if (r < 0)
3270                 goto out_free;
3271
3272         r = -EFAULT;
3273         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3274                 goto out_free;
3275
3276         r = n;
3277
3278 out_free:
3279         kfree(entries);
3280 out:
3281         return r;
3282 }
3283
3284 static inline bool kvm_can_mwait_in_guest(void)
3285 {
3286         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3287                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3288                 boot_cpu_has(X86_FEATURE_ARAT);
3289 }
3290
3291 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3292 {
3293         int r = 0;
3294
3295         switch (ext) {
3296         case KVM_CAP_IRQCHIP:
3297         case KVM_CAP_HLT:
3298         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3299         case KVM_CAP_SET_TSS_ADDR:
3300         case KVM_CAP_EXT_CPUID:
3301         case KVM_CAP_EXT_EMUL_CPUID:
3302         case KVM_CAP_CLOCKSOURCE:
3303         case KVM_CAP_PIT:
3304         case KVM_CAP_NOP_IO_DELAY:
3305         case KVM_CAP_MP_STATE:
3306         case KVM_CAP_SYNC_MMU:
3307         case KVM_CAP_USER_NMI:
3308         case KVM_CAP_REINJECT_CONTROL:
3309         case KVM_CAP_IRQ_INJECT_STATUS:
3310         case KVM_CAP_IOEVENTFD:
3311         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3312         case KVM_CAP_PIT2:
3313         case KVM_CAP_PIT_STATE2:
3314         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3315         case KVM_CAP_XEN_HVM:
3316         case KVM_CAP_VCPU_EVENTS:
3317         case KVM_CAP_HYPERV:
3318         case KVM_CAP_HYPERV_VAPIC:
3319         case KVM_CAP_HYPERV_SPIN:
3320         case KVM_CAP_HYPERV_SYNIC:
3321         case KVM_CAP_HYPERV_SYNIC2:
3322         case KVM_CAP_HYPERV_VP_INDEX:
3323         case KVM_CAP_HYPERV_EVENTFD:
3324         case KVM_CAP_HYPERV_TLBFLUSH:
3325         case KVM_CAP_HYPERV_SEND_IPI:
3326         case KVM_CAP_HYPERV_CPUID:
3327         case KVM_CAP_PCI_SEGMENT:
3328         case KVM_CAP_DEBUGREGS:
3329         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3330         case KVM_CAP_XSAVE:
3331         case KVM_CAP_ASYNC_PF:
3332         case KVM_CAP_GET_TSC_KHZ:
3333         case KVM_CAP_KVMCLOCK_CTRL:
3334         case KVM_CAP_READONLY_MEM:
3335         case KVM_CAP_HYPERV_TIME:
3336         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3337         case KVM_CAP_TSC_DEADLINE_TIMER:
3338         case KVM_CAP_DISABLE_QUIRKS:
3339         case KVM_CAP_SET_BOOT_CPU_ID:
3340         case KVM_CAP_SPLIT_IRQCHIP:
3341         case KVM_CAP_IMMEDIATE_EXIT:
3342         case KVM_CAP_PMU_EVENT_FILTER:
3343         case KVM_CAP_GET_MSR_FEATURES:
3344         case KVM_CAP_MSR_PLATFORM_INFO:
3345         case KVM_CAP_EXCEPTION_PAYLOAD:
3346                 r = 1;
3347                 break;
3348         case KVM_CAP_SYNC_REGS:
3349                 r = KVM_SYNC_X86_VALID_FIELDS;
3350                 break;
3351         case KVM_CAP_ADJUST_CLOCK:
3352                 r = KVM_CLOCK_TSC_STABLE;
3353                 break;
3354         case KVM_CAP_X86_DISABLE_EXITS:
3355                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3356                       KVM_X86_DISABLE_EXITS_CSTATE;
3357                 if(kvm_can_mwait_in_guest())
3358                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3359                 break;
3360         case KVM_CAP_X86_SMM:
3361                 /* SMBASE is usually relocated above 1M on modern chipsets,
3362                  * and SMM handlers might indeed rely on 4G segment limits,
3363                  * so do not report SMM to be available if real mode is
3364                  * emulated via vm86 mode.  Still, do not go to great lengths
3365                  * to avoid userspace's usage of the feature, because it is a
3366                  * fringe case that is not enabled except via specific settings
3367                  * of the module parameters.
3368                  */
3369                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3370                 break;
3371         case KVM_CAP_VAPIC:
3372                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3373                 break;
3374         case KVM_CAP_NR_VCPUS:
3375                 r = KVM_SOFT_MAX_VCPUS;
3376                 break;
3377         case KVM_CAP_MAX_VCPUS:
3378                 r = KVM_MAX_VCPUS;
3379                 break;
3380         case KVM_CAP_MAX_VCPU_ID:
3381                 r = KVM_MAX_VCPU_ID;
3382                 break;
3383         case KVM_CAP_PV_MMU:    /* obsolete */
3384                 r = 0;
3385                 break;
3386         case KVM_CAP_MCE:
3387                 r = KVM_MAX_MCE_BANKS;
3388                 break;
3389         case KVM_CAP_XCRS:
3390                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3391                 break;
3392         case KVM_CAP_TSC_CONTROL:
3393                 r = kvm_has_tsc_control;
3394                 break;
3395         case KVM_CAP_X2APIC_API:
3396                 r = KVM_X2APIC_API_VALID_FLAGS;
3397                 break;
3398         case KVM_CAP_NESTED_STATE:
3399                 r = kvm_x86_ops->get_nested_state ?
3400                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3401                 break;
3402         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3403                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3404                 break;
3405         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3406                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3407                 break;
3408         default:
3409                 break;
3410         }
3411         return r;
3412
3413 }
3414
3415 long kvm_arch_dev_ioctl(struct file *filp,
3416                         unsigned int ioctl, unsigned long arg)
3417 {
3418         void __user *argp = (void __user *)arg;
3419         long r;
3420
3421         switch (ioctl) {
3422         case KVM_GET_MSR_INDEX_LIST: {
3423                 struct kvm_msr_list __user *user_msr_list = argp;
3424                 struct kvm_msr_list msr_list;
3425                 unsigned n;
3426
3427                 r = -EFAULT;
3428                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3429                         goto out;
3430                 n = msr_list.nmsrs;
3431                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3432                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3433                         goto out;
3434                 r = -E2BIG;
3435                 if (n < msr_list.nmsrs)
3436                         goto out;
3437                 r = -EFAULT;
3438                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3439                                  num_msrs_to_save * sizeof(u32)))
3440                         goto out;
3441                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3442                                  &emulated_msrs,
3443                                  num_emulated_msrs * sizeof(u32)))
3444                         goto out;
3445                 r = 0;
3446                 break;
3447         }
3448         case KVM_GET_SUPPORTED_CPUID:
3449         case KVM_GET_EMULATED_CPUID: {
3450                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3451                 struct kvm_cpuid2 cpuid;
3452
3453                 r = -EFAULT;
3454                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3455                         goto out;
3456
3457                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3458                                             ioctl);
3459                 if (r)
3460                         goto out;
3461
3462                 r = -EFAULT;
3463                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3464                         goto out;
3465                 r = 0;
3466                 break;
3467         }
3468         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3469                 r = -EFAULT;
3470                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3471                                  sizeof(kvm_mce_cap_supported)))
3472                         goto out;
3473                 r = 0;
3474                 break;
3475         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3476                 struct kvm_msr_list __user *user_msr_list = argp;
3477                 struct kvm_msr_list msr_list;
3478                 unsigned int n;
3479
3480                 r = -EFAULT;
3481                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3482                         goto out;
3483                 n = msr_list.nmsrs;
3484                 msr_list.nmsrs = num_msr_based_features;
3485                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3486                         goto out;
3487                 r = -E2BIG;
3488                 if (n < msr_list.nmsrs)
3489                         goto out;
3490                 r = -EFAULT;
3491                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3492                                  num_msr_based_features * sizeof(u32)))
3493                         goto out;
3494                 r = 0;
3495                 break;
3496         }
3497         case KVM_GET_MSRS:
3498                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3499                 break;
3500         }
3501         default:
3502                 r = -EINVAL;
3503         }
3504 out:
3505         return r;
3506 }
3507
3508 static void wbinvd_ipi(void *garbage)
3509 {
3510         wbinvd();
3511 }
3512
3513 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3514 {
3515         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3516 }
3517
3518 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3519 {
3520         /* Address WBINVD may be executed by guest */
3521         if (need_emulate_wbinvd(vcpu)) {
3522                 if (kvm_x86_ops->has_wbinvd_exit())
3523                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3524                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3525                         smp_call_function_single(vcpu->cpu,
3526                                         wbinvd_ipi, NULL, 1);
3527         }
3528
3529         kvm_x86_ops->vcpu_load(vcpu, cpu);
3530
3531         fpregs_assert_state_consistent();
3532         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3533                 switch_fpu_return();
3534
3535         /* Apply any externally detected TSC adjustments (due to suspend) */
3536         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3537                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3538                 vcpu->arch.tsc_offset_adjustment = 0;
3539                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3540         }
3541
3542         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3543                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3544                                 rdtsc() - vcpu->arch.last_host_tsc;
3545                 if (tsc_delta < 0)
3546                         mark_tsc_unstable("KVM discovered backwards TSC");
3547
3548                 if (kvm_check_tsc_unstable()) {
3549                         u64 offset = kvm_compute_tsc_offset(vcpu,
3550                                                 vcpu->arch.last_guest_tsc);
3551                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3552                         vcpu->arch.tsc_catchup = 1;
3553                 }
3554
3555                 if (kvm_lapic_hv_timer_in_use(vcpu))
3556                         kvm_lapic_restart_hv_timer(vcpu);
3557
3558                 /*
3559                  * On a host with synchronized TSC, there is no need to update
3560                  * kvmclock on vcpu->cpu migration
3561                  */
3562                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3563                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3564                 if (vcpu->cpu != cpu)
3565                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3566                 vcpu->cpu = cpu;
3567         }
3568
3569         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3570 }
3571
3572 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3573 {
3574         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3575                 return;
3576
3577         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3578
3579         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3580                         &vcpu->arch.st.steal.preempted,
3581                         offsetof(struct kvm_steal_time, preempted),
3582                         sizeof(vcpu->arch.st.steal.preempted));
3583 }
3584
3585 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3586 {
3587         int idx;
3588
3589         if (vcpu->preempted)
3590                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3591
3592         /*
3593          * Disable page faults because we're in atomic context here.
3594          * kvm_write_guest_offset_cached() would call might_fault()
3595          * that relies on pagefault_disable() to tell if there's a
3596          * bug. NOTE: the write to guest memory may not go through if
3597          * during postcopy live migration or if there's heavy guest
3598          * paging.
3599          */
3600         pagefault_disable();
3601         /*
3602          * kvm_memslots() will be called by
3603          * kvm_write_guest_offset_cached() so take the srcu lock.
3604          */
3605         idx = srcu_read_lock(&vcpu->kvm->srcu);
3606         kvm_steal_time_set_preempted(vcpu);
3607         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3608         pagefault_enable();
3609         kvm_x86_ops->vcpu_put(vcpu);
3610         vcpu->arch.last_host_tsc = rdtsc();
3611         /*
3612          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3613          * on every vmexit, but if not, we might have a stale dr6 from the
3614          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3615          */
3616         set_debugreg(0, 6);
3617 }
3618
3619 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3620                                     struct kvm_lapic_state *s)
3621 {
3622         if (vcpu->arch.apicv_active)
3623                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3624
3625         return kvm_apic_get_state(vcpu, s);
3626 }
3627
3628 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3629                                     struct kvm_lapic_state *s)
3630 {
3631         int r;
3632
3633         r = kvm_apic_set_state(vcpu, s);
3634         if (r)
3635                 return r;
3636         update_cr8_intercept(vcpu);
3637
3638         return 0;
3639 }
3640
3641 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3642 {
3643         return (!lapic_in_kernel(vcpu) ||
3644                 kvm_apic_accept_pic_intr(vcpu));
3645 }
3646
3647 /*
3648  * if userspace requested an interrupt window, check that the
3649  * interrupt window is open.
3650  *
3651  * No need to exit to userspace if we already have an interrupt queued.
3652  */
3653 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3654 {
3655         return kvm_arch_interrupt_allowed(vcpu) &&
3656                 !kvm_cpu_has_interrupt(vcpu) &&
3657                 !kvm_event_needs_reinjection(vcpu) &&
3658                 kvm_cpu_accept_dm_intr(vcpu);
3659 }
3660
3661 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3662                                     struct kvm_interrupt *irq)
3663 {
3664         if (irq->irq >= KVM_NR_INTERRUPTS)
3665                 return -EINVAL;
3666
3667         if (!irqchip_in_kernel(vcpu->kvm)) {
3668                 kvm_queue_interrupt(vcpu, irq->irq, false);
3669                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3670                 return 0;
3671         }
3672
3673         /*
3674          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3675          * fail for in-kernel 8259.
3676          */
3677         if (pic_in_kernel(vcpu->kvm))
3678                 return -ENXIO;
3679
3680         if (vcpu->arch.pending_external_vector != -1)
3681                 return -EEXIST;
3682
3683         vcpu->arch.pending_external_vector = irq->irq;
3684         kvm_make_request(KVM_REQ_EVENT, vcpu);
3685         return 0;
3686 }
3687
3688 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3689 {
3690         kvm_inject_nmi(vcpu);
3691
3692         return 0;
3693 }
3694
3695 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3696 {
3697         kvm_make_request(KVM_REQ_SMI, vcpu);
3698
3699         return 0;
3700 }
3701
3702 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3703                                            struct kvm_tpr_access_ctl *tac)
3704 {
3705         if (tac->flags)
3706                 return -EINVAL;
3707         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3708         return 0;
3709 }
3710
3711 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3712                                         u64 mcg_cap)
3713 {
3714         int r;
3715         unsigned bank_num = mcg_cap & 0xff, bank;
3716
3717         r = -EINVAL;
3718         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3719                 goto out;
3720         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3721                 goto out;
3722         r = 0;
3723         vcpu->arch.mcg_cap = mcg_cap;
3724         /* Init IA32_MCG_CTL to all 1s */
3725         if (mcg_cap & MCG_CTL_P)
3726                 vcpu->arch.mcg_ctl = ~(u64)0;
3727         /* Init IA32_MCi_CTL to all 1s */
3728         for (bank = 0; bank < bank_num; bank++)
3729                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3730
3731         kvm_x86_ops->setup_mce(vcpu);
3732 out:
3733         return r;
3734 }
3735
3736 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3737                                       struct kvm_x86_mce *mce)
3738 {
3739         u64 mcg_cap = vcpu->arch.mcg_cap;
3740         unsigned bank_num = mcg_cap & 0xff;
3741         u64 *banks = vcpu->arch.mce_banks;
3742
3743         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3744                 return -EINVAL;
3745         /*
3746          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3747          * reporting is disabled
3748          */
3749         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3750             vcpu->arch.mcg_ctl != ~(u64)0)
3751                 return 0;
3752         banks += 4 * mce->bank;
3753         /*
3754          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3755          * reporting is disabled for the bank
3756          */
3757         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3758                 return 0;
3759         if (mce->status & MCI_STATUS_UC) {
3760                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3761                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3762                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3763                         return 0;
3764                 }
3765                 if (banks[1] & MCI_STATUS_VAL)
3766                         mce->status |= MCI_STATUS_OVER;
3767                 banks[2] = mce->addr;
3768                 banks[3] = mce->misc;
3769                 vcpu->arch.mcg_status = mce->mcg_status;
3770                 banks[1] = mce->status;
3771                 kvm_queue_exception(vcpu, MC_VECTOR);
3772         } else if (!(banks[1] & MCI_STATUS_VAL)
3773                    || !(banks[1] & MCI_STATUS_UC)) {
3774                 if (banks[1] & MCI_STATUS_VAL)
3775                         mce->status |= MCI_STATUS_OVER;
3776                 banks[2] = mce->addr;
3777                 banks[3] = mce->misc;
3778                 banks[1] = mce->status;
3779         } else
3780                 banks[1] |= MCI_STATUS_OVER;
3781         return 0;
3782 }
3783
3784 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3785                                                struct kvm_vcpu_events *events)
3786 {
3787         process_nmi(vcpu);
3788
3789         /*
3790          * The API doesn't provide the instruction length for software
3791          * exceptions, so don't report them. As long as the guest RIP
3792          * isn't advanced, we should expect to encounter the exception
3793          * again.
3794          */
3795         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3796                 events->exception.injected = 0;
3797                 events->exception.pending = 0;
3798         } else {
3799                 events->exception.injected = vcpu->arch.exception.injected;
3800                 events->exception.pending = vcpu->arch.exception.pending;
3801                 /*
3802                  * For ABI compatibility, deliberately conflate
3803                  * pending and injected exceptions when
3804                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3805                  */
3806                 if (!vcpu->kvm->arch.exception_payload_enabled)
3807                         events->exception.injected |=
3808                                 vcpu->arch.exception.pending;
3809         }
3810         events->exception.nr = vcpu->arch.exception.nr;
3811         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3812         events->exception.error_code = vcpu->arch.exception.error_code;
3813         events->exception_has_payload = vcpu->arch.exception.has_payload;
3814         events->exception_payload = vcpu->arch.exception.payload;
3815
3816         events->interrupt.injected =
3817                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3818         events->interrupt.nr = vcpu->arch.interrupt.nr;
3819         events->interrupt.soft = 0;
3820         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3821
3822         events->nmi.injected = vcpu->arch.nmi_injected;
3823         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3824         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3825         events->nmi.pad = 0;
3826
3827         events->sipi_vector = 0; /* never valid when reporting to user space */
3828
3829         events->smi.smm = is_smm(vcpu);
3830         events->smi.pending = vcpu->arch.smi_pending;
3831         events->smi.smm_inside_nmi =
3832                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3833         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3834
3835         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3836                          | KVM_VCPUEVENT_VALID_SHADOW
3837                          | KVM_VCPUEVENT_VALID_SMM);
3838         if (vcpu->kvm->arch.exception_payload_enabled)
3839                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3840
3841         memset(&events->reserved, 0, sizeof(events->reserved));
3842 }
3843
3844 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3845
3846 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3847                                               struct kvm_vcpu_events *events)
3848 {
3849         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3850                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3851                               | KVM_VCPUEVENT_VALID_SHADOW
3852                               | KVM_VCPUEVENT_VALID_SMM
3853                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3854                 return -EINVAL;
3855
3856         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3857                 if (!vcpu->kvm->arch.exception_payload_enabled)
3858                         return -EINVAL;
3859                 if (events->exception.pending)
3860                         events->exception.injected = 0;
3861                 else
3862                         events->exception_has_payload = 0;
3863         } else {
3864                 events->exception.pending = 0;
3865                 events->exception_has_payload = 0;
3866         }
3867
3868         if ((events->exception.injected || events->exception.pending) &&
3869             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3870                 return -EINVAL;
3871
3872         /* INITs are latched while in SMM */
3873         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3874             (events->smi.smm || events->smi.pending) &&
3875             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3876                 return -EINVAL;
3877
3878         process_nmi(vcpu);
3879         vcpu->arch.exception.injected = events->exception.injected;
3880         vcpu->arch.exception.pending = events->exception.pending;
3881         vcpu->arch.exception.nr = events->exception.nr;
3882         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3883         vcpu->arch.exception.error_code = events->exception.error_code;
3884         vcpu->arch.exception.has_payload = events->exception_has_payload;
3885         vcpu->arch.exception.payload = events->exception_payload;
3886
3887         vcpu->arch.interrupt.injected = events->interrupt.injected;
3888         vcpu->arch.interrupt.nr = events->interrupt.nr;
3889         vcpu->arch.interrupt.soft = events->interrupt.soft;
3890         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3891                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3892                                                   events->interrupt.shadow);
3893
3894         vcpu->arch.nmi_injected = events->nmi.injected;
3895         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3896                 vcpu->arch.nmi_pending = events->nmi.pending;
3897         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3898
3899         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3900             lapic_in_kernel(vcpu))
3901                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3902
3903         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3904                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3905                         if (events->smi.smm)
3906                                 vcpu->arch.hflags |= HF_SMM_MASK;
3907                         else
3908                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3909                         kvm_smm_changed(vcpu);
3910                 }
3911
3912                 vcpu->arch.smi_pending = events->smi.pending;
3913
3914                 if (events->smi.smm) {
3915                         if (events->smi.smm_inside_nmi)
3916                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3917                         else
3918                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3919                 }
3920
3921                 if (lapic_in_kernel(vcpu)) {
3922                         if (events->smi.latched_init)
3923                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3924                         else
3925                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3926                 }
3927         }
3928
3929         kvm_make_request(KVM_REQ_EVENT, vcpu);
3930
3931         return 0;
3932 }
3933
3934 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3935                                              struct kvm_debugregs *dbgregs)
3936 {
3937         unsigned long val;
3938
3939         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3940         kvm_get_dr(vcpu, 6, &val);
3941         dbgregs->dr6 = val;
3942         dbgregs->dr7 = vcpu->arch.dr7;
3943         dbgregs->flags = 0;
3944         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3945 }
3946
3947 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3948                                             struct kvm_debugregs *dbgregs)
3949 {
3950         if (dbgregs->flags)
3951                 return -EINVAL;
3952
3953         if (dbgregs->dr6 & ~0xffffffffull)
3954                 return -EINVAL;
3955         if (dbgregs->dr7 & ~0xffffffffull)
3956                 return -EINVAL;
3957
3958         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3959         kvm_update_dr0123(vcpu);
3960         vcpu->arch.dr6 = dbgregs->dr6;
3961         kvm_update_dr6(vcpu);
3962         vcpu->arch.dr7 = dbgregs->dr7;
3963         kvm_update_dr7(vcpu);
3964
3965         return 0;
3966 }
3967
3968 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3969
3970 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3971 {
3972         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3973         u64 xstate_bv = xsave->header.xfeatures;
3974         u64 valid;
3975
3976         /*
3977          * Copy legacy XSAVE area, to avoid complications with CPUID
3978          * leaves 0 and 1 in the loop below.
3979          */
3980         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3981
3982         /* Set XSTATE_BV */
3983         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3984         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3985
3986         /*
3987          * Copy each region from the possibly compacted offset to the
3988          * non-compacted offset.
3989          */
3990         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3991         while (valid) {
3992                 u64 xfeature_mask = valid & -valid;
3993                 int xfeature_nr = fls64(xfeature_mask) - 1;
3994                 void *src = get_xsave_addr(xsave, xfeature_nr);
3995
3996                 if (src) {
3997                         u32 size, offset, ecx, edx;
3998                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3999                                     &size, &offset, &ecx, &edx);
4000                         if (xfeature_nr == XFEATURE_PKRU)
4001                                 memcpy(dest + offset, &vcpu->arch.pkru,
4002                                        sizeof(vcpu->arch.pkru));
4003                         else
4004                                 memcpy(dest + offset, src, size);
4005
4006                 }
4007
4008                 valid -= xfeature_mask;
4009         }
4010 }
4011
4012 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4013 {
4014         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4015         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4016         u64 valid;
4017
4018         /*
4019          * Copy legacy XSAVE area, to avoid complications with CPUID
4020          * leaves 0 and 1 in the loop below.
4021          */
4022         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4023
4024         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4025         xsave->header.xfeatures = xstate_bv;
4026         if (boot_cpu_has(X86_FEATURE_XSAVES))
4027                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4028
4029         /*
4030          * Copy each region from the non-compacted offset to the
4031          * possibly compacted offset.
4032          */
4033         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4034         while (valid) {
4035                 u64 xfeature_mask = valid & -valid;
4036                 int xfeature_nr = fls64(xfeature_mask) - 1;
4037                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4038
4039                 if (dest) {
4040                         u32 size, offset, ecx, edx;
4041                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4042                                     &size, &offset, &ecx, &edx);
4043                         if (xfeature_nr == XFEATURE_PKRU)
4044                                 memcpy(&vcpu->arch.pkru, src + offset,
4045                                        sizeof(vcpu->arch.pkru));
4046                         else
4047                                 memcpy(dest, src + offset, size);
4048                 }
4049
4050                 valid -= xfeature_mask;
4051         }
4052 }
4053
4054 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4055                                          struct kvm_xsave *guest_xsave)
4056 {
4057         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4058                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4059                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4060         } else {
4061                 memcpy(guest_xsave->region,
4062                         &vcpu->arch.guest_fpu->state.fxsave,
4063                         sizeof(struct fxregs_state));
4064                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4065                         XFEATURE_MASK_FPSSE;
4066         }
4067 }
4068
4069 #define XSAVE_MXCSR_OFFSET 24
4070
4071 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4072                                         struct kvm_xsave *guest_xsave)
4073 {
4074         u64 xstate_bv =
4075                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4076         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4077
4078         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4079                 /*
4080                  * Here we allow setting states that are not present in
4081                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4082                  * with old userspace.
4083                  */
4084                 if (xstate_bv & ~kvm_supported_xcr0() ||
4085                         mxcsr & ~mxcsr_feature_mask)
4086                         return -EINVAL;
4087                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4088         } else {
4089                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4090                         mxcsr & ~mxcsr_feature_mask)
4091                         return -EINVAL;
4092                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4093                         guest_xsave->region, sizeof(struct fxregs_state));
4094         }
4095         return 0;
4096 }
4097
4098 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4099                                         struct kvm_xcrs *guest_xcrs)
4100 {
4101         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4102                 guest_xcrs->nr_xcrs = 0;
4103                 return;
4104         }
4105
4106         guest_xcrs->nr_xcrs = 1;
4107         guest_xcrs->flags = 0;
4108         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4109         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4110 }
4111
4112 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4113                                        struct kvm_xcrs *guest_xcrs)
4114 {
4115         int i, r = 0;
4116
4117         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4118                 return -EINVAL;
4119
4120         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4121                 return -EINVAL;
4122
4123         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4124                 /* Only support XCR0 currently */
4125                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4126                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4127                                 guest_xcrs->xcrs[i].value);
4128                         break;
4129                 }
4130         if (r)
4131                 r = -EINVAL;
4132         return r;
4133 }
4134
4135 /*
4136  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4137  * stopped by the hypervisor.  This function will be called from the host only.
4138  * EINVAL is returned when the host attempts to set the flag for a guest that
4139  * does not support pv clocks.
4140  */
4141 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4142 {
4143         if (!vcpu->arch.pv_time_enabled)
4144                 return -EINVAL;
4145         vcpu->arch.pvclock_set_guest_stopped_request = true;
4146         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4147         return 0;
4148 }
4149
4150 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4151                                      struct kvm_enable_cap *cap)
4152 {
4153         int r;
4154         uint16_t vmcs_version;
4155         void __user *user_ptr;
4156
4157         if (cap->flags)
4158                 return -EINVAL;
4159
4160         switch (cap->cap) {
4161         case KVM_CAP_HYPERV_SYNIC2:
4162                 if (cap->args[0])
4163                         return -EINVAL;
4164                 /* fall through */
4165
4166         case KVM_CAP_HYPERV_SYNIC:
4167                 if (!irqchip_in_kernel(vcpu->kvm))
4168                         return -EINVAL;
4169                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4170                                              KVM_CAP_HYPERV_SYNIC2);
4171         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4172                 if (!kvm_x86_ops->nested_enable_evmcs)
4173                         return -ENOTTY;
4174                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4175                 if (!r) {
4176                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4177                         if (copy_to_user(user_ptr, &vmcs_version,
4178                                          sizeof(vmcs_version)))
4179                                 r = -EFAULT;
4180                 }
4181                 return r;
4182         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4183                 if (!kvm_x86_ops->enable_direct_tlbflush)
4184                         return -ENOTTY;
4185
4186                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4187
4188         default:
4189                 return -EINVAL;
4190         }
4191 }
4192
4193 long kvm_arch_vcpu_ioctl(struct file *filp,
4194                          unsigned int ioctl, unsigned long arg)
4195 {
4196         struct kvm_vcpu *vcpu = filp->private_data;
4197         void __user *argp = (void __user *)arg;
4198         int r;
4199         union {
4200                 struct kvm_lapic_state *lapic;
4201                 struct kvm_xsave *xsave;
4202                 struct kvm_xcrs *xcrs;
4203                 void *buffer;
4204         } u;
4205
4206         vcpu_load(vcpu);
4207
4208         u.buffer = NULL;
4209         switch (ioctl) {
4210         case KVM_GET_LAPIC: {
4211                 r = -EINVAL;
4212                 if (!lapic_in_kernel(vcpu))
4213                         goto out;
4214                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4215                                 GFP_KERNEL_ACCOUNT);
4216
4217                 r = -ENOMEM;
4218                 if (!u.lapic)
4219                         goto out;
4220                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4221                 if (r)
4222                         goto out;
4223                 r = -EFAULT;
4224                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4225                         goto out;
4226                 r = 0;
4227                 break;
4228         }
4229         case KVM_SET_LAPIC: {
4230                 r = -EINVAL;
4231                 if (!lapic_in_kernel(vcpu))
4232                         goto out;
4233                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4234                 if (IS_ERR(u.lapic)) {
4235                         r = PTR_ERR(u.lapic);
4236                         goto out_nofree;
4237                 }
4238
4239                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4240                 break;
4241         }
4242         case KVM_INTERRUPT: {
4243                 struct kvm_interrupt irq;
4244
4245                 r = -EFAULT;
4246                 if (copy_from_user(&irq, argp, sizeof(irq)))
4247                         goto out;
4248                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4249                 break;
4250         }
4251         case KVM_NMI: {
4252                 r = kvm_vcpu_ioctl_nmi(vcpu);
4253                 break;
4254         }
4255         case KVM_SMI: {
4256                 r = kvm_vcpu_ioctl_smi(vcpu);
4257                 break;
4258         }
4259         case KVM_SET_CPUID: {
4260                 struct kvm_cpuid __user *cpuid_arg = argp;
4261                 struct kvm_cpuid cpuid;
4262
4263                 r = -EFAULT;
4264                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4265                         goto out;
4266                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4267                 break;
4268         }
4269         case KVM_SET_CPUID2: {
4270                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4271                 struct kvm_cpuid2 cpuid;
4272
4273                 r = -EFAULT;
4274                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4275                         goto out;
4276                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4277                                               cpuid_arg->entries);
4278                 break;
4279         }
4280         case KVM_GET_CPUID2: {
4281                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4282                 struct kvm_cpuid2 cpuid;
4283
4284                 r = -EFAULT;
4285                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4286                         goto out;
4287                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4288                                               cpuid_arg->entries);
4289                 if (r)
4290                         goto out;
4291                 r = -EFAULT;
4292                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4293                         goto out;
4294                 r = 0;
4295                 break;
4296         }
4297         case KVM_GET_MSRS: {
4298                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4299                 r = msr_io(vcpu, argp, do_get_msr, 1);
4300                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4301                 break;
4302         }
4303         case KVM_SET_MSRS: {
4304                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4305                 r = msr_io(vcpu, argp, do_set_msr, 0);
4306                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4307                 break;
4308         }
4309         case KVM_TPR_ACCESS_REPORTING: {
4310                 struct kvm_tpr_access_ctl tac;
4311
4312                 r = -EFAULT;
4313                 if (copy_from_user(&tac, argp, sizeof(tac)))
4314                         goto out;
4315                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4316                 if (r)
4317                         goto out;
4318                 r = -EFAULT;
4319                 if (copy_to_user(argp, &tac, sizeof(tac)))
4320                         goto out;
4321                 r = 0;
4322                 break;
4323         };
4324         case KVM_SET_VAPIC_ADDR: {
4325                 struct kvm_vapic_addr va;
4326                 int idx;
4327
4328                 r = -EINVAL;
4329                 if (!lapic_in_kernel(vcpu))
4330                         goto out;
4331                 r = -EFAULT;
4332                 if (copy_from_user(&va, argp, sizeof(va)))
4333                         goto out;
4334                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4335                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4336                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4337                 break;
4338         }
4339         case KVM_X86_SETUP_MCE: {
4340                 u64 mcg_cap;
4341
4342                 r = -EFAULT;
4343                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4344                         goto out;
4345                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4346                 break;
4347         }
4348         case KVM_X86_SET_MCE: {
4349                 struct kvm_x86_mce mce;
4350
4351                 r = -EFAULT;
4352                 if (copy_from_user(&mce, argp, sizeof(mce)))
4353                         goto out;
4354                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4355                 break;
4356         }
4357         case KVM_GET_VCPU_EVENTS: {
4358                 struct kvm_vcpu_events events;
4359
4360                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4361
4362                 r = -EFAULT;
4363                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4364                         break;
4365                 r = 0;
4366                 break;
4367         }
4368         case KVM_SET_VCPU_EVENTS: {
4369                 struct kvm_vcpu_events events;
4370
4371                 r = -EFAULT;
4372                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4373                         break;
4374
4375                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4376                 break;
4377         }
4378         case KVM_GET_DEBUGREGS: {
4379                 struct kvm_debugregs dbgregs;
4380
4381                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4382
4383                 r = -EFAULT;
4384                 if (copy_to_user(argp, &dbgregs,
4385                                  sizeof(struct kvm_debugregs)))
4386                         break;
4387                 r = 0;
4388                 break;
4389         }
4390         case KVM_SET_DEBUGREGS: {
4391                 struct kvm_debugregs dbgregs;
4392
4393                 r = -EFAULT;
4394                 if (copy_from_user(&dbgregs, argp,
4395                                    sizeof(struct kvm_debugregs)))
4396                         break;
4397
4398                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4399                 break;
4400         }
4401         case KVM_GET_XSAVE: {
4402                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4403                 r = -ENOMEM;
4404                 if (!u.xsave)
4405                         break;
4406
4407                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4408
4409                 r = -EFAULT;
4410                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4411                         break;
4412                 r = 0;
4413                 break;
4414         }
4415         case KVM_SET_XSAVE: {
4416                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4417                 if (IS_ERR(u.xsave)) {
4418                         r = PTR_ERR(u.xsave);
4419                         goto out_nofree;
4420                 }
4421
4422                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4423                 break;
4424         }
4425         case KVM_GET_XCRS: {
4426                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4427                 r = -ENOMEM;
4428                 if (!u.xcrs)
4429                         break;
4430
4431                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4432
4433                 r = -EFAULT;
4434                 if (copy_to_user(argp, u.xcrs,
4435                                  sizeof(struct kvm_xcrs)))
4436                         break;
4437                 r = 0;
4438                 break;
4439         }
4440         case KVM_SET_XCRS: {
4441                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4442                 if (IS_ERR(u.xcrs)) {
4443                         r = PTR_ERR(u.xcrs);
4444                         goto out_nofree;
4445                 }
4446
4447                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4448                 break;
4449         }
4450         case KVM_SET_TSC_KHZ: {
4451                 u32 user_tsc_khz;
4452
4453                 r = -EINVAL;
4454                 user_tsc_khz = (u32)arg;
4455
4456                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4457                         goto out;
4458
4459                 if (user_tsc_khz == 0)
4460                         user_tsc_khz = tsc_khz;
4461
4462                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4463                         r = 0;
4464
4465                 goto out;
4466         }
4467         case KVM_GET_TSC_KHZ: {
4468                 r = vcpu->arch.virtual_tsc_khz;
4469                 goto out;
4470         }
4471         case KVM_KVMCLOCK_CTRL: {
4472                 r = kvm_set_guest_paused(vcpu);
4473                 goto out;
4474         }
4475         case KVM_ENABLE_CAP: {
4476                 struct kvm_enable_cap cap;
4477
4478                 r = -EFAULT;
4479                 if (copy_from_user(&cap, argp, sizeof(cap)))
4480                         goto out;
4481                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4482                 break;
4483         }
4484         case KVM_GET_NESTED_STATE: {
4485                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4486                 u32 user_data_size;
4487
4488                 r = -EINVAL;
4489                 if (!kvm_x86_ops->get_nested_state)
4490                         break;
4491
4492                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4493                 r = -EFAULT;
4494                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4495                         break;
4496
4497                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4498                                                   user_data_size);
4499                 if (r < 0)
4500                         break;
4501
4502                 if (r > user_data_size) {
4503                         if (put_user(r, &user_kvm_nested_state->size))
4504                                 r = -EFAULT;
4505                         else
4506                                 r = -E2BIG;
4507                         break;
4508                 }
4509
4510                 r = 0;
4511                 break;
4512         }
4513         case KVM_SET_NESTED_STATE: {
4514                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4515                 struct kvm_nested_state kvm_state;
4516                 int idx;
4517
4518                 r = -EINVAL;
4519                 if (!kvm_x86_ops->set_nested_state)
4520                         break;
4521
4522                 r = -EFAULT;
4523                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4524                         break;
4525
4526                 r = -EINVAL;
4527                 if (kvm_state.size < sizeof(kvm_state))
4528                         break;
4529
4530                 if (kvm_state.flags &
4531                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4532                       | KVM_STATE_NESTED_EVMCS))
4533                         break;
4534
4535                 /* nested_run_pending implies guest_mode.  */
4536                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4537                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4538                         break;
4539
4540                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4541                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4542                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4543                 break;
4544         }
4545         case KVM_GET_SUPPORTED_HV_CPUID: {
4546                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4547                 struct kvm_cpuid2 cpuid;
4548
4549                 r = -EFAULT;
4550                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4551                         goto out;
4552
4553                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4554                                                 cpuid_arg->entries);
4555                 if (r)
4556                         goto out;
4557
4558                 r = -EFAULT;
4559                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4560                         goto out;
4561                 r = 0;
4562                 break;
4563         }
4564         default:
4565                 r = -EINVAL;
4566         }
4567 out:
4568         kfree(u.buffer);
4569 out_nofree:
4570         vcpu_put(vcpu);
4571         return r;
4572 }
4573
4574 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4575 {
4576         return VM_FAULT_SIGBUS;
4577 }
4578
4579 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4580 {
4581         int ret;
4582
4583         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4584                 return -EINVAL;
4585         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4586         return ret;
4587 }
4588
4589 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4590                                               u64 ident_addr)
4591 {
4592         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4593 }
4594
4595 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4596                                          unsigned long kvm_nr_mmu_pages)
4597 {
4598         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4599                 return -EINVAL;
4600
4601         mutex_lock(&kvm->slots_lock);
4602
4603         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4604         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4605
4606         mutex_unlock(&kvm->slots_lock);
4607         return 0;
4608 }
4609
4610 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4611 {
4612         return kvm->arch.n_max_mmu_pages;
4613 }
4614
4615 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4616 {
4617         struct kvm_pic *pic = kvm->arch.vpic;
4618         int r;
4619
4620         r = 0;
4621         switch (chip->chip_id) {
4622         case KVM_IRQCHIP_PIC_MASTER:
4623                 memcpy(&chip->chip.pic, &pic->pics[0],
4624                         sizeof(struct kvm_pic_state));
4625                 break;
4626         case KVM_IRQCHIP_PIC_SLAVE:
4627                 memcpy(&chip->chip.pic, &pic->pics[1],
4628                         sizeof(struct kvm_pic_state));
4629                 break;
4630         case KVM_IRQCHIP_IOAPIC:
4631                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4632                 break;
4633         default:
4634                 r = -EINVAL;
4635                 break;
4636         }
4637         return r;
4638 }
4639
4640 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4641 {
4642         struct kvm_pic *pic = kvm->arch.vpic;
4643         int r;
4644
4645         r = 0;
4646         switch (chip->chip_id) {
4647         case KVM_IRQCHIP_PIC_MASTER:
4648                 spin_lock(&pic->lock);
4649                 memcpy(&pic->pics[0], &chip->chip.pic,
4650                         sizeof(struct kvm_pic_state));
4651                 spin_unlock(&pic->lock);
4652                 break;
4653         case KVM_IRQCHIP_PIC_SLAVE:
4654                 spin_lock(&pic->lock);
4655                 memcpy(&pic->pics[1], &chip->chip.pic,
4656                         sizeof(struct kvm_pic_state));
4657                 spin_unlock(&pic->lock);
4658                 break;
4659         case KVM_IRQCHIP_IOAPIC:
4660                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4661                 break;
4662         default:
4663                 r = -EINVAL;
4664                 break;
4665         }
4666         kvm_pic_update_irq(pic);
4667         return r;
4668 }
4669
4670 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4671 {
4672         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4673
4674         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4675
4676         mutex_lock(&kps->lock);
4677         memcpy(ps, &kps->channels, sizeof(*ps));
4678         mutex_unlock(&kps->lock);
4679         return 0;
4680 }
4681
4682 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4683 {
4684         int i;
4685         struct kvm_pit *pit = kvm->arch.vpit;
4686
4687         mutex_lock(&pit->pit_state.lock);
4688         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4689         for (i = 0; i < 3; i++)
4690                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4691         mutex_unlock(&pit->pit_state.lock);
4692         return 0;
4693 }
4694
4695 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4696 {
4697         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4698         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4699                 sizeof(ps->channels));
4700         ps->flags = kvm->arch.vpit->pit_state.flags;
4701         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4702         memset(&ps->reserved, 0, sizeof(ps->reserved));
4703         return 0;
4704 }
4705
4706 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4707 {
4708         int start = 0;
4709         int i;
4710         u32 prev_legacy, cur_legacy;
4711         struct kvm_pit *pit = kvm->arch.vpit;
4712
4713         mutex_lock(&pit->pit_state.lock);
4714         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4715         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4716         if (!prev_legacy && cur_legacy)
4717                 start = 1;
4718         memcpy(&pit->pit_state.channels, &ps->channels,
4719                sizeof(pit->pit_state.channels));
4720         pit->pit_state.flags = ps->flags;
4721         for (i = 0; i < 3; i++)
4722                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4723                                    start && i == 0);
4724         mutex_unlock(&pit->pit_state.lock);
4725         return 0;
4726 }
4727
4728 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4729                                  struct kvm_reinject_control *control)
4730 {
4731         struct kvm_pit *pit = kvm->arch.vpit;
4732
4733         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4734          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4735          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4736          */
4737         mutex_lock(&pit->pit_state.lock);
4738         kvm_pit_set_reinject(pit, control->pit_reinject);
4739         mutex_unlock(&pit->pit_state.lock);
4740
4741         return 0;
4742 }
4743
4744 /**
4745  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4746  * @kvm: kvm instance
4747  * @log: slot id and address to which we copy the log
4748  *
4749  * Steps 1-4 below provide general overview of dirty page logging. See
4750  * kvm_get_dirty_log_protect() function description for additional details.
4751  *
4752  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4753  * always flush the TLB (step 4) even if previous step failed  and the dirty
4754  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4755  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4756  * writes will be marked dirty for next log read.
4757  *
4758  *   1. Take a snapshot of the bit and clear it if needed.
4759  *   2. Write protect the corresponding page.
4760  *   3. Copy the snapshot to the userspace.
4761  *   4. Flush TLB's if needed.
4762  */
4763 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4764 {
4765         bool flush = false;
4766         int r;
4767
4768         mutex_lock(&kvm->slots_lock);
4769
4770         /*
4771          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4772          */
4773         if (kvm_x86_ops->flush_log_dirty)
4774                 kvm_x86_ops->flush_log_dirty(kvm);
4775
4776         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4777
4778         /*
4779          * All the TLBs can be flushed out of mmu lock, see the comments in
4780          * kvm_mmu_slot_remove_write_access().
4781          */
4782         lockdep_assert_held(&kvm->slots_lock);
4783         if (flush)
4784                 kvm_flush_remote_tlbs(kvm);
4785
4786         mutex_unlock(&kvm->slots_lock);
4787         return r;
4788 }
4789
4790 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4791 {
4792         bool flush = false;
4793         int r;
4794
4795         mutex_lock(&kvm->slots_lock);
4796
4797         /*
4798          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4799          */
4800         if (kvm_x86_ops->flush_log_dirty)
4801                 kvm_x86_ops->flush_log_dirty(kvm);
4802
4803         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4804
4805         /*
4806          * All the TLBs can be flushed out of mmu lock, see the comments in
4807          * kvm_mmu_slot_remove_write_access().
4808          */
4809         lockdep_assert_held(&kvm->slots_lock);
4810         if (flush)
4811                 kvm_flush_remote_tlbs(kvm);
4812
4813         mutex_unlock(&kvm->slots_lock);
4814         return r;
4815 }
4816
4817 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4818                         bool line_status)
4819 {
4820         if (!irqchip_in_kernel(kvm))
4821                 return -ENXIO;
4822
4823         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4824                                         irq_event->irq, irq_event->level,
4825                                         line_status);
4826         return 0;
4827 }
4828
4829 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4830                             struct kvm_enable_cap *cap)
4831 {
4832         int r;
4833
4834         if (cap->flags)
4835                 return -EINVAL;
4836
4837         switch (cap->cap) {
4838         case KVM_CAP_DISABLE_QUIRKS:
4839                 kvm->arch.disabled_quirks = cap->args[0];
4840                 r = 0;
4841                 break;
4842         case KVM_CAP_SPLIT_IRQCHIP: {
4843                 mutex_lock(&kvm->lock);
4844                 r = -EINVAL;
4845                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4846                         goto split_irqchip_unlock;
4847                 r = -EEXIST;
4848                 if (irqchip_in_kernel(kvm))
4849                         goto split_irqchip_unlock;
4850                 if (kvm->created_vcpus)
4851                         goto split_irqchip_unlock;
4852                 r = kvm_setup_empty_irq_routing(kvm);
4853                 if (r)
4854                         goto split_irqchip_unlock;
4855                 /* Pairs with irqchip_in_kernel. */
4856                 smp_wmb();
4857                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4858                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4859                 r = 0;
4860 split_irqchip_unlock:
4861                 mutex_unlock(&kvm->lock);
4862                 break;
4863         }
4864         case KVM_CAP_X2APIC_API:
4865                 r = -EINVAL;
4866                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4867                         break;
4868
4869                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4870                         kvm->arch.x2apic_format = true;
4871                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4872                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4873
4874                 r = 0;
4875                 break;
4876         case KVM_CAP_X86_DISABLE_EXITS:
4877                 r = -EINVAL;
4878                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4879                         break;
4880
4881                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4882                         kvm_can_mwait_in_guest())
4883                         kvm->arch.mwait_in_guest = true;
4884                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4885                         kvm->arch.hlt_in_guest = true;
4886                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4887                         kvm->arch.pause_in_guest = true;
4888                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4889                         kvm->arch.cstate_in_guest = true;
4890                 r = 0;
4891                 break;
4892         case KVM_CAP_MSR_PLATFORM_INFO:
4893                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4894                 r = 0;
4895                 break;
4896         case KVM_CAP_EXCEPTION_PAYLOAD:
4897                 kvm->arch.exception_payload_enabled = cap->args[0];
4898                 r = 0;
4899                 break;
4900         default:
4901                 r = -EINVAL;
4902                 break;
4903         }
4904         return r;
4905 }
4906
4907 long kvm_arch_vm_ioctl(struct file *filp,
4908                        unsigned int ioctl, unsigned long arg)
4909 {
4910         struct kvm *kvm = filp->private_data;
4911         void __user *argp = (void __user *)arg;
4912         int r = -ENOTTY;
4913         /*
4914          * This union makes it completely explicit to gcc-3.x
4915          * that these two variables' stack usage should be
4916          * combined, not added together.
4917          */
4918         union {
4919                 struct kvm_pit_state ps;
4920                 struct kvm_pit_state2 ps2;
4921                 struct kvm_pit_config pit_config;
4922         } u;
4923
4924         switch (ioctl) {
4925         case KVM_SET_TSS_ADDR:
4926                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4927                 break;
4928         case KVM_SET_IDENTITY_MAP_ADDR: {
4929                 u64 ident_addr;
4930
4931                 mutex_lock(&kvm->lock);
4932                 r = -EINVAL;
4933                 if (kvm->created_vcpus)
4934                         goto set_identity_unlock;
4935                 r = -EFAULT;
4936                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4937                         goto set_identity_unlock;
4938                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4939 set_identity_unlock:
4940                 mutex_unlock(&kvm->lock);
4941                 break;
4942         }
4943         case KVM_SET_NR_MMU_PAGES:
4944                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4945                 break;
4946         case KVM_GET_NR_MMU_PAGES:
4947                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4948                 break;
4949         case KVM_CREATE_IRQCHIP: {
4950                 mutex_lock(&kvm->lock);
4951
4952                 r = -EEXIST;
4953                 if (irqchip_in_kernel(kvm))
4954                         goto create_irqchip_unlock;
4955
4956                 r = -EINVAL;
4957                 if (kvm->created_vcpus)
4958                         goto create_irqchip_unlock;
4959
4960                 r = kvm_pic_init(kvm);
4961                 if (r)
4962                         goto create_irqchip_unlock;
4963
4964                 r = kvm_ioapic_init(kvm);
4965                 if (r) {
4966                         kvm_pic_destroy(kvm);
4967                         goto create_irqchip_unlock;
4968                 }
4969
4970                 r = kvm_setup_default_irq_routing(kvm);
4971                 if (r) {
4972                         kvm_ioapic_destroy(kvm);
4973                         kvm_pic_destroy(kvm);
4974                         goto create_irqchip_unlock;
4975                 }
4976                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4977                 smp_wmb();
4978                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4979         create_irqchip_unlock:
4980                 mutex_unlock(&kvm->lock);
4981                 break;
4982         }
4983         case KVM_CREATE_PIT:
4984                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4985                 goto create_pit;
4986         case KVM_CREATE_PIT2:
4987                 r = -EFAULT;
4988                 if (copy_from_user(&u.pit_config, argp,
4989                                    sizeof(struct kvm_pit_config)))
4990                         goto out;
4991         create_pit:
4992                 mutex_lock(&kvm->lock);
4993                 r = -EEXIST;
4994                 if (kvm->arch.vpit)
4995                         goto create_pit_unlock;
4996                 r = -ENOMEM;
4997                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4998                 if (kvm->arch.vpit)
4999                         r = 0;
5000         create_pit_unlock:
5001                 mutex_unlock(&kvm->lock);
5002                 break;
5003         case KVM_GET_IRQCHIP: {
5004                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5005                 struct kvm_irqchip *chip;
5006
5007                 chip = memdup_user(argp, sizeof(*chip));
5008                 if (IS_ERR(chip)) {
5009                         r = PTR_ERR(chip);
5010                         goto out;
5011                 }
5012
5013                 r = -ENXIO;
5014                 if (!irqchip_kernel(kvm))
5015                         goto get_irqchip_out;
5016                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5017                 if (r)
5018                         goto get_irqchip_out;
5019                 r = -EFAULT;
5020                 if (copy_to_user(argp, chip, sizeof(*chip)))
5021                         goto get_irqchip_out;
5022                 r = 0;
5023         get_irqchip_out:
5024                 kfree(chip);
5025                 break;
5026         }
5027         case KVM_SET_IRQCHIP: {
5028                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5029                 struct kvm_irqchip *chip;
5030
5031                 chip = memdup_user(argp, sizeof(*chip));
5032                 if (IS_ERR(chip)) {
5033                         r = PTR_ERR(chip);
5034                         goto out;
5035                 }
5036
5037                 r = -ENXIO;
5038                 if (!irqchip_kernel(kvm))
5039                         goto set_irqchip_out;
5040                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5041         set_irqchip_out:
5042                 kfree(chip);
5043                 break;
5044         }
5045         case KVM_GET_PIT: {
5046                 r = -EFAULT;
5047                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5048                         goto out;
5049                 r = -ENXIO;
5050                 if (!kvm->arch.vpit)
5051                         goto out;
5052                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5053                 if (r)
5054                         goto out;
5055                 r = -EFAULT;
5056                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5057                         goto out;
5058                 r = 0;
5059                 break;
5060         }
5061         case KVM_SET_PIT: {
5062                 r = -EFAULT;
5063                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5064                         goto out;
5065                 r = -ENXIO;
5066                 if (!kvm->arch.vpit)
5067                         goto out;
5068                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5069                 break;
5070         }
5071         case KVM_GET_PIT2: {
5072                 r = -ENXIO;
5073                 if (!kvm->arch.vpit)
5074                         goto out;
5075                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5076                 if (r)
5077                         goto out;
5078                 r = -EFAULT;
5079                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5080                         goto out;
5081                 r = 0;
5082                 break;
5083         }
5084         case KVM_SET_PIT2: {
5085                 r = -EFAULT;
5086                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5087                         goto out;
5088                 r = -ENXIO;
5089                 if (!kvm->arch.vpit)
5090                         goto out;
5091                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5092                 break;
5093         }
5094         case KVM_REINJECT_CONTROL: {
5095                 struct kvm_reinject_control control;
5096                 r =  -EFAULT;
5097                 if (copy_from_user(&control, argp, sizeof(control)))
5098                         goto out;
5099                 r = -ENXIO;
5100                 if (!kvm->arch.vpit)
5101                         goto out;
5102                 r = kvm_vm_ioctl_reinject(kvm, &control);
5103                 break;
5104         }
5105         case KVM_SET_BOOT_CPU_ID:
5106                 r = 0;
5107                 mutex_lock(&kvm->lock);
5108                 if (kvm->created_vcpus)
5109                         r = -EBUSY;
5110                 else
5111                         kvm->arch.bsp_vcpu_id = arg;
5112                 mutex_unlock(&kvm->lock);
5113                 break;
5114         case KVM_XEN_HVM_CONFIG: {
5115                 struct kvm_xen_hvm_config xhc;
5116                 r = -EFAULT;
5117                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5118                         goto out;
5119                 r = -EINVAL;
5120                 if (xhc.flags)
5121                         goto out;
5122                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5123                 r = 0;
5124                 break;
5125         }
5126         case KVM_SET_CLOCK: {
5127                 struct kvm_clock_data user_ns;
5128                 u64 now_ns;
5129
5130                 r = -EFAULT;
5131                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5132                         goto out;
5133
5134                 r = -EINVAL;
5135                 if (user_ns.flags)
5136                         goto out;
5137
5138                 r = 0;
5139                 /*
5140                  * TODO: userspace has to take care of races with VCPU_RUN, so
5141                  * kvm_gen_update_masterclock() can be cut down to locked
5142                  * pvclock_update_vm_gtod_copy().
5143                  */
5144                 kvm_gen_update_masterclock(kvm);
5145                 now_ns = get_kvmclock_ns(kvm);
5146                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5147                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5148                 break;
5149         }
5150         case KVM_GET_CLOCK: {
5151                 struct kvm_clock_data user_ns;
5152                 u64 now_ns;
5153
5154                 now_ns = get_kvmclock_ns(kvm);
5155                 user_ns.clock = now_ns;
5156                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5157                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5158
5159                 r = -EFAULT;
5160                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5161                         goto out;
5162                 r = 0;
5163                 break;
5164         }
5165         case KVM_MEMORY_ENCRYPT_OP: {
5166                 r = -ENOTTY;
5167                 if (kvm_x86_ops->mem_enc_op)
5168                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5169                 break;
5170         }
5171         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5172                 struct kvm_enc_region region;
5173
5174                 r = -EFAULT;
5175                 if (copy_from_user(&region, argp, sizeof(region)))
5176                         goto out;
5177
5178                 r = -ENOTTY;
5179                 if (kvm_x86_ops->mem_enc_reg_region)
5180                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5181                 break;
5182         }
5183         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5184                 struct kvm_enc_region region;
5185
5186                 r = -EFAULT;
5187                 if (copy_from_user(&region, argp, sizeof(region)))
5188                         goto out;
5189
5190                 r = -ENOTTY;
5191                 if (kvm_x86_ops->mem_enc_unreg_region)
5192                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5193                 break;
5194         }
5195         case KVM_HYPERV_EVENTFD: {
5196                 struct kvm_hyperv_eventfd hvevfd;
5197
5198                 r = -EFAULT;
5199                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5200                         goto out;
5201                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5202                 break;
5203         }
5204         case KVM_SET_PMU_EVENT_FILTER:
5205                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5206                 break;
5207         default:
5208                 r = -ENOTTY;
5209         }
5210 out:
5211         return r;
5212 }
5213
5214 static void kvm_init_msr_list(void)
5215 {
5216         struct x86_pmu_capability x86_pmu;
5217         u32 dummy[2];
5218         unsigned i;
5219
5220         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5221                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5222
5223         perf_get_x86_pmu_capability(&x86_pmu);
5224
5225         num_msrs_to_save = 0;
5226         num_emulated_msrs = 0;
5227         num_msr_based_features = 0;
5228
5229         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5230                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5231                         continue;
5232
5233                 /*
5234                  * Even MSRs that are valid in the host may not be exposed
5235                  * to the guests in some cases.
5236                  */
5237                 switch (msrs_to_save_all[i]) {
5238                 case MSR_IA32_BNDCFGS:
5239                         if (!kvm_mpx_supported())
5240                                 continue;
5241                         break;
5242                 case MSR_TSC_AUX:
5243                         if (!kvm_x86_ops->rdtscp_supported())
5244                                 continue;
5245                         break;
5246                 case MSR_IA32_RTIT_CTL:
5247                 case MSR_IA32_RTIT_STATUS:
5248                         if (!kvm_x86_ops->pt_supported())
5249                                 continue;
5250                         break;
5251                 case MSR_IA32_RTIT_CR3_MATCH:
5252                         if (!kvm_x86_ops->pt_supported() ||
5253                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5254                                 continue;
5255                         break;
5256                 case MSR_IA32_RTIT_OUTPUT_BASE:
5257                 case MSR_IA32_RTIT_OUTPUT_MASK:
5258                         if (!kvm_x86_ops->pt_supported() ||
5259                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5260                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5261                                 continue;
5262                         break;
5263                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5264                         if (!kvm_x86_ops->pt_supported() ||
5265                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5266                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5267                                 continue;
5268                         break;
5269                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5270                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5271                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5272                                 continue;
5273                         break;
5274                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5275                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5276                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5277                                 continue;
5278                 }
5279                 default:
5280                         break;
5281                 }
5282
5283                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5284         }
5285
5286         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5287                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5288                         continue;
5289
5290                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5291         }
5292
5293         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5294                 struct kvm_msr_entry msr;
5295
5296                 msr.index = msr_based_features_all[i];
5297                 if (kvm_get_msr_feature(&msr))
5298                         continue;
5299
5300                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5301         }
5302 }
5303
5304 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5305                            const void *v)
5306 {
5307         int handled = 0;
5308         int n;
5309
5310         do {
5311                 n = min(len, 8);
5312                 if (!(lapic_in_kernel(vcpu) &&
5313                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5314                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5315                         break;
5316                 handled += n;
5317                 addr += n;
5318                 len -= n;
5319                 v += n;
5320         } while (len);
5321
5322         return handled;
5323 }
5324
5325 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5326 {
5327         int handled = 0;
5328         int n;
5329
5330         do {
5331                 n = min(len, 8);
5332                 if (!(lapic_in_kernel(vcpu) &&
5333                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5334                                          addr, n, v))
5335                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5336                         break;
5337                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5338                 handled += n;
5339                 addr += n;
5340                 len -= n;
5341                 v += n;
5342         } while (len);
5343
5344         return handled;
5345 }
5346
5347 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5348                         struct kvm_segment *var, int seg)
5349 {
5350         kvm_x86_ops->set_segment(vcpu, var, seg);
5351 }
5352
5353 void kvm_get_segment(struct kvm_vcpu *vcpu,
5354                      struct kvm_segment *var, int seg)
5355 {
5356         kvm_x86_ops->get_segment(vcpu, var, seg);
5357 }
5358
5359 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5360                            struct x86_exception *exception)
5361 {
5362         gpa_t t_gpa;
5363
5364         BUG_ON(!mmu_is_nested(vcpu));
5365
5366         /* NPT walks are always user-walks */
5367         access |= PFERR_USER_MASK;
5368         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5369
5370         return t_gpa;
5371 }
5372
5373 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5374                               struct x86_exception *exception)
5375 {
5376         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5377         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5378 }
5379
5380  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5381                                 struct x86_exception *exception)
5382 {
5383         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5384         access |= PFERR_FETCH_MASK;
5385         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5386 }
5387
5388 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5389                                struct x86_exception *exception)
5390 {
5391         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5392         access |= PFERR_WRITE_MASK;
5393         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5394 }
5395
5396 /* uses this to access any guest's mapped memory without checking CPL */
5397 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5398                                 struct x86_exception *exception)
5399 {
5400         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5401 }
5402
5403 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5404                                       struct kvm_vcpu *vcpu, u32 access,
5405                                       struct x86_exception *exception)
5406 {
5407         void *data = val;
5408         int r = X86EMUL_CONTINUE;
5409
5410         while (bytes) {
5411                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5412                                                             exception);
5413                 unsigned offset = addr & (PAGE_SIZE-1);
5414                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5415                 int ret;
5416
5417                 if (gpa == UNMAPPED_GVA)
5418                         return X86EMUL_PROPAGATE_FAULT;
5419                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5420                                                offset, toread);
5421                 if (ret < 0) {
5422                         r = X86EMUL_IO_NEEDED;
5423                         goto out;
5424                 }
5425
5426                 bytes -= toread;
5427                 data += toread;
5428                 addr += toread;
5429         }
5430 out:
5431         return r;
5432 }
5433
5434 /* used for instruction fetching */
5435 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5436                                 gva_t addr, void *val, unsigned int bytes,
5437                                 struct x86_exception *exception)
5438 {
5439         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5440         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5441         unsigned offset;
5442         int ret;
5443
5444         /* Inline kvm_read_guest_virt_helper for speed.  */
5445         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5446                                                     exception);
5447         if (unlikely(gpa == UNMAPPED_GVA))
5448                 return X86EMUL_PROPAGATE_FAULT;
5449
5450         offset = addr & (PAGE_SIZE-1);
5451         if (WARN_ON(offset + bytes > PAGE_SIZE))
5452                 bytes = (unsigned)PAGE_SIZE - offset;
5453         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5454                                        offset, bytes);
5455         if (unlikely(ret < 0))
5456                 return X86EMUL_IO_NEEDED;
5457
5458         return X86EMUL_CONTINUE;
5459 }
5460
5461 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5462                                gva_t addr, void *val, unsigned int bytes,
5463                                struct x86_exception *exception)
5464 {
5465         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5466
5467         /*
5468          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5469          * is returned, but our callers are not ready for that and they blindly
5470          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5471          * uninitialized kernel stack memory into cr2 and error code.
5472          */
5473         memset(exception, 0, sizeof(*exception));
5474         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5475                                           exception);
5476 }
5477 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5478
5479 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5480                              gva_t addr, void *val, unsigned int bytes,
5481                              struct x86_exception *exception, bool system)
5482 {
5483         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5484         u32 access = 0;
5485
5486         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5487                 access |= PFERR_USER_MASK;
5488
5489         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5490 }
5491
5492 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5493                 unsigned long addr, void *val, unsigned int bytes)
5494 {
5495         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5496         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5497
5498         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5499 }
5500
5501 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5502                                       struct kvm_vcpu *vcpu, u32 access,
5503                                       struct x86_exception *exception)
5504 {
5505         void *data = val;
5506         int r = X86EMUL_CONTINUE;
5507
5508         while (bytes) {
5509                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5510                                                              access,
5511                                                              exception);
5512                 unsigned offset = addr & (PAGE_SIZE-1);
5513                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5514                 int ret;
5515
5516                 if (gpa == UNMAPPED_GVA)
5517                         return X86EMUL_PROPAGATE_FAULT;
5518                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5519                 if (ret < 0) {
5520                         r = X86EMUL_IO_NEEDED;
5521                         goto out;
5522                 }
5523
5524                 bytes -= towrite;
5525                 data += towrite;
5526                 addr += towrite;
5527         }
5528 out:
5529         return r;
5530 }
5531
5532 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5533                               unsigned int bytes, struct x86_exception *exception,
5534                               bool system)
5535 {
5536         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5537         u32 access = PFERR_WRITE_MASK;
5538
5539         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5540                 access |= PFERR_USER_MASK;
5541
5542         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5543                                            access, exception);
5544 }
5545
5546 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5547                                 unsigned int bytes, struct x86_exception *exception)
5548 {
5549         /* kvm_write_guest_virt_system can pull in tons of pages. */
5550         vcpu->arch.l1tf_flush_l1d = true;
5551
5552         /*
5553          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5554          * is returned, but our callers are not ready for that and they blindly
5555          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5556          * uninitialized kernel stack memory into cr2 and error code.
5557          */
5558         memset(exception, 0, sizeof(*exception));
5559         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5560                                            PFERR_WRITE_MASK, exception);
5561 }
5562 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5563
5564 int handle_ud(struct kvm_vcpu *vcpu)
5565 {
5566         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5567         int emul_type = EMULTYPE_TRAP_UD;
5568         char sig[5]; /* ud2; .ascii "kvm" */
5569         struct x86_exception e;
5570
5571         if (force_emulation_prefix &&
5572             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5573                                 sig, sizeof(sig), &e) == 0 &&
5574             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5575                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5576                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5577         }
5578
5579         return kvm_emulate_instruction(vcpu, emul_type);
5580 }
5581 EXPORT_SYMBOL_GPL(handle_ud);
5582
5583 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5584                             gpa_t gpa, bool write)
5585 {
5586         /* For APIC access vmexit */
5587         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5588                 return 1;
5589
5590         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5591                 trace_vcpu_match_mmio(gva, gpa, write, true);
5592                 return 1;
5593         }
5594
5595         return 0;
5596 }
5597
5598 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5599                                 gpa_t *gpa, struct x86_exception *exception,
5600                                 bool write)
5601 {
5602         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5603                 | (write ? PFERR_WRITE_MASK : 0);
5604
5605         /*
5606          * currently PKRU is only applied to ept enabled guest so
5607          * there is no pkey in EPT page table for L1 guest or EPT
5608          * shadow page table for L2 guest.
5609          */
5610         if (vcpu_match_mmio_gva(vcpu, gva)
5611             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5612                                  vcpu->arch.mmio_access, 0, access)) {
5613                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5614                                         (gva & (PAGE_SIZE - 1));
5615                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5616                 return 1;
5617         }
5618
5619         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5620
5621         if (*gpa == UNMAPPED_GVA)
5622                 return -1;
5623
5624         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5625 }
5626
5627 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5628                         const void *val, int bytes)
5629 {
5630         int ret;
5631
5632         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5633         if (ret < 0)
5634                 return 0;
5635         kvm_page_track_write(vcpu, gpa, val, bytes);
5636         return 1;
5637 }
5638
5639 struct read_write_emulator_ops {
5640         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5641                                   int bytes);
5642         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5643                                   void *val, int bytes);
5644         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5645                                int bytes, void *val);
5646         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5647                                     void *val, int bytes);
5648         bool write;
5649 };
5650
5651 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5652 {
5653         if (vcpu->mmio_read_completed) {
5654                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5655                                vcpu->mmio_fragments[0].gpa, val);
5656                 vcpu->mmio_read_completed = 0;
5657                 return 1;
5658         }
5659
5660         return 0;
5661 }
5662
5663 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5664                         void *val, int bytes)
5665 {
5666         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5667 }
5668
5669 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5670                          void *val, int bytes)
5671 {
5672         return emulator_write_phys(vcpu, gpa, val, bytes);
5673 }
5674
5675 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5676 {
5677         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5678         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5679 }
5680
5681 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5682                           void *val, int bytes)
5683 {
5684         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5685         return X86EMUL_IO_NEEDED;
5686 }
5687
5688 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5689                            void *val, int bytes)
5690 {
5691         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5692
5693         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5694         return X86EMUL_CONTINUE;
5695 }
5696
5697 static const struct read_write_emulator_ops read_emultor = {
5698         .read_write_prepare = read_prepare,
5699         .read_write_emulate = read_emulate,
5700         .read_write_mmio = vcpu_mmio_read,
5701         .read_write_exit_mmio = read_exit_mmio,
5702 };
5703
5704 static const struct read_write_emulator_ops write_emultor = {
5705         .read_write_emulate = write_emulate,
5706         .read_write_mmio = write_mmio,
5707         .read_write_exit_mmio = write_exit_mmio,
5708         .write = true,
5709 };
5710
5711 static int emulator_read_write_onepage(unsigned long addr, void *val,
5712                                        unsigned int bytes,
5713                                        struct x86_exception *exception,
5714                                        struct kvm_vcpu *vcpu,
5715                                        const struct read_write_emulator_ops *ops)
5716 {
5717         gpa_t gpa;
5718         int handled, ret;
5719         bool write = ops->write;
5720         struct kvm_mmio_fragment *frag;
5721         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5722
5723         /*
5724          * If the exit was due to a NPF we may already have a GPA.
5725          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5726          * Note, this cannot be used on string operations since string
5727          * operation using rep will only have the initial GPA from the NPF
5728          * occurred.
5729          */
5730         if (vcpu->arch.gpa_available &&
5731             emulator_can_use_gpa(ctxt) &&
5732             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5733                 gpa = vcpu->arch.gpa_val;
5734                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5735         } else {
5736                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5737                 if (ret < 0)
5738                         return X86EMUL_PROPAGATE_FAULT;
5739         }
5740
5741         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5742                 return X86EMUL_CONTINUE;
5743
5744         /*
5745          * Is this MMIO handled locally?
5746          */
5747         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5748         if (handled == bytes)
5749                 return X86EMUL_CONTINUE;
5750
5751         gpa += handled;
5752         bytes -= handled;
5753         val += handled;
5754
5755         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5756         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5757         frag->gpa = gpa;
5758         frag->data = val;
5759         frag->len = bytes;
5760         return X86EMUL_CONTINUE;
5761 }
5762
5763 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5764                         unsigned long addr,
5765                         void *val, unsigned int bytes,
5766                         struct x86_exception *exception,
5767                         const struct read_write_emulator_ops *ops)
5768 {
5769         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5770         gpa_t gpa;
5771         int rc;
5772
5773         if (ops->read_write_prepare &&
5774                   ops->read_write_prepare(vcpu, val, bytes))
5775                 return X86EMUL_CONTINUE;
5776
5777         vcpu->mmio_nr_fragments = 0;
5778
5779         /* Crossing a page boundary? */
5780         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5781                 int now;
5782
5783                 now = -addr & ~PAGE_MASK;
5784                 rc = emulator_read_write_onepage(addr, val, now, exception,
5785                                                  vcpu, ops);
5786
5787                 if (rc != X86EMUL_CONTINUE)
5788                         return rc;
5789                 addr += now;
5790                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5791                         addr = (u32)addr;
5792                 val += now;
5793                 bytes -= now;
5794         }
5795
5796         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5797                                          vcpu, ops);
5798         if (rc != X86EMUL_CONTINUE)
5799                 return rc;
5800
5801         if (!vcpu->mmio_nr_fragments)
5802                 return rc;
5803
5804         gpa = vcpu->mmio_fragments[0].gpa;
5805
5806         vcpu->mmio_needed = 1;
5807         vcpu->mmio_cur_fragment = 0;
5808
5809         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5810         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5811         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5812         vcpu->run->mmio.phys_addr = gpa;
5813
5814         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5815 }
5816
5817 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5818                                   unsigned long addr,
5819                                   void *val,
5820                                   unsigned int bytes,
5821                                   struct x86_exception *exception)
5822 {
5823         return emulator_read_write(ctxt, addr, val, bytes,
5824                                    exception, &read_emultor);
5825 }
5826
5827 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5828                             unsigned long addr,
5829                             const void *val,
5830                             unsigned int bytes,
5831                             struct x86_exception *exception)
5832 {
5833         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5834                                    exception, &write_emultor);
5835 }
5836
5837 #define CMPXCHG_TYPE(t, ptr, old, new) \
5838         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5839
5840 #ifdef CONFIG_X86_64
5841 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5842 #else
5843 #  define CMPXCHG64(ptr, old, new) \
5844         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5845 #endif
5846
5847 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5848                                      unsigned long addr,
5849                                      const void *old,
5850                                      const void *new,
5851                                      unsigned int bytes,
5852                                      struct x86_exception *exception)
5853 {
5854         struct kvm_host_map map;
5855         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5856         gpa_t gpa;
5857         char *kaddr;
5858         bool exchanged;
5859
5860         /* guests cmpxchg8b have to be emulated atomically */
5861         if (bytes > 8 || (bytes & (bytes - 1)))
5862                 goto emul_write;
5863
5864         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5865
5866         if (gpa == UNMAPPED_GVA ||
5867             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5868                 goto emul_write;
5869
5870         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5871                 goto emul_write;
5872
5873         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5874                 goto emul_write;
5875
5876         kaddr = map.hva + offset_in_page(gpa);
5877
5878         switch (bytes) {
5879         case 1:
5880                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5881                 break;
5882         case 2:
5883                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5884                 break;
5885         case 4:
5886                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5887                 break;
5888         case 8:
5889                 exchanged = CMPXCHG64(kaddr, old, new);
5890                 break;
5891         default:
5892                 BUG();
5893         }
5894
5895         kvm_vcpu_unmap(vcpu, &map, true);
5896
5897         if (!exchanged)
5898                 return X86EMUL_CMPXCHG_FAILED;
5899
5900         kvm_page_track_write(vcpu, gpa, new, bytes);
5901
5902         return X86EMUL_CONTINUE;
5903
5904 emul_write:
5905         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5906
5907         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5908 }
5909
5910 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5911 {
5912         int r = 0, i;
5913
5914         for (i = 0; i < vcpu->arch.pio.count; i++) {
5915                 if (vcpu->arch.pio.in)
5916                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5917                                             vcpu->arch.pio.size, pd);
5918                 else
5919                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5920                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5921                                              pd);
5922                 if (r)
5923                         break;
5924                 pd += vcpu->arch.pio.size;
5925         }
5926         return r;
5927 }
5928
5929 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5930                                unsigned short port, void *val,
5931                                unsigned int count, bool in)
5932 {
5933         vcpu->arch.pio.port = port;
5934         vcpu->arch.pio.in = in;
5935         vcpu->arch.pio.count  = count;
5936         vcpu->arch.pio.size = size;
5937
5938         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5939                 vcpu->arch.pio.count = 0;
5940                 return 1;
5941         }
5942
5943         vcpu->run->exit_reason = KVM_EXIT_IO;
5944         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5945         vcpu->run->io.size = size;
5946         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5947         vcpu->run->io.count = count;
5948         vcpu->run->io.port = port;
5949
5950         return 0;
5951 }
5952
5953 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5954                                     int size, unsigned short port, void *val,
5955                                     unsigned int count)
5956 {
5957         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5958         int ret;
5959
5960         if (vcpu->arch.pio.count)
5961                 goto data_avail;
5962
5963         memset(vcpu->arch.pio_data, 0, size * count);
5964
5965         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5966         if (ret) {
5967 data_avail:
5968                 memcpy(val, vcpu->arch.pio_data, size * count);
5969                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5970                 vcpu->arch.pio.count = 0;
5971                 return 1;
5972         }
5973
5974         return 0;
5975 }
5976
5977 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5978                                      int size, unsigned short port,
5979                                      const void *val, unsigned int count)
5980 {
5981         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5982
5983         memcpy(vcpu->arch.pio_data, val, size * count);
5984         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5985         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5986 }
5987
5988 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5989 {
5990         return kvm_x86_ops->get_segment_base(vcpu, seg);
5991 }
5992
5993 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5994 {
5995         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5996 }
5997
5998 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5999 {
6000         if (!need_emulate_wbinvd(vcpu))
6001                 return X86EMUL_CONTINUE;
6002
6003         if (kvm_x86_ops->has_wbinvd_exit()) {
6004                 int cpu = get_cpu();
6005
6006                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6007                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6008                                 wbinvd_ipi, NULL, 1);
6009                 put_cpu();
6010                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6011         } else
6012                 wbinvd();
6013         return X86EMUL_CONTINUE;
6014 }
6015
6016 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6017 {
6018         kvm_emulate_wbinvd_noskip(vcpu);
6019         return kvm_skip_emulated_instruction(vcpu);
6020 }
6021 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6022
6023
6024
6025 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6026 {
6027         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6028 }
6029
6030 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6031                            unsigned long *dest)
6032 {
6033         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6034 }
6035
6036 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6037                            unsigned long value)
6038 {
6039
6040         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6041 }
6042
6043 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6044 {
6045         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6046 }
6047
6048 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6049 {
6050         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6051         unsigned long value;
6052
6053         switch (cr) {
6054         case 0:
6055                 value = kvm_read_cr0(vcpu);
6056                 break;
6057         case 2:
6058                 value = vcpu->arch.cr2;
6059                 break;
6060         case 3:
6061                 value = kvm_read_cr3(vcpu);
6062                 break;
6063         case 4:
6064                 value = kvm_read_cr4(vcpu);
6065                 break;
6066         case 8:
6067                 value = kvm_get_cr8(vcpu);
6068                 break;
6069         default:
6070                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6071                 return 0;
6072         }
6073
6074         return value;
6075 }
6076
6077 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6078 {
6079         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6080         int res = 0;
6081
6082         switch (cr) {
6083         case 0:
6084                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6085                 break;
6086         case 2:
6087                 vcpu->arch.cr2 = val;
6088                 break;
6089         case 3:
6090                 res = kvm_set_cr3(vcpu, val);
6091                 break;
6092         case 4:
6093                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6094                 break;
6095         case 8:
6096                 res = kvm_set_cr8(vcpu, val);
6097                 break;
6098         default:
6099                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6100                 res = -1;
6101         }
6102
6103         return res;
6104 }
6105
6106 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6107 {
6108         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6109 }
6110
6111 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6112 {
6113         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6114 }
6115
6116 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6117 {
6118         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6119 }
6120
6121 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6122 {
6123         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6124 }
6125
6126 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6127 {
6128         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6129 }
6130
6131 static unsigned long emulator_get_cached_segment_base(
6132         struct x86_emulate_ctxt *ctxt, int seg)
6133 {
6134         return get_segment_base(emul_to_vcpu(ctxt), seg);
6135 }
6136
6137 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6138                                  struct desc_struct *desc, u32 *base3,
6139                                  int seg)
6140 {
6141         struct kvm_segment var;
6142
6143         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6144         *selector = var.selector;
6145
6146         if (var.unusable) {
6147                 memset(desc, 0, sizeof(*desc));
6148                 if (base3)
6149                         *base3 = 0;
6150                 return false;
6151         }
6152
6153         if (var.g)
6154                 var.limit >>= 12;
6155         set_desc_limit(desc, var.limit);
6156         set_desc_base(desc, (unsigned long)var.base);
6157 #ifdef CONFIG_X86_64
6158         if (base3)
6159                 *base3 = var.base >> 32;
6160 #endif
6161         desc->type = var.type;
6162         desc->s = var.s;
6163         desc->dpl = var.dpl;
6164         desc->p = var.present;
6165         desc->avl = var.avl;
6166         desc->l = var.l;
6167         desc->d = var.db;
6168         desc->g = var.g;
6169
6170         return true;
6171 }
6172
6173 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6174                                  struct desc_struct *desc, u32 base3,
6175                                  int seg)
6176 {
6177         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6178         struct kvm_segment var;
6179
6180         var.selector = selector;
6181         var.base = get_desc_base(desc);
6182 #ifdef CONFIG_X86_64
6183         var.base |= ((u64)base3) << 32;
6184 #endif
6185         var.limit = get_desc_limit(desc);
6186         if (desc->g)
6187                 var.limit = (var.limit << 12) | 0xfff;
6188         var.type = desc->type;
6189         var.dpl = desc->dpl;
6190         var.db = desc->d;
6191         var.s = desc->s;
6192         var.l = desc->l;
6193         var.g = desc->g;
6194         var.avl = desc->avl;
6195         var.present = desc->p;
6196         var.unusable = !var.present;
6197         var.padding = 0;
6198
6199         kvm_set_segment(vcpu, &var, seg);
6200         return;
6201 }
6202
6203 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6204                             u32 msr_index, u64 *pdata)
6205 {
6206         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6207 }
6208
6209 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6210                             u32 msr_index, u64 data)
6211 {
6212         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6213 }
6214
6215 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6216 {
6217         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6218
6219         return vcpu->arch.smbase;
6220 }
6221
6222 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6223 {
6224         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6225
6226         vcpu->arch.smbase = smbase;
6227 }
6228
6229 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6230                               u32 pmc)
6231 {
6232         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6233 }
6234
6235 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6236                              u32 pmc, u64 *pdata)
6237 {
6238         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6239 }
6240
6241 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6242 {
6243         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6244 }
6245
6246 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6247                               struct x86_instruction_info *info,
6248                               enum x86_intercept_stage stage)
6249 {
6250         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6251 }
6252
6253 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6254                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6255 {
6256         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6257 }
6258
6259 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6260 {
6261         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6262 }
6263
6264 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6265 {
6266         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6267 }
6268
6269 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6270 {
6271         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6272 }
6273
6274 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6275 {
6276         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6277 }
6278
6279 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6280 {
6281         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6282 }
6283
6284 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6285 {
6286         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6287 }
6288
6289 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6290 {
6291         return emul_to_vcpu(ctxt)->arch.hflags;
6292 }
6293
6294 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6295 {
6296         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6297 }
6298
6299 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6300                                   const char *smstate)
6301 {
6302         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6303 }
6304
6305 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6306 {
6307         kvm_smm_changed(emul_to_vcpu(ctxt));
6308 }
6309
6310 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6311 {
6312         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6313 }
6314
6315 static const struct x86_emulate_ops emulate_ops = {
6316         .read_gpr            = emulator_read_gpr,
6317         .write_gpr           = emulator_write_gpr,
6318         .read_std            = emulator_read_std,
6319         .write_std           = emulator_write_std,
6320         .read_phys           = kvm_read_guest_phys_system,
6321         .fetch               = kvm_fetch_guest_virt,
6322         .read_emulated       = emulator_read_emulated,
6323         .write_emulated      = emulator_write_emulated,
6324         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6325         .invlpg              = emulator_invlpg,
6326         .pio_in_emulated     = emulator_pio_in_emulated,
6327         .pio_out_emulated    = emulator_pio_out_emulated,
6328         .get_segment         = emulator_get_segment,
6329         .set_segment         = emulator_set_segment,
6330         .get_cached_segment_base = emulator_get_cached_segment_base,
6331         .get_gdt             = emulator_get_gdt,
6332         .get_idt             = emulator_get_idt,
6333         .set_gdt             = emulator_set_gdt,
6334         .set_idt             = emulator_set_idt,
6335         .get_cr              = emulator_get_cr,
6336         .set_cr              = emulator_set_cr,
6337         .cpl                 = emulator_get_cpl,
6338         .get_dr              = emulator_get_dr,
6339         .set_dr              = emulator_set_dr,
6340         .get_smbase          = emulator_get_smbase,
6341         .set_smbase          = emulator_set_smbase,
6342         .set_msr             = emulator_set_msr,
6343         .get_msr             = emulator_get_msr,
6344         .check_pmc           = emulator_check_pmc,
6345         .read_pmc            = emulator_read_pmc,
6346         .halt                = emulator_halt,
6347         .wbinvd              = emulator_wbinvd,
6348         .fix_hypercall       = emulator_fix_hypercall,
6349         .intercept           = emulator_intercept,
6350         .get_cpuid           = emulator_get_cpuid,
6351         .guest_has_long_mode = emulator_guest_has_long_mode,
6352         .guest_has_movbe     = emulator_guest_has_movbe,
6353         .guest_has_fxsr      = emulator_guest_has_fxsr,
6354         .set_nmi_mask        = emulator_set_nmi_mask,
6355         .get_hflags          = emulator_get_hflags,
6356         .set_hflags          = emulator_set_hflags,
6357         .pre_leave_smm       = emulator_pre_leave_smm,
6358         .post_leave_smm      = emulator_post_leave_smm,
6359         .set_xcr             = emulator_set_xcr,
6360 };
6361
6362 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6363 {
6364         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6365         /*
6366          * an sti; sti; sequence only disable interrupts for the first
6367          * instruction. So, if the last instruction, be it emulated or
6368          * not, left the system with the INT_STI flag enabled, it
6369          * means that the last instruction is an sti. We should not
6370          * leave the flag on in this case. The same goes for mov ss
6371          */
6372         if (int_shadow & mask)
6373                 mask = 0;
6374         if (unlikely(int_shadow || mask)) {
6375                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6376                 if (!mask)
6377                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6378         }
6379 }
6380
6381 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6382 {
6383         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6384         if (ctxt->exception.vector == PF_VECTOR)
6385                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6386
6387         if (ctxt->exception.error_code_valid)
6388                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6389                                       ctxt->exception.error_code);
6390         else
6391                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6392         return false;
6393 }
6394
6395 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6396 {
6397         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6398         int cs_db, cs_l;
6399
6400         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6401
6402         ctxt->eflags = kvm_get_rflags(vcpu);
6403         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6404
6405         ctxt->eip = kvm_rip_read(vcpu);
6406         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6407                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6408                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6409                      cs_db                              ? X86EMUL_MODE_PROT32 :
6410                                                           X86EMUL_MODE_PROT16;
6411         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6412         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6413         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6414
6415         init_decode_cache(ctxt);
6416         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6417 }
6418
6419 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6420 {
6421         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6422         int ret;
6423
6424         init_emulate_ctxt(vcpu);
6425
6426         ctxt->op_bytes = 2;
6427         ctxt->ad_bytes = 2;
6428         ctxt->_eip = ctxt->eip + inc_eip;
6429         ret = emulate_int_real(ctxt, irq);
6430
6431         if (ret != X86EMUL_CONTINUE) {
6432                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6433         } else {
6434                 ctxt->eip = ctxt->_eip;
6435                 kvm_rip_write(vcpu, ctxt->eip);
6436                 kvm_set_rflags(vcpu, ctxt->eflags);
6437         }
6438 }
6439 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6440
6441 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6442 {
6443         ++vcpu->stat.insn_emulation_fail;
6444         trace_kvm_emulate_insn_failed(vcpu);
6445
6446         if (emulation_type & EMULTYPE_VMWARE_GP) {
6447                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6448                 return 1;
6449         }
6450
6451         if (emulation_type & EMULTYPE_SKIP) {
6452                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6453                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6454                 vcpu->run->internal.ndata = 0;
6455                 return 0;
6456         }
6457
6458         kvm_queue_exception(vcpu, UD_VECTOR);
6459
6460         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6461                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6462                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6463                 vcpu->run->internal.ndata = 0;
6464                 return 0;
6465         }
6466
6467         return 1;
6468 }
6469
6470 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6471                                   bool write_fault_to_shadow_pgtable,
6472                                   int emulation_type)
6473 {
6474         gpa_t gpa = cr2_or_gpa;
6475         kvm_pfn_t pfn;
6476
6477         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6478                 return false;
6479
6480         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6481                 return false;
6482
6483         if (!vcpu->arch.mmu->direct_map) {
6484                 /*
6485                  * Write permission should be allowed since only
6486                  * write access need to be emulated.
6487                  */
6488                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6489
6490                 /*
6491                  * If the mapping is invalid in guest, let cpu retry
6492                  * it to generate fault.
6493                  */
6494                 if (gpa == UNMAPPED_GVA)
6495                         return true;
6496         }
6497
6498         /*
6499          * Do not retry the unhandleable instruction if it faults on the
6500          * readonly host memory, otherwise it will goto a infinite loop:
6501          * retry instruction -> write #PF -> emulation fail -> retry
6502          * instruction -> ...
6503          */
6504         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6505
6506         /*
6507          * If the instruction failed on the error pfn, it can not be fixed,
6508          * report the error to userspace.
6509          */
6510         if (is_error_noslot_pfn(pfn))
6511                 return false;
6512
6513         kvm_release_pfn_clean(pfn);
6514
6515         /* The instructions are well-emulated on direct mmu. */
6516         if (vcpu->arch.mmu->direct_map) {
6517                 unsigned int indirect_shadow_pages;
6518
6519                 spin_lock(&vcpu->kvm->mmu_lock);
6520                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6521                 spin_unlock(&vcpu->kvm->mmu_lock);
6522
6523                 if (indirect_shadow_pages)
6524                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6525
6526                 return true;
6527         }
6528
6529         /*
6530          * if emulation was due to access to shadowed page table
6531          * and it failed try to unshadow page and re-enter the
6532          * guest to let CPU execute the instruction.
6533          */
6534         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6535
6536         /*
6537          * If the access faults on its page table, it can not
6538          * be fixed by unprotecting shadow page and it should
6539          * be reported to userspace.
6540          */
6541         return !write_fault_to_shadow_pgtable;
6542 }
6543
6544 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6545                               gpa_t cr2_or_gpa,  int emulation_type)
6546 {
6547         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6548         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6549
6550         last_retry_eip = vcpu->arch.last_retry_eip;
6551         last_retry_addr = vcpu->arch.last_retry_addr;
6552
6553         /*
6554          * If the emulation is caused by #PF and it is non-page_table
6555          * writing instruction, it means the VM-EXIT is caused by shadow
6556          * page protected, we can zap the shadow page and retry this
6557          * instruction directly.
6558          *
6559          * Note: if the guest uses a non-page-table modifying instruction
6560          * on the PDE that points to the instruction, then we will unmap
6561          * the instruction and go to an infinite loop. So, we cache the
6562          * last retried eip and the last fault address, if we meet the eip
6563          * and the address again, we can break out of the potential infinite
6564          * loop.
6565          */
6566         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6567
6568         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6569                 return false;
6570
6571         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6572                 return false;
6573
6574         if (x86_page_table_writing_insn(ctxt))
6575                 return false;
6576
6577         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6578                 return false;
6579
6580         vcpu->arch.last_retry_eip = ctxt->eip;
6581         vcpu->arch.last_retry_addr = cr2_or_gpa;
6582
6583         if (!vcpu->arch.mmu->direct_map)
6584                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6585
6586         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6587
6588         return true;
6589 }
6590
6591 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6592 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6593
6594 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6595 {
6596         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6597                 /* This is a good place to trace that we are exiting SMM.  */
6598                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6599
6600                 /* Process a latched INIT or SMI, if any.  */
6601                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6602         }
6603
6604         kvm_mmu_reset_context(vcpu);
6605 }
6606
6607 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6608                                 unsigned long *db)
6609 {
6610         u32 dr6 = 0;
6611         int i;
6612         u32 enable, rwlen;
6613
6614         enable = dr7;
6615         rwlen = dr7 >> 16;
6616         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6617                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6618                         dr6 |= (1 << i);
6619         return dr6;
6620 }
6621
6622 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6623 {
6624         struct kvm_run *kvm_run = vcpu->run;
6625
6626         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6627                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6628                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6629                 kvm_run->debug.arch.exception = DB_VECTOR;
6630                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6631                 return 0;
6632         }
6633         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6634         return 1;
6635 }
6636
6637 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6638 {
6639         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6640         int r;
6641
6642         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6643         if (unlikely(!r))
6644                 return 0;
6645
6646         /*
6647          * rflags is the old, "raw" value of the flags.  The new value has
6648          * not been saved yet.
6649          *
6650          * This is correct even for TF set by the guest, because "the
6651          * processor will not generate this exception after the instruction
6652          * that sets the TF flag".
6653          */
6654         if (unlikely(rflags & X86_EFLAGS_TF))
6655                 r = kvm_vcpu_do_singlestep(vcpu);
6656         return r;
6657 }
6658 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6659
6660 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6661 {
6662         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6663             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6664                 struct kvm_run *kvm_run = vcpu->run;
6665                 unsigned long eip = kvm_get_linear_rip(vcpu);
6666                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6667                                            vcpu->arch.guest_debug_dr7,
6668                                            vcpu->arch.eff_db);
6669
6670                 if (dr6 != 0) {
6671                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6672                         kvm_run->debug.arch.pc = eip;
6673                         kvm_run->debug.arch.exception = DB_VECTOR;
6674                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6675                         *r = 0;
6676                         return true;
6677                 }
6678         }
6679
6680         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6681             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6682                 unsigned long eip = kvm_get_linear_rip(vcpu);
6683                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6684                                            vcpu->arch.dr7,
6685                                            vcpu->arch.db);
6686
6687                 if (dr6 != 0) {
6688                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6689                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6690                         kvm_queue_exception(vcpu, DB_VECTOR);
6691                         *r = 1;
6692                         return true;
6693                 }
6694         }
6695
6696         return false;
6697 }
6698
6699 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6700 {
6701         switch (ctxt->opcode_len) {
6702         case 1:
6703                 switch (ctxt->b) {
6704                 case 0xe4:      /* IN */
6705                 case 0xe5:
6706                 case 0xec:
6707                 case 0xed:
6708                 case 0xe6:      /* OUT */
6709                 case 0xe7:
6710                 case 0xee:
6711                 case 0xef:
6712                 case 0x6c:      /* INS */
6713                 case 0x6d:
6714                 case 0x6e:      /* OUTS */
6715                 case 0x6f:
6716                         return true;
6717                 }
6718                 break;
6719         case 2:
6720                 switch (ctxt->b) {
6721                 case 0x33:      /* RDPMC */
6722                         return true;
6723                 }
6724                 break;
6725         }
6726
6727         return false;
6728 }
6729
6730 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6731                             int emulation_type, void *insn, int insn_len)
6732 {
6733         int r;
6734         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6735         bool writeback = true;
6736         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6737
6738         vcpu->arch.l1tf_flush_l1d = true;
6739
6740         /*
6741          * Clear write_fault_to_shadow_pgtable here to ensure it is
6742          * never reused.
6743          */
6744         vcpu->arch.write_fault_to_shadow_pgtable = false;
6745         kvm_clear_exception_queue(vcpu);
6746
6747         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6748                 init_emulate_ctxt(vcpu);
6749
6750                 /*
6751                  * We will reenter on the same instruction since
6752                  * we do not set complete_userspace_io.  This does not
6753                  * handle watchpoints yet, those would be handled in
6754                  * the emulate_ops.
6755                  */
6756                 if (!(emulation_type & EMULTYPE_SKIP) &&
6757                     kvm_vcpu_check_breakpoint(vcpu, &r))
6758                         return r;
6759
6760                 ctxt->interruptibility = 0;
6761                 ctxt->have_exception = false;
6762                 ctxt->exception.vector = -1;
6763                 ctxt->perm_ok = false;
6764
6765                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6766
6767                 r = x86_decode_insn(ctxt, insn, insn_len);
6768
6769                 trace_kvm_emulate_insn_start(vcpu);
6770                 ++vcpu->stat.insn_emulation;
6771                 if (r != EMULATION_OK)  {
6772                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6773                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6774                                 kvm_queue_exception(vcpu, UD_VECTOR);
6775                                 return 1;
6776                         }
6777                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6778                                                   write_fault_to_spt,
6779                                                   emulation_type))
6780                                 return 1;
6781                         if (ctxt->have_exception) {
6782                                 /*
6783                                  * #UD should result in just EMULATION_FAILED, and trap-like
6784                                  * exception should not be encountered during decode.
6785                                  */
6786                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6787                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6788                                 inject_emulated_exception(vcpu);
6789                                 return 1;
6790                         }
6791                         return handle_emulation_failure(vcpu, emulation_type);
6792                 }
6793         }
6794
6795         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6796             !is_vmware_backdoor_opcode(ctxt)) {
6797                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6798                 return 1;
6799         }
6800
6801         /*
6802          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6803          * for kvm_skip_emulated_instruction().  The caller is responsible for
6804          * updating interruptibility state and injecting single-step #DBs.
6805          */
6806         if (emulation_type & EMULTYPE_SKIP) {
6807                 kvm_rip_write(vcpu, ctxt->_eip);
6808                 if (ctxt->eflags & X86_EFLAGS_RF)
6809                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6810                 return 1;
6811         }
6812
6813         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6814                 return 1;
6815
6816         /* this is needed for vmware backdoor interface to work since it
6817            changes registers values  during IO operation */
6818         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6819                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6820                 emulator_invalidate_register_cache(ctxt);
6821         }
6822
6823 restart:
6824         /* Save the faulting GPA (cr2) in the address field */
6825         ctxt->exception.address = cr2_or_gpa;
6826
6827         r = x86_emulate_insn(ctxt);
6828
6829         if (r == EMULATION_INTERCEPTED)
6830                 return 1;
6831
6832         if (r == EMULATION_FAILED) {
6833                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6834                                         emulation_type))
6835                         return 1;
6836
6837                 return handle_emulation_failure(vcpu, emulation_type);
6838         }
6839
6840         if (ctxt->have_exception) {
6841                 r = 1;
6842                 if (inject_emulated_exception(vcpu))
6843                         return r;
6844         } else if (vcpu->arch.pio.count) {
6845                 if (!vcpu->arch.pio.in) {
6846                         /* FIXME: return into emulator if single-stepping.  */
6847                         vcpu->arch.pio.count = 0;
6848                 } else {
6849                         writeback = false;
6850                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6851                 }
6852                 r = 0;
6853         } else if (vcpu->mmio_needed) {
6854                 ++vcpu->stat.mmio_exits;
6855
6856                 if (!vcpu->mmio_is_write)
6857                         writeback = false;
6858                 r = 0;
6859                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6860         } else if (r == EMULATION_RESTART)
6861                 goto restart;
6862         else
6863                 r = 1;
6864
6865         if (writeback) {
6866                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6867                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6868                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6869                 if (!ctxt->have_exception ||
6870                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6871                         kvm_rip_write(vcpu, ctxt->eip);
6872                         if (r && ctxt->tf)
6873                                 r = kvm_vcpu_do_singlestep(vcpu);
6874                         __kvm_set_rflags(vcpu, ctxt->eflags);
6875                 }
6876
6877                 /*
6878                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6879                  * do nothing, and it will be requested again as soon as
6880                  * the shadow expires.  But we still need to check here,
6881                  * because POPF has no interrupt shadow.
6882                  */
6883                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6884                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6885         } else
6886                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6887
6888         return r;
6889 }
6890
6891 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6892 {
6893         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6894 }
6895 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6896
6897 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6898                                         void *insn, int insn_len)
6899 {
6900         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6901 }
6902 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6903
6904 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6905 {
6906         vcpu->arch.pio.count = 0;
6907         return 1;
6908 }
6909
6910 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6911 {
6912         vcpu->arch.pio.count = 0;
6913
6914         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6915                 return 1;
6916
6917         return kvm_skip_emulated_instruction(vcpu);
6918 }
6919
6920 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6921                             unsigned short port)
6922 {
6923         unsigned long val = kvm_rax_read(vcpu);
6924         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6925                                             size, port, &val, 1);
6926         if (ret)
6927                 return ret;
6928
6929         /*
6930          * Workaround userspace that relies on old KVM behavior of %rip being
6931          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6932          */
6933         if (port == 0x7e &&
6934             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6935                 vcpu->arch.complete_userspace_io =
6936                         complete_fast_pio_out_port_0x7e;
6937                 kvm_skip_emulated_instruction(vcpu);
6938         } else {
6939                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6940                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6941         }
6942         return 0;
6943 }
6944
6945 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6946 {
6947         unsigned long val;
6948
6949         /* We should only ever be called with arch.pio.count equal to 1 */
6950         BUG_ON(vcpu->arch.pio.count != 1);
6951
6952         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6953                 vcpu->arch.pio.count = 0;
6954                 return 1;
6955         }
6956
6957         /* For size less than 4 we merge, else we zero extend */
6958         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6959
6960         /*
6961          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6962          * the copy and tracing
6963          */
6964         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6965                                  vcpu->arch.pio.port, &val, 1);
6966         kvm_rax_write(vcpu, val);
6967
6968         return kvm_skip_emulated_instruction(vcpu);
6969 }
6970
6971 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6972                            unsigned short port)
6973 {
6974         unsigned long val;
6975         int ret;
6976
6977         /* For size less than 4 we merge, else we zero extend */
6978         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6979
6980         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6981                                        &val, 1);
6982         if (ret) {
6983                 kvm_rax_write(vcpu, val);
6984                 return ret;
6985         }
6986
6987         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6988         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6989
6990         return 0;
6991 }
6992
6993 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6994 {
6995         int ret;
6996
6997         if (in)
6998                 ret = kvm_fast_pio_in(vcpu, size, port);
6999         else
7000                 ret = kvm_fast_pio_out(vcpu, size, port);
7001         return ret && kvm_skip_emulated_instruction(vcpu);
7002 }
7003 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7004
7005 static int kvmclock_cpu_down_prep(unsigned int cpu)
7006 {
7007         __this_cpu_write(cpu_tsc_khz, 0);
7008         return 0;
7009 }
7010
7011 static void tsc_khz_changed(void *data)
7012 {
7013         struct cpufreq_freqs *freq = data;
7014         unsigned long khz = 0;
7015
7016         if (data)
7017                 khz = freq->new;
7018         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7019                 khz = cpufreq_quick_get(raw_smp_processor_id());
7020         if (!khz)
7021                 khz = tsc_khz;
7022         __this_cpu_write(cpu_tsc_khz, khz);
7023 }
7024
7025 #ifdef CONFIG_X86_64
7026 static void kvm_hyperv_tsc_notifier(void)
7027 {
7028         struct kvm *kvm;
7029         struct kvm_vcpu *vcpu;
7030         int cpu;
7031
7032         mutex_lock(&kvm_lock);
7033         list_for_each_entry(kvm, &vm_list, vm_list)
7034                 kvm_make_mclock_inprogress_request(kvm);
7035
7036         hyperv_stop_tsc_emulation();
7037
7038         /* TSC frequency always matches when on Hyper-V */
7039         for_each_present_cpu(cpu)
7040                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7041         kvm_max_guest_tsc_khz = tsc_khz;
7042
7043         list_for_each_entry(kvm, &vm_list, vm_list) {
7044                 struct kvm_arch *ka = &kvm->arch;
7045
7046                 spin_lock(&ka->pvclock_gtod_sync_lock);
7047
7048                 pvclock_update_vm_gtod_copy(kvm);
7049
7050                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7051                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7052
7053                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7054                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7055
7056                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7057         }
7058         mutex_unlock(&kvm_lock);
7059 }
7060 #endif
7061
7062 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7063 {
7064         struct kvm *kvm;
7065         struct kvm_vcpu *vcpu;
7066         int i, send_ipi = 0;
7067
7068         /*
7069          * We allow guests to temporarily run on slowing clocks,
7070          * provided we notify them after, or to run on accelerating
7071          * clocks, provided we notify them before.  Thus time never
7072          * goes backwards.
7073          *
7074          * However, we have a problem.  We can't atomically update
7075          * the frequency of a given CPU from this function; it is
7076          * merely a notifier, which can be called from any CPU.
7077          * Changing the TSC frequency at arbitrary points in time
7078          * requires a recomputation of local variables related to
7079          * the TSC for each VCPU.  We must flag these local variables
7080          * to be updated and be sure the update takes place with the
7081          * new frequency before any guests proceed.
7082          *
7083          * Unfortunately, the combination of hotplug CPU and frequency
7084          * change creates an intractable locking scenario; the order
7085          * of when these callouts happen is undefined with respect to
7086          * CPU hotplug, and they can race with each other.  As such,
7087          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7088          * undefined; you can actually have a CPU frequency change take
7089          * place in between the computation of X and the setting of the
7090          * variable.  To protect against this problem, all updates of
7091          * the per_cpu tsc_khz variable are done in an interrupt
7092          * protected IPI, and all callers wishing to update the value
7093          * must wait for a synchronous IPI to complete (which is trivial
7094          * if the caller is on the CPU already).  This establishes the
7095          * necessary total order on variable updates.
7096          *
7097          * Note that because a guest time update may take place
7098          * anytime after the setting of the VCPU's request bit, the
7099          * correct TSC value must be set before the request.  However,
7100          * to ensure the update actually makes it to any guest which
7101          * starts running in hardware virtualization between the set
7102          * and the acquisition of the spinlock, we must also ping the
7103          * CPU after setting the request bit.
7104          *
7105          */
7106
7107         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7108
7109         mutex_lock(&kvm_lock);
7110         list_for_each_entry(kvm, &vm_list, vm_list) {
7111                 kvm_for_each_vcpu(i, vcpu, kvm) {
7112                         if (vcpu->cpu != cpu)
7113                                 continue;
7114                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7115                         if (vcpu->cpu != raw_smp_processor_id())
7116                                 send_ipi = 1;
7117                 }
7118         }
7119         mutex_unlock(&kvm_lock);
7120
7121         if (freq->old < freq->new && send_ipi) {
7122                 /*
7123                  * We upscale the frequency.  Must make the guest
7124                  * doesn't see old kvmclock values while running with
7125                  * the new frequency, otherwise we risk the guest sees
7126                  * time go backwards.
7127                  *
7128                  * In case we update the frequency for another cpu
7129                  * (which might be in guest context) send an interrupt
7130                  * to kick the cpu out of guest context.  Next time
7131                  * guest context is entered kvmclock will be updated,
7132                  * so the guest will not see stale values.
7133                  */
7134                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7135         }
7136 }
7137
7138 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7139                                      void *data)
7140 {
7141         struct cpufreq_freqs *freq = data;
7142         int cpu;
7143
7144         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7145                 return 0;
7146         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7147                 return 0;
7148
7149         for_each_cpu(cpu, freq->policy->cpus)
7150                 __kvmclock_cpufreq_notifier(freq, cpu);
7151
7152         return 0;
7153 }
7154
7155 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7156         .notifier_call  = kvmclock_cpufreq_notifier
7157 };
7158
7159 static int kvmclock_cpu_online(unsigned int cpu)
7160 {
7161         tsc_khz_changed(NULL);
7162         return 0;
7163 }
7164
7165 static void kvm_timer_init(void)
7166 {
7167         max_tsc_khz = tsc_khz;
7168
7169         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7170 #ifdef CONFIG_CPU_FREQ
7171                 struct cpufreq_policy policy;
7172                 int cpu;
7173
7174                 memset(&policy, 0, sizeof(policy));
7175                 cpu = get_cpu();
7176                 cpufreq_get_policy(&policy, cpu);
7177                 if (policy.cpuinfo.max_freq)
7178                         max_tsc_khz = policy.cpuinfo.max_freq;
7179                 put_cpu();
7180 #endif
7181                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7182                                           CPUFREQ_TRANSITION_NOTIFIER);
7183         }
7184
7185         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7186                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7187 }
7188
7189 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7190 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7191
7192 int kvm_is_in_guest(void)
7193 {
7194         return __this_cpu_read(current_vcpu) != NULL;
7195 }
7196
7197 static int kvm_is_user_mode(void)
7198 {
7199         int user_mode = 3;
7200
7201         if (__this_cpu_read(current_vcpu))
7202                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7203
7204         return user_mode != 0;
7205 }
7206
7207 static unsigned long kvm_get_guest_ip(void)
7208 {
7209         unsigned long ip = 0;
7210
7211         if (__this_cpu_read(current_vcpu))
7212                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7213
7214         return ip;
7215 }
7216
7217 static void kvm_handle_intel_pt_intr(void)
7218 {
7219         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7220
7221         kvm_make_request(KVM_REQ_PMI, vcpu);
7222         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7223                         (unsigned long *)&vcpu->arch.pmu.global_status);
7224 }
7225
7226 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7227         .is_in_guest            = kvm_is_in_guest,
7228         .is_user_mode           = kvm_is_user_mode,
7229         .get_guest_ip           = kvm_get_guest_ip,
7230         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7231 };
7232
7233 #ifdef CONFIG_X86_64
7234 static void pvclock_gtod_update_fn(struct work_struct *work)
7235 {
7236         struct kvm *kvm;
7237
7238         struct kvm_vcpu *vcpu;
7239         int i;
7240
7241         mutex_lock(&kvm_lock);
7242         list_for_each_entry(kvm, &vm_list, vm_list)
7243                 kvm_for_each_vcpu(i, vcpu, kvm)
7244                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7245         atomic_set(&kvm_guest_has_master_clock, 0);
7246         mutex_unlock(&kvm_lock);
7247 }
7248
7249 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7250
7251 /*
7252  * Notification about pvclock gtod data update.
7253  */
7254 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7255                                void *priv)
7256 {
7257         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7258         struct timekeeper *tk = priv;
7259
7260         update_pvclock_gtod(tk);
7261
7262         /* disable master clock if host does not trust, or does not
7263          * use, TSC based clocksource.
7264          */
7265         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7266             atomic_read(&kvm_guest_has_master_clock) != 0)
7267                 queue_work(system_long_wq, &pvclock_gtod_work);
7268
7269         return 0;
7270 }
7271
7272 static struct notifier_block pvclock_gtod_notifier = {
7273         .notifier_call = pvclock_gtod_notify,
7274 };
7275 #endif
7276
7277 int kvm_arch_init(void *opaque)
7278 {
7279         int r;
7280         struct kvm_x86_ops *ops = opaque;
7281
7282         if (kvm_x86_ops) {
7283                 printk(KERN_ERR "kvm: already loaded the other module\n");
7284                 r = -EEXIST;
7285                 goto out;
7286         }
7287
7288         if (!ops->cpu_has_kvm_support()) {
7289                 printk(KERN_ERR "kvm: no hardware support\n");
7290                 r = -EOPNOTSUPP;
7291                 goto out;
7292         }
7293         if (ops->disabled_by_bios()) {
7294                 printk(KERN_ERR "kvm: disabled by bios\n");
7295                 r = -EOPNOTSUPP;
7296                 goto out;
7297         }
7298
7299         /*
7300          * KVM explicitly assumes that the guest has an FPU and
7301          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7302          * vCPU's FPU state as a fxregs_state struct.
7303          */
7304         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7305                 printk(KERN_ERR "kvm: inadequate fpu\n");
7306                 r = -EOPNOTSUPP;
7307                 goto out;
7308         }
7309
7310         r = -ENOMEM;
7311         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7312                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7313                                           NULL);
7314         if (!x86_fpu_cache) {
7315                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7316                 goto out;
7317         }
7318
7319         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7320         if (!shared_msrs) {
7321                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7322                 goto out_free_x86_fpu_cache;
7323         }
7324
7325         r = kvm_mmu_module_init();
7326         if (r)
7327                 goto out_free_percpu;
7328
7329         kvm_x86_ops = ops;
7330
7331         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7332                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7333                         PT_PRESENT_MASK, 0, sme_me_mask);
7334         kvm_timer_init();
7335
7336         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7337
7338         if (boot_cpu_has(X86_FEATURE_XSAVE))
7339                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7340
7341         kvm_lapic_init();
7342         if (pi_inject_timer == -1)
7343                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7344 #ifdef CONFIG_X86_64
7345         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7346
7347         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7348                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7349 #endif
7350
7351         return 0;
7352
7353 out_free_percpu:
7354         free_percpu(shared_msrs);
7355 out_free_x86_fpu_cache:
7356         kmem_cache_destroy(x86_fpu_cache);
7357 out:
7358         return r;
7359 }
7360
7361 void kvm_arch_exit(void)
7362 {
7363 #ifdef CONFIG_X86_64
7364         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7365                 clear_hv_tscchange_cb();
7366 #endif
7367         kvm_lapic_exit();
7368         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7369
7370         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7371                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7372                                             CPUFREQ_TRANSITION_NOTIFIER);
7373         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7374 #ifdef CONFIG_X86_64
7375         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7376 #endif
7377         kvm_x86_ops = NULL;
7378         kvm_mmu_module_exit();
7379         free_percpu(shared_msrs);
7380         kmem_cache_destroy(x86_fpu_cache);
7381 }
7382
7383 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7384 {
7385         ++vcpu->stat.halt_exits;
7386         if (lapic_in_kernel(vcpu)) {
7387                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7388                 return 1;
7389         } else {
7390                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7391                 return 0;
7392         }
7393 }
7394 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7395
7396 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7397 {
7398         int ret = kvm_skip_emulated_instruction(vcpu);
7399         /*
7400          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7401          * KVM_EXIT_DEBUG here.
7402          */
7403         return kvm_vcpu_halt(vcpu) && ret;
7404 }
7405 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7406
7407 #ifdef CONFIG_X86_64
7408 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7409                                 unsigned long clock_type)
7410 {
7411         struct kvm_clock_pairing clock_pairing;
7412         struct timespec64 ts;
7413         u64 cycle;
7414         int ret;
7415
7416         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7417                 return -KVM_EOPNOTSUPP;
7418
7419         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7420                 return -KVM_EOPNOTSUPP;
7421
7422         clock_pairing.sec = ts.tv_sec;
7423         clock_pairing.nsec = ts.tv_nsec;
7424         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7425         clock_pairing.flags = 0;
7426         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7427
7428         ret = 0;
7429         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7430                             sizeof(struct kvm_clock_pairing)))
7431                 ret = -KVM_EFAULT;
7432
7433         return ret;
7434 }
7435 #endif
7436
7437 /*
7438  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7439  *
7440  * @apicid - apicid of vcpu to be kicked.
7441  */
7442 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7443 {
7444         struct kvm_lapic_irq lapic_irq;
7445
7446         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7447         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7448         lapic_irq.level = 0;
7449         lapic_irq.dest_id = apicid;
7450         lapic_irq.msi_redir_hint = false;
7451
7452         lapic_irq.delivery_mode = APIC_DM_REMRD;
7453         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7454 }
7455
7456 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7457 {
7458         if (!lapic_in_kernel(vcpu)) {
7459                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7460                 return;
7461         }
7462         if (!vcpu->arch.apicv_active)
7463                 return;
7464
7465         vcpu->arch.apicv_active = false;
7466         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7467 }
7468
7469 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7470 {
7471         struct kvm_vcpu *target = NULL;
7472         struct kvm_apic_map *map;
7473
7474         rcu_read_lock();
7475         map = rcu_dereference(kvm->arch.apic_map);
7476
7477         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7478                 target = map->phys_map[dest_id]->vcpu;
7479
7480         rcu_read_unlock();
7481
7482         if (target && READ_ONCE(target->ready))
7483                 kvm_vcpu_yield_to(target);
7484 }
7485
7486 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7487 {
7488         unsigned long nr, a0, a1, a2, a3, ret;
7489         int op_64_bit;
7490
7491         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7492                 return kvm_hv_hypercall(vcpu);
7493
7494         nr = kvm_rax_read(vcpu);
7495         a0 = kvm_rbx_read(vcpu);
7496         a1 = kvm_rcx_read(vcpu);
7497         a2 = kvm_rdx_read(vcpu);
7498         a3 = kvm_rsi_read(vcpu);
7499
7500         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7501
7502         op_64_bit = is_64_bit_mode(vcpu);
7503         if (!op_64_bit) {
7504                 nr &= 0xFFFFFFFF;
7505                 a0 &= 0xFFFFFFFF;
7506                 a1 &= 0xFFFFFFFF;
7507                 a2 &= 0xFFFFFFFF;
7508                 a3 &= 0xFFFFFFFF;
7509         }
7510
7511         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7512                 ret = -KVM_EPERM;
7513                 goto out;
7514         }
7515
7516         switch (nr) {
7517         case KVM_HC_VAPIC_POLL_IRQ:
7518                 ret = 0;
7519                 break;
7520         case KVM_HC_KICK_CPU:
7521                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7522                 kvm_sched_yield(vcpu->kvm, a1);
7523                 ret = 0;
7524                 break;
7525 #ifdef CONFIG_X86_64
7526         case KVM_HC_CLOCK_PAIRING:
7527                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7528                 break;
7529 #endif
7530         case KVM_HC_SEND_IPI:
7531                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7532                 break;
7533         case KVM_HC_SCHED_YIELD:
7534                 kvm_sched_yield(vcpu->kvm, a0);
7535                 ret = 0;
7536                 break;
7537         default:
7538                 ret = -KVM_ENOSYS;
7539                 break;
7540         }
7541 out:
7542         if (!op_64_bit)
7543                 ret = (u32)ret;
7544         kvm_rax_write(vcpu, ret);
7545
7546         ++vcpu->stat.hypercalls;
7547         return kvm_skip_emulated_instruction(vcpu);
7548 }
7549 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7550
7551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7552 {
7553         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7554         char instruction[3];
7555         unsigned long rip = kvm_rip_read(vcpu);
7556
7557         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7558
7559         return emulator_write_emulated(ctxt, rip, instruction, 3,
7560                 &ctxt->exception);
7561 }
7562
7563 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7564 {
7565         return vcpu->run->request_interrupt_window &&
7566                 likely(!pic_in_kernel(vcpu->kvm));
7567 }
7568
7569 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7570 {
7571         struct kvm_run *kvm_run = vcpu->run;
7572
7573         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7574         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7575         kvm_run->cr8 = kvm_get_cr8(vcpu);
7576         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7577         kvm_run->ready_for_interrupt_injection =
7578                 pic_in_kernel(vcpu->kvm) ||
7579                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7580 }
7581
7582 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7583 {
7584         int max_irr, tpr;
7585
7586         if (!kvm_x86_ops->update_cr8_intercept)
7587                 return;
7588
7589         if (!lapic_in_kernel(vcpu))
7590                 return;
7591
7592         if (vcpu->arch.apicv_active)
7593                 return;
7594
7595         if (!vcpu->arch.apic->vapic_addr)
7596                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7597         else
7598                 max_irr = -1;
7599
7600         if (max_irr != -1)
7601                 max_irr >>= 4;
7602
7603         tpr = kvm_lapic_get_cr8(vcpu);
7604
7605         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7606 }
7607
7608 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7609 {
7610         int r;
7611
7612         /* try to reinject previous events if any */
7613
7614         if (vcpu->arch.exception.injected)
7615                 kvm_x86_ops->queue_exception(vcpu);
7616         /*
7617          * Do not inject an NMI or interrupt if there is a pending
7618          * exception.  Exceptions and interrupts are recognized at
7619          * instruction boundaries, i.e. the start of an instruction.
7620          * Trap-like exceptions, e.g. #DB, have higher priority than
7621          * NMIs and interrupts, i.e. traps are recognized before an
7622          * NMI/interrupt that's pending on the same instruction.
7623          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7624          * priority, but are only generated (pended) during instruction
7625          * execution, i.e. a pending fault-like exception means the
7626          * fault occurred on the *previous* instruction and must be
7627          * serviced prior to recognizing any new events in order to
7628          * fully complete the previous instruction.
7629          */
7630         else if (!vcpu->arch.exception.pending) {
7631                 if (vcpu->arch.nmi_injected)
7632                         kvm_x86_ops->set_nmi(vcpu);
7633                 else if (vcpu->arch.interrupt.injected)
7634                         kvm_x86_ops->set_irq(vcpu);
7635         }
7636
7637         /*
7638          * Call check_nested_events() even if we reinjected a previous event
7639          * in order for caller to determine if it should require immediate-exit
7640          * from L2 to L1 due to pending L1 events which require exit
7641          * from L2 to L1.
7642          */
7643         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7644                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7645                 if (r != 0)
7646                         return r;
7647         }
7648
7649         /* try to inject new event if pending */
7650         if (vcpu->arch.exception.pending) {
7651                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7652                                         vcpu->arch.exception.has_error_code,
7653                                         vcpu->arch.exception.error_code);
7654
7655                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7656                 vcpu->arch.exception.pending = false;
7657                 vcpu->arch.exception.injected = true;
7658
7659                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7660                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7661                                              X86_EFLAGS_RF);
7662
7663                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7664                         /*
7665                          * This code assumes that nSVM doesn't use
7666                          * check_nested_events(). If it does, the
7667                          * DR6/DR7 changes should happen before L1
7668                          * gets a #VMEXIT for an intercepted #DB in
7669                          * L2.  (Under VMX, on the other hand, the
7670                          * DR6/DR7 changes should not happen in the
7671                          * event of a VM-exit to L1 for an intercepted
7672                          * #DB in L2.)
7673                          */
7674                         kvm_deliver_exception_payload(vcpu);
7675                         if (vcpu->arch.dr7 & DR7_GD) {
7676                                 vcpu->arch.dr7 &= ~DR7_GD;
7677                                 kvm_update_dr7(vcpu);
7678                         }
7679                 }
7680
7681                 kvm_x86_ops->queue_exception(vcpu);
7682         }
7683
7684         /* Don't consider new event if we re-injected an event */
7685         if (kvm_event_needs_reinjection(vcpu))
7686                 return 0;
7687
7688         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7689             kvm_x86_ops->smi_allowed(vcpu)) {
7690                 vcpu->arch.smi_pending = false;
7691                 ++vcpu->arch.smi_count;
7692                 enter_smm(vcpu);
7693         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7694                 --vcpu->arch.nmi_pending;
7695                 vcpu->arch.nmi_injected = true;
7696                 kvm_x86_ops->set_nmi(vcpu);
7697         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7698                 /*
7699                  * Because interrupts can be injected asynchronously, we are
7700                  * calling check_nested_events again here to avoid a race condition.
7701                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7702                  * proposal and current concerns.  Perhaps we should be setting
7703                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7704                  */
7705                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7706                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7707                         if (r != 0)
7708                                 return r;
7709                 }
7710                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7711                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7712                                             false);
7713                         kvm_x86_ops->set_irq(vcpu);
7714                 }
7715         }
7716
7717         return 0;
7718 }
7719
7720 static void process_nmi(struct kvm_vcpu *vcpu)
7721 {
7722         unsigned limit = 2;
7723
7724         /*
7725          * x86 is limited to one NMI running, and one NMI pending after it.
7726          * If an NMI is already in progress, limit further NMIs to just one.
7727          * Otherwise, allow two (and we'll inject the first one immediately).
7728          */
7729         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7730                 limit = 1;
7731
7732         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7733         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7734         kvm_make_request(KVM_REQ_EVENT, vcpu);
7735 }
7736
7737 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7738 {
7739         u32 flags = 0;
7740         flags |= seg->g       << 23;
7741         flags |= seg->db      << 22;
7742         flags |= seg->l       << 21;
7743         flags |= seg->avl     << 20;
7744         flags |= seg->present << 15;
7745         flags |= seg->dpl     << 13;
7746         flags |= seg->s       << 12;
7747         flags |= seg->type    << 8;
7748         return flags;
7749 }
7750
7751 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7752 {
7753         struct kvm_segment seg;
7754         int offset;
7755
7756         kvm_get_segment(vcpu, &seg, n);
7757         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7758
7759         if (n < 3)
7760                 offset = 0x7f84 + n * 12;
7761         else
7762                 offset = 0x7f2c + (n - 3) * 12;
7763
7764         put_smstate(u32, buf, offset + 8, seg.base);
7765         put_smstate(u32, buf, offset + 4, seg.limit);
7766         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7767 }
7768
7769 #ifdef CONFIG_X86_64
7770 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7771 {
7772         struct kvm_segment seg;
7773         int offset;
7774         u16 flags;
7775
7776         kvm_get_segment(vcpu, &seg, n);
7777         offset = 0x7e00 + n * 16;
7778
7779         flags = enter_smm_get_segment_flags(&seg) >> 8;
7780         put_smstate(u16, buf, offset, seg.selector);
7781         put_smstate(u16, buf, offset + 2, flags);
7782         put_smstate(u32, buf, offset + 4, seg.limit);
7783         put_smstate(u64, buf, offset + 8, seg.base);
7784 }
7785 #endif
7786
7787 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7788 {
7789         struct desc_ptr dt;
7790         struct kvm_segment seg;
7791         unsigned long val;
7792         int i;
7793
7794         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7795         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7796         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7797         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7798
7799         for (i = 0; i < 8; i++)
7800                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7801
7802         kvm_get_dr(vcpu, 6, &val);
7803         put_smstate(u32, buf, 0x7fcc, (u32)val);
7804         kvm_get_dr(vcpu, 7, &val);
7805         put_smstate(u32, buf, 0x7fc8, (u32)val);
7806
7807         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7808         put_smstate(u32, buf, 0x7fc4, seg.selector);
7809         put_smstate(u32, buf, 0x7f64, seg.base);
7810         put_smstate(u32, buf, 0x7f60, seg.limit);
7811         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7812
7813         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7814         put_smstate(u32, buf, 0x7fc0, seg.selector);
7815         put_smstate(u32, buf, 0x7f80, seg.base);
7816         put_smstate(u32, buf, 0x7f7c, seg.limit);
7817         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7818
7819         kvm_x86_ops->get_gdt(vcpu, &dt);
7820         put_smstate(u32, buf, 0x7f74, dt.address);
7821         put_smstate(u32, buf, 0x7f70, dt.size);
7822
7823         kvm_x86_ops->get_idt(vcpu, &dt);
7824         put_smstate(u32, buf, 0x7f58, dt.address);
7825         put_smstate(u32, buf, 0x7f54, dt.size);
7826
7827         for (i = 0; i < 6; i++)
7828                 enter_smm_save_seg_32(vcpu, buf, i);
7829
7830         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7831
7832         /* revision id */
7833         put_smstate(u32, buf, 0x7efc, 0x00020000);
7834         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7835 }
7836
7837 #ifdef CONFIG_X86_64
7838 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7839 {
7840         struct desc_ptr dt;
7841         struct kvm_segment seg;
7842         unsigned long val;
7843         int i;
7844
7845         for (i = 0; i < 16; i++)
7846                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7847
7848         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7849         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7850
7851         kvm_get_dr(vcpu, 6, &val);
7852         put_smstate(u64, buf, 0x7f68, val);
7853         kvm_get_dr(vcpu, 7, &val);
7854         put_smstate(u64, buf, 0x7f60, val);
7855
7856         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7857         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7858         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7859
7860         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7861
7862         /* revision id */
7863         put_smstate(u32, buf, 0x7efc, 0x00020064);
7864
7865         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7866
7867         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7868         put_smstate(u16, buf, 0x7e90, seg.selector);
7869         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7870         put_smstate(u32, buf, 0x7e94, seg.limit);
7871         put_smstate(u64, buf, 0x7e98, seg.base);
7872
7873         kvm_x86_ops->get_idt(vcpu, &dt);
7874         put_smstate(u32, buf, 0x7e84, dt.size);
7875         put_smstate(u64, buf, 0x7e88, dt.address);
7876
7877         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7878         put_smstate(u16, buf, 0x7e70, seg.selector);
7879         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7880         put_smstate(u32, buf, 0x7e74, seg.limit);
7881         put_smstate(u64, buf, 0x7e78, seg.base);
7882
7883         kvm_x86_ops->get_gdt(vcpu, &dt);
7884         put_smstate(u32, buf, 0x7e64, dt.size);
7885         put_smstate(u64, buf, 0x7e68, dt.address);
7886
7887         for (i = 0; i < 6; i++)
7888                 enter_smm_save_seg_64(vcpu, buf, i);
7889 }
7890 #endif
7891
7892 static void enter_smm(struct kvm_vcpu *vcpu)
7893 {
7894         struct kvm_segment cs, ds;
7895         struct desc_ptr dt;
7896         char buf[512];
7897         u32 cr0;
7898
7899         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7900         memset(buf, 0, 512);
7901 #ifdef CONFIG_X86_64
7902         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7903                 enter_smm_save_state_64(vcpu, buf);
7904         else
7905 #endif
7906                 enter_smm_save_state_32(vcpu, buf);
7907
7908         /*
7909          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7910          * vCPU state (e.g. leave guest mode) after we've saved the state into
7911          * the SMM state-save area.
7912          */
7913         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7914
7915         vcpu->arch.hflags |= HF_SMM_MASK;
7916         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7917
7918         if (kvm_x86_ops->get_nmi_mask(vcpu))
7919                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7920         else
7921                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7922
7923         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7924         kvm_rip_write(vcpu, 0x8000);
7925
7926         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7927         kvm_x86_ops->set_cr0(vcpu, cr0);
7928         vcpu->arch.cr0 = cr0;
7929
7930         kvm_x86_ops->set_cr4(vcpu, 0);
7931
7932         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7933         dt.address = dt.size = 0;
7934         kvm_x86_ops->set_idt(vcpu, &dt);
7935
7936         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7937
7938         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7939         cs.base = vcpu->arch.smbase;
7940
7941         ds.selector = 0;
7942         ds.base = 0;
7943
7944         cs.limit    = ds.limit = 0xffffffff;
7945         cs.type     = ds.type = 0x3;
7946         cs.dpl      = ds.dpl = 0;
7947         cs.db       = ds.db = 0;
7948         cs.s        = ds.s = 1;
7949         cs.l        = ds.l = 0;
7950         cs.g        = ds.g = 1;
7951         cs.avl      = ds.avl = 0;
7952         cs.present  = ds.present = 1;
7953         cs.unusable = ds.unusable = 0;
7954         cs.padding  = ds.padding = 0;
7955
7956         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7957         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7958         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7959         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7960         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7961         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7962
7963 #ifdef CONFIG_X86_64
7964         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7965                 kvm_x86_ops->set_efer(vcpu, 0);
7966 #endif
7967
7968         kvm_update_cpuid(vcpu);
7969         kvm_mmu_reset_context(vcpu);
7970 }
7971
7972 static void process_smi(struct kvm_vcpu *vcpu)
7973 {
7974         vcpu->arch.smi_pending = true;
7975         kvm_make_request(KVM_REQ_EVENT, vcpu);
7976 }
7977
7978 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7979                                        unsigned long *vcpu_bitmap)
7980 {
7981         cpumask_var_t cpus;
7982
7983         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7984
7985         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7986                                     vcpu_bitmap, cpus);
7987
7988         free_cpumask_var(cpus);
7989 }
7990
7991 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7992 {
7993         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7994 }
7995
7996 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7997 {
7998         if (!kvm_apic_present(vcpu))
7999                 return;
8000
8001         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8002
8003         if (irqchip_split(vcpu->kvm))
8004                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8005         else {
8006                 if (vcpu->arch.apicv_active)
8007                         kvm_x86_ops->sync_pir_to_irr(vcpu);
8008                 if (ioapic_in_kernel(vcpu->kvm))
8009                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8010         }
8011
8012         if (is_guest_mode(vcpu))
8013                 vcpu->arch.load_eoi_exitmap_pending = true;
8014         else
8015                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8016 }
8017
8018 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8019 {
8020         u64 eoi_exit_bitmap[4];
8021
8022         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8023                 return;
8024
8025         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8026                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8027         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8028 }
8029
8030 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8031                 unsigned long start, unsigned long end,
8032                 bool blockable)
8033 {
8034         unsigned long apic_address;
8035
8036         /*
8037          * The physical address of apic access page is stored in the VMCS.
8038          * Update it when it becomes invalid.
8039          */
8040         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8041         if (start <= apic_address && apic_address < end)
8042                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8043
8044         return 0;
8045 }
8046
8047 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8048 {
8049         struct page *page = NULL;
8050
8051         if (!lapic_in_kernel(vcpu))
8052                 return;
8053
8054         if (!kvm_x86_ops->set_apic_access_page_addr)
8055                 return;
8056
8057         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8058         if (is_error_page(page))
8059                 return;
8060         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8061
8062         /*
8063          * Do not pin apic access page in memory, the MMU notifier
8064          * will call us again if it is migrated or swapped out.
8065          */
8066         put_page(page);
8067 }
8068
8069 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8070 {
8071         smp_send_reschedule(vcpu->cpu);
8072 }
8073 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8074
8075 /*
8076  * Returns 1 to let vcpu_run() continue the guest execution loop without
8077  * exiting to the userspace.  Otherwise, the value will be returned to the
8078  * userspace.
8079  */
8080 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8081 {
8082         int r;
8083         bool req_int_win =
8084                 dm_request_for_irq_injection(vcpu) &&
8085                 kvm_cpu_accept_dm_intr(vcpu);
8086         enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8087
8088         bool req_immediate_exit = false;
8089
8090         if (kvm_request_pending(vcpu)) {
8091                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8092                         if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8093                                 r = 0;
8094                                 goto out;
8095                         }
8096                 }
8097                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8098                         kvm_mmu_unload(vcpu);
8099                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8100                         __kvm_migrate_timers(vcpu);
8101                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8102                         kvm_gen_update_masterclock(vcpu->kvm);
8103                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8104                         kvm_gen_kvmclock_update(vcpu);
8105                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8106                         r = kvm_guest_time_update(vcpu);
8107                         if (unlikely(r))
8108                                 goto out;
8109                 }
8110                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8111                         kvm_mmu_sync_roots(vcpu);
8112                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8113                         kvm_mmu_load_cr3(vcpu);
8114                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8115                         kvm_vcpu_flush_tlb(vcpu, true);
8116                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8117                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8118                         r = 0;
8119                         goto out;
8120                 }
8121                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8122                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8123                         vcpu->mmio_needed = 0;
8124                         r = 0;
8125                         goto out;
8126                 }
8127                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8128                         /* Page is swapped out. Do synthetic halt */
8129                         vcpu->arch.apf.halted = true;
8130                         r = 1;
8131                         goto out;
8132                 }
8133                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8134                         record_steal_time(vcpu);
8135                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8136                         process_smi(vcpu);
8137                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8138                         process_nmi(vcpu);
8139                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8140                         kvm_pmu_handle_event(vcpu);
8141                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8142                         kvm_pmu_deliver_pmi(vcpu);
8143                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8144                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8145                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8146                                      vcpu->arch.ioapic_handled_vectors)) {
8147                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8148                                 vcpu->run->eoi.vector =
8149                                                 vcpu->arch.pending_ioapic_eoi;
8150                                 r = 0;
8151                                 goto out;
8152                         }
8153                 }
8154                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8155                         vcpu_scan_ioapic(vcpu);
8156                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8157                         vcpu_load_eoi_exitmap(vcpu);
8158                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8159                         kvm_vcpu_reload_apic_access_page(vcpu);
8160                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8161                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8162                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8163                         r = 0;
8164                         goto out;
8165                 }
8166                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8167                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8168                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8169                         r = 0;
8170                         goto out;
8171                 }
8172                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8173                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8174                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8175                         r = 0;
8176                         goto out;
8177                 }
8178
8179                 /*
8180                  * KVM_REQ_HV_STIMER has to be processed after
8181                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8182                  * depend on the guest clock being up-to-date
8183                  */
8184                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8185                         kvm_hv_process_stimers(vcpu);
8186         }
8187
8188         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8189                 ++vcpu->stat.req_event;
8190                 kvm_apic_accept_events(vcpu);
8191                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8192                         r = 1;
8193                         goto out;
8194                 }
8195
8196                 if (inject_pending_event(vcpu, req_int_win) != 0)
8197                         req_immediate_exit = true;
8198                 else {
8199                         /* Enable SMI/NMI/IRQ window open exits if needed.
8200                          *
8201                          * SMIs have three cases:
8202                          * 1) They can be nested, and then there is nothing to
8203                          *    do here because RSM will cause a vmexit anyway.
8204                          * 2) There is an ISA-specific reason why SMI cannot be
8205                          *    injected, and the moment when this changes can be
8206                          *    intercepted.
8207                          * 3) Or the SMI can be pending because
8208                          *    inject_pending_event has completed the injection
8209                          *    of an IRQ or NMI from the previous vmexit, and
8210                          *    then we request an immediate exit to inject the
8211                          *    SMI.
8212                          */
8213                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8214                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8215                                         req_immediate_exit = true;
8216                         if (vcpu->arch.nmi_pending)
8217                                 kvm_x86_ops->enable_nmi_window(vcpu);
8218                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8219                                 kvm_x86_ops->enable_irq_window(vcpu);
8220                         WARN_ON(vcpu->arch.exception.pending);
8221                 }
8222
8223                 if (kvm_lapic_enabled(vcpu)) {
8224                         update_cr8_intercept(vcpu);
8225                         kvm_lapic_sync_to_vapic(vcpu);
8226                 }
8227         }
8228
8229         r = kvm_mmu_reload(vcpu);
8230         if (unlikely(r)) {
8231                 goto cancel_injection;
8232         }
8233
8234         preempt_disable();
8235
8236         kvm_x86_ops->prepare_guest_switch(vcpu);
8237
8238         /*
8239          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8240          * IPI are then delayed after guest entry, which ensures that they
8241          * result in virtual interrupt delivery.
8242          */
8243         local_irq_disable();
8244         vcpu->mode = IN_GUEST_MODE;
8245
8246         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8247
8248         /*
8249          * 1) We should set ->mode before checking ->requests.  Please see
8250          * the comment in kvm_vcpu_exiting_guest_mode().
8251          *
8252          * 2) For APICv, we should set ->mode before checking PID.ON. This
8253          * pairs with the memory barrier implicit in pi_test_and_set_on
8254          * (see vmx_deliver_posted_interrupt).
8255          *
8256          * 3) This also orders the write to mode from any reads to the page
8257          * tables done while the VCPU is running.  Please see the comment
8258          * in kvm_flush_remote_tlbs.
8259          */
8260         smp_mb__after_srcu_read_unlock();
8261
8262         /*
8263          * This handles the case where a posted interrupt was
8264          * notified with kvm_vcpu_kick.
8265          */
8266         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8267                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8268
8269         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8270             || need_resched() || signal_pending(current)) {
8271                 vcpu->mode = OUTSIDE_GUEST_MODE;
8272                 smp_wmb();
8273                 local_irq_enable();
8274                 preempt_enable();
8275                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8276                 r = 1;
8277                 goto cancel_injection;
8278         }
8279
8280         if (req_immediate_exit) {
8281                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8282                 kvm_x86_ops->request_immediate_exit(vcpu);
8283         }
8284
8285         trace_kvm_entry(vcpu->vcpu_id);
8286         guest_enter_irqoff();
8287
8288         /* The preempt notifier should have taken care of the FPU already.  */
8289         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8290
8291         if (unlikely(vcpu->arch.switch_db_regs)) {
8292                 set_debugreg(0, 7);
8293                 set_debugreg(vcpu->arch.eff_db[0], 0);
8294                 set_debugreg(vcpu->arch.eff_db[1], 1);
8295                 set_debugreg(vcpu->arch.eff_db[2], 2);
8296                 set_debugreg(vcpu->arch.eff_db[3], 3);
8297                 set_debugreg(vcpu->arch.dr6, 6);
8298                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8299         }
8300
8301         kvm_x86_ops->run(vcpu);
8302
8303         /*
8304          * Do this here before restoring debug registers on the host.  And
8305          * since we do this before handling the vmexit, a DR access vmexit
8306          * can (a) read the correct value of the debug registers, (b) set
8307          * KVM_DEBUGREG_WONT_EXIT again.
8308          */
8309         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8310                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8311                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8312                 kvm_update_dr0123(vcpu);
8313                 kvm_update_dr6(vcpu);
8314                 kvm_update_dr7(vcpu);
8315                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8316         }
8317
8318         /*
8319          * If the guest has used debug registers, at least dr7
8320          * will be disabled while returning to the host.
8321          * If we don't have active breakpoints in the host, we don't
8322          * care about the messed up debug address registers. But if
8323          * we have some of them active, restore the old state.
8324          */
8325         if (hw_breakpoint_active())
8326                 hw_breakpoint_restore();
8327
8328         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8329
8330         vcpu->mode = OUTSIDE_GUEST_MODE;
8331         smp_wmb();
8332
8333         kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8334
8335         /*
8336          * Consume any pending interrupts, including the possible source of
8337          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8338          * An instruction is required after local_irq_enable() to fully unblock
8339          * interrupts on processors that implement an interrupt shadow, the
8340          * stat.exits increment will do nicely.
8341          */
8342         kvm_before_interrupt(vcpu);
8343         local_irq_enable();
8344         ++vcpu->stat.exits;
8345         local_irq_disable();
8346         kvm_after_interrupt(vcpu);
8347
8348         guest_exit_irqoff();
8349         if (lapic_in_kernel(vcpu)) {
8350                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8351                 if (delta != S64_MIN) {
8352                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8353                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8354                 }
8355         }
8356
8357         local_irq_enable();
8358         preempt_enable();
8359
8360         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8361
8362         /*
8363          * Profile KVM exit RIPs:
8364          */
8365         if (unlikely(prof_on == KVM_PROFILING)) {
8366                 unsigned long rip = kvm_rip_read(vcpu);
8367                 profile_hit(KVM_PROFILING, (void *)rip);
8368         }
8369
8370         if (unlikely(vcpu->arch.tsc_always_catchup))
8371                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8372
8373         if (vcpu->arch.apic_attention)
8374                 kvm_lapic_sync_from_vapic(vcpu);
8375
8376         vcpu->arch.gpa_available = false;
8377         r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8378         return r;
8379
8380 cancel_injection:
8381         kvm_x86_ops->cancel_injection(vcpu);
8382         if (unlikely(vcpu->arch.apic_attention))
8383                 kvm_lapic_sync_from_vapic(vcpu);
8384 out:
8385         return r;
8386 }
8387
8388 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8389 {
8390         if (!kvm_arch_vcpu_runnable(vcpu) &&
8391             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8392                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8393                 kvm_vcpu_block(vcpu);
8394                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8395
8396                 if (kvm_x86_ops->post_block)
8397                         kvm_x86_ops->post_block(vcpu);
8398
8399                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8400                         return 1;
8401         }
8402
8403         kvm_apic_accept_events(vcpu);
8404         switch(vcpu->arch.mp_state) {
8405         case KVM_MP_STATE_HALTED:
8406                 vcpu->arch.pv.pv_unhalted = false;
8407                 vcpu->arch.mp_state =
8408                         KVM_MP_STATE_RUNNABLE;
8409                 /* fall through */
8410         case KVM_MP_STATE_RUNNABLE:
8411                 vcpu->arch.apf.halted = false;
8412                 break;
8413         case KVM_MP_STATE_INIT_RECEIVED:
8414                 break;
8415         default:
8416                 return -EINTR;
8417                 break;
8418         }
8419         return 1;
8420 }
8421
8422 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8423 {
8424         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8425                 kvm_x86_ops->check_nested_events(vcpu, false);
8426
8427         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8428                 !vcpu->arch.apf.halted);
8429 }
8430
8431 static int vcpu_run(struct kvm_vcpu *vcpu)
8432 {
8433         int r;
8434         struct kvm *kvm = vcpu->kvm;
8435
8436         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8437         vcpu->arch.l1tf_flush_l1d = true;
8438
8439         for (;;) {
8440                 if (kvm_vcpu_running(vcpu)) {
8441                         r = vcpu_enter_guest(vcpu);
8442                 } else {
8443                         r = vcpu_block(kvm, vcpu);
8444                 }
8445
8446                 if (r <= 0)
8447                         break;
8448
8449                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8450                 if (kvm_cpu_has_pending_timer(vcpu))
8451                         kvm_inject_pending_timer_irqs(vcpu);
8452
8453                 if (dm_request_for_irq_injection(vcpu) &&
8454                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8455                         r = 0;
8456                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8457                         ++vcpu->stat.request_irq_exits;
8458                         break;
8459                 }
8460
8461                 kvm_check_async_pf_completion(vcpu);
8462
8463                 if (signal_pending(current)) {
8464                         r = -EINTR;
8465                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8466                         ++vcpu->stat.signal_exits;
8467                         break;
8468                 }
8469                 if (need_resched()) {
8470                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8471                         cond_resched();
8472                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8473                 }
8474         }
8475
8476         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8477
8478         return r;
8479 }
8480
8481 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8482 {
8483         int r;
8484
8485         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8486         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8487         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8488         return r;
8489 }
8490
8491 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8492 {
8493         BUG_ON(!vcpu->arch.pio.count);
8494
8495         return complete_emulated_io(vcpu);
8496 }
8497
8498 /*
8499  * Implements the following, as a state machine:
8500  *
8501  * read:
8502  *   for each fragment
8503  *     for each mmio piece in the fragment
8504  *       write gpa, len
8505  *       exit
8506  *       copy data
8507  *   execute insn
8508  *
8509  * write:
8510  *   for each fragment
8511  *     for each mmio piece in the fragment
8512  *       write gpa, len
8513  *       copy data
8514  *       exit
8515  */
8516 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8517 {
8518         struct kvm_run *run = vcpu->run;
8519         struct kvm_mmio_fragment *frag;
8520         unsigned len;
8521
8522         BUG_ON(!vcpu->mmio_needed);
8523
8524         /* Complete previous fragment */
8525         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8526         len = min(8u, frag->len);
8527         if (!vcpu->mmio_is_write)
8528                 memcpy(frag->data, run->mmio.data, len);
8529
8530         if (frag->len <= 8) {
8531                 /* Switch to the next fragment. */
8532                 frag++;
8533                 vcpu->mmio_cur_fragment++;
8534         } else {
8535                 /* Go forward to the next mmio piece. */
8536                 frag->data += len;
8537                 frag->gpa += len;
8538                 frag->len -= len;
8539         }
8540
8541         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8542                 vcpu->mmio_needed = 0;
8543
8544                 /* FIXME: return into emulator if single-stepping.  */
8545                 if (vcpu->mmio_is_write)
8546                         return 1;
8547                 vcpu->mmio_read_completed = 1;
8548                 return complete_emulated_io(vcpu);
8549         }
8550
8551         run->exit_reason = KVM_EXIT_MMIO;
8552         run->mmio.phys_addr = frag->gpa;
8553         if (vcpu->mmio_is_write)
8554                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8555         run->mmio.len = min(8u, frag->len);
8556         run->mmio.is_write = vcpu->mmio_is_write;
8557         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8558         return 0;
8559 }
8560
8561 /* Swap (qemu) user FPU context for the guest FPU context. */
8562 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8563 {
8564         fpregs_lock();
8565
8566         /*
8567          * Reloading userspace's FPU is handled by kvm_arch_vcpu_load(), both
8568          * for direct calls from userspace (via vcpu_load()) and if this task
8569          * is preempted (via kvm_sched_in()) between vcpu_load() and now.
8570          */
8571         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8572
8573         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8574         /* PKRU is separately restored in kvm_x86_ops->run.  */
8575         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8576                                 ~XFEATURE_MASK_PKRU);
8577
8578         fpregs_mark_activate();
8579         fpregs_unlock();
8580
8581         trace_kvm_fpu(1);
8582 }
8583
8584 /* When vcpu_run ends, restore user space FPU context. */
8585 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8586 {
8587         fpregs_lock();
8588
8589         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8590         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8591
8592         fpregs_mark_activate();
8593         fpregs_unlock();
8594
8595         ++vcpu->stat.fpu_reload;
8596         trace_kvm_fpu(0);
8597 }
8598
8599 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8600 {
8601         int r;
8602
8603         vcpu_load(vcpu);
8604         kvm_sigset_activate(vcpu);
8605         kvm_load_guest_fpu(vcpu);
8606
8607         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8608                 if (kvm_run->immediate_exit) {
8609                         r = -EINTR;
8610                         goto out;
8611                 }
8612                 kvm_vcpu_block(vcpu);
8613                 kvm_apic_accept_events(vcpu);
8614                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8615                 r = -EAGAIN;
8616                 if (signal_pending(current)) {
8617                         r = -EINTR;
8618                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8619                         ++vcpu->stat.signal_exits;
8620                 }
8621                 goto out;
8622         }
8623
8624         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8625                 r = -EINVAL;
8626                 goto out;
8627         }
8628
8629         if (vcpu->run->kvm_dirty_regs) {
8630                 r = sync_regs(vcpu);
8631                 if (r != 0)
8632                         goto out;
8633         }
8634
8635         /* re-sync apic's tpr */
8636         if (!lapic_in_kernel(vcpu)) {
8637                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8638                         r = -EINVAL;
8639                         goto out;
8640                 }
8641         }
8642
8643         if (unlikely(vcpu->arch.complete_userspace_io)) {
8644                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8645                 vcpu->arch.complete_userspace_io = NULL;
8646                 r = cui(vcpu);
8647                 if (r <= 0)
8648                         goto out;
8649         } else
8650                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8651
8652         if (kvm_run->immediate_exit)
8653                 r = -EINTR;
8654         else
8655                 r = vcpu_run(vcpu);
8656
8657 out:
8658         kvm_put_guest_fpu(vcpu);
8659         if (vcpu->run->kvm_valid_regs)
8660                 store_regs(vcpu);
8661         post_kvm_run_save(vcpu);
8662         kvm_sigset_deactivate(vcpu);
8663
8664         vcpu_put(vcpu);
8665         return r;
8666 }
8667
8668 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8669 {
8670         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8671                 /*
8672                  * We are here if userspace calls get_regs() in the middle of
8673                  * instruction emulation. Registers state needs to be copied
8674                  * back from emulation context to vcpu. Userspace shouldn't do
8675                  * that usually, but some bad designed PV devices (vmware
8676                  * backdoor interface) need this to work
8677                  */
8678                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8679                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8680         }
8681         regs->rax = kvm_rax_read(vcpu);
8682         regs->rbx = kvm_rbx_read(vcpu);
8683         regs->rcx = kvm_rcx_read(vcpu);
8684         regs->rdx = kvm_rdx_read(vcpu);
8685         regs->rsi = kvm_rsi_read(vcpu);
8686         regs->rdi = kvm_rdi_read(vcpu);
8687         regs->rsp = kvm_rsp_read(vcpu);
8688         regs->rbp = kvm_rbp_read(vcpu);
8689 #ifdef CONFIG_X86_64
8690         regs->r8 = kvm_r8_read(vcpu);
8691         regs->r9 = kvm_r9_read(vcpu);
8692         regs->r10 = kvm_r10_read(vcpu);
8693         regs->r11 = kvm_r11_read(vcpu);
8694         regs->r12 = kvm_r12_read(vcpu);
8695         regs->r13 = kvm_r13_read(vcpu);
8696         regs->r14 = kvm_r14_read(vcpu);
8697         regs->r15 = kvm_r15_read(vcpu);
8698 #endif
8699
8700         regs->rip = kvm_rip_read(vcpu);
8701         regs->rflags = kvm_get_rflags(vcpu);
8702 }
8703
8704 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8705 {
8706         vcpu_load(vcpu);
8707         __get_regs(vcpu, regs);
8708         vcpu_put(vcpu);
8709         return 0;
8710 }
8711
8712 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8713 {
8714         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8715         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8716
8717         kvm_rax_write(vcpu, regs->rax);
8718         kvm_rbx_write(vcpu, regs->rbx);
8719         kvm_rcx_write(vcpu, regs->rcx);
8720         kvm_rdx_write(vcpu, regs->rdx);
8721         kvm_rsi_write(vcpu, regs->rsi);
8722         kvm_rdi_write(vcpu, regs->rdi);
8723         kvm_rsp_write(vcpu, regs->rsp);
8724         kvm_rbp_write(vcpu, regs->rbp);
8725 #ifdef CONFIG_X86_64
8726         kvm_r8_write(vcpu, regs->r8);
8727         kvm_r9_write(vcpu, regs->r9);
8728         kvm_r10_write(vcpu, regs->r10);
8729         kvm_r11_write(vcpu, regs->r11);
8730         kvm_r12_write(vcpu, regs->r12);
8731         kvm_r13_write(vcpu, regs->r13);
8732         kvm_r14_write(vcpu, regs->r14);
8733         kvm_r15_write(vcpu, regs->r15);
8734 #endif
8735
8736         kvm_rip_write(vcpu, regs->rip);
8737         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8738
8739         vcpu->arch.exception.pending = false;
8740
8741         kvm_make_request(KVM_REQ_EVENT, vcpu);
8742 }
8743
8744 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8745 {
8746         vcpu_load(vcpu);
8747         __set_regs(vcpu, regs);
8748         vcpu_put(vcpu);
8749         return 0;
8750 }
8751
8752 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8753 {
8754         struct kvm_segment cs;
8755
8756         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8757         *db = cs.db;
8758         *l = cs.l;
8759 }
8760 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8761
8762 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8763 {
8764         struct desc_ptr dt;
8765
8766         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8767         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8768         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8769         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8770         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8771         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8772
8773         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8774         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8775
8776         kvm_x86_ops->get_idt(vcpu, &dt);
8777         sregs->idt.limit = dt.size;
8778         sregs->idt.base = dt.address;
8779         kvm_x86_ops->get_gdt(vcpu, &dt);
8780         sregs->gdt.limit = dt.size;
8781         sregs->gdt.base = dt.address;
8782
8783         sregs->cr0 = kvm_read_cr0(vcpu);
8784         sregs->cr2 = vcpu->arch.cr2;
8785         sregs->cr3 = kvm_read_cr3(vcpu);
8786         sregs->cr4 = kvm_read_cr4(vcpu);
8787         sregs->cr8 = kvm_get_cr8(vcpu);
8788         sregs->efer = vcpu->arch.efer;
8789         sregs->apic_base = kvm_get_apic_base(vcpu);
8790
8791         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8792
8793         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8794                 set_bit(vcpu->arch.interrupt.nr,
8795                         (unsigned long *)sregs->interrupt_bitmap);
8796 }
8797
8798 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8799                                   struct kvm_sregs *sregs)
8800 {
8801         vcpu_load(vcpu);
8802         __get_sregs(vcpu, sregs);
8803         vcpu_put(vcpu);
8804         return 0;
8805 }
8806
8807 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8808                                     struct kvm_mp_state *mp_state)
8809 {
8810         vcpu_load(vcpu);
8811         if (kvm_mpx_supported())
8812                 kvm_load_guest_fpu(vcpu);
8813
8814         kvm_apic_accept_events(vcpu);
8815         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8816                                         vcpu->arch.pv.pv_unhalted)
8817                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8818         else
8819                 mp_state->mp_state = vcpu->arch.mp_state;
8820
8821         if (kvm_mpx_supported())
8822                 kvm_put_guest_fpu(vcpu);
8823         vcpu_put(vcpu);
8824         return 0;
8825 }
8826
8827 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8828                                     struct kvm_mp_state *mp_state)
8829 {
8830         int ret = -EINVAL;
8831
8832         vcpu_load(vcpu);
8833
8834         if (!lapic_in_kernel(vcpu) &&
8835             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8836                 goto out;
8837
8838         /*
8839          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8840          * INIT state; latched init should be reported using
8841          * KVM_SET_VCPU_EVENTS, so reject it here.
8842          */
8843         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8844             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8845              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8846                 goto out;
8847
8848         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8849                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8850                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8851         } else
8852                 vcpu->arch.mp_state = mp_state->mp_state;
8853         kvm_make_request(KVM_REQ_EVENT, vcpu);
8854
8855         ret = 0;
8856 out:
8857         vcpu_put(vcpu);
8858         return ret;
8859 }
8860
8861 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8862                     int reason, bool has_error_code, u32 error_code)
8863 {
8864         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8865         int ret;
8866
8867         init_emulate_ctxt(vcpu);
8868
8869         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8870                                    has_error_code, error_code);
8871         if (ret) {
8872                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8873                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8874                 vcpu->run->internal.ndata = 0;
8875                 return 0;
8876         }
8877
8878         kvm_rip_write(vcpu, ctxt->eip);
8879         kvm_set_rflags(vcpu, ctxt->eflags);
8880         kvm_make_request(KVM_REQ_EVENT, vcpu);
8881         return 1;
8882 }
8883 EXPORT_SYMBOL_GPL(kvm_task_switch);
8884
8885 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8886 {
8887         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8888                 /*
8889                  * When EFER.LME and CR0.PG are set, the processor is in
8890                  * 64-bit mode (though maybe in a 32-bit code segment).
8891                  * CR4.PAE and EFER.LMA must be set.
8892                  */
8893                 if (!(sregs->cr4 & X86_CR4_PAE)
8894                     || !(sregs->efer & EFER_LMA))
8895                         return -EINVAL;
8896         } else {
8897                 /*
8898                  * Not in 64-bit mode: EFER.LMA is clear and the code
8899                  * segment cannot be 64-bit.
8900                  */
8901                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8902                         return -EINVAL;
8903         }
8904
8905         return kvm_valid_cr4(vcpu, sregs->cr4);
8906 }
8907
8908 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8909 {
8910         struct msr_data apic_base_msr;
8911         int mmu_reset_needed = 0;
8912         int cpuid_update_needed = 0;
8913         int pending_vec, max_bits, idx;
8914         struct desc_ptr dt;
8915         int ret = -EINVAL;
8916
8917         if (kvm_valid_sregs(vcpu, sregs))
8918                 goto out;
8919
8920         apic_base_msr.data = sregs->apic_base;
8921         apic_base_msr.host_initiated = true;
8922         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8923                 goto out;
8924
8925         dt.size = sregs->idt.limit;
8926         dt.address = sregs->idt.base;
8927         kvm_x86_ops->set_idt(vcpu, &dt);
8928         dt.size = sregs->gdt.limit;
8929         dt.address = sregs->gdt.base;
8930         kvm_x86_ops->set_gdt(vcpu, &dt);
8931
8932         vcpu->arch.cr2 = sregs->cr2;
8933         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8934         vcpu->arch.cr3 = sregs->cr3;
8935         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
8936
8937         kvm_set_cr8(vcpu, sregs->cr8);
8938
8939         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8940         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8941
8942         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8943         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8944         vcpu->arch.cr0 = sregs->cr0;
8945
8946         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8947         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8948                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8949         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8950         if (cpuid_update_needed)
8951                 kvm_update_cpuid(vcpu);
8952
8953         idx = srcu_read_lock(&vcpu->kvm->srcu);
8954         if (is_pae_paging(vcpu)) {
8955                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8956                 mmu_reset_needed = 1;
8957         }
8958         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8959
8960         if (mmu_reset_needed)
8961                 kvm_mmu_reset_context(vcpu);
8962
8963         max_bits = KVM_NR_INTERRUPTS;
8964         pending_vec = find_first_bit(
8965                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8966         if (pending_vec < max_bits) {
8967                 kvm_queue_interrupt(vcpu, pending_vec, false);
8968                 pr_debug("Set back pending irq %d\n", pending_vec);
8969         }
8970
8971         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8972         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8973         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8974         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8975         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8976         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8977
8978         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8979         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8980
8981         update_cr8_intercept(vcpu);
8982
8983         /* Older userspace won't unhalt the vcpu on reset. */
8984         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8985             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8986             !is_protmode(vcpu))
8987                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8988
8989         kvm_make_request(KVM_REQ_EVENT, vcpu);
8990
8991         ret = 0;
8992 out:
8993         return ret;
8994 }
8995
8996 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8997                                   struct kvm_sregs *sregs)
8998 {
8999         int ret;
9000
9001         vcpu_load(vcpu);
9002         ret = __set_sregs(vcpu, sregs);
9003         vcpu_put(vcpu);
9004         return ret;
9005 }
9006
9007 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9008                                         struct kvm_guest_debug *dbg)
9009 {
9010         unsigned long rflags;
9011         int i, r;
9012
9013         vcpu_load(vcpu);
9014
9015         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9016                 r = -EBUSY;
9017                 if (vcpu->arch.exception.pending)
9018                         goto out;
9019                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9020                         kvm_queue_exception(vcpu, DB_VECTOR);
9021                 else
9022                         kvm_queue_exception(vcpu, BP_VECTOR);
9023         }
9024
9025         /*
9026          * Read rflags as long as potentially injected trace flags are still
9027          * filtered out.
9028          */
9029         rflags = kvm_get_rflags(vcpu);
9030
9031         vcpu->guest_debug = dbg->control;
9032         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9033                 vcpu->guest_debug = 0;
9034
9035         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9036                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9037                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9038                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9039         } else {
9040                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9041                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9042         }
9043         kvm_update_dr7(vcpu);
9044
9045         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9046                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9047                         get_segment_base(vcpu, VCPU_SREG_CS);
9048
9049         /*
9050          * Trigger an rflags update that will inject or remove the trace
9051          * flags.
9052          */
9053         kvm_set_rflags(vcpu, rflags);
9054
9055         kvm_x86_ops->update_bp_intercept(vcpu);
9056
9057         r = 0;
9058
9059 out:
9060         vcpu_put(vcpu);
9061         return r;
9062 }
9063
9064 /*
9065  * Translate a guest virtual address to a guest physical address.
9066  */
9067 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9068                                     struct kvm_translation *tr)
9069 {
9070         unsigned long vaddr = tr->linear_address;
9071         gpa_t gpa;
9072         int idx;
9073
9074         vcpu_load(vcpu);
9075
9076         idx = srcu_read_lock(&vcpu->kvm->srcu);
9077         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9078         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9079         tr->physical_address = gpa;
9080         tr->valid = gpa != UNMAPPED_GVA;
9081         tr->writeable = 1;
9082         tr->usermode = 0;
9083
9084         vcpu_put(vcpu);
9085         return 0;
9086 }
9087
9088 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9089 {
9090         struct fxregs_state *fxsave;
9091
9092         vcpu_load(vcpu);
9093
9094         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9095         memcpy(fpu->fpr, fxsave->st_space, 128);
9096         fpu->fcw = fxsave->cwd;
9097         fpu->fsw = fxsave->swd;
9098         fpu->ftwx = fxsave->twd;
9099         fpu->last_opcode = fxsave->fop;
9100         fpu->last_ip = fxsave->rip;
9101         fpu->last_dp = fxsave->rdp;
9102         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9103
9104         vcpu_put(vcpu);
9105         return 0;
9106 }
9107
9108 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9109 {
9110         struct fxregs_state *fxsave;
9111
9112         vcpu_load(vcpu);
9113
9114         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9115
9116         memcpy(fxsave->st_space, fpu->fpr, 128);
9117         fxsave->cwd = fpu->fcw;
9118         fxsave->swd = fpu->fsw;
9119         fxsave->twd = fpu->ftwx;
9120         fxsave->fop = fpu->last_opcode;
9121         fxsave->rip = fpu->last_ip;
9122         fxsave->rdp = fpu->last_dp;
9123         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9124
9125         vcpu_put(vcpu);
9126         return 0;
9127 }
9128
9129 static void store_regs(struct kvm_vcpu *vcpu)
9130 {
9131         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9132
9133         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9134                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9135
9136         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9137                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9138
9139         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9140                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9141                                 vcpu, &vcpu->run->s.regs.events);
9142 }
9143
9144 static int sync_regs(struct kvm_vcpu *vcpu)
9145 {
9146         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9147                 return -EINVAL;
9148
9149         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9150                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9151                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9152         }
9153         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9154                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9155                         return -EINVAL;
9156                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9157         }
9158         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9159                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9160                                 vcpu, &vcpu->run->s.regs.events))
9161                         return -EINVAL;
9162                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9163         }
9164
9165         return 0;
9166 }
9167
9168 static void fx_init(struct kvm_vcpu *vcpu)
9169 {
9170         fpstate_init(&vcpu->arch.guest_fpu->state);
9171         if (boot_cpu_has(X86_FEATURE_XSAVES))
9172                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9173                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9174
9175         /*
9176          * Ensure guest xcr0 is valid for loading
9177          */
9178         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9179
9180         vcpu->arch.cr0 |= X86_CR0_ET;
9181 }
9182
9183 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9184 {
9185         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9186                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9187                              "guest TSC will not be reliable\n");
9188
9189         return 0;
9190 }
9191
9192 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9193 {
9194         struct page *page;
9195         int r;
9196
9197         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9198         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9199                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9200         else
9201                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9202
9203         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9204
9205         r = kvm_mmu_create(vcpu);
9206         if (r < 0)
9207                 return r;
9208
9209         if (irqchip_in_kernel(vcpu->kvm)) {
9210                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu->kvm);
9211                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9212                 if (r < 0)
9213                         goto fail_mmu_destroy;
9214         } else
9215                 static_key_slow_inc(&kvm_no_apic_vcpu);
9216
9217         r = -ENOMEM;
9218
9219         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9220         if (!page)
9221                 goto fail_free_lapic;
9222         vcpu->arch.pio_data = page_address(page);
9223
9224         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9225                                        GFP_KERNEL_ACCOUNT);
9226         if (!vcpu->arch.mce_banks)
9227                 goto fail_free_pio_data;
9228         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9229
9230         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9231                                 GFP_KERNEL_ACCOUNT))
9232                 goto fail_free_mce_banks;
9233
9234         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9235                                                 GFP_KERNEL_ACCOUNT);
9236         if (!vcpu->arch.user_fpu) {
9237                 pr_err("kvm: failed to allocate userspace's fpu\n");
9238                 goto free_wbinvd_dirty_mask;
9239         }
9240
9241         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9242                                                  GFP_KERNEL_ACCOUNT);
9243         if (!vcpu->arch.guest_fpu) {
9244                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9245                 goto free_user_fpu;
9246         }
9247         fx_init(vcpu);
9248
9249         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9250
9251         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9252
9253         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9254
9255         kvm_async_pf_hash_reset(vcpu);
9256         kvm_pmu_init(vcpu);
9257
9258         vcpu->arch.pending_external_vector = -1;
9259         vcpu->arch.preempted_in_kernel = false;
9260
9261         kvm_hv_vcpu_init(vcpu);
9262
9263         r = kvm_x86_ops->vcpu_create(vcpu);
9264         if (r)
9265                 goto free_guest_fpu;
9266
9267         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9268         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9269         kvm_vcpu_mtrr_init(vcpu);
9270         vcpu_load(vcpu);
9271         kvm_vcpu_reset(vcpu, false);
9272         kvm_init_mmu(vcpu, false);
9273         vcpu_put(vcpu);
9274         return 0;
9275
9276 free_guest_fpu:
9277         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9278 free_user_fpu:
9279         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9280 free_wbinvd_dirty_mask:
9281         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9282 fail_free_mce_banks:
9283         kfree(vcpu->arch.mce_banks);
9284 fail_free_pio_data:
9285         free_page((unsigned long)vcpu->arch.pio_data);
9286 fail_free_lapic:
9287         kvm_free_lapic(vcpu);
9288 fail_mmu_destroy:
9289         kvm_mmu_destroy(vcpu);
9290         return r;
9291 }
9292
9293 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9294 {
9295         struct msr_data msr;
9296         struct kvm *kvm = vcpu->kvm;
9297
9298         kvm_hv_vcpu_postcreate(vcpu);
9299
9300         if (mutex_lock_killable(&vcpu->mutex))
9301                 return;
9302         vcpu_load(vcpu);
9303         msr.data = 0x0;
9304         msr.index = MSR_IA32_TSC;
9305         msr.host_initiated = true;
9306         kvm_write_tsc(vcpu, &msr);
9307         vcpu_put(vcpu);
9308
9309         /* poll control enabled by default */
9310         vcpu->arch.msr_kvm_poll_control = 1;
9311
9312         mutex_unlock(&vcpu->mutex);
9313
9314         if (!kvmclock_periodic_sync)
9315                 return;
9316
9317         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9318                                         KVMCLOCK_SYNC_PERIOD);
9319 }
9320
9321 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9322 {
9323         int idx;
9324
9325         kvmclock_reset(vcpu);
9326
9327         kvm_x86_ops->vcpu_free(vcpu);
9328
9329         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9330         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9331         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9332
9333         kvm_hv_vcpu_uninit(vcpu);
9334         kvm_pmu_destroy(vcpu);
9335         kfree(vcpu->arch.mce_banks);
9336         kvm_free_lapic(vcpu);
9337         idx = srcu_read_lock(&vcpu->kvm->srcu);
9338         kvm_mmu_destroy(vcpu);
9339         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9340         free_page((unsigned long)vcpu->arch.pio_data);
9341         if (!lapic_in_kernel(vcpu))
9342                 static_key_slow_dec(&kvm_no_apic_vcpu);
9343 }
9344
9345 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9346 {
9347         kvm_lapic_reset(vcpu, init_event);
9348
9349         vcpu->arch.hflags = 0;
9350
9351         vcpu->arch.smi_pending = 0;
9352         vcpu->arch.smi_count = 0;
9353         atomic_set(&vcpu->arch.nmi_queued, 0);
9354         vcpu->arch.nmi_pending = 0;
9355         vcpu->arch.nmi_injected = false;
9356         kvm_clear_interrupt_queue(vcpu);
9357         kvm_clear_exception_queue(vcpu);
9358         vcpu->arch.exception.pending = false;
9359
9360         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9361         kvm_update_dr0123(vcpu);
9362         vcpu->arch.dr6 = DR6_INIT;
9363         kvm_update_dr6(vcpu);
9364         vcpu->arch.dr7 = DR7_FIXED_1;
9365         kvm_update_dr7(vcpu);
9366
9367         vcpu->arch.cr2 = 0;
9368
9369         kvm_make_request(KVM_REQ_EVENT, vcpu);
9370         vcpu->arch.apf.msr_val = 0;
9371         vcpu->arch.st.msr_val = 0;
9372
9373         kvmclock_reset(vcpu);
9374
9375         kvm_clear_async_pf_completion_queue(vcpu);
9376         kvm_async_pf_hash_reset(vcpu);
9377         vcpu->arch.apf.halted = false;
9378
9379         if (kvm_mpx_supported()) {
9380                 void *mpx_state_buffer;
9381
9382                 /*
9383                  * To avoid have the INIT path from kvm_apic_has_events() that be
9384                  * called with loaded FPU and does not let userspace fix the state.
9385                  */
9386                 if (init_event)
9387                         kvm_put_guest_fpu(vcpu);
9388                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9389                                         XFEATURE_BNDREGS);
9390                 if (mpx_state_buffer)
9391                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9392                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9393                                         XFEATURE_BNDCSR);
9394                 if (mpx_state_buffer)
9395                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9396                 if (init_event)
9397                         kvm_load_guest_fpu(vcpu);
9398         }
9399
9400         if (!init_event) {
9401                 kvm_pmu_reset(vcpu);
9402                 vcpu->arch.smbase = 0x30000;
9403
9404                 vcpu->arch.msr_misc_features_enables = 0;
9405
9406                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9407         }
9408
9409         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9410         vcpu->arch.regs_avail = ~0;
9411         vcpu->arch.regs_dirty = ~0;
9412
9413         vcpu->arch.ia32_xss = 0;
9414
9415         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9416 }
9417
9418 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9419 {
9420         struct kvm_segment cs;
9421
9422         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9423         cs.selector = vector << 8;
9424         cs.base = vector << 12;
9425         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9426         kvm_rip_write(vcpu, 0);
9427 }
9428
9429 int kvm_arch_hardware_enable(void)
9430 {
9431         struct kvm *kvm;
9432         struct kvm_vcpu *vcpu;
9433         int i;
9434         int ret;
9435         u64 local_tsc;
9436         u64 max_tsc = 0;
9437         bool stable, backwards_tsc = false;
9438
9439         kvm_shared_msr_cpu_online();
9440         ret = kvm_x86_ops->hardware_enable();
9441         if (ret != 0)
9442                 return ret;
9443
9444         local_tsc = rdtsc();
9445         stable = !kvm_check_tsc_unstable();
9446         list_for_each_entry(kvm, &vm_list, vm_list) {
9447                 kvm_for_each_vcpu(i, vcpu, kvm) {
9448                         if (!stable && vcpu->cpu == smp_processor_id())
9449                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9450                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9451                                 backwards_tsc = true;
9452                                 if (vcpu->arch.last_host_tsc > max_tsc)
9453                                         max_tsc = vcpu->arch.last_host_tsc;
9454                         }
9455                 }
9456         }
9457
9458         /*
9459          * Sometimes, even reliable TSCs go backwards.  This happens on
9460          * platforms that reset TSC during suspend or hibernate actions, but
9461          * maintain synchronization.  We must compensate.  Fortunately, we can
9462          * detect that condition here, which happens early in CPU bringup,
9463          * before any KVM threads can be running.  Unfortunately, we can't
9464          * bring the TSCs fully up to date with real time, as we aren't yet far
9465          * enough into CPU bringup that we know how much real time has actually
9466          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9467          * variables that haven't been updated yet.
9468          *
9469          * So we simply find the maximum observed TSC above, then record the
9470          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9471          * the adjustment will be applied.  Note that we accumulate
9472          * adjustments, in case multiple suspend cycles happen before some VCPU
9473          * gets a chance to run again.  In the event that no KVM threads get a
9474          * chance to run, we will miss the entire elapsed period, as we'll have
9475          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9476          * loose cycle time.  This isn't too big a deal, since the loss will be
9477          * uniform across all VCPUs (not to mention the scenario is extremely
9478          * unlikely). It is possible that a second hibernate recovery happens
9479          * much faster than a first, causing the observed TSC here to be
9480          * smaller; this would require additional padding adjustment, which is
9481          * why we set last_host_tsc to the local tsc observed here.
9482          *
9483          * N.B. - this code below runs only on platforms with reliable TSC,
9484          * as that is the only way backwards_tsc is set above.  Also note
9485          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9486          * have the same delta_cyc adjustment applied if backwards_tsc
9487          * is detected.  Note further, this adjustment is only done once,
9488          * as we reset last_host_tsc on all VCPUs to stop this from being
9489          * called multiple times (one for each physical CPU bringup).
9490          *
9491          * Platforms with unreliable TSCs don't have to deal with this, they
9492          * will be compensated by the logic in vcpu_load, which sets the TSC to
9493          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9494          * guarantee that they stay in perfect synchronization.
9495          */
9496         if (backwards_tsc) {
9497                 u64 delta_cyc = max_tsc - local_tsc;
9498                 list_for_each_entry(kvm, &vm_list, vm_list) {
9499                         kvm->arch.backwards_tsc_observed = true;
9500                         kvm_for_each_vcpu(i, vcpu, kvm) {
9501                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9502                                 vcpu->arch.last_host_tsc = local_tsc;
9503                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9504                         }
9505
9506                         /*
9507                          * We have to disable TSC offset matching.. if you were
9508                          * booting a VM while issuing an S4 host suspend....
9509                          * you may have some problem.  Solving this issue is
9510                          * left as an exercise to the reader.
9511                          */
9512                         kvm->arch.last_tsc_nsec = 0;
9513                         kvm->arch.last_tsc_write = 0;
9514                 }
9515
9516         }
9517         return 0;
9518 }
9519
9520 void kvm_arch_hardware_disable(void)
9521 {
9522         kvm_x86_ops->hardware_disable();
9523         drop_user_return_notifiers();
9524 }
9525
9526 int kvm_arch_hardware_setup(void)
9527 {
9528         int r;
9529
9530         r = kvm_x86_ops->hardware_setup();
9531         if (r != 0)
9532                 return r;
9533
9534         cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9535
9536         if (kvm_has_tsc_control) {
9537                 /*
9538                  * Make sure the user can only configure tsc_khz values that
9539                  * fit into a signed integer.
9540                  * A min value is not calculated because it will always
9541                  * be 1 on all machines.
9542                  */
9543                 u64 max = min(0x7fffffffULL,
9544                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9545                 kvm_max_guest_tsc_khz = max;
9546
9547                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9548         }
9549
9550         if (boot_cpu_has(X86_FEATURE_XSAVES))
9551                 rdmsrl(MSR_IA32_XSS, host_xss);
9552
9553         kvm_init_msr_list();
9554         return 0;
9555 }
9556
9557 void kvm_arch_hardware_unsetup(void)
9558 {
9559         kvm_x86_ops->hardware_unsetup();
9560 }
9561
9562 int kvm_arch_check_processor_compat(void)
9563 {
9564         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9565
9566         WARN_ON(!irqs_disabled());
9567
9568         if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9569                 return -EIO;
9570
9571         return kvm_x86_ops->check_processor_compatibility();
9572 }
9573
9574 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9575 {
9576         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9577 }
9578 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9579
9580 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9581 {
9582         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9583 }
9584
9585 struct static_key kvm_no_apic_vcpu __read_mostly;
9586 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9587
9588 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9589 {
9590         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9591
9592         vcpu->arch.l1tf_flush_l1d = true;
9593         if (pmu->version && unlikely(pmu->event_count)) {
9594                 pmu->need_cleanup = true;
9595                 kvm_make_request(KVM_REQ_PMU, vcpu);
9596         }
9597         kvm_x86_ops->sched_in(vcpu, cpu);
9598 }
9599
9600 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9601 {
9602         if (type)
9603                 return -EINVAL;
9604
9605         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9606         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9607         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9608         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9609         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9610         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9611
9612         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9613         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9614         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9615         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9616                 &kvm->arch.irq_sources_bitmap);
9617
9618         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9619         mutex_init(&kvm->arch.apic_map_lock);
9620         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9621
9622         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9623         pvclock_update_vm_gtod_copy(kvm);
9624
9625         kvm->arch.guest_can_read_msr_platform_info = true;
9626
9627         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9628         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9629
9630         kvm_hv_init_vm(kvm);
9631         kvm_page_track_init(kvm);
9632         kvm_mmu_init_vm(kvm);
9633
9634         return kvm_x86_ops->vm_init(kvm);
9635 }
9636
9637 int kvm_arch_post_init_vm(struct kvm *kvm)
9638 {
9639         return kvm_mmu_post_init_vm(kvm);
9640 }
9641
9642 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9643 {
9644         vcpu_load(vcpu);
9645         kvm_mmu_unload(vcpu);
9646         vcpu_put(vcpu);
9647 }
9648
9649 static void kvm_free_vcpus(struct kvm *kvm)
9650 {
9651         unsigned int i;
9652         struct kvm_vcpu *vcpu;
9653
9654         /*
9655          * Unpin any mmu pages first.
9656          */
9657         kvm_for_each_vcpu(i, vcpu, kvm) {
9658                 kvm_clear_async_pf_completion_queue(vcpu);
9659                 kvm_unload_vcpu_mmu(vcpu);
9660         }
9661         kvm_for_each_vcpu(i, vcpu, kvm)
9662                 kvm_vcpu_destroy(vcpu);
9663
9664         mutex_lock(&kvm->lock);
9665         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9666                 kvm->vcpus[i] = NULL;
9667
9668         atomic_set(&kvm->online_vcpus, 0);
9669         mutex_unlock(&kvm->lock);
9670 }
9671
9672 void kvm_arch_sync_events(struct kvm *kvm)
9673 {
9674         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9675         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9676         kvm_free_pit(kvm);
9677 }
9678
9679 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9680 {
9681         int i, r;
9682         unsigned long hva;
9683         struct kvm_memslots *slots = kvm_memslots(kvm);
9684         struct kvm_memory_slot *slot, old;
9685
9686         /* Called with kvm->slots_lock held.  */
9687         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9688                 return -EINVAL;
9689
9690         slot = id_to_memslot(slots, id);
9691         if (size) {
9692                 if (slot->npages)
9693                         return -EEXIST;
9694
9695                 /*
9696                  * MAP_SHARED to prevent internal slot pages from being moved
9697                  * by fork()/COW.
9698                  */
9699                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9700                               MAP_SHARED | MAP_ANONYMOUS, 0);
9701                 if (IS_ERR((void *)hva))
9702                         return PTR_ERR((void *)hva);
9703         } else {
9704                 if (!slot->npages)
9705                         return 0;
9706
9707                 hva = 0;
9708         }
9709
9710         old = *slot;
9711         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9712                 struct kvm_userspace_memory_region m;
9713
9714                 m.slot = id | (i << 16);
9715                 m.flags = 0;
9716                 m.guest_phys_addr = gpa;
9717                 m.userspace_addr = hva;
9718                 m.memory_size = size;
9719                 r = __kvm_set_memory_region(kvm, &m);
9720                 if (r < 0)
9721                         return r;
9722         }
9723
9724         if (!size)
9725                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9726
9727         return 0;
9728 }
9729 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9730
9731 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9732 {
9733         int r;
9734
9735         mutex_lock(&kvm->slots_lock);
9736         r = __x86_set_memory_region(kvm, id, gpa, size);
9737         mutex_unlock(&kvm->slots_lock);
9738
9739         return r;
9740 }
9741 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9742
9743 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9744 {
9745         kvm_mmu_pre_destroy_vm(kvm);
9746 }
9747
9748 void kvm_arch_destroy_vm(struct kvm *kvm)
9749 {
9750         if (current->mm == kvm->mm) {
9751                 /*
9752                  * Free memory regions allocated on behalf of userspace,
9753                  * unless the the memory map has changed due to process exit
9754                  * or fd copying.
9755                  */
9756                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9757                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9758                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9759         }
9760         if (kvm_x86_ops->vm_destroy)
9761                 kvm_x86_ops->vm_destroy(kvm);
9762         kvm_pic_destroy(kvm);
9763         kvm_ioapic_destroy(kvm);
9764         kvm_free_vcpus(kvm);
9765         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9766         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9767         kvm_mmu_uninit_vm(kvm);
9768         kvm_page_track_cleanup(kvm);
9769         kvm_hv_destroy_vm(kvm);
9770 }
9771
9772 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9773                            struct kvm_memory_slot *dont)
9774 {
9775         int i;
9776
9777         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9778                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9779                         kvfree(free->arch.rmap[i]);
9780                         free->arch.rmap[i] = NULL;
9781                 }
9782                 if (i == 0)
9783                         continue;
9784
9785                 if (!dont || free->arch.lpage_info[i - 1] !=
9786                              dont->arch.lpage_info[i - 1]) {
9787                         kvfree(free->arch.lpage_info[i - 1]);
9788                         free->arch.lpage_info[i - 1] = NULL;
9789                 }
9790         }
9791
9792         kvm_page_track_free_memslot(free, dont);
9793 }
9794
9795 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9796                             unsigned long npages)
9797 {
9798         int i;
9799
9800         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9801                 struct kvm_lpage_info *linfo;
9802                 unsigned long ugfn;
9803                 int lpages;
9804                 int level = i + 1;
9805
9806                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9807                                       slot->base_gfn, level) + 1;
9808
9809                 slot->arch.rmap[i] =
9810                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9811                                  GFP_KERNEL_ACCOUNT);
9812                 if (!slot->arch.rmap[i])
9813                         goto out_free;
9814                 if (i == 0)
9815                         continue;
9816
9817                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9818                 if (!linfo)
9819                         goto out_free;
9820
9821                 slot->arch.lpage_info[i - 1] = linfo;
9822
9823                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9824                         linfo[0].disallow_lpage = 1;
9825                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9826                         linfo[lpages - 1].disallow_lpage = 1;
9827                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9828                 /*
9829                  * If the gfn and userspace address are not aligned wrt each
9830                  * other, or if explicitly asked to, disable large page
9831                  * support for this slot
9832                  */
9833                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9834                     !kvm_largepages_enabled()) {
9835                         unsigned long j;
9836
9837                         for (j = 0; j < lpages; ++j)
9838                                 linfo[j].disallow_lpage = 1;
9839                 }
9840         }
9841
9842         if (kvm_page_track_create_memslot(slot, npages))
9843                 goto out_free;
9844
9845         return 0;
9846
9847 out_free:
9848         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9849                 kvfree(slot->arch.rmap[i]);
9850                 slot->arch.rmap[i] = NULL;
9851                 if (i == 0)
9852                         continue;
9853
9854                 kvfree(slot->arch.lpage_info[i - 1]);
9855                 slot->arch.lpage_info[i - 1] = NULL;
9856         }
9857         return -ENOMEM;
9858 }
9859
9860 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9861 {
9862         /*
9863          * memslots->generation has been incremented.
9864          * mmio generation may have reached its maximum value.
9865          */
9866         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9867 }
9868
9869 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9870                                 struct kvm_memory_slot *memslot,
9871                                 const struct kvm_userspace_memory_region *mem,
9872                                 enum kvm_mr_change change)
9873 {
9874         return 0;
9875 }
9876
9877 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9878                                      struct kvm_memory_slot *new)
9879 {
9880         /* Still write protect RO slot */
9881         if (new->flags & KVM_MEM_READONLY) {
9882                 kvm_mmu_slot_remove_write_access(kvm, new);
9883                 return;
9884         }
9885
9886         /*
9887          * Call kvm_x86_ops dirty logging hooks when they are valid.
9888          *
9889          * kvm_x86_ops->slot_disable_log_dirty is called when:
9890          *
9891          *  - KVM_MR_CREATE with dirty logging is disabled
9892          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9893          *
9894          * The reason is, in case of PML, we need to set D-bit for any slots
9895          * with dirty logging disabled in order to eliminate unnecessary GPA
9896          * logging in PML buffer (and potential PML buffer full VMEXIT). This
9897          * guarantees leaving PML enabled during guest's lifetime won't have
9898          * any additional overhead from PML when guest is running with dirty
9899          * logging disabled for memory slots.
9900          *
9901          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9902          * to dirty logging mode.
9903          *
9904          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9905          *
9906          * In case of write protect:
9907          *
9908          * Write protect all pages for dirty logging.
9909          *
9910          * All the sptes including the large sptes which point to this
9911          * slot are set to readonly. We can not create any new large
9912          * spte on this slot until the end of the logging.
9913          *
9914          * See the comments in fast_page_fault().
9915          */
9916         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9917                 if (kvm_x86_ops->slot_enable_log_dirty)
9918                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9919                 else
9920                         kvm_mmu_slot_remove_write_access(kvm, new);
9921         } else {
9922                 if (kvm_x86_ops->slot_disable_log_dirty)
9923                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9924         }
9925 }
9926
9927 void kvm_arch_commit_memory_region(struct kvm *kvm,
9928                                 const struct kvm_userspace_memory_region *mem,
9929                                 const struct kvm_memory_slot *old,
9930                                 const struct kvm_memory_slot *new,
9931                                 enum kvm_mr_change change)
9932 {
9933         if (!kvm->arch.n_requested_mmu_pages)
9934                 kvm_mmu_change_mmu_pages(kvm,
9935                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9936
9937         /*
9938          * Dirty logging tracks sptes in 4k granularity, meaning that large
9939          * sptes have to be split.  If live migration is successful, the guest
9940          * in the source machine will be destroyed and large sptes will be
9941          * created in the destination. However, if the guest continues to run
9942          * in the source machine (for example if live migration fails), small
9943          * sptes will remain around and cause bad performance.
9944          *
9945          * Scan sptes if dirty logging has been stopped, dropping those
9946          * which can be collapsed into a single large-page spte.  Later
9947          * page faults will create the large-page sptes.
9948          *
9949          * There is no need to do this in any of the following cases:
9950          * CREATE:      No dirty mappings will already exist.
9951          * MOVE/DELETE: The old mappings will already have been cleaned up by
9952          *              kvm_arch_flush_shadow_memslot()
9953          */
9954         if (change == KVM_MR_FLAGS_ONLY &&
9955                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9956                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9957                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9958
9959         /*
9960          * Set up write protection and/or dirty logging for the new slot.
9961          *
9962          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9963          * been zapped so no dirty logging staff is needed for old slot. For
9964          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9965          * new and it's also covered when dealing with the new slot.
9966          *
9967          * FIXME: const-ify all uses of struct kvm_memory_slot.
9968          */
9969         if (change != KVM_MR_DELETE)
9970                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9971 }
9972
9973 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9974 {
9975         kvm_mmu_zap_all(kvm);
9976 }
9977
9978 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9979                                    struct kvm_memory_slot *slot)
9980 {
9981         kvm_page_track_flush_slot(kvm, slot);
9982 }
9983
9984 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9985 {
9986         return (is_guest_mode(vcpu) &&
9987                         kvm_x86_ops->guest_apic_has_interrupt &&
9988                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9989 }
9990
9991 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9992 {
9993         if (!list_empty_careful(&vcpu->async_pf.done))
9994                 return true;
9995
9996         if (kvm_apic_has_events(vcpu))
9997                 return true;
9998
9999         if (vcpu->arch.pv.pv_unhalted)
10000                 return true;
10001
10002         if (vcpu->arch.exception.pending)
10003                 return true;
10004
10005         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10006             (vcpu->arch.nmi_pending &&
10007              kvm_x86_ops->nmi_allowed(vcpu)))
10008                 return true;
10009
10010         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10011             (vcpu->arch.smi_pending && !is_smm(vcpu)))
10012                 return true;
10013
10014         if (kvm_arch_interrupt_allowed(vcpu) &&
10015             (kvm_cpu_has_interrupt(vcpu) ||
10016             kvm_guest_apic_has_interrupt(vcpu)))
10017                 return true;
10018
10019         if (kvm_hv_has_stimer_pending(vcpu))
10020                 return true;
10021
10022         return false;
10023 }
10024
10025 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10026 {
10027         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10028 }
10029
10030 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10031 {
10032         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10033                 return true;
10034
10035         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10036                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10037                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10038                 return true;
10039
10040         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10041                 return true;
10042
10043         return false;
10044 }
10045
10046 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10047 {
10048         return vcpu->arch.preempted_in_kernel;
10049 }
10050
10051 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10052 {
10053         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10054 }
10055
10056 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10057 {
10058         return kvm_x86_ops->interrupt_allowed(vcpu);
10059 }
10060
10061 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10062 {
10063         if (is_64_bit_mode(vcpu))
10064                 return kvm_rip_read(vcpu);
10065         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10066                      kvm_rip_read(vcpu));
10067 }
10068 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10069
10070 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10071 {
10072         return kvm_get_linear_rip(vcpu) == linear_rip;
10073 }
10074 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10075
10076 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10077 {
10078         unsigned long rflags;
10079
10080         rflags = kvm_x86_ops->get_rflags(vcpu);
10081         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10082                 rflags &= ~X86_EFLAGS_TF;
10083         return rflags;
10084 }
10085 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10086
10087 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10088 {
10089         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10090             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10091                 rflags |= X86_EFLAGS_TF;
10092         kvm_x86_ops->set_rflags(vcpu, rflags);
10093 }
10094
10095 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10096 {
10097         __kvm_set_rflags(vcpu, rflags);
10098         kvm_make_request(KVM_REQ_EVENT, vcpu);
10099 }
10100 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10101
10102 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10103 {
10104         int r;
10105
10106         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10107               work->wakeup_all)
10108                 return;
10109
10110         r = kvm_mmu_reload(vcpu);
10111         if (unlikely(r))
10112                 return;
10113
10114         if (!vcpu->arch.mmu->direct_map &&
10115               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10116                 return;
10117
10118         vcpu->arch.mmu->page_fault(vcpu, work->cr2_or_gpa, 0, true);
10119 }
10120
10121 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10122 {
10123         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10124 }
10125
10126 static inline u32 kvm_async_pf_next_probe(u32 key)
10127 {
10128         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10129 }
10130
10131 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10132 {
10133         u32 key = kvm_async_pf_hash_fn(gfn);
10134
10135         while (vcpu->arch.apf.gfns[key] != ~0)
10136                 key = kvm_async_pf_next_probe(key);
10137
10138         vcpu->arch.apf.gfns[key] = gfn;
10139 }
10140
10141 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10142 {
10143         int i;
10144         u32 key = kvm_async_pf_hash_fn(gfn);
10145
10146         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10147                      (vcpu->arch.apf.gfns[key] != gfn &&
10148                       vcpu->arch.apf.gfns[key] != ~0); i++)
10149                 key = kvm_async_pf_next_probe(key);
10150
10151         return key;
10152 }
10153
10154 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10155 {
10156         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10157 }
10158
10159 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10160 {
10161         u32 i, j, k;
10162
10163         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10164         while (true) {
10165                 vcpu->arch.apf.gfns[i] = ~0;
10166                 do {
10167                         j = kvm_async_pf_next_probe(j);
10168                         if (vcpu->arch.apf.gfns[j] == ~0)
10169                                 return;
10170                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10171                         /*
10172                          * k lies cyclically in ]i,j]
10173                          * |    i.k.j |
10174                          * |....j i.k.| or  |.k..j i...|
10175                          */
10176                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10177                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10178                 i = j;
10179         }
10180 }
10181
10182 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10183 {
10184
10185         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10186                                       sizeof(val));
10187 }
10188
10189 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10190 {
10191
10192         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10193                                       sizeof(u32));
10194 }
10195
10196 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10197 {
10198         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10199                 return false;
10200
10201         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10202             (vcpu->arch.apf.send_user_only &&
10203              kvm_x86_ops->get_cpl(vcpu) == 0))
10204                 return false;
10205
10206         return true;
10207 }
10208
10209 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10210 {
10211         if (unlikely(!lapic_in_kernel(vcpu) ||
10212                      kvm_event_needs_reinjection(vcpu) ||
10213                      vcpu->arch.exception.pending))
10214                 return false;
10215
10216         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10217                 return false;
10218
10219         /*
10220          * If interrupts are off we cannot even use an artificial
10221          * halt state.
10222          */
10223         return kvm_x86_ops->interrupt_allowed(vcpu);
10224 }
10225
10226 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10227                                      struct kvm_async_pf *work)
10228 {
10229         struct x86_exception fault;
10230
10231         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10232         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10233
10234         if (kvm_can_deliver_async_pf(vcpu) &&
10235             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10236                 fault.vector = PF_VECTOR;
10237                 fault.error_code_valid = true;
10238                 fault.error_code = 0;
10239                 fault.nested_page_fault = false;
10240                 fault.address = work->arch.token;
10241                 fault.async_page_fault = true;
10242                 kvm_inject_page_fault(vcpu, &fault);
10243         } else {
10244                 /*
10245                  * It is not possible to deliver a paravirtualized asynchronous
10246                  * page fault, but putting the guest in an artificial halt state
10247                  * can be beneficial nevertheless: if an interrupt arrives, we
10248                  * can deliver it timely and perhaps the guest will schedule
10249                  * another process.  When the instruction that triggered a page
10250                  * fault is retried, hopefully the page will be ready in the host.
10251                  */
10252                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10253         }
10254 }
10255
10256 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10257                                  struct kvm_async_pf *work)
10258 {
10259         struct x86_exception fault;
10260         u32 val;
10261
10262         if (work->wakeup_all)
10263                 work->arch.token = ~0; /* broadcast wakeup */
10264         else
10265                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10266         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10267
10268         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10269             !apf_get_user(vcpu, &val)) {
10270                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10271                     vcpu->arch.exception.pending &&
10272                     vcpu->arch.exception.nr == PF_VECTOR &&
10273                     !apf_put_user(vcpu, 0)) {
10274                         vcpu->arch.exception.injected = false;
10275                         vcpu->arch.exception.pending = false;
10276                         vcpu->arch.exception.nr = 0;
10277                         vcpu->arch.exception.has_error_code = false;
10278                         vcpu->arch.exception.error_code = 0;
10279                         vcpu->arch.exception.has_payload = false;
10280                         vcpu->arch.exception.payload = 0;
10281                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10282                         fault.vector = PF_VECTOR;
10283                         fault.error_code_valid = true;
10284                         fault.error_code = 0;
10285                         fault.nested_page_fault = false;
10286                         fault.address = work->arch.token;
10287                         fault.async_page_fault = true;
10288                         kvm_inject_page_fault(vcpu, &fault);
10289                 }
10290         }
10291         vcpu->arch.apf.halted = false;
10292         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10293 }
10294
10295 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10296 {
10297         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10298                 return true;
10299         else
10300                 return kvm_can_do_async_pf(vcpu);
10301 }
10302
10303 void kvm_arch_start_assignment(struct kvm *kvm)
10304 {
10305         atomic_inc(&kvm->arch.assigned_device_count);
10306 }
10307 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10308
10309 void kvm_arch_end_assignment(struct kvm *kvm)
10310 {
10311         atomic_dec(&kvm->arch.assigned_device_count);
10312 }
10313 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10314
10315 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10316 {
10317         return atomic_read(&kvm->arch.assigned_device_count);
10318 }
10319 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10320
10321 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10322 {
10323         atomic_inc(&kvm->arch.noncoherent_dma_count);
10324 }
10325 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10326
10327 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10328 {
10329         atomic_dec(&kvm->arch.noncoherent_dma_count);
10330 }
10331 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10332
10333 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10334 {
10335         return atomic_read(&kvm->arch.noncoherent_dma_count);
10336 }
10337 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10338
10339 bool kvm_arch_has_irq_bypass(void)
10340 {
10341         return true;
10342 }
10343
10344 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10345                                       struct irq_bypass_producer *prod)
10346 {
10347         struct kvm_kernel_irqfd *irqfd =
10348                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10349
10350         irqfd->producer = prod;
10351
10352         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10353                                            prod->irq, irqfd->gsi, 1);
10354 }
10355
10356 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10357                                       struct irq_bypass_producer *prod)
10358 {
10359         int ret;
10360         struct kvm_kernel_irqfd *irqfd =
10361                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10362
10363         WARN_ON(irqfd->producer != prod);
10364         irqfd->producer = NULL;
10365
10366         /*
10367          * When producer of consumer is unregistered, we change back to
10368          * remapped mode, so we can re-use the current implementation
10369          * when the irq is masked/disabled or the consumer side (KVM
10370          * int this case doesn't want to receive the interrupts.
10371         */
10372         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10373         if (ret)
10374                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10375                        " fails: %d\n", irqfd->consumer.token, ret);
10376 }
10377
10378 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10379                                    uint32_t guest_irq, bool set)
10380 {
10381         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10382 }
10383
10384 bool kvm_vector_hashing_enabled(void)
10385 {
10386         return vector_hashing;
10387 }
10388 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10389
10390 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10391 {
10392         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10393 }
10394 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10395
10396 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10397 {
10398         uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10399
10400         /* The STIBP bit doesn't fault even if it's not advertised */
10401         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10402             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10403                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10404         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10405             !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10406                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10407
10408         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10409             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10410                 bits &= ~SPEC_CTRL_SSBD;
10411         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10412             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10413                 bits &= ~SPEC_CTRL_SSBD;
10414
10415         return bits;
10416 }
10417 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10418
10419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);