Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
114                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
115
116 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
117 static void process_nmi(struct kvm_vcpu *vcpu);
118 static void process_smi(struct kvm_vcpu *vcpu);
119 static void enter_smm(struct kvm_vcpu *vcpu);
120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
121 static void store_regs(struct kvm_vcpu *vcpu);
122 static int sync_regs(struct kvm_vcpu *vcpu);
123 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
124
125 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
126 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
127
128 struct kvm_x86_ops kvm_x86_ops __read_mostly;
129 EXPORT_SYMBOL_GPL(kvm_x86_ops);
130
131 #define KVM_X86_OP(func)                                             \
132         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
133                                 *(((struct kvm_x86_ops *)0)->func));
134 #define KVM_X86_OP_NULL KVM_X86_OP
135 #include <asm/kvm-x86-ops.h>
136 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
137 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
138 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
139
140 static bool __read_mostly ignore_msrs = 0;
141 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
142
143 bool __read_mostly report_ignored_msrs = true;
144 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
145 EXPORT_SYMBOL_GPL(report_ignored_msrs);
146
147 unsigned int min_timer_period_us = 200;
148 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
149
150 static bool __read_mostly kvmclock_periodic_sync = true;
151 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
152
153 bool __read_mostly kvm_has_tsc_control;
154 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
155 u32  __read_mostly kvm_max_guest_tsc_khz;
156 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
157 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
158 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
159 u64  __read_mostly kvm_max_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
161 u64 __read_mostly kvm_default_tsc_scaling_ratio;
162 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
163 bool __read_mostly kvm_has_bus_lock_exit;
164 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
165
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
169
170 /*
171  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
172  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
173  * advancement entirely.  Any other value is used as-is and disables adaptive
174  * tuning, i.e. allows privileged userspace to set an exact advancement time.
175  */
176 static int __read_mostly lapic_timer_advance_ns = -1;
177 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
178
179 static bool __read_mostly vector_hashing = true;
180 module_param(vector_hashing, bool, S_IRUGO);
181
182 bool __read_mostly enable_vmware_backdoor = false;
183 module_param(enable_vmware_backdoor, bool, S_IRUGO);
184 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
185
186 static bool __read_mostly force_emulation_prefix = false;
187 module_param(force_emulation_prefix, bool, S_IRUGO);
188
189 int __read_mostly pi_inject_timer = -1;
190 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
191
192 /* Enable/disable PMU virtualization */
193 bool __read_mostly enable_pmu = true;
194 EXPORT_SYMBOL_GPL(enable_pmu);
195 module_param(enable_pmu, bool, 0444);
196
197 /*
198  * Restoring the host value for MSRs that are only consumed when running in
199  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200  * returns to userspace, i.e. the kernel can run with the guest's value.
201  */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203
204 struct kvm_user_return_msrs {
205         struct user_return_notifier urn;
206         bool registered;
207         struct kvm_user_return_msr_values {
208                 u64 host;
209                 u64 curr;
210         } values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217
218 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222
223 u64 __read_mostly host_efer;
224 EXPORT_SYMBOL_GPL(host_efer);
225
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231
232 u64 __read_mostly host_xss;
233 EXPORT_SYMBOL_GPL(host_xss);
234 u64 __read_mostly supported_xss;
235 EXPORT_SYMBOL_GPL(supported_xss);
236
237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
238         KVM_GENERIC_VM_STATS(),
239         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
240         STATS_DESC_COUNTER(VM, mmu_pte_write),
241         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
242         STATS_DESC_COUNTER(VM, mmu_flooded),
243         STATS_DESC_COUNTER(VM, mmu_recycled),
244         STATS_DESC_COUNTER(VM, mmu_cache_miss),
245         STATS_DESC_ICOUNTER(VM, mmu_unsync),
246         STATS_DESC_ICOUNTER(VM, pages_4k),
247         STATS_DESC_ICOUNTER(VM, pages_2m),
248         STATS_DESC_ICOUNTER(VM, pages_1g),
249         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
250         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
251         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
252 };
253
254 const struct kvm_stats_header kvm_vm_stats_header = {
255         .name_size = KVM_STATS_NAME_SIZE,
256         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
257         .id_offset = sizeof(struct kvm_stats_header),
258         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
259         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
260                        sizeof(kvm_vm_stats_desc),
261 };
262
263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
264         KVM_GENERIC_VCPU_STATS(),
265         STATS_DESC_COUNTER(VCPU, pf_fixed),
266         STATS_DESC_COUNTER(VCPU, pf_guest),
267         STATS_DESC_COUNTER(VCPU, tlb_flush),
268         STATS_DESC_COUNTER(VCPU, invlpg),
269         STATS_DESC_COUNTER(VCPU, exits),
270         STATS_DESC_COUNTER(VCPU, io_exits),
271         STATS_DESC_COUNTER(VCPU, mmio_exits),
272         STATS_DESC_COUNTER(VCPU, signal_exits),
273         STATS_DESC_COUNTER(VCPU, irq_window_exits),
274         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275         STATS_DESC_COUNTER(VCPU, l1d_flush),
276         STATS_DESC_COUNTER(VCPU, halt_exits),
277         STATS_DESC_COUNTER(VCPU, request_irq_exits),
278         STATS_DESC_COUNTER(VCPU, irq_exits),
279         STATS_DESC_COUNTER(VCPU, host_state_reload),
280         STATS_DESC_COUNTER(VCPU, fpu_reload),
281         STATS_DESC_COUNTER(VCPU, insn_emulation),
282         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283         STATS_DESC_COUNTER(VCPU, hypercalls),
284         STATS_DESC_COUNTER(VCPU, irq_injections),
285         STATS_DESC_COUNTER(VCPU, nmi_injections),
286         STATS_DESC_COUNTER(VCPU, req_event),
287         STATS_DESC_COUNTER(VCPU, nested_run),
288         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290         STATS_DESC_ICOUNTER(VCPU, guest_mode)
291 };
292
293 const struct kvm_stats_header kvm_vcpu_stats_header = {
294         .name_size = KVM_STATS_NAME_SIZE,
295         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
296         .id_offset = sizeof(struct kvm_stats_header),
297         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
298         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
299                        sizeof(kvm_vcpu_stats_desc),
300 };
301
302 u64 __read_mostly host_xcr0;
303 u64 __read_mostly supported_xcr0;
304 EXPORT_SYMBOL_GPL(supported_xcr0);
305
306 static struct kmem_cache *x86_emulator_cache;
307
308 /*
309  * When called, it means the previous get/set msr reached an invalid msr.
310  * Return true if we want to ignore/silent this failed msr access.
311  */
312 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
313 {
314         const char *op = write ? "wrmsr" : "rdmsr";
315
316         if (ignore_msrs) {
317                 if (report_ignored_msrs)
318                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
319                                       op, msr, data);
320                 /* Mask the error */
321                 return true;
322         } else {
323                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
324                                       op, msr, data);
325                 return false;
326         }
327 }
328
329 static struct kmem_cache *kvm_alloc_emulator_cache(void)
330 {
331         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
332         unsigned int size = sizeof(struct x86_emulate_ctxt);
333
334         return kmem_cache_create_usercopy("x86_emulator", size,
335                                           __alignof__(struct x86_emulate_ctxt),
336                                           SLAB_ACCOUNT, useroffset,
337                                           size - useroffset, NULL);
338 }
339
340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
341
342 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
343 {
344         int i;
345         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
346                 vcpu->arch.apf.gfns[i] = ~0;
347 }
348
349 static void kvm_on_user_return(struct user_return_notifier *urn)
350 {
351         unsigned slot;
352         struct kvm_user_return_msrs *msrs
353                 = container_of(urn, struct kvm_user_return_msrs, urn);
354         struct kvm_user_return_msr_values *values;
355         unsigned long flags;
356
357         /*
358          * Disabling irqs at this point since the following code could be
359          * interrupted and executed through kvm_arch_hardware_disable()
360          */
361         local_irq_save(flags);
362         if (msrs->registered) {
363                 msrs->registered = false;
364                 user_return_notifier_unregister(urn);
365         }
366         local_irq_restore(flags);
367         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
368                 values = &msrs->values[slot];
369                 if (values->host != values->curr) {
370                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
371                         values->curr = values->host;
372                 }
373         }
374 }
375
376 static int kvm_probe_user_return_msr(u32 msr)
377 {
378         u64 val;
379         int ret;
380
381         preempt_disable();
382         ret = rdmsrl_safe(msr, &val);
383         if (ret)
384                 goto out;
385         ret = wrmsrl_safe(msr, val);
386 out:
387         preempt_enable();
388         return ret;
389 }
390
391 int kvm_add_user_return_msr(u32 msr)
392 {
393         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
394
395         if (kvm_probe_user_return_msr(msr))
396                 return -1;
397
398         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
399         return kvm_nr_uret_msrs++;
400 }
401 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
402
403 int kvm_find_user_return_msr(u32 msr)
404 {
405         int i;
406
407         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
408                 if (kvm_uret_msrs_list[i] == msr)
409                         return i;
410         }
411         return -1;
412 }
413 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
414
415 static void kvm_user_return_msr_cpu_online(void)
416 {
417         unsigned int cpu = smp_processor_id();
418         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
419         u64 value;
420         int i;
421
422         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
423                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
424                 msrs->values[i].host = value;
425                 msrs->values[i].curr = value;
426         }
427 }
428
429 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
430 {
431         unsigned int cpu = smp_processor_id();
432         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
433         int err;
434
435         value = (value & mask) | (msrs->values[slot].host & ~mask);
436         if (value == msrs->values[slot].curr)
437                 return 0;
438         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
439         if (err)
440                 return 1;
441
442         msrs->values[slot].curr = value;
443         if (!msrs->registered) {
444                 msrs->urn.on_user_return = kvm_on_user_return;
445                 user_return_notifier_register(&msrs->urn);
446                 msrs->registered = true;
447         }
448         return 0;
449 }
450 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
451
452 static void drop_user_return_notifiers(void)
453 {
454         unsigned int cpu = smp_processor_id();
455         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
456
457         if (msrs->registered)
458                 kvm_on_user_return(&msrs->urn);
459 }
460
461 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
462 {
463         return vcpu->arch.apic_base;
464 }
465 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
466
467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
468 {
469         return kvm_apic_mode(kvm_get_apic_base(vcpu));
470 }
471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
472
473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
474 {
475         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
476         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
477         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
478                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
479
480         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
481                 return 1;
482         if (!msr_info->host_initiated) {
483                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
484                         return 1;
485                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
486                         return 1;
487         }
488
489         kvm_lapic_set_base(vcpu, msr_info->data);
490         kvm_recalculate_apic_map(vcpu->kvm);
491         return 0;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
494
495 /*
496  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
497  *
498  * Hardware virtualization extension instructions may fault if a reboot turns
499  * off virtualization while processes are running.  Usually after catching the
500  * fault we just panic; during reboot instead the instruction is ignored.
501  */
502 noinstr void kvm_spurious_fault(void)
503 {
504         /* Fault while not rebooting.  We want the trace. */
505         BUG_ON(!kvm_rebooting);
506 }
507 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
508
509 #define EXCPT_BENIGN            0
510 #define EXCPT_CONTRIBUTORY      1
511 #define EXCPT_PF                2
512
513 static int exception_class(int vector)
514 {
515         switch (vector) {
516         case PF_VECTOR:
517                 return EXCPT_PF;
518         case DE_VECTOR:
519         case TS_VECTOR:
520         case NP_VECTOR:
521         case SS_VECTOR:
522         case GP_VECTOR:
523                 return EXCPT_CONTRIBUTORY;
524         default:
525                 break;
526         }
527         return EXCPT_BENIGN;
528 }
529
530 #define EXCPT_FAULT             0
531 #define EXCPT_TRAP              1
532 #define EXCPT_ABORT             2
533 #define EXCPT_INTERRUPT         3
534
535 static int exception_type(int vector)
536 {
537         unsigned int mask;
538
539         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
540                 return EXCPT_INTERRUPT;
541
542         mask = 1 << vector;
543
544         /* #DB is trap, as instruction watchpoints are handled elsewhere */
545         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
546                 return EXCPT_TRAP;
547
548         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
549                 return EXCPT_ABORT;
550
551         /* Reserved exceptions will result in fault */
552         return EXCPT_FAULT;
553 }
554
555 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
556 {
557         unsigned nr = vcpu->arch.exception.nr;
558         bool has_payload = vcpu->arch.exception.has_payload;
559         unsigned long payload = vcpu->arch.exception.payload;
560
561         if (!has_payload)
562                 return;
563
564         switch (nr) {
565         case DB_VECTOR:
566                 /*
567                  * "Certain debug exceptions may clear bit 0-3.  The
568                  * remaining contents of the DR6 register are never
569                  * cleared by the processor".
570                  */
571                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
572                 /*
573                  * In order to reflect the #DB exception payload in guest
574                  * dr6, three components need to be considered: active low
575                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
576                  * DR6_BS and DR6_BT)
577                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
578                  * In the target guest dr6:
579                  * FIXED_1 bits should always be set.
580                  * Active low bits should be cleared if 1-setting in payload.
581                  * Active high bits should be set if 1-setting in payload.
582                  *
583                  * Note, the payload is compatible with the pending debug
584                  * exceptions/exit qualification under VMX, that active_low bits
585                  * are active high in payload.
586                  * So they need to be flipped for DR6.
587                  */
588                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
589                 vcpu->arch.dr6 |= payload;
590                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
591
592                 /*
593                  * The #DB payload is defined as compatible with the 'pending
594                  * debug exceptions' field under VMX, not DR6. While bit 12 is
595                  * defined in the 'pending debug exceptions' field (enabled
596                  * breakpoint), it is reserved and must be zero in DR6.
597                  */
598                 vcpu->arch.dr6 &= ~BIT(12);
599                 break;
600         case PF_VECTOR:
601                 vcpu->arch.cr2 = payload;
602                 break;
603         }
604
605         vcpu->arch.exception.has_payload = false;
606         vcpu->arch.exception.payload = 0;
607 }
608 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
609
610 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
611                 unsigned nr, bool has_error, u32 error_code,
612                 bool has_payload, unsigned long payload, bool reinject)
613 {
614         u32 prev_nr;
615         int class1, class2;
616
617         kvm_make_request(KVM_REQ_EVENT, vcpu);
618
619         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
620         queue:
621                 if (reinject) {
622                         /*
623                          * On vmentry, vcpu->arch.exception.pending is only
624                          * true if an event injection was blocked by
625                          * nested_run_pending.  In that case, however,
626                          * vcpu_enter_guest requests an immediate exit,
627                          * and the guest shouldn't proceed far enough to
628                          * need reinjection.
629                          */
630                         WARN_ON_ONCE(vcpu->arch.exception.pending);
631                         vcpu->arch.exception.injected = true;
632                         if (WARN_ON_ONCE(has_payload)) {
633                                 /*
634                                  * A reinjected event has already
635                                  * delivered its payload.
636                                  */
637                                 has_payload = false;
638                                 payload = 0;
639                         }
640                 } else {
641                         vcpu->arch.exception.pending = true;
642                         vcpu->arch.exception.injected = false;
643                 }
644                 vcpu->arch.exception.has_error_code = has_error;
645                 vcpu->arch.exception.nr = nr;
646                 vcpu->arch.exception.error_code = error_code;
647                 vcpu->arch.exception.has_payload = has_payload;
648                 vcpu->arch.exception.payload = payload;
649                 if (!is_guest_mode(vcpu))
650                         kvm_deliver_exception_payload(vcpu);
651                 return;
652         }
653
654         /* to check exception */
655         prev_nr = vcpu->arch.exception.nr;
656         if (prev_nr == DF_VECTOR) {
657                 /* triple fault -> shutdown */
658                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
659                 return;
660         }
661         class1 = exception_class(prev_nr);
662         class2 = exception_class(nr);
663         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
664                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
665                 /*
666                  * Generate double fault per SDM Table 5-5.  Set
667                  * exception.pending = true so that the double fault
668                  * can trigger a nested vmexit.
669                  */
670                 vcpu->arch.exception.pending = true;
671                 vcpu->arch.exception.injected = false;
672                 vcpu->arch.exception.has_error_code = true;
673                 vcpu->arch.exception.nr = DF_VECTOR;
674                 vcpu->arch.exception.error_code = 0;
675                 vcpu->arch.exception.has_payload = false;
676                 vcpu->arch.exception.payload = 0;
677         } else
678                 /* replace previous exception with a new one in a hope
679                    that instruction re-execution will regenerate lost
680                    exception */
681                 goto queue;
682 }
683
684 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
685 {
686         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
687 }
688 EXPORT_SYMBOL_GPL(kvm_queue_exception);
689
690 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
691 {
692         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
693 }
694 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
695
696 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
697                            unsigned long payload)
698 {
699         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
700 }
701 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
702
703 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
704                                     u32 error_code, unsigned long payload)
705 {
706         kvm_multiple_exception(vcpu, nr, true, error_code,
707                                true, payload, false);
708 }
709
710 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
711 {
712         if (err)
713                 kvm_inject_gp(vcpu, 0);
714         else
715                 return kvm_skip_emulated_instruction(vcpu);
716
717         return 1;
718 }
719 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
720
721 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723         if (err) {
724                 kvm_inject_gp(vcpu, 0);
725                 return 1;
726         }
727
728         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
729                                        EMULTYPE_COMPLETE_USER_EXIT);
730 }
731
732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
733 {
734         ++vcpu->stat.pf_guest;
735         vcpu->arch.exception.nested_apf =
736                 is_guest_mode(vcpu) && fault->async_page_fault;
737         if (vcpu->arch.exception.nested_apf) {
738                 vcpu->arch.apf.nested_apf_token = fault->address;
739                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
740         } else {
741                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
742                                         fault->address);
743         }
744 }
745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
746
747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
748                                     struct x86_exception *fault)
749 {
750         struct kvm_mmu *fault_mmu;
751         WARN_ON_ONCE(fault->vector != PF_VECTOR);
752
753         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
754                                                vcpu->arch.walk_mmu;
755
756         /*
757          * Invalidate the TLB entry for the faulting address, if it exists,
758          * else the access will fault indefinitely (and to emulate hardware).
759          */
760         if ((fault->error_code & PFERR_PRESENT_MASK) &&
761             !(fault->error_code & PFERR_RSVD_MASK))
762                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
763                                        fault_mmu->root_hpa);
764
765         fault_mmu->inject_page_fault(vcpu, fault);
766         return fault->nested_page_fault;
767 }
768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
769
770 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
771 {
772         atomic_inc(&vcpu->arch.nmi_queued);
773         kvm_make_request(KVM_REQ_NMI, vcpu);
774 }
775 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
776
777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
778 {
779         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
780 }
781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
782
783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
784 {
785         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
786 }
787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
788
789 /*
790  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
791  * a #GP and return false.
792  */
793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
794 {
795         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
796                 return true;
797         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
798         return false;
799 }
800 EXPORT_SYMBOL_GPL(kvm_require_cpl);
801
802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
803 {
804         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
805                 return true;
806
807         kvm_queue_exception(vcpu, UD_VECTOR);
808         return false;
809 }
810 EXPORT_SYMBOL_GPL(kvm_require_dr);
811
812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
813 {
814         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
815 }
816
817 /*
818  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
819  */
820 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
821 {
822         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
823         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
824         gpa_t real_gpa;
825         int i;
826         int ret;
827         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
828
829         /*
830          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
831          * to an L1 GPA.
832          */
833         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
834                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
835         if (real_gpa == UNMAPPED_GVA)
836                 return 0;
837
838         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
839         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
840                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
841         if (ret < 0)
842                 return 0;
843
844         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
845                 if ((pdpte[i] & PT_PRESENT_MASK) &&
846                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
847                         return 0;
848                 }
849         }
850
851         /*
852          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
853          * Shadow page roots need to be reconstructed instead.
854          */
855         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
856                 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
857
858         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
859         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
860         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
861         vcpu->arch.pdptrs_from_userspace = false;
862
863         return 1;
864 }
865 EXPORT_SYMBOL_GPL(load_pdptrs);
866
867 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
868 {
869         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
870                 kvm_clear_async_pf_completion_queue(vcpu);
871                 kvm_async_pf_hash_reset(vcpu);
872         }
873
874         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
875                 kvm_mmu_reset_context(vcpu);
876
877         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
878             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
879             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
880                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
881 }
882 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
883
884 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
885 {
886         unsigned long old_cr0 = kvm_read_cr0(vcpu);
887
888         cr0 |= X86_CR0_ET;
889
890 #ifdef CONFIG_X86_64
891         if (cr0 & 0xffffffff00000000UL)
892                 return 1;
893 #endif
894
895         cr0 &= ~CR0_RESERVED_BITS;
896
897         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
898                 return 1;
899
900         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
901                 return 1;
902
903 #ifdef CONFIG_X86_64
904         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
905             (cr0 & X86_CR0_PG)) {
906                 int cs_db, cs_l;
907
908                 if (!is_pae(vcpu))
909                         return 1;
910                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
911                 if (cs_l)
912                         return 1;
913         }
914 #endif
915         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
916             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
917             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
918                 return 1;
919
920         if (!(cr0 & X86_CR0_PG) &&
921             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
922                 return 1;
923
924         static_call(kvm_x86_set_cr0)(vcpu, cr0);
925
926         kvm_post_set_cr0(vcpu, old_cr0, cr0);
927
928         return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_cr0);
931
932 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
933 {
934         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
935 }
936 EXPORT_SYMBOL_GPL(kvm_lmsw);
937
938 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
939 {
940         if (vcpu->arch.guest_state_protected)
941                 return;
942
943         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
944
945                 if (vcpu->arch.xcr0 != host_xcr0)
946                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
947
948                 if (vcpu->arch.xsaves_enabled &&
949                     vcpu->arch.ia32_xss != host_xss)
950                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
951         }
952
953         if (static_cpu_has(X86_FEATURE_PKU) &&
954             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
955              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
956             vcpu->arch.pkru != vcpu->arch.host_pkru)
957                 write_pkru(vcpu->arch.pkru);
958 }
959 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
960
961 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
962 {
963         if (vcpu->arch.guest_state_protected)
964                 return;
965
966         if (static_cpu_has(X86_FEATURE_PKU) &&
967             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
968              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
969                 vcpu->arch.pkru = rdpkru();
970                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
971                         write_pkru(vcpu->arch.host_pkru);
972         }
973
974         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
975
976                 if (vcpu->arch.xcr0 != host_xcr0)
977                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
978
979                 if (vcpu->arch.xsaves_enabled &&
980                     vcpu->arch.ia32_xss != host_xss)
981                         wrmsrl(MSR_IA32_XSS, host_xss);
982         }
983
984 }
985 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
986
987 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989         u64 xcr0 = xcr;
990         u64 old_xcr0 = vcpu->arch.xcr0;
991         u64 valid_bits;
992
993         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
994         if (index != XCR_XFEATURE_ENABLED_MASK)
995                 return 1;
996         if (!(xcr0 & XFEATURE_MASK_FP))
997                 return 1;
998         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
999                 return 1;
1000
1001         /*
1002          * Do not allow the guest to set bits that we do not support
1003          * saving.  However, xcr0 bit 0 is always set, even if the
1004          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1005          */
1006         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1007         if (xcr0 & ~valid_bits)
1008                 return 1;
1009
1010         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1011             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1012                 return 1;
1013
1014         if (xcr0 & XFEATURE_MASK_AVX512) {
1015                 if (!(xcr0 & XFEATURE_MASK_YMM))
1016                         return 1;
1017                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1018                         return 1;
1019         }
1020
1021         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1022             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1023                 return 1;
1024
1025         vcpu->arch.xcr0 = xcr0;
1026
1027         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1028                 kvm_update_cpuid_runtime(vcpu);
1029         return 0;
1030 }
1031
1032 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1033 {
1034         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1035             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1036                 kvm_inject_gp(vcpu, 0);
1037                 return 1;
1038         }
1039
1040         return kvm_skip_emulated_instruction(vcpu);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1043
1044 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1045 {
1046         if (cr4 & cr4_reserved_bits)
1047                 return false;
1048
1049         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1050                 return false;
1051
1052         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1055
1056 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1057 {
1058         /*
1059          * If any role bit is changed, the MMU needs to be reset.
1060          *
1061          * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1062          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1063          * according to the SDM; however, stale prev_roots could be reused
1064          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1065          * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1066          * is slow, but changing CR4.PCIDE is a rare case.
1067          *
1068          * If CR4.PGE is changed, the guest TLB must be flushed.
1069          *
1070          * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1071          * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1072          * the usage of "else if".
1073          */
1074         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1075                 kvm_mmu_reset_context(vcpu);
1076         else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1077                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1078         else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1079                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1082
1083 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1084 {
1085         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1086
1087         if (!kvm_is_valid_cr4(vcpu, cr4))
1088                 return 1;
1089
1090         if (is_long_mode(vcpu)) {
1091                 if (!(cr4 & X86_CR4_PAE))
1092                         return 1;
1093                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1094                         return 1;
1095         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1096                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1097                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1098                 return 1;
1099
1100         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1101                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1102                         return 1;
1103
1104                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1105                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1106                         return 1;
1107         }
1108
1109         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1110
1111         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1112
1113         return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1116
1117 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1118 {
1119         struct kvm_mmu *mmu = vcpu->arch.mmu;
1120         unsigned long roots_to_free = 0;
1121         int i;
1122
1123         /*
1124          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1125          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1126          * also via the emulator.  KVM's TDP page tables are not in the scope of
1127          * the invalidation, but the guest's TLB entries need to be flushed as
1128          * the CPU may have cached entries in its TLB for the target PCID.
1129          */
1130         if (unlikely(tdp_enabled)) {
1131                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1132                 return;
1133         }
1134
1135         /*
1136          * If neither the current CR3 nor any of the prev_roots use the given
1137          * PCID, then nothing needs to be done here because a resync will
1138          * happen anyway before switching to any other CR3.
1139          */
1140         if (kvm_get_active_pcid(vcpu) == pcid) {
1141                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1142                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1143         }
1144
1145         /*
1146          * If PCID is disabled, there is no need to free prev_roots even if the
1147          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1148          * with PCIDE=0.
1149          */
1150         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1151                 return;
1152
1153         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1154                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1155                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1156
1157         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1158 }
1159
1160 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1161 {
1162         bool skip_tlb_flush = false;
1163         unsigned long pcid = 0;
1164 #ifdef CONFIG_X86_64
1165         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1166
1167         if (pcid_enabled) {
1168                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1169                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1170                 pcid = cr3 & X86_CR3_PCID_MASK;
1171         }
1172 #endif
1173
1174         /* PDPTRs are always reloaded for PAE paging. */
1175         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1176                 goto handle_tlb_flush;
1177
1178         /*
1179          * Do not condition the GPA check on long mode, this helper is used to
1180          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1181          * the current vCPU mode is accurate.
1182          */
1183         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1184                 return 1;
1185
1186         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1187                 return 1;
1188
1189         if (cr3 != kvm_read_cr3(vcpu))
1190                 kvm_mmu_new_pgd(vcpu, cr3);
1191
1192         vcpu->arch.cr3 = cr3;
1193         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1194         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1195
1196 handle_tlb_flush:
1197         /*
1198          * A load of CR3 that flushes the TLB flushes only the current PCID,
1199          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1200          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1201          * and it's impossible to use a non-zero PCID when PCID is disabled,
1202          * i.e. only PCID=0 can be relevant.
1203          */
1204         if (!skip_tlb_flush)
1205                 kvm_invalidate_pcid(vcpu, pcid);
1206
1207         return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1210
1211 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1212 {
1213         if (cr8 & CR8_RESERVED_BITS)
1214                 return 1;
1215         if (lapic_in_kernel(vcpu))
1216                 kvm_lapic_set_tpr(vcpu, cr8);
1217         else
1218                 vcpu->arch.cr8 = cr8;
1219         return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1222
1223 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1224 {
1225         if (lapic_in_kernel(vcpu))
1226                 return kvm_lapic_get_cr8(vcpu);
1227         else
1228                 return vcpu->arch.cr8;
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1231
1232 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1233 {
1234         int i;
1235
1236         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1237                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1238                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1239         }
1240 }
1241
1242 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1243 {
1244         unsigned long dr7;
1245
1246         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1247                 dr7 = vcpu->arch.guest_debug_dr7;
1248         else
1249                 dr7 = vcpu->arch.dr7;
1250         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1251         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1252         if (dr7 & DR7_BP_EN_MASK)
1253                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1256
1257 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1258 {
1259         u64 fixed = DR6_FIXED_1;
1260
1261         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1262                 fixed |= DR6_RTM;
1263
1264         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1265                 fixed |= DR6_BUS_LOCK;
1266         return fixed;
1267 }
1268
1269 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1270 {
1271         size_t size = ARRAY_SIZE(vcpu->arch.db);
1272
1273         switch (dr) {
1274         case 0 ... 3:
1275                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1276                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1277                         vcpu->arch.eff_db[dr] = val;
1278                 break;
1279         case 4:
1280         case 6:
1281                 if (!kvm_dr6_valid(val))
1282                         return 1; /* #GP */
1283                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1284                 break;
1285         case 5:
1286         default: /* 7 */
1287                 if (!kvm_dr7_valid(val))
1288                         return 1; /* #GP */
1289                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1290                 kvm_update_dr7(vcpu);
1291                 break;
1292         }
1293
1294         return 0;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_set_dr);
1297
1298 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1299 {
1300         size_t size = ARRAY_SIZE(vcpu->arch.db);
1301
1302         switch (dr) {
1303         case 0 ... 3:
1304                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1305                 break;
1306         case 4:
1307         case 6:
1308                 *val = vcpu->arch.dr6;
1309                 break;
1310         case 5:
1311         default: /* 7 */
1312                 *val = vcpu->arch.dr7;
1313                 break;
1314         }
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_get_dr);
1317
1318 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1319 {
1320         u32 ecx = kvm_rcx_read(vcpu);
1321         u64 data;
1322
1323         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1324                 kvm_inject_gp(vcpu, 0);
1325                 return 1;
1326         }
1327
1328         kvm_rax_write(vcpu, (u32)data);
1329         kvm_rdx_write(vcpu, data >> 32);
1330         return kvm_skip_emulated_instruction(vcpu);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1333
1334 /*
1335  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1336  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1337  *
1338  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1339  * extract the supported MSRs from the related const lists.
1340  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1341  * capabilities of the host cpu. This capabilities test skips MSRs that are
1342  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1343  * may depend on host virtualization features rather than host cpu features.
1344  */
1345
1346 static const u32 msrs_to_save_all[] = {
1347         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1348         MSR_STAR,
1349 #ifdef CONFIG_X86_64
1350         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1351 #endif
1352         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1353         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1354         MSR_IA32_SPEC_CTRL,
1355         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1356         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1357         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1358         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1359         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1360         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1361         MSR_IA32_UMWAIT_CONTROL,
1362
1363         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1364         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1365         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1366         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1367         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1368         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1369         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1370         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1371         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1372         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1373         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1374         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1375         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1376         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1377         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1378         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1379         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1380         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1381         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1382         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1383         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1384         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1385
1386         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1387         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1388         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1389         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1390         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1391         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1392         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1393 };
1394
1395 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1396 static unsigned num_msrs_to_save;
1397
1398 static const u32 emulated_msrs_all[] = {
1399         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1400         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1401         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1402         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1403         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1404         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1405         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1406         HV_X64_MSR_RESET,
1407         HV_X64_MSR_VP_INDEX,
1408         HV_X64_MSR_VP_RUNTIME,
1409         HV_X64_MSR_SCONTROL,
1410         HV_X64_MSR_STIMER0_CONFIG,
1411         HV_X64_MSR_VP_ASSIST_PAGE,
1412         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1413         HV_X64_MSR_TSC_EMULATION_STATUS,
1414         HV_X64_MSR_SYNDBG_OPTIONS,
1415         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1416         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1417         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1418
1419         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1420         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1421
1422         MSR_IA32_TSC_ADJUST,
1423         MSR_IA32_TSC_DEADLINE,
1424         MSR_IA32_ARCH_CAPABILITIES,
1425         MSR_IA32_PERF_CAPABILITIES,
1426         MSR_IA32_MISC_ENABLE,
1427         MSR_IA32_MCG_STATUS,
1428         MSR_IA32_MCG_CTL,
1429         MSR_IA32_MCG_EXT_CTL,
1430         MSR_IA32_SMBASE,
1431         MSR_SMI_COUNT,
1432         MSR_PLATFORM_INFO,
1433         MSR_MISC_FEATURES_ENABLES,
1434         MSR_AMD64_VIRT_SPEC_CTRL,
1435         MSR_AMD64_TSC_RATIO,
1436         MSR_IA32_POWER_CTL,
1437         MSR_IA32_UCODE_REV,
1438
1439         /*
1440          * The following list leaves out MSRs whose values are determined
1441          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1442          * We always support the "true" VMX control MSRs, even if the host
1443          * processor does not, so I am putting these registers here rather
1444          * than in msrs_to_save_all.
1445          */
1446         MSR_IA32_VMX_BASIC,
1447         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1448         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1449         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1450         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1451         MSR_IA32_VMX_MISC,
1452         MSR_IA32_VMX_CR0_FIXED0,
1453         MSR_IA32_VMX_CR4_FIXED0,
1454         MSR_IA32_VMX_VMCS_ENUM,
1455         MSR_IA32_VMX_PROCBASED_CTLS2,
1456         MSR_IA32_VMX_EPT_VPID_CAP,
1457         MSR_IA32_VMX_VMFUNC,
1458
1459         MSR_K7_HWCR,
1460         MSR_KVM_POLL_CONTROL,
1461 };
1462
1463 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1464 static unsigned num_emulated_msrs;
1465
1466 /*
1467  * List of msr numbers which are used to expose MSR-based features that
1468  * can be used by a hypervisor to validate requested CPU features.
1469  */
1470 static const u32 msr_based_features_all[] = {
1471         MSR_IA32_VMX_BASIC,
1472         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1473         MSR_IA32_VMX_PINBASED_CTLS,
1474         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1475         MSR_IA32_VMX_PROCBASED_CTLS,
1476         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1477         MSR_IA32_VMX_EXIT_CTLS,
1478         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1479         MSR_IA32_VMX_ENTRY_CTLS,
1480         MSR_IA32_VMX_MISC,
1481         MSR_IA32_VMX_CR0_FIXED0,
1482         MSR_IA32_VMX_CR0_FIXED1,
1483         MSR_IA32_VMX_CR4_FIXED0,
1484         MSR_IA32_VMX_CR4_FIXED1,
1485         MSR_IA32_VMX_VMCS_ENUM,
1486         MSR_IA32_VMX_PROCBASED_CTLS2,
1487         MSR_IA32_VMX_EPT_VPID_CAP,
1488         MSR_IA32_VMX_VMFUNC,
1489
1490         MSR_F10H_DECFG,
1491         MSR_IA32_UCODE_REV,
1492         MSR_IA32_ARCH_CAPABILITIES,
1493         MSR_IA32_PERF_CAPABILITIES,
1494 };
1495
1496 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1497 static unsigned int num_msr_based_features;
1498
1499 static u64 kvm_get_arch_capabilities(void)
1500 {
1501         u64 data = 0;
1502
1503         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1504                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1505
1506         /*
1507          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1508          * the nested hypervisor runs with NX huge pages.  If it is not,
1509          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1510          * L1 guests, so it need not worry about its own (L2) guests.
1511          */
1512         data |= ARCH_CAP_PSCHANGE_MC_NO;
1513
1514         /*
1515          * If we're doing cache flushes (either "always" or "cond")
1516          * we will do one whenever the guest does a vmlaunch/vmresume.
1517          * If an outer hypervisor is doing the cache flush for us
1518          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1519          * capability to the guest too, and if EPT is disabled we're not
1520          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1521          * require a nested hypervisor to do a flush of its own.
1522          */
1523         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1524                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1525
1526         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1527                 data |= ARCH_CAP_RDCL_NO;
1528         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1529                 data |= ARCH_CAP_SSB_NO;
1530         if (!boot_cpu_has_bug(X86_BUG_MDS))
1531                 data |= ARCH_CAP_MDS_NO;
1532
1533         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1534                 /*
1535                  * If RTM=0 because the kernel has disabled TSX, the host might
1536                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1537                  * and therefore knows that there cannot be TAA) but keep
1538                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1539                  * and we want to allow migrating those guests to tsx=off hosts.
1540                  */
1541                 data &= ~ARCH_CAP_TAA_NO;
1542         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1543                 data |= ARCH_CAP_TAA_NO;
1544         } else {
1545                 /*
1546                  * Nothing to do here; we emulate TSX_CTRL if present on the
1547                  * host so the guest can choose between disabling TSX or
1548                  * using VERW to clear CPU buffers.
1549                  */
1550         }
1551
1552         return data;
1553 }
1554
1555 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1556 {
1557         switch (msr->index) {
1558         case MSR_IA32_ARCH_CAPABILITIES:
1559                 msr->data = kvm_get_arch_capabilities();
1560                 break;
1561         case MSR_IA32_UCODE_REV:
1562                 rdmsrl_safe(msr->index, &msr->data);
1563                 break;
1564         default:
1565                 return static_call(kvm_x86_get_msr_feature)(msr);
1566         }
1567         return 0;
1568 }
1569
1570 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1571 {
1572         struct kvm_msr_entry msr;
1573         int r;
1574
1575         msr.index = index;
1576         r = kvm_get_msr_feature(&msr);
1577
1578         if (r == KVM_MSR_RET_INVALID) {
1579                 /* Unconditionally clear the output for simplicity */
1580                 *data = 0;
1581                 if (kvm_msr_ignored_check(index, 0, false))
1582                         r = 0;
1583         }
1584
1585         if (r)
1586                 return r;
1587
1588         *data = msr.data;
1589
1590         return 0;
1591 }
1592
1593 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1594 {
1595         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1596                 return false;
1597
1598         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1599                 return false;
1600
1601         if (efer & (EFER_LME | EFER_LMA) &&
1602             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1603                 return false;
1604
1605         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1606                 return false;
1607
1608         return true;
1609
1610 }
1611 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1612 {
1613         if (efer & efer_reserved_bits)
1614                 return false;
1615
1616         return __kvm_valid_efer(vcpu, efer);
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1619
1620 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1621 {
1622         u64 old_efer = vcpu->arch.efer;
1623         u64 efer = msr_info->data;
1624         int r;
1625
1626         if (efer & efer_reserved_bits)
1627                 return 1;
1628
1629         if (!msr_info->host_initiated) {
1630                 if (!__kvm_valid_efer(vcpu, efer))
1631                         return 1;
1632
1633                 if (is_paging(vcpu) &&
1634                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1635                         return 1;
1636         }
1637
1638         efer &= ~EFER_LMA;
1639         efer |= vcpu->arch.efer & EFER_LMA;
1640
1641         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1642         if (r) {
1643                 WARN_ON(r > 0);
1644                 return r;
1645         }
1646
1647         /* Update reserved bits */
1648         if ((efer ^ old_efer) & EFER_NX)
1649                 kvm_mmu_reset_context(vcpu);
1650
1651         return 0;
1652 }
1653
1654 void kvm_enable_efer_bits(u64 mask)
1655 {
1656        efer_reserved_bits &= ~mask;
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1659
1660 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1661 {
1662         struct kvm_x86_msr_filter *msr_filter;
1663         struct msr_bitmap_range *ranges;
1664         struct kvm *kvm = vcpu->kvm;
1665         bool allowed;
1666         int idx;
1667         u32 i;
1668
1669         /* x2APIC MSRs do not support filtering. */
1670         if (index >= 0x800 && index <= 0x8ff)
1671                 return true;
1672
1673         idx = srcu_read_lock(&kvm->srcu);
1674
1675         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1676         if (!msr_filter) {
1677                 allowed = true;
1678                 goto out;
1679         }
1680
1681         allowed = msr_filter->default_allow;
1682         ranges = msr_filter->ranges;
1683
1684         for (i = 0; i < msr_filter->count; i++) {
1685                 u32 start = ranges[i].base;
1686                 u32 end = start + ranges[i].nmsrs;
1687                 u32 flags = ranges[i].flags;
1688                 unsigned long *bitmap = ranges[i].bitmap;
1689
1690                 if ((index >= start) && (index < end) && (flags & type)) {
1691                         allowed = !!test_bit(index - start, bitmap);
1692                         break;
1693                 }
1694         }
1695
1696 out:
1697         srcu_read_unlock(&kvm->srcu, idx);
1698
1699         return allowed;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1702
1703 /*
1704  * Write @data into the MSR specified by @index.  Select MSR specific fault
1705  * checks are bypassed if @host_initiated is %true.
1706  * Returns 0 on success, non-0 otherwise.
1707  * Assumes vcpu_load() was already called.
1708  */
1709 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1710                          bool host_initiated)
1711 {
1712         struct msr_data msr;
1713
1714         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1715                 return KVM_MSR_RET_FILTERED;
1716
1717         switch (index) {
1718         case MSR_FS_BASE:
1719         case MSR_GS_BASE:
1720         case MSR_KERNEL_GS_BASE:
1721         case MSR_CSTAR:
1722         case MSR_LSTAR:
1723                 if (is_noncanonical_address(data, vcpu))
1724                         return 1;
1725                 break;
1726         case MSR_IA32_SYSENTER_EIP:
1727         case MSR_IA32_SYSENTER_ESP:
1728                 /*
1729                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1730                  * non-canonical address is written on Intel but not on
1731                  * AMD (which ignores the top 32-bits, because it does
1732                  * not implement 64-bit SYSENTER).
1733                  *
1734                  * 64-bit code should hence be able to write a non-canonical
1735                  * value on AMD.  Making the address canonical ensures that
1736                  * vmentry does not fail on Intel after writing a non-canonical
1737                  * value, and that something deterministic happens if the guest
1738                  * invokes 64-bit SYSENTER.
1739                  */
1740                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1741                 break;
1742         case MSR_TSC_AUX:
1743                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1744                         return 1;
1745
1746                 if (!host_initiated &&
1747                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1748                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1749                         return 1;
1750
1751                 /*
1752                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1753                  * incomplete and conflicting architectural behavior.  Current
1754                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1755                  * reserved and always read as zeros.  Enforce Intel's reserved
1756                  * bits check if and only if the guest CPU is Intel, and clear
1757                  * the bits in all other cases.  This ensures cross-vendor
1758                  * migration will provide consistent behavior for the guest.
1759                  */
1760                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1761                         return 1;
1762
1763                 data = (u32)data;
1764                 break;
1765         }
1766
1767         msr.data = data;
1768         msr.index = index;
1769         msr.host_initiated = host_initiated;
1770
1771         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1772 }
1773
1774 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1775                                      u32 index, u64 data, bool host_initiated)
1776 {
1777         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1778
1779         if (ret == KVM_MSR_RET_INVALID)
1780                 if (kvm_msr_ignored_check(index, data, true))
1781                         ret = 0;
1782
1783         return ret;
1784 }
1785
1786 /*
1787  * Read the MSR specified by @index into @data.  Select MSR specific fault
1788  * checks are bypassed if @host_initiated is %true.
1789  * Returns 0 on success, non-0 otherwise.
1790  * Assumes vcpu_load() was already called.
1791  */
1792 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1793                   bool host_initiated)
1794 {
1795         struct msr_data msr;
1796         int ret;
1797
1798         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1799                 return KVM_MSR_RET_FILTERED;
1800
1801         switch (index) {
1802         case MSR_TSC_AUX:
1803                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1804                         return 1;
1805
1806                 if (!host_initiated &&
1807                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1808                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1809                         return 1;
1810                 break;
1811         }
1812
1813         msr.index = index;
1814         msr.host_initiated = host_initiated;
1815
1816         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1817         if (!ret)
1818                 *data = msr.data;
1819         return ret;
1820 }
1821
1822 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1823                                      u32 index, u64 *data, bool host_initiated)
1824 {
1825         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1826
1827         if (ret == KVM_MSR_RET_INVALID) {
1828                 /* Unconditionally clear *data for simplicity */
1829                 *data = 0;
1830                 if (kvm_msr_ignored_check(index, 0, false))
1831                         ret = 0;
1832         }
1833
1834         return ret;
1835 }
1836
1837 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1838 {
1839         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_get_msr);
1842
1843 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1844 {
1845         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_set_msr);
1848
1849 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1850 {
1851         if (!vcpu->run->msr.error) {
1852                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1853                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1854         }
1855 }
1856
1857 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1858 {
1859         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1860 }
1861
1862 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1863 {
1864         complete_userspace_rdmsr(vcpu);
1865         return complete_emulated_msr_access(vcpu);
1866 }
1867
1868 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1869 {
1870         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1871 }
1872
1873 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1874 {
1875         complete_userspace_rdmsr(vcpu);
1876         return complete_fast_msr_access(vcpu);
1877 }
1878
1879 static u64 kvm_msr_reason(int r)
1880 {
1881         switch (r) {
1882         case KVM_MSR_RET_INVALID:
1883                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1884         case KVM_MSR_RET_FILTERED:
1885                 return KVM_MSR_EXIT_REASON_FILTER;
1886         default:
1887                 return KVM_MSR_EXIT_REASON_INVAL;
1888         }
1889 }
1890
1891 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1892                               u32 exit_reason, u64 data,
1893                               int (*completion)(struct kvm_vcpu *vcpu),
1894                               int r)
1895 {
1896         u64 msr_reason = kvm_msr_reason(r);
1897
1898         /* Check if the user wanted to know about this MSR fault */
1899         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1900                 return 0;
1901
1902         vcpu->run->exit_reason = exit_reason;
1903         vcpu->run->msr.error = 0;
1904         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1905         vcpu->run->msr.reason = msr_reason;
1906         vcpu->run->msr.index = index;
1907         vcpu->run->msr.data = data;
1908         vcpu->arch.complete_userspace_io = completion;
1909
1910         return 1;
1911 }
1912
1913 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1914 {
1915         u32 ecx = kvm_rcx_read(vcpu);
1916         u64 data;
1917         int r;
1918
1919         r = kvm_get_msr(vcpu, ecx, &data);
1920
1921         if (!r) {
1922                 trace_kvm_msr_read(ecx, data);
1923
1924                 kvm_rax_write(vcpu, data & -1u);
1925                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1926         } else {
1927                 /* MSR read failed? See if we should ask user space */
1928                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1929                                        complete_fast_rdmsr, r))
1930                         return 0;
1931                 trace_kvm_msr_read_ex(ecx);
1932         }
1933
1934         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1937
1938 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1939 {
1940         u32 ecx = kvm_rcx_read(vcpu);
1941         u64 data = kvm_read_edx_eax(vcpu);
1942         int r;
1943
1944         r = kvm_set_msr(vcpu, ecx, data);
1945
1946         if (!r) {
1947                 trace_kvm_msr_write(ecx, data);
1948         } else {
1949                 /* MSR write failed? See if we should ask user space */
1950                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1951                                        complete_fast_msr_access, r))
1952                         return 0;
1953                 /* Signal all other negative errors to userspace */
1954                 if (r < 0)
1955                         return r;
1956                 trace_kvm_msr_write_ex(ecx, data);
1957         }
1958
1959         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1962
1963 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1964 {
1965         return kvm_skip_emulated_instruction(vcpu);
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1968
1969 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1970 {
1971         /* Treat an INVD instruction as a NOP and just skip it. */
1972         return kvm_emulate_as_nop(vcpu);
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1975
1976 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1977 {
1978         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1979         return kvm_emulate_as_nop(vcpu);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1982
1983 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1984 {
1985         kvm_queue_exception(vcpu, UD_VECTOR);
1986         return 1;
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1989
1990 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1991 {
1992         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1993         return kvm_emulate_as_nop(vcpu);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1996
1997 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1998 {
1999         xfer_to_guest_mode_prepare();
2000         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2001                 xfer_to_guest_mode_work_pending();
2002 }
2003
2004 /*
2005  * The fast path for frequent and performance sensitive wrmsr emulation,
2006  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2007  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2008  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2009  * other cases which must be called after interrupts are enabled on the host.
2010  */
2011 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2012 {
2013         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2014                 return 1;
2015
2016         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2017                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2018                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2019                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2020
2021                 data &= ~(1 << 12);
2022                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2023                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2024                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2025                 trace_kvm_apic_write(APIC_ICR, (u32)data);
2026                 return 0;
2027         }
2028
2029         return 1;
2030 }
2031
2032 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2033 {
2034         if (!kvm_can_use_hv_timer(vcpu))
2035                 return 1;
2036
2037         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2038         return 0;
2039 }
2040
2041 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2042 {
2043         u32 msr = kvm_rcx_read(vcpu);
2044         u64 data;
2045         fastpath_t ret = EXIT_FASTPATH_NONE;
2046
2047         switch (msr) {
2048         case APIC_BASE_MSR + (APIC_ICR >> 4):
2049                 data = kvm_read_edx_eax(vcpu);
2050                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2051                         kvm_skip_emulated_instruction(vcpu);
2052                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2053                 }
2054                 break;
2055         case MSR_IA32_TSC_DEADLINE:
2056                 data = kvm_read_edx_eax(vcpu);
2057                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2058                         kvm_skip_emulated_instruction(vcpu);
2059                         ret = EXIT_FASTPATH_REENTER_GUEST;
2060                 }
2061                 break;
2062         default:
2063                 break;
2064         }
2065
2066         if (ret != EXIT_FASTPATH_NONE)
2067                 trace_kvm_msr_write(msr, data);
2068
2069         return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2072
2073 /*
2074  * Adapt set_msr() to msr_io()'s calling convention
2075  */
2076 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2077 {
2078         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2079 }
2080
2081 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2082 {
2083         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2084 }
2085
2086 #ifdef CONFIG_X86_64
2087 struct pvclock_clock {
2088         int vclock_mode;
2089         u64 cycle_last;
2090         u64 mask;
2091         u32 mult;
2092         u32 shift;
2093         u64 base_cycles;
2094         u64 offset;
2095 };
2096
2097 struct pvclock_gtod_data {
2098         seqcount_t      seq;
2099
2100         struct pvclock_clock clock; /* extract of a clocksource struct */
2101         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2102
2103         ktime_t         offs_boot;
2104         u64             wall_time_sec;
2105 };
2106
2107 static struct pvclock_gtod_data pvclock_gtod_data;
2108
2109 static void update_pvclock_gtod(struct timekeeper *tk)
2110 {
2111         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2112
2113         write_seqcount_begin(&vdata->seq);
2114
2115         /* copy pvclock gtod data */
2116         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2117         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2118         vdata->clock.mask               = tk->tkr_mono.mask;
2119         vdata->clock.mult               = tk->tkr_mono.mult;
2120         vdata->clock.shift              = tk->tkr_mono.shift;
2121         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2122         vdata->clock.offset             = tk->tkr_mono.base;
2123
2124         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2125         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2126         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2127         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2128         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2129         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2130         vdata->raw_clock.offset         = tk->tkr_raw.base;
2131
2132         vdata->wall_time_sec            = tk->xtime_sec;
2133
2134         vdata->offs_boot                = tk->offs_boot;
2135
2136         write_seqcount_end(&vdata->seq);
2137 }
2138
2139 static s64 get_kvmclock_base_ns(void)
2140 {
2141         /* Count up from boot time, but with the frequency of the raw clock.  */
2142         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2143 }
2144 #else
2145 static s64 get_kvmclock_base_ns(void)
2146 {
2147         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2148         return ktime_get_boottime_ns();
2149 }
2150 #endif
2151
2152 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2153 {
2154         int version;
2155         int r;
2156         struct pvclock_wall_clock wc;
2157         u32 wc_sec_hi;
2158         u64 wall_nsec;
2159
2160         if (!wall_clock)
2161                 return;
2162
2163         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2164         if (r)
2165                 return;
2166
2167         if (version & 1)
2168                 ++version;  /* first time write, random junk */
2169
2170         ++version;
2171
2172         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2173                 return;
2174
2175         /*
2176          * The guest calculates current wall clock time by adding
2177          * system time (updated by kvm_guest_time_update below) to the
2178          * wall clock specified here.  We do the reverse here.
2179          */
2180         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2181
2182         wc.nsec = do_div(wall_nsec, 1000000000);
2183         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2184         wc.version = version;
2185
2186         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2187
2188         if (sec_hi_ofs) {
2189                 wc_sec_hi = wall_nsec >> 32;
2190                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2191                                 &wc_sec_hi, sizeof(wc_sec_hi));
2192         }
2193
2194         version++;
2195         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2196 }
2197
2198 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2199                                   bool old_msr, bool host_initiated)
2200 {
2201         struct kvm_arch *ka = &vcpu->kvm->arch;
2202
2203         if (vcpu->vcpu_id == 0 && !host_initiated) {
2204                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2205                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2206
2207                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2208         }
2209
2210         vcpu->arch.time = system_time;
2211         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2212
2213         /* we verify if the enable bit is set... */
2214         vcpu->arch.pv_time_enabled = false;
2215         if (!(system_time & 1))
2216                 return;
2217
2218         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2219                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2220                                        sizeof(struct pvclock_vcpu_time_info)))
2221                 vcpu->arch.pv_time_enabled = true;
2222
2223         return;
2224 }
2225
2226 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2227 {
2228         do_shl32_div32(dividend, divisor);
2229         return dividend;
2230 }
2231
2232 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2233                                s8 *pshift, u32 *pmultiplier)
2234 {
2235         uint64_t scaled64;
2236         int32_t  shift = 0;
2237         uint64_t tps64;
2238         uint32_t tps32;
2239
2240         tps64 = base_hz;
2241         scaled64 = scaled_hz;
2242         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2243                 tps64 >>= 1;
2244                 shift--;
2245         }
2246
2247         tps32 = (uint32_t)tps64;
2248         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2249                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2250                         scaled64 >>= 1;
2251                 else
2252                         tps32 <<= 1;
2253                 shift++;
2254         }
2255
2256         *pshift = shift;
2257         *pmultiplier = div_frac(scaled64, tps32);
2258 }
2259
2260 #ifdef CONFIG_X86_64
2261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2262 #endif
2263
2264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2265 static unsigned long max_tsc_khz;
2266
2267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2268 {
2269         u64 v = (u64)khz * (1000000 + ppm);
2270         do_div(v, 1000000);
2271         return v;
2272 }
2273
2274 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2275
2276 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2277 {
2278         u64 ratio;
2279
2280         /* Guest TSC same frequency as host TSC? */
2281         if (!scale) {
2282                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2283                 return 0;
2284         }
2285
2286         /* TSC scaling supported? */
2287         if (!kvm_has_tsc_control) {
2288                 if (user_tsc_khz > tsc_khz) {
2289                         vcpu->arch.tsc_catchup = 1;
2290                         vcpu->arch.tsc_always_catchup = 1;
2291                         return 0;
2292                 } else {
2293                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2294                         return -1;
2295                 }
2296         }
2297
2298         /* TSC scaling required  - calculate ratio */
2299         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2300                                 user_tsc_khz, tsc_khz);
2301
2302         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2303                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2304                                     user_tsc_khz);
2305                 return -1;
2306         }
2307
2308         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2309         return 0;
2310 }
2311
2312 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2313 {
2314         u32 thresh_lo, thresh_hi;
2315         int use_scaling = 0;
2316
2317         /* tsc_khz can be zero if TSC calibration fails */
2318         if (user_tsc_khz == 0) {
2319                 /* set tsc_scaling_ratio to a safe value */
2320                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2321                 return -1;
2322         }
2323
2324         /* Compute a scale to convert nanoseconds in TSC cycles */
2325         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2326                            &vcpu->arch.virtual_tsc_shift,
2327                            &vcpu->arch.virtual_tsc_mult);
2328         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2329
2330         /*
2331          * Compute the variation in TSC rate which is acceptable
2332          * within the range of tolerance and decide if the
2333          * rate being applied is within that bounds of the hardware
2334          * rate.  If so, no scaling or compensation need be done.
2335          */
2336         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2337         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2338         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2339                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2340                 use_scaling = 1;
2341         }
2342         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2343 }
2344
2345 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2346 {
2347         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2348                                       vcpu->arch.virtual_tsc_mult,
2349                                       vcpu->arch.virtual_tsc_shift);
2350         tsc += vcpu->arch.this_tsc_write;
2351         return tsc;
2352 }
2353
2354 static inline int gtod_is_based_on_tsc(int mode)
2355 {
2356         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2357 }
2358
2359 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2360 {
2361 #ifdef CONFIG_X86_64
2362         bool vcpus_matched;
2363         struct kvm_arch *ka = &vcpu->kvm->arch;
2364         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2365
2366         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2367                          atomic_read(&vcpu->kvm->online_vcpus));
2368
2369         /*
2370          * Once the masterclock is enabled, always perform request in
2371          * order to update it.
2372          *
2373          * In order to enable masterclock, the host clocksource must be TSC
2374          * and the vcpus need to have matched TSCs.  When that happens,
2375          * perform request to enable masterclock.
2376          */
2377         if (ka->use_master_clock ||
2378             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2379                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2380
2381         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2382                             atomic_read(&vcpu->kvm->online_vcpus),
2383                             ka->use_master_clock, gtod->clock.vclock_mode);
2384 #endif
2385 }
2386
2387 /*
2388  * Multiply tsc by a fixed point number represented by ratio.
2389  *
2390  * The most significant 64-N bits (mult) of ratio represent the
2391  * integral part of the fixed point number; the remaining N bits
2392  * (frac) represent the fractional part, ie. ratio represents a fixed
2393  * point number (mult + frac * 2^(-N)).
2394  *
2395  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2396  */
2397 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2398 {
2399         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2400 }
2401
2402 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2403 {
2404         u64 _tsc = tsc;
2405
2406         if (ratio != kvm_default_tsc_scaling_ratio)
2407                 _tsc = __scale_tsc(ratio, tsc);
2408
2409         return _tsc;
2410 }
2411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2412
2413 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2414 {
2415         u64 tsc;
2416
2417         tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2418
2419         return target_tsc - tsc;
2420 }
2421
2422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2423 {
2424         return vcpu->arch.l1_tsc_offset +
2425                 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2426 }
2427 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2428
2429 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2430 {
2431         u64 nested_offset;
2432
2433         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2434                 nested_offset = l1_offset;
2435         else
2436                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2437                                                 kvm_tsc_scaling_ratio_frac_bits);
2438
2439         nested_offset += l2_offset;
2440         return nested_offset;
2441 }
2442 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2443
2444 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2445 {
2446         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2447                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2448                                        kvm_tsc_scaling_ratio_frac_bits);
2449
2450         return l1_multiplier;
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2453
2454 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2455 {
2456         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2457                                    vcpu->arch.l1_tsc_offset,
2458                                    l1_offset);
2459
2460         vcpu->arch.l1_tsc_offset = l1_offset;
2461
2462         /*
2463          * If we are here because L1 chose not to trap WRMSR to TSC then
2464          * according to the spec this should set L1's TSC (as opposed to
2465          * setting L1's offset for L2).
2466          */
2467         if (is_guest_mode(vcpu))
2468                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2469                         l1_offset,
2470                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2471                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2472         else
2473                 vcpu->arch.tsc_offset = l1_offset;
2474
2475         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2476 }
2477
2478 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2479 {
2480         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2481
2482         /* Userspace is changing the multiplier while L2 is active */
2483         if (is_guest_mode(vcpu))
2484                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2485                         l1_multiplier,
2486                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2487         else
2488                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2489
2490         if (kvm_has_tsc_control)
2491                 static_call(kvm_x86_write_tsc_multiplier)(
2492                         vcpu, vcpu->arch.tsc_scaling_ratio);
2493 }
2494
2495 static inline bool kvm_check_tsc_unstable(void)
2496 {
2497 #ifdef CONFIG_X86_64
2498         /*
2499          * TSC is marked unstable when we're running on Hyper-V,
2500          * 'TSC page' clocksource is good.
2501          */
2502         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2503                 return false;
2504 #endif
2505         return check_tsc_unstable();
2506 }
2507
2508 /*
2509  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2510  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2511  * participates in.
2512  */
2513 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2514                                   u64 ns, bool matched)
2515 {
2516         struct kvm *kvm = vcpu->kvm;
2517
2518         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2519
2520         /*
2521          * We also track th most recent recorded KHZ, write and time to
2522          * allow the matching interval to be extended at each write.
2523          */
2524         kvm->arch.last_tsc_nsec = ns;
2525         kvm->arch.last_tsc_write = tsc;
2526         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2527         kvm->arch.last_tsc_offset = offset;
2528
2529         vcpu->arch.last_guest_tsc = tsc;
2530
2531         kvm_vcpu_write_tsc_offset(vcpu, offset);
2532
2533         if (!matched) {
2534                 /*
2535                  * We split periods of matched TSC writes into generations.
2536                  * For each generation, we track the original measured
2537                  * nanosecond time, offset, and write, so if TSCs are in
2538                  * sync, we can match exact offset, and if not, we can match
2539                  * exact software computation in compute_guest_tsc()
2540                  *
2541                  * These values are tracked in kvm->arch.cur_xxx variables.
2542                  */
2543                 kvm->arch.cur_tsc_generation++;
2544                 kvm->arch.cur_tsc_nsec = ns;
2545                 kvm->arch.cur_tsc_write = tsc;
2546                 kvm->arch.cur_tsc_offset = offset;
2547                 kvm->arch.nr_vcpus_matched_tsc = 0;
2548         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2549                 kvm->arch.nr_vcpus_matched_tsc++;
2550         }
2551
2552         /* Keep track of which generation this VCPU has synchronized to */
2553         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2554         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2555         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2556
2557         kvm_track_tsc_matching(vcpu);
2558 }
2559
2560 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2561 {
2562         struct kvm *kvm = vcpu->kvm;
2563         u64 offset, ns, elapsed;
2564         unsigned long flags;
2565         bool matched = false;
2566         bool synchronizing = false;
2567
2568         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2569         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2570         ns = get_kvmclock_base_ns();
2571         elapsed = ns - kvm->arch.last_tsc_nsec;
2572
2573         if (vcpu->arch.virtual_tsc_khz) {
2574                 if (data == 0) {
2575                         /*
2576                          * detection of vcpu initialization -- need to sync
2577                          * with other vCPUs. This particularly helps to keep
2578                          * kvm_clock stable after CPU hotplug
2579                          */
2580                         synchronizing = true;
2581                 } else {
2582                         u64 tsc_exp = kvm->arch.last_tsc_write +
2583                                                 nsec_to_cycles(vcpu, elapsed);
2584                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2585                         /*
2586                          * Special case: TSC write with a small delta (1 second)
2587                          * of virtual cycle time against real time is
2588                          * interpreted as an attempt to synchronize the CPU.
2589                          */
2590                         synchronizing = data < tsc_exp + tsc_hz &&
2591                                         data + tsc_hz > tsc_exp;
2592                 }
2593         }
2594
2595         /*
2596          * For a reliable TSC, we can match TSC offsets, and for an unstable
2597          * TSC, we add elapsed time in this computation.  We could let the
2598          * compensation code attempt to catch up if we fall behind, but
2599          * it's better to try to match offsets from the beginning.
2600          */
2601         if (synchronizing &&
2602             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2603                 if (!kvm_check_tsc_unstable()) {
2604                         offset = kvm->arch.cur_tsc_offset;
2605                 } else {
2606                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2607                         data += delta;
2608                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2609                 }
2610                 matched = true;
2611         }
2612
2613         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2614         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2615 }
2616
2617 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2618                                            s64 adjustment)
2619 {
2620         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2621         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2622 }
2623
2624 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2625 {
2626         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2627                 WARN_ON(adjustment < 0);
2628         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2629                                    vcpu->arch.l1_tsc_scaling_ratio);
2630         adjust_tsc_offset_guest(vcpu, adjustment);
2631 }
2632
2633 #ifdef CONFIG_X86_64
2634
2635 static u64 read_tsc(void)
2636 {
2637         u64 ret = (u64)rdtsc_ordered();
2638         u64 last = pvclock_gtod_data.clock.cycle_last;
2639
2640         if (likely(ret >= last))
2641                 return ret;
2642
2643         /*
2644          * GCC likes to generate cmov here, but this branch is extremely
2645          * predictable (it's just a function of time and the likely is
2646          * very likely) and there's a data dependence, so force GCC
2647          * to generate a branch instead.  I don't barrier() because
2648          * we don't actually need a barrier, and if this function
2649          * ever gets inlined it will generate worse code.
2650          */
2651         asm volatile ("");
2652         return last;
2653 }
2654
2655 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2656                           int *mode)
2657 {
2658         long v;
2659         u64 tsc_pg_val;
2660
2661         switch (clock->vclock_mode) {
2662         case VDSO_CLOCKMODE_HVCLOCK:
2663                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2664                                                   tsc_timestamp);
2665                 if (tsc_pg_val != U64_MAX) {
2666                         /* TSC page valid */
2667                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2668                         v = (tsc_pg_val - clock->cycle_last) &
2669                                 clock->mask;
2670                 } else {
2671                         /* TSC page invalid */
2672                         *mode = VDSO_CLOCKMODE_NONE;
2673                 }
2674                 break;
2675         case VDSO_CLOCKMODE_TSC:
2676                 *mode = VDSO_CLOCKMODE_TSC;
2677                 *tsc_timestamp = read_tsc();
2678                 v = (*tsc_timestamp - clock->cycle_last) &
2679                         clock->mask;
2680                 break;
2681         default:
2682                 *mode = VDSO_CLOCKMODE_NONE;
2683         }
2684
2685         if (*mode == VDSO_CLOCKMODE_NONE)
2686                 *tsc_timestamp = v = 0;
2687
2688         return v * clock->mult;
2689 }
2690
2691 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2692 {
2693         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2694         unsigned long seq;
2695         int mode;
2696         u64 ns;
2697
2698         do {
2699                 seq = read_seqcount_begin(&gtod->seq);
2700                 ns = gtod->raw_clock.base_cycles;
2701                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2702                 ns >>= gtod->raw_clock.shift;
2703                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2704         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2705         *t = ns;
2706
2707         return mode;
2708 }
2709
2710 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2711 {
2712         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2713         unsigned long seq;
2714         int mode;
2715         u64 ns;
2716
2717         do {
2718                 seq = read_seqcount_begin(&gtod->seq);
2719                 ts->tv_sec = gtod->wall_time_sec;
2720                 ns = gtod->clock.base_cycles;
2721                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2722                 ns >>= gtod->clock.shift;
2723         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2724
2725         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2726         ts->tv_nsec = ns;
2727
2728         return mode;
2729 }
2730
2731 /* returns true if host is using TSC based clocksource */
2732 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2733 {
2734         /* checked again under seqlock below */
2735         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2736                 return false;
2737
2738         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2739                                                       tsc_timestamp));
2740 }
2741
2742 /* returns true if host is using TSC based clocksource */
2743 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2744                                            u64 *tsc_timestamp)
2745 {
2746         /* checked again under seqlock below */
2747         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2748                 return false;
2749
2750         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2751 }
2752 #endif
2753
2754 /*
2755  *
2756  * Assuming a stable TSC across physical CPUS, and a stable TSC
2757  * across virtual CPUs, the following condition is possible.
2758  * Each numbered line represents an event visible to both
2759  * CPUs at the next numbered event.
2760  *
2761  * "timespecX" represents host monotonic time. "tscX" represents
2762  * RDTSC value.
2763  *
2764  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2765  *
2766  * 1.  read timespec0,tsc0
2767  * 2.                                   | timespec1 = timespec0 + N
2768  *                                      | tsc1 = tsc0 + M
2769  * 3. transition to guest               | transition to guest
2770  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2771  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2772  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2773  *
2774  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2775  *
2776  *      - ret0 < ret1
2777  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2778  *              ...
2779  *      - 0 < N - M => M < N
2780  *
2781  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2782  * always the case (the difference between two distinct xtime instances
2783  * might be smaller then the difference between corresponding TSC reads,
2784  * when updating guest vcpus pvclock areas).
2785  *
2786  * To avoid that problem, do not allow visibility of distinct
2787  * system_timestamp/tsc_timestamp values simultaneously: use a master
2788  * copy of host monotonic time values. Update that master copy
2789  * in lockstep.
2790  *
2791  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2792  *
2793  */
2794
2795 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2796 {
2797 #ifdef CONFIG_X86_64
2798         struct kvm_arch *ka = &kvm->arch;
2799         int vclock_mode;
2800         bool host_tsc_clocksource, vcpus_matched;
2801
2802         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2803         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2804                         atomic_read(&kvm->online_vcpus));
2805
2806         /*
2807          * If the host uses TSC clock, then passthrough TSC as stable
2808          * to the guest.
2809          */
2810         host_tsc_clocksource = kvm_get_time_and_clockread(
2811                                         &ka->master_kernel_ns,
2812                                         &ka->master_cycle_now);
2813
2814         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2815                                 && !ka->backwards_tsc_observed
2816                                 && !ka->boot_vcpu_runs_old_kvmclock;
2817
2818         if (ka->use_master_clock)
2819                 atomic_set(&kvm_guest_has_master_clock, 1);
2820
2821         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2822         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2823                                         vcpus_matched);
2824 #endif
2825 }
2826
2827 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2828 {
2829         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2830 }
2831
2832 static void __kvm_start_pvclock_update(struct kvm *kvm)
2833 {
2834         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2835         write_seqcount_begin(&kvm->arch.pvclock_sc);
2836 }
2837
2838 static void kvm_start_pvclock_update(struct kvm *kvm)
2839 {
2840         kvm_make_mclock_inprogress_request(kvm);
2841
2842         /* no guest entries from this point */
2843         __kvm_start_pvclock_update(kvm);
2844 }
2845
2846 static void kvm_end_pvclock_update(struct kvm *kvm)
2847 {
2848         struct kvm_arch *ka = &kvm->arch;
2849         struct kvm_vcpu *vcpu;
2850         unsigned long i;
2851
2852         write_seqcount_end(&ka->pvclock_sc);
2853         raw_spin_unlock_irq(&ka->tsc_write_lock);
2854         kvm_for_each_vcpu(i, vcpu, kvm)
2855                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2856
2857         /* guest entries allowed */
2858         kvm_for_each_vcpu(i, vcpu, kvm)
2859                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2860 }
2861
2862 static void kvm_update_masterclock(struct kvm *kvm)
2863 {
2864         kvm_hv_invalidate_tsc_page(kvm);
2865         kvm_start_pvclock_update(kvm);
2866         pvclock_update_vm_gtod_copy(kvm);
2867         kvm_end_pvclock_update(kvm);
2868 }
2869
2870 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2871 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2872 {
2873         struct kvm_arch *ka = &kvm->arch;
2874         struct pvclock_vcpu_time_info hv_clock;
2875
2876         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2877         get_cpu();
2878
2879         data->flags = 0;
2880         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2881 #ifdef CONFIG_X86_64
2882                 struct timespec64 ts;
2883
2884                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2885                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2886                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2887                 } else
2888 #endif
2889                 data->host_tsc = rdtsc();
2890
2891                 data->flags |= KVM_CLOCK_TSC_STABLE;
2892                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2893                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2894                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2895                                    &hv_clock.tsc_shift,
2896                                    &hv_clock.tsc_to_system_mul);
2897                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2898         } else {
2899                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2900         }
2901
2902         put_cpu();
2903 }
2904
2905 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2906 {
2907         struct kvm_arch *ka = &kvm->arch;
2908         unsigned seq;
2909
2910         do {
2911                 seq = read_seqcount_begin(&ka->pvclock_sc);
2912                 __get_kvmclock(kvm, data);
2913         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2914 }
2915
2916 u64 get_kvmclock_ns(struct kvm *kvm)
2917 {
2918         struct kvm_clock_data data;
2919
2920         get_kvmclock(kvm, &data);
2921         return data.clock;
2922 }
2923
2924 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2925                                    struct gfn_to_hva_cache *cache,
2926                                    unsigned int offset)
2927 {
2928         struct kvm_vcpu_arch *vcpu = &v->arch;
2929         struct pvclock_vcpu_time_info guest_hv_clock;
2930
2931         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2932                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2933                 return;
2934
2935         /* This VCPU is paused, but it's legal for a guest to read another
2936          * VCPU's kvmclock, so we really have to follow the specification where
2937          * it says that version is odd if data is being modified, and even after
2938          * it is consistent.
2939          *
2940          * Version field updates must be kept separate.  This is because
2941          * kvm_write_guest_cached might use a "rep movs" instruction, and
2942          * writes within a string instruction are weakly ordered.  So there
2943          * are three writes overall.
2944          *
2945          * As a small optimization, only write the version field in the first
2946          * and third write.  The vcpu->pv_time cache is still valid, because the
2947          * version field is the first in the struct.
2948          */
2949         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2950
2951         if (guest_hv_clock.version & 1)
2952                 ++guest_hv_clock.version;  /* first time write, random junk */
2953
2954         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2955         kvm_write_guest_offset_cached(v->kvm, cache,
2956                                       &vcpu->hv_clock, offset,
2957                                       sizeof(vcpu->hv_clock.version));
2958
2959         smp_wmb();
2960
2961         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2962         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2963
2964         if (vcpu->pvclock_set_guest_stopped_request) {
2965                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2966                 vcpu->pvclock_set_guest_stopped_request = false;
2967         }
2968
2969         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2970
2971         kvm_write_guest_offset_cached(v->kvm, cache,
2972                                       &vcpu->hv_clock, offset,
2973                                       sizeof(vcpu->hv_clock));
2974
2975         smp_wmb();
2976
2977         vcpu->hv_clock.version++;
2978         kvm_write_guest_offset_cached(v->kvm, cache,
2979                                      &vcpu->hv_clock, offset,
2980                                      sizeof(vcpu->hv_clock.version));
2981 }
2982
2983 static int kvm_guest_time_update(struct kvm_vcpu *v)
2984 {
2985         unsigned long flags, tgt_tsc_khz;
2986         unsigned seq;
2987         struct kvm_vcpu_arch *vcpu = &v->arch;
2988         struct kvm_arch *ka = &v->kvm->arch;
2989         s64 kernel_ns;
2990         u64 tsc_timestamp, host_tsc;
2991         u8 pvclock_flags;
2992         bool use_master_clock;
2993
2994         kernel_ns = 0;
2995         host_tsc = 0;
2996
2997         /*
2998          * If the host uses TSC clock, then passthrough TSC as stable
2999          * to the guest.
3000          */
3001         do {
3002                 seq = read_seqcount_begin(&ka->pvclock_sc);
3003                 use_master_clock = ka->use_master_clock;
3004                 if (use_master_clock) {
3005                         host_tsc = ka->master_cycle_now;
3006                         kernel_ns = ka->master_kernel_ns;
3007                 }
3008         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3009
3010         /* Keep irq disabled to prevent changes to the clock */
3011         local_irq_save(flags);
3012         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3013         if (unlikely(tgt_tsc_khz == 0)) {
3014                 local_irq_restore(flags);
3015                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3016                 return 1;
3017         }
3018         if (!use_master_clock) {
3019                 host_tsc = rdtsc();
3020                 kernel_ns = get_kvmclock_base_ns();
3021         }
3022
3023         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3024
3025         /*
3026          * We may have to catch up the TSC to match elapsed wall clock
3027          * time for two reasons, even if kvmclock is used.
3028          *   1) CPU could have been running below the maximum TSC rate
3029          *   2) Broken TSC compensation resets the base at each VCPU
3030          *      entry to avoid unknown leaps of TSC even when running
3031          *      again on the same CPU.  This may cause apparent elapsed
3032          *      time to disappear, and the guest to stand still or run
3033          *      very slowly.
3034          */
3035         if (vcpu->tsc_catchup) {
3036                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3037                 if (tsc > tsc_timestamp) {
3038                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3039                         tsc_timestamp = tsc;
3040                 }
3041         }
3042
3043         local_irq_restore(flags);
3044
3045         /* With all the info we got, fill in the values */
3046
3047         if (kvm_has_tsc_control)
3048                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3049                                             v->arch.l1_tsc_scaling_ratio);
3050
3051         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3052                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3053                                    &vcpu->hv_clock.tsc_shift,
3054                                    &vcpu->hv_clock.tsc_to_system_mul);
3055                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3056         }
3057
3058         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3059         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3060         vcpu->last_guest_tsc = tsc_timestamp;
3061
3062         /* If the host uses TSC clocksource, then it is stable */
3063         pvclock_flags = 0;
3064         if (use_master_clock)
3065                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3066
3067         vcpu->hv_clock.flags = pvclock_flags;
3068
3069         if (vcpu->pv_time_enabled)
3070                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3071         if (vcpu->xen.vcpu_info_set)
3072                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3073                                        offsetof(struct compat_vcpu_info, time));
3074         if (vcpu->xen.vcpu_time_info_set)
3075                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3076         if (!v->vcpu_idx)
3077                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3078         return 0;
3079 }
3080
3081 /*
3082  * kvmclock updates which are isolated to a given vcpu, such as
3083  * vcpu->cpu migration, should not allow system_timestamp from
3084  * the rest of the vcpus to remain static. Otherwise ntp frequency
3085  * correction applies to one vcpu's system_timestamp but not
3086  * the others.
3087  *
3088  * So in those cases, request a kvmclock update for all vcpus.
3089  * We need to rate-limit these requests though, as they can
3090  * considerably slow guests that have a large number of vcpus.
3091  * The time for a remote vcpu to update its kvmclock is bound
3092  * by the delay we use to rate-limit the updates.
3093  */
3094
3095 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3096
3097 static void kvmclock_update_fn(struct work_struct *work)
3098 {
3099         unsigned long i;
3100         struct delayed_work *dwork = to_delayed_work(work);
3101         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3102                                            kvmclock_update_work);
3103         struct kvm *kvm = container_of(ka, struct kvm, arch);
3104         struct kvm_vcpu *vcpu;
3105
3106         kvm_for_each_vcpu(i, vcpu, kvm) {
3107                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3108                 kvm_vcpu_kick(vcpu);
3109         }
3110 }
3111
3112 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3113 {
3114         struct kvm *kvm = v->kvm;
3115
3116         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3117         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3118                                         KVMCLOCK_UPDATE_DELAY);
3119 }
3120
3121 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3122
3123 static void kvmclock_sync_fn(struct work_struct *work)
3124 {
3125         struct delayed_work *dwork = to_delayed_work(work);
3126         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3127                                            kvmclock_sync_work);
3128         struct kvm *kvm = container_of(ka, struct kvm, arch);
3129
3130         if (!kvmclock_periodic_sync)
3131                 return;
3132
3133         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3134         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3135                                         KVMCLOCK_SYNC_PERIOD);
3136 }
3137
3138 /*
3139  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3140  */
3141 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3142 {
3143         /* McStatusWrEn enabled? */
3144         if (guest_cpuid_is_amd_or_hygon(vcpu))
3145                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3146
3147         return false;
3148 }
3149
3150 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3151 {
3152         u64 mcg_cap = vcpu->arch.mcg_cap;
3153         unsigned bank_num = mcg_cap & 0xff;
3154         u32 msr = msr_info->index;
3155         u64 data = msr_info->data;
3156
3157         switch (msr) {
3158         case MSR_IA32_MCG_STATUS:
3159                 vcpu->arch.mcg_status = data;
3160                 break;
3161         case MSR_IA32_MCG_CTL:
3162                 if (!(mcg_cap & MCG_CTL_P) &&
3163                     (data || !msr_info->host_initiated))
3164                         return 1;
3165                 if (data != 0 && data != ~(u64)0)
3166                         return 1;
3167                 vcpu->arch.mcg_ctl = data;
3168                 break;
3169         default:
3170                 if (msr >= MSR_IA32_MC0_CTL &&
3171                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3172                         u32 offset = array_index_nospec(
3173                                 msr - MSR_IA32_MC0_CTL,
3174                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3175
3176                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3177                          * some Linux kernels though clear bit 10 in bank 4 to
3178                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3179                          * this to avoid an uncatched #GP in the guest
3180                          */
3181                         if ((offset & 0x3) == 0 &&
3182                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3183                                 return -1;
3184
3185                         /* MCi_STATUS */
3186                         if (!msr_info->host_initiated &&
3187                             (offset & 0x3) == 1 && data != 0) {
3188                                 if (!can_set_mci_status(vcpu))
3189                                         return -1;
3190                         }
3191
3192                         vcpu->arch.mce_banks[offset] = data;
3193                         break;
3194                 }
3195                 return 1;
3196         }
3197         return 0;
3198 }
3199
3200 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3201 {
3202         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3203
3204         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3205 }
3206
3207 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3208 {
3209         gpa_t gpa = data & ~0x3f;
3210
3211         /* Bits 4:5 are reserved, Should be zero */
3212         if (data & 0x30)
3213                 return 1;
3214
3215         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3216             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3217                 return 1;
3218
3219         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3220             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3221                 return 1;
3222
3223         if (!lapic_in_kernel(vcpu))
3224                 return data ? 1 : 0;
3225
3226         vcpu->arch.apf.msr_en_val = data;
3227
3228         if (!kvm_pv_async_pf_enabled(vcpu)) {
3229                 kvm_clear_async_pf_completion_queue(vcpu);
3230                 kvm_async_pf_hash_reset(vcpu);
3231                 return 0;
3232         }
3233
3234         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3235                                         sizeof(u64)))
3236                 return 1;
3237
3238         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3239         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3240
3241         kvm_async_pf_wakeup_all(vcpu);
3242
3243         return 0;
3244 }
3245
3246 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3247 {
3248         /* Bits 8-63 are reserved */
3249         if (data >> 8)
3250                 return 1;
3251
3252         if (!lapic_in_kernel(vcpu))
3253                 return 1;
3254
3255         vcpu->arch.apf.msr_int_val = data;
3256
3257         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3258
3259         return 0;
3260 }
3261
3262 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3263 {
3264         vcpu->arch.pv_time_enabled = false;
3265         vcpu->arch.time = 0;
3266 }
3267
3268 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3269 {
3270         ++vcpu->stat.tlb_flush;
3271         static_call(kvm_x86_tlb_flush_all)(vcpu);
3272 }
3273
3274 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3275 {
3276         ++vcpu->stat.tlb_flush;
3277
3278         if (!tdp_enabled) {
3279                 /*
3280                  * A TLB flush on behalf of the guest is equivalent to
3281                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3282                  * a forced sync of the shadow page tables.  Ensure all the
3283                  * roots are synced and the guest TLB in hardware is clean.
3284                  */
3285                 kvm_mmu_sync_roots(vcpu);
3286                 kvm_mmu_sync_prev_roots(vcpu);
3287         }
3288
3289         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3290 }
3291
3292
3293 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3294 {
3295         ++vcpu->stat.tlb_flush;
3296         static_call(kvm_x86_tlb_flush_current)(vcpu);
3297 }
3298
3299 /*
3300  * Service "local" TLB flush requests, which are specific to the current MMU
3301  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3302  * TLB flushes that are targeted at an MMU context also need to be serviced
3303  * prior before nested VM-Enter/VM-Exit.
3304  */
3305 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3306 {
3307         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3308                 kvm_vcpu_flush_tlb_current(vcpu);
3309
3310         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3311                 kvm_vcpu_flush_tlb_guest(vcpu);
3312 }
3313 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3314
3315 static void record_steal_time(struct kvm_vcpu *vcpu)
3316 {
3317         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3318         struct kvm_steal_time __user *st;
3319         struct kvm_memslots *slots;
3320         u64 steal;
3321         u32 version;
3322
3323         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3324                 kvm_xen_runstate_set_running(vcpu);
3325                 return;
3326         }
3327
3328         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3329                 return;
3330
3331         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3332                 return;
3333
3334         slots = kvm_memslots(vcpu->kvm);
3335
3336         if (unlikely(slots->generation != ghc->generation ||
3337                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3338                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3339
3340                 /* We rely on the fact that it fits in a single page. */
3341                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3342
3343                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3344                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3345                         return;
3346         }
3347
3348         st = (struct kvm_steal_time __user *)ghc->hva;
3349         /*
3350          * Doing a TLB flush here, on the guest's behalf, can avoid
3351          * expensive IPIs.
3352          */
3353         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3354                 u8 st_preempted = 0;
3355                 int err = -EFAULT;
3356
3357                 if (!user_access_begin(st, sizeof(*st)))
3358                         return;
3359
3360                 asm volatile("1: xchgb %0, %2\n"
3361                              "xor %1, %1\n"
3362                              "2:\n"
3363                              _ASM_EXTABLE_UA(1b, 2b)
3364                              : "+q" (st_preempted),
3365                                "+&r" (err),
3366                                "+m" (st->preempted));
3367                 if (err)
3368                         goto out;
3369
3370                 user_access_end();
3371
3372                 vcpu->arch.st.preempted = 0;
3373
3374                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3375                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3376                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3377                         kvm_vcpu_flush_tlb_guest(vcpu);
3378
3379                 if (!user_access_begin(st, sizeof(*st)))
3380                         goto dirty;
3381         } else {
3382                 if (!user_access_begin(st, sizeof(*st)))
3383                         return;
3384
3385                 unsafe_put_user(0, &st->preempted, out);
3386                 vcpu->arch.st.preempted = 0;
3387         }
3388
3389         unsafe_get_user(version, &st->version, out);
3390         if (version & 1)
3391                 version += 1;  /* first time write, random junk */
3392
3393         version += 1;
3394         unsafe_put_user(version, &st->version, out);
3395
3396         smp_wmb();
3397
3398         unsafe_get_user(steal, &st->steal, out);
3399         steal += current->sched_info.run_delay -
3400                 vcpu->arch.st.last_steal;
3401         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3402         unsafe_put_user(steal, &st->steal, out);
3403
3404         version += 1;
3405         unsafe_put_user(version, &st->version, out);
3406
3407  out:
3408         user_access_end();
3409  dirty:
3410         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3411 }
3412
3413 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3414 {
3415         bool pr = false;
3416         u32 msr = msr_info->index;
3417         u64 data = msr_info->data;
3418
3419         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3420                 return kvm_xen_write_hypercall_page(vcpu, data);
3421
3422         switch (msr) {
3423         case MSR_AMD64_NB_CFG:
3424         case MSR_IA32_UCODE_WRITE:
3425         case MSR_VM_HSAVE_PA:
3426         case MSR_AMD64_PATCH_LOADER:
3427         case MSR_AMD64_BU_CFG2:
3428         case MSR_AMD64_DC_CFG:
3429         case MSR_F15H_EX_CFG:
3430                 break;
3431
3432         case MSR_IA32_UCODE_REV:
3433                 if (msr_info->host_initiated)
3434                         vcpu->arch.microcode_version = data;
3435                 break;
3436         case MSR_IA32_ARCH_CAPABILITIES:
3437                 if (!msr_info->host_initiated)
3438                         return 1;
3439                 vcpu->arch.arch_capabilities = data;
3440                 break;
3441         case MSR_IA32_PERF_CAPABILITIES: {
3442                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3443
3444                 if (!msr_info->host_initiated)
3445                         return 1;
3446                 if (kvm_get_msr_feature(&msr_ent))
3447                         return 1;
3448                 if (data & ~msr_ent.data)
3449                         return 1;
3450
3451                 vcpu->arch.perf_capabilities = data;
3452
3453                 return 0;
3454                 }
3455         case MSR_EFER:
3456                 return set_efer(vcpu, msr_info);
3457         case MSR_K7_HWCR:
3458                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3459                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3460                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3461
3462                 /* Handle McStatusWrEn */
3463                 if (data == BIT_ULL(18)) {
3464                         vcpu->arch.msr_hwcr = data;
3465                 } else if (data != 0) {
3466                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3467                                     data);
3468                         return 1;
3469                 }
3470                 break;
3471         case MSR_FAM10H_MMIO_CONF_BASE:
3472                 if (data != 0) {
3473                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3474                                     "0x%llx\n", data);
3475                         return 1;
3476                 }
3477                 break;
3478         case 0x200 ... 0x2ff:
3479                 return kvm_mtrr_set_msr(vcpu, msr, data);
3480         case MSR_IA32_APICBASE:
3481                 return kvm_set_apic_base(vcpu, msr_info);
3482         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3483                 return kvm_x2apic_msr_write(vcpu, msr, data);
3484         case MSR_IA32_TSC_DEADLINE:
3485                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3486                 break;
3487         case MSR_IA32_TSC_ADJUST:
3488                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3489                         if (!msr_info->host_initiated) {
3490                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3491                                 adjust_tsc_offset_guest(vcpu, adj);
3492                                 /* Before back to guest, tsc_timestamp must be adjusted
3493                                  * as well, otherwise guest's percpu pvclock time could jump.
3494                                  */
3495                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3496                         }
3497                         vcpu->arch.ia32_tsc_adjust_msr = data;
3498                 }
3499                 break;
3500         case MSR_IA32_MISC_ENABLE:
3501                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3502                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3503                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3504                                 return 1;
3505                         vcpu->arch.ia32_misc_enable_msr = data;
3506                         kvm_update_cpuid_runtime(vcpu);
3507                 } else {
3508                         vcpu->arch.ia32_misc_enable_msr = data;
3509                 }
3510                 break;
3511         case MSR_IA32_SMBASE:
3512                 if (!msr_info->host_initiated)
3513                         return 1;
3514                 vcpu->arch.smbase = data;
3515                 break;
3516         case MSR_IA32_POWER_CTL:
3517                 vcpu->arch.msr_ia32_power_ctl = data;
3518                 break;
3519         case MSR_IA32_TSC:
3520                 if (msr_info->host_initiated) {
3521                         kvm_synchronize_tsc(vcpu, data);
3522                 } else {
3523                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3524                         adjust_tsc_offset_guest(vcpu, adj);
3525                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3526                 }
3527                 break;
3528         case MSR_IA32_XSS:
3529                 if (!msr_info->host_initiated &&
3530                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3531                         return 1;
3532                 /*
3533                  * KVM supports exposing PT to the guest, but does not support
3534                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3535                  * XSAVES/XRSTORS to save/restore PT MSRs.
3536                  */
3537                 if (data & ~supported_xss)
3538                         return 1;
3539                 vcpu->arch.ia32_xss = data;
3540                 kvm_update_cpuid_runtime(vcpu);
3541                 break;
3542         case MSR_SMI_COUNT:
3543                 if (!msr_info->host_initiated)
3544                         return 1;
3545                 vcpu->arch.smi_count = data;
3546                 break;
3547         case MSR_KVM_WALL_CLOCK_NEW:
3548                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3549                         return 1;
3550
3551                 vcpu->kvm->arch.wall_clock = data;
3552                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3553                 break;
3554         case MSR_KVM_WALL_CLOCK:
3555                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3556                         return 1;
3557
3558                 vcpu->kvm->arch.wall_clock = data;
3559                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3560                 break;
3561         case MSR_KVM_SYSTEM_TIME_NEW:
3562                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3563                         return 1;
3564
3565                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3566                 break;
3567         case MSR_KVM_SYSTEM_TIME:
3568                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3569                         return 1;
3570
3571                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3572                 break;
3573         case MSR_KVM_ASYNC_PF_EN:
3574                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3575                         return 1;
3576
3577                 if (kvm_pv_enable_async_pf(vcpu, data))
3578                         return 1;
3579                 break;
3580         case MSR_KVM_ASYNC_PF_INT:
3581                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3582                         return 1;
3583
3584                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3585                         return 1;
3586                 break;
3587         case MSR_KVM_ASYNC_PF_ACK:
3588                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3589                         return 1;
3590                 if (data & 0x1) {
3591                         vcpu->arch.apf.pageready_pending = false;
3592                         kvm_check_async_pf_completion(vcpu);
3593                 }
3594                 break;
3595         case MSR_KVM_STEAL_TIME:
3596                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3597                         return 1;
3598
3599                 if (unlikely(!sched_info_on()))
3600                         return 1;
3601
3602                 if (data & KVM_STEAL_RESERVED_MASK)
3603                         return 1;
3604
3605                 vcpu->arch.st.msr_val = data;
3606
3607                 if (!(data & KVM_MSR_ENABLED))
3608                         break;
3609
3610                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3611
3612                 break;
3613         case MSR_KVM_PV_EOI_EN:
3614                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3615                         return 1;
3616
3617                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3618                         return 1;
3619                 break;
3620
3621         case MSR_KVM_POLL_CONTROL:
3622                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3623                         return 1;
3624
3625                 /* only enable bit supported */
3626                 if (data & (-1ULL << 1))
3627                         return 1;
3628
3629                 vcpu->arch.msr_kvm_poll_control = data;
3630                 break;
3631
3632         case MSR_IA32_MCG_CTL:
3633         case MSR_IA32_MCG_STATUS:
3634         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3635                 return set_msr_mce(vcpu, msr_info);
3636
3637         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3638         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3639                 pr = true;
3640                 fallthrough;
3641         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3642         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3643                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3644                         return kvm_pmu_set_msr(vcpu, msr_info);
3645
3646                 if (pr || data != 0)
3647                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3648                                     "0x%x data 0x%llx\n", msr, data);
3649                 break;
3650         case MSR_K7_CLK_CTL:
3651                 /*
3652                  * Ignore all writes to this no longer documented MSR.
3653                  * Writes are only relevant for old K7 processors,
3654                  * all pre-dating SVM, but a recommended workaround from
3655                  * AMD for these chips. It is possible to specify the
3656                  * affected processor models on the command line, hence
3657                  * the need to ignore the workaround.
3658                  */
3659                 break;
3660         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3661         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3662         case HV_X64_MSR_SYNDBG_OPTIONS:
3663         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3664         case HV_X64_MSR_CRASH_CTL:
3665         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3666         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3667         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3668         case HV_X64_MSR_TSC_EMULATION_STATUS:
3669                 return kvm_hv_set_msr_common(vcpu, msr, data,
3670                                              msr_info->host_initiated);
3671         case MSR_IA32_BBL_CR_CTL3:
3672                 /* Drop writes to this legacy MSR -- see rdmsr
3673                  * counterpart for further detail.
3674                  */
3675                 if (report_ignored_msrs)
3676                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3677                                 msr, data);
3678                 break;
3679         case MSR_AMD64_OSVW_ID_LENGTH:
3680                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3681                         return 1;
3682                 vcpu->arch.osvw.length = data;
3683                 break;
3684         case MSR_AMD64_OSVW_STATUS:
3685                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3686                         return 1;
3687                 vcpu->arch.osvw.status = data;
3688                 break;
3689         case MSR_PLATFORM_INFO:
3690                 if (!msr_info->host_initiated ||
3691                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3692                      cpuid_fault_enabled(vcpu)))
3693                         return 1;
3694                 vcpu->arch.msr_platform_info = data;
3695                 break;
3696         case MSR_MISC_FEATURES_ENABLES:
3697                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3698                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3699                      !supports_cpuid_fault(vcpu)))
3700                         return 1;
3701                 vcpu->arch.msr_misc_features_enables = data;
3702                 break;
3703 #ifdef CONFIG_X86_64
3704         case MSR_IA32_XFD:
3705                 if (!msr_info->host_initiated &&
3706                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3707                         return 1;
3708
3709                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3710                              vcpu->arch.guest_supported_xcr0))
3711                         return 1;
3712
3713                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3714                 break;
3715         case MSR_IA32_XFD_ERR:
3716                 if (!msr_info->host_initiated &&
3717                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3718                         return 1;
3719
3720                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3721                              vcpu->arch.guest_supported_xcr0))
3722                         return 1;
3723
3724                 vcpu->arch.guest_fpu.xfd_err = data;
3725                 break;
3726 #endif
3727         default:
3728                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3729                         return kvm_pmu_set_msr(vcpu, msr_info);
3730                 return KVM_MSR_RET_INVALID;
3731         }
3732         return 0;
3733 }
3734 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3735
3736 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3737 {
3738         u64 data;
3739         u64 mcg_cap = vcpu->arch.mcg_cap;
3740         unsigned bank_num = mcg_cap & 0xff;
3741
3742         switch (msr) {
3743         case MSR_IA32_P5_MC_ADDR:
3744         case MSR_IA32_P5_MC_TYPE:
3745                 data = 0;
3746                 break;
3747         case MSR_IA32_MCG_CAP:
3748                 data = vcpu->arch.mcg_cap;
3749                 break;
3750         case MSR_IA32_MCG_CTL:
3751                 if (!(mcg_cap & MCG_CTL_P) && !host)
3752                         return 1;
3753                 data = vcpu->arch.mcg_ctl;
3754                 break;
3755         case MSR_IA32_MCG_STATUS:
3756                 data = vcpu->arch.mcg_status;
3757                 break;
3758         default:
3759                 if (msr >= MSR_IA32_MC0_CTL &&
3760                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3761                         u32 offset = array_index_nospec(
3762                                 msr - MSR_IA32_MC0_CTL,
3763                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3764
3765                         data = vcpu->arch.mce_banks[offset];
3766                         break;
3767                 }
3768                 return 1;
3769         }
3770         *pdata = data;
3771         return 0;
3772 }
3773
3774 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3775 {
3776         switch (msr_info->index) {
3777         case MSR_IA32_PLATFORM_ID:
3778         case MSR_IA32_EBL_CR_POWERON:
3779         case MSR_IA32_LASTBRANCHFROMIP:
3780         case MSR_IA32_LASTBRANCHTOIP:
3781         case MSR_IA32_LASTINTFROMIP:
3782         case MSR_IA32_LASTINTTOIP:
3783         case MSR_AMD64_SYSCFG:
3784         case MSR_K8_TSEG_ADDR:
3785         case MSR_K8_TSEG_MASK:
3786         case MSR_VM_HSAVE_PA:
3787         case MSR_K8_INT_PENDING_MSG:
3788         case MSR_AMD64_NB_CFG:
3789         case MSR_FAM10H_MMIO_CONF_BASE:
3790         case MSR_AMD64_BU_CFG2:
3791         case MSR_IA32_PERF_CTL:
3792         case MSR_AMD64_DC_CFG:
3793         case MSR_F15H_EX_CFG:
3794         /*
3795          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3796          * limit) MSRs. Just return 0, as we do not want to expose the host
3797          * data here. Do not conditionalize this on CPUID, as KVM does not do
3798          * so for existing CPU-specific MSRs.
3799          */
3800         case MSR_RAPL_POWER_UNIT:
3801         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3802         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3803         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3804         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3805                 msr_info->data = 0;
3806                 break;
3807         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3808                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3809                         return kvm_pmu_get_msr(vcpu, msr_info);
3810                 if (!msr_info->host_initiated)
3811                         return 1;
3812                 msr_info->data = 0;
3813                 break;
3814         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3815         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3816         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3817         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3818                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3819                         return kvm_pmu_get_msr(vcpu, msr_info);
3820                 msr_info->data = 0;
3821                 break;
3822         case MSR_IA32_UCODE_REV:
3823                 msr_info->data = vcpu->arch.microcode_version;
3824                 break;
3825         case MSR_IA32_ARCH_CAPABILITIES:
3826                 if (!msr_info->host_initiated &&
3827                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3828                         return 1;
3829                 msr_info->data = vcpu->arch.arch_capabilities;
3830                 break;
3831         case MSR_IA32_PERF_CAPABILITIES:
3832                 if (!msr_info->host_initiated &&
3833                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3834                         return 1;
3835                 msr_info->data = vcpu->arch.perf_capabilities;
3836                 break;
3837         case MSR_IA32_POWER_CTL:
3838                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3839                 break;
3840         case MSR_IA32_TSC: {
3841                 /*
3842                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3843                  * even when not intercepted. AMD manual doesn't explicitly
3844                  * state this but appears to behave the same.
3845                  *
3846                  * On userspace reads and writes, however, we unconditionally
3847                  * return L1's TSC value to ensure backwards-compatible
3848                  * behavior for migration.
3849                  */
3850                 u64 offset, ratio;
3851
3852                 if (msr_info->host_initiated) {
3853                         offset = vcpu->arch.l1_tsc_offset;
3854                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3855                 } else {
3856                         offset = vcpu->arch.tsc_offset;
3857                         ratio = vcpu->arch.tsc_scaling_ratio;
3858                 }
3859
3860                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3861                 break;
3862         }
3863         case MSR_MTRRcap:
3864         case 0x200 ... 0x2ff:
3865                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3866         case 0xcd: /* fsb frequency */
3867                 msr_info->data = 3;
3868                 break;
3869                 /*
3870                  * MSR_EBC_FREQUENCY_ID
3871                  * Conservative value valid for even the basic CPU models.
3872                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3873                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3874                  * and 266MHz for model 3, or 4. Set Core Clock
3875                  * Frequency to System Bus Frequency Ratio to 1 (bits
3876                  * 31:24) even though these are only valid for CPU
3877                  * models > 2, however guests may end up dividing or
3878                  * multiplying by zero otherwise.
3879                  */
3880         case MSR_EBC_FREQUENCY_ID:
3881                 msr_info->data = 1 << 24;
3882                 break;
3883         case MSR_IA32_APICBASE:
3884                 msr_info->data = kvm_get_apic_base(vcpu);
3885                 break;
3886         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3887                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3888         case MSR_IA32_TSC_DEADLINE:
3889                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3890                 break;
3891         case MSR_IA32_TSC_ADJUST:
3892                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3893                 break;
3894         case MSR_IA32_MISC_ENABLE:
3895                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3896                 break;
3897         case MSR_IA32_SMBASE:
3898                 if (!msr_info->host_initiated)
3899                         return 1;
3900                 msr_info->data = vcpu->arch.smbase;
3901                 break;
3902         case MSR_SMI_COUNT:
3903                 msr_info->data = vcpu->arch.smi_count;
3904                 break;
3905         case MSR_IA32_PERF_STATUS:
3906                 /* TSC increment by tick */
3907                 msr_info->data = 1000ULL;
3908                 /* CPU multiplier */
3909                 msr_info->data |= (((uint64_t)4ULL) << 40);
3910                 break;
3911         case MSR_EFER:
3912                 msr_info->data = vcpu->arch.efer;
3913                 break;
3914         case MSR_KVM_WALL_CLOCK:
3915                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3916                         return 1;
3917
3918                 msr_info->data = vcpu->kvm->arch.wall_clock;
3919                 break;
3920         case MSR_KVM_WALL_CLOCK_NEW:
3921                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3922                         return 1;
3923
3924                 msr_info->data = vcpu->kvm->arch.wall_clock;
3925                 break;
3926         case MSR_KVM_SYSTEM_TIME:
3927                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3928                         return 1;
3929
3930                 msr_info->data = vcpu->arch.time;
3931                 break;
3932         case MSR_KVM_SYSTEM_TIME_NEW:
3933                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3934                         return 1;
3935
3936                 msr_info->data = vcpu->arch.time;
3937                 break;
3938         case MSR_KVM_ASYNC_PF_EN:
3939                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3940                         return 1;
3941
3942                 msr_info->data = vcpu->arch.apf.msr_en_val;
3943                 break;
3944         case MSR_KVM_ASYNC_PF_INT:
3945                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3946                         return 1;
3947
3948                 msr_info->data = vcpu->arch.apf.msr_int_val;
3949                 break;
3950         case MSR_KVM_ASYNC_PF_ACK:
3951                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3952                         return 1;
3953
3954                 msr_info->data = 0;
3955                 break;
3956         case MSR_KVM_STEAL_TIME:
3957                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3958                         return 1;
3959
3960                 msr_info->data = vcpu->arch.st.msr_val;
3961                 break;
3962         case MSR_KVM_PV_EOI_EN:
3963                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3964                         return 1;
3965
3966                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3967                 break;
3968         case MSR_KVM_POLL_CONTROL:
3969                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3970                         return 1;
3971
3972                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3973                 break;
3974         case MSR_IA32_P5_MC_ADDR:
3975         case MSR_IA32_P5_MC_TYPE:
3976         case MSR_IA32_MCG_CAP:
3977         case MSR_IA32_MCG_CTL:
3978         case MSR_IA32_MCG_STATUS:
3979         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3980                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3981                                    msr_info->host_initiated);
3982         case MSR_IA32_XSS:
3983                 if (!msr_info->host_initiated &&
3984                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3985                         return 1;
3986                 msr_info->data = vcpu->arch.ia32_xss;
3987                 break;
3988         case MSR_K7_CLK_CTL:
3989                 /*
3990                  * Provide expected ramp-up count for K7. All other
3991                  * are set to zero, indicating minimum divisors for
3992                  * every field.
3993                  *
3994                  * This prevents guest kernels on AMD host with CPU
3995                  * type 6, model 8 and higher from exploding due to
3996                  * the rdmsr failing.
3997                  */
3998                 msr_info->data = 0x20000000;
3999                 break;
4000         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4001         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4002         case HV_X64_MSR_SYNDBG_OPTIONS:
4003         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4004         case HV_X64_MSR_CRASH_CTL:
4005         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4006         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4007         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4008         case HV_X64_MSR_TSC_EMULATION_STATUS:
4009                 return kvm_hv_get_msr_common(vcpu,
4010                                              msr_info->index, &msr_info->data,
4011                                              msr_info->host_initiated);
4012         case MSR_IA32_BBL_CR_CTL3:
4013                 /* This legacy MSR exists but isn't fully documented in current
4014                  * silicon.  It is however accessed by winxp in very narrow
4015                  * scenarios where it sets bit #19, itself documented as
4016                  * a "reserved" bit.  Best effort attempt to source coherent
4017                  * read data here should the balance of the register be
4018                  * interpreted by the guest:
4019                  *
4020                  * L2 cache control register 3: 64GB range, 256KB size,
4021                  * enabled, latency 0x1, configured
4022                  */
4023                 msr_info->data = 0xbe702111;
4024                 break;
4025         case MSR_AMD64_OSVW_ID_LENGTH:
4026                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4027                         return 1;
4028                 msr_info->data = vcpu->arch.osvw.length;
4029                 break;
4030         case MSR_AMD64_OSVW_STATUS:
4031                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4032                         return 1;
4033                 msr_info->data = vcpu->arch.osvw.status;
4034                 break;
4035         case MSR_PLATFORM_INFO:
4036                 if (!msr_info->host_initiated &&
4037                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4038                         return 1;
4039                 msr_info->data = vcpu->arch.msr_platform_info;
4040                 break;
4041         case MSR_MISC_FEATURES_ENABLES:
4042                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4043                 break;
4044         case MSR_K7_HWCR:
4045                 msr_info->data = vcpu->arch.msr_hwcr;
4046                 break;
4047 #ifdef CONFIG_X86_64
4048         case MSR_IA32_XFD:
4049                 if (!msr_info->host_initiated &&
4050                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4051                         return 1;
4052
4053                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4054                 break;
4055         case MSR_IA32_XFD_ERR:
4056                 if (!msr_info->host_initiated &&
4057                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4058                         return 1;
4059
4060                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4061                 break;
4062 #endif
4063         default:
4064                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4065                         return kvm_pmu_get_msr(vcpu, msr_info);
4066                 return KVM_MSR_RET_INVALID;
4067         }
4068         return 0;
4069 }
4070 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4071
4072 /*
4073  * Read or write a bunch of msrs. All parameters are kernel addresses.
4074  *
4075  * @return number of msrs set successfully.
4076  */
4077 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4078                     struct kvm_msr_entry *entries,
4079                     int (*do_msr)(struct kvm_vcpu *vcpu,
4080                                   unsigned index, u64 *data))
4081 {
4082         int i;
4083
4084         for (i = 0; i < msrs->nmsrs; ++i)
4085                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4086                         break;
4087
4088         return i;
4089 }
4090
4091 /*
4092  * Read or write a bunch of msrs. Parameters are user addresses.
4093  *
4094  * @return number of msrs set successfully.
4095  */
4096 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4097                   int (*do_msr)(struct kvm_vcpu *vcpu,
4098                                 unsigned index, u64 *data),
4099                   int writeback)
4100 {
4101         struct kvm_msrs msrs;
4102         struct kvm_msr_entry *entries;
4103         int r, n;
4104         unsigned size;
4105
4106         r = -EFAULT;
4107         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4108                 goto out;
4109
4110         r = -E2BIG;
4111         if (msrs.nmsrs >= MAX_IO_MSRS)
4112                 goto out;
4113
4114         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4115         entries = memdup_user(user_msrs->entries, size);
4116         if (IS_ERR(entries)) {
4117                 r = PTR_ERR(entries);
4118                 goto out;
4119         }
4120
4121         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4122         if (r < 0)
4123                 goto out_free;
4124
4125         r = -EFAULT;
4126         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4127                 goto out_free;
4128
4129         r = n;
4130
4131 out_free:
4132         kfree(entries);
4133 out:
4134         return r;
4135 }
4136
4137 static inline bool kvm_can_mwait_in_guest(void)
4138 {
4139         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4140                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4141                 boot_cpu_has(X86_FEATURE_ARAT);
4142 }
4143
4144 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4145                                             struct kvm_cpuid2 __user *cpuid_arg)
4146 {
4147         struct kvm_cpuid2 cpuid;
4148         int r;
4149
4150         r = -EFAULT;
4151         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4152                 return r;
4153
4154         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4155         if (r)
4156                 return r;
4157
4158         r = -EFAULT;
4159         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4160                 return r;
4161
4162         return 0;
4163 }
4164
4165 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4166 {
4167         int r = 0;
4168
4169         switch (ext) {
4170         case KVM_CAP_IRQCHIP:
4171         case KVM_CAP_HLT:
4172         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4173         case KVM_CAP_SET_TSS_ADDR:
4174         case KVM_CAP_EXT_CPUID:
4175         case KVM_CAP_EXT_EMUL_CPUID:
4176         case KVM_CAP_CLOCKSOURCE:
4177         case KVM_CAP_PIT:
4178         case KVM_CAP_NOP_IO_DELAY:
4179         case KVM_CAP_MP_STATE:
4180         case KVM_CAP_SYNC_MMU:
4181         case KVM_CAP_USER_NMI:
4182         case KVM_CAP_REINJECT_CONTROL:
4183         case KVM_CAP_IRQ_INJECT_STATUS:
4184         case KVM_CAP_IOEVENTFD:
4185         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4186         case KVM_CAP_PIT2:
4187         case KVM_CAP_PIT_STATE2:
4188         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4189         case KVM_CAP_VCPU_EVENTS:
4190         case KVM_CAP_HYPERV:
4191         case KVM_CAP_HYPERV_VAPIC:
4192         case KVM_CAP_HYPERV_SPIN:
4193         case KVM_CAP_HYPERV_SYNIC:
4194         case KVM_CAP_HYPERV_SYNIC2:
4195         case KVM_CAP_HYPERV_VP_INDEX:
4196         case KVM_CAP_HYPERV_EVENTFD:
4197         case KVM_CAP_HYPERV_TLBFLUSH:
4198         case KVM_CAP_HYPERV_SEND_IPI:
4199         case KVM_CAP_HYPERV_CPUID:
4200         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4201         case KVM_CAP_SYS_HYPERV_CPUID:
4202         case KVM_CAP_PCI_SEGMENT:
4203         case KVM_CAP_DEBUGREGS:
4204         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4205         case KVM_CAP_XSAVE:
4206         case KVM_CAP_ASYNC_PF:
4207         case KVM_CAP_ASYNC_PF_INT:
4208         case KVM_CAP_GET_TSC_KHZ:
4209         case KVM_CAP_KVMCLOCK_CTRL:
4210         case KVM_CAP_READONLY_MEM:
4211         case KVM_CAP_HYPERV_TIME:
4212         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4213         case KVM_CAP_TSC_DEADLINE_TIMER:
4214         case KVM_CAP_DISABLE_QUIRKS:
4215         case KVM_CAP_SET_BOOT_CPU_ID:
4216         case KVM_CAP_SPLIT_IRQCHIP:
4217         case KVM_CAP_IMMEDIATE_EXIT:
4218         case KVM_CAP_PMU_EVENT_FILTER:
4219         case KVM_CAP_GET_MSR_FEATURES:
4220         case KVM_CAP_MSR_PLATFORM_INFO:
4221         case KVM_CAP_EXCEPTION_PAYLOAD:
4222         case KVM_CAP_SET_GUEST_DEBUG:
4223         case KVM_CAP_LAST_CPU:
4224         case KVM_CAP_X86_USER_SPACE_MSR:
4225         case KVM_CAP_X86_MSR_FILTER:
4226         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4227 #ifdef CONFIG_X86_SGX_KVM
4228         case KVM_CAP_SGX_ATTRIBUTE:
4229 #endif
4230         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4231         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4232         case KVM_CAP_SREGS2:
4233         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4234         case KVM_CAP_VCPU_ATTRIBUTES:
4235         case KVM_CAP_SYS_ATTRIBUTES:
4236                 r = 1;
4237                 break;
4238         case KVM_CAP_EXIT_HYPERCALL:
4239                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4240                 break;
4241         case KVM_CAP_SET_GUEST_DEBUG2:
4242                 return KVM_GUESTDBG_VALID_MASK;
4243 #ifdef CONFIG_KVM_XEN
4244         case KVM_CAP_XEN_HVM:
4245                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4246                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4247                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4248                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4249                 if (sched_info_on())
4250                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4251                 break;
4252 #endif
4253         case KVM_CAP_SYNC_REGS:
4254                 r = KVM_SYNC_X86_VALID_FIELDS;
4255                 break;
4256         case KVM_CAP_ADJUST_CLOCK:
4257                 r = KVM_CLOCK_VALID_FLAGS;
4258                 break;
4259         case KVM_CAP_X86_DISABLE_EXITS:
4260                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4261                       KVM_X86_DISABLE_EXITS_CSTATE;
4262                 if(kvm_can_mwait_in_guest())
4263                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4264                 break;
4265         case KVM_CAP_X86_SMM:
4266                 /* SMBASE is usually relocated above 1M on modern chipsets,
4267                  * and SMM handlers might indeed rely on 4G segment limits,
4268                  * so do not report SMM to be available if real mode is
4269                  * emulated via vm86 mode.  Still, do not go to great lengths
4270                  * to avoid userspace's usage of the feature, because it is a
4271                  * fringe case that is not enabled except via specific settings
4272                  * of the module parameters.
4273                  */
4274                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4275                 break;
4276         case KVM_CAP_VAPIC:
4277                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4278                 break;
4279         case KVM_CAP_NR_VCPUS:
4280                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4281                 break;
4282         case KVM_CAP_MAX_VCPUS:
4283                 r = KVM_MAX_VCPUS;
4284                 break;
4285         case KVM_CAP_MAX_VCPU_ID:
4286                 r = KVM_MAX_VCPU_IDS;
4287                 break;
4288         case KVM_CAP_PV_MMU:    /* obsolete */
4289                 r = 0;
4290                 break;
4291         case KVM_CAP_MCE:
4292                 r = KVM_MAX_MCE_BANKS;
4293                 break;
4294         case KVM_CAP_XCRS:
4295                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4296                 break;
4297         case KVM_CAP_TSC_CONTROL:
4298                 r = kvm_has_tsc_control;
4299                 break;
4300         case KVM_CAP_X2APIC_API:
4301                 r = KVM_X2APIC_API_VALID_FLAGS;
4302                 break;
4303         case KVM_CAP_NESTED_STATE:
4304                 r = kvm_x86_ops.nested_ops->get_state ?
4305                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4306                 break;
4307         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4308                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4309                 break;
4310         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4311                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4312                 break;
4313         case KVM_CAP_SMALLER_MAXPHYADDR:
4314                 r = (int) allow_smaller_maxphyaddr;
4315                 break;
4316         case KVM_CAP_STEAL_TIME:
4317                 r = sched_info_on();
4318                 break;
4319         case KVM_CAP_X86_BUS_LOCK_EXIT:
4320                 if (kvm_has_bus_lock_exit)
4321                         r = KVM_BUS_LOCK_DETECTION_OFF |
4322                             KVM_BUS_LOCK_DETECTION_EXIT;
4323                 else
4324                         r = 0;
4325                 break;
4326         case KVM_CAP_XSAVE2: {
4327                 u64 guest_perm = xstate_get_guest_group_perm();
4328
4329                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4330                 if (r < sizeof(struct kvm_xsave))
4331                         r = sizeof(struct kvm_xsave);
4332                 break;
4333         }
4334         default:
4335                 break;
4336         }
4337         return r;
4338 }
4339
4340 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4341 {
4342         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4343
4344         if ((u64)(unsigned long)uaddr != attr->addr)
4345                 return ERR_PTR_USR(-EFAULT);
4346         return uaddr;
4347 }
4348
4349 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4350 {
4351         u64 __user *uaddr = kvm_get_attr_addr(attr);
4352
4353         if (attr->group)
4354                 return -ENXIO;
4355
4356         if (IS_ERR(uaddr))
4357                 return PTR_ERR(uaddr);
4358
4359         switch (attr->attr) {
4360         case KVM_X86_XCOMP_GUEST_SUPP:
4361                 if (put_user(supported_xcr0, uaddr))
4362                         return -EFAULT;
4363                 return 0;
4364         default:
4365                 return -ENXIO;
4366                 break;
4367         }
4368 }
4369
4370 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4371 {
4372         if (attr->group)
4373                 return -ENXIO;
4374
4375         switch (attr->attr) {
4376         case KVM_X86_XCOMP_GUEST_SUPP:
4377                 return 0;
4378         default:
4379                 return -ENXIO;
4380         }
4381 }
4382
4383 long kvm_arch_dev_ioctl(struct file *filp,
4384                         unsigned int ioctl, unsigned long arg)
4385 {
4386         void __user *argp = (void __user *)arg;
4387         long r;
4388
4389         switch (ioctl) {
4390         case KVM_GET_MSR_INDEX_LIST: {
4391                 struct kvm_msr_list __user *user_msr_list = argp;
4392                 struct kvm_msr_list msr_list;
4393                 unsigned n;
4394
4395                 r = -EFAULT;
4396                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4397                         goto out;
4398                 n = msr_list.nmsrs;
4399                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4400                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4401                         goto out;
4402                 r = -E2BIG;
4403                 if (n < msr_list.nmsrs)
4404                         goto out;
4405                 r = -EFAULT;
4406                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4407                                  num_msrs_to_save * sizeof(u32)))
4408                         goto out;
4409                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4410                                  &emulated_msrs,
4411                                  num_emulated_msrs * sizeof(u32)))
4412                         goto out;
4413                 r = 0;
4414                 break;
4415         }
4416         case KVM_GET_SUPPORTED_CPUID:
4417         case KVM_GET_EMULATED_CPUID: {
4418                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4419                 struct kvm_cpuid2 cpuid;
4420
4421                 r = -EFAULT;
4422                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4423                         goto out;
4424
4425                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4426                                             ioctl);
4427                 if (r)
4428                         goto out;
4429
4430                 r = -EFAULT;
4431                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4432                         goto out;
4433                 r = 0;
4434                 break;
4435         }
4436         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4437                 r = -EFAULT;
4438                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4439                                  sizeof(kvm_mce_cap_supported)))
4440                         goto out;
4441                 r = 0;
4442                 break;
4443         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4444                 struct kvm_msr_list __user *user_msr_list = argp;
4445                 struct kvm_msr_list msr_list;
4446                 unsigned int n;
4447
4448                 r = -EFAULT;
4449                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4450                         goto out;
4451                 n = msr_list.nmsrs;
4452                 msr_list.nmsrs = num_msr_based_features;
4453                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4454                         goto out;
4455                 r = -E2BIG;
4456                 if (n < msr_list.nmsrs)
4457                         goto out;
4458                 r = -EFAULT;
4459                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4460                                  num_msr_based_features * sizeof(u32)))
4461                         goto out;
4462                 r = 0;
4463                 break;
4464         }
4465         case KVM_GET_MSRS:
4466                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4467                 break;
4468         case KVM_GET_SUPPORTED_HV_CPUID:
4469                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4470                 break;
4471         case KVM_GET_DEVICE_ATTR: {
4472                 struct kvm_device_attr attr;
4473                 r = -EFAULT;
4474                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4475                         break;
4476                 r = kvm_x86_dev_get_attr(&attr);
4477                 break;
4478         }
4479         case KVM_HAS_DEVICE_ATTR: {
4480                 struct kvm_device_attr attr;
4481                 r = -EFAULT;
4482                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4483                         break;
4484                 r = kvm_x86_dev_has_attr(&attr);
4485                 break;
4486         }
4487         default:
4488                 r = -EINVAL;
4489                 break;
4490         }
4491 out:
4492         return r;
4493 }
4494
4495 static void wbinvd_ipi(void *garbage)
4496 {
4497         wbinvd();
4498 }
4499
4500 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4501 {
4502         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4503 }
4504
4505 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4506 {
4507         /* Address WBINVD may be executed by guest */
4508         if (need_emulate_wbinvd(vcpu)) {
4509                 if (static_call(kvm_x86_has_wbinvd_exit)())
4510                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4511                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4512                         smp_call_function_single(vcpu->cpu,
4513                                         wbinvd_ipi, NULL, 1);
4514         }
4515
4516         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4517
4518         /* Save host pkru register if supported */
4519         vcpu->arch.host_pkru = read_pkru();
4520
4521         /* Apply any externally detected TSC adjustments (due to suspend) */
4522         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4523                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4524                 vcpu->arch.tsc_offset_adjustment = 0;
4525                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4526         }
4527
4528         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4529                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4530                                 rdtsc() - vcpu->arch.last_host_tsc;
4531                 if (tsc_delta < 0)
4532                         mark_tsc_unstable("KVM discovered backwards TSC");
4533
4534                 if (kvm_check_tsc_unstable()) {
4535                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4536                                                 vcpu->arch.last_guest_tsc);
4537                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4538                         vcpu->arch.tsc_catchup = 1;
4539                 }
4540
4541                 if (kvm_lapic_hv_timer_in_use(vcpu))
4542                         kvm_lapic_restart_hv_timer(vcpu);
4543
4544                 /*
4545                  * On a host with synchronized TSC, there is no need to update
4546                  * kvmclock on vcpu->cpu migration
4547                  */
4548                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4549                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4550                 if (vcpu->cpu != cpu)
4551                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4552                 vcpu->cpu = cpu;
4553         }
4554
4555         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4556 }
4557
4558 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4559 {
4560         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4561         struct kvm_steal_time __user *st;
4562         struct kvm_memslots *slots;
4563         static const u8 preempted = KVM_VCPU_PREEMPTED;
4564
4565         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4566                 return;
4567
4568         if (vcpu->arch.st.preempted)
4569                 return;
4570
4571         /* This happens on process exit */
4572         if (unlikely(current->mm != vcpu->kvm->mm))
4573                 return;
4574
4575         slots = kvm_memslots(vcpu->kvm);
4576
4577         if (unlikely(slots->generation != ghc->generation ||
4578                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4579                 return;
4580
4581         st = (struct kvm_steal_time __user *)ghc->hva;
4582         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4583
4584         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4585                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4586
4587         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4588 }
4589
4590 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4591 {
4592         int idx;
4593
4594         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4595                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4596
4597         /*
4598          * Take the srcu lock as memslots will be accessed to check the gfn
4599          * cache generation against the memslots generation.
4600          */
4601         idx = srcu_read_lock(&vcpu->kvm->srcu);
4602         if (kvm_xen_msr_enabled(vcpu->kvm))
4603                 kvm_xen_runstate_set_preempted(vcpu);
4604         else
4605                 kvm_steal_time_set_preempted(vcpu);
4606         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4607
4608         static_call(kvm_x86_vcpu_put)(vcpu);
4609         vcpu->arch.last_host_tsc = rdtsc();
4610 }
4611
4612 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4613                                     struct kvm_lapic_state *s)
4614 {
4615         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4616
4617         return kvm_apic_get_state(vcpu, s);
4618 }
4619
4620 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4621                                     struct kvm_lapic_state *s)
4622 {
4623         int r;
4624
4625         r = kvm_apic_set_state(vcpu, s);
4626         if (r)
4627                 return r;
4628         update_cr8_intercept(vcpu);
4629
4630         return 0;
4631 }
4632
4633 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4634 {
4635         /*
4636          * We can accept userspace's request for interrupt injection
4637          * as long as we have a place to store the interrupt number.
4638          * The actual injection will happen when the CPU is able to
4639          * deliver the interrupt.
4640          */
4641         if (kvm_cpu_has_extint(vcpu))
4642                 return false;
4643
4644         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4645         return (!lapic_in_kernel(vcpu) ||
4646                 kvm_apic_accept_pic_intr(vcpu));
4647 }
4648
4649 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4650 {
4651         /*
4652          * Do not cause an interrupt window exit if an exception
4653          * is pending or an event needs reinjection; userspace
4654          * might want to inject the interrupt manually using KVM_SET_REGS
4655          * or KVM_SET_SREGS.  For that to work, we must be at an
4656          * instruction boundary and with no events half-injected.
4657          */
4658         return (kvm_arch_interrupt_allowed(vcpu) &&
4659                 kvm_cpu_accept_dm_intr(vcpu) &&
4660                 !kvm_event_needs_reinjection(vcpu) &&
4661                 !vcpu->arch.exception.pending);
4662 }
4663
4664 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4665                                     struct kvm_interrupt *irq)
4666 {
4667         if (irq->irq >= KVM_NR_INTERRUPTS)
4668                 return -EINVAL;
4669
4670         if (!irqchip_in_kernel(vcpu->kvm)) {
4671                 kvm_queue_interrupt(vcpu, irq->irq, false);
4672                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4673                 return 0;
4674         }
4675
4676         /*
4677          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4678          * fail for in-kernel 8259.
4679          */
4680         if (pic_in_kernel(vcpu->kvm))
4681                 return -ENXIO;
4682
4683         if (vcpu->arch.pending_external_vector != -1)
4684                 return -EEXIST;
4685
4686         vcpu->arch.pending_external_vector = irq->irq;
4687         kvm_make_request(KVM_REQ_EVENT, vcpu);
4688         return 0;
4689 }
4690
4691 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4692 {
4693         kvm_inject_nmi(vcpu);
4694
4695         return 0;
4696 }
4697
4698 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4699 {
4700         kvm_make_request(KVM_REQ_SMI, vcpu);
4701
4702         return 0;
4703 }
4704
4705 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4706                                            struct kvm_tpr_access_ctl *tac)
4707 {
4708         if (tac->flags)
4709                 return -EINVAL;
4710         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4711         return 0;
4712 }
4713
4714 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4715                                         u64 mcg_cap)
4716 {
4717         int r;
4718         unsigned bank_num = mcg_cap & 0xff, bank;
4719
4720         r = -EINVAL;
4721         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4722                 goto out;
4723         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4724                 goto out;
4725         r = 0;
4726         vcpu->arch.mcg_cap = mcg_cap;
4727         /* Init IA32_MCG_CTL to all 1s */
4728         if (mcg_cap & MCG_CTL_P)
4729                 vcpu->arch.mcg_ctl = ~(u64)0;
4730         /* Init IA32_MCi_CTL to all 1s */
4731         for (bank = 0; bank < bank_num; bank++)
4732                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4733
4734         static_call(kvm_x86_setup_mce)(vcpu);
4735 out:
4736         return r;
4737 }
4738
4739 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4740                                       struct kvm_x86_mce *mce)
4741 {
4742         u64 mcg_cap = vcpu->arch.mcg_cap;
4743         unsigned bank_num = mcg_cap & 0xff;
4744         u64 *banks = vcpu->arch.mce_banks;
4745
4746         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4747                 return -EINVAL;
4748         /*
4749          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4750          * reporting is disabled
4751          */
4752         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4753             vcpu->arch.mcg_ctl != ~(u64)0)
4754                 return 0;
4755         banks += 4 * mce->bank;
4756         /*
4757          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4758          * reporting is disabled for the bank
4759          */
4760         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4761                 return 0;
4762         if (mce->status & MCI_STATUS_UC) {
4763                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4764                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4765                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4766                         return 0;
4767                 }
4768                 if (banks[1] & MCI_STATUS_VAL)
4769                         mce->status |= MCI_STATUS_OVER;
4770                 banks[2] = mce->addr;
4771                 banks[3] = mce->misc;
4772                 vcpu->arch.mcg_status = mce->mcg_status;
4773                 banks[1] = mce->status;
4774                 kvm_queue_exception(vcpu, MC_VECTOR);
4775         } else if (!(banks[1] & MCI_STATUS_VAL)
4776                    || !(banks[1] & MCI_STATUS_UC)) {
4777                 if (banks[1] & MCI_STATUS_VAL)
4778                         mce->status |= MCI_STATUS_OVER;
4779                 banks[2] = mce->addr;
4780                 banks[3] = mce->misc;
4781                 banks[1] = mce->status;
4782         } else
4783                 banks[1] |= MCI_STATUS_OVER;
4784         return 0;
4785 }
4786
4787 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4788                                                struct kvm_vcpu_events *events)
4789 {
4790         process_nmi(vcpu);
4791
4792         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4793                 process_smi(vcpu);
4794
4795         /*
4796          * In guest mode, payload delivery should be deferred,
4797          * so that the L1 hypervisor can intercept #PF before
4798          * CR2 is modified (or intercept #DB before DR6 is
4799          * modified under nVMX). Unless the per-VM capability,
4800          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4801          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4802          * opportunistically defer the exception payload, deliver it if the
4803          * capability hasn't been requested before processing a
4804          * KVM_GET_VCPU_EVENTS.
4805          */
4806         if (!vcpu->kvm->arch.exception_payload_enabled &&
4807             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4808                 kvm_deliver_exception_payload(vcpu);
4809
4810         /*
4811          * The API doesn't provide the instruction length for software
4812          * exceptions, so don't report them. As long as the guest RIP
4813          * isn't advanced, we should expect to encounter the exception
4814          * again.
4815          */
4816         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4817                 events->exception.injected = 0;
4818                 events->exception.pending = 0;
4819         } else {
4820                 events->exception.injected = vcpu->arch.exception.injected;
4821                 events->exception.pending = vcpu->arch.exception.pending;
4822                 /*
4823                  * For ABI compatibility, deliberately conflate
4824                  * pending and injected exceptions when
4825                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4826                  */
4827                 if (!vcpu->kvm->arch.exception_payload_enabled)
4828                         events->exception.injected |=
4829                                 vcpu->arch.exception.pending;
4830         }
4831         events->exception.nr = vcpu->arch.exception.nr;
4832         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4833         events->exception.error_code = vcpu->arch.exception.error_code;
4834         events->exception_has_payload = vcpu->arch.exception.has_payload;
4835         events->exception_payload = vcpu->arch.exception.payload;
4836
4837         events->interrupt.injected =
4838                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4839         events->interrupt.nr = vcpu->arch.interrupt.nr;
4840         events->interrupt.soft = 0;
4841         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4842
4843         events->nmi.injected = vcpu->arch.nmi_injected;
4844         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4845         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4846         events->nmi.pad = 0;
4847
4848         events->sipi_vector = 0; /* never valid when reporting to user space */
4849
4850         events->smi.smm = is_smm(vcpu);
4851         events->smi.pending = vcpu->arch.smi_pending;
4852         events->smi.smm_inside_nmi =
4853                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4854         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4855
4856         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4857                          | KVM_VCPUEVENT_VALID_SHADOW
4858                          | KVM_VCPUEVENT_VALID_SMM);
4859         if (vcpu->kvm->arch.exception_payload_enabled)
4860                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4861
4862         memset(&events->reserved, 0, sizeof(events->reserved));
4863 }
4864
4865 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4866
4867 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4868                                               struct kvm_vcpu_events *events)
4869 {
4870         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4871                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4872                               | KVM_VCPUEVENT_VALID_SHADOW
4873                               | KVM_VCPUEVENT_VALID_SMM
4874                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4875                 return -EINVAL;
4876
4877         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4878                 if (!vcpu->kvm->arch.exception_payload_enabled)
4879                         return -EINVAL;
4880                 if (events->exception.pending)
4881                         events->exception.injected = 0;
4882                 else
4883                         events->exception_has_payload = 0;
4884         } else {
4885                 events->exception.pending = 0;
4886                 events->exception_has_payload = 0;
4887         }
4888
4889         if ((events->exception.injected || events->exception.pending) &&
4890             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4891                 return -EINVAL;
4892
4893         /* INITs are latched while in SMM */
4894         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4895             (events->smi.smm || events->smi.pending) &&
4896             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4897                 return -EINVAL;
4898
4899         process_nmi(vcpu);
4900         vcpu->arch.exception.injected = events->exception.injected;
4901         vcpu->arch.exception.pending = events->exception.pending;
4902         vcpu->arch.exception.nr = events->exception.nr;
4903         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4904         vcpu->arch.exception.error_code = events->exception.error_code;
4905         vcpu->arch.exception.has_payload = events->exception_has_payload;
4906         vcpu->arch.exception.payload = events->exception_payload;
4907
4908         vcpu->arch.interrupt.injected = events->interrupt.injected;
4909         vcpu->arch.interrupt.nr = events->interrupt.nr;
4910         vcpu->arch.interrupt.soft = events->interrupt.soft;
4911         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4912                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4913                                                 events->interrupt.shadow);
4914
4915         vcpu->arch.nmi_injected = events->nmi.injected;
4916         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4917                 vcpu->arch.nmi_pending = events->nmi.pending;
4918         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4919
4920         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4921             lapic_in_kernel(vcpu))
4922                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4923
4924         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4925                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4926                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
4927                         kvm_smm_changed(vcpu, events->smi.smm);
4928                 }
4929
4930                 vcpu->arch.smi_pending = events->smi.pending;
4931
4932                 if (events->smi.smm) {
4933                         if (events->smi.smm_inside_nmi)
4934                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4935                         else
4936                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4937                 }
4938
4939                 if (lapic_in_kernel(vcpu)) {
4940                         if (events->smi.latched_init)
4941                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4942                         else
4943                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4944                 }
4945         }
4946
4947         kvm_make_request(KVM_REQ_EVENT, vcpu);
4948
4949         return 0;
4950 }
4951
4952 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4953                                              struct kvm_debugregs *dbgregs)
4954 {
4955         unsigned long val;
4956
4957         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4958         kvm_get_dr(vcpu, 6, &val);
4959         dbgregs->dr6 = val;
4960         dbgregs->dr7 = vcpu->arch.dr7;
4961         dbgregs->flags = 0;
4962         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4963 }
4964
4965 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4966                                             struct kvm_debugregs *dbgregs)
4967 {
4968         if (dbgregs->flags)
4969                 return -EINVAL;
4970
4971         if (!kvm_dr6_valid(dbgregs->dr6))
4972                 return -EINVAL;
4973         if (!kvm_dr7_valid(dbgregs->dr7))
4974                 return -EINVAL;
4975
4976         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4977         kvm_update_dr0123(vcpu);
4978         vcpu->arch.dr6 = dbgregs->dr6;
4979         vcpu->arch.dr7 = dbgregs->dr7;
4980         kvm_update_dr7(vcpu);
4981
4982         return 0;
4983 }
4984
4985 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4986                                          struct kvm_xsave *guest_xsave)
4987 {
4988         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4989                 return;
4990
4991         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4992                                        guest_xsave->region,
4993                                        sizeof(guest_xsave->region),
4994                                        vcpu->arch.pkru);
4995 }
4996
4997 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
4998                                           u8 *state, unsigned int size)
4999 {
5000         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5001                 return;
5002
5003         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5004                                        state, size, vcpu->arch.pkru);
5005 }
5006
5007 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5008                                         struct kvm_xsave *guest_xsave)
5009 {
5010         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5011                 return 0;
5012
5013         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5014                                               guest_xsave->region,
5015                                               supported_xcr0, &vcpu->arch.pkru);
5016 }
5017
5018 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5019                                         struct kvm_xcrs *guest_xcrs)
5020 {
5021         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5022                 guest_xcrs->nr_xcrs = 0;
5023                 return;
5024         }
5025
5026         guest_xcrs->nr_xcrs = 1;
5027         guest_xcrs->flags = 0;
5028         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5029         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5030 }
5031
5032 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5033                                        struct kvm_xcrs *guest_xcrs)
5034 {
5035         int i, r = 0;
5036
5037         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5038                 return -EINVAL;
5039
5040         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5041                 return -EINVAL;
5042
5043         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5044                 /* Only support XCR0 currently */
5045                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5046                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5047                                 guest_xcrs->xcrs[i].value);
5048                         break;
5049                 }
5050         if (r)
5051                 r = -EINVAL;
5052         return r;
5053 }
5054
5055 /*
5056  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5057  * stopped by the hypervisor.  This function will be called from the host only.
5058  * EINVAL is returned when the host attempts to set the flag for a guest that
5059  * does not support pv clocks.
5060  */
5061 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5062 {
5063         if (!vcpu->arch.pv_time_enabled)
5064                 return -EINVAL;
5065         vcpu->arch.pvclock_set_guest_stopped_request = true;
5066         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5067         return 0;
5068 }
5069
5070 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5071                                  struct kvm_device_attr *attr)
5072 {
5073         int r;
5074
5075         switch (attr->attr) {
5076         case KVM_VCPU_TSC_OFFSET:
5077                 r = 0;
5078                 break;
5079         default:
5080                 r = -ENXIO;
5081         }
5082
5083         return r;
5084 }
5085
5086 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5087                                  struct kvm_device_attr *attr)
5088 {
5089         u64 __user *uaddr = kvm_get_attr_addr(attr);
5090         int r;
5091
5092         if (IS_ERR(uaddr))
5093                 return PTR_ERR(uaddr);
5094
5095         switch (attr->attr) {
5096         case KVM_VCPU_TSC_OFFSET:
5097                 r = -EFAULT;
5098                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5099                         break;
5100                 r = 0;
5101                 break;
5102         default:
5103                 r = -ENXIO;
5104         }
5105
5106         return r;
5107 }
5108
5109 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5110                                  struct kvm_device_attr *attr)
5111 {
5112         u64 __user *uaddr = kvm_get_attr_addr(attr);
5113         struct kvm *kvm = vcpu->kvm;
5114         int r;
5115
5116         if (IS_ERR(uaddr))
5117                 return PTR_ERR(uaddr);
5118
5119         switch (attr->attr) {
5120         case KVM_VCPU_TSC_OFFSET: {
5121                 u64 offset, tsc, ns;
5122                 unsigned long flags;
5123                 bool matched;
5124
5125                 r = -EFAULT;
5126                 if (get_user(offset, uaddr))
5127                         break;
5128
5129                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5130
5131                 matched = (vcpu->arch.virtual_tsc_khz &&
5132                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5133                            kvm->arch.last_tsc_offset == offset);
5134
5135                 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5136                 ns = get_kvmclock_base_ns();
5137
5138                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5139                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5140
5141                 r = 0;
5142                 break;
5143         }
5144         default:
5145                 r = -ENXIO;
5146         }
5147
5148         return r;
5149 }
5150
5151 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5152                                       unsigned int ioctl,
5153                                       void __user *argp)
5154 {
5155         struct kvm_device_attr attr;
5156         int r;
5157
5158         if (copy_from_user(&attr, argp, sizeof(attr)))
5159                 return -EFAULT;
5160
5161         if (attr.group != KVM_VCPU_TSC_CTRL)
5162                 return -ENXIO;
5163
5164         switch (ioctl) {
5165         case KVM_HAS_DEVICE_ATTR:
5166                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5167                 break;
5168         case KVM_GET_DEVICE_ATTR:
5169                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5170                 break;
5171         case KVM_SET_DEVICE_ATTR:
5172                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5173                 break;
5174         }
5175
5176         return r;
5177 }
5178
5179 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5180                                      struct kvm_enable_cap *cap)
5181 {
5182         int r;
5183         uint16_t vmcs_version;
5184         void __user *user_ptr;
5185
5186         if (cap->flags)
5187                 return -EINVAL;
5188
5189         switch (cap->cap) {
5190         case KVM_CAP_HYPERV_SYNIC2:
5191                 if (cap->args[0])
5192                         return -EINVAL;
5193                 fallthrough;
5194
5195         case KVM_CAP_HYPERV_SYNIC:
5196                 if (!irqchip_in_kernel(vcpu->kvm))
5197                         return -EINVAL;
5198                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5199                                              KVM_CAP_HYPERV_SYNIC2);
5200         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5201                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5202                         return -ENOTTY;
5203                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5204                 if (!r) {
5205                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5206                         if (copy_to_user(user_ptr, &vmcs_version,
5207                                          sizeof(vmcs_version)))
5208                                 r = -EFAULT;
5209                 }
5210                 return r;
5211         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5212                 if (!kvm_x86_ops.enable_direct_tlbflush)
5213                         return -ENOTTY;
5214
5215                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5216
5217         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5218                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5219
5220         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5221                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5222                 if (vcpu->arch.pv_cpuid.enforce)
5223                         kvm_update_pv_runtime(vcpu);
5224
5225                 return 0;
5226         default:
5227                 return -EINVAL;
5228         }
5229 }
5230
5231 long kvm_arch_vcpu_ioctl(struct file *filp,
5232                          unsigned int ioctl, unsigned long arg)
5233 {
5234         struct kvm_vcpu *vcpu = filp->private_data;
5235         void __user *argp = (void __user *)arg;
5236         int r;
5237         union {
5238                 struct kvm_sregs2 *sregs2;
5239                 struct kvm_lapic_state *lapic;
5240                 struct kvm_xsave *xsave;
5241                 struct kvm_xcrs *xcrs;
5242                 void *buffer;
5243         } u;
5244
5245         vcpu_load(vcpu);
5246
5247         u.buffer = NULL;
5248         switch (ioctl) {
5249         case KVM_GET_LAPIC: {
5250                 r = -EINVAL;
5251                 if (!lapic_in_kernel(vcpu))
5252                         goto out;
5253                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5254                                 GFP_KERNEL_ACCOUNT);
5255
5256                 r = -ENOMEM;
5257                 if (!u.lapic)
5258                         goto out;
5259                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5260                 if (r)
5261                         goto out;
5262                 r = -EFAULT;
5263                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5264                         goto out;
5265                 r = 0;
5266                 break;
5267         }
5268         case KVM_SET_LAPIC: {
5269                 r = -EINVAL;
5270                 if (!lapic_in_kernel(vcpu))
5271                         goto out;
5272                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5273                 if (IS_ERR(u.lapic)) {
5274                         r = PTR_ERR(u.lapic);
5275                         goto out_nofree;
5276                 }
5277
5278                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5279                 break;
5280         }
5281         case KVM_INTERRUPT: {
5282                 struct kvm_interrupt irq;
5283
5284                 r = -EFAULT;
5285                 if (copy_from_user(&irq, argp, sizeof(irq)))
5286                         goto out;
5287                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5288                 break;
5289         }
5290         case KVM_NMI: {
5291                 r = kvm_vcpu_ioctl_nmi(vcpu);
5292                 break;
5293         }
5294         case KVM_SMI: {
5295                 r = kvm_vcpu_ioctl_smi(vcpu);
5296                 break;
5297         }
5298         case KVM_SET_CPUID: {
5299                 struct kvm_cpuid __user *cpuid_arg = argp;
5300                 struct kvm_cpuid cpuid;
5301
5302                 r = -EFAULT;
5303                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5304                         goto out;
5305                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5306                 break;
5307         }
5308         case KVM_SET_CPUID2: {
5309                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5310                 struct kvm_cpuid2 cpuid;
5311
5312                 r = -EFAULT;
5313                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5314                         goto out;
5315                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5316                                               cpuid_arg->entries);
5317                 break;
5318         }
5319         case KVM_GET_CPUID2: {
5320                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5321                 struct kvm_cpuid2 cpuid;
5322
5323                 r = -EFAULT;
5324                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5325                         goto out;
5326                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5327                                               cpuid_arg->entries);
5328                 if (r)
5329                         goto out;
5330                 r = -EFAULT;
5331                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5332                         goto out;
5333                 r = 0;
5334                 break;
5335         }
5336         case KVM_GET_MSRS: {
5337                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5338                 r = msr_io(vcpu, argp, do_get_msr, 1);
5339                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5340                 break;
5341         }
5342         case KVM_SET_MSRS: {
5343                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5344                 r = msr_io(vcpu, argp, do_set_msr, 0);
5345                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5346                 break;
5347         }
5348         case KVM_TPR_ACCESS_REPORTING: {
5349                 struct kvm_tpr_access_ctl tac;
5350
5351                 r = -EFAULT;
5352                 if (copy_from_user(&tac, argp, sizeof(tac)))
5353                         goto out;
5354                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5355                 if (r)
5356                         goto out;
5357                 r = -EFAULT;
5358                 if (copy_to_user(argp, &tac, sizeof(tac)))
5359                         goto out;
5360                 r = 0;
5361                 break;
5362         };
5363         case KVM_SET_VAPIC_ADDR: {
5364                 struct kvm_vapic_addr va;
5365                 int idx;
5366
5367                 r = -EINVAL;
5368                 if (!lapic_in_kernel(vcpu))
5369                         goto out;
5370                 r = -EFAULT;
5371                 if (copy_from_user(&va, argp, sizeof(va)))
5372                         goto out;
5373                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5374                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5375                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5376                 break;
5377         }
5378         case KVM_X86_SETUP_MCE: {
5379                 u64 mcg_cap;
5380
5381                 r = -EFAULT;
5382                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5383                         goto out;
5384                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5385                 break;
5386         }
5387         case KVM_X86_SET_MCE: {
5388                 struct kvm_x86_mce mce;
5389
5390                 r = -EFAULT;
5391                 if (copy_from_user(&mce, argp, sizeof(mce)))
5392                         goto out;
5393                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5394                 break;
5395         }
5396         case KVM_GET_VCPU_EVENTS: {
5397                 struct kvm_vcpu_events events;
5398
5399                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5400
5401                 r = -EFAULT;
5402                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5403                         break;
5404                 r = 0;
5405                 break;
5406         }
5407         case KVM_SET_VCPU_EVENTS: {
5408                 struct kvm_vcpu_events events;
5409
5410                 r = -EFAULT;
5411                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5412                         break;
5413
5414                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5415                 break;
5416         }
5417         case KVM_GET_DEBUGREGS: {
5418                 struct kvm_debugregs dbgregs;
5419
5420                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5421
5422                 r = -EFAULT;
5423                 if (copy_to_user(argp, &dbgregs,
5424                                  sizeof(struct kvm_debugregs)))
5425                         break;
5426                 r = 0;
5427                 break;
5428         }
5429         case KVM_SET_DEBUGREGS: {
5430                 struct kvm_debugregs dbgregs;
5431
5432                 r = -EFAULT;
5433                 if (copy_from_user(&dbgregs, argp,
5434                                    sizeof(struct kvm_debugregs)))
5435                         break;
5436
5437                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5438                 break;
5439         }
5440         case KVM_GET_XSAVE: {
5441                 r = -EINVAL;
5442                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5443                         break;
5444
5445                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5446                 r = -ENOMEM;
5447                 if (!u.xsave)
5448                         break;
5449
5450                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5451
5452                 r = -EFAULT;
5453                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5454                         break;
5455                 r = 0;
5456                 break;
5457         }
5458         case KVM_SET_XSAVE: {
5459                 int size = vcpu->arch.guest_fpu.uabi_size;
5460
5461                 u.xsave = memdup_user(argp, size);
5462                 if (IS_ERR(u.xsave)) {
5463                         r = PTR_ERR(u.xsave);
5464                         goto out_nofree;
5465                 }
5466
5467                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5468                 break;
5469         }
5470
5471         case KVM_GET_XSAVE2: {
5472                 int size = vcpu->arch.guest_fpu.uabi_size;
5473
5474                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5475                 r = -ENOMEM;
5476                 if (!u.xsave)
5477                         break;
5478
5479                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5480
5481                 r = -EFAULT;
5482                 if (copy_to_user(argp, u.xsave, size))
5483                         break;
5484
5485                 r = 0;
5486                 break;
5487         }
5488
5489         case KVM_GET_XCRS: {
5490                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5491                 r = -ENOMEM;
5492                 if (!u.xcrs)
5493                         break;
5494
5495                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5496
5497                 r = -EFAULT;
5498                 if (copy_to_user(argp, u.xcrs,
5499                                  sizeof(struct kvm_xcrs)))
5500                         break;
5501                 r = 0;
5502                 break;
5503         }
5504         case KVM_SET_XCRS: {
5505                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5506                 if (IS_ERR(u.xcrs)) {
5507                         r = PTR_ERR(u.xcrs);
5508                         goto out_nofree;
5509                 }
5510
5511                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5512                 break;
5513         }
5514         case KVM_SET_TSC_KHZ: {
5515                 u32 user_tsc_khz;
5516
5517                 r = -EINVAL;
5518                 user_tsc_khz = (u32)arg;
5519
5520                 if (kvm_has_tsc_control &&
5521                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5522                         goto out;
5523
5524                 if (user_tsc_khz == 0)
5525                         user_tsc_khz = tsc_khz;
5526
5527                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5528                         r = 0;
5529
5530                 goto out;
5531         }
5532         case KVM_GET_TSC_KHZ: {
5533                 r = vcpu->arch.virtual_tsc_khz;
5534                 goto out;
5535         }
5536         case KVM_KVMCLOCK_CTRL: {
5537                 r = kvm_set_guest_paused(vcpu);
5538                 goto out;
5539         }
5540         case KVM_ENABLE_CAP: {
5541                 struct kvm_enable_cap cap;
5542
5543                 r = -EFAULT;
5544                 if (copy_from_user(&cap, argp, sizeof(cap)))
5545                         goto out;
5546                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5547                 break;
5548         }
5549         case KVM_GET_NESTED_STATE: {
5550                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5551                 u32 user_data_size;
5552
5553                 r = -EINVAL;
5554                 if (!kvm_x86_ops.nested_ops->get_state)
5555                         break;
5556
5557                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5558                 r = -EFAULT;
5559                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5560                         break;
5561
5562                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5563                                                      user_data_size);
5564                 if (r < 0)
5565                         break;
5566
5567                 if (r > user_data_size) {
5568                         if (put_user(r, &user_kvm_nested_state->size))
5569                                 r = -EFAULT;
5570                         else
5571                                 r = -E2BIG;
5572                         break;
5573                 }
5574
5575                 r = 0;
5576                 break;
5577         }
5578         case KVM_SET_NESTED_STATE: {
5579                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5580                 struct kvm_nested_state kvm_state;
5581                 int idx;
5582
5583                 r = -EINVAL;
5584                 if (!kvm_x86_ops.nested_ops->set_state)
5585                         break;
5586
5587                 r = -EFAULT;
5588                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5589                         break;
5590
5591                 r = -EINVAL;
5592                 if (kvm_state.size < sizeof(kvm_state))
5593                         break;
5594
5595                 if (kvm_state.flags &
5596                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5597                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5598                       | KVM_STATE_NESTED_GIF_SET))
5599                         break;
5600
5601                 /* nested_run_pending implies guest_mode.  */
5602                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5603                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5604                         break;
5605
5606                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5607                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5608                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5609                 break;
5610         }
5611         case KVM_GET_SUPPORTED_HV_CPUID:
5612                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5613                 break;
5614 #ifdef CONFIG_KVM_XEN
5615         case KVM_XEN_VCPU_GET_ATTR: {
5616                 struct kvm_xen_vcpu_attr xva;
5617
5618                 r = -EFAULT;
5619                 if (copy_from_user(&xva, argp, sizeof(xva)))
5620                         goto out;
5621                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5622                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5623                         r = -EFAULT;
5624                 break;
5625         }
5626         case KVM_XEN_VCPU_SET_ATTR: {
5627                 struct kvm_xen_vcpu_attr xva;
5628
5629                 r = -EFAULT;
5630                 if (copy_from_user(&xva, argp, sizeof(xva)))
5631                         goto out;
5632                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5633                 break;
5634         }
5635 #endif
5636         case KVM_GET_SREGS2: {
5637                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5638                 r = -ENOMEM;
5639                 if (!u.sregs2)
5640                         goto out;
5641                 __get_sregs2(vcpu, u.sregs2);
5642                 r = -EFAULT;
5643                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5644                         goto out;
5645                 r = 0;
5646                 break;
5647         }
5648         case KVM_SET_SREGS2: {
5649                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5650                 if (IS_ERR(u.sregs2)) {
5651                         r = PTR_ERR(u.sregs2);
5652                         u.sregs2 = NULL;
5653                         goto out;
5654                 }
5655                 r = __set_sregs2(vcpu, u.sregs2);
5656                 break;
5657         }
5658         case KVM_HAS_DEVICE_ATTR:
5659         case KVM_GET_DEVICE_ATTR:
5660         case KVM_SET_DEVICE_ATTR:
5661                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5662                 break;
5663         default:
5664                 r = -EINVAL;
5665         }
5666 out:
5667         kfree(u.buffer);
5668 out_nofree:
5669         vcpu_put(vcpu);
5670         return r;
5671 }
5672
5673 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5674 {
5675         return VM_FAULT_SIGBUS;
5676 }
5677
5678 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5679 {
5680         int ret;
5681
5682         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5683                 return -EINVAL;
5684         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5685         return ret;
5686 }
5687
5688 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5689                                               u64 ident_addr)
5690 {
5691         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5692 }
5693
5694 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5695                                          unsigned long kvm_nr_mmu_pages)
5696 {
5697         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5698                 return -EINVAL;
5699
5700         mutex_lock(&kvm->slots_lock);
5701
5702         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5703         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5704
5705         mutex_unlock(&kvm->slots_lock);
5706         return 0;
5707 }
5708
5709 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5710 {
5711         return kvm->arch.n_max_mmu_pages;
5712 }
5713
5714 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5715 {
5716         struct kvm_pic *pic = kvm->arch.vpic;
5717         int r;
5718
5719         r = 0;
5720         switch (chip->chip_id) {
5721         case KVM_IRQCHIP_PIC_MASTER:
5722                 memcpy(&chip->chip.pic, &pic->pics[0],
5723                         sizeof(struct kvm_pic_state));
5724                 break;
5725         case KVM_IRQCHIP_PIC_SLAVE:
5726                 memcpy(&chip->chip.pic, &pic->pics[1],
5727                         sizeof(struct kvm_pic_state));
5728                 break;
5729         case KVM_IRQCHIP_IOAPIC:
5730                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5731                 break;
5732         default:
5733                 r = -EINVAL;
5734                 break;
5735         }
5736         return r;
5737 }
5738
5739 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5740 {
5741         struct kvm_pic *pic = kvm->arch.vpic;
5742         int r;
5743
5744         r = 0;
5745         switch (chip->chip_id) {
5746         case KVM_IRQCHIP_PIC_MASTER:
5747                 spin_lock(&pic->lock);
5748                 memcpy(&pic->pics[0], &chip->chip.pic,
5749                         sizeof(struct kvm_pic_state));
5750                 spin_unlock(&pic->lock);
5751                 break;
5752         case KVM_IRQCHIP_PIC_SLAVE:
5753                 spin_lock(&pic->lock);
5754                 memcpy(&pic->pics[1], &chip->chip.pic,
5755                         sizeof(struct kvm_pic_state));
5756                 spin_unlock(&pic->lock);
5757                 break;
5758         case KVM_IRQCHIP_IOAPIC:
5759                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5760                 break;
5761         default:
5762                 r = -EINVAL;
5763                 break;
5764         }
5765         kvm_pic_update_irq(pic);
5766         return r;
5767 }
5768
5769 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5770 {
5771         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5772
5773         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5774
5775         mutex_lock(&kps->lock);
5776         memcpy(ps, &kps->channels, sizeof(*ps));
5777         mutex_unlock(&kps->lock);
5778         return 0;
5779 }
5780
5781 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5782 {
5783         int i;
5784         struct kvm_pit *pit = kvm->arch.vpit;
5785
5786         mutex_lock(&pit->pit_state.lock);
5787         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5788         for (i = 0; i < 3; i++)
5789                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5790         mutex_unlock(&pit->pit_state.lock);
5791         return 0;
5792 }
5793
5794 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5795 {
5796         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5797         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5798                 sizeof(ps->channels));
5799         ps->flags = kvm->arch.vpit->pit_state.flags;
5800         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5801         memset(&ps->reserved, 0, sizeof(ps->reserved));
5802         return 0;
5803 }
5804
5805 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5806 {
5807         int start = 0;
5808         int i;
5809         u32 prev_legacy, cur_legacy;
5810         struct kvm_pit *pit = kvm->arch.vpit;
5811
5812         mutex_lock(&pit->pit_state.lock);
5813         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5814         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5815         if (!prev_legacy && cur_legacy)
5816                 start = 1;
5817         memcpy(&pit->pit_state.channels, &ps->channels,
5818                sizeof(pit->pit_state.channels));
5819         pit->pit_state.flags = ps->flags;
5820         for (i = 0; i < 3; i++)
5821                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5822                                    start && i == 0);
5823         mutex_unlock(&pit->pit_state.lock);
5824         return 0;
5825 }
5826
5827 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5828                                  struct kvm_reinject_control *control)
5829 {
5830         struct kvm_pit *pit = kvm->arch.vpit;
5831
5832         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5833          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5834          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5835          */
5836         mutex_lock(&pit->pit_state.lock);
5837         kvm_pit_set_reinject(pit, control->pit_reinject);
5838         mutex_unlock(&pit->pit_state.lock);
5839
5840         return 0;
5841 }
5842
5843 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5844 {
5845
5846         /*
5847          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5848          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5849          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5850          * VM-Exit.
5851          */
5852         struct kvm_vcpu *vcpu;
5853         unsigned long i;
5854
5855         kvm_for_each_vcpu(i, vcpu, kvm)
5856                 kvm_vcpu_kick(vcpu);
5857 }
5858
5859 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5860                         bool line_status)
5861 {
5862         if (!irqchip_in_kernel(kvm))
5863                 return -ENXIO;
5864
5865         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5866                                         irq_event->irq, irq_event->level,
5867                                         line_status);
5868         return 0;
5869 }
5870
5871 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5872                             struct kvm_enable_cap *cap)
5873 {
5874         int r;
5875
5876         if (cap->flags)
5877                 return -EINVAL;
5878
5879         switch (cap->cap) {
5880         case KVM_CAP_DISABLE_QUIRKS:
5881                 kvm->arch.disabled_quirks = cap->args[0];
5882                 r = 0;
5883                 break;
5884         case KVM_CAP_SPLIT_IRQCHIP: {
5885                 mutex_lock(&kvm->lock);
5886                 r = -EINVAL;
5887                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5888                         goto split_irqchip_unlock;
5889                 r = -EEXIST;
5890                 if (irqchip_in_kernel(kvm))
5891                         goto split_irqchip_unlock;
5892                 if (kvm->created_vcpus)
5893                         goto split_irqchip_unlock;
5894                 r = kvm_setup_empty_irq_routing(kvm);
5895                 if (r)
5896                         goto split_irqchip_unlock;
5897                 /* Pairs with irqchip_in_kernel. */
5898                 smp_wmb();
5899                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5900                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5901                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5902                 r = 0;
5903 split_irqchip_unlock:
5904                 mutex_unlock(&kvm->lock);
5905                 break;
5906         }
5907         case KVM_CAP_X2APIC_API:
5908                 r = -EINVAL;
5909                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5910                         break;
5911
5912                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5913                         kvm->arch.x2apic_format = true;
5914                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5915                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5916
5917                 r = 0;
5918                 break;
5919         case KVM_CAP_X86_DISABLE_EXITS:
5920                 r = -EINVAL;
5921                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5922                         break;
5923
5924                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5925                         kvm_can_mwait_in_guest())
5926                         kvm->arch.mwait_in_guest = true;
5927                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5928                         kvm->arch.hlt_in_guest = true;
5929                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5930                         kvm->arch.pause_in_guest = true;
5931                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5932                         kvm->arch.cstate_in_guest = true;
5933                 r = 0;
5934                 break;
5935         case KVM_CAP_MSR_PLATFORM_INFO:
5936                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5937                 r = 0;
5938                 break;
5939         case KVM_CAP_EXCEPTION_PAYLOAD:
5940                 kvm->arch.exception_payload_enabled = cap->args[0];
5941                 r = 0;
5942                 break;
5943         case KVM_CAP_X86_USER_SPACE_MSR:
5944                 kvm->arch.user_space_msr_mask = cap->args[0];
5945                 r = 0;
5946                 break;
5947         case KVM_CAP_X86_BUS_LOCK_EXIT:
5948                 r = -EINVAL;
5949                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5950                         break;
5951
5952                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5953                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5954                         break;
5955
5956                 if (kvm_has_bus_lock_exit &&
5957                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5958                         kvm->arch.bus_lock_detection_enabled = true;
5959                 r = 0;
5960                 break;
5961 #ifdef CONFIG_X86_SGX_KVM
5962         case KVM_CAP_SGX_ATTRIBUTE: {
5963                 unsigned long allowed_attributes = 0;
5964
5965                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5966                 if (r)
5967                         break;
5968
5969                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5970                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5971                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5972                         kvm->arch.sgx_provisioning_allowed = true;
5973                 else
5974                         r = -EINVAL;
5975                 break;
5976         }
5977 #endif
5978         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5979                 r = -EINVAL;
5980                 if (kvm_x86_ops.vm_copy_enc_context_from)
5981                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5982                 return r;
5983         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5984                 r = -EINVAL;
5985                 if (kvm_x86_ops.vm_move_enc_context_from)
5986                         r = kvm_x86_ops.vm_move_enc_context_from(
5987                                 kvm, cap->args[0]);
5988                 return r;
5989         case KVM_CAP_EXIT_HYPERCALL:
5990                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5991                         r = -EINVAL;
5992                         break;
5993                 }
5994                 kvm->arch.hypercall_exit_enabled = cap->args[0];
5995                 r = 0;
5996                 break;
5997         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5998                 r = -EINVAL;
5999                 if (cap->args[0] & ~1)
6000                         break;
6001                 kvm->arch.exit_on_emulation_error = cap->args[0];
6002                 r = 0;
6003                 break;
6004         default:
6005                 r = -EINVAL;
6006                 break;
6007         }
6008         return r;
6009 }
6010
6011 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6012 {
6013         struct kvm_x86_msr_filter *msr_filter;
6014
6015         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6016         if (!msr_filter)
6017                 return NULL;
6018
6019         msr_filter->default_allow = default_allow;
6020         return msr_filter;
6021 }
6022
6023 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6024 {
6025         u32 i;
6026
6027         if (!msr_filter)
6028                 return;
6029
6030         for (i = 0; i < msr_filter->count; i++)
6031                 kfree(msr_filter->ranges[i].bitmap);
6032
6033         kfree(msr_filter);
6034 }
6035
6036 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6037                               struct kvm_msr_filter_range *user_range)
6038 {
6039         unsigned long *bitmap = NULL;
6040         size_t bitmap_size;
6041
6042         if (!user_range->nmsrs)
6043                 return 0;
6044
6045         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6046                 return -EINVAL;
6047
6048         if (!user_range->flags)
6049                 return -EINVAL;
6050
6051         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6052         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6053                 return -EINVAL;
6054
6055         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6056         if (IS_ERR(bitmap))
6057                 return PTR_ERR(bitmap);
6058
6059         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6060                 .flags = user_range->flags,
6061                 .base = user_range->base,
6062                 .nmsrs = user_range->nmsrs,
6063                 .bitmap = bitmap,
6064         };
6065
6066         msr_filter->count++;
6067         return 0;
6068 }
6069
6070 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6071 {
6072         struct kvm_msr_filter __user *user_msr_filter = argp;
6073         struct kvm_x86_msr_filter *new_filter, *old_filter;
6074         struct kvm_msr_filter filter;
6075         bool default_allow;
6076         bool empty = true;
6077         int r = 0;
6078         u32 i;
6079
6080         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6081                 return -EFAULT;
6082
6083         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6084                 empty &= !filter.ranges[i].nmsrs;
6085
6086         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6087         if (empty && !default_allow)
6088                 return -EINVAL;
6089
6090         new_filter = kvm_alloc_msr_filter(default_allow);
6091         if (!new_filter)
6092                 return -ENOMEM;
6093
6094         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6095                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6096                 if (r) {
6097                         kvm_free_msr_filter(new_filter);
6098                         return r;
6099                 }
6100         }
6101
6102         mutex_lock(&kvm->lock);
6103
6104         /* The per-VM filter is protected by kvm->lock... */
6105         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6106
6107         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6108         synchronize_srcu(&kvm->srcu);
6109
6110         kvm_free_msr_filter(old_filter);
6111
6112         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6113         mutex_unlock(&kvm->lock);
6114
6115         return 0;
6116 }
6117
6118 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6119 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6120 {
6121         struct kvm_vcpu *vcpu;
6122         unsigned long i;
6123         int ret = 0;
6124
6125         mutex_lock(&kvm->lock);
6126         kvm_for_each_vcpu(i, vcpu, kvm) {
6127                 if (!vcpu->arch.pv_time_enabled)
6128                         continue;
6129
6130                 ret = kvm_set_guest_paused(vcpu);
6131                 if (ret) {
6132                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6133                                 vcpu->vcpu_id, ret);
6134                         break;
6135                 }
6136         }
6137         mutex_unlock(&kvm->lock);
6138
6139         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6140 }
6141
6142 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6143 {
6144         switch (state) {
6145         case PM_HIBERNATION_PREPARE:
6146         case PM_SUSPEND_PREPARE:
6147                 return kvm_arch_suspend_notifier(kvm);
6148         }
6149
6150         return NOTIFY_DONE;
6151 }
6152 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6153
6154 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6155 {
6156         struct kvm_clock_data data = { 0 };
6157
6158         get_kvmclock(kvm, &data);
6159         if (copy_to_user(argp, &data, sizeof(data)))
6160                 return -EFAULT;
6161
6162         return 0;
6163 }
6164
6165 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6166 {
6167         struct kvm_arch *ka = &kvm->arch;
6168         struct kvm_clock_data data;
6169         u64 now_raw_ns;
6170
6171         if (copy_from_user(&data, argp, sizeof(data)))
6172                 return -EFAULT;
6173
6174         /*
6175          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6176          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6177          */
6178         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6179                 return -EINVAL;
6180
6181         kvm_hv_invalidate_tsc_page(kvm);
6182         kvm_start_pvclock_update(kvm);
6183         pvclock_update_vm_gtod_copy(kvm);
6184
6185         /*
6186          * This pairs with kvm_guest_time_update(): when masterclock is
6187          * in use, we use master_kernel_ns + kvmclock_offset to set
6188          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6189          * is slightly ahead) here we risk going negative on unsigned
6190          * 'system_time' when 'data.clock' is very small.
6191          */
6192         if (data.flags & KVM_CLOCK_REALTIME) {
6193                 u64 now_real_ns = ktime_get_real_ns();
6194
6195                 /*
6196                  * Avoid stepping the kvmclock backwards.
6197                  */
6198                 if (now_real_ns > data.realtime)
6199                         data.clock += now_real_ns - data.realtime;
6200         }
6201
6202         if (ka->use_master_clock)
6203                 now_raw_ns = ka->master_kernel_ns;
6204         else
6205                 now_raw_ns = get_kvmclock_base_ns();
6206         ka->kvmclock_offset = data.clock - now_raw_ns;
6207         kvm_end_pvclock_update(kvm);
6208         return 0;
6209 }
6210
6211 long kvm_arch_vm_ioctl(struct file *filp,
6212                        unsigned int ioctl, unsigned long arg)
6213 {
6214         struct kvm *kvm = filp->private_data;
6215         void __user *argp = (void __user *)arg;
6216         int r = -ENOTTY;
6217         /*
6218          * This union makes it completely explicit to gcc-3.x
6219          * that these two variables' stack usage should be
6220          * combined, not added together.
6221          */
6222         union {
6223                 struct kvm_pit_state ps;
6224                 struct kvm_pit_state2 ps2;
6225                 struct kvm_pit_config pit_config;
6226         } u;
6227
6228         switch (ioctl) {
6229         case KVM_SET_TSS_ADDR:
6230                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6231                 break;
6232         case KVM_SET_IDENTITY_MAP_ADDR: {
6233                 u64 ident_addr;
6234
6235                 mutex_lock(&kvm->lock);
6236                 r = -EINVAL;
6237                 if (kvm->created_vcpus)
6238                         goto set_identity_unlock;
6239                 r = -EFAULT;
6240                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6241                         goto set_identity_unlock;
6242                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6243 set_identity_unlock:
6244                 mutex_unlock(&kvm->lock);
6245                 break;
6246         }
6247         case KVM_SET_NR_MMU_PAGES:
6248                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6249                 break;
6250         case KVM_GET_NR_MMU_PAGES:
6251                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6252                 break;
6253         case KVM_CREATE_IRQCHIP: {
6254                 mutex_lock(&kvm->lock);
6255
6256                 r = -EEXIST;
6257                 if (irqchip_in_kernel(kvm))
6258                         goto create_irqchip_unlock;
6259
6260                 r = -EINVAL;
6261                 if (kvm->created_vcpus)
6262                         goto create_irqchip_unlock;
6263
6264                 r = kvm_pic_init(kvm);
6265                 if (r)
6266                         goto create_irqchip_unlock;
6267
6268                 r = kvm_ioapic_init(kvm);
6269                 if (r) {
6270                         kvm_pic_destroy(kvm);
6271                         goto create_irqchip_unlock;
6272                 }
6273
6274                 r = kvm_setup_default_irq_routing(kvm);
6275                 if (r) {
6276                         kvm_ioapic_destroy(kvm);
6277                         kvm_pic_destroy(kvm);
6278                         goto create_irqchip_unlock;
6279                 }
6280                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6281                 smp_wmb();
6282                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6283                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6284         create_irqchip_unlock:
6285                 mutex_unlock(&kvm->lock);
6286                 break;
6287         }
6288         case KVM_CREATE_PIT:
6289                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6290                 goto create_pit;
6291         case KVM_CREATE_PIT2:
6292                 r = -EFAULT;
6293                 if (copy_from_user(&u.pit_config, argp,
6294                                    sizeof(struct kvm_pit_config)))
6295                         goto out;
6296         create_pit:
6297                 mutex_lock(&kvm->lock);
6298                 r = -EEXIST;
6299                 if (kvm->arch.vpit)
6300                         goto create_pit_unlock;
6301                 r = -ENOMEM;
6302                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6303                 if (kvm->arch.vpit)
6304                         r = 0;
6305         create_pit_unlock:
6306                 mutex_unlock(&kvm->lock);
6307                 break;
6308         case KVM_GET_IRQCHIP: {
6309                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6310                 struct kvm_irqchip *chip;
6311
6312                 chip = memdup_user(argp, sizeof(*chip));
6313                 if (IS_ERR(chip)) {
6314                         r = PTR_ERR(chip);
6315                         goto out;
6316                 }
6317
6318                 r = -ENXIO;
6319                 if (!irqchip_kernel(kvm))
6320                         goto get_irqchip_out;
6321                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6322                 if (r)
6323                         goto get_irqchip_out;
6324                 r = -EFAULT;
6325                 if (copy_to_user(argp, chip, sizeof(*chip)))
6326                         goto get_irqchip_out;
6327                 r = 0;
6328         get_irqchip_out:
6329                 kfree(chip);
6330                 break;
6331         }
6332         case KVM_SET_IRQCHIP: {
6333                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6334                 struct kvm_irqchip *chip;
6335
6336                 chip = memdup_user(argp, sizeof(*chip));
6337                 if (IS_ERR(chip)) {
6338                         r = PTR_ERR(chip);
6339                         goto out;
6340                 }
6341
6342                 r = -ENXIO;
6343                 if (!irqchip_kernel(kvm))
6344                         goto set_irqchip_out;
6345                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6346         set_irqchip_out:
6347                 kfree(chip);
6348                 break;
6349         }
6350         case KVM_GET_PIT: {
6351                 r = -EFAULT;
6352                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6353                         goto out;
6354                 r = -ENXIO;
6355                 if (!kvm->arch.vpit)
6356                         goto out;
6357                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6358                 if (r)
6359                         goto out;
6360                 r = -EFAULT;
6361                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6362                         goto out;
6363                 r = 0;
6364                 break;
6365         }
6366         case KVM_SET_PIT: {
6367                 r = -EFAULT;
6368                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6369                         goto out;
6370                 mutex_lock(&kvm->lock);
6371                 r = -ENXIO;
6372                 if (!kvm->arch.vpit)
6373                         goto set_pit_out;
6374                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6375 set_pit_out:
6376                 mutex_unlock(&kvm->lock);
6377                 break;
6378         }
6379         case KVM_GET_PIT2: {
6380                 r = -ENXIO;
6381                 if (!kvm->arch.vpit)
6382                         goto out;
6383                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6384                 if (r)
6385                         goto out;
6386                 r = -EFAULT;
6387                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6388                         goto out;
6389                 r = 0;
6390                 break;
6391         }
6392         case KVM_SET_PIT2: {
6393                 r = -EFAULT;
6394                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6395                         goto out;
6396                 mutex_lock(&kvm->lock);
6397                 r = -ENXIO;
6398                 if (!kvm->arch.vpit)
6399                         goto set_pit2_out;
6400                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6401 set_pit2_out:
6402                 mutex_unlock(&kvm->lock);
6403                 break;
6404         }
6405         case KVM_REINJECT_CONTROL: {
6406                 struct kvm_reinject_control control;
6407                 r =  -EFAULT;
6408                 if (copy_from_user(&control, argp, sizeof(control)))
6409                         goto out;
6410                 r = -ENXIO;
6411                 if (!kvm->arch.vpit)
6412                         goto out;
6413                 r = kvm_vm_ioctl_reinject(kvm, &control);
6414                 break;
6415         }
6416         case KVM_SET_BOOT_CPU_ID:
6417                 r = 0;
6418                 mutex_lock(&kvm->lock);
6419                 if (kvm->created_vcpus)
6420                         r = -EBUSY;
6421                 else
6422                         kvm->arch.bsp_vcpu_id = arg;
6423                 mutex_unlock(&kvm->lock);
6424                 break;
6425 #ifdef CONFIG_KVM_XEN
6426         case KVM_XEN_HVM_CONFIG: {
6427                 struct kvm_xen_hvm_config xhc;
6428                 r = -EFAULT;
6429                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6430                         goto out;
6431                 r = kvm_xen_hvm_config(kvm, &xhc);
6432                 break;
6433         }
6434         case KVM_XEN_HVM_GET_ATTR: {
6435                 struct kvm_xen_hvm_attr xha;
6436
6437                 r = -EFAULT;
6438                 if (copy_from_user(&xha, argp, sizeof(xha)))
6439                         goto out;
6440                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6441                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6442                         r = -EFAULT;
6443                 break;
6444         }
6445         case KVM_XEN_HVM_SET_ATTR: {
6446                 struct kvm_xen_hvm_attr xha;
6447
6448                 r = -EFAULT;
6449                 if (copy_from_user(&xha, argp, sizeof(xha)))
6450                         goto out;
6451                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6452                 break;
6453         }
6454 #endif
6455         case KVM_SET_CLOCK:
6456                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6457                 break;
6458         case KVM_GET_CLOCK:
6459                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6460                 break;
6461         case KVM_MEMORY_ENCRYPT_OP: {
6462                 r = -ENOTTY;
6463                 if (kvm_x86_ops.mem_enc_op)
6464                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6465                 break;
6466         }
6467         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6468                 struct kvm_enc_region region;
6469
6470                 r = -EFAULT;
6471                 if (copy_from_user(&region, argp, sizeof(region)))
6472                         goto out;
6473
6474                 r = -ENOTTY;
6475                 if (kvm_x86_ops.mem_enc_reg_region)
6476                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6477                 break;
6478         }
6479         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6480                 struct kvm_enc_region region;
6481
6482                 r = -EFAULT;
6483                 if (copy_from_user(&region, argp, sizeof(region)))
6484                         goto out;
6485
6486                 r = -ENOTTY;
6487                 if (kvm_x86_ops.mem_enc_unreg_region)
6488                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6489                 break;
6490         }
6491         case KVM_HYPERV_EVENTFD: {
6492                 struct kvm_hyperv_eventfd hvevfd;
6493
6494                 r = -EFAULT;
6495                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6496                         goto out;
6497                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6498                 break;
6499         }
6500         case KVM_SET_PMU_EVENT_FILTER:
6501                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6502                 break;
6503         case KVM_X86_SET_MSR_FILTER:
6504                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6505                 break;
6506         default:
6507                 r = -ENOTTY;
6508         }
6509 out:
6510         return r;
6511 }
6512
6513 static void kvm_init_msr_list(void)
6514 {
6515         struct x86_pmu_capability x86_pmu;
6516         u32 dummy[2];
6517         unsigned i;
6518
6519         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6520                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6521
6522         perf_get_x86_pmu_capability(&x86_pmu);
6523
6524         num_msrs_to_save = 0;
6525         num_emulated_msrs = 0;
6526         num_msr_based_features = 0;
6527
6528         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6529                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6530                         continue;
6531
6532                 /*
6533                  * Even MSRs that are valid in the host may not be exposed
6534                  * to the guests in some cases.
6535                  */
6536                 switch (msrs_to_save_all[i]) {
6537                 case MSR_IA32_BNDCFGS:
6538                         if (!kvm_mpx_supported())
6539                                 continue;
6540                         break;
6541                 case MSR_TSC_AUX:
6542                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6543                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6544                                 continue;
6545                         break;
6546                 case MSR_IA32_UMWAIT_CONTROL:
6547                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6548                                 continue;
6549                         break;
6550                 case MSR_IA32_RTIT_CTL:
6551                 case MSR_IA32_RTIT_STATUS:
6552                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6553                                 continue;
6554                         break;
6555                 case MSR_IA32_RTIT_CR3_MATCH:
6556                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6557                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6558                                 continue;
6559                         break;
6560                 case MSR_IA32_RTIT_OUTPUT_BASE:
6561                 case MSR_IA32_RTIT_OUTPUT_MASK:
6562                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6563                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6564                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6565                                 continue;
6566                         break;
6567                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6568                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6569                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6570                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6571                                 continue;
6572                         break;
6573                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6574                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6575                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6576                                 continue;
6577                         break;
6578                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6579                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6580                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6581                                 continue;
6582                         break;
6583                 case MSR_IA32_XFD:
6584                 case MSR_IA32_XFD_ERR:
6585                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6586                                 continue;
6587                         break;
6588                 default:
6589                         break;
6590                 }
6591
6592                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6593         }
6594
6595         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6596                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6597                         continue;
6598
6599                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6600         }
6601
6602         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6603                 struct kvm_msr_entry msr;
6604
6605                 msr.index = msr_based_features_all[i];
6606                 if (kvm_get_msr_feature(&msr))
6607                         continue;
6608
6609                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6610         }
6611 }
6612
6613 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6614                            const void *v)
6615 {
6616         int handled = 0;
6617         int n;
6618
6619         do {
6620                 n = min(len, 8);
6621                 if (!(lapic_in_kernel(vcpu) &&
6622                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6623                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6624                         break;
6625                 handled += n;
6626                 addr += n;
6627                 len -= n;
6628                 v += n;
6629         } while (len);
6630
6631         return handled;
6632 }
6633
6634 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6635 {
6636         int handled = 0;
6637         int n;
6638
6639         do {
6640                 n = min(len, 8);
6641                 if (!(lapic_in_kernel(vcpu) &&
6642                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6643                                          addr, n, v))
6644                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6645                         break;
6646                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6647                 handled += n;
6648                 addr += n;
6649                 len -= n;
6650                 v += n;
6651         } while (len);
6652
6653         return handled;
6654 }
6655
6656 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6657                         struct kvm_segment *var, int seg)
6658 {
6659         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6660 }
6661
6662 void kvm_get_segment(struct kvm_vcpu *vcpu,
6663                      struct kvm_segment *var, int seg)
6664 {
6665         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6666 }
6667
6668 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6669                            struct x86_exception *exception)
6670 {
6671         struct kvm_mmu *mmu = vcpu->arch.mmu;
6672         gpa_t t_gpa;
6673
6674         BUG_ON(!mmu_is_nested(vcpu));
6675
6676         /* NPT walks are always user-walks */
6677         access |= PFERR_USER_MASK;
6678         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6679
6680         return t_gpa;
6681 }
6682
6683 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6684                               struct x86_exception *exception)
6685 {
6686         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6687
6688         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6689         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6690 }
6691 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6692
6693  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6694                                 struct x86_exception *exception)
6695 {
6696         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6697
6698         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6699         access |= PFERR_FETCH_MASK;
6700         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6701 }
6702
6703 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6704                                struct x86_exception *exception)
6705 {
6706         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6707
6708         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6709         access |= PFERR_WRITE_MASK;
6710         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6711 }
6712 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6713
6714 /* uses this to access any guest's mapped memory without checking CPL */
6715 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6716                                 struct x86_exception *exception)
6717 {
6718         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6719
6720         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6721 }
6722
6723 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6724                                       struct kvm_vcpu *vcpu, u32 access,
6725                                       struct x86_exception *exception)
6726 {
6727         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6728         void *data = val;
6729         int r = X86EMUL_CONTINUE;
6730
6731         while (bytes) {
6732                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6733                 unsigned offset = addr & (PAGE_SIZE-1);
6734                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6735                 int ret;
6736
6737                 if (gpa == UNMAPPED_GVA)
6738                         return X86EMUL_PROPAGATE_FAULT;
6739                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6740                                                offset, toread);
6741                 if (ret < 0) {
6742                         r = X86EMUL_IO_NEEDED;
6743                         goto out;
6744                 }
6745
6746                 bytes -= toread;
6747                 data += toread;
6748                 addr += toread;
6749         }
6750 out:
6751         return r;
6752 }
6753
6754 /* used for instruction fetching */
6755 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6756                                 gva_t addr, void *val, unsigned int bytes,
6757                                 struct x86_exception *exception)
6758 {
6759         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6760         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6761         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6762         unsigned offset;
6763         int ret;
6764
6765         /* Inline kvm_read_guest_virt_helper for speed.  */
6766         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6767                                     exception);
6768         if (unlikely(gpa == UNMAPPED_GVA))
6769                 return X86EMUL_PROPAGATE_FAULT;
6770
6771         offset = addr & (PAGE_SIZE-1);
6772         if (WARN_ON(offset + bytes > PAGE_SIZE))
6773                 bytes = (unsigned)PAGE_SIZE - offset;
6774         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6775                                        offset, bytes);
6776         if (unlikely(ret < 0))
6777                 return X86EMUL_IO_NEEDED;
6778
6779         return X86EMUL_CONTINUE;
6780 }
6781
6782 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6783                                gva_t addr, void *val, unsigned int bytes,
6784                                struct x86_exception *exception)
6785 {
6786         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6787
6788         /*
6789          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6790          * is returned, but our callers are not ready for that and they blindly
6791          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6792          * uninitialized kernel stack memory into cr2 and error code.
6793          */
6794         memset(exception, 0, sizeof(*exception));
6795         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6796                                           exception);
6797 }
6798 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6799
6800 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6801                              gva_t addr, void *val, unsigned int bytes,
6802                              struct x86_exception *exception, bool system)
6803 {
6804         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6805         u32 access = 0;
6806
6807         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6808                 access |= PFERR_USER_MASK;
6809
6810         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6811 }
6812
6813 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6814                 unsigned long addr, void *val, unsigned int bytes)
6815 {
6816         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6817         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6818
6819         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6820 }
6821
6822 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6823                                       struct kvm_vcpu *vcpu, u32 access,
6824                                       struct x86_exception *exception)
6825 {
6826         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6827         void *data = val;
6828         int r = X86EMUL_CONTINUE;
6829
6830         while (bytes) {
6831                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6832                 unsigned offset = addr & (PAGE_SIZE-1);
6833                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6834                 int ret;
6835
6836                 if (gpa == UNMAPPED_GVA)
6837                         return X86EMUL_PROPAGATE_FAULT;
6838                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6839                 if (ret < 0) {
6840                         r = X86EMUL_IO_NEEDED;
6841                         goto out;
6842                 }
6843
6844                 bytes -= towrite;
6845                 data += towrite;
6846                 addr += towrite;
6847         }
6848 out:
6849         return r;
6850 }
6851
6852 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6853                               unsigned int bytes, struct x86_exception *exception,
6854                               bool system)
6855 {
6856         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6857         u32 access = PFERR_WRITE_MASK;
6858
6859         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6860                 access |= PFERR_USER_MASK;
6861
6862         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6863                                            access, exception);
6864 }
6865
6866 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6867                                 unsigned int bytes, struct x86_exception *exception)
6868 {
6869         /* kvm_write_guest_virt_system can pull in tons of pages. */
6870         vcpu->arch.l1tf_flush_l1d = true;
6871
6872         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6873                                            PFERR_WRITE_MASK, exception);
6874 }
6875 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6876
6877 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6878                                 void *insn, int insn_len)
6879 {
6880         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6881                                                             insn, insn_len);
6882 }
6883
6884 int handle_ud(struct kvm_vcpu *vcpu)
6885 {
6886         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6887         int emul_type = EMULTYPE_TRAP_UD;
6888         char sig[5]; /* ud2; .ascii "kvm" */
6889         struct x86_exception e;
6890
6891         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6892                 return 1;
6893
6894         if (force_emulation_prefix &&
6895             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6896                                 sig, sizeof(sig), &e) == 0 &&
6897             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6898                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6899                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6900         }
6901
6902         return kvm_emulate_instruction(vcpu, emul_type);
6903 }
6904 EXPORT_SYMBOL_GPL(handle_ud);
6905
6906 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6907                             gpa_t gpa, bool write)
6908 {
6909         /* For APIC access vmexit */
6910         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6911                 return 1;
6912
6913         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6914                 trace_vcpu_match_mmio(gva, gpa, write, true);
6915                 return 1;
6916         }
6917
6918         return 0;
6919 }
6920
6921 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6922                                 gpa_t *gpa, struct x86_exception *exception,
6923                                 bool write)
6924 {
6925         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6926         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6927                 | (write ? PFERR_WRITE_MASK : 0);
6928
6929         /*
6930          * currently PKRU is only applied to ept enabled guest so
6931          * there is no pkey in EPT page table for L1 guest or EPT
6932          * shadow page table for L2 guest.
6933          */
6934         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6935             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6936                               vcpu->arch.mmio_access, 0, access))) {
6937                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6938                                         (gva & (PAGE_SIZE - 1));
6939                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6940                 return 1;
6941         }
6942
6943         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6944
6945         if (*gpa == UNMAPPED_GVA)
6946                 return -1;
6947
6948         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6949 }
6950
6951 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6952                         const void *val, int bytes)
6953 {
6954         int ret;
6955
6956         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6957         if (ret < 0)
6958                 return 0;
6959         kvm_page_track_write(vcpu, gpa, val, bytes);
6960         return 1;
6961 }
6962
6963 struct read_write_emulator_ops {
6964         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6965                                   int bytes);
6966         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6967                                   void *val, int bytes);
6968         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6969                                int bytes, void *val);
6970         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6971                                     void *val, int bytes);
6972         bool write;
6973 };
6974
6975 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6976 {
6977         if (vcpu->mmio_read_completed) {
6978                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6979                                vcpu->mmio_fragments[0].gpa, val);
6980                 vcpu->mmio_read_completed = 0;
6981                 return 1;
6982         }
6983
6984         return 0;
6985 }
6986
6987 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6988                         void *val, int bytes)
6989 {
6990         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6991 }
6992
6993 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6994                          void *val, int bytes)
6995 {
6996         return emulator_write_phys(vcpu, gpa, val, bytes);
6997 }
6998
6999 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7000 {
7001         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7002         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7003 }
7004
7005 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7006                           void *val, int bytes)
7007 {
7008         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7009         return X86EMUL_IO_NEEDED;
7010 }
7011
7012 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7013                            void *val, int bytes)
7014 {
7015         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7016
7017         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7018         return X86EMUL_CONTINUE;
7019 }
7020
7021 static const struct read_write_emulator_ops read_emultor = {
7022         .read_write_prepare = read_prepare,
7023         .read_write_emulate = read_emulate,
7024         .read_write_mmio = vcpu_mmio_read,
7025         .read_write_exit_mmio = read_exit_mmio,
7026 };
7027
7028 static const struct read_write_emulator_ops write_emultor = {
7029         .read_write_emulate = write_emulate,
7030         .read_write_mmio = write_mmio,
7031         .read_write_exit_mmio = write_exit_mmio,
7032         .write = true,
7033 };
7034
7035 static int emulator_read_write_onepage(unsigned long addr, void *val,
7036                                        unsigned int bytes,
7037                                        struct x86_exception *exception,
7038                                        struct kvm_vcpu *vcpu,
7039                                        const struct read_write_emulator_ops *ops)
7040 {
7041         gpa_t gpa;
7042         int handled, ret;
7043         bool write = ops->write;
7044         struct kvm_mmio_fragment *frag;
7045         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7046
7047         /*
7048          * If the exit was due to a NPF we may already have a GPA.
7049          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7050          * Note, this cannot be used on string operations since string
7051          * operation using rep will only have the initial GPA from the NPF
7052          * occurred.
7053          */
7054         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7055             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7056                 gpa = ctxt->gpa_val;
7057                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7058         } else {
7059                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7060                 if (ret < 0)
7061                         return X86EMUL_PROPAGATE_FAULT;
7062         }
7063
7064         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7065                 return X86EMUL_CONTINUE;
7066
7067         /*
7068          * Is this MMIO handled locally?
7069          */
7070         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7071         if (handled == bytes)
7072                 return X86EMUL_CONTINUE;
7073
7074         gpa += handled;
7075         bytes -= handled;
7076         val += handled;
7077
7078         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7079         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7080         frag->gpa = gpa;
7081         frag->data = val;
7082         frag->len = bytes;
7083         return X86EMUL_CONTINUE;
7084 }
7085
7086 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7087                         unsigned long addr,
7088                         void *val, unsigned int bytes,
7089                         struct x86_exception *exception,
7090                         const struct read_write_emulator_ops *ops)
7091 {
7092         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7093         gpa_t gpa;
7094         int rc;
7095
7096         if (ops->read_write_prepare &&
7097                   ops->read_write_prepare(vcpu, val, bytes))
7098                 return X86EMUL_CONTINUE;
7099
7100         vcpu->mmio_nr_fragments = 0;
7101
7102         /* Crossing a page boundary? */
7103         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7104                 int now;
7105
7106                 now = -addr & ~PAGE_MASK;
7107                 rc = emulator_read_write_onepage(addr, val, now, exception,
7108                                                  vcpu, ops);
7109
7110                 if (rc != X86EMUL_CONTINUE)
7111                         return rc;
7112                 addr += now;
7113                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7114                         addr = (u32)addr;
7115                 val += now;
7116                 bytes -= now;
7117         }
7118
7119         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7120                                          vcpu, ops);
7121         if (rc != X86EMUL_CONTINUE)
7122                 return rc;
7123
7124         if (!vcpu->mmio_nr_fragments)
7125                 return rc;
7126
7127         gpa = vcpu->mmio_fragments[0].gpa;
7128
7129         vcpu->mmio_needed = 1;
7130         vcpu->mmio_cur_fragment = 0;
7131
7132         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7133         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7134         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7135         vcpu->run->mmio.phys_addr = gpa;
7136
7137         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7138 }
7139
7140 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7141                                   unsigned long addr,
7142                                   void *val,
7143                                   unsigned int bytes,
7144                                   struct x86_exception *exception)
7145 {
7146         return emulator_read_write(ctxt, addr, val, bytes,
7147                                    exception, &read_emultor);
7148 }
7149
7150 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7151                             unsigned long addr,
7152                             const void *val,
7153                             unsigned int bytes,
7154                             struct x86_exception *exception)
7155 {
7156         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7157                                    exception, &write_emultor);
7158 }
7159
7160 #define CMPXCHG_TYPE(t, ptr, old, new) \
7161         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7162
7163 #ifdef CONFIG_X86_64
7164 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7165 #else
7166 #  define CMPXCHG64(ptr, old, new) \
7167         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7168 #endif
7169
7170 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7171                                      unsigned long addr,
7172                                      const void *old,
7173                                      const void *new,
7174                                      unsigned int bytes,
7175                                      struct x86_exception *exception)
7176 {
7177         struct kvm_host_map map;
7178         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7179         u64 page_line_mask;
7180         gpa_t gpa;
7181         char *kaddr;
7182         bool exchanged;
7183
7184         /* guests cmpxchg8b have to be emulated atomically */
7185         if (bytes > 8 || (bytes & (bytes - 1)))
7186                 goto emul_write;
7187
7188         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7189
7190         if (gpa == UNMAPPED_GVA ||
7191             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7192                 goto emul_write;
7193
7194         /*
7195          * Emulate the atomic as a straight write to avoid #AC if SLD is
7196          * enabled in the host and the access splits a cache line.
7197          */
7198         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7199                 page_line_mask = ~(cache_line_size() - 1);
7200         else
7201                 page_line_mask = PAGE_MASK;
7202
7203         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7204                 goto emul_write;
7205
7206         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7207                 goto emul_write;
7208
7209         kaddr = map.hva + offset_in_page(gpa);
7210
7211         switch (bytes) {
7212         case 1:
7213                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7214                 break;
7215         case 2:
7216                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7217                 break;
7218         case 4:
7219                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7220                 break;
7221         case 8:
7222                 exchanged = CMPXCHG64(kaddr, old, new);
7223                 break;
7224         default:
7225                 BUG();
7226         }
7227
7228         kvm_vcpu_unmap(vcpu, &map, true);
7229
7230         if (!exchanged)
7231                 return X86EMUL_CMPXCHG_FAILED;
7232
7233         kvm_page_track_write(vcpu, gpa, new, bytes);
7234
7235         return X86EMUL_CONTINUE;
7236
7237 emul_write:
7238         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7239
7240         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7241 }
7242
7243 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7244 {
7245         int r = 0, i;
7246
7247         for (i = 0; i < vcpu->arch.pio.count; i++) {
7248                 if (vcpu->arch.pio.in)
7249                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7250                                             vcpu->arch.pio.size, pd);
7251                 else
7252                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7253                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7254                                              pd);
7255                 if (r)
7256                         break;
7257                 pd += vcpu->arch.pio.size;
7258         }
7259         return r;
7260 }
7261
7262 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7263                                unsigned short port,
7264                                unsigned int count, bool in)
7265 {
7266         vcpu->arch.pio.port = port;
7267         vcpu->arch.pio.in = in;
7268         vcpu->arch.pio.count  = count;
7269         vcpu->arch.pio.size = size;
7270
7271         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7272                 return 1;
7273
7274         vcpu->run->exit_reason = KVM_EXIT_IO;
7275         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7276         vcpu->run->io.size = size;
7277         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7278         vcpu->run->io.count = count;
7279         vcpu->run->io.port = port;
7280
7281         return 0;
7282 }
7283
7284 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7285                              unsigned short port, unsigned int count)
7286 {
7287         WARN_ON(vcpu->arch.pio.count);
7288         memset(vcpu->arch.pio_data, 0, size * count);
7289         return emulator_pio_in_out(vcpu, size, port, count, true);
7290 }
7291
7292 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7293 {
7294         int size = vcpu->arch.pio.size;
7295         unsigned count = vcpu->arch.pio.count;
7296         memcpy(val, vcpu->arch.pio_data, size * count);
7297         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7298         vcpu->arch.pio.count = 0;
7299 }
7300
7301 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7302                            unsigned short port, void *val, unsigned int count)
7303 {
7304         if (vcpu->arch.pio.count) {
7305                 /*
7306                  * Complete a previous iteration that required userspace I/O.
7307                  * Note, @count isn't guaranteed to match pio.count as userspace
7308                  * can modify ECX before rerunning the vCPU.  Ignore any such
7309                  * shenanigans as KVM doesn't support modifying the rep count,
7310                  * and the emulator ensures @count doesn't overflow the buffer.
7311                  */
7312         } else {
7313                 int r = __emulator_pio_in(vcpu, size, port, count);
7314                 if (!r)
7315                         return r;
7316
7317                 /* Results already available, fall through.  */
7318         }
7319
7320         complete_emulator_pio_in(vcpu, val);
7321         return 1;
7322 }
7323
7324 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7325                                     int size, unsigned short port, void *val,
7326                                     unsigned int count)
7327 {
7328         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7329
7330 }
7331
7332 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7333                             unsigned short port, const void *val,
7334                             unsigned int count)
7335 {
7336         int ret;
7337
7338         memcpy(vcpu->arch.pio_data, val, size * count);
7339         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7340         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7341         if (ret)
7342                 vcpu->arch.pio.count = 0;
7343
7344         return ret;
7345 }
7346
7347 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7348                                      int size, unsigned short port,
7349                                      const void *val, unsigned int count)
7350 {
7351         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7352 }
7353
7354 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7355 {
7356         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7357 }
7358
7359 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7360 {
7361         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7362 }
7363
7364 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7365 {
7366         if (!need_emulate_wbinvd(vcpu))
7367                 return X86EMUL_CONTINUE;
7368
7369         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7370                 int cpu = get_cpu();
7371
7372                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7373                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7374                                 wbinvd_ipi, NULL, 1);
7375                 put_cpu();
7376                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7377         } else
7378                 wbinvd();
7379         return X86EMUL_CONTINUE;
7380 }
7381
7382 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7383 {
7384         kvm_emulate_wbinvd_noskip(vcpu);
7385         return kvm_skip_emulated_instruction(vcpu);
7386 }
7387 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7388
7389
7390
7391 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7392 {
7393         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7394 }
7395
7396 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7397                             unsigned long *dest)
7398 {
7399         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7400 }
7401
7402 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7403                            unsigned long value)
7404 {
7405
7406         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7407 }
7408
7409 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7410 {
7411         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7412 }
7413
7414 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7415 {
7416         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7417         unsigned long value;
7418
7419         switch (cr) {
7420         case 0:
7421                 value = kvm_read_cr0(vcpu);
7422                 break;
7423         case 2:
7424                 value = vcpu->arch.cr2;
7425                 break;
7426         case 3:
7427                 value = kvm_read_cr3(vcpu);
7428                 break;
7429         case 4:
7430                 value = kvm_read_cr4(vcpu);
7431                 break;
7432         case 8:
7433                 value = kvm_get_cr8(vcpu);
7434                 break;
7435         default:
7436                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7437                 return 0;
7438         }
7439
7440         return value;
7441 }
7442
7443 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7444 {
7445         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7446         int res = 0;
7447
7448         switch (cr) {
7449         case 0:
7450                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7451                 break;
7452         case 2:
7453                 vcpu->arch.cr2 = val;
7454                 break;
7455         case 3:
7456                 res = kvm_set_cr3(vcpu, val);
7457                 break;
7458         case 4:
7459                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7460                 break;
7461         case 8:
7462                 res = kvm_set_cr8(vcpu, val);
7463                 break;
7464         default:
7465                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7466                 res = -1;
7467         }
7468
7469         return res;
7470 }
7471
7472 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7473 {
7474         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7475 }
7476
7477 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7478 {
7479         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7480 }
7481
7482 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7483 {
7484         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7485 }
7486
7487 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7488 {
7489         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7490 }
7491
7492 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7493 {
7494         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7495 }
7496
7497 static unsigned long emulator_get_cached_segment_base(
7498         struct x86_emulate_ctxt *ctxt, int seg)
7499 {
7500         return get_segment_base(emul_to_vcpu(ctxt), seg);
7501 }
7502
7503 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7504                                  struct desc_struct *desc, u32 *base3,
7505                                  int seg)
7506 {
7507         struct kvm_segment var;
7508
7509         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7510         *selector = var.selector;
7511
7512         if (var.unusable) {
7513                 memset(desc, 0, sizeof(*desc));
7514                 if (base3)
7515                         *base3 = 0;
7516                 return false;
7517         }
7518
7519         if (var.g)
7520                 var.limit >>= 12;
7521         set_desc_limit(desc, var.limit);
7522         set_desc_base(desc, (unsigned long)var.base);
7523 #ifdef CONFIG_X86_64
7524         if (base3)
7525                 *base3 = var.base >> 32;
7526 #endif
7527         desc->type = var.type;
7528         desc->s = var.s;
7529         desc->dpl = var.dpl;
7530         desc->p = var.present;
7531         desc->avl = var.avl;
7532         desc->l = var.l;
7533         desc->d = var.db;
7534         desc->g = var.g;
7535
7536         return true;
7537 }
7538
7539 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7540                                  struct desc_struct *desc, u32 base3,
7541                                  int seg)
7542 {
7543         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544         struct kvm_segment var;
7545
7546         var.selector = selector;
7547         var.base = get_desc_base(desc);
7548 #ifdef CONFIG_X86_64
7549         var.base |= ((u64)base3) << 32;
7550 #endif
7551         var.limit = get_desc_limit(desc);
7552         if (desc->g)
7553                 var.limit = (var.limit << 12) | 0xfff;
7554         var.type = desc->type;
7555         var.dpl = desc->dpl;
7556         var.db = desc->d;
7557         var.s = desc->s;
7558         var.l = desc->l;
7559         var.g = desc->g;
7560         var.avl = desc->avl;
7561         var.present = desc->p;
7562         var.unusable = !var.present;
7563         var.padding = 0;
7564
7565         kvm_set_segment(vcpu, &var, seg);
7566         return;
7567 }
7568
7569 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7570                             u32 msr_index, u64 *pdata)
7571 {
7572         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7573         int r;
7574
7575         r = kvm_get_msr(vcpu, msr_index, pdata);
7576
7577         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7578                                     complete_emulated_rdmsr, r)) {
7579                 /* Bounce to user space */
7580                 return X86EMUL_IO_NEEDED;
7581         }
7582
7583         return r;
7584 }
7585
7586 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7587                             u32 msr_index, u64 data)
7588 {
7589         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7590         int r;
7591
7592         r = kvm_set_msr(vcpu, msr_index, data);
7593
7594         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7595                                     complete_emulated_msr_access, r)) {
7596                 /* Bounce to user space */
7597                 return X86EMUL_IO_NEEDED;
7598         }
7599
7600         return r;
7601 }
7602
7603 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7604 {
7605         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7606
7607         return vcpu->arch.smbase;
7608 }
7609
7610 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7611 {
7612         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7613
7614         vcpu->arch.smbase = smbase;
7615 }
7616
7617 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7618                               u32 pmc)
7619 {
7620         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7621                 return 0;
7622         return -EINVAL;
7623 }
7624
7625 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7626                              u32 pmc, u64 *pdata)
7627 {
7628         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7629 }
7630
7631 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7632 {
7633         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7634 }
7635
7636 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7637                               struct x86_instruction_info *info,
7638                               enum x86_intercept_stage stage)
7639 {
7640         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7641                                             &ctxt->exception);
7642 }
7643
7644 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7645                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7646                               bool exact_only)
7647 {
7648         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7649 }
7650
7651 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7652 {
7653         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7654 }
7655
7656 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7657 {
7658         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7659 }
7660
7661 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7662 {
7663         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7664 }
7665
7666 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7667 {
7668         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7669 }
7670
7671 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7672 {
7673         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7674 }
7675
7676 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7677 {
7678         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7679 }
7680
7681 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7682 {
7683         return emul_to_vcpu(ctxt)->arch.hflags;
7684 }
7685
7686 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7687 {
7688         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7689
7690         kvm_smm_changed(vcpu, false);
7691 }
7692
7693 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7694                                   const char *smstate)
7695 {
7696         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7697 }
7698
7699 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7700 {
7701         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7702 }
7703
7704 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7705 {
7706         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7707 }
7708
7709 static const struct x86_emulate_ops emulate_ops = {
7710         .read_gpr            = emulator_read_gpr,
7711         .write_gpr           = emulator_write_gpr,
7712         .read_std            = emulator_read_std,
7713         .write_std           = emulator_write_std,
7714         .read_phys           = kvm_read_guest_phys_system,
7715         .fetch               = kvm_fetch_guest_virt,
7716         .read_emulated       = emulator_read_emulated,
7717         .write_emulated      = emulator_write_emulated,
7718         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7719         .invlpg              = emulator_invlpg,
7720         .pio_in_emulated     = emulator_pio_in_emulated,
7721         .pio_out_emulated    = emulator_pio_out_emulated,
7722         .get_segment         = emulator_get_segment,
7723         .set_segment         = emulator_set_segment,
7724         .get_cached_segment_base = emulator_get_cached_segment_base,
7725         .get_gdt             = emulator_get_gdt,
7726         .get_idt             = emulator_get_idt,
7727         .set_gdt             = emulator_set_gdt,
7728         .set_idt             = emulator_set_idt,
7729         .get_cr              = emulator_get_cr,
7730         .set_cr              = emulator_set_cr,
7731         .cpl                 = emulator_get_cpl,
7732         .get_dr              = emulator_get_dr,
7733         .set_dr              = emulator_set_dr,
7734         .get_smbase          = emulator_get_smbase,
7735         .set_smbase          = emulator_set_smbase,
7736         .set_msr             = emulator_set_msr,
7737         .get_msr             = emulator_get_msr,
7738         .check_pmc           = emulator_check_pmc,
7739         .read_pmc            = emulator_read_pmc,
7740         .halt                = emulator_halt,
7741         .wbinvd              = emulator_wbinvd,
7742         .fix_hypercall       = emulator_fix_hypercall,
7743         .intercept           = emulator_intercept,
7744         .get_cpuid           = emulator_get_cpuid,
7745         .guest_has_long_mode = emulator_guest_has_long_mode,
7746         .guest_has_movbe     = emulator_guest_has_movbe,
7747         .guest_has_fxsr      = emulator_guest_has_fxsr,
7748         .set_nmi_mask        = emulator_set_nmi_mask,
7749         .get_hflags          = emulator_get_hflags,
7750         .exiting_smm         = emulator_exiting_smm,
7751         .leave_smm           = emulator_leave_smm,
7752         .triple_fault        = emulator_triple_fault,
7753         .set_xcr             = emulator_set_xcr,
7754 };
7755
7756 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7757 {
7758         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7759         /*
7760          * an sti; sti; sequence only disable interrupts for the first
7761          * instruction. So, if the last instruction, be it emulated or
7762          * not, left the system with the INT_STI flag enabled, it
7763          * means that the last instruction is an sti. We should not
7764          * leave the flag on in this case. The same goes for mov ss
7765          */
7766         if (int_shadow & mask)
7767                 mask = 0;
7768         if (unlikely(int_shadow || mask)) {
7769                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7770                 if (!mask)
7771                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7772         }
7773 }
7774
7775 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7776 {
7777         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7778         if (ctxt->exception.vector == PF_VECTOR)
7779                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7780
7781         if (ctxt->exception.error_code_valid)
7782                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7783                                       ctxt->exception.error_code);
7784         else
7785                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7786         return false;
7787 }
7788
7789 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7790 {
7791         struct x86_emulate_ctxt *ctxt;
7792
7793         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7794         if (!ctxt) {
7795                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7796                 return NULL;
7797         }
7798
7799         ctxt->vcpu = vcpu;
7800         ctxt->ops = &emulate_ops;
7801         vcpu->arch.emulate_ctxt = ctxt;
7802
7803         return ctxt;
7804 }
7805
7806 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7807 {
7808         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7809         int cs_db, cs_l;
7810
7811         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7812
7813         ctxt->gpa_available = false;
7814         ctxt->eflags = kvm_get_rflags(vcpu);
7815         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7816
7817         ctxt->eip = kvm_rip_read(vcpu);
7818         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7819                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7820                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7821                      cs_db                              ? X86EMUL_MODE_PROT32 :
7822                                                           X86EMUL_MODE_PROT16;
7823         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7824         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7825         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7826
7827         ctxt->interruptibility = 0;
7828         ctxt->have_exception = false;
7829         ctxt->exception.vector = -1;
7830         ctxt->perm_ok = false;
7831
7832         init_decode_cache(ctxt);
7833         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7834 }
7835
7836 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7837 {
7838         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7839         int ret;
7840
7841         init_emulate_ctxt(vcpu);
7842
7843         ctxt->op_bytes = 2;
7844         ctxt->ad_bytes = 2;
7845         ctxt->_eip = ctxt->eip + inc_eip;
7846         ret = emulate_int_real(ctxt, irq);
7847
7848         if (ret != X86EMUL_CONTINUE) {
7849                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7850         } else {
7851                 ctxt->eip = ctxt->_eip;
7852                 kvm_rip_write(vcpu, ctxt->eip);
7853                 kvm_set_rflags(vcpu, ctxt->eflags);
7854         }
7855 }
7856 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7857
7858 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7859                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7860 {
7861         struct kvm_run *run = vcpu->run;
7862         u64 info[5];
7863         u8 info_start;
7864
7865         /*
7866          * Zero the whole array used to retrieve the exit info, as casting to
7867          * u32 for select entries will leave some chunks uninitialized.
7868          */
7869         memset(&info, 0, sizeof(info));
7870
7871         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7872                                            &info[2], (u32 *)&info[3],
7873                                            (u32 *)&info[4]);
7874
7875         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7876         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7877
7878         /*
7879          * There's currently space for 13 entries, but 5 are used for the exit
7880          * reason and info.  Restrict to 4 to reduce the maintenance burden
7881          * when expanding kvm_run.emulation_failure in the future.
7882          */
7883         if (WARN_ON_ONCE(ndata > 4))
7884                 ndata = 4;
7885
7886         /* Always include the flags as a 'data' entry. */
7887         info_start = 1;
7888         run->emulation_failure.flags = 0;
7889
7890         if (insn_size) {
7891                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7892                               sizeof(run->emulation_failure.insn_bytes) != 16));
7893                 info_start += 2;
7894                 run->emulation_failure.flags |=
7895                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7896                 run->emulation_failure.insn_size = insn_size;
7897                 memset(run->emulation_failure.insn_bytes, 0x90,
7898                        sizeof(run->emulation_failure.insn_bytes));
7899                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7900         }
7901
7902         memcpy(&run->internal.data[info_start], info, sizeof(info));
7903         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7904                ndata * sizeof(data[0]));
7905
7906         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7907 }
7908
7909 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7910 {
7911         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7912
7913         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7914                                        ctxt->fetch.end - ctxt->fetch.data);
7915 }
7916
7917 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7918                                           u8 ndata)
7919 {
7920         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7921 }
7922 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7923
7924 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7925 {
7926         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7927 }
7928 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7929
7930 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7931 {
7932         struct kvm *kvm = vcpu->kvm;
7933
7934         ++vcpu->stat.insn_emulation_fail;
7935         trace_kvm_emulate_insn_failed(vcpu);
7936
7937         if (emulation_type & EMULTYPE_VMWARE_GP) {
7938                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7939                 return 1;
7940         }
7941
7942         if (kvm->arch.exit_on_emulation_error ||
7943             (emulation_type & EMULTYPE_SKIP)) {
7944                 prepare_emulation_ctxt_failure_exit(vcpu);
7945                 return 0;
7946         }
7947
7948         kvm_queue_exception(vcpu, UD_VECTOR);
7949
7950         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7951                 prepare_emulation_ctxt_failure_exit(vcpu);
7952                 return 0;
7953         }
7954
7955         return 1;
7956 }
7957
7958 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7959                                   bool write_fault_to_shadow_pgtable,
7960                                   int emulation_type)
7961 {
7962         gpa_t gpa = cr2_or_gpa;
7963         kvm_pfn_t pfn;
7964
7965         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7966                 return false;
7967
7968         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7969             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7970                 return false;
7971
7972         if (!vcpu->arch.mmu->direct_map) {
7973                 /*
7974                  * Write permission should be allowed since only
7975                  * write access need to be emulated.
7976                  */
7977                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7978
7979                 /*
7980                  * If the mapping is invalid in guest, let cpu retry
7981                  * it to generate fault.
7982                  */
7983                 if (gpa == UNMAPPED_GVA)
7984                         return true;
7985         }
7986
7987         /*
7988          * Do not retry the unhandleable instruction if it faults on the
7989          * readonly host memory, otherwise it will goto a infinite loop:
7990          * retry instruction -> write #PF -> emulation fail -> retry
7991          * instruction -> ...
7992          */
7993         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7994
7995         /*
7996          * If the instruction failed on the error pfn, it can not be fixed,
7997          * report the error to userspace.
7998          */
7999         if (is_error_noslot_pfn(pfn))
8000                 return false;
8001
8002         kvm_release_pfn_clean(pfn);
8003
8004         /* The instructions are well-emulated on direct mmu. */
8005         if (vcpu->arch.mmu->direct_map) {
8006                 unsigned int indirect_shadow_pages;
8007
8008                 write_lock(&vcpu->kvm->mmu_lock);
8009                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8010                 write_unlock(&vcpu->kvm->mmu_lock);
8011
8012                 if (indirect_shadow_pages)
8013                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8014
8015                 return true;
8016         }
8017
8018         /*
8019          * if emulation was due to access to shadowed page table
8020          * and it failed try to unshadow page and re-enter the
8021          * guest to let CPU execute the instruction.
8022          */
8023         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8024
8025         /*
8026          * If the access faults on its page table, it can not
8027          * be fixed by unprotecting shadow page and it should
8028          * be reported to userspace.
8029          */
8030         return !write_fault_to_shadow_pgtable;
8031 }
8032
8033 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8034                               gpa_t cr2_or_gpa,  int emulation_type)
8035 {
8036         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8037         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8038
8039         last_retry_eip = vcpu->arch.last_retry_eip;
8040         last_retry_addr = vcpu->arch.last_retry_addr;
8041
8042         /*
8043          * If the emulation is caused by #PF and it is non-page_table
8044          * writing instruction, it means the VM-EXIT is caused by shadow
8045          * page protected, we can zap the shadow page and retry this
8046          * instruction directly.
8047          *
8048          * Note: if the guest uses a non-page-table modifying instruction
8049          * on the PDE that points to the instruction, then we will unmap
8050          * the instruction and go to an infinite loop. So, we cache the
8051          * last retried eip and the last fault address, if we meet the eip
8052          * and the address again, we can break out of the potential infinite
8053          * loop.
8054          */
8055         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8056
8057         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8058                 return false;
8059
8060         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8061             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8062                 return false;
8063
8064         if (x86_page_table_writing_insn(ctxt))
8065                 return false;
8066
8067         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8068                 return false;
8069
8070         vcpu->arch.last_retry_eip = ctxt->eip;
8071         vcpu->arch.last_retry_addr = cr2_or_gpa;
8072
8073         if (!vcpu->arch.mmu->direct_map)
8074                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8075
8076         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8077
8078         return true;
8079 }
8080
8081 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8082 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8083
8084 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8085 {
8086         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8087
8088         if (entering_smm) {
8089                 vcpu->arch.hflags |= HF_SMM_MASK;
8090         } else {
8091                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8092
8093                 /* Process a latched INIT or SMI, if any.  */
8094                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8095
8096                 /*
8097                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8098                  * on SMM exit we still need to reload them from
8099                  * guest memory
8100                  */
8101                 vcpu->arch.pdptrs_from_userspace = false;
8102         }
8103
8104         kvm_mmu_reset_context(vcpu);
8105 }
8106
8107 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8108                                 unsigned long *db)
8109 {
8110         u32 dr6 = 0;
8111         int i;
8112         u32 enable, rwlen;
8113
8114         enable = dr7;
8115         rwlen = dr7 >> 16;
8116         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8117                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8118                         dr6 |= (1 << i);
8119         return dr6;
8120 }
8121
8122 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8123 {
8124         struct kvm_run *kvm_run = vcpu->run;
8125
8126         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8127                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8128                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8129                 kvm_run->debug.arch.exception = DB_VECTOR;
8130                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8131                 return 0;
8132         }
8133         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8134         return 1;
8135 }
8136
8137 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8138 {
8139         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8140         int r;
8141
8142         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8143         if (unlikely(!r))
8144                 return 0;
8145
8146         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8147
8148         /*
8149          * rflags is the old, "raw" value of the flags.  The new value has
8150          * not been saved yet.
8151          *
8152          * This is correct even for TF set by the guest, because "the
8153          * processor will not generate this exception after the instruction
8154          * that sets the TF flag".
8155          */
8156         if (unlikely(rflags & X86_EFLAGS_TF))
8157                 r = kvm_vcpu_do_singlestep(vcpu);
8158         return r;
8159 }
8160 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8161
8162 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8163 {
8164         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8165             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8166                 struct kvm_run *kvm_run = vcpu->run;
8167                 unsigned long eip = kvm_get_linear_rip(vcpu);
8168                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8169                                            vcpu->arch.guest_debug_dr7,
8170                                            vcpu->arch.eff_db);
8171
8172                 if (dr6 != 0) {
8173                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8174                         kvm_run->debug.arch.pc = eip;
8175                         kvm_run->debug.arch.exception = DB_VECTOR;
8176                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8177                         *r = 0;
8178                         return true;
8179                 }
8180         }
8181
8182         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8183             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8184                 unsigned long eip = kvm_get_linear_rip(vcpu);
8185                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8186                                            vcpu->arch.dr7,
8187                                            vcpu->arch.db);
8188
8189                 if (dr6 != 0) {
8190                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8191                         *r = 1;
8192                         return true;
8193                 }
8194         }
8195
8196         return false;
8197 }
8198
8199 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8200 {
8201         switch (ctxt->opcode_len) {
8202         case 1:
8203                 switch (ctxt->b) {
8204                 case 0xe4:      /* IN */
8205                 case 0xe5:
8206                 case 0xec:
8207                 case 0xed:
8208                 case 0xe6:      /* OUT */
8209                 case 0xe7:
8210                 case 0xee:
8211                 case 0xef:
8212                 case 0x6c:      /* INS */
8213                 case 0x6d:
8214                 case 0x6e:      /* OUTS */
8215                 case 0x6f:
8216                         return true;
8217                 }
8218                 break;
8219         case 2:
8220                 switch (ctxt->b) {
8221                 case 0x33:      /* RDPMC */
8222                         return true;
8223                 }
8224                 break;
8225         }
8226
8227         return false;
8228 }
8229
8230 /*
8231  * Decode to be emulated instruction. Return EMULATION_OK if success.
8232  */
8233 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8234                                     void *insn, int insn_len)
8235 {
8236         int r = EMULATION_OK;
8237         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8238
8239         init_emulate_ctxt(vcpu);
8240
8241         /*
8242          * We will reenter on the same instruction since we do not set
8243          * complete_userspace_io. This does not handle watchpoints yet,
8244          * those would be handled in the emulate_ops.
8245          */
8246         if (!(emulation_type & EMULTYPE_SKIP) &&
8247             kvm_vcpu_check_breakpoint(vcpu, &r))
8248                 return r;
8249
8250         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8251
8252         trace_kvm_emulate_insn_start(vcpu);
8253         ++vcpu->stat.insn_emulation;
8254
8255         return r;
8256 }
8257 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8258
8259 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8260                             int emulation_type, void *insn, int insn_len)
8261 {
8262         int r;
8263         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8264         bool writeback = true;
8265         bool write_fault_to_spt;
8266
8267         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8268                 return 1;
8269
8270         vcpu->arch.l1tf_flush_l1d = true;
8271
8272         /*
8273          * Clear write_fault_to_shadow_pgtable here to ensure it is
8274          * never reused.
8275          */
8276         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8277         vcpu->arch.write_fault_to_shadow_pgtable = false;
8278
8279         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8280                 kvm_clear_exception_queue(vcpu);
8281
8282                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8283                                                     insn, insn_len);
8284                 if (r != EMULATION_OK)  {
8285                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8286                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8287                                 kvm_queue_exception(vcpu, UD_VECTOR);
8288                                 return 1;
8289                         }
8290                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8291                                                   write_fault_to_spt,
8292                                                   emulation_type))
8293                                 return 1;
8294                         if (ctxt->have_exception) {
8295                                 /*
8296                                  * #UD should result in just EMULATION_FAILED, and trap-like
8297                                  * exception should not be encountered during decode.
8298                                  */
8299                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8300                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8301                                 inject_emulated_exception(vcpu);
8302                                 return 1;
8303                         }
8304                         return handle_emulation_failure(vcpu, emulation_type);
8305                 }
8306         }
8307
8308         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8309             !is_vmware_backdoor_opcode(ctxt)) {
8310                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8311                 return 1;
8312         }
8313
8314         /*
8315          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8316          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8317          * The caller is responsible for updating interruptibility state and
8318          * injecting single-step #DBs.
8319          */
8320         if (emulation_type & EMULTYPE_SKIP) {
8321                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8322                         ctxt->eip = (u32)ctxt->_eip;
8323                 else
8324                         ctxt->eip = ctxt->_eip;
8325
8326                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8327                         r = 1;
8328                         goto writeback;
8329                 }
8330
8331                 kvm_rip_write(vcpu, ctxt->eip);
8332                 if (ctxt->eflags & X86_EFLAGS_RF)
8333                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8334                 return 1;
8335         }
8336
8337         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8338                 return 1;
8339
8340         /* this is needed for vmware backdoor interface to work since it
8341            changes registers values  during IO operation */
8342         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8343                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8344                 emulator_invalidate_register_cache(ctxt);
8345         }
8346
8347 restart:
8348         if (emulation_type & EMULTYPE_PF) {
8349                 /* Save the faulting GPA (cr2) in the address field */
8350                 ctxt->exception.address = cr2_or_gpa;
8351
8352                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8353                 if (vcpu->arch.mmu->direct_map) {
8354                         ctxt->gpa_available = true;
8355                         ctxt->gpa_val = cr2_or_gpa;
8356                 }
8357         } else {
8358                 /* Sanitize the address out of an abundance of paranoia. */
8359                 ctxt->exception.address = 0;
8360         }
8361
8362         r = x86_emulate_insn(ctxt);
8363
8364         if (r == EMULATION_INTERCEPTED)
8365                 return 1;
8366
8367         if (r == EMULATION_FAILED) {
8368                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8369                                         emulation_type))
8370                         return 1;
8371
8372                 return handle_emulation_failure(vcpu, emulation_type);
8373         }
8374
8375         if (ctxt->have_exception) {
8376                 r = 1;
8377                 if (inject_emulated_exception(vcpu))
8378                         return r;
8379         } else if (vcpu->arch.pio.count) {
8380                 if (!vcpu->arch.pio.in) {
8381                         /* FIXME: return into emulator if single-stepping.  */
8382                         vcpu->arch.pio.count = 0;
8383                 } else {
8384                         writeback = false;
8385                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8386                 }
8387                 r = 0;
8388         } else if (vcpu->mmio_needed) {
8389                 ++vcpu->stat.mmio_exits;
8390
8391                 if (!vcpu->mmio_is_write)
8392                         writeback = false;
8393                 r = 0;
8394                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8395         } else if (vcpu->arch.complete_userspace_io) {
8396                 writeback = false;
8397                 r = 0;
8398         } else if (r == EMULATION_RESTART)
8399                 goto restart;
8400         else
8401                 r = 1;
8402
8403 writeback:
8404         if (writeback) {
8405                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8406                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8407                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8408                 if (!ctxt->have_exception ||
8409                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8410                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8411                         if (ctxt->is_branch)
8412                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8413                         kvm_rip_write(vcpu, ctxt->eip);
8414                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8415                                 r = kvm_vcpu_do_singlestep(vcpu);
8416                         if (kvm_x86_ops.update_emulated_instruction)
8417                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8418                         __kvm_set_rflags(vcpu, ctxt->eflags);
8419                 }
8420
8421                 /*
8422                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8423                  * do nothing, and it will be requested again as soon as
8424                  * the shadow expires.  But we still need to check here,
8425                  * because POPF has no interrupt shadow.
8426                  */
8427                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8428                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8429         } else
8430                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8431
8432         return r;
8433 }
8434
8435 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8436 {
8437         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8438 }
8439 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8440
8441 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8442                                         void *insn, int insn_len)
8443 {
8444         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8445 }
8446 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8447
8448 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8449 {
8450         vcpu->arch.pio.count = 0;
8451         return 1;
8452 }
8453
8454 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8455 {
8456         vcpu->arch.pio.count = 0;
8457
8458         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8459                 return 1;
8460
8461         return kvm_skip_emulated_instruction(vcpu);
8462 }
8463
8464 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8465                             unsigned short port)
8466 {
8467         unsigned long val = kvm_rax_read(vcpu);
8468         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8469
8470         if (ret)
8471                 return ret;
8472
8473         /*
8474          * Workaround userspace that relies on old KVM behavior of %rip being
8475          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8476          */
8477         if (port == 0x7e &&
8478             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8479                 vcpu->arch.complete_userspace_io =
8480                         complete_fast_pio_out_port_0x7e;
8481                 kvm_skip_emulated_instruction(vcpu);
8482         } else {
8483                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8484                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8485         }
8486         return 0;
8487 }
8488
8489 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8490 {
8491         unsigned long val;
8492
8493         /* We should only ever be called with arch.pio.count equal to 1 */
8494         BUG_ON(vcpu->arch.pio.count != 1);
8495
8496         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8497                 vcpu->arch.pio.count = 0;
8498                 return 1;
8499         }
8500
8501         /* For size less than 4 we merge, else we zero extend */
8502         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8503
8504         /*
8505          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8506          * the copy and tracing
8507          */
8508         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8509         kvm_rax_write(vcpu, val);
8510
8511         return kvm_skip_emulated_instruction(vcpu);
8512 }
8513
8514 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8515                            unsigned short port)
8516 {
8517         unsigned long val;
8518         int ret;
8519
8520         /* For size less than 4 we merge, else we zero extend */
8521         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8522
8523         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8524         if (ret) {
8525                 kvm_rax_write(vcpu, val);
8526                 return ret;
8527         }
8528
8529         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8530         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8531
8532         return 0;
8533 }
8534
8535 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8536 {
8537         int ret;
8538
8539         if (in)
8540                 ret = kvm_fast_pio_in(vcpu, size, port);
8541         else
8542                 ret = kvm_fast_pio_out(vcpu, size, port);
8543         return ret && kvm_skip_emulated_instruction(vcpu);
8544 }
8545 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8546
8547 static int kvmclock_cpu_down_prep(unsigned int cpu)
8548 {
8549         __this_cpu_write(cpu_tsc_khz, 0);
8550         return 0;
8551 }
8552
8553 static void tsc_khz_changed(void *data)
8554 {
8555         struct cpufreq_freqs *freq = data;
8556         unsigned long khz = 0;
8557
8558         if (data)
8559                 khz = freq->new;
8560         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8561                 khz = cpufreq_quick_get(raw_smp_processor_id());
8562         if (!khz)
8563                 khz = tsc_khz;
8564         __this_cpu_write(cpu_tsc_khz, khz);
8565 }
8566
8567 #ifdef CONFIG_X86_64
8568 static void kvm_hyperv_tsc_notifier(void)
8569 {
8570         struct kvm *kvm;
8571         int cpu;
8572
8573         mutex_lock(&kvm_lock);
8574         list_for_each_entry(kvm, &vm_list, vm_list)
8575                 kvm_make_mclock_inprogress_request(kvm);
8576
8577         /* no guest entries from this point */
8578         hyperv_stop_tsc_emulation();
8579
8580         /* TSC frequency always matches when on Hyper-V */
8581         for_each_present_cpu(cpu)
8582                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8583         kvm_max_guest_tsc_khz = tsc_khz;
8584
8585         list_for_each_entry(kvm, &vm_list, vm_list) {
8586                 __kvm_start_pvclock_update(kvm);
8587                 pvclock_update_vm_gtod_copy(kvm);
8588                 kvm_end_pvclock_update(kvm);
8589         }
8590
8591         mutex_unlock(&kvm_lock);
8592 }
8593 #endif
8594
8595 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8596 {
8597         struct kvm *kvm;
8598         struct kvm_vcpu *vcpu;
8599         int send_ipi = 0;
8600         unsigned long i;
8601
8602         /*
8603          * We allow guests to temporarily run on slowing clocks,
8604          * provided we notify them after, or to run on accelerating
8605          * clocks, provided we notify them before.  Thus time never
8606          * goes backwards.
8607          *
8608          * However, we have a problem.  We can't atomically update
8609          * the frequency of a given CPU from this function; it is
8610          * merely a notifier, which can be called from any CPU.
8611          * Changing the TSC frequency at arbitrary points in time
8612          * requires a recomputation of local variables related to
8613          * the TSC for each VCPU.  We must flag these local variables
8614          * to be updated and be sure the update takes place with the
8615          * new frequency before any guests proceed.
8616          *
8617          * Unfortunately, the combination of hotplug CPU and frequency
8618          * change creates an intractable locking scenario; the order
8619          * of when these callouts happen is undefined with respect to
8620          * CPU hotplug, and they can race with each other.  As such,
8621          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8622          * undefined; you can actually have a CPU frequency change take
8623          * place in between the computation of X and the setting of the
8624          * variable.  To protect against this problem, all updates of
8625          * the per_cpu tsc_khz variable are done in an interrupt
8626          * protected IPI, and all callers wishing to update the value
8627          * must wait for a synchronous IPI to complete (which is trivial
8628          * if the caller is on the CPU already).  This establishes the
8629          * necessary total order on variable updates.
8630          *
8631          * Note that because a guest time update may take place
8632          * anytime after the setting of the VCPU's request bit, the
8633          * correct TSC value must be set before the request.  However,
8634          * to ensure the update actually makes it to any guest which
8635          * starts running in hardware virtualization between the set
8636          * and the acquisition of the spinlock, we must also ping the
8637          * CPU after setting the request bit.
8638          *
8639          */
8640
8641         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8642
8643         mutex_lock(&kvm_lock);
8644         list_for_each_entry(kvm, &vm_list, vm_list) {
8645                 kvm_for_each_vcpu(i, vcpu, kvm) {
8646                         if (vcpu->cpu != cpu)
8647                                 continue;
8648                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8649                         if (vcpu->cpu != raw_smp_processor_id())
8650                                 send_ipi = 1;
8651                 }
8652         }
8653         mutex_unlock(&kvm_lock);
8654
8655         if (freq->old < freq->new && send_ipi) {
8656                 /*
8657                  * We upscale the frequency.  Must make the guest
8658                  * doesn't see old kvmclock values while running with
8659                  * the new frequency, otherwise we risk the guest sees
8660                  * time go backwards.
8661                  *
8662                  * In case we update the frequency for another cpu
8663                  * (which might be in guest context) send an interrupt
8664                  * to kick the cpu out of guest context.  Next time
8665                  * guest context is entered kvmclock will be updated,
8666                  * so the guest will not see stale values.
8667                  */
8668                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8669         }
8670 }
8671
8672 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8673                                      void *data)
8674 {
8675         struct cpufreq_freqs *freq = data;
8676         int cpu;
8677
8678         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8679                 return 0;
8680         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8681                 return 0;
8682
8683         for_each_cpu(cpu, freq->policy->cpus)
8684                 __kvmclock_cpufreq_notifier(freq, cpu);
8685
8686         return 0;
8687 }
8688
8689 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8690         .notifier_call  = kvmclock_cpufreq_notifier
8691 };
8692
8693 static int kvmclock_cpu_online(unsigned int cpu)
8694 {
8695         tsc_khz_changed(NULL);
8696         return 0;
8697 }
8698
8699 static void kvm_timer_init(void)
8700 {
8701         max_tsc_khz = tsc_khz;
8702
8703         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8704 #ifdef CONFIG_CPU_FREQ
8705                 struct cpufreq_policy *policy;
8706                 int cpu;
8707
8708                 cpu = get_cpu();
8709                 policy = cpufreq_cpu_get(cpu);
8710                 if (policy) {
8711                         if (policy->cpuinfo.max_freq)
8712                                 max_tsc_khz = policy->cpuinfo.max_freq;
8713                         cpufreq_cpu_put(policy);
8714                 }
8715                 put_cpu();
8716 #endif
8717                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8718                                           CPUFREQ_TRANSITION_NOTIFIER);
8719         }
8720
8721         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8722                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8723 }
8724
8725 #ifdef CONFIG_X86_64
8726 static void pvclock_gtod_update_fn(struct work_struct *work)
8727 {
8728         struct kvm *kvm;
8729         struct kvm_vcpu *vcpu;
8730         unsigned long i;
8731
8732         mutex_lock(&kvm_lock);
8733         list_for_each_entry(kvm, &vm_list, vm_list)
8734                 kvm_for_each_vcpu(i, vcpu, kvm)
8735                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8736         atomic_set(&kvm_guest_has_master_clock, 0);
8737         mutex_unlock(&kvm_lock);
8738 }
8739
8740 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8741
8742 /*
8743  * Indirection to move queue_work() out of the tk_core.seq write held
8744  * region to prevent possible deadlocks against time accessors which
8745  * are invoked with work related locks held.
8746  */
8747 static void pvclock_irq_work_fn(struct irq_work *w)
8748 {
8749         queue_work(system_long_wq, &pvclock_gtod_work);
8750 }
8751
8752 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8753
8754 /*
8755  * Notification about pvclock gtod data update.
8756  */
8757 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8758                                void *priv)
8759 {
8760         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8761         struct timekeeper *tk = priv;
8762
8763         update_pvclock_gtod(tk);
8764
8765         /*
8766          * Disable master clock if host does not trust, or does not use,
8767          * TSC based clocksource. Delegate queue_work() to irq_work as
8768          * this is invoked with tk_core.seq write held.
8769          */
8770         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8771             atomic_read(&kvm_guest_has_master_clock) != 0)
8772                 irq_work_queue(&pvclock_irq_work);
8773         return 0;
8774 }
8775
8776 static struct notifier_block pvclock_gtod_notifier = {
8777         .notifier_call = pvclock_gtod_notify,
8778 };
8779 #endif
8780
8781 int kvm_arch_init(void *opaque)
8782 {
8783         struct kvm_x86_init_ops *ops = opaque;
8784         int r;
8785
8786         if (kvm_x86_ops.hardware_enable) {
8787                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8788                 r = -EEXIST;
8789                 goto out;
8790         }
8791
8792         if (!ops->cpu_has_kvm_support()) {
8793                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8794                                    ops->runtime_ops->name);
8795                 r = -EOPNOTSUPP;
8796                 goto out;
8797         }
8798         if (ops->disabled_by_bios()) {
8799                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8800                                    ops->runtime_ops->name);
8801                 r = -EOPNOTSUPP;
8802                 goto out;
8803         }
8804
8805         /*
8806          * KVM explicitly assumes that the guest has an FPU and
8807          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8808          * vCPU's FPU state as a fxregs_state struct.
8809          */
8810         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8811                 printk(KERN_ERR "kvm: inadequate fpu\n");
8812                 r = -EOPNOTSUPP;
8813                 goto out;
8814         }
8815
8816         r = -ENOMEM;
8817
8818         x86_emulator_cache = kvm_alloc_emulator_cache();
8819         if (!x86_emulator_cache) {
8820                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8821                 goto out;
8822         }
8823
8824         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8825         if (!user_return_msrs) {
8826                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8827                 goto out_free_x86_emulator_cache;
8828         }
8829         kvm_nr_uret_msrs = 0;
8830
8831         r = kvm_mmu_module_init();
8832         if (r)
8833                 goto out_free_percpu;
8834
8835         kvm_timer_init();
8836
8837         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8838                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8839                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8840         }
8841
8842         if (pi_inject_timer == -1)
8843                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8844 #ifdef CONFIG_X86_64
8845         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8846
8847         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8848                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8849 #endif
8850
8851         return 0;
8852
8853 out_free_percpu:
8854         free_percpu(user_return_msrs);
8855 out_free_x86_emulator_cache:
8856         kmem_cache_destroy(x86_emulator_cache);
8857 out:
8858         return r;
8859 }
8860
8861 void kvm_arch_exit(void)
8862 {
8863 #ifdef CONFIG_X86_64
8864         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8865                 clear_hv_tscchange_cb();
8866 #endif
8867         kvm_lapic_exit();
8868
8869         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8870                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8871                                             CPUFREQ_TRANSITION_NOTIFIER);
8872         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8873 #ifdef CONFIG_X86_64
8874         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8875         irq_work_sync(&pvclock_irq_work);
8876         cancel_work_sync(&pvclock_gtod_work);
8877 #endif
8878         kvm_x86_ops.hardware_enable = NULL;
8879         kvm_mmu_module_exit();
8880         free_percpu(user_return_msrs);
8881         kmem_cache_destroy(x86_emulator_cache);
8882 #ifdef CONFIG_KVM_XEN
8883         static_key_deferred_flush(&kvm_xen_enabled);
8884         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8885 #endif
8886 }
8887
8888 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8889 {
8890         /*
8891          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8892          * local APIC is in-kernel, the run loop will detect the non-runnable
8893          * state and halt the vCPU.  Exit to userspace if the local APIC is
8894          * managed by userspace, in which case userspace is responsible for
8895          * handling wake events.
8896          */
8897         ++vcpu->stat.halt_exits;
8898         if (lapic_in_kernel(vcpu)) {
8899                 vcpu->arch.mp_state = state;
8900                 return 1;
8901         } else {
8902                 vcpu->run->exit_reason = reason;
8903                 return 0;
8904         }
8905 }
8906
8907 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8908 {
8909         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8910 }
8911 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8912
8913 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8914 {
8915         int ret = kvm_skip_emulated_instruction(vcpu);
8916         /*
8917          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8918          * KVM_EXIT_DEBUG here.
8919          */
8920         return kvm_emulate_halt_noskip(vcpu) && ret;
8921 }
8922 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8923
8924 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8925 {
8926         int ret = kvm_skip_emulated_instruction(vcpu);
8927
8928         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8929                                         KVM_EXIT_AP_RESET_HOLD) && ret;
8930 }
8931 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8932
8933 #ifdef CONFIG_X86_64
8934 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8935                                 unsigned long clock_type)
8936 {
8937         struct kvm_clock_pairing clock_pairing;
8938         struct timespec64 ts;
8939         u64 cycle;
8940         int ret;
8941
8942         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8943                 return -KVM_EOPNOTSUPP;
8944
8945         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8946                 return -KVM_EOPNOTSUPP;
8947
8948         clock_pairing.sec = ts.tv_sec;
8949         clock_pairing.nsec = ts.tv_nsec;
8950         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8951         clock_pairing.flags = 0;
8952         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8953
8954         ret = 0;
8955         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8956                             sizeof(struct kvm_clock_pairing)))
8957                 ret = -KVM_EFAULT;
8958
8959         return ret;
8960 }
8961 #endif
8962
8963 /*
8964  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8965  *
8966  * @apicid - apicid of vcpu to be kicked.
8967  */
8968 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8969 {
8970         struct kvm_lapic_irq lapic_irq;
8971
8972         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8973         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8974         lapic_irq.level = 0;
8975         lapic_irq.dest_id = apicid;
8976         lapic_irq.msi_redir_hint = false;
8977
8978         lapic_irq.delivery_mode = APIC_DM_REMRD;
8979         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8980 }
8981
8982 bool kvm_apicv_activated(struct kvm *kvm)
8983 {
8984         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8985 }
8986 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8987
8988 static void kvm_apicv_init(struct kvm *kvm)
8989 {
8990         init_rwsem(&kvm->arch.apicv_update_lock);
8991
8992         set_bit(APICV_INHIBIT_REASON_ABSENT,
8993                 &kvm->arch.apicv_inhibit_reasons);
8994         if (!enable_apicv)
8995                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8996                         &kvm->arch.apicv_inhibit_reasons);
8997 }
8998
8999 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9000 {
9001         struct kvm_vcpu *target = NULL;
9002         struct kvm_apic_map *map;
9003
9004         vcpu->stat.directed_yield_attempted++;
9005
9006         if (single_task_running())
9007                 goto no_yield;
9008
9009         rcu_read_lock();
9010         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9011
9012         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9013                 target = map->phys_map[dest_id]->vcpu;
9014
9015         rcu_read_unlock();
9016
9017         if (!target || !READ_ONCE(target->ready))
9018                 goto no_yield;
9019
9020         /* Ignore requests to yield to self */
9021         if (vcpu == target)
9022                 goto no_yield;
9023
9024         if (kvm_vcpu_yield_to(target) <= 0)
9025                 goto no_yield;
9026
9027         vcpu->stat.directed_yield_successful++;
9028
9029 no_yield:
9030         return;
9031 }
9032
9033 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9034 {
9035         u64 ret = vcpu->run->hypercall.ret;
9036
9037         if (!is_64_bit_mode(vcpu))
9038                 ret = (u32)ret;
9039         kvm_rax_write(vcpu, ret);
9040         ++vcpu->stat.hypercalls;
9041         return kvm_skip_emulated_instruction(vcpu);
9042 }
9043
9044 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9045 {
9046         unsigned long nr, a0, a1, a2, a3, ret;
9047         int op_64_bit;
9048
9049         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9050                 return kvm_xen_hypercall(vcpu);
9051
9052         if (kvm_hv_hypercall_enabled(vcpu))
9053                 return kvm_hv_hypercall(vcpu);
9054
9055         nr = kvm_rax_read(vcpu);
9056         a0 = kvm_rbx_read(vcpu);
9057         a1 = kvm_rcx_read(vcpu);
9058         a2 = kvm_rdx_read(vcpu);
9059         a3 = kvm_rsi_read(vcpu);
9060
9061         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9062
9063         op_64_bit = is_64_bit_hypercall(vcpu);
9064         if (!op_64_bit) {
9065                 nr &= 0xFFFFFFFF;
9066                 a0 &= 0xFFFFFFFF;
9067                 a1 &= 0xFFFFFFFF;
9068                 a2 &= 0xFFFFFFFF;
9069                 a3 &= 0xFFFFFFFF;
9070         }
9071
9072         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9073                 ret = -KVM_EPERM;
9074                 goto out;
9075         }
9076
9077         ret = -KVM_ENOSYS;
9078
9079         switch (nr) {
9080         case KVM_HC_VAPIC_POLL_IRQ:
9081                 ret = 0;
9082                 break;
9083         case KVM_HC_KICK_CPU:
9084                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9085                         break;
9086
9087                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9088                 kvm_sched_yield(vcpu, a1);
9089                 ret = 0;
9090                 break;
9091 #ifdef CONFIG_X86_64
9092         case KVM_HC_CLOCK_PAIRING:
9093                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9094                 break;
9095 #endif
9096         case KVM_HC_SEND_IPI:
9097                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9098                         break;
9099
9100                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9101                 break;
9102         case KVM_HC_SCHED_YIELD:
9103                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9104                         break;
9105
9106                 kvm_sched_yield(vcpu, a0);
9107                 ret = 0;
9108                 break;
9109         case KVM_HC_MAP_GPA_RANGE: {
9110                 u64 gpa = a0, npages = a1, attrs = a2;
9111
9112                 ret = -KVM_ENOSYS;
9113                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9114                         break;
9115
9116                 if (!PAGE_ALIGNED(gpa) || !npages ||
9117                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9118                         ret = -KVM_EINVAL;
9119                         break;
9120                 }
9121
9122                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9123                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9124                 vcpu->run->hypercall.args[0]  = gpa;
9125                 vcpu->run->hypercall.args[1]  = npages;
9126                 vcpu->run->hypercall.args[2]  = attrs;
9127                 vcpu->run->hypercall.longmode = op_64_bit;
9128                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9129                 return 0;
9130         }
9131         default:
9132                 ret = -KVM_ENOSYS;
9133                 break;
9134         }
9135 out:
9136         if (!op_64_bit)
9137                 ret = (u32)ret;
9138         kvm_rax_write(vcpu, ret);
9139
9140         ++vcpu->stat.hypercalls;
9141         return kvm_skip_emulated_instruction(vcpu);
9142 }
9143 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9144
9145 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9146 {
9147         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9148         char instruction[3];
9149         unsigned long rip = kvm_rip_read(vcpu);
9150
9151         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9152
9153         return emulator_write_emulated(ctxt, rip, instruction, 3,
9154                 &ctxt->exception);
9155 }
9156
9157 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9158 {
9159         return vcpu->run->request_interrupt_window &&
9160                 likely(!pic_in_kernel(vcpu->kvm));
9161 }
9162
9163 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9164 {
9165         struct kvm_run *kvm_run = vcpu->run;
9166
9167         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9168         kvm_run->cr8 = kvm_get_cr8(vcpu);
9169         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9170
9171         /*
9172          * The call to kvm_ready_for_interrupt_injection() may end up in
9173          * kvm_xen_has_interrupt() which may require the srcu lock to be
9174          * held, to protect against changes in the vcpu_info address.
9175          */
9176         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9177         kvm_run->ready_for_interrupt_injection =
9178                 pic_in_kernel(vcpu->kvm) ||
9179                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9180         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9181
9182         if (is_smm(vcpu))
9183                 kvm_run->flags |= KVM_RUN_X86_SMM;
9184 }
9185
9186 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9187 {
9188         int max_irr, tpr;
9189
9190         if (!kvm_x86_ops.update_cr8_intercept)
9191                 return;
9192
9193         if (!lapic_in_kernel(vcpu))
9194                 return;
9195
9196         if (vcpu->arch.apicv_active)
9197                 return;
9198
9199         if (!vcpu->arch.apic->vapic_addr)
9200                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9201         else
9202                 max_irr = -1;
9203
9204         if (max_irr != -1)
9205                 max_irr >>= 4;
9206
9207         tpr = kvm_lapic_get_cr8(vcpu);
9208
9209         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9210 }
9211
9212
9213 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9214 {
9215         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9216                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9217                 return 1;
9218         }
9219
9220         return kvm_x86_ops.nested_ops->check_events(vcpu);
9221 }
9222
9223 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9224 {
9225         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9226                 vcpu->arch.exception.error_code = false;
9227         static_call(kvm_x86_queue_exception)(vcpu);
9228 }
9229
9230 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9231 {
9232         int r;
9233         bool can_inject = true;
9234
9235         /* try to reinject previous events if any */
9236
9237         if (vcpu->arch.exception.injected) {
9238                 kvm_inject_exception(vcpu);
9239                 can_inject = false;
9240         }
9241         /*
9242          * Do not inject an NMI or interrupt if there is a pending
9243          * exception.  Exceptions and interrupts are recognized at
9244          * instruction boundaries, i.e. the start of an instruction.
9245          * Trap-like exceptions, e.g. #DB, have higher priority than
9246          * NMIs and interrupts, i.e. traps are recognized before an
9247          * NMI/interrupt that's pending on the same instruction.
9248          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9249          * priority, but are only generated (pended) during instruction
9250          * execution, i.e. a pending fault-like exception means the
9251          * fault occurred on the *previous* instruction and must be
9252          * serviced prior to recognizing any new events in order to
9253          * fully complete the previous instruction.
9254          */
9255         else if (!vcpu->arch.exception.pending) {
9256                 if (vcpu->arch.nmi_injected) {
9257                         static_call(kvm_x86_set_nmi)(vcpu);
9258                         can_inject = false;
9259                 } else if (vcpu->arch.interrupt.injected) {
9260                         static_call(kvm_x86_set_irq)(vcpu);
9261                         can_inject = false;
9262                 }
9263         }
9264
9265         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9266                      vcpu->arch.exception.pending);
9267
9268         /*
9269          * Call check_nested_events() even if we reinjected a previous event
9270          * in order for caller to determine if it should require immediate-exit
9271          * from L2 to L1 due to pending L1 events which require exit
9272          * from L2 to L1.
9273          */
9274         if (is_guest_mode(vcpu)) {
9275                 r = kvm_check_nested_events(vcpu);
9276                 if (r < 0)
9277                         goto out;
9278         }
9279
9280         /* try to inject new event if pending */
9281         if (vcpu->arch.exception.pending) {
9282                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9283                                         vcpu->arch.exception.has_error_code,
9284                                         vcpu->arch.exception.error_code);
9285
9286                 vcpu->arch.exception.pending = false;
9287                 vcpu->arch.exception.injected = true;
9288
9289                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9290                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9291                                              X86_EFLAGS_RF);
9292
9293                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9294                         kvm_deliver_exception_payload(vcpu);
9295                         if (vcpu->arch.dr7 & DR7_GD) {
9296                                 vcpu->arch.dr7 &= ~DR7_GD;
9297                                 kvm_update_dr7(vcpu);
9298                         }
9299                 }
9300
9301                 kvm_inject_exception(vcpu);
9302                 can_inject = false;
9303         }
9304
9305         /* Don't inject interrupts if the user asked to avoid doing so */
9306         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9307                 return 0;
9308
9309         /*
9310          * Finally, inject interrupt events.  If an event cannot be injected
9311          * due to architectural conditions (e.g. IF=0) a window-open exit
9312          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9313          * and can architecturally be injected, but we cannot do it right now:
9314          * an interrupt could have arrived just now and we have to inject it
9315          * as a vmexit, or there could already an event in the queue, which is
9316          * indicated by can_inject.  In that case we request an immediate exit
9317          * in order to make progress and get back here for another iteration.
9318          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9319          */
9320         if (vcpu->arch.smi_pending) {
9321                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9322                 if (r < 0)
9323                         goto out;
9324                 if (r) {
9325                         vcpu->arch.smi_pending = false;
9326                         ++vcpu->arch.smi_count;
9327                         enter_smm(vcpu);
9328                         can_inject = false;
9329                 } else
9330                         static_call(kvm_x86_enable_smi_window)(vcpu);
9331         }
9332
9333         if (vcpu->arch.nmi_pending) {
9334                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9335                 if (r < 0)
9336                         goto out;
9337                 if (r) {
9338                         --vcpu->arch.nmi_pending;
9339                         vcpu->arch.nmi_injected = true;
9340                         static_call(kvm_x86_set_nmi)(vcpu);
9341                         can_inject = false;
9342                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9343                 }
9344                 if (vcpu->arch.nmi_pending)
9345                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9346         }
9347
9348         if (kvm_cpu_has_injectable_intr(vcpu)) {
9349                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9350                 if (r < 0)
9351                         goto out;
9352                 if (r) {
9353                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9354                         static_call(kvm_x86_set_irq)(vcpu);
9355                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9356                 }
9357                 if (kvm_cpu_has_injectable_intr(vcpu))
9358                         static_call(kvm_x86_enable_irq_window)(vcpu);
9359         }
9360
9361         if (is_guest_mode(vcpu) &&
9362             kvm_x86_ops.nested_ops->hv_timer_pending &&
9363             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9364                 *req_immediate_exit = true;
9365
9366         WARN_ON(vcpu->arch.exception.pending);
9367         return 0;
9368
9369 out:
9370         if (r == -EBUSY) {
9371                 *req_immediate_exit = true;
9372                 r = 0;
9373         }
9374         return r;
9375 }
9376
9377 static void process_nmi(struct kvm_vcpu *vcpu)
9378 {
9379         unsigned limit = 2;
9380
9381         /*
9382          * x86 is limited to one NMI running, and one NMI pending after it.
9383          * If an NMI is already in progress, limit further NMIs to just one.
9384          * Otherwise, allow two (and we'll inject the first one immediately).
9385          */
9386         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9387                 limit = 1;
9388
9389         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9390         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9391         kvm_make_request(KVM_REQ_EVENT, vcpu);
9392 }
9393
9394 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9395 {
9396         u32 flags = 0;
9397         flags |= seg->g       << 23;
9398         flags |= seg->db      << 22;
9399         flags |= seg->l       << 21;
9400         flags |= seg->avl     << 20;
9401         flags |= seg->present << 15;
9402         flags |= seg->dpl     << 13;
9403         flags |= seg->s       << 12;
9404         flags |= seg->type    << 8;
9405         return flags;
9406 }
9407
9408 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9409 {
9410         struct kvm_segment seg;
9411         int offset;
9412
9413         kvm_get_segment(vcpu, &seg, n);
9414         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9415
9416         if (n < 3)
9417                 offset = 0x7f84 + n * 12;
9418         else
9419                 offset = 0x7f2c + (n - 3) * 12;
9420
9421         put_smstate(u32, buf, offset + 8, seg.base);
9422         put_smstate(u32, buf, offset + 4, seg.limit);
9423         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9424 }
9425
9426 #ifdef CONFIG_X86_64
9427 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9428 {
9429         struct kvm_segment seg;
9430         int offset;
9431         u16 flags;
9432
9433         kvm_get_segment(vcpu, &seg, n);
9434         offset = 0x7e00 + n * 16;
9435
9436         flags = enter_smm_get_segment_flags(&seg) >> 8;
9437         put_smstate(u16, buf, offset, seg.selector);
9438         put_smstate(u16, buf, offset + 2, flags);
9439         put_smstate(u32, buf, offset + 4, seg.limit);
9440         put_smstate(u64, buf, offset + 8, seg.base);
9441 }
9442 #endif
9443
9444 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9445 {
9446         struct desc_ptr dt;
9447         struct kvm_segment seg;
9448         unsigned long val;
9449         int i;
9450
9451         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9452         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9453         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9454         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9455
9456         for (i = 0; i < 8; i++)
9457                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9458
9459         kvm_get_dr(vcpu, 6, &val);
9460         put_smstate(u32, buf, 0x7fcc, (u32)val);
9461         kvm_get_dr(vcpu, 7, &val);
9462         put_smstate(u32, buf, 0x7fc8, (u32)val);
9463
9464         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9465         put_smstate(u32, buf, 0x7fc4, seg.selector);
9466         put_smstate(u32, buf, 0x7f64, seg.base);
9467         put_smstate(u32, buf, 0x7f60, seg.limit);
9468         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9469
9470         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9471         put_smstate(u32, buf, 0x7fc0, seg.selector);
9472         put_smstate(u32, buf, 0x7f80, seg.base);
9473         put_smstate(u32, buf, 0x7f7c, seg.limit);
9474         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9475
9476         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9477         put_smstate(u32, buf, 0x7f74, dt.address);
9478         put_smstate(u32, buf, 0x7f70, dt.size);
9479
9480         static_call(kvm_x86_get_idt)(vcpu, &dt);
9481         put_smstate(u32, buf, 0x7f58, dt.address);
9482         put_smstate(u32, buf, 0x7f54, dt.size);
9483
9484         for (i = 0; i < 6; i++)
9485                 enter_smm_save_seg_32(vcpu, buf, i);
9486
9487         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9488
9489         /* revision id */
9490         put_smstate(u32, buf, 0x7efc, 0x00020000);
9491         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9492 }
9493
9494 #ifdef CONFIG_X86_64
9495 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9496 {
9497         struct desc_ptr dt;
9498         struct kvm_segment seg;
9499         unsigned long val;
9500         int i;
9501
9502         for (i = 0; i < 16; i++)
9503                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9504
9505         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9506         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9507
9508         kvm_get_dr(vcpu, 6, &val);
9509         put_smstate(u64, buf, 0x7f68, val);
9510         kvm_get_dr(vcpu, 7, &val);
9511         put_smstate(u64, buf, 0x7f60, val);
9512
9513         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9514         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9515         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9516
9517         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9518
9519         /* revision id */
9520         put_smstate(u32, buf, 0x7efc, 0x00020064);
9521
9522         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9523
9524         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9525         put_smstate(u16, buf, 0x7e90, seg.selector);
9526         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9527         put_smstate(u32, buf, 0x7e94, seg.limit);
9528         put_smstate(u64, buf, 0x7e98, seg.base);
9529
9530         static_call(kvm_x86_get_idt)(vcpu, &dt);
9531         put_smstate(u32, buf, 0x7e84, dt.size);
9532         put_smstate(u64, buf, 0x7e88, dt.address);
9533
9534         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9535         put_smstate(u16, buf, 0x7e70, seg.selector);
9536         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9537         put_smstate(u32, buf, 0x7e74, seg.limit);
9538         put_smstate(u64, buf, 0x7e78, seg.base);
9539
9540         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9541         put_smstate(u32, buf, 0x7e64, dt.size);
9542         put_smstate(u64, buf, 0x7e68, dt.address);
9543
9544         for (i = 0; i < 6; i++)
9545                 enter_smm_save_seg_64(vcpu, buf, i);
9546 }
9547 #endif
9548
9549 static void enter_smm(struct kvm_vcpu *vcpu)
9550 {
9551         struct kvm_segment cs, ds;
9552         struct desc_ptr dt;
9553         unsigned long cr0;
9554         char buf[512];
9555
9556         memset(buf, 0, 512);
9557 #ifdef CONFIG_X86_64
9558         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9559                 enter_smm_save_state_64(vcpu, buf);
9560         else
9561 #endif
9562                 enter_smm_save_state_32(vcpu, buf);
9563
9564         /*
9565          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9566          * state (e.g. leave guest mode) after we've saved the state into the
9567          * SMM state-save area.
9568          */
9569         static_call(kvm_x86_enter_smm)(vcpu, buf);
9570
9571         kvm_smm_changed(vcpu, true);
9572         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9573
9574         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9575                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9576         else
9577                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9578
9579         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9580         kvm_rip_write(vcpu, 0x8000);
9581
9582         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9583         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9584         vcpu->arch.cr0 = cr0;
9585
9586         static_call(kvm_x86_set_cr4)(vcpu, 0);
9587
9588         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9589         dt.address = dt.size = 0;
9590         static_call(kvm_x86_set_idt)(vcpu, &dt);
9591
9592         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9593
9594         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9595         cs.base = vcpu->arch.smbase;
9596
9597         ds.selector = 0;
9598         ds.base = 0;
9599
9600         cs.limit    = ds.limit = 0xffffffff;
9601         cs.type     = ds.type = 0x3;
9602         cs.dpl      = ds.dpl = 0;
9603         cs.db       = ds.db = 0;
9604         cs.s        = ds.s = 1;
9605         cs.l        = ds.l = 0;
9606         cs.g        = ds.g = 1;
9607         cs.avl      = ds.avl = 0;
9608         cs.present  = ds.present = 1;
9609         cs.unusable = ds.unusable = 0;
9610         cs.padding  = ds.padding = 0;
9611
9612         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9613         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9614         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9615         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9616         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9617         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9618
9619 #ifdef CONFIG_X86_64
9620         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9621                 static_call(kvm_x86_set_efer)(vcpu, 0);
9622 #endif
9623
9624         kvm_update_cpuid_runtime(vcpu);
9625         kvm_mmu_reset_context(vcpu);
9626 }
9627
9628 static void process_smi(struct kvm_vcpu *vcpu)
9629 {
9630         vcpu->arch.smi_pending = true;
9631         kvm_make_request(KVM_REQ_EVENT, vcpu);
9632 }
9633
9634 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9635                                        unsigned long *vcpu_bitmap)
9636 {
9637         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9638 }
9639
9640 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9641 {
9642         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9643 }
9644
9645 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9646 {
9647         bool activate;
9648
9649         if (!lapic_in_kernel(vcpu))
9650                 return;
9651
9652         down_read(&vcpu->kvm->arch.apicv_update_lock);
9653
9654         activate = kvm_apicv_activated(vcpu->kvm);
9655         if (vcpu->arch.apicv_active == activate)
9656                 goto out;
9657
9658         vcpu->arch.apicv_active = activate;
9659         kvm_apic_update_apicv(vcpu);
9660         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9661
9662         /*
9663          * When APICv gets disabled, we may still have injected interrupts
9664          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9665          * still active when the interrupt got accepted. Make sure
9666          * inject_pending_event() is called to check for that.
9667          */
9668         if (!vcpu->arch.apicv_active)
9669                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9670
9671 out:
9672         up_read(&vcpu->kvm->arch.apicv_update_lock);
9673 }
9674 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9675
9676 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9677 {
9678         unsigned long old, new;
9679
9680         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9681
9682         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9683             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9684                 return;
9685
9686         old = new = kvm->arch.apicv_inhibit_reasons;
9687
9688         if (activate)
9689                 __clear_bit(bit, &new);
9690         else
9691                 __set_bit(bit, &new);
9692
9693         if (!!old != !!new) {
9694                 trace_kvm_apicv_update_request(activate, bit);
9695                 /*
9696                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9697                  * false positives in the sanity check WARN in svm_vcpu_run().
9698                  * This task will wait for all vCPUs to ack the kick IRQ before
9699                  * updating apicv_inhibit_reasons, and all other vCPUs will
9700                  * block on acquiring apicv_update_lock so that vCPUs can't
9701                  * redo svm_vcpu_run() without seeing the new inhibit state.
9702                  *
9703                  * Note, holding apicv_update_lock and taking it in the read
9704                  * side (handling the request) also prevents other vCPUs from
9705                  * servicing the request with a stale apicv_inhibit_reasons.
9706                  */
9707                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9708                 kvm->arch.apicv_inhibit_reasons = new;
9709                 if (new) {
9710                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9711                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9712                 }
9713         } else
9714                 kvm->arch.apicv_inhibit_reasons = new;
9715 }
9716 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9717
9718 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9719 {
9720         down_write(&kvm->arch.apicv_update_lock);
9721         __kvm_request_apicv_update(kvm, activate, bit);
9722         up_write(&kvm->arch.apicv_update_lock);
9723 }
9724 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9725
9726 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9727 {
9728         if (!kvm_apic_present(vcpu))
9729                 return;
9730
9731         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9732
9733         if (irqchip_split(vcpu->kvm))
9734                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9735         else {
9736                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9737                 if (ioapic_in_kernel(vcpu->kvm))
9738                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9739         }
9740
9741         if (is_guest_mode(vcpu))
9742                 vcpu->arch.load_eoi_exitmap_pending = true;
9743         else
9744                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9745 }
9746
9747 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9748 {
9749         u64 eoi_exit_bitmap[4];
9750
9751         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9752                 return;
9753
9754         if (to_hv_vcpu(vcpu)) {
9755                 bitmap_or((ulong *)eoi_exit_bitmap,
9756                           vcpu->arch.ioapic_handled_vectors,
9757                           to_hv_synic(vcpu)->vec_bitmap, 256);
9758                 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9759                 return;
9760         }
9761
9762         static_call(kvm_x86_load_eoi_exitmap)(
9763                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9764 }
9765
9766 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9767                                             unsigned long start, unsigned long end)
9768 {
9769         unsigned long apic_address;
9770
9771         /*
9772          * The physical address of apic access page is stored in the VMCS.
9773          * Update it when it becomes invalid.
9774          */
9775         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9776         if (start <= apic_address && apic_address < end)
9777                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9778 }
9779
9780 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9781 {
9782         if (!lapic_in_kernel(vcpu))
9783                 return;
9784
9785         if (!kvm_x86_ops.set_apic_access_page_addr)
9786                 return;
9787
9788         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9789 }
9790
9791 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9792 {
9793         smp_send_reschedule(vcpu->cpu);
9794 }
9795 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9796
9797 /*
9798  * Returns 1 to let vcpu_run() continue the guest execution loop without
9799  * exiting to the userspace.  Otherwise, the value will be returned to the
9800  * userspace.
9801  */
9802 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9803 {
9804         int r;
9805         bool req_int_win =
9806                 dm_request_for_irq_injection(vcpu) &&
9807                 kvm_cpu_accept_dm_intr(vcpu);
9808         fastpath_t exit_fastpath;
9809
9810         bool req_immediate_exit = false;
9811
9812         /* Forbid vmenter if vcpu dirty ring is soft-full */
9813         if (unlikely(vcpu->kvm->dirty_ring_size &&
9814                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9815                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9816                 trace_kvm_dirty_ring_exit(vcpu);
9817                 r = 0;
9818                 goto out;
9819         }
9820
9821         if (kvm_request_pending(vcpu)) {
9822                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9823                         r = -EIO;
9824                         goto out;
9825                 }
9826                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9827                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9828                                 r = 0;
9829                                 goto out;
9830                         }
9831                 }
9832                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9833                         kvm_mmu_unload(vcpu);
9834                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9835                         __kvm_migrate_timers(vcpu);
9836                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9837                         kvm_update_masterclock(vcpu->kvm);
9838                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9839                         kvm_gen_kvmclock_update(vcpu);
9840                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9841                         r = kvm_guest_time_update(vcpu);
9842                         if (unlikely(r))
9843                                 goto out;
9844                 }
9845                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9846                         kvm_mmu_sync_roots(vcpu);
9847                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9848                         kvm_mmu_load_pgd(vcpu);
9849                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9850                         kvm_vcpu_flush_tlb_all(vcpu);
9851
9852                         /* Flushing all ASIDs flushes the current ASID... */
9853                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9854                 }
9855                 kvm_service_local_tlb_flush_requests(vcpu);
9856
9857                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9858                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9859                         r = 0;
9860                         goto out;
9861                 }
9862                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9863                         if (is_guest_mode(vcpu)) {
9864                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9865                         } else {
9866                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9867                                 vcpu->mmio_needed = 0;
9868                                 r = 0;
9869                                 goto out;
9870                         }
9871                 }
9872                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9873                         /* Page is swapped out. Do synthetic halt */
9874                         vcpu->arch.apf.halted = true;
9875                         r = 1;
9876                         goto out;
9877                 }
9878                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9879                         record_steal_time(vcpu);
9880                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9881                         process_smi(vcpu);
9882                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9883                         process_nmi(vcpu);
9884                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9885                         kvm_pmu_handle_event(vcpu);
9886                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9887                         kvm_pmu_deliver_pmi(vcpu);
9888                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9889                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9890                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9891                                      vcpu->arch.ioapic_handled_vectors)) {
9892                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9893                                 vcpu->run->eoi.vector =
9894                                                 vcpu->arch.pending_ioapic_eoi;
9895                                 r = 0;
9896                                 goto out;
9897                         }
9898                 }
9899                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9900                         vcpu_scan_ioapic(vcpu);
9901                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9902                         vcpu_load_eoi_exitmap(vcpu);
9903                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9904                         kvm_vcpu_reload_apic_access_page(vcpu);
9905                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9906                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9907                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9908                         r = 0;
9909                         goto out;
9910                 }
9911                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9912                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9913                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9914                         r = 0;
9915                         goto out;
9916                 }
9917                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9918                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9919
9920                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9921                         vcpu->run->hyperv = hv_vcpu->exit;
9922                         r = 0;
9923                         goto out;
9924                 }
9925
9926                 /*
9927                  * KVM_REQ_HV_STIMER has to be processed after
9928                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9929                  * depend on the guest clock being up-to-date
9930                  */
9931                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9932                         kvm_hv_process_stimers(vcpu);
9933                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9934                         kvm_vcpu_update_apicv(vcpu);
9935                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9936                         kvm_check_async_pf_completion(vcpu);
9937                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9938                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9939
9940                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9941                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9942         }
9943
9944         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9945             kvm_xen_has_interrupt(vcpu)) {
9946                 ++vcpu->stat.req_event;
9947                 r = kvm_apic_accept_events(vcpu);
9948                 if (r < 0) {
9949                         r = 0;
9950                         goto out;
9951                 }
9952                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9953                         r = 1;
9954                         goto out;
9955                 }
9956
9957                 r = inject_pending_event(vcpu, &req_immediate_exit);
9958                 if (r < 0) {
9959                         r = 0;
9960                         goto out;
9961                 }
9962                 if (req_int_win)
9963                         static_call(kvm_x86_enable_irq_window)(vcpu);
9964
9965                 if (kvm_lapic_enabled(vcpu)) {
9966                         update_cr8_intercept(vcpu);
9967                         kvm_lapic_sync_to_vapic(vcpu);
9968                 }
9969         }
9970
9971         r = kvm_mmu_reload(vcpu);
9972         if (unlikely(r)) {
9973                 goto cancel_injection;
9974         }
9975
9976         preempt_disable();
9977
9978         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9979
9980         /*
9981          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9982          * IPI are then delayed after guest entry, which ensures that they
9983          * result in virtual interrupt delivery.
9984          */
9985         local_irq_disable();
9986         vcpu->mode = IN_GUEST_MODE;
9987
9988         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9989
9990         /*
9991          * 1) We should set ->mode before checking ->requests.  Please see
9992          * the comment in kvm_vcpu_exiting_guest_mode().
9993          *
9994          * 2) For APICv, we should set ->mode before checking PID.ON. This
9995          * pairs with the memory barrier implicit in pi_test_and_set_on
9996          * (see vmx_deliver_posted_interrupt).
9997          *
9998          * 3) This also orders the write to mode from any reads to the page
9999          * tables done while the VCPU is running.  Please see the comment
10000          * in kvm_flush_remote_tlbs.
10001          */
10002         smp_mb__after_srcu_read_unlock();
10003
10004         /*
10005          * Process pending posted interrupts to handle the case where the
10006          * notification IRQ arrived in the host, or was never sent (because the
10007          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10008          * status, KVM doesn't update assigned devices when APICv is inhibited,
10009          * i.e. they can post interrupts even if APICv is temporarily disabled.
10010          */
10011         if (kvm_lapic_enabled(vcpu))
10012                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10013
10014         if (kvm_vcpu_exit_request(vcpu)) {
10015                 vcpu->mode = OUTSIDE_GUEST_MODE;
10016                 smp_wmb();
10017                 local_irq_enable();
10018                 preempt_enable();
10019                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10020                 r = 1;
10021                 goto cancel_injection;
10022         }
10023
10024         if (req_immediate_exit) {
10025                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10026                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10027         }
10028
10029         fpregs_assert_state_consistent();
10030         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10031                 switch_fpu_return();
10032
10033         if (vcpu->arch.guest_fpu.xfd_err)
10034                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10035
10036         if (unlikely(vcpu->arch.switch_db_regs)) {
10037                 set_debugreg(0, 7);
10038                 set_debugreg(vcpu->arch.eff_db[0], 0);
10039                 set_debugreg(vcpu->arch.eff_db[1], 1);
10040                 set_debugreg(vcpu->arch.eff_db[2], 2);
10041                 set_debugreg(vcpu->arch.eff_db[3], 3);
10042         } else if (unlikely(hw_breakpoint_active())) {
10043                 set_debugreg(0, 7);
10044         }
10045
10046         guest_timing_enter_irqoff();
10047
10048         for (;;) {
10049                 /*
10050                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10051                  * update must kick and wait for all vCPUs before toggling the
10052                  * per-VM state, and responsing vCPUs must wait for the update
10053                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10054                  */
10055                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10056
10057                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
10058                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10059                         break;
10060
10061                 if (kvm_lapic_enabled(vcpu))
10062                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10063
10064                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10065                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10066                         break;
10067                 }
10068         }
10069
10070         /*
10071          * Do this here before restoring debug registers on the host.  And
10072          * since we do this before handling the vmexit, a DR access vmexit
10073          * can (a) read the correct value of the debug registers, (b) set
10074          * KVM_DEBUGREG_WONT_EXIT again.
10075          */
10076         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10077                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10078                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10079                 kvm_update_dr0123(vcpu);
10080                 kvm_update_dr7(vcpu);
10081         }
10082
10083         /*
10084          * If the guest has used debug registers, at least dr7
10085          * will be disabled while returning to the host.
10086          * If we don't have active breakpoints in the host, we don't
10087          * care about the messed up debug address registers. But if
10088          * we have some of them active, restore the old state.
10089          */
10090         if (hw_breakpoint_active())
10091                 hw_breakpoint_restore();
10092
10093         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10094         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10095
10096         vcpu->mode = OUTSIDE_GUEST_MODE;
10097         smp_wmb();
10098
10099         /*
10100          * Sync xfd before calling handle_exit_irqoff() which may
10101          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10102          * in #NM irqoff handler).
10103          */
10104         if (vcpu->arch.xfd_no_write_intercept)
10105                 fpu_sync_guest_vmexit_xfd_state();
10106
10107         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10108
10109         if (vcpu->arch.guest_fpu.xfd_err)
10110                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10111
10112         /*
10113          * Consume any pending interrupts, including the possible source of
10114          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10115          * An instruction is required after local_irq_enable() to fully unblock
10116          * interrupts on processors that implement an interrupt shadow, the
10117          * stat.exits increment will do nicely.
10118          */
10119         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10120         local_irq_enable();
10121         ++vcpu->stat.exits;
10122         local_irq_disable();
10123         kvm_after_interrupt(vcpu);
10124
10125         /*
10126          * Wait until after servicing IRQs to account guest time so that any
10127          * ticks that occurred while running the guest are properly accounted
10128          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10129          * of accounting via context tracking, but the loss of accuracy is
10130          * acceptable for all known use cases.
10131          */
10132         guest_timing_exit_irqoff();
10133
10134         if (lapic_in_kernel(vcpu)) {
10135                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10136                 if (delta != S64_MIN) {
10137                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10138                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10139                 }
10140         }
10141
10142         local_irq_enable();
10143         preempt_enable();
10144
10145         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10146
10147         /*
10148          * Profile KVM exit RIPs:
10149          */
10150         if (unlikely(prof_on == KVM_PROFILING)) {
10151                 unsigned long rip = kvm_rip_read(vcpu);
10152                 profile_hit(KVM_PROFILING, (void *)rip);
10153         }
10154
10155         if (unlikely(vcpu->arch.tsc_always_catchup))
10156                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10157
10158         if (vcpu->arch.apic_attention)
10159                 kvm_lapic_sync_from_vapic(vcpu);
10160
10161         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10162         return r;
10163
10164 cancel_injection:
10165         if (req_immediate_exit)
10166                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10167         static_call(kvm_x86_cancel_injection)(vcpu);
10168         if (unlikely(vcpu->arch.apic_attention))
10169                 kvm_lapic_sync_from_vapic(vcpu);
10170 out:
10171         return r;
10172 }
10173
10174 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10175 {
10176         bool hv_timer;
10177
10178         if (!kvm_arch_vcpu_runnable(vcpu)) {
10179                 /*
10180                  * Switch to the software timer before halt-polling/blocking as
10181                  * the guest's timer may be a break event for the vCPU, and the
10182                  * hypervisor timer runs only when the CPU is in guest mode.
10183                  * Switch before halt-polling so that KVM recognizes an expired
10184                  * timer before blocking.
10185                  */
10186                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10187                 if (hv_timer)
10188                         kvm_lapic_switch_to_sw_timer(vcpu);
10189
10190                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10191                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10192                         kvm_vcpu_halt(vcpu);
10193                 else
10194                         kvm_vcpu_block(vcpu);
10195                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10196
10197                 if (hv_timer)
10198                         kvm_lapic_switch_to_hv_timer(vcpu);
10199
10200                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10201                         return 1;
10202         }
10203
10204         if (kvm_apic_accept_events(vcpu) < 0)
10205                 return 0;
10206         switch(vcpu->arch.mp_state) {
10207         case KVM_MP_STATE_HALTED:
10208         case KVM_MP_STATE_AP_RESET_HOLD:
10209                 vcpu->arch.pv.pv_unhalted = false;
10210                 vcpu->arch.mp_state =
10211                         KVM_MP_STATE_RUNNABLE;
10212                 fallthrough;
10213         case KVM_MP_STATE_RUNNABLE:
10214                 vcpu->arch.apf.halted = false;
10215                 break;
10216         case KVM_MP_STATE_INIT_RECEIVED:
10217                 break;
10218         default:
10219                 return -EINTR;
10220         }
10221         return 1;
10222 }
10223
10224 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10225 {
10226         if (is_guest_mode(vcpu))
10227                 kvm_check_nested_events(vcpu);
10228
10229         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10230                 !vcpu->arch.apf.halted);
10231 }
10232
10233 static int vcpu_run(struct kvm_vcpu *vcpu)
10234 {
10235         int r;
10236         struct kvm *kvm = vcpu->kvm;
10237
10238         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10239         vcpu->arch.l1tf_flush_l1d = true;
10240
10241         for (;;) {
10242                 if (kvm_vcpu_running(vcpu)) {
10243                         r = vcpu_enter_guest(vcpu);
10244                 } else {
10245                         r = vcpu_block(kvm, vcpu);
10246                 }
10247
10248                 if (r <= 0)
10249                         break;
10250
10251                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10252                 if (kvm_cpu_has_pending_timer(vcpu))
10253                         kvm_inject_pending_timer_irqs(vcpu);
10254
10255                 if (dm_request_for_irq_injection(vcpu) &&
10256                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10257                         r = 0;
10258                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10259                         ++vcpu->stat.request_irq_exits;
10260                         break;
10261                 }
10262
10263                 if (__xfer_to_guest_mode_work_pending()) {
10264                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10265                         r = xfer_to_guest_mode_handle_work(vcpu);
10266                         if (r)
10267                                 return r;
10268                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10269                 }
10270         }
10271
10272         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10273
10274         return r;
10275 }
10276
10277 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10278 {
10279         int r;
10280
10281         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10282         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10283         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10284         return r;
10285 }
10286
10287 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10288 {
10289         BUG_ON(!vcpu->arch.pio.count);
10290
10291         return complete_emulated_io(vcpu);
10292 }
10293
10294 /*
10295  * Implements the following, as a state machine:
10296  *
10297  * read:
10298  *   for each fragment
10299  *     for each mmio piece in the fragment
10300  *       write gpa, len
10301  *       exit
10302  *       copy data
10303  *   execute insn
10304  *
10305  * write:
10306  *   for each fragment
10307  *     for each mmio piece in the fragment
10308  *       write gpa, len
10309  *       copy data
10310  *       exit
10311  */
10312 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10313 {
10314         struct kvm_run *run = vcpu->run;
10315         struct kvm_mmio_fragment *frag;
10316         unsigned len;
10317
10318         BUG_ON(!vcpu->mmio_needed);
10319
10320         /* Complete previous fragment */
10321         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10322         len = min(8u, frag->len);
10323         if (!vcpu->mmio_is_write)
10324                 memcpy(frag->data, run->mmio.data, len);
10325
10326         if (frag->len <= 8) {
10327                 /* Switch to the next fragment. */
10328                 frag++;
10329                 vcpu->mmio_cur_fragment++;
10330         } else {
10331                 /* Go forward to the next mmio piece. */
10332                 frag->data += len;
10333                 frag->gpa += len;
10334                 frag->len -= len;
10335         }
10336
10337         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10338                 vcpu->mmio_needed = 0;
10339
10340                 /* FIXME: return into emulator if single-stepping.  */
10341                 if (vcpu->mmio_is_write)
10342                         return 1;
10343                 vcpu->mmio_read_completed = 1;
10344                 return complete_emulated_io(vcpu);
10345         }
10346
10347         run->exit_reason = KVM_EXIT_MMIO;
10348         run->mmio.phys_addr = frag->gpa;
10349         if (vcpu->mmio_is_write)
10350                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10351         run->mmio.len = min(8u, frag->len);
10352         run->mmio.is_write = vcpu->mmio_is_write;
10353         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10354         return 0;
10355 }
10356
10357 /* Swap (qemu) user FPU context for the guest FPU context. */
10358 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10359 {
10360         /*
10361          * Exclude PKRU from restore as restored separately in
10362          * kvm_x86_ops.run().
10363          */
10364         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10365         trace_kvm_fpu(1);
10366 }
10367
10368 /* When vcpu_run ends, restore user space FPU context. */
10369 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10370 {
10371         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10372         ++vcpu->stat.fpu_reload;
10373         trace_kvm_fpu(0);
10374 }
10375
10376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10377 {
10378         struct kvm_run *kvm_run = vcpu->run;
10379         int r;
10380
10381         vcpu_load(vcpu);
10382         kvm_sigset_activate(vcpu);
10383         kvm_run->flags = 0;
10384         kvm_load_guest_fpu(vcpu);
10385
10386         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10387                 if (kvm_run->immediate_exit) {
10388                         r = -EINTR;
10389                         goto out;
10390                 }
10391                 /*
10392                  * It should be impossible for the hypervisor timer to be in
10393                  * use before KVM has ever run the vCPU.
10394                  */
10395                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10396                 kvm_vcpu_block(vcpu);
10397                 if (kvm_apic_accept_events(vcpu) < 0) {
10398                         r = 0;
10399                         goto out;
10400                 }
10401                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10402                 r = -EAGAIN;
10403                 if (signal_pending(current)) {
10404                         r = -EINTR;
10405                         kvm_run->exit_reason = KVM_EXIT_INTR;
10406                         ++vcpu->stat.signal_exits;
10407                 }
10408                 goto out;
10409         }
10410
10411         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10412             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10413                 r = -EINVAL;
10414                 goto out;
10415         }
10416
10417         if (kvm_run->kvm_dirty_regs) {
10418                 r = sync_regs(vcpu);
10419                 if (r != 0)
10420                         goto out;
10421         }
10422
10423         /* re-sync apic's tpr */
10424         if (!lapic_in_kernel(vcpu)) {
10425                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10426                         r = -EINVAL;
10427                         goto out;
10428                 }
10429         }
10430
10431         if (unlikely(vcpu->arch.complete_userspace_io)) {
10432                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10433                 vcpu->arch.complete_userspace_io = NULL;
10434                 r = cui(vcpu);
10435                 if (r <= 0)
10436                         goto out;
10437         } else
10438                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10439
10440         if (kvm_run->immediate_exit) {
10441                 r = -EINTR;
10442                 goto out;
10443         }
10444
10445         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10446         if (r <= 0)
10447                 goto out;
10448
10449         r = vcpu_run(vcpu);
10450
10451 out:
10452         kvm_put_guest_fpu(vcpu);
10453         if (kvm_run->kvm_valid_regs)
10454                 store_regs(vcpu);
10455         post_kvm_run_save(vcpu);
10456         kvm_sigset_deactivate(vcpu);
10457
10458         vcpu_put(vcpu);
10459         return r;
10460 }
10461
10462 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10463 {
10464         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10465                 /*
10466                  * We are here if userspace calls get_regs() in the middle of
10467                  * instruction emulation. Registers state needs to be copied
10468                  * back from emulation context to vcpu. Userspace shouldn't do
10469                  * that usually, but some bad designed PV devices (vmware
10470                  * backdoor interface) need this to work
10471                  */
10472                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10473                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10474         }
10475         regs->rax = kvm_rax_read(vcpu);
10476         regs->rbx = kvm_rbx_read(vcpu);
10477         regs->rcx = kvm_rcx_read(vcpu);
10478         regs->rdx = kvm_rdx_read(vcpu);
10479         regs->rsi = kvm_rsi_read(vcpu);
10480         regs->rdi = kvm_rdi_read(vcpu);
10481         regs->rsp = kvm_rsp_read(vcpu);
10482         regs->rbp = kvm_rbp_read(vcpu);
10483 #ifdef CONFIG_X86_64
10484         regs->r8 = kvm_r8_read(vcpu);
10485         regs->r9 = kvm_r9_read(vcpu);
10486         regs->r10 = kvm_r10_read(vcpu);
10487         regs->r11 = kvm_r11_read(vcpu);
10488         regs->r12 = kvm_r12_read(vcpu);
10489         regs->r13 = kvm_r13_read(vcpu);
10490         regs->r14 = kvm_r14_read(vcpu);
10491         regs->r15 = kvm_r15_read(vcpu);
10492 #endif
10493
10494         regs->rip = kvm_rip_read(vcpu);
10495         regs->rflags = kvm_get_rflags(vcpu);
10496 }
10497
10498 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10499 {
10500         vcpu_load(vcpu);
10501         __get_regs(vcpu, regs);
10502         vcpu_put(vcpu);
10503         return 0;
10504 }
10505
10506 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10507 {
10508         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10509         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10510
10511         kvm_rax_write(vcpu, regs->rax);
10512         kvm_rbx_write(vcpu, regs->rbx);
10513         kvm_rcx_write(vcpu, regs->rcx);
10514         kvm_rdx_write(vcpu, regs->rdx);
10515         kvm_rsi_write(vcpu, regs->rsi);
10516         kvm_rdi_write(vcpu, regs->rdi);
10517         kvm_rsp_write(vcpu, regs->rsp);
10518         kvm_rbp_write(vcpu, regs->rbp);
10519 #ifdef CONFIG_X86_64
10520         kvm_r8_write(vcpu, regs->r8);
10521         kvm_r9_write(vcpu, regs->r9);
10522         kvm_r10_write(vcpu, regs->r10);
10523         kvm_r11_write(vcpu, regs->r11);
10524         kvm_r12_write(vcpu, regs->r12);
10525         kvm_r13_write(vcpu, regs->r13);
10526         kvm_r14_write(vcpu, regs->r14);
10527         kvm_r15_write(vcpu, regs->r15);
10528 #endif
10529
10530         kvm_rip_write(vcpu, regs->rip);
10531         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10532
10533         vcpu->arch.exception.pending = false;
10534
10535         kvm_make_request(KVM_REQ_EVENT, vcpu);
10536 }
10537
10538 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10539 {
10540         vcpu_load(vcpu);
10541         __set_regs(vcpu, regs);
10542         vcpu_put(vcpu);
10543         return 0;
10544 }
10545
10546 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10547 {
10548         struct kvm_segment cs;
10549
10550         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10551         *db = cs.db;
10552         *l = cs.l;
10553 }
10554 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10555
10556 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10557 {
10558         struct desc_ptr dt;
10559
10560         if (vcpu->arch.guest_state_protected)
10561                 goto skip_protected_regs;
10562
10563         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10564         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10565         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10566         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10567         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10568         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10569
10570         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10571         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10572
10573         static_call(kvm_x86_get_idt)(vcpu, &dt);
10574         sregs->idt.limit = dt.size;
10575         sregs->idt.base = dt.address;
10576         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10577         sregs->gdt.limit = dt.size;
10578         sregs->gdt.base = dt.address;
10579
10580         sregs->cr2 = vcpu->arch.cr2;
10581         sregs->cr3 = kvm_read_cr3(vcpu);
10582
10583 skip_protected_regs:
10584         sregs->cr0 = kvm_read_cr0(vcpu);
10585         sregs->cr4 = kvm_read_cr4(vcpu);
10586         sregs->cr8 = kvm_get_cr8(vcpu);
10587         sregs->efer = vcpu->arch.efer;
10588         sregs->apic_base = kvm_get_apic_base(vcpu);
10589 }
10590
10591 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10592 {
10593         __get_sregs_common(vcpu, sregs);
10594
10595         if (vcpu->arch.guest_state_protected)
10596                 return;
10597
10598         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10599                 set_bit(vcpu->arch.interrupt.nr,
10600                         (unsigned long *)sregs->interrupt_bitmap);
10601 }
10602
10603 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10604 {
10605         int i;
10606
10607         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10608
10609         if (vcpu->arch.guest_state_protected)
10610                 return;
10611
10612         if (is_pae_paging(vcpu)) {
10613                 for (i = 0 ; i < 4 ; i++)
10614                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10615                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10616         }
10617 }
10618
10619 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10620                                   struct kvm_sregs *sregs)
10621 {
10622         vcpu_load(vcpu);
10623         __get_sregs(vcpu, sregs);
10624         vcpu_put(vcpu);
10625         return 0;
10626 }
10627
10628 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10629                                     struct kvm_mp_state *mp_state)
10630 {
10631         int r;
10632
10633         vcpu_load(vcpu);
10634         if (kvm_mpx_supported())
10635                 kvm_load_guest_fpu(vcpu);
10636
10637         r = kvm_apic_accept_events(vcpu);
10638         if (r < 0)
10639                 goto out;
10640         r = 0;
10641
10642         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10643              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10644             vcpu->arch.pv.pv_unhalted)
10645                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10646         else
10647                 mp_state->mp_state = vcpu->arch.mp_state;
10648
10649 out:
10650         if (kvm_mpx_supported())
10651                 kvm_put_guest_fpu(vcpu);
10652         vcpu_put(vcpu);
10653         return r;
10654 }
10655
10656 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10657                                     struct kvm_mp_state *mp_state)
10658 {
10659         int ret = -EINVAL;
10660
10661         vcpu_load(vcpu);
10662
10663         if (!lapic_in_kernel(vcpu) &&
10664             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10665                 goto out;
10666
10667         /*
10668          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10669          * INIT state; latched init should be reported using
10670          * KVM_SET_VCPU_EVENTS, so reject it here.
10671          */
10672         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10673             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10674              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10675                 goto out;
10676
10677         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10678                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10679                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10680         } else
10681                 vcpu->arch.mp_state = mp_state->mp_state;
10682         kvm_make_request(KVM_REQ_EVENT, vcpu);
10683
10684         ret = 0;
10685 out:
10686         vcpu_put(vcpu);
10687         return ret;
10688 }
10689
10690 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10691                     int reason, bool has_error_code, u32 error_code)
10692 {
10693         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10694         int ret;
10695
10696         init_emulate_ctxt(vcpu);
10697
10698         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10699                                    has_error_code, error_code);
10700         if (ret) {
10701                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10702                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10703                 vcpu->run->internal.ndata = 0;
10704                 return 0;
10705         }
10706
10707         kvm_rip_write(vcpu, ctxt->eip);
10708         kvm_set_rflags(vcpu, ctxt->eflags);
10709         return 1;
10710 }
10711 EXPORT_SYMBOL_GPL(kvm_task_switch);
10712
10713 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10714 {
10715         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10716                 /*
10717                  * When EFER.LME and CR0.PG are set, the processor is in
10718                  * 64-bit mode (though maybe in a 32-bit code segment).
10719                  * CR4.PAE and EFER.LMA must be set.
10720                  */
10721                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10722                         return false;
10723                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10724                         return false;
10725         } else {
10726                 /*
10727                  * Not in 64-bit mode: EFER.LMA is clear and the code
10728                  * segment cannot be 64-bit.
10729                  */
10730                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10731                         return false;
10732         }
10733
10734         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10735 }
10736
10737 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10738                 int *mmu_reset_needed, bool update_pdptrs)
10739 {
10740         struct msr_data apic_base_msr;
10741         int idx;
10742         struct desc_ptr dt;
10743
10744         if (!kvm_is_valid_sregs(vcpu, sregs))
10745                 return -EINVAL;
10746
10747         apic_base_msr.data = sregs->apic_base;
10748         apic_base_msr.host_initiated = true;
10749         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10750                 return -EINVAL;
10751
10752         if (vcpu->arch.guest_state_protected)
10753                 return 0;
10754
10755         dt.size = sregs->idt.limit;
10756         dt.address = sregs->idt.base;
10757         static_call(kvm_x86_set_idt)(vcpu, &dt);
10758         dt.size = sregs->gdt.limit;
10759         dt.address = sregs->gdt.base;
10760         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10761
10762         vcpu->arch.cr2 = sregs->cr2;
10763         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10764         vcpu->arch.cr3 = sregs->cr3;
10765         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10766         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10767
10768         kvm_set_cr8(vcpu, sregs->cr8);
10769
10770         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10771         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10772
10773         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10774         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10775         vcpu->arch.cr0 = sregs->cr0;
10776
10777         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10778         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10779
10780         if (update_pdptrs) {
10781                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10782                 if (is_pae_paging(vcpu)) {
10783                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10784                         *mmu_reset_needed = 1;
10785                 }
10786                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10787         }
10788
10789         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10790         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10791         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10792         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10793         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10794         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10795
10796         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10797         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10798
10799         update_cr8_intercept(vcpu);
10800
10801         /* Older userspace won't unhalt the vcpu on reset. */
10802         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10803             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10804             !is_protmode(vcpu))
10805                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10806
10807         return 0;
10808 }
10809
10810 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10811 {
10812         int pending_vec, max_bits;
10813         int mmu_reset_needed = 0;
10814         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10815
10816         if (ret)
10817                 return ret;
10818
10819         if (mmu_reset_needed)
10820                 kvm_mmu_reset_context(vcpu);
10821
10822         max_bits = KVM_NR_INTERRUPTS;
10823         pending_vec = find_first_bit(
10824                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10825
10826         if (pending_vec < max_bits) {
10827                 kvm_queue_interrupt(vcpu, pending_vec, false);
10828                 pr_debug("Set back pending irq %d\n", pending_vec);
10829                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10830         }
10831         return 0;
10832 }
10833
10834 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10835 {
10836         int mmu_reset_needed = 0;
10837         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10838         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10839                 !(sregs2->efer & EFER_LMA);
10840         int i, ret;
10841
10842         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10843                 return -EINVAL;
10844
10845         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10846                 return -EINVAL;
10847
10848         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10849                                  &mmu_reset_needed, !valid_pdptrs);
10850         if (ret)
10851                 return ret;
10852
10853         if (valid_pdptrs) {
10854                 for (i = 0; i < 4 ; i++)
10855                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10856
10857                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10858                 mmu_reset_needed = 1;
10859                 vcpu->arch.pdptrs_from_userspace = true;
10860         }
10861         if (mmu_reset_needed)
10862                 kvm_mmu_reset_context(vcpu);
10863         return 0;
10864 }
10865
10866 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10867                                   struct kvm_sregs *sregs)
10868 {
10869         int ret;
10870
10871         vcpu_load(vcpu);
10872         ret = __set_sregs(vcpu, sregs);
10873         vcpu_put(vcpu);
10874         return ret;
10875 }
10876
10877 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10878 {
10879         bool inhibit = false;
10880         struct kvm_vcpu *vcpu;
10881         unsigned long i;
10882
10883         down_write(&kvm->arch.apicv_update_lock);
10884
10885         kvm_for_each_vcpu(i, vcpu, kvm) {
10886                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10887                         inhibit = true;
10888                         break;
10889                 }
10890         }
10891         __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10892         up_write(&kvm->arch.apicv_update_lock);
10893 }
10894
10895 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10896                                         struct kvm_guest_debug *dbg)
10897 {
10898         unsigned long rflags;
10899         int i, r;
10900
10901         if (vcpu->arch.guest_state_protected)
10902                 return -EINVAL;
10903
10904         vcpu_load(vcpu);
10905
10906         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10907                 r = -EBUSY;
10908                 if (vcpu->arch.exception.pending)
10909                         goto out;
10910                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10911                         kvm_queue_exception(vcpu, DB_VECTOR);
10912                 else
10913                         kvm_queue_exception(vcpu, BP_VECTOR);
10914         }
10915
10916         /*
10917          * Read rflags as long as potentially injected trace flags are still
10918          * filtered out.
10919          */
10920         rflags = kvm_get_rflags(vcpu);
10921
10922         vcpu->guest_debug = dbg->control;
10923         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10924                 vcpu->guest_debug = 0;
10925
10926         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10927                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10928                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10929                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10930         } else {
10931                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10932                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10933         }
10934         kvm_update_dr7(vcpu);
10935
10936         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10937                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10938
10939         /*
10940          * Trigger an rflags update that will inject or remove the trace
10941          * flags.
10942          */
10943         kvm_set_rflags(vcpu, rflags);
10944
10945         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10946
10947         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10948
10949         r = 0;
10950
10951 out:
10952         vcpu_put(vcpu);
10953         return r;
10954 }
10955
10956 /*
10957  * Translate a guest virtual address to a guest physical address.
10958  */
10959 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10960                                     struct kvm_translation *tr)
10961 {
10962         unsigned long vaddr = tr->linear_address;
10963         gpa_t gpa;
10964         int idx;
10965
10966         vcpu_load(vcpu);
10967
10968         idx = srcu_read_lock(&vcpu->kvm->srcu);
10969         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10970         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10971         tr->physical_address = gpa;
10972         tr->valid = gpa != UNMAPPED_GVA;
10973         tr->writeable = 1;
10974         tr->usermode = 0;
10975
10976         vcpu_put(vcpu);
10977         return 0;
10978 }
10979
10980 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10981 {
10982         struct fxregs_state *fxsave;
10983
10984         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10985                 return 0;
10986
10987         vcpu_load(vcpu);
10988
10989         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10990         memcpy(fpu->fpr, fxsave->st_space, 128);
10991         fpu->fcw = fxsave->cwd;
10992         fpu->fsw = fxsave->swd;
10993         fpu->ftwx = fxsave->twd;
10994         fpu->last_opcode = fxsave->fop;
10995         fpu->last_ip = fxsave->rip;
10996         fpu->last_dp = fxsave->rdp;
10997         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10998
10999         vcpu_put(vcpu);
11000         return 0;
11001 }
11002
11003 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11004 {
11005         struct fxregs_state *fxsave;
11006
11007         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11008                 return 0;
11009
11010         vcpu_load(vcpu);
11011
11012         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11013
11014         memcpy(fxsave->st_space, fpu->fpr, 128);
11015         fxsave->cwd = fpu->fcw;
11016         fxsave->swd = fpu->fsw;
11017         fxsave->twd = fpu->ftwx;
11018         fxsave->fop = fpu->last_opcode;
11019         fxsave->rip = fpu->last_ip;
11020         fxsave->rdp = fpu->last_dp;
11021         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11022
11023         vcpu_put(vcpu);
11024         return 0;
11025 }
11026
11027 static void store_regs(struct kvm_vcpu *vcpu)
11028 {
11029         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11030
11031         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11032                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11033
11034         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11035                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11036
11037         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11038                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11039                                 vcpu, &vcpu->run->s.regs.events);
11040 }
11041
11042 static int sync_regs(struct kvm_vcpu *vcpu)
11043 {
11044         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11045                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11046                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11047         }
11048         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11049                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11050                         return -EINVAL;
11051                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11052         }
11053         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11054                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11055                                 vcpu, &vcpu->run->s.regs.events))
11056                         return -EINVAL;
11057                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11058         }
11059
11060         return 0;
11061 }
11062
11063 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11064 {
11065         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11066                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11067                              "guest TSC will not be reliable\n");
11068
11069         return 0;
11070 }
11071
11072 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11073 {
11074         struct page *page;
11075         int r;
11076
11077         vcpu->arch.last_vmentry_cpu = -1;
11078         vcpu->arch.regs_avail = ~0;
11079         vcpu->arch.regs_dirty = ~0;
11080
11081         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11082                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11083         else
11084                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11085
11086         r = kvm_mmu_create(vcpu);
11087         if (r < 0)
11088                 return r;
11089
11090         if (irqchip_in_kernel(vcpu->kvm)) {
11091                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11092                 if (r < 0)
11093                         goto fail_mmu_destroy;
11094                 if (kvm_apicv_activated(vcpu->kvm))
11095                         vcpu->arch.apicv_active = true;
11096         } else
11097                 static_branch_inc(&kvm_has_noapic_vcpu);
11098
11099         r = -ENOMEM;
11100
11101         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11102         if (!page)
11103                 goto fail_free_lapic;
11104         vcpu->arch.pio_data = page_address(page);
11105
11106         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11107                                        GFP_KERNEL_ACCOUNT);
11108         if (!vcpu->arch.mce_banks)
11109                 goto fail_free_pio_data;
11110         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11111
11112         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11113                                 GFP_KERNEL_ACCOUNT))
11114                 goto fail_free_mce_banks;
11115
11116         if (!alloc_emulate_ctxt(vcpu))
11117                 goto free_wbinvd_dirty_mask;
11118
11119         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11120                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11121                 goto free_emulate_ctxt;
11122         }
11123
11124         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11125         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11126
11127         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11128
11129         kvm_async_pf_hash_reset(vcpu);
11130         kvm_pmu_init(vcpu);
11131
11132         vcpu->arch.pending_external_vector = -1;
11133         vcpu->arch.preempted_in_kernel = false;
11134
11135 #if IS_ENABLED(CONFIG_HYPERV)
11136         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11137 #endif
11138
11139         r = static_call(kvm_x86_vcpu_create)(vcpu);
11140         if (r)
11141                 goto free_guest_fpu;
11142
11143         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11144         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11145         kvm_vcpu_mtrr_init(vcpu);
11146         vcpu_load(vcpu);
11147         kvm_set_tsc_khz(vcpu, max_tsc_khz);
11148         kvm_vcpu_reset(vcpu, false);
11149         kvm_init_mmu(vcpu);
11150         vcpu_put(vcpu);
11151         return 0;
11152
11153 free_guest_fpu:
11154         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11155 free_emulate_ctxt:
11156         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11157 free_wbinvd_dirty_mask:
11158         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11159 fail_free_mce_banks:
11160         kfree(vcpu->arch.mce_banks);
11161 fail_free_pio_data:
11162         free_page((unsigned long)vcpu->arch.pio_data);
11163 fail_free_lapic:
11164         kvm_free_lapic(vcpu);
11165 fail_mmu_destroy:
11166         kvm_mmu_destroy(vcpu);
11167         return r;
11168 }
11169
11170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11171 {
11172         struct kvm *kvm = vcpu->kvm;
11173
11174         if (mutex_lock_killable(&vcpu->mutex))
11175                 return;
11176         vcpu_load(vcpu);
11177         kvm_synchronize_tsc(vcpu, 0);
11178         vcpu_put(vcpu);
11179
11180         /* poll control enabled by default */
11181         vcpu->arch.msr_kvm_poll_control = 1;
11182
11183         mutex_unlock(&vcpu->mutex);
11184
11185         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11186                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11187                                                 KVMCLOCK_SYNC_PERIOD);
11188 }
11189
11190 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11191 {
11192         int idx;
11193
11194         kvmclock_reset(vcpu);
11195
11196         static_call(kvm_x86_vcpu_free)(vcpu);
11197
11198         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11199         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11200         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11201
11202         kvm_hv_vcpu_uninit(vcpu);
11203         kvm_pmu_destroy(vcpu);
11204         kfree(vcpu->arch.mce_banks);
11205         kvm_free_lapic(vcpu);
11206         idx = srcu_read_lock(&vcpu->kvm->srcu);
11207         kvm_mmu_destroy(vcpu);
11208         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11209         free_page((unsigned long)vcpu->arch.pio_data);
11210         kvfree(vcpu->arch.cpuid_entries);
11211         if (!lapic_in_kernel(vcpu))
11212                 static_branch_dec(&kvm_has_noapic_vcpu);
11213 }
11214
11215 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11216 {
11217         struct kvm_cpuid_entry2 *cpuid_0x1;
11218         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11219         unsigned long new_cr0;
11220
11221         /*
11222          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11223          * to handle side effects.  RESET emulation hits those flows and relies
11224          * on emulated/virtualized registers, including those that are loaded
11225          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11226          * to detect improper or missing initialization.
11227          */
11228         WARN_ON_ONCE(!init_event &&
11229                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11230
11231         kvm_lapic_reset(vcpu, init_event);
11232
11233         vcpu->arch.hflags = 0;
11234
11235         vcpu->arch.smi_pending = 0;
11236         vcpu->arch.smi_count = 0;
11237         atomic_set(&vcpu->arch.nmi_queued, 0);
11238         vcpu->arch.nmi_pending = 0;
11239         vcpu->arch.nmi_injected = false;
11240         kvm_clear_interrupt_queue(vcpu);
11241         kvm_clear_exception_queue(vcpu);
11242
11243         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11244         kvm_update_dr0123(vcpu);
11245         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11246         vcpu->arch.dr7 = DR7_FIXED_1;
11247         kvm_update_dr7(vcpu);
11248
11249         vcpu->arch.cr2 = 0;
11250
11251         kvm_make_request(KVM_REQ_EVENT, vcpu);
11252         vcpu->arch.apf.msr_en_val = 0;
11253         vcpu->arch.apf.msr_int_val = 0;
11254         vcpu->arch.st.msr_val = 0;
11255
11256         kvmclock_reset(vcpu);
11257
11258         kvm_clear_async_pf_completion_queue(vcpu);
11259         kvm_async_pf_hash_reset(vcpu);
11260         vcpu->arch.apf.halted = false;
11261
11262         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11263                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11264
11265                 /*
11266                  * To avoid have the INIT path from kvm_apic_has_events() that be
11267                  * called with loaded FPU and does not let userspace fix the state.
11268                  */
11269                 if (init_event)
11270                         kvm_put_guest_fpu(vcpu);
11271
11272                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11273                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11274
11275                 if (init_event)
11276                         kvm_load_guest_fpu(vcpu);
11277         }
11278
11279         if (!init_event) {
11280                 kvm_pmu_reset(vcpu);
11281                 vcpu->arch.smbase = 0x30000;
11282
11283                 vcpu->arch.msr_misc_features_enables = 0;
11284
11285                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11286                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11287         }
11288
11289         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11290         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11291         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11292
11293         /*
11294          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11295          * if no CPUID match is found.  Note, it's impossible to get a match at
11296          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11297          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11298          * on RESET.  But, go through the motions in case that's ever remedied.
11299          */
11300         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11301         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11302
11303         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11304
11305         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11306         kvm_rip_write(vcpu, 0xfff0);
11307
11308         vcpu->arch.cr3 = 0;
11309         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11310
11311         /*
11312          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11313          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11314          * (or qualify) that with a footnote stating that CD/NW are preserved.
11315          */
11316         new_cr0 = X86_CR0_ET;
11317         if (init_event)
11318                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11319         else
11320                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11321
11322         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11323         static_call(kvm_x86_set_cr4)(vcpu, 0);
11324         static_call(kvm_x86_set_efer)(vcpu, 0);
11325         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11326
11327         /*
11328          * Reset the MMU context if paging was enabled prior to INIT (which is
11329          * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11330          * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11331          * checked because it is unconditionally cleared on INIT and all other
11332          * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11333          * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11334          */
11335         if (old_cr0 & X86_CR0_PG)
11336                 kvm_mmu_reset_context(vcpu);
11337
11338         /*
11339          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11340          * APM states the TLBs are untouched by INIT, but it also states that
11341          * the TLBs are flushed on "External initialization of the processor."
11342          * Flush the guest TLB regardless of vendor, there is no meaningful
11343          * benefit in relying on the guest to flush the TLB immediately after
11344          * INIT.  A spurious TLB flush is benign and likely negligible from a
11345          * performance perspective.
11346          */
11347         if (init_event)
11348                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11349 }
11350 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11351
11352 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11353 {
11354         struct kvm_segment cs;
11355
11356         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11357         cs.selector = vector << 8;
11358         cs.base = vector << 12;
11359         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11360         kvm_rip_write(vcpu, 0);
11361 }
11362 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11363
11364 int kvm_arch_hardware_enable(void)
11365 {
11366         struct kvm *kvm;
11367         struct kvm_vcpu *vcpu;
11368         unsigned long i;
11369         int ret;
11370         u64 local_tsc;
11371         u64 max_tsc = 0;
11372         bool stable, backwards_tsc = false;
11373
11374         kvm_user_return_msr_cpu_online();
11375         ret = static_call(kvm_x86_hardware_enable)();
11376         if (ret != 0)
11377                 return ret;
11378
11379         local_tsc = rdtsc();
11380         stable = !kvm_check_tsc_unstable();
11381         list_for_each_entry(kvm, &vm_list, vm_list) {
11382                 kvm_for_each_vcpu(i, vcpu, kvm) {
11383                         if (!stable && vcpu->cpu == smp_processor_id())
11384                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11385                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11386                                 backwards_tsc = true;
11387                                 if (vcpu->arch.last_host_tsc > max_tsc)
11388                                         max_tsc = vcpu->arch.last_host_tsc;
11389                         }
11390                 }
11391         }
11392
11393         /*
11394          * Sometimes, even reliable TSCs go backwards.  This happens on
11395          * platforms that reset TSC during suspend or hibernate actions, but
11396          * maintain synchronization.  We must compensate.  Fortunately, we can
11397          * detect that condition here, which happens early in CPU bringup,
11398          * before any KVM threads can be running.  Unfortunately, we can't
11399          * bring the TSCs fully up to date with real time, as we aren't yet far
11400          * enough into CPU bringup that we know how much real time has actually
11401          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11402          * variables that haven't been updated yet.
11403          *
11404          * So we simply find the maximum observed TSC above, then record the
11405          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11406          * the adjustment will be applied.  Note that we accumulate
11407          * adjustments, in case multiple suspend cycles happen before some VCPU
11408          * gets a chance to run again.  In the event that no KVM threads get a
11409          * chance to run, we will miss the entire elapsed period, as we'll have
11410          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11411          * loose cycle time.  This isn't too big a deal, since the loss will be
11412          * uniform across all VCPUs (not to mention the scenario is extremely
11413          * unlikely). It is possible that a second hibernate recovery happens
11414          * much faster than a first, causing the observed TSC here to be
11415          * smaller; this would require additional padding adjustment, which is
11416          * why we set last_host_tsc to the local tsc observed here.
11417          *
11418          * N.B. - this code below runs only on platforms with reliable TSC,
11419          * as that is the only way backwards_tsc is set above.  Also note
11420          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11421          * have the same delta_cyc adjustment applied if backwards_tsc
11422          * is detected.  Note further, this adjustment is only done once,
11423          * as we reset last_host_tsc on all VCPUs to stop this from being
11424          * called multiple times (one for each physical CPU bringup).
11425          *
11426          * Platforms with unreliable TSCs don't have to deal with this, they
11427          * will be compensated by the logic in vcpu_load, which sets the TSC to
11428          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11429          * guarantee that they stay in perfect synchronization.
11430          */
11431         if (backwards_tsc) {
11432                 u64 delta_cyc = max_tsc - local_tsc;
11433                 list_for_each_entry(kvm, &vm_list, vm_list) {
11434                         kvm->arch.backwards_tsc_observed = true;
11435                         kvm_for_each_vcpu(i, vcpu, kvm) {
11436                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11437                                 vcpu->arch.last_host_tsc = local_tsc;
11438                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11439                         }
11440
11441                         /*
11442                          * We have to disable TSC offset matching.. if you were
11443                          * booting a VM while issuing an S4 host suspend....
11444                          * you may have some problem.  Solving this issue is
11445                          * left as an exercise to the reader.
11446                          */
11447                         kvm->arch.last_tsc_nsec = 0;
11448                         kvm->arch.last_tsc_write = 0;
11449                 }
11450
11451         }
11452         return 0;
11453 }
11454
11455 void kvm_arch_hardware_disable(void)
11456 {
11457         static_call(kvm_x86_hardware_disable)();
11458         drop_user_return_notifiers();
11459 }
11460
11461 int kvm_arch_hardware_setup(void *opaque)
11462 {
11463         struct kvm_x86_init_ops *ops = opaque;
11464         int r;
11465
11466         rdmsrl_safe(MSR_EFER, &host_efer);
11467
11468         if (boot_cpu_has(X86_FEATURE_XSAVES))
11469                 rdmsrl(MSR_IA32_XSS, host_xss);
11470
11471         r = ops->hardware_setup();
11472         if (r != 0)
11473                 return r;
11474
11475         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11476         kvm_ops_static_call_update();
11477
11478         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11479
11480         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11481                 supported_xss = 0;
11482
11483 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11484         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11485 #undef __kvm_cpu_cap_has
11486
11487         if (kvm_has_tsc_control) {
11488                 /*
11489                  * Make sure the user can only configure tsc_khz values that
11490                  * fit into a signed integer.
11491                  * A min value is not calculated because it will always
11492                  * be 1 on all machines.
11493                  */
11494                 u64 max = min(0x7fffffffULL,
11495                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11496                 kvm_max_guest_tsc_khz = max;
11497
11498                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11499         }
11500
11501         kvm_init_msr_list();
11502         return 0;
11503 }
11504
11505 void kvm_arch_hardware_unsetup(void)
11506 {
11507         kvm_unregister_perf_callbacks();
11508
11509         static_call(kvm_x86_hardware_unsetup)();
11510 }
11511
11512 int kvm_arch_check_processor_compat(void *opaque)
11513 {
11514         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11515         struct kvm_x86_init_ops *ops = opaque;
11516
11517         WARN_ON(!irqs_disabled());
11518
11519         if (__cr4_reserved_bits(cpu_has, c) !=
11520             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11521                 return -EIO;
11522
11523         return ops->check_processor_compatibility();
11524 }
11525
11526 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11527 {
11528         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11529 }
11530 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11531
11532 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11533 {
11534         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11535 }
11536
11537 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11538 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11539
11540 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11541 {
11542         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11543
11544         vcpu->arch.l1tf_flush_l1d = true;
11545         if (pmu->version && unlikely(pmu->event_count)) {
11546                 pmu->need_cleanup = true;
11547                 kvm_make_request(KVM_REQ_PMU, vcpu);
11548         }
11549         static_call(kvm_x86_sched_in)(vcpu, cpu);
11550 }
11551
11552 void kvm_arch_free_vm(struct kvm *kvm)
11553 {
11554         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11555         __kvm_arch_free_vm(kvm);
11556 }
11557
11558
11559 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11560 {
11561         int ret;
11562         unsigned long flags;
11563
11564         if (type)
11565                 return -EINVAL;
11566
11567         ret = kvm_page_track_init(kvm);
11568         if (ret)
11569                 return ret;
11570
11571         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11572         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11573         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11574         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11575         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11576         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11577
11578         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11579         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11580         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11581         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11582                 &kvm->arch.irq_sources_bitmap);
11583
11584         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11585         mutex_init(&kvm->arch.apic_map_lock);
11586         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11587         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11588
11589         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11590         pvclock_update_vm_gtod_copy(kvm);
11591         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11592
11593         kvm->arch.guest_can_read_msr_platform_info = true;
11594
11595 #if IS_ENABLED(CONFIG_HYPERV)
11596         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11597         kvm->arch.hv_root_tdp = INVALID_PAGE;
11598 #endif
11599
11600         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11601         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11602
11603         kvm_apicv_init(kvm);
11604         kvm_hv_init_vm(kvm);
11605         kvm_mmu_init_vm(kvm);
11606         kvm_xen_init_vm(kvm);
11607
11608         return static_call(kvm_x86_vm_init)(kvm);
11609 }
11610
11611 int kvm_arch_post_init_vm(struct kvm *kvm)
11612 {
11613         return kvm_mmu_post_init_vm(kvm);
11614 }
11615
11616 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11617 {
11618         vcpu_load(vcpu);
11619         kvm_mmu_unload(vcpu);
11620         vcpu_put(vcpu);
11621 }
11622
11623 static void kvm_free_vcpus(struct kvm *kvm)
11624 {
11625         unsigned long i;
11626         struct kvm_vcpu *vcpu;
11627
11628         /*
11629          * Unpin any mmu pages first.
11630          */
11631         kvm_for_each_vcpu(i, vcpu, kvm) {
11632                 kvm_clear_async_pf_completion_queue(vcpu);
11633                 kvm_unload_vcpu_mmu(vcpu);
11634         }
11635
11636         kvm_destroy_vcpus(kvm);
11637 }
11638
11639 void kvm_arch_sync_events(struct kvm *kvm)
11640 {
11641         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11642         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11643         kvm_free_pit(kvm);
11644 }
11645
11646 /**
11647  * __x86_set_memory_region: Setup KVM internal memory slot
11648  *
11649  * @kvm: the kvm pointer to the VM.
11650  * @id: the slot ID to setup.
11651  * @gpa: the GPA to install the slot (unused when @size == 0).
11652  * @size: the size of the slot. Set to zero to uninstall a slot.
11653  *
11654  * This function helps to setup a KVM internal memory slot.  Specify
11655  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11656  * slot.  The return code can be one of the following:
11657  *
11658  *   HVA:           on success (uninstall will return a bogus HVA)
11659  *   -errno:        on error
11660  *
11661  * The caller should always use IS_ERR() to check the return value
11662  * before use.  Note, the KVM internal memory slots are guaranteed to
11663  * remain valid and unchanged until the VM is destroyed, i.e., the
11664  * GPA->HVA translation will not change.  However, the HVA is a user
11665  * address, i.e. its accessibility is not guaranteed, and must be
11666  * accessed via __copy_{to,from}_user().
11667  */
11668 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11669                                       u32 size)
11670 {
11671         int i, r;
11672         unsigned long hva, old_npages;
11673         struct kvm_memslots *slots = kvm_memslots(kvm);
11674         struct kvm_memory_slot *slot;
11675
11676         /* Called with kvm->slots_lock held.  */
11677         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11678                 return ERR_PTR_USR(-EINVAL);
11679
11680         slot = id_to_memslot(slots, id);
11681         if (size) {
11682                 if (slot && slot->npages)
11683                         return ERR_PTR_USR(-EEXIST);
11684
11685                 /*
11686                  * MAP_SHARED to prevent internal slot pages from being moved
11687                  * by fork()/COW.
11688                  */
11689                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11690                               MAP_SHARED | MAP_ANONYMOUS, 0);
11691                 if (IS_ERR((void *)hva))
11692                         return (void __user *)hva;
11693         } else {
11694                 if (!slot || !slot->npages)
11695                         return NULL;
11696
11697                 old_npages = slot->npages;
11698                 hva = slot->userspace_addr;
11699         }
11700
11701         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11702                 struct kvm_userspace_memory_region m;
11703
11704                 m.slot = id | (i << 16);
11705                 m.flags = 0;
11706                 m.guest_phys_addr = gpa;
11707                 m.userspace_addr = hva;
11708                 m.memory_size = size;
11709                 r = __kvm_set_memory_region(kvm, &m);
11710                 if (r < 0)
11711                         return ERR_PTR_USR(r);
11712         }
11713
11714         if (!size)
11715                 vm_munmap(hva, old_npages * PAGE_SIZE);
11716
11717         return (void __user *)hva;
11718 }
11719 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11720
11721 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11722 {
11723         kvm_mmu_pre_destroy_vm(kvm);
11724 }
11725
11726 void kvm_arch_destroy_vm(struct kvm *kvm)
11727 {
11728         if (current->mm == kvm->mm) {
11729                 /*
11730                  * Free memory regions allocated on behalf of userspace,
11731                  * unless the the memory map has changed due to process exit
11732                  * or fd copying.
11733                  */
11734                 mutex_lock(&kvm->slots_lock);
11735                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11736                                         0, 0);
11737                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11738                                         0, 0);
11739                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11740                 mutex_unlock(&kvm->slots_lock);
11741         }
11742         static_call_cond(kvm_x86_vm_destroy)(kvm);
11743         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11744         kvm_pic_destroy(kvm);
11745         kvm_ioapic_destroy(kvm);
11746         kvm_free_vcpus(kvm);
11747         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11748         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11749         kvm_mmu_uninit_vm(kvm);
11750         kvm_page_track_cleanup(kvm);
11751         kvm_xen_destroy_vm(kvm);
11752         kvm_hv_destroy_vm(kvm);
11753 }
11754
11755 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11756 {
11757         int i;
11758
11759         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11760                 kvfree(slot->arch.rmap[i]);
11761                 slot->arch.rmap[i] = NULL;
11762         }
11763 }
11764
11765 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11766 {
11767         int i;
11768
11769         memslot_rmap_free(slot);
11770
11771         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11772                 kvfree(slot->arch.lpage_info[i - 1]);
11773                 slot->arch.lpage_info[i - 1] = NULL;
11774         }
11775
11776         kvm_page_track_free_memslot(slot);
11777 }
11778
11779 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11780 {
11781         const int sz = sizeof(*slot->arch.rmap[0]);
11782         int i;
11783
11784         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11785                 int level = i + 1;
11786                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11787
11788                 if (slot->arch.rmap[i])
11789                         continue;
11790
11791                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11792                 if (!slot->arch.rmap[i]) {
11793                         memslot_rmap_free(slot);
11794                         return -ENOMEM;
11795                 }
11796         }
11797
11798         return 0;
11799 }
11800
11801 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11802                                       struct kvm_memory_slot *slot)
11803 {
11804         unsigned long npages = slot->npages;
11805         int i, r;
11806
11807         /*
11808          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11809          * old arrays will be freed by __kvm_set_memory_region() if installing
11810          * the new memslot is successful.
11811          */
11812         memset(&slot->arch, 0, sizeof(slot->arch));
11813
11814         if (kvm_memslots_have_rmaps(kvm)) {
11815                 r = memslot_rmap_alloc(slot, npages);
11816                 if (r)
11817                         return r;
11818         }
11819
11820         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11821                 struct kvm_lpage_info *linfo;
11822                 unsigned long ugfn;
11823                 int lpages;
11824                 int level = i + 1;
11825
11826                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11827
11828                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11829                 if (!linfo)
11830                         goto out_free;
11831
11832                 slot->arch.lpage_info[i - 1] = linfo;
11833
11834                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11835                         linfo[0].disallow_lpage = 1;
11836                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11837                         linfo[lpages - 1].disallow_lpage = 1;
11838                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11839                 /*
11840                  * If the gfn and userspace address are not aligned wrt each
11841                  * other, disable large page support for this slot.
11842                  */
11843                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11844                         unsigned long j;
11845
11846                         for (j = 0; j < lpages; ++j)
11847                                 linfo[j].disallow_lpage = 1;
11848                 }
11849         }
11850
11851         if (kvm_page_track_create_memslot(kvm, slot, npages))
11852                 goto out_free;
11853
11854         return 0;
11855
11856 out_free:
11857         memslot_rmap_free(slot);
11858
11859         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11860                 kvfree(slot->arch.lpage_info[i - 1]);
11861                 slot->arch.lpage_info[i - 1] = NULL;
11862         }
11863         return -ENOMEM;
11864 }
11865
11866 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11867 {
11868         struct kvm_vcpu *vcpu;
11869         unsigned long i;
11870
11871         /*
11872          * memslots->generation has been incremented.
11873          * mmio generation may have reached its maximum value.
11874          */
11875         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11876
11877         /* Force re-initialization of steal_time cache */
11878         kvm_for_each_vcpu(i, vcpu, kvm)
11879                 kvm_vcpu_kick(vcpu);
11880 }
11881
11882 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11883                                    const struct kvm_memory_slot *old,
11884                                    struct kvm_memory_slot *new,
11885                                    enum kvm_mr_change change)
11886 {
11887         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11888                 return kvm_alloc_memslot_metadata(kvm, new);
11889
11890         if (change == KVM_MR_FLAGS_ONLY)
11891                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
11892         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11893                 return -EIO;
11894
11895         return 0;
11896 }
11897
11898
11899 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11900 {
11901         struct kvm_arch *ka = &kvm->arch;
11902
11903         if (!kvm_x86_ops.cpu_dirty_log_size)
11904                 return;
11905
11906         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11907             (!enable && --ka->cpu_dirty_logging_count == 0))
11908                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11909
11910         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11911 }
11912
11913 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11914                                      struct kvm_memory_slot *old,
11915                                      const struct kvm_memory_slot *new,
11916                                      enum kvm_mr_change change)
11917 {
11918         u32 old_flags = old ? old->flags : 0;
11919         u32 new_flags = new ? new->flags : 0;
11920         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11921
11922         /*
11923          * Update CPU dirty logging if dirty logging is being toggled.  This
11924          * applies to all operations.
11925          */
11926         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11927                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11928
11929         /*
11930          * Nothing more to do for RO slots (which can't be dirtied and can't be
11931          * made writable) or CREATE/MOVE/DELETE of a slot.
11932          *
11933          * For a memslot with dirty logging disabled:
11934          * CREATE:      No dirty mappings will already exist.
11935          * MOVE/DELETE: The old mappings will already have been cleaned up by
11936          *              kvm_arch_flush_shadow_memslot()
11937          *
11938          * For a memslot with dirty logging enabled:
11939          * CREATE:      No shadow pages exist, thus nothing to write-protect
11940          *              and no dirty bits to clear.
11941          * MOVE/DELETE: The old mappings will already have been cleaned up by
11942          *              kvm_arch_flush_shadow_memslot().
11943          */
11944         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11945                 return;
11946
11947         /*
11948          * READONLY and non-flags changes were filtered out above, and the only
11949          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11950          * logging isn't being toggled on or off.
11951          */
11952         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11953                 return;
11954
11955         if (!log_dirty_pages) {
11956                 /*
11957                  * Dirty logging tracks sptes in 4k granularity, meaning that
11958                  * large sptes have to be split.  If live migration succeeds,
11959                  * the guest in the source machine will be destroyed and large
11960                  * sptes will be created in the destination.  However, if the
11961                  * guest continues to run in the source machine (for example if
11962                  * live migration fails), small sptes will remain around and
11963                  * cause bad performance.
11964                  *
11965                  * Scan sptes if dirty logging has been stopped, dropping those
11966                  * which can be collapsed into a single large-page spte.  Later
11967                  * page faults will create the large-page sptes.
11968                  */
11969                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11970         } else {
11971                 /*
11972                  * Initially-all-set does not require write protecting any page,
11973                  * because they're all assumed to be dirty.
11974                  */
11975                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11976                         return;
11977
11978                 if (kvm_x86_ops.cpu_dirty_log_size) {
11979                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11980                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11981                 } else {
11982                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11983                 }
11984         }
11985 }
11986
11987 void kvm_arch_commit_memory_region(struct kvm *kvm,
11988                                 struct kvm_memory_slot *old,
11989                                 const struct kvm_memory_slot *new,
11990                                 enum kvm_mr_change change)
11991 {
11992         if (!kvm->arch.n_requested_mmu_pages &&
11993             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
11994                 unsigned long nr_mmu_pages;
11995
11996                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
11997                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
11998                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
11999         }
12000
12001         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12002
12003         /* Free the arrays associated with the old memslot. */
12004         if (change == KVM_MR_MOVE)
12005                 kvm_arch_free_memslot(kvm, old);
12006 }
12007
12008 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12009 {
12010         kvm_mmu_zap_all(kvm);
12011 }
12012
12013 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12014                                    struct kvm_memory_slot *slot)
12015 {
12016         kvm_page_track_flush_slot(kvm, slot);
12017 }
12018
12019 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12020 {
12021         return (is_guest_mode(vcpu) &&
12022                         kvm_x86_ops.guest_apic_has_interrupt &&
12023                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12024 }
12025
12026 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12027 {
12028         if (!list_empty_careful(&vcpu->async_pf.done))
12029                 return true;
12030
12031         if (kvm_apic_has_events(vcpu))
12032                 return true;
12033
12034         if (vcpu->arch.pv.pv_unhalted)
12035                 return true;
12036
12037         if (vcpu->arch.exception.pending)
12038                 return true;
12039
12040         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12041             (vcpu->arch.nmi_pending &&
12042              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12043                 return true;
12044
12045         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12046             (vcpu->arch.smi_pending &&
12047              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12048                 return true;
12049
12050         if (kvm_arch_interrupt_allowed(vcpu) &&
12051             (kvm_cpu_has_interrupt(vcpu) ||
12052             kvm_guest_apic_has_interrupt(vcpu)))
12053                 return true;
12054
12055         if (kvm_hv_has_stimer_pending(vcpu))
12056                 return true;
12057
12058         if (is_guest_mode(vcpu) &&
12059             kvm_x86_ops.nested_ops->hv_timer_pending &&
12060             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12061                 return true;
12062
12063         return false;
12064 }
12065
12066 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12067 {
12068         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12069 }
12070
12071 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12072 {
12073         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12074                 return true;
12075
12076         return false;
12077 }
12078
12079 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12080 {
12081         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12082                 return true;
12083
12084         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12085                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12086                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12087                 return true;
12088
12089         return kvm_arch_dy_has_pending_interrupt(vcpu);
12090 }
12091
12092 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12093 {
12094         if (vcpu->arch.guest_state_protected)
12095                 return true;
12096
12097         return vcpu->arch.preempted_in_kernel;
12098 }
12099
12100 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12101 {
12102         return kvm_rip_read(vcpu);
12103 }
12104
12105 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12106 {
12107         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12108 }
12109
12110 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12111 {
12112         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12113 }
12114
12115 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12116 {
12117         /* Can't read the RIP when guest state is protected, just return 0 */
12118         if (vcpu->arch.guest_state_protected)
12119                 return 0;
12120
12121         if (is_64_bit_mode(vcpu))
12122                 return kvm_rip_read(vcpu);
12123         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12124                      kvm_rip_read(vcpu));
12125 }
12126 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12127
12128 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12129 {
12130         return kvm_get_linear_rip(vcpu) == linear_rip;
12131 }
12132 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12133
12134 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12135 {
12136         unsigned long rflags;
12137
12138         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12139         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12140                 rflags &= ~X86_EFLAGS_TF;
12141         return rflags;
12142 }
12143 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12144
12145 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12146 {
12147         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12148             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12149                 rflags |= X86_EFLAGS_TF;
12150         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12151 }
12152
12153 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12154 {
12155         __kvm_set_rflags(vcpu, rflags);
12156         kvm_make_request(KVM_REQ_EVENT, vcpu);
12157 }
12158 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12159
12160 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12161 {
12162         int r;
12163
12164         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12165               work->wakeup_all)
12166                 return;
12167
12168         r = kvm_mmu_reload(vcpu);
12169         if (unlikely(r))
12170                 return;
12171
12172         if (!vcpu->arch.mmu->direct_map &&
12173               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12174                 return;
12175
12176         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12177 }
12178
12179 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12180 {
12181         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12182
12183         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12184 }
12185
12186 static inline u32 kvm_async_pf_next_probe(u32 key)
12187 {
12188         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12189 }
12190
12191 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12192 {
12193         u32 key = kvm_async_pf_hash_fn(gfn);
12194
12195         while (vcpu->arch.apf.gfns[key] != ~0)
12196                 key = kvm_async_pf_next_probe(key);
12197
12198         vcpu->arch.apf.gfns[key] = gfn;
12199 }
12200
12201 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12202 {
12203         int i;
12204         u32 key = kvm_async_pf_hash_fn(gfn);
12205
12206         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12207                      (vcpu->arch.apf.gfns[key] != gfn &&
12208                       vcpu->arch.apf.gfns[key] != ~0); i++)
12209                 key = kvm_async_pf_next_probe(key);
12210
12211         return key;
12212 }
12213
12214 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12215 {
12216         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12217 }
12218
12219 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12220 {
12221         u32 i, j, k;
12222
12223         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12224
12225         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12226                 return;
12227
12228         while (true) {
12229                 vcpu->arch.apf.gfns[i] = ~0;
12230                 do {
12231                         j = kvm_async_pf_next_probe(j);
12232                         if (vcpu->arch.apf.gfns[j] == ~0)
12233                                 return;
12234                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12235                         /*
12236                          * k lies cyclically in ]i,j]
12237                          * |    i.k.j |
12238                          * |....j i.k.| or  |.k..j i...|
12239                          */
12240                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12241                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12242                 i = j;
12243         }
12244 }
12245
12246 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12247 {
12248         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12249
12250         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12251                                       sizeof(reason));
12252 }
12253
12254 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12255 {
12256         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12257
12258         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12259                                              &token, offset, sizeof(token));
12260 }
12261
12262 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12263 {
12264         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12265         u32 val;
12266
12267         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12268                                          &val, offset, sizeof(val)))
12269                 return false;
12270
12271         return !val;
12272 }
12273
12274 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12275 {
12276         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12277                 return false;
12278
12279         if (!kvm_pv_async_pf_enabled(vcpu) ||
12280             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12281                 return false;
12282
12283         return true;
12284 }
12285
12286 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12287 {
12288         if (unlikely(!lapic_in_kernel(vcpu) ||
12289                      kvm_event_needs_reinjection(vcpu) ||
12290                      vcpu->arch.exception.pending))
12291                 return false;
12292
12293         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12294                 return false;
12295
12296         /*
12297          * If interrupts are off we cannot even use an artificial
12298          * halt state.
12299          */
12300         return kvm_arch_interrupt_allowed(vcpu);
12301 }
12302
12303 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12304                                      struct kvm_async_pf *work)
12305 {
12306         struct x86_exception fault;
12307
12308         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12309         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12310
12311         if (kvm_can_deliver_async_pf(vcpu) &&
12312             !apf_put_user_notpresent(vcpu)) {
12313                 fault.vector = PF_VECTOR;
12314                 fault.error_code_valid = true;
12315                 fault.error_code = 0;
12316                 fault.nested_page_fault = false;
12317                 fault.address = work->arch.token;
12318                 fault.async_page_fault = true;
12319                 kvm_inject_page_fault(vcpu, &fault);
12320                 return true;
12321         } else {
12322                 /*
12323                  * It is not possible to deliver a paravirtualized asynchronous
12324                  * page fault, but putting the guest in an artificial halt state
12325                  * can be beneficial nevertheless: if an interrupt arrives, we
12326                  * can deliver it timely and perhaps the guest will schedule
12327                  * another process.  When the instruction that triggered a page
12328                  * fault is retried, hopefully the page will be ready in the host.
12329                  */
12330                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12331                 return false;
12332         }
12333 }
12334
12335 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12336                                  struct kvm_async_pf *work)
12337 {
12338         struct kvm_lapic_irq irq = {
12339                 .delivery_mode = APIC_DM_FIXED,
12340                 .vector = vcpu->arch.apf.vec
12341         };
12342
12343         if (work->wakeup_all)
12344                 work->arch.token = ~0; /* broadcast wakeup */
12345         else
12346                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12347         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12348
12349         if ((work->wakeup_all || work->notpresent_injected) &&
12350             kvm_pv_async_pf_enabled(vcpu) &&
12351             !apf_put_user_ready(vcpu, work->arch.token)) {
12352                 vcpu->arch.apf.pageready_pending = true;
12353                 kvm_apic_set_irq(vcpu, &irq, NULL);
12354         }
12355
12356         vcpu->arch.apf.halted = false;
12357         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12358 }
12359
12360 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12361 {
12362         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12363         if (!vcpu->arch.apf.pageready_pending)
12364                 kvm_vcpu_kick(vcpu);
12365 }
12366
12367 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12368 {
12369         if (!kvm_pv_async_pf_enabled(vcpu))
12370                 return true;
12371         else
12372                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12373 }
12374
12375 void kvm_arch_start_assignment(struct kvm *kvm)
12376 {
12377         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12378                 static_call_cond(kvm_x86_start_assignment)(kvm);
12379 }
12380 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12381
12382 void kvm_arch_end_assignment(struct kvm *kvm)
12383 {
12384         atomic_dec(&kvm->arch.assigned_device_count);
12385 }
12386 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12387
12388 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12389 {
12390         return atomic_read(&kvm->arch.assigned_device_count);
12391 }
12392 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12393
12394 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12395 {
12396         atomic_inc(&kvm->arch.noncoherent_dma_count);
12397 }
12398 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12399
12400 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12401 {
12402         atomic_dec(&kvm->arch.noncoherent_dma_count);
12403 }
12404 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12405
12406 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12407 {
12408         return atomic_read(&kvm->arch.noncoherent_dma_count);
12409 }
12410 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12411
12412 bool kvm_arch_has_irq_bypass(void)
12413 {
12414         return true;
12415 }
12416
12417 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12418                                       struct irq_bypass_producer *prod)
12419 {
12420         struct kvm_kernel_irqfd *irqfd =
12421                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12422         int ret;
12423
12424         irqfd->producer = prod;
12425         kvm_arch_start_assignment(irqfd->kvm);
12426         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12427                                          prod->irq, irqfd->gsi, 1);
12428
12429         if (ret)
12430                 kvm_arch_end_assignment(irqfd->kvm);
12431
12432         return ret;
12433 }
12434
12435 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12436                                       struct irq_bypass_producer *prod)
12437 {
12438         int ret;
12439         struct kvm_kernel_irqfd *irqfd =
12440                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12441
12442         WARN_ON(irqfd->producer != prod);
12443         irqfd->producer = NULL;
12444
12445         /*
12446          * When producer of consumer is unregistered, we change back to
12447          * remapped mode, so we can re-use the current implementation
12448          * when the irq is masked/disabled or the consumer side (KVM
12449          * int this case doesn't want to receive the interrupts.
12450         */
12451         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12452         if (ret)
12453                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12454                        " fails: %d\n", irqfd->consumer.token, ret);
12455
12456         kvm_arch_end_assignment(irqfd->kvm);
12457 }
12458
12459 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12460                                    uint32_t guest_irq, bool set)
12461 {
12462         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12463 }
12464
12465 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12466                                   struct kvm_kernel_irq_routing_entry *new)
12467 {
12468         if (new->type != KVM_IRQ_ROUTING_MSI)
12469                 return true;
12470
12471         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12472 }
12473
12474 bool kvm_vector_hashing_enabled(void)
12475 {
12476         return vector_hashing;
12477 }
12478
12479 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12480 {
12481         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12482 }
12483 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12484
12485
12486 int kvm_spec_ctrl_test_value(u64 value)
12487 {
12488         /*
12489          * test that setting IA32_SPEC_CTRL to given value
12490          * is allowed by the host processor
12491          */
12492
12493         u64 saved_value;
12494         unsigned long flags;
12495         int ret = 0;
12496
12497         local_irq_save(flags);
12498
12499         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12500                 ret = 1;
12501         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12502                 ret = 1;
12503         else
12504                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12505
12506         local_irq_restore(flags);
12507
12508         return ret;
12509 }
12510 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12511
12512 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12513 {
12514         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12515         struct x86_exception fault;
12516         u32 access = error_code &
12517                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12518
12519         if (!(error_code & PFERR_PRESENT_MASK) ||
12520             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12521                 /*
12522                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12523                  * tables probably do not match the TLB.  Just proceed
12524                  * with the error code that the processor gave.
12525                  */
12526                 fault.vector = PF_VECTOR;
12527                 fault.error_code_valid = true;
12528                 fault.error_code = error_code;
12529                 fault.nested_page_fault = false;
12530                 fault.address = gva;
12531         }
12532         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12533 }
12534 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12535
12536 /*
12537  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12538  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12539  * indicates whether exit to userspace is needed.
12540  */
12541 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12542                               struct x86_exception *e)
12543 {
12544         if (r == X86EMUL_PROPAGATE_FAULT) {
12545                 kvm_inject_emulated_page_fault(vcpu, e);
12546                 return 1;
12547         }
12548
12549         /*
12550          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12551          * while handling a VMX instruction KVM could've handled the request
12552          * correctly by exiting to userspace and performing I/O but there
12553          * doesn't seem to be a real use-case behind such requests, just return
12554          * KVM_EXIT_INTERNAL_ERROR for now.
12555          */
12556         kvm_prepare_emulation_failure_exit(vcpu);
12557
12558         return 0;
12559 }
12560 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12561
12562 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12563 {
12564         bool pcid_enabled;
12565         struct x86_exception e;
12566         struct {
12567                 u64 pcid;
12568                 u64 gla;
12569         } operand;
12570         int r;
12571
12572         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12573         if (r != X86EMUL_CONTINUE)
12574                 return kvm_handle_memory_failure(vcpu, r, &e);
12575
12576         if (operand.pcid >> 12 != 0) {
12577                 kvm_inject_gp(vcpu, 0);
12578                 return 1;
12579         }
12580
12581         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12582
12583         switch (type) {
12584         case INVPCID_TYPE_INDIV_ADDR:
12585                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12586                     is_noncanonical_address(operand.gla, vcpu)) {
12587                         kvm_inject_gp(vcpu, 0);
12588                         return 1;
12589                 }
12590                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12591                 return kvm_skip_emulated_instruction(vcpu);
12592
12593         case INVPCID_TYPE_SINGLE_CTXT:
12594                 if (!pcid_enabled && (operand.pcid != 0)) {
12595                         kvm_inject_gp(vcpu, 0);
12596                         return 1;
12597                 }
12598
12599                 kvm_invalidate_pcid(vcpu, operand.pcid);
12600                 return kvm_skip_emulated_instruction(vcpu);
12601
12602         case INVPCID_TYPE_ALL_NON_GLOBAL:
12603                 /*
12604                  * Currently, KVM doesn't mark global entries in the shadow
12605                  * page tables, so a non-global flush just degenerates to a
12606                  * global flush. If needed, we could optimize this later by
12607                  * keeping track of global entries in shadow page tables.
12608                  */
12609
12610                 fallthrough;
12611         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12612                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12613                 return kvm_skip_emulated_instruction(vcpu);
12614
12615         default:
12616                 kvm_inject_gp(vcpu, 0);
12617                 return 1;
12618         }
12619 }
12620 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12621
12622 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12623 {
12624         struct kvm_run *run = vcpu->run;
12625         struct kvm_mmio_fragment *frag;
12626         unsigned int len;
12627
12628         BUG_ON(!vcpu->mmio_needed);
12629
12630         /* Complete previous fragment */
12631         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12632         len = min(8u, frag->len);
12633         if (!vcpu->mmio_is_write)
12634                 memcpy(frag->data, run->mmio.data, len);
12635
12636         if (frag->len <= 8) {
12637                 /* Switch to the next fragment. */
12638                 frag++;
12639                 vcpu->mmio_cur_fragment++;
12640         } else {
12641                 /* Go forward to the next mmio piece. */
12642                 frag->data += len;
12643                 frag->gpa += len;
12644                 frag->len -= len;
12645         }
12646
12647         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12648                 vcpu->mmio_needed = 0;
12649
12650                 // VMG change, at this point, we're always done
12651                 // RIP has already been advanced
12652                 return 1;
12653         }
12654
12655         // More MMIO is needed
12656         run->mmio.phys_addr = frag->gpa;
12657         run->mmio.len = min(8u, frag->len);
12658         run->mmio.is_write = vcpu->mmio_is_write;
12659         if (run->mmio.is_write)
12660                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12661         run->exit_reason = KVM_EXIT_MMIO;
12662
12663         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12664
12665         return 0;
12666 }
12667
12668 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12669                           void *data)
12670 {
12671         int handled;
12672         struct kvm_mmio_fragment *frag;
12673
12674         if (!data)
12675                 return -EINVAL;
12676
12677         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12678         if (handled == bytes)
12679                 return 1;
12680
12681         bytes -= handled;
12682         gpa += handled;
12683         data += handled;
12684
12685         /*TODO: Check if need to increment number of frags */
12686         frag = vcpu->mmio_fragments;
12687         vcpu->mmio_nr_fragments = 1;
12688         frag->len = bytes;
12689         frag->gpa = gpa;
12690         frag->data = data;
12691
12692         vcpu->mmio_needed = 1;
12693         vcpu->mmio_cur_fragment = 0;
12694
12695         vcpu->run->mmio.phys_addr = gpa;
12696         vcpu->run->mmio.len = min(8u, frag->len);
12697         vcpu->run->mmio.is_write = 1;
12698         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12699         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12700
12701         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12702
12703         return 0;
12704 }
12705 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12706
12707 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12708                          void *data)
12709 {
12710         int handled;
12711         struct kvm_mmio_fragment *frag;
12712
12713         if (!data)
12714                 return -EINVAL;
12715
12716         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12717         if (handled == bytes)
12718                 return 1;
12719
12720         bytes -= handled;
12721         gpa += handled;
12722         data += handled;
12723
12724         /*TODO: Check if need to increment number of frags */
12725         frag = vcpu->mmio_fragments;
12726         vcpu->mmio_nr_fragments = 1;
12727         frag->len = bytes;
12728         frag->gpa = gpa;
12729         frag->data = data;
12730
12731         vcpu->mmio_needed = 1;
12732         vcpu->mmio_cur_fragment = 0;
12733
12734         vcpu->run->mmio.phys_addr = gpa;
12735         vcpu->run->mmio.len = min(8u, frag->len);
12736         vcpu->run->mmio.is_write = 0;
12737         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12738
12739         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12740
12741         return 0;
12742 }
12743 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12744
12745 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12746                            unsigned int port);
12747
12748 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12749 {
12750         int size = vcpu->arch.pio.size;
12751         int port = vcpu->arch.pio.port;
12752
12753         vcpu->arch.pio.count = 0;
12754         if (vcpu->arch.sev_pio_count)
12755                 return kvm_sev_es_outs(vcpu, size, port);
12756         return 1;
12757 }
12758
12759 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12760                            unsigned int port)
12761 {
12762         for (;;) {
12763                 unsigned int count =
12764                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12765                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12766
12767                 /* memcpy done already by emulator_pio_out.  */
12768                 vcpu->arch.sev_pio_count -= count;
12769                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12770                 if (!ret)
12771                         break;
12772
12773                 /* Emulation done by the kernel.  */
12774                 if (!vcpu->arch.sev_pio_count)
12775                         return 1;
12776         }
12777
12778         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12779         return 0;
12780 }
12781
12782 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12783                           unsigned int port);
12784
12785 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12786 {
12787         unsigned count = vcpu->arch.pio.count;
12788         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12789         vcpu->arch.sev_pio_count -= count;
12790         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12791 }
12792
12793 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12794 {
12795         int size = vcpu->arch.pio.size;
12796         int port = vcpu->arch.pio.port;
12797
12798         advance_sev_es_emulated_ins(vcpu);
12799         if (vcpu->arch.sev_pio_count)
12800                 return kvm_sev_es_ins(vcpu, size, port);
12801         return 1;
12802 }
12803
12804 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12805                           unsigned int port)
12806 {
12807         for (;;) {
12808                 unsigned int count =
12809                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12810                 if (!__emulator_pio_in(vcpu, size, port, count))
12811                         break;
12812
12813                 /* Emulation done by the kernel.  */
12814                 advance_sev_es_emulated_ins(vcpu);
12815                 if (!vcpu->arch.sev_pio_count)
12816                         return 1;
12817         }
12818
12819         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12820         return 0;
12821 }
12822
12823 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12824                          unsigned int port, void *data,  unsigned int count,
12825                          int in)
12826 {
12827         vcpu->arch.sev_pio_data = data;
12828         vcpu->arch.sev_pio_count = count;
12829         return in ? kvm_sev_es_ins(vcpu, size, port)
12830                   : kvm_sev_es_outs(vcpu, size, port);
12831 }
12832 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12833
12834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);