KVM: x86: fix memoryleak in kvm_arch_vcpu_create()
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89
90 struct kvm_caps kvm_caps __read_mostly = {
91         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96
97 #define emul_to_vcpu(ctxt) \
98         ((struct kvm_vcpu *)(ctxt)->vcpu)
99
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133
134 #define KVM_X86_OP(func)                                             \
135         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
136                                 *(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175
176 static bool __read_mostly force_emulation_prefix = false;
177 module_param(force_emulation_prefix, bool, S_IRUGO);
178
179 int __read_mostly pi_inject_timer = -1;
180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
181
182 /* Enable/disable PMU virtualization */
183 bool __read_mostly enable_pmu = true;
184 EXPORT_SYMBOL_GPL(enable_pmu);
185 module_param(enable_pmu, bool, 0444);
186
187 bool __read_mostly eager_page_split = true;
188 module_param(eager_page_split, bool, 0644);
189
190 /*
191  * Restoring the host value for MSRs that are only consumed when running in
192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193  * returns to userspace, i.e. the kernel can run with the guest's value.
194  */
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
196
197 struct kvm_user_return_msrs {
198         struct user_return_notifier urn;
199         bool registered;
200         struct kvm_user_return_msr_values {
201                 u64 host;
202                 u64 curr;
203         } values[KVM_MAX_NR_USER_RETURN_MSRS];
204 };
205
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
210
211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
215
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
218
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
221
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
224
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227
228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
229         KVM_GENERIC_VM_STATS(),
230         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
231         STATS_DESC_COUNTER(VM, mmu_pte_write),
232         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
233         STATS_DESC_COUNTER(VM, mmu_flooded),
234         STATS_DESC_COUNTER(VM, mmu_recycled),
235         STATS_DESC_COUNTER(VM, mmu_cache_miss),
236         STATS_DESC_ICOUNTER(VM, mmu_unsync),
237         STATS_DESC_ICOUNTER(VM, pages_4k),
238         STATS_DESC_ICOUNTER(VM, pages_2m),
239         STATS_DESC_ICOUNTER(VM, pages_1g),
240         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
241         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
242         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
243 };
244
245 const struct kvm_stats_header kvm_vm_stats_header = {
246         .name_size = KVM_STATS_NAME_SIZE,
247         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
248         .id_offset = sizeof(struct kvm_stats_header),
249         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
250         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
251                        sizeof(kvm_vm_stats_desc),
252 };
253
254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
255         KVM_GENERIC_VCPU_STATS(),
256         STATS_DESC_COUNTER(VCPU, pf_taken),
257         STATS_DESC_COUNTER(VCPU, pf_fixed),
258         STATS_DESC_COUNTER(VCPU, pf_emulate),
259         STATS_DESC_COUNTER(VCPU, pf_spurious),
260         STATS_DESC_COUNTER(VCPU, pf_fast),
261         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
262         STATS_DESC_COUNTER(VCPU, pf_guest),
263         STATS_DESC_COUNTER(VCPU, tlb_flush),
264         STATS_DESC_COUNTER(VCPU, invlpg),
265         STATS_DESC_COUNTER(VCPU, exits),
266         STATS_DESC_COUNTER(VCPU, io_exits),
267         STATS_DESC_COUNTER(VCPU, mmio_exits),
268         STATS_DESC_COUNTER(VCPU, signal_exits),
269         STATS_DESC_COUNTER(VCPU, irq_window_exits),
270         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
271         STATS_DESC_COUNTER(VCPU, l1d_flush),
272         STATS_DESC_COUNTER(VCPU, halt_exits),
273         STATS_DESC_COUNTER(VCPU, request_irq_exits),
274         STATS_DESC_COUNTER(VCPU, irq_exits),
275         STATS_DESC_COUNTER(VCPU, host_state_reload),
276         STATS_DESC_COUNTER(VCPU, fpu_reload),
277         STATS_DESC_COUNTER(VCPU, insn_emulation),
278         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
279         STATS_DESC_COUNTER(VCPU, hypercalls),
280         STATS_DESC_COUNTER(VCPU, irq_injections),
281         STATS_DESC_COUNTER(VCPU, nmi_injections),
282         STATS_DESC_COUNTER(VCPU, req_event),
283         STATS_DESC_COUNTER(VCPU, nested_run),
284         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
285         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
286         STATS_DESC_COUNTER(VCPU, preemption_reported),
287         STATS_DESC_COUNTER(VCPU, preemption_other),
288         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
289         STATS_DESC_COUNTER(VCPU, notify_window_exits),
290 };
291
292 const struct kvm_stats_header kvm_vcpu_stats_header = {
293         .name_size = KVM_STATS_NAME_SIZE,
294         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
295         .id_offset = sizeof(struct kvm_stats_header),
296         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
297         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
298                        sizeof(kvm_vcpu_stats_desc),
299 };
300
301 u64 __read_mostly host_xcr0;
302
303 static struct kmem_cache *x86_emulator_cache;
304
305 /*
306  * When called, it means the previous get/set msr reached an invalid msr.
307  * Return true if we want to ignore/silent this failed msr access.
308  */
309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
310 {
311         const char *op = write ? "wrmsr" : "rdmsr";
312
313         if (ignore_msrs) {
314                 if (report_ignored_msrs)
315                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316                                       op, msr, data);
317                 /* Mask the error */
318                 return true;
319         } else {
320                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
321                                       op, msr, data);
322                 return false;
323         }
324 }
325
326 static struct kmem_cache *kvm_alloc_emulator_cache(void)
327 {
328         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
329         unsigned int size = sizeof(struct x86_emulate_ctxt);
330
331         return kmem_cache_create_usercopy("x86_emulator", size,
332                                           __alignof__(struct x86_emulate_ctxt),
333                                           SLAB_ACCOUNT, useroffset,
334                                           size - useroffset, NULL);
335 }
336
337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
338
339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
340 {
341         int i;
342         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
343                 vcpu->arch.apf.gfns[i] = ~0;
344 }
345
346 static void kvm_on_user_return(struct user_return_notifier *urn)
347 {
348         unsigned slot;
349         struct kvm_user_return_msrs *msrs
350                 = container_of(urn, struct kvm_user_return_msrs, urn);
351         struct kvm_user_return_msr_values *values;
352         unsigned long flags;
353
354         /*
355          * Disabling irqs at this point since the following code could be
356          * interrupted and executed through kvm_arch_hardware_disable()
357          */
358         local_irq_save(flags);
359         if (msrs->registered) {
360                 msrs->registered = false;
361                 user_return_notifier_unregister(urn);
362         }
363         local_irq_restore(flags);
364         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
365                 values = &msrs->values[slot];
366                 if (values->host != values->curr) {
367                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
368                         values->curr = values->host;
369                 }
370         }
371 }
372
373 static int kvm_probe_user_return_msr(u32 msr)
374 {
375         u64 val;
376         int ret;
377
378         preempt_disable();
379         ret = rdmsrl_safe(msr, &val);
380         if (ret)
381                 goto out;
382         ret = wrmsrl_safe(msr, val);
383 out:
384         preempt_enable();
385         return ret;
386 }
387
388 int kvm_add_user_return_msr(u32 msr)
389 {
390         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
391
392         if (kvm_probe_user_return_msr(msr))
393                 return -1;
394
395         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
396         return kvm_nr_uret_msrs++;
397 }
398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
399
400 int kvm_find_user_return_msr(u32 msr)
401 {
402         int i;
403
404         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
405                 if (kvm_uret_msrs_list[i] == msr)
406                         return i;
407         }
408         return -1;
409 }
410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
411
412 static void kvm_user_return_msr_cpu_online(void)
413 {
414         unsigned int cpu = smp_processor_id();
415         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
416         u64 value;
417         int i;
418
419         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
420                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
421                 msrs->values[i].host = value;
422                 msrs->values[i].curr = value;
423         }
424 }
425
426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
427 {
428         unsigned int cpu = smp_processor_id();
429         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430         int err;
431
432         value = (value & mask) | (msrs->values[slot].host & ~mask);
433         if (value == msrs->values[slot].curr)
434                 return 0;
435         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
436         if (err)
437                 return 1;
438
439         msrs->values[slot].curr = value;
440         if (!msrs->registered) {
441                 msrs->urn.on_user_return = kvm_on_user_return;
442                 user_return_notifier_register(&msrs->urn);
443                 msrs->registered = true;
444         }
445         return 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
448
449 static void drop_user_return_notifiers(void)
450 {
451         unsigned int cpu = smp_processor_id();
452         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
453
454         if (msrs->registered)
455                 kvm_on_user_return(&msrs->urn);
456 }
457
458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
459 {
460         return vcpu->arch.apic_base;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
463
464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
465 {
466         return kvm_apic_mode(kvm_get_apic_base(vcpu));
467 }
468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
469
470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
471 {
472         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
473         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
474         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
475                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
476
477         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
478                 return 1;
479         if (!msr_info->host_initiated) {
480                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
481                         return 1;
482                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
483                         return 1;
484         }
485
486         kvm_lapic_set_base(vcpu, msr_info->data);
487         kvm_recalculate_apic_map(vcpu->kvm);
488         return 0;
489 }
490 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
491
492 /*
493  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
494  *
495  * Hardware virtualization extension instructions may fault if a reboot turns
496  * off virtualization while processes are running.  Usually after catching the
497  * fault we just panic; during reboot instead the instruction is ignored.
498  */
499 noinstr void kvm_spurious_fault(void)
500 {
501         /* Fault while not rebooting.  We want the trace. */
502         BUG_ON(!kvm_rebooting);
503 }
504 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
505
506 #define EXCPT_BENIGN            0
507 #define EXCPT_CONTRIBUTORY      1
508 #define EXCPT_PF                2
509
510 static int exception_class(int vector)
511 {
512         switch (vector) {
513         case PF_VECTOR:
514                 return EXCPT_PF;
515         case DE_VECTOR:
516         case TS_VECTOR:
517         case NP_VECTOR:
518         case SS_VECTOR:
519         case GP_VECTOR:
520                 return EXCPT_CONTRIBUTORY;
521         default:
522                 break;
523         }
524         return EXCPT_BENIGN;
525 }
526
527 #define EXCPT_FAULT             0
528 #define EXCPT_TRAP              1
529 #define EXCPT_ABORT             2
530 #define EXCPT_INTERRUPT         3
531
532 static int exception_type(int vector)
533 {
534         unsigned int mask;
535
536         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
537                 return EXCPT_INTERRUPT;
538
539         mask = 1 << vector;
540
541         /* #DB is trap, as instruction watchpoints are handled elsewhere */
542         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
543                 return EXCPT_TRAP;
544
545         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
546                 return EXCPT_ABORT;
547
548         /* Reserved exceptions will result in fault */
549         return EXCPT_FAULT;
550 }
551
552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
553 {
554         unsigned nr = vcpu->arch.exception.nr;
555         bool has_payload = vcpu->arch.exception.has_payload;
556         unsigned long payload = vcpu->arch.exception.payload;
557
558         if (!has_payload)
559                 return;
560
561         switch (nr) {
562         case DB_VECTOR:
563                 /*
564                  * "Certain debug exceptions may clear bit 0-3.  The
565                  * remaining contents of the DR6 register are never
566                  * cleared by the processor".
567                  */
568                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
569                 /*
570                  * In order to reflect the #DB exception payload in guest
571                  * dr6, three components need to be considered: active low
572                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
573                  * DR6_BS and DR6_BT)
574                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
575                  * In the target guest dr6:
576                  * FIXED_1 bits should always be set.
577                  * Active low bits should be cleared if 1-setting in payload.
578                  * Active high bits should be set if 1-setting in payload.
579                  *
580                  * Note, the payload is compatible with the pending debug
581                  * exceptions/exit qualification under VMX, that active_low bits
582                  * are active high in payload.
583                  * So they need to be flipped for DR6.
584                  */
585                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
586                 vcpu->arch.dr6 |= payload;
587                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
588
589                 /*
590                  * The #DB payload is defined as compatible with the 'pending
591                  * debug exceptions' field under VMX, not DR6. While bit 12 is
592                  * defined in the 'pending debug exceptions' field (enabled
593                  * breakpoint), it is reserved and must be zero in DR6.
594                  */
595                 vcpu->arch.dr6 &= ~BIT(12);
596                 break;
597         case PF_VECTOR:
598                 vcpu->arch.cr2 = payload;
599                 break;
600         }
601
602         vcpu->arch.exception.has_payload = false;
603         vcpu->arch.exception.payload = 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
606
607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
608                 unsigned nr, bool has_error, u32 error_code,
609                 bool has_payload, unsigned long payload, bool reinject)
610 {
611         u32 prev_nr;
612         int class1, class2;
613
614         kvm_make_request(KVM_REQ_EVENT, vcpu);
615
616         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
617         queue:
618                 if (reinject) {
619                         /*
620                          * On vmentry, vcpu->arch.exception.pending is only
621                          * true if an event injection was blocked by
622                          * nested_run_pending.  In that case, however,
623                          * vcpu_enter_guest requests an immediate exit,
624                          * and the guest shouldn't proceed far enough to
625                          * need reinjection.
626                          */
627                         WARN_ON_ONCE(vcpu->arch.exception.pending);
628                         vcpu->arch.exception.injected = true;
629                         if (WARN_ON_ONCE(has_payload)) {
630                                 /*
631                                  * A reinjected event has already
632                                  * delivered its payload.
633                                  */
634                                 has_payload = false;
635                                 payload = 0;
636                         }
637                 } else {
638                         vcpu->arch.exception.pending = true;
639                         vcpu->arch.exception.injected = false;
640                 }
641                 vcpu->arch.exception.has_error_code = has_error;
642                 vcpu->arch.exception.nr = nr;
643                 vcpu->arch.exception.error_code = error_code;
644                 vcpu->arch.exception.has_payload = has_payload;
645                 vcpu->arch.exception.payload = payload;
646                 if (!is_guest_mode(vcpu))
647                         kvm_deliver_exception_payload(vcpu);
648                 return;
649         }
650
651         /* to check exception */
652         prev_nr = vcpu->arch.exception.nr;
653         if (prev_nr == DF_VECTOR) {
654                 /* triple fault -> shutdown */
655                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
656                 return;
657         }
658         class1 = exception_class(prev_nr);
659         class2 = exception_class(nr);
660         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
661                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
662                 /*
663                  * Generate double fault per SDM Table 5-5.  Set
664                  * exception.pending = true so that the double fault
665                  * can trigger a nested vmexit.
666                  */
667                 vcpu->arch.exception.pending = true;
668                 vcpu->arch.exception.injected = false;
669                 vcpu->arch.exception.has_error_code = true;
670                 vcpu->arch.exception.nr = DF_VECTOR;
671                 vcpu->arch.exception.error_code = 0;
672                 vcpu->arch.exception.has_payload = false;
673                 vcpu->arch.exception.payload = 0;
674         } else
675                 /* replace previous exception with a new one in a hope
676                    that instruction re-execution will regenerate lost
677                    exception */
678                 goto queue;
679 }
680
681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
682 {
683         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
684 }
685 EXPORT_SYMBOL_GPL(kvm_queue_exception);
686
687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
688 {
689         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
690 }
691 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
692
693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
694                            unsigned long payload)
695 {
696         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
699
700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
701                                     u32 error_code, unsigned long payload)
702 {
703         kvm_multiple_exception(vcpu, nr, true, error_code,
704                                true, payload, false);
705 }
706
707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
708 {
709         if (err)
710                 kvm_inject_gp(vcpu, 0);
711         else
712                 return kvm_skip_emulated_instruction(vcpu);
713
714         return 1;
715 }
716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
717
718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
719 {
720         if (err) {
721                 kvm_inject_gp(vcpu, 0);
722                 return 1;
723         }
724
725         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
726                                        EMULTYPE_COMPLETE_USER_EXIT);
727 }
728
729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
730 {
731         ++vcpu->stat.pf_guest;
732         vcpu->arch.exception.nested_apf =
733                 is_guest_mode(vcpu) && fault->async_page_fault;
734         if (vcpu->arch.exception.nested_apf) {
735                 vcpu->arch.apf.nested_apf_token = fault->address;
736                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
737         } else {
738                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
739                                         fault->address);
740         }
741 }
742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
743
744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746                                     struct x86_exception *fault)
747 {
748         struct kvm_mmu *fault_mmu;
749         WARN_ON_ONCE(fault->vector != PF_VECTOR);
750
751         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752                                                vcpu->arch.walk_mmu;
753
754         /*
755          * Invalidate the TLB entry for the faulting address, if it exists,
756          * else the access will fault indefinitely (and to emulate hardware).
757          */
758         if ((fault->error_code & PFERR_PRESENT_MASK) &&
759             !(fault->error_code & PFERR_RSVD_MASK))
760                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761                                        fault_mmu->root.hpa);
762
763         /*
764          * A workaround for KVM's bad exception handling.  If KVM injected an
765          * exception into L2, and L2 encountered a #PF while vectoring the
766          * injected exception, manually check to see if L1 wants to intercept
767          * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
768          * In all other cases, defer the check to nested_ops->check_events(),
769          * which will correctly handle priority (this does not).  Note, other
770          * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
771          * most problematic, e.g. when L0 and L1 are both intercepting #PF for
772          * shadow paging.
773          *
774          * TODO: Rewrite exception handling to track injected and pending
775          *       (VM-Exit) exceptions separately.
776          */
777         if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
778             kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
779                 return true;
780
781         fault_mmu->inject_page_fault(vcpu, fault);
782         return false;
783 }
784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
785
786 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
787 {
788         atomic_inc(&vcpu->arch.nmi_queued);
789         kvm_make_request(KVM_REQ_NMI, vcpu);
790 }
791 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
792
793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
794 {
795         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
796 }
797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
798
799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
800 {
801         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
802 }
803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
804
805 /*
806  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
807  * a #GP and return false.
808  */
809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
810 {
811         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
812                 return true;
813         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
814         return false;
815 }
816 EXPORT_SYMBOL_GPL(kvm_require_cpl);
817
818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
819 {
820         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
821                 return true;
822
823         kvm_queue_exception(vcpu, UD_VECTOR);
824         return false;
825 }
826 EXPORT_SYMBOL_GPL(kvm_require_dr);
827
828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
829 {
830         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
831 }
832
833 /*
834  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
835  */
836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
837 {
838         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
839         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
840         gpa_t real_gpa;
841         int i;
842         int ret;
843         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
844
845         /*
846          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
847          * to an L1 GPA.
848          */
849         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
850                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
851         if (real_gpa == INVALID_GPA)
852                 return 0;
853
854         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
855         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
856                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
857         if (ret < 0)
858                 return 0;
859
860         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
861                 if ((pdpte[i] & PT_PRESENT_MASK) &&
862                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
863                         return 0;
864                 }
865         }
866
867         /*
868          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
869          * Shadow page roots need to be reconstructed instead.
870          */
871         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
872                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
873
874         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
875         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
876         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
877         vcpu->arch.pdptrs_from_userspace = false;
878
879         return 1;
880 }
881 EXPORT_SYMBOL_GPL(load_pdptrs);
882
883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
884 {
885         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
886                 kvm_clear_async_pf_completion_queue(vcpu);
887                 kvm_async_pf_hash_reset(vcpu);
888
889                 /*
890                  * Clearing CR0.PG is defined to flush the TLB from the guest's
891                  * perspective.
892                  */
893                 if (!(cr0 & X86_CR0_PG))
894                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
895         }
896
897         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
898                 kvm_mmu_reset_context(vcpu);
899
900         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
901             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
902             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
903                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
904 }
905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
906
907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
908 {
909         unsigned long old_cr0 = kvm_read_cr0(vcpu);
910
911         cr0 |= X86_CR0_ET;
912
913 #ifdef CONFIG_X86_64
914         if (cr0 & 0xffffffff00000000UL)
915                 return 1;
916 #endif
917
918         cr0 &= ~CR0_RESERVED_BITS;
919
920         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921                 return 1;
922
923         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924                 return 1;
925
926 #ifdef CONFIG_X86_64
927         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
928             (cr0 & X86_CR0_PG)) {
929                 int cs_db, cs_l;
930
931                 if (!is_pae(vcpu))
932                         return 1;
933                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
934                 if (cs_l)
935                         return 1;
936         }
937 #endif
938         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
939             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
940             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
941                 return 1;
942
943         if (!(cr0 & X86_CR0_PG) &&
944             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
945                 return 1;
946
947         static_call(kvm_x86_set_cr0)(vcpu, cr0);
948
949         kvm_post_set_cr0(vcpu, old_cr0, cr0);
950
951         return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_cr0);
954
955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
956 {
957         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
958 }
959 EXPORT_SYMBOL_GPL(kvm_lmsw);
960
961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
962 {
963         if (vcpu->arch.guest_state_protected)
964                 return;
965
966         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968                 if (vcpu->arch.xcr0 != host_xcr0)
969                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
970
971                 if (vcpu->arch.xsaves_enabled &&
972                     vcpu->arch.ia32_xss != host_xss)
973                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
974         }
975
976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
977         if (static_cpu_has(X86_FEATURE_PKU) &&
978             vcpu->arch.pkru != vcpu->arch.host_pkru &&
979             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
980              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
981                 write_pkru(vcpu->arch.pkru);
982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
983 }
984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
985
986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
987 {
988         if (vcpu->arch.guest_state_protected)
989                 return;
990
991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
992         if (static_cpu_has(X86_FEATURE_PKU) &&
993             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
995                 vcpu->arch.pkru = rdpkru();
996                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
997                         write_pkru(vcpu->arch.host_pkru);
998         }
999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1000
1001         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1002
1003                 if (vcpu->arch.xcr0 != host_xcr0)
1004                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1005
1006                 if (vcpu->arch.xsaves_enabled &&
1007                     vcpu->arch.ia32_xss != host_xss)
1008                         wrmsrl(MSR_IA32_XSS, host_xss);
1009         }
1010
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1013
1014 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1015 {
1016         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1017 }
1018
1019 #ifdef CONFIG_X86_64
1020 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1021 {
1022         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1023 }
1024 #endif
1025
1026 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1027 {
1028         u64 xcr0 = xcr;
1029         u64 old_xcr0 = vcpu->arch.xcr0;
1030         u64 valid_bits;
1031
1032         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1033         if (index != XCR_XFEATURE_ENABLED_MASK)
1034                 return 1;
1035         if (!(xcr0 & XFEATURE_MASK_FP))
1036                 return 1;
1037         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1038                 return 1;
1039
1040         /*
1041          * Do not allow the guest to set bits that we do not support
1042          * saving.  However, xcr0 bit 0 is always set, even if the
1043          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1044          */
1045         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1046         if (xcr0 & ~valid_bits)
1047                 return 1;
1048
1049         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1050             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1051                 return 1;
1052
1053         if (xcr0 & XFEATURE_MASK_AVX512) {
1054                 if (!(xcr0 & XFEATURE_MASK_YMM))
1055                         return 1;
1056                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1057                         return 1;
1058         }
1059
1060         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1061             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1062                 return 1;
1063
1064         vcpu->arch.xcr0 = xcr0;
1065
1066         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1067                 kvm_update_cpuid_runtime(vcpu);
1068         return 0;
1069 }
1070
1071 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1072 {
1073         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1074             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1075                 kvm_inject_gp(vcpu, 0);
1076                 return 1;
1077         }
1078
1079         return kvm_skip_emulated_instruction(vcpu);
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1082
1083 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1084 {
1085         if (cr4 & cr4_reserved_bits)
1086                 return false;
1087
1088         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1089                 return false;
1090
1091         return true;
1092 }
1093 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1094
1095 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097         return __kvm_is_valid_cr4(vcpu, cr4) &&
1098                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1099 }
1100
1101 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1102 {
1103         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1104                 kvm_mmu_reset_context(vcpu);
1105
1106         /*
1107          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1108          * according to the SDM; however, stale prev_roots could be reused
1109          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1110          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1111          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1112          * so fall through.
1113          */
1114         if (!tdp_enabled &&
1115             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1116                 kvm_mmu_unload(vcpu);
1117
1118         /*
1119          * The TLB has to be flushed for all PCIDs if any of the following
1120          * (architecturally required) changes happen:
1121          * - CR4.PCIDE is changed from 1 to 0
1122          * - CR4.PGE is toggled
1123          *
1124          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1125          */
1126         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1127             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1128                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1129
1130         /*
1131          * The TLB has to be flushed for the current PCID if any of the
1132          * following (architecturally required) changes happen:
1133          * - CR4.SMEP is changed from 0 to 1
1134          * - CR4.PAE is toggled
1135          */
1136         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1137                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1138                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1139
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1142
1143 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1144 {
1145         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1146
1147         if (!kvm_is_valid_cr4(vcpu, cr4))
1148                 return 1;
1149
1150         if (is_long_mode(vcpu)) {
1151                 if (!(cr4 & X86_CR4_PAE))
1152                         return 1;
1153                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1154                         return 1;
1155         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1156                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1157                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1158                 return 1;
1159
1160         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1161                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1162                         return 1;
1163
1164                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1165                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1166                         return 1;
1167         }
1168
1169         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1170
1171         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1172
1173         return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1176
1177 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1178 {
1179         struct kvm_mmu *mmu = vcpu->arch.mmu;
1180         unsigned long roots_to_free = 0;
1181         int i;
1182
1183         /*
1184          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1185          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1186          * also via the emulator.  KVM's TDP page tables are not in the scope of
1187          * the invalidation, but the guest's TLB entries need to be flushed as
1188          * the CPU may have cached entries in its TLB for the target PCID.
1189          */
1190         if (unlikely(tdp_enabled)) {
1191                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192                 return;
1193         }
1194
1195         /*
1196          * If neither the current CR3 nor any of the prev_roots use the given
1197          * PCID, then nothing needs to be done here because a resync will
1198          * happen anyway before switching to any other CR3.
1199          */
1200         if (kvm_get_active_pcid(vcpu) == pcid) {
1201                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1202                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203         }
1204
1205         /*
1206          * If PCID is disabled, there is no need to free prev_roots even if the
1207          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1208          * with PCIDE=0.
1209          */
1210         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1211                 return;
1212
1213         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1214                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1215                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1216
1217         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1218 }
1219
1220 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1221 {
1222         bool skip_tlb_flush = false;
1223         unsigned long pcid = 0;
1224 #ifdef CONFIG_X86_64
1225         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1226
1227         if (pcid_enabled) {
1228                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1229                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1230                 pcid = cr3 & X86_CR3_PCID_MASK;
1231         }
1232 #endif
1233
1234         /* PDPTRs are always reloaded for PAE paging. */
1235         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1236                 goto handle_tlb_flush;
1237
1238         /*
1239          * Do not condition the GPA check on long mode, this helper is used to
1240          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1241          * the current vCPU mode is accurate.
1242          */
1243         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1244                 return 1;
1245
1246         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1247                 return 1;
1248
1249         if (cr3 != kvm_read_cr3(vcpu))
1250                 kvm_mmu_new_pgd(vcpu, cr3);
1251
1252         vcpu->arch.cr3 = cr3;
1253         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1254         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1255
1256 handle_tlb_flush:
1257         /*
1258          * A load of CR3 that flushes the TLB flushes only the current PCID,
1259          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1260          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1261          * and it's impossible to use a non-zero PCID when PCID is disabled,
1262          * i.e. only PCID=0 can be relevant.
1263          */
1264         if (!skip_tlb_flush)
1265                 kvm_invalidate_pcid(vcpu, pcid);
1266
1267         return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1270
1271 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1272 {
1273         if (cr8 & CR8_RESERVED_BITS)
1274                 return 1;
1275         if (lapic_in_kernel(vcpu))
1276                 kvm_lapic_set_tpr(vcpu, cr8);
1277         else
1278                 vcpu->arch.cr8 = cr8;
1279         return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1282
1283 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1284 {
1285         if (lapic_in_kernel(vcpu))
1286                 return kvm_lapic_get_cr8(vcpu);
1287         else
1288                 return vcpu->arch.cr8;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1291
1292 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1293 {
1294         int i;
1295
1296         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1297                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1298                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1299         }
1300 }
1301
1302 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1303 {
1304         unsigned long dr7;
1305
1306         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1307                 dr7 = vcpu->arch.guest_debug_dr7;
1308         else
1309                 dr7 = vcpu->arch.dr7;
1310         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1311         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1312         if (dr7 & DR7_BP_EN_MASK)
1313                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1316
1317 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1318 {
1319         u64 fixed = DR6_FIXED_1;
1320
1321         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1322                 fixed |= DR6_RTM;
1323
1324         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1325                 fixed |= DR6_BUS_LOCK;
1326         return fixed;
1327 }
1328
1329 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1330 {
1331         size_t size = ARRAY_SIZE(vcpu->arch.db);
1332
1333         switch (dr) {
1334         case 0 ... 3:
1335                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1336                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1337                         vcpu->arch.eff_db[dr] = val;
1338                 break;
1339         case 4:
1340         case 6:
1341                 if (!kvm_dr6_valid(val))
1342                         return 1; /* #GP */
1343                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1344                 break;
1345         case 5:
1346         default: /* 7 */
1347                 if (!kvm_dr7_valid(val))
1348                         return 1; /* #GP */
1349                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1350                 kvm_update_dr7(vcpu);
1351                 break;
1352         }
1353
1354         return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_dr);
1357
1358 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1359 {
1360         size_t size = ARRAY_SIZE(vcpu->arch.db);
1361
1362         switch (dr) {
1363         case 0 ... 3:
1364                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1365                 break;
1366         case 4:
1367         case 6:
1368                 *val = vcpu->arch.dr6;
1369                 break;
1370         case 5:
1371         default: /* 7 */
1372                 *val = vcpu->arch.dr7;
1373                 break;
1374         }
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_get_dr);
1377
1378 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1379 {
1380         u32 ecx = kvm_rcx_read(vcpu);
1381         u64 data;
1382
1383         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1384                 kvm_inject_gp(vcpu, 0);
1385                 return 1;
1386         }
1387
1388         kvm_rax_write(vcpu, (u32)data);
1389         kvm_rdx_write(vcpu, data >> 32);
1390         return kvm_skip_emulated_instruction(vcpu);
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1393
1394 /*
1395  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1396  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1397  *
1398  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1399  * extract the supported MSRs from the related const lists.
1400  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1401  * capabilities of the host cpu. This capabilities test skips MSRs that are
1402  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1403  * may depend on host virtualization features rather than host cpu features.
1404  */
1405
1406 static const u32 msrs_to_save_all[] = {
1407         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1408         MSR_STAR,
1409 #ifdef CONFIG_X86_64
1410         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1411 #endif
1412         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1413         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1414         MSR_IA32_SPEC_CTRL,
1415         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1416         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1417         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1418         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1419         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1420         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1421         MSR_IA32_UMWAIT_CONTROL,
1422
1423         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1424         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1425         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1426         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1427         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1428         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1429         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1430         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1431         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1432         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1433         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1434         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1435         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1436         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1437         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1438         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1439         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1440         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1441         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1442         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1443         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1444         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1445         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1446
1447         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1448         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1449         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1450         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1451         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1452         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1453         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1454 };
1455
1456 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1457 static unsigned num_msrs_to_save;
1458
1459 static const u32 emulated_msrs_all[] = {
1460         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1461         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1462         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1463         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1464         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1465         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1466         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1467         HV_X64_MSR_RESET,
1468         HV_X64_MSR_VP_INDEX,
1469         HV_X64_MSR_VP_RUNTIME,
1470         HV_X64_MSR_SCONTROL,
1471         HV_X64_MSR_STIMER0_CONFIG,
1472         HV_X64_MSR_VP_ASSIST_PAGE,
1473         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1474         HV_X64_MSR_TSC_EMULATION_STATUS,
1475         HV_X64_MSR_SYNDBG_OPTIONS,
1476         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1477         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1478         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1479
1480         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1481         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1482
1483         MSR_IA32_TSC_ADJUST,
1484         MSR_IA32_TSC_DEADLINE,
1485         MSR_IA32_ARCH_CAPABILITIES,
1486         MSR_IA32_PERF_CAPABILITIES,
1487         MSR_IA32_MISC_ENABLE,
1488         MSR_IA32_MCG_STATUS,
1489         MSR_IA32_MCG_CTL,
1490         MSR_IA32_MCG_EXT_CTL,
1491         MSR_IA32_SMBASE,
1492         MSR_SMI_COUNT,
1493         MSR_PLATFORM_INFO,
1494         MSR_MISC_FEATURES_ENABLES,
1495         MSR_AMD64_VIRT_SPEC_CTRL,
1496         MSR_AMD64_TSC_RATIO,
1497         MSR_IA32_POWER_CTL,
1498         MSR_IA32_UCODE_REV,
1499
1500         /*
1501          * The following list leaves out MSRs whose values are determined
1502          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1503          * We always support the "true" VMX control MSRs, even if the host
1504          * processor does not, so I am putting these registers here rather
1505          * than in msrs_to_save_all.
1506          */
1507         MSR_IA32_VMX_BASIC,
1508         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1509         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1510         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1511         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1512         MSR_IA32_VMX_MISC,
1513         MSR_IA32_VMX_CR0_FIXED0,
1514         MSR_IA32_VMX_CR4_FIXED0,
1515         MSR_IA32_VMX_VMCS_ENUM,
1516         MSR_IA32_VMX_PROCBASED_CTLS2,
1517         MSR_IA32_VMX_EPT_VPID_CAP,
1518         MSR_IA32_VMX_VMFUNC,
1519
1520         MSR_K7_HWCR,
1521         MSR_KVM_POLL_CONTROL,
1522 };
1523
1524 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1525 static unsigned num_emulated_msrs;
1526
1527 /*
1528  * List of msr numbers which are used to expose MSR-based features that
1529  * can be used by a hypervisor to validate requested CPU features.
1530  */
1531 static const u32 msr_based_features_all[] = {
1532         MSR_IA32_VMX_BASIC,
1533         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1534         MSR_IA32_VMX_PINBASED_CTLS,
1535         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1536         MSR_IA32_VMX_PROCBASED_CTLS,
1537         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1538         MSR_IA32_VMX_EXIT_CTLS,
1539         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1540         MSR_IA32_VMX_ENTRY_CTLS,
1541         MSR_IA32_VMX_MISC,
1542         MSR_IA32_VMX_CR0_FIXED0,
1543         MSR_IA32_VMX_CR0_FIXED1,
1544         MSR_IA32_VMX_CR4_FIXED0,
1545         MSR_IA32_VMX_CR4_FIXED1,
1546         MSR_IA32_VMX_VMCS_ENUM,
1547         MSR_IA32_VMX_PROCBASED_CTLS2,
1548         MSR_IA32_VMX_EPT_VPID_CAP,
1549         MSR_IA32_VMX_VMFUNC,
1550
1551         MSR_F10H_DECFG,
1552         MSR_IA32_UCODE_REV,
1553         MSR_IA32_ARCH_CAPABILITIES,
1554         MSR_IA32_PERF_CAPABILITIES,
1555 };
1556
1557 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1558 static unsigned int num_msr_based_features;
1559
1560 /*
1561  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1562  * does not yet virtualize. These include:
1563  *   10 - MISC_PACKAGE_CTRLS
1564  *   11 - ENERGY_FILTERING_CTL
1565  *   12 - DOITM
1566  *   18 - FB_CLEAR_CTRL
1567  *   21 - XAPIC_DISABLE_STATUS
1568  *   23 - OVERCLOCKING_STATUS
1569  */
1570
1571 #define KVM_SUPPORTED_ARCH_CAP \
1572         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1573          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1574          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1575          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1576          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1577
1578 static u64 kvm_get_arch_capabilities(void)
1579 {
1580         u64 data = 0;
1581
1582         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1583                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1584                 data &= KVM_SUPPORTED_ARCH_CAP;
1585         }
1586
1587         /*
1588          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1589          * the nested hypervisor runs with NX huge pages.  If it is not,
1590          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1591          * L1 guests, so it need not worry about its own (L2) guests.
1592          */
1593         data |= ARCH_CAP_PSCHANGE_MC_NO;
1594
1595         /*
1596          * If we're doing cache flushes (either "always" or "cond")
1597          * we will do one whenever the guest does a vmlaunch/vmresume.
1598          * If an outer hypervisor is doing the cache flush for us
1599          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1600          * capability to the guest too, and if EPT is disabled we're not
1601          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1602          * require a nested hypervisor to do a flush of its own.
1603          */
1604         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1605                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1606
1607         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1608                 data |= ARCH_CAP_RDCL_NO;
1609         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1610                 data |= ARCH_CAP_SSB_NO;
1611         if (!boot_cpu_has_bug(X86_BUG_MDS))
1612                 data |= ARCH_CAP_MDS_NO;
1613
1614         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1615                 /*
1616                  * If RTM=0 because the kernel has disabled TSX, the host might
1617                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1618                  * and therefore knows that there cannot be TAA) but keep
1619                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1620                  * and we want to allow migrating those guests to tsx=off hosts.
1621                  */
1622                 data &= ~ARCH_CAP_TAA_NO;
1623         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1624                 data |= ARCH_CAP_TAA_NO;
1625         } else {
1626                 /*
1627                  * Nothing to do here; we emulate TSX_CTRL if present on the
1628                  * host so the guest can choose between disabling TSX or
1629                  * using VERW to clear CPU buffers.
1630                  */
1631         }
1632
1633         return data;
1634 }
1635
1636 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1637 {
1638         switch (msr->index) {
1639         case MSR_IA32_ARCH_CAPABILITIES:
1640                 msr->data = kvm_get_arch_capabilities();
1641                 break;
1642         case MSR_IA32_UCODE_REV:
1643                 rdmsrl_safe(msr->index, &msr->data);
1644                 break;
1645         default:
1646                 return static_call(kvm_x86_get_msr_feature)(msr);
1647         }
1648         return 0;
1649 }
1650
1651 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1652 {
1653         struct kvm_msr_entry msr;
1654         int r;
1655
1656         msr.index = index;
1657         r = kvm_get_msr_feature(&msr);
1658
1659         if (r == KVM_MSR_RET_INVALID) {
1660                 /* Unconditionally clear the output for simplicity */
1661                 *data = 0;
1662                 if (kvm_msr_ignored_check(index, 0, false))
1663                         r = 0;
1664         }
1665
1666         if (r)
1667                 return r;
1668
1669         *data = msr.data;
1670
1671         return 0;
1672 }
1673
1674 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1675 {
1676         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1677                 return false;
1678
1679         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1680                 return false;
1681
1682         if (efer & (EFER_LME | EFER_LMA) &&
1683             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1684                 return false;
1685
1686         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1687                 return false;
1688
1689         return true;
1690
1691 }
1692 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1693 {
1694         if (efer & efer_reserved_bits)
1695                 return false;
1696
1697         return __kvm_valid_efer(vcpu, efer);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1700
1701 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1702 {
1703         u64 old_efer = vcpu->arch.efer;
1704         u64 efer = msr_info->data;
1705         int r;
1706
1707         if (efer & efer_reserved_bits)
1708                 return 1;
1709
1710         if (!msr_info->host_initiated) {
1711                 if (!__kvm_valid_efer(vcpu, efer))
1712                         return 1;
1713
1714                 if (is_paging(vcpu) &&
1715                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1716                         return 1;
1717         }
1718
1719         efer &= ~EFER_LMA;
1720         efer |= vcpu->arch.efer & EFER_LMA;
1721
1722         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1723         if (r) {
1724                 WARN_ON(r > 0);
1725                 return r;
1726         }
1727
1728         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1729                 kvm_mmu_reset_context(vcpu);
1730
1731         return 0;
1732 }
1733
1734 void kvm_enable_efer_bits(u64 mask)
1735 {
1736        efer_reserved_bits &= ~mask;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1739
1740 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1741 {
1742         struct kvm_x86_msr_filter *msr_filter;
1743         struct msr_bitmap_range *ranges;
1744         struct kvm *kvm = vcpu->kvm;
1745         bool allowed;
1746         int idx;
1747         u32 i;
1748
1749         /* x2APIC MSRs do not support filtering. */
1750         if (index >= 0x800 && index <= 0x8ff)
1751                 return true;
1752
1753         idx = srcu_read_lock(&kvm->srcu);
1754
1755         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1756         if (!msr_filter) {
1757                 allowed = true;
1758                 goto out;
1759         }
1760
1761         allowed = msr_filter->default_allow;
1762         ranges = msr_filter->ranges;
1763
1764         for (i = 0; i < msr_filter->count; i++) {
1765                 u32 start = ranges[i].base;
1766                 u32 end = start + ranges[i].nmsrs;
1767                 u32 flags = ranges[i].flags;
1768                 unsigned long *bitmap = ranges[i].bitmap;
1769
1770                 if ((index >= start) && (index < end) && (flags & type)) {
1771                         allowed = !!test_bit(index - start, bitmap);
1772                         break;
1773                 }
1774         }
1775
1776 out:
1777         srcu_read_unlock(&kvm->srcu, idx);
1778
1779         return allowed;
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1782
1783 /*
1784  * Write @data into the MSR specified by @index.  Select MSR specific fault
1785  * checks are bypassed if @host_initiated is %true.
1786  * Returns 0 on success, non-0 otherwise.
1787  * Assumes vcpu_load() was already called.
1788  */
1789 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1790                          bool host_initiated)
1791 {
1792         struct msr_data msr;
1793
1794         switch (index) {
1795         case MSR_FS_BASE:
1796         case MSR_GS_BASE:
1797         case MSR_KERNEL_GS_BASE:
1798         case MSR_CSTAR:
1799         case MSR_LSTAR:
1800                 if (is_noncanonical_address(data, vcpu))
1801                         return 1;
1802                 break;
1803         case MSR_IA32_SYSENTER_EIP:
1804         case MSR_IA32_SYSENTER_ESP:
1805                 /*
1806                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1807                  * non-canonical address is written on Intel but not on
1808                  * AMD (which ignores the top 32-bits, because it does
1809                  * not implement 64-bit SYSENTER).
1810                  *
1811                  * 64-bit code should hence be able to write a non-canonical
1812                  * value on AMD.  Making the address canonical ensures that
1813                  * vmentry does not fail on Intel after writing a non-canonical
1814                  * value, and that something deterministic happens if the guest
1815                  * invokes 64-bit SYSENTER.
1816                  */
1817                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1818                 break;
1819         case MSR_TSC_AUX:
1820                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1821                         return 1;
1822
1823                 if (!host_initiated &&
1824                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1825                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1826                         return 1;
1827
1828                 /*
1829                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1830                  * incomplete and conflicting architectural behavior.  Current
1831                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1832                  * reserved and always read as zeros.  Enforce Intel's reserved
1833                  * bits check if and only if the guest CPU is Intel, and clear
1834                  * the bits in all other cases.  This ensures cross-vendor
1835                  * migration will provide consistent behavior for the guest.
1836                  */
1837                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1838                         return 1;
1839
1840                 data = (u32)data;
1841                 break;
1842         }
1843
1844         msr.data = data;
1845         msr.index = index;
1846         msr.host_initiated = host_initiated;
1847
1848         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1849 }
1850
1851 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1852                                      u32 index, u64 data, bool host_initiated)
1853 {
1854         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1855
1856         if (ret == KVM_MSR_RET_INVALID)
1857                 if (kvm_msr_ignored_check(index, data, true))
1858                         ret = 0;
1859
1860         return ret;
1861 }
1862
1863 /*
1864  * Read the MSR specified by @index into @data.  Select MSR specific fault
1865  * checks are bypassed if @host_initiated is %true.
1866  * Returns 0 on success, non-0 otherwise.
1867  * Assumes vcpu_load() was already called.
1868  */
1869 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1870                   bool host_initiated)
1871 {
1872         struct msr_data msr;
1873         int ret;
1874
1875         switch (index) {
1876         case MSR_TSC_AUX:
1877                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878                         return 1;
1879
1880                 if (!host_initiated &&
1881                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1882                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1883                         return 1;
1884                 break;
1885         }
1886
1887         msr.index = index;
1888         msr.host_initiated = host_initiated;
1889
1890         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1891         if (!ret)
1892                 *data = msr.data;
1893         return ret;
1894 }
1895
1896 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1897                                      u32 index, u64 *data, bool host_initiated)
1898 {
1899         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1900
1901         if (ret == KVM_MSR_RET_INVALID) {
1902                 /* Unconditionally clear *data for simplicity */
1903                 *data = 0;
1904                 if (kvm_msr_ignored_check(index, 0, false))
1905                         ret = 0;
1906         }
1907
1908         return ret;
1909 }
1910
1911 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1912 {
1913         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1914                 return KVM_MSR_RET_FILTERED;
1915         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1916 }
1917
1918 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1919 {
1920         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1921                 return KVM_MSR_RET_FILTERED;
1922         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1923 }
1924
1925 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1928 }
1929 EXPORT_SYMBOL_GPL(kvm_get_msr);
1930
1931 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1932 {
1933         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_set_msr);
1936
1937 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1938 {
1939         if (!vcpu->run->msr.error) {
1940                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1941                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1942         }
1943 }
1944
1945 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1946 {
1947         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1948 }
1949
1950 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1951 {
1952         complete_userspace_rdmsr(vcpu);
1953         return complete_emulated_msr_access(vcpu);
1954 }
1955
1956 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1957 {
1958         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1959 }
1960
1961 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963         complete_userspace_rdmsr(vcpu);
1964         return complete_fast_msr_access(vcpu);
1965 }
1966
1967 static u64 kvm_msr_reason(int r)
1968 {
1969         switch (r) {
1970         case KVM_MSR_RET_INVALID:
1971                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1972         case KVM_MSR_RET_FILTERED:
1973                 return KVM_MSR_EXIT_REASON_FILTER;
1974         default:
1975                 return KVM_MSR_EXIT_REASON_INVAL;
1976         }
1977 }
1978
1979 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1980                               u32 exit_reason, u64 data,
1981                               int (*completion)(struct kvm_vcpu *vcpu),
1982                               int r)
1983 {
1984         u64 msr_reason = kvm_msr_reason(r);
1985
1986         /* Check if the user wanted to know about this MSR fault */
1987         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1988                 return 0;
1989
1990         vcpu->run->exit_reason = exit_reason;
1991         vcpu->run->msr.error = 0;
1992         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1993         vcpu->run->msr.reason = msr_reason;
1994         vcpu->run->msr.index = index;
1995         vcpu->run->msr.data = data;
1996         vcpu->arch.complete_userspace_io = completion;
1997
1998         return 1;
1999 }
2000
2001 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003         u32 ecx = kvm_rcx_read(vcpu);
2004         u64 data;
2005         int r;
2006
2007         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2008
2009         if (!r) {
2010                 trace_kvm_msr_read(ecx, data);
2011
2012                 kvm_rax_write(vcpu, data & -1u);
2013                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2014         } else {
2015                 /* MSR read failed? See if we should ask user space */
2016                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2017                                        complete_fast_rdmsr, r))
2018                         return 0;
2019                 trace_kvm_msr_read_ex(ecx);
2020         }
2021
2022         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2025
2026 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2027 {
2028         u32 ecx = kvm_rcx_read(vcpu);
2029         u64 data = kvm_read_edx_eax(vcpu);
2030         int r;
2031
2032         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2033
2034         if (!r) {
2035                 trace_kvm_msr_write(ecx, data);
2036         } else {
2037                 /* MSR write failed? See if we should ask user space */
2038                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2039                                        complete_fast_msr_access, r))
2040                         return 0;
2041                 /* Signal all other negative errors to userspace */
2042                 if (r < 0)
2043                         return r;
2044                 trace_kvm_msr_write_ex(ecx, data);
2045         }
2046
2047         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2050
2051 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2052 {
2053         return kvm_skip_emulated_instruction(vcpu);
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2056
2057 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2058 {
2059         /* Treat an INVD instruction as a NOP and just skip it. */
2060         return kvm_emulate_as_nop(vcpu);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2063
2064 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2065 {
2066         kvm_queue_exception(vcpu, UD_VECTOR);
2067         return 1;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2070
2071
2072 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2073 {
2074         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2075             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2076                 return kvm_handle_invalid_op(vcpu);
2077
2078         pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2079         return kvm_emulate_as_nop(vcpu);
2080 }
2081 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2082 {
2083         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2086
2087 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2088 {
2089         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2092
2093 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2094 {
2095         xfer_to_guest_mode_prepare();
2096         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2097                 xfer_to_guest_mode_work_pending();
2098 }
2099
2100 /*
2101  * The fast path for frequent and performance sensitive wrmsr emulation,
2102  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2103  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2104  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2105  * other cases which must be called after interrupts are enabled on the host.
2106  */
2107 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2108 {
2109         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2110                 return 1;
2111
2112         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2113             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2114             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2115             ((u32)(data >> 32) != X2APIC_BROADCAST))
2116                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2117
2118         return 1;
2119 }
2120
2121 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2122 {
2123         if (!kvm_can_use_hv_timer(vcpu))
2124                 return 1;
2125
2126         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2127         return 0;
2128 }
2129
2130 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2131 {
2132         u32 msr = kvm_rcx_read(vcpu);
2133         u64 data;
2134         fastpath_t ret = EXIT_FASTPATH_NONE;
2135
2136         switch (msr) {
2137         case APIC_BASE_MSR + (APIC_ICR >> 4):
2138                 data = kvm_read_edx_eax(vcpu);
2139                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2140                         kvm_skip_emulated_instruction(vcpu);
2141                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2142                 }
2143                 break;
2144         case MSR_IA32_TSC_DEADLINE:
2145                 data = kvm_read_edx_eax(vcpu);
2146                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2147                         kvm_skip_emulated_instruction(vcpu);
2148                         ret = EXIT_FASTPATH_REENTER_GUEST;
2149                 }
2150                 break;
2151         default:
2152                 break;
2153         }
2154
2155         if (ret != EXIT_FASTPATH_NONE)
2156                 trace_kvm_msr_write(msr, data);
2157
2158         return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2161
2162 /*
2163  * Adapt set_msr() to msr_io()'s calling convention
2164  */
2165 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2166 {
2167         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2168 }
2169
2170 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2171 {
2172         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2173 }
2174
2175 #ifdef CONFIG_X86_64
2176 struct pvclock_clock {
2177         int vclock_mode;
2178         u64 cycle_last;
2179         u64 mask;
2180         u32 mult;
2181         u32 shift;
2182         u64 base_cycles;
2183         u64 offset;
2184 };
2185
2186 struct pvclock_gtod_data {
2187         seqcount_t      seq;
2188
2189         struct pvclock_clock clock; /* extract of a clocksource struct */
2190         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2191
2192         ktime_t         offs_boot;
2193         u64             wall_time_sec;
2194 };
2195
2196 static struct pvclock_gtod_data pvclock_gtod_data;
2197
2198 static void update_pvclock_gtod(struct timekeeper *tk)
2199 {
2200         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2201
2202         write_seqcount_begin(&vdata->seq);
2203
2204         /* copy pvclock gtod data */
2205         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2206         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2207         vdata->clock.mask               = tk->tkr_mono.mask;
2208         vdata->clock.mult               = tk->tkr_mono.mult;
2209         vdata->clock.shift              = tk->tkr_mono.shift;
2210         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2211         vdata->clock.offset             = tk->tkr_mono.base;
2212
2213         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2214         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2215         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2216         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2217         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2218         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2219         vdata->raw_clock.offset         = tk->tkr_raw.base;
2220
2221         vdata->wall_time_sec            = tk->xtime_sec;
2222
2223         vdata->offs_boot                = tk->offs_boot;
2224
2225         write_seqcount_end(&vdata->seq);
2226 }
2227
2228 static s64 get_kvmclock_base_ns(void)
2229 {
2230         /* Count up from boot time, but with the frequency of the raw clock.  */
2231         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2232 }
2233 #else
2234 static s64 get_kvmclock_base_ns(void)
2235 {
2236         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2237         return ktime_get_boottime_ns();
2238 }
2239 #endif
2240
2241 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2242 {
2243         int version;
2244         int r;
2245         struct pvclock_wall_clock wc;
2246         u32 wc_sec_hi;
2247         u64 wall_nsec;
2248
2249         if (!wall_clock)
2250                 return;
2251
2252         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2253         if (r)
2254                 return;
2255
2256         if (version & 1)
2257                 ++version;  /* first time write, random junk */
2258
2259         ++version;
2260
2261         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2262                 return;
2263
2264         /*
2265          * The guest calculates current wall clock time by adding
2266          * system time (updated by kvm_guest_time_update below) to the
2267          * wall clock specified here.  We do the reverse here.
2268          */
2269         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2270
2271         wc.nsec = do_div(wall_nsec, 1000000000);
2272         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2273         wc.version = version;
2274
2275         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2276
2277         if (sec_hi_ofs) {
2278                 wc_sec_hi = wall_nsec >> 32;
2279                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2280                                 &wc_sec_hi, sizeof(wc_sec_hi));
2281         }
2282
2283         version++;
2284         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2285 }
2286
2287 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2288                                   bool old_msr, bool host_initiated)
2289 {
2290         struct kvm_arch *ka = &vcpu->kvm->arch;
2291
2292         if (vcpu->vcpu_id == 0 && !host_initiated) {
2293                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2294                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2295
2296                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2297         }
2298
2299         vcpu->arch.time = system_time;
2300         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2301
2302         /* we verify if the enable bit is set... */
2303         if (system_time & 1) {
2304                 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2305                                           KVM_HOST_USES_PFN, system_time & ~1ULL,
2306                                           sizeof(struct pvclock_vcpu_time_info));
2307         } else {
2308                 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2309         }
2310
2311         return;
2312 }
2313
2314 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2315 {
2316         do_shl32_div32(dividend, divisor);
2317         return dividend;
2318 }
2319
2320 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2321                                s8 *pshift, u32 *pmultiplier)
2322 {
2323         uint64_t scaled64;
2324         int32_t  shift = 0;
2325         uint64_t tps64;
2326         uint32_t tps32;
2327
2328         tps64 = base_hz;
2329         scaled64 = scaled_hz;
2330         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2331                 tps64 >>= 1;
2332                 shift--;
2333         }
2334
2335         tps32 = (uint32_t)tps64;
2336         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2337                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2338                         scaled64 >>= 1;
2339                 else
2340                         tps32 <<= 1;
2341                 shift++;
2342         }
2343
2344         *pshift = shift;
2345         *pmultiplier = div_frac(scaled64, tps32);
2346 }
2347
2348 #ifdef CONFIG_X86_64
2349 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2350 #endif
2351
2352 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2353 static unsigned long max_tsc_khz;
2354
2355 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2356 {
2357         u64 v = (u64)khz * (1000000 + ppm);
2358         do_div(v, 1000000);
2359         return v;
2360 }
2361
2362 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2363
2364 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2365 {
2366         u64 ratio;
2367
2368         /* Guest TSC same frequency as host TSC? */
2369         if (!scale) {
2370                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2371                 return 0;
2372         }
2373
2374         /* TSC scaling supported? */
2375         if (!kvm_caps.has_tsc_control) {
2376                 if (user_tsc_khz > tsc_khz) {
2377                         vcpu->arch.tsc_catchup = 1;
2378                         vcpu->arch.tsc_always_catchup = 1;
2379                         return 0;
2380                 } else {
2381                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2382                         return -1;
2383                 }
2384         }
2385
2386         /* TSC scaling required  - calculate ratio */
2387         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2388                                 user_tsc_khz, tsc_khz);
2389
2390         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2391                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2392                                     user_tsc_khz);
2393                 return -1;
2394         }
2395
2396         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2397         return 0;
2398 }
2399
2400 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2401 {
2402         u32 thresh_lo, thresh_hi;
2403         int use_scaling = 0;
2404
2405         /* tsc_khz can be zero if TSC calibration fails */
2406         if (user_tsc_khz == 0) {
2407                 /* set tsc_scaling_ratio to a safe value */
2408                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2409                 return -1;
2410         }
2411
2412         /* Compute a scale to convert nanoseconds in TSC cycles */
2413         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2414                            &vcpu->arch.virtual_tsc_shift,
2415                            &vcpu->arch.virtual_tsc_mult);
2416         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2417
2418         /*
2419          * Compute the variation in TSC rate which is acceptable
2420          * within the range of tolerance and decide if the
2421          * rate being applied is within that bounds of the hardware
2422          * rate.  If so, no scaling or compensation need be done.
2423          */
2424         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2425         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2426         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2427                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2428                 use_scaling = 1;
2429         }
2430         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2431 }
2432
2433 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2434 {
2435         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2436                                       vcpu->arch.virtual_tsc_mult,
2437                                       vcpu->arch.virtual_tsc_shift);
2438         tsc += vcpu->arch.this_tsc_write;
2439         return tsc;
2440 }
2441
2442 #ifdef CONFIG_X86_64
2443 static inline int gtod_is_based_on_tsc(int mode)
2444 {
2445         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2446 }
2447 #endif
2448
2449 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2450 {
2451 #ifdef CONFIG_X86_64
2452         bool vcpus_matched;
2453         struct kvm_arch *ka = &vcpu->kvm->arch;
2454         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2455
2456         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2457                          atomic_read(&vcpu->kvm->online_vcpus));
2458
2459         /*
2460          * Once the masterclock is enabled, always perform request in
2461          * order to update it.
2462          *
2463          * In order to enable masterclock, the host clocksource must be TSC
2464          * and the vcpus need to have matched TSCs.  When that happens,
2465          * perform request to enable masterclock.
2466          */
2467         if (ka->use_master_clock ||
2468             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2469                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2470
2471         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2472                             atomic_read(&vcpu->kvm->online_vcpus),
2473                             ka->use_master_clock, gtod->clock.vclock_mode);
2474 #endif
2475 }
2476
2477 /*
2478  * Multiply tsc by a fixed point number represented by ratio.
2479  *
2480  * The most significant 64-N bits (mult) of ratio represent the
2481  * integral part of the fixed point number; the remaining N bits
2482  * (frac) represent the fractional part, ie. ratio represents a fixed
2483  * point number (mult + frac * 2^(-N)).
2484  *
2485  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2486  */
2487 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2488 {
2489         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2490 }
2491
2492 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2493 {
2494         u64 _tsc = tsc;
2495
2496         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2497                 _tsc = __scale_tsc(ratio, tsc);
2498
2499         return _tsc;
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2502
2503 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2504 {
2505         u64 tsc;
2506
2507         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2508
2509         return target_tsc - tsc;
2510 }
2511
2512 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2513 {
2514         return vcpu->arch.l1_tsc_offset +
2515                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2516 }
2517 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2518
2519 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2520 {
2521         u64 nested_offset;
2522
2523         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2524                 nested_offset = l1_offset;
2525         else
2526                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2527                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2528
2529         nested_offset += l2_offset;
2530         return nested_offset;
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2533
2534 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2535 {
2536         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2537                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2538                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2539
2540         return l1_multiplier;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2543
2544 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2545 {
2546         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2547                                    vcpu->arch.l1_tsc_offset,
2548                                    l1_offset);
2549
2550         vcpu->arch.l1_tsc_offset = l1_offset;
2551
2552         /*
2553          * If we are here because L1 chose not to trap WRMSR to TSC then
2554          * according to the spec this should set L1's TSC (as opposed to
2555          * setting L1's offset for L2).
2556          */
2557         if (is_guest_mode(vcpu))
2558                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2559                         l1_offset,
2560                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2561                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2562         else
2563                 vcpu->arch.tsc_offset = l1_offset;
2564
2565         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2566 }
2567
2568 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2569 {
2570         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2571
2572         /* Userspace is changing the multiplier while L2 is active */
2573         if (is_guest_mode(vcpu))
2574                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2575                         l1_multiplier,
2576                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2577         else
2578                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2579
2580         if (kvm_caps.has_tsc_control)
2581                 static_call(kvm_x86_write_tsc_multiplier)(
2582                         vcpu, vcpu->arch.tsc_scaling_ratio);
2583 }
2584
2585 static inline bool kvm_check_tsc_unstable(void)
2586 {
2587 #ifdef CONFIG_X86_64
2588         /*
2589          * TSC is marked unstable when we're running on Hyper-V,
2590          * 'TSC page' clocksource is good.
2591          */
2592         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2593                 return false;
2594 #endif
2595         return check_tsc_unstable();
2596 }
2597
2598 /*
2599  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2600  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2601  * participates in.
2602  */
2603 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2604                                   u64 ns, bool matched)
2605 {
2606         struct kvm *kvm = vcpu->kvm;
2607
2608         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2609
2610         /*
2611          * We also track th most recent recorded KHZ, write and time to
2612          * allow the matching interval to be extended at each write.
2613          */
2614         kvm->arch.last_tsc_nsec = ns;
2615         kvm->arch.last_tsc_write = tsc;
2616         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2617         kvm->arch.last_tsc_offset = offset;
2618
2619         vcpu->arch.last_guest_tsc = tsc;
2620
2621         kvm_vcpu_write_tsc_offset(vcpu, offset);
2622
2623         if (!matched) {
2624                 /*
2625                  * We split periods of matched TSC writes into generations.
2626                  * For each generation, we track the original measured
2627                  * nanosecond time, offset, and write, so if TSCs are in
2628                  * sync, we can match exact offset, and if not, we can match
2629                  * exact software computation in compute_guest_tsc()
2630                  *
2631                  * These values are tracked in kvm->arch.cur_xxx variables.
2632                  */
2633                 kvm->arch.cur_tsc_generation++;
2634                 kvm->arch.cur_tsc_nsec = ns;
2635                 kvm->arch.cur_tsc_write = tsc;
2636                 kvm->arch.cur_tsc_offset = offset;
2637                 kvm->arch.nr_vcpus_matched_tsc = 0;
2638         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2639                 kvm->arch.nr_vcpus_matched_tsc++;
2640         }
2641
2642         /* Keep track of which generation this VCPU has synchronized to */
2643         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2644         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2645         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2646
2647         kvm_track_tsc_matching(vcpu);
2648 }
2649
2650 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2651 {
2652         struct kvm *kvm = vcpu->kvm;
2653         u64 offset, ns, elapsed;
2654         unsigned long flags;
2655         bool matched = false;
2656         bool synchronizing = false;
2657
2658         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2659         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2660         ns = get_kvmclock_base_ns();
2661         elapsed = ns - kvm->arch.last_tsc_nsec;
2662
2663         if (vcpu->arch.virtual_tsc_khz) {
2664                 if (data == 0) {
2665                         /*
2666                          * detection of vcpu initialization -- need to sync
2667                          * with other vCPUs. This particularly helps to keep
2668                          * kvm_clock stable after CPU hotplug
2669                          */
2670                         synchronizing = true;
2671                 } else {
2672                         u64 tsc_exp = kvm->arch.last_tsc_write +
2673                                                 nsec_to_cycles(vcpu, elapsed);
2674                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2675                         /*
2676                          * Special case: TSC write with a small delta (1 second)
2677                          * of virtual cycle time against real time is
2678                          * interpreted as an attempt to synchronize the CPU.
2679                          */
2680                         synchronizing = data < tsc_exp + tsc_hz &&
2681                                         data + tsc_hz > tsc_exp;
2682                 }
2683         }
2684
2685         /*
2686          * For a reliable TSC, we can match TSC offsets, and for an unstable
2687          * TSC, we add elapsed time in this computation.  We could let the
2688          * compensation code attempt to catch up if we fall behind, but
2689          * it's better to try to match offsets from the beginning.
2690          */
2691         if (synchronizing &&
2692             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2693                 if (!kvm_check_tsc_unstable()) {
2694                         offset = kvm->arch.cur_tsc_offset;
2695                 } else {
2696                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2697                         data += delta;
2698                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2699                 }
2700                 matched = true;
2701         }
2702
2703         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2704         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2705 }
2706
2707 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2708                                            s64 adjustment)
2709 {
2710         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2711         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2712 }
2713
2714 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2715 {
2716         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2717                 WARN_ON(adjustment < 0);
2718         adjustment = kvm_scale_tsc((u64) adjustment,
2719                                    vcpu->arch.l1_tsc_scaling_ratio);
2720         adjust_tsc_offset_guest(vcpu, adjustment);
2721 }
2722
2723 #ifdef CONFIG_X86_64
2724
2725 static u64 read_tsc(void)
2726 {
2727         u64 ret = (u64)rdtsc_ordered();
2728         u64 last = pvclock_gtod_data.clock.cycle_last;
2729
2730         if (likely(ret >= last))
2731                 return ret;
2732
2733         /*
2734          * GCC likes to generate cmov here, but this branch is extremely
2735          * predictable (it's just a function of time and the likely is
2736          * very likely) and there's a data dependence, so force GCC
2737          * to generate a branch instead.  I don't barrier() because
2738          * we don't actually need a barrier, and if this function
2739          * ever gets inlined it will generate worse code.
2740          */
2741         asm volatile ("");
2742         return last;
2743 }
2744
2745 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2746                           int *mode)
2747 {
2748         long v;
2749         u64 tsc_pg_val;
2750
2751         switch (clock->vclock_mode) {
2752         case VDSO_CLOCKMODE_HVCLOCK:
2753                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2754                                                   tsc_timestamp);
2755                 if (tsc_pg_val != U64_MAX) {
2756                         /* TSC page valid */
2757                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2758                         v = (tsc_pg_val - clock->cycle_last) &
2759                                 clock->mask;
2760                 } else {
2761                         /* TSC page invalid */
2762                         *mode = VDSO_CLOCKMODE_NONE;
2763                 }
2764                 break;
2765         case VDSO_CLOCKMODE_TSC:
2766                 *mode = VDSO_CLOCKMODE_TSC;
2767                 *tsc_timestamp = read_tsc();
2768                 v = (*tsc_timestamp - clock->cycle_last) &
2769                         clock->mask;
2770                 break;
2771         default:
2772                 *mode = VDSO_CLOCKMODE_NONE;
2773         }
2774
2775         if (*mode == VDSO_CLOCKMODE_NONE)
2776                 *tsc_timestamp = v = 0;
2777
2778         return v * clock->mult;
2779 }
2780
2781 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2782 {
2783         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2784         unsigned long seq;
2785         int mode;
2786         u64 ns;
2787
2788         do {
2789                 seq = read_seqcount_begin(&gtod->seq);
2790                 ns = gtod->raw_clock.base_cycles;
2791                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2792                 ns >>= gtod->raw_clock.shift;
2793                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2794         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2795         *t = ns;
2796
2797         return mode;
2798 }
2799
2800 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2801 {
2802         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2803         unsigned long seq;
2804         int mode;
2805         u64 ns;
2806
2807         do {
2808                 seq = read_seqcount_begin(&gtod->seq);
2809                 ts->tv_sec = gtod->wall_time_sec;
2810                 ns = gtod->clock.base_cycles;
2811                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2812                 ns >>= gtod->clock.shift;
2813         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2814
2815         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2816         ts->tv_nsec = ns;
2817
2818         return mode;
2819 }
2820
2821 /* returns true if host is using TSC based clocksource */
2822 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2823 {
2824         /* checked again under seqlock below */
2825         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2826                 return false;
2827
2828         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2829                                                       tsc_timestamp));
2830 }
2831
2832 /* returns true if host is using TSC based clocksource */
2833 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2834                                            u64 *tsc_timestamp)
2835 {
2836         /* checked again under seqlock below */
2837         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2838                 return false;
2839
2840         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2841 }
2842 #endif
2843
2844 /*
2845  *
2846  * Assuming a stable TSC across physical CPUS, and a stable TSC
2847  * across virtual CPUs, the following condition is possible.
2848  * Each numbered line represents an event visible to both
2849  * CPUs at the next numbered event.
2850  *
2851  * "timespecX" represents host monotonic time. "tscX" represents
2852  * RDTSC value.
2853  *
2854  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2855  *
2856  * 1.  read timespec0,tsc0
2857  * 2.                                   | timespec1 = timespec0 + N
2858  *                                      | tsc1 = tsc0 + M
2859  * 3. transition to guest               | transition to guest
2860  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2861  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2862  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2863  *
2864  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2865  *
2866  *      - ret0 < ret1
2867  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2868  *              ...
2869  *      - 0 < N - M => M < N
2870  *
2871  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2872  * always the case (the difference between two distinct xtime instances
2873  * might be smaller then the difference between corresponding TSC reads,
2874  * when updating guest vcpus pvclock areas).
2875  *
2876  * To avoid that problem, do not allow visibility of distinct
2877  * system_timestamp/tsc_timestamp values simultaneously: use a master
2878  * copy of host monotonic time values. Update that master copy
2879  * in lockstep.
2880  *
2881  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2882  *
2883  */
2884
2885 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2886 {
2887 #ifdef CONFIG_X86_64
2888         struct kvm_arch *ka = &kvm->arch;
2889         int vclock_mode;
2890         bool host_tsc_clocksource, vcpus_matched;
2891
2892         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2893         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2894                         atomic_read(&kvm->online_vcpus));
2895
2896         /*
2897          * If the host uses TSC clock, then passthrough TSC as stable
2898          * to the guest.
2899          */
2900         host_tsc_clocksource = kvm_get_time_and_clockread(
2901                                         &ka->master_kernel_ns,
2902                                         &ka->master_cycle_now);
2903
2904         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2905                                 && !ka->backwards_tsc_observed
2906                                 && !ka->boot_vcpu_runs_old_kvmclock;
2907
2908         if (ka->use_master_clock)
2909                 atomic_set(&kvm_guest_has_master_clock, 1);
2910
2911         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2912         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2913                                         vcpus_matched);
2914 #endif
2915 }
2916
2917 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2918 {
2919         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2920 }
2921
2922 static void __kvm_start_pvclock_update(struct kvm *kvm)
2923 {
2924         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2925         write_seqcount_begin(&kvm->arch.pvclock_sc);
2926 }
2927
2928 static void kvm_start_pvclock_update(struct kvm *kvm)
2929 {
2930         kvm_make_mclock_inprogress_request(kvm);
2931
2932         /* no guest entries from this point */
2933         __kvm_start_pvclock_update(kvm);
2934 }
2935
2936 static void kvm_end_pvclock_update(struct kvm *kvm)
2937 {
2938         struct kvm_arch *ka = &kvm->arch;
2939         struct kvm_vcpu *vcpu;
2940         unsigned long i;
2941
2942         write_seqcount_end(&ka->pvclock_sc);
2943         raw_spin_unlock_irq(&ka->tsc_write_lock);
2944         kvm_for_each_vcpu(i, vcpu, kvm)
2945                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2946
2947         /* guest entries allowed */
2948         kvm_for_each_vcpu(i, vcpu, kvm)
2949                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2950 }
2951
2952 static void kvm_update_masterclock(struct kvm *kvm)
2953 {
2954         kvm_hv_request_tsc_page_update(kvm);
2955         kvm_start_pvclock_update(kvm);
2956         pvclock_update_vm_gtod_copy(kvm);
2957         kvm_end_pvclock_update(kvm);
2958 }
2959
2960 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2961 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2962 {
2963         struct kvm_arch *ka = &kvm->arch;
2964         struct pvclock_vcpu_time_info hv_clock;
2965
2966         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2967         get_cpu();
2968
2969         data->flags = 0;
2970         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2971 #ifdef CONFIG_X86_64
2972                 struct timespec64 ts;
2973
2974                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2975                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2976                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2977                 } else
2978 #endif
2979                 data->host_tsc = rdtsc();
2980
2981                 data->flags |= KVM_CLOCK_TSC_STABLE;
2982                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2983                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2984                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2985                                    &hv_clock.tsc_shift,
2986                                    &hv_clock.tsc_to_system_mul);
2987                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2988         } else {
2989                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2990         }
2991
2992         put_cpu();
2993 }
2994
2995 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2996 {
2997         struct kvm_arch *ka = &kvm->arch;
2998         unsigned seq;
2999
3000         do {
3001                 seq = read_seqcount_begin(&ka->pvclock_sc);
3002                 __get_kvmclock(kvm, data);
3003         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3004 }
3005
3006 u64 get_kvmclock_ns(struct kvm *kvm)
3007 {
3008         struct kvm_clock_data data;
3009
3010         get_kvmclock(kvm, &data);
3011         return data.clock;
3012 }
3013
3014 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3015                                     struct gfn_to_pfn_cache *gpc,
3016                                     unsigned int offset)
3017 {
3018         struct kvm_vcpu_arch *vcpu = &v->arch;
3019         struct pvclock_vcpu_time_info *guest_hv_clock;
3020         unsigned long flags;
3021
3022         read_lock_irqsave(&gpc->lock, flags);
3023         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3024                                            offset + sizeof(*guest_hv_clock))) {
3025                 read_unlock_irqrestore(&gpc->lock, flags);
3026
3027                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3028                                                  offset + sizeof(*guest_hv_clock)))
3029                         return;
3030
3031                 read_lock_irqsave(&gpc->lock, flags);
3032         }
3033
3034         guest_hv_clock = (void *)(gpc->khva + offset);
3035
3036         /*
3037          * This VCPU is paused, but it's legal for a guest to read another
3038          * VCPU's kvmclock, so we really have to follow the specification where
3039          * it says that version is odd if data is being modified, and even after
3040          * it is consistent.
3041          */
3042
3043         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3044         smp_wmb();
3045
3046         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3047         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3048
3049         if (vcpu->pvclock_set_guest_stopped_request) {
3050                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3051                 vcpu->pvclock_set_guest_stopped_request = false;
3052         }
3053
3054         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3055         smp_wmb();
3056
3057         guest_hv_clock->version = ++vcpu->hv_clock.version;
3058
3059         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3060         read_unlock_irqrestore(&gpc->lock, flags);
3061
3062         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3063 }
3064
3065 static int kvm_guest_time_update(struct kvm_vcpu *v)
3066 {
3067         unsigned long flags, tgt_tsc_khz;
3068         unsigned seq;
3069         struct kvm_vcpu_arch *vcpu = &v->arch;
3070         struct kvm_arch *ka = &v->kvm->arch;
3071         s64 kernel_ns;
3072         u64 tsc_timestamp, host_tsc;
3073         u8 pvclock_flags;
3074         bool use_master_clock;
3075
3076         kernel_ns = 0;
3077         host_tsc = 0;
3078
3079         /*
3080          * If the host uses TSC clock, then passthrough TSC as stable
3081          * to the guest.
3082          */
3083         do {
3084                 seq = read_seqcount_begin(&ka->pvclock_sc);
3085                 use_master_clock = ka->use_master_clock;
3086                 if (use_master_clock) {
3087                         host_tsc = ka->master_cycle_now;
3088                         kernel_ns = ka->master_kernel_ns;
3089                 }
3090         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3091
3092         /* Keep irq disabled to prevent changes to the clock */
3093         local_irq_save(flags);
3094         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3095         if (unlikely(tgt_tsc_khz == 0)) {
3096                 local_irq_restore(flags);
3097                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3098                 return 1;
3099         }
3100         if (!use_master_clock) {
3101                 host_tsc = rdtsc();
3102                 kernel_ns = get_kvmclock_base_ns();
3103         }
3104
3105         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3106
3107         /*
3108          * We may have to catch up the TSC to match elapsed wall clock
3109          * time for two reasons, even if kvmclock is used.
3110          *   1) CPU could have been running below the maximum TSC rate
3111          *   2) Broken TSC compensation resets the base at each VCPU
3112          *      entry to avoid unknown leaps of TSC even when running
3113          *      again on the same CPU.  This may cause apparent elapsed
3114          *      time to disappear, and the guest to stand still or run
3115          *      very slowly.
3116          */
3117         if (vcpu->tsc_catchup) {
3118                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3119                 if (tsc > tsc_timestamp) {
3120                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3121                         tsc_timestamp = tsc;
3122                 }
3123         }
3124
3125         local_irq_restore(flags);
3126
3127         /* With all the info we got, fill in the values */
3128
3129         if (kvm_caps.has_tsc_control)
3130                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3131                                             v->arch.l1_tsc_scaling_ratio);
3132
3133         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3134                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3135                                    &vcpu->hv_clock.tsc_shift,
3136                                    &vcpu->hv_clock.tsc_to_system_mul);
3137                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3138         }
3139
3140         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3141         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3142         vcpu->last_guest_tsc = tsc_timestamp;
3143
3144         /* If the host uses TSC clocksource, then it is stable */
3145         pvclock_flags = 0;
3146         if (use_master_clock)
3147                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3148
3149         vcpu->hv_clock.flags = pvclock_flags;
3150
3151         if (vcpu->pv_time.active)
3152                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3153         if (vcpu->xen.vcpu_info_cache.active)
3154                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3155                                         offsetof(struct compat_vcpu_info, time));
3156         if (vcpu->xen.vcpu_time_info_cache.active)
3157                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3158         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3159         return 0;
3160 }
3161
3162 /*
3163  * kvmclock updates which are isolated to a given vcpu, such as
3164  * vcpu->cpu migration, should not allow system_timestamp from
3165  * the rest of the vcpus to remain static. Otherwise ntp frequency
3166  * correction applies to one vcpu's system_timestamp but not
3167  * the others.
3168  *
3169  * So in those cases, request a kvmclock update for all vcpus.
3170  * We need to rate-limit these requests though, as they can
3171  * considerably slow guests that have a large number of vcpus.
3172  * The time for a remote vcpu to update its kvmclock is bound
3173  * by the delay we use to rate-limit the updates.
3174  */
3175
3176 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3177
3178 static void kvmclock_update_fn(struct work_struct *work)
3179 {
3180         unsigned long i;
3181         struct delayed_work *dwork = to_delayed_work(work);
3182         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3183                                            kvmclock_update_work);
3184         struct kvm *kvm = container_of(ka, struct kvm, arch);
3185         struct kvm_vcpu *vcpu;
3186
3187         kvm_for_each_vcpu(i, vcpu, kvm) {
3188                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3189                 kvm_vcpu_kick(vcpu);
3190         }
3191 }
3192
3193 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3194 {
3195         struct kvm *kvm = v->kvm;
3196
3197         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3198         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3199                                         KVMCLOCK_UPDATE_DELAY);
3200 }
3201
3202 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3203
3204 static void kvmclock_sync_fn(struct work_struct *work)
3205 {
3206         struct delayed_work *dwork = to_delayed_work(work);
3207         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3208                                            kvmclock_sync_work);
3209         struct kvm *kvm = container_of(ka, struct kvm, arch);
3210
3211         if (!kvmclock_periodic_sync)
3212                 return;
3213
3214         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3215         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3216                                         KVMCLOCK_SYNC_PERIOD);
3217 }
3218
3219 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3220 static bool is_mci_control_msr(u32 msr)
3221 {
3222         return (msr & 3) == 0;
3223 }
3224 static bool is_mci_status_msr(u32 msr)
3225 {
3226         return (msr & 3) == 1;
3227 }
3228
3229 /*
3230  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3231  */
3232 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3233 {
3234         /* McStatusWrEn enabled? */
3235         if (guest_cpuid_is_amd_or_hygon(vcpu))
3236                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3237
3238         return false;
3239 }
3240
3241 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3242 {
3243         u64 mcg_cap = vcpu->arch.mcg_cap;
3244         unsigned bank_num = mcg_cap & 0xff;
3245         u32 msr = msr_info->index;
3246         u64 data = msr_info->data;
3247         u32 offset, last_msr;
3248
3249         switch (msr) {
3250         case MSR_IA32_MCG_STATUS:
3251                 vcpu->arch.mcg_status = data;
3252                 break;
3253         case MSR_IA32_MCG_CTL:
3254                 if (!(mcg_cap & MCG_CTL_P) &&
3255                     (data || !msr_info->host_initiated))
3256                         return 1;
3257                 if (data != 0 && data != ~(u64)0)
3258                         return 1;
3259                 vcpu->arch.mcg_ctl = data;
3260                 break;
3261         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3262                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3263                 if (msr > last_msr)
3264                         return 1;
3265
3266                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3267                         return 1;
3268                 /* An attempt to write a 1 to a reserved bit raises #GP */
3269                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3270                         return 1;
3271                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3272                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3273                 vcpu->arch.mci_ctl2_banks[offset] = data;
3274                 break;
3275         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3276                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3277                 if (msr > last_msr)
3278                         return 1;
3279
3280                 /*
3281                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3282                  * values are architecturally undefined.  But, some Linux
3283                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3284                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3285                  * other bits in order to avoid an uncaught #GP in the guest.
3286                  *
3287                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3288                  * single-bit ECC data errors.
3289                  */
3290                 if (is_mci_control_msr(msr) &&
3291                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3292                         return 1;
3293
3294                 /*
3295                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3296                  * AMD-based CPUs allow non-zero values, but if and only if
3297                  * HWCR[McStatusWrEn] is set.
3298                  */
3299                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3300                     data != 0 && !can_set_mci_status(vcpu))
3301                         return 1;
3302
3303                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3304                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3305                 vcpu->arch.mce_banks[offset] = data;
3306                 break;
3307         default:
3308                 return 1;
3309         }
3310         return 0;
3311 }
3312
3313 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3314 {
3315         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3316
3317         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3318 }
3319
3320 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3321 {
3322         gpa_t gpa = data & ~0x3f;
3323
3324         /* Bits 4:5 are reserved, Should be zero */
3325         if (data & 0x30)
3326                 return 1;
3327
3328         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3329             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3330                 return 1;
3331
3332         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3333             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3334                 return 1;
3335
3336         if (!lapic_in_kernel(vcpu))
3337                 return data ? 1 : 0;
3338
3339         vcpu->arch.apf.msr_en_val = data;
3340
3341         if (!kvm_pv_async_pf_enabled(vcpu)) {
3342                 kvm_clear_async_pf_completion_queue(vcpu);
3343                 kvm_async_pf_hash_reset(vcpu);
3344                 return 0;
3345         }
3346
3347         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3348                                         sizeof(u64)))
3349                 return 1;
3350
3351         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3352         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3353
3354         kvm_async_pf_wakeup_all(vcpu);
3355
3356         return 0;
3357 }
3358
3359 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3360 {
3361         /* Bits 8-63 are reserved */
3362         if (data >> 8)
3363                 return 1;
3364
3365         if (!lapic_in_kernel(vcpu))
3366                 return 1;
3367
3368         vcpu->arch.apf.msr_int_val = data;
3369
3370         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3371
3372         return 0;
3373 }
3374
3375 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3376 {
3377         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3378         vcpu->arch.time = 0;
3379 }
3380
3381 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3382 {
3383         ++vcpu->stat.tlb_flush;
3384         static_call(kvm_x86_flush_tlb_all)(vcpu);
3385 }
3386
3387 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3388 {
3389         ++vcpu->stat.tlb_flush;
3390
3391         if (!tdp_enabled) {
3392                 /*
3393                  * A TLB flush on behalf of the guest is equivalent to
3394                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3395                  * a forced sync of the shadow page tables.  Ensure all the
3396                  * roots are synced and the guest TLB in hardware is clean.
3397                  */
3398                 kvm_mmu_sync_roots(vcpu);
3399                 kvm_mmu_sync_prev_roots(vcpu);
3400         }
3401
3402         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3403 }
3404
3405
3406 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3407 {
3408         ++vcpu->stat.tlb_flush;
3409         static_call(kvm_x86_flush_tlb_current)(vcpu);
3410 }
3411
3412 /*
3413  * Service "local" TLB flush requests, which are specific to the current MMU
3414  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3415  * TLB flushes that are targeted at an MMU context also need to be serviced
3416  * prior before nested VM-Enter/VM-Exit.
3417  */
3418 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3419 {
3420         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3421                 kvm_vcpu_flush_tlb_current(vcpu);
3422
3423         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3424                 kvm_vcpu_flush_tlb_guest(vcpu);
3425 }
3426 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3427
3428 static void record_steal_time(struct kvm_vcpu *vcpu)
3429 {
3430         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3431         struct kvm_steal_time __user *st;
3432         struct kvm_memslots *slots;
3433         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3434         u64 steal;
3435         u32 version;
3436
3437         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3438                 kvm_xen_runstate_set_running(vcpu);
3439                 return;
3440         }
3441
3442         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3443                 return;
3444
3445         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3446                 return;
3447
3448         slots = kvm_memslots(vcpu->kvm);
3449
3450         if (unlikely(slots->generation != ghc->generation ||
3451                      gpa != ghc->gpa ||
3452                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3453                 /* We rely on the fact that it fits in a single page. */
3454                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3455
3456                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3457                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3458                         return;
3459         }
3460
3461         st = (struct kvm_steal_time __user *)ghc->hva;
3462         /*
3463          * Doing a TLB flush here, on the guest's behalf, can avoid
3464          * expensive IPIs.
3465          */
3466         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3467                 u8 st_preempted = 0;
3468                 int err = -EFAULT;
3469
3470                 if (!user_access_begin(st, sizeof(*st)))
3471                         return;
3472
3473                 asm volatile("1: xchgb %0, %2\n"
3474                              "xor %1, %1\n"
3475                              "2:\n"
3476                              _ASM_EXTABLE_UA(1b, 2b)
3477                              : "+q" (st_preempted),
3478                                "+&r" (err),
3479                                "+m" (st->preempted));
3480                 if (err)
3481                         goto out;
3482
3483                 user_access_end();
3484
3485                 vcpu->arch.st.preempted = 0;
3486
3487                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3488                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3489                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3490                         kvm_vcpu_flush_tlb_guest(vcpu);
3491
3492                 if (!user_access_begin(st, sizeof(*st)))
3493                         goto dirty;
3494         } else {
3495                 if (!user_access_begin(st, sizeof(*st)))
3496                         return;
3497
3498                 unsafe_put_user(0, &st->preempted, out);
3499                 vcpu->arch.st.preempted = 0;
3500         }
3501
3502         unsafe_get_user(version, &st->version, out);
3503         if (version & 1)
3504                 version += 1;  /* first time write, random junk */
3505
3506         version += 1;
3507         unsafe_put_user(version, &st->version, out);
3508
3509         smp_wmb();
3510
3511         unsafe_get_user(steal, &st->steal, out);
3512         steal += current->sched_info.run_delay -
3513                 vcpu->arch.st.last_steal;
3514         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3515         unsafe_put_user(steal, &st->steal, out);
3516
3517         version += 1;
3518         unsafe_put_user(version, &st->version, out);
3519
3520  out:
3521         user_access_end();
3522  dirty:
3523         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3524 }
3525
3526 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3527 {
3528         bool pr = false;
3529         u32 msr = msr_info->index;
3530         u64 data = msr_info->data;
3531
3532         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3533                 return kvm_xen_write_hypercall_page(vcpu, data);
3534
3535         switch (msr) {
3536         case MSR_AMD64_NB_CFG:
3537         case MSR_IA32_UCODE_WRITE:
3538         case MSR_VM_HSAVE_PA:
3539         case MSR_AMD64_PATCH_LOADER:
3540         case MSR_AMD64_BU_CFG2:
3541         case MSR_AMD64_DC_CFG:
3542         case MSR_F15H_EX_CFG:
3543                 break;
3544
3545         case MSR_IA32_UCODE_REV:
3546                 if (msr_info->host_initiated)
3547                         vcpu->arch.microcode_version = data;
3548                 break;
3549         case MSR_IA32_ARCH_CAPABILITIES:
3550                 if (!msr_info->host_initiated)
3551                         return 1;
3552                 vcpu->arch.arch_capabilities = data;
3553                 break;
3554         case MSR_IA32_PERF_CAPABILITIES: {
3555                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3556
3557                 if (!msr_info->host_initiated)
3558                         return 1;
3559                 if (kvm_get_msr_feature(&msr_ent))
3560                         return 1;
3561                 if (data & ~msr_ent.data)
3562                         return 1;
3563
3564                 vcpu->arch.perf_capabilities = data;
3565                 kvm_pmu_refresh(vcpu);
3566                 return 0;
3567         }
3568         case MSR_EFER:
3569                 return set_efer(vcpu, msr_info);
3570         case MSR_K7_HWCR:
3571                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3572                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3573                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3574
3575                 /* Handle McStatusWrEn */
3576                 if (data == BIT_ULL(18)) {
3577                         vcpu->arch.msr_hwcr = data;
3578                 } else if (data != 0) {
3579                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3580                                     data);
3581                         return 1;
3582                 }
3583                 break;
3584         case MSR_FAM10H_MMIO_CONF_BASE:
3585                 if (data != 0) {
3586                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3587                                     "0x%llx\n", data);
3588                         return 1;
3589                 }
3590                 break;
3591         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3592         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3593                 return kvm_mtrr_set_msr(vcpu, msr, data);
3594         case MSR_IA32_APICBASE:
3595                 return kvm_set_apic_base(vcpu, msr_info);
3596         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3597                 return kvm_x2apic_msr_write(vcpu, msr, data);
3598         case MSR_IA32_TSC_DEADLINE:
3599                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3600                 break;
3601         case MSR_IA32_TSC_ADJUST:
3602                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3603                         if (!msr_info->host_initiated) {
3604                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3605                                 adjust_tsc_offset_guest(vcpu, adj);
3606                                 /* Before back to guest, tsc_timestamp must be adjusted
3607                                  * as well, otherwise guest's percpu pvclock time could jump.
3608                                  */
3609                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3610                         }
3611                         vcpu->arch.ia32_tsc_adjust_msr = data;
3612                 }
3613                 break;
3614         case MSR_IA32_MISC_ENABLE: {
3615                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3616
3617                 if (!msr_info->host_initiated) {
3618                         /* RO bits */
3619                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3620                                 return 1;
3621
3622                         /* R bits, i.e. writes are ignored, but don't fault. */
3623                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3624                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3625                 }
3626
3627                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3628                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3629                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3630                                 return 1;
3631                         vcpu->arch.ia32_misc_enable_msr = data;
3632                         kvm_update_cpuid_runtime(vcpu);
3633                 } else {
3634                         vcpu->arch.ia32_misc_enable_msr = data;
3635                 }
3636                 break;
3637         }
3638         case MSR_IA32_SMBASE:
3639                 if (!msr_info->host_initiated)
3640                         return 1;
3641                 vcpu->arch.smbase = data;
3642                 break;
3643         case MSR_IA32_POWER_CTL:
3644                 vcpu->arch.msr_ia32_power_ctl = data;
3645                 break;
3646         case MSR_IA32_TSC:
3647                 if (msr_info->host_initiated) {
3648                         kvm_synchronize_tsc(vcpu, data);
3649                 } else {
3650                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3651                         adjust_tsc_offset_guest(vcpu, adj);
3652                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3653                 }
3654                 break;
3655         case MSR_IA32_XSS:
3656                 if (!msr_info->host_initiated &&
3657                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3658                         return 1;
3659                 /*
3660                  * KVM supports exposing PT to the guest, but does not support
3661                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3662                  * XSAVES/XRSTORS to save/restore PT MSRs.
3663                  */
3664                 if (data & ~kvm_caps.supported_xss)
3665                         return 1;
3666                 vcpu->arch.ia32_xss = data;
3667                 kvm_update_cpuid_runtime(vcpu);
3668                 break;
3669         case MSR_SMI_COUNT:
3670                 if (!msr_info->host_initiated)
3671                         return 1;
3672                 vcpu->arch.smi_count = data;
3673                 break;
3674         case MSR_KVM_WALL_CLOCK_NEW:
3675                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3676                         return 1;
3677
3678                 vcpu->kvm->arch.wall_clock = data;
3679                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3680                 break;
3681         case MSR_KVM_WALL_CLOCK:
3682                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3683                         return 1;
3684
3685                 vcpu->kvm->arch.wall_clock = data;
3686                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3687                 break;
3688         case MSR_KVM_SYSTEM_TIME_NEW:
3689                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3690                         return 1;
3691
3692                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3693                 break;
3694         case MSR_KVM_SYSTEM_TIME:
3695                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3696                         return 1;
3697
3698                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3699                 break;
3700         case MSR_KVM_ASYNC_PF_EN:
3701                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3702                         return 1;
3703
3704                 if (kvm_pv_enable_async_pf(vcpu, data))
3705                         return 1;
3706                 break;
3707         case MSR_KVM_ASYNC_PF_INT:
3708                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3709                         return 1;
3710
3711                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3712                         return 1;
3713                 break;
3714         case MSR_KVM_ASYNC_PF_ACK:
3715                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3716                         return 1;
3717                 if (data & 0x1) {
3718                         vcpu->arch.apf.pageready_pending = false;
3719                         kvm_check_async_pf_completion(vcpu);
3720                 }
3721                 break;
3722         case MSR_KVM_STEAL_TIME:
3723                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3724                         return 1;
3725
3726                 if (unlikely(!sched_info_on()))
3727                         return 1;
3728
3729                 if (data & KVM_STEAL_RESERVED_MASK)
3730                         return 1;
3731
3732                 vcpu->arch.st.msr_val = data;
3733
3734                 if (!(data & KVM_MSR_ENABLED))
3735                         break;
3736
3737                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3738
3739                 break;
3740         case MSR_KVM_PV_EOI_EN:
3741                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3742                         return 1;
3743
3744                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3745                         return 1;
3746                 break;
3747
3748         case MSR_KVM_POLL_CONTROL:
3749                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3750                         return 1;
3751
3752                 /* only enable bit supported */
3753                 if (data & (-1ULL << 1))
3754                         return 1;
3755
3756                 vcpu->arch.msr_kvm_poll_control = data;
3757                 break;
3758
3759         case MSR_IA32_MCG_CTL:
3760         case MSR_IA32_MCG_STATUS:
3761         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3762         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3763                 return set_msr_mce(vcpu, msr_info);
3764
3765         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3766         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3767                 pr = true;
3768                 fallthrough;
3769         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3770         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3771                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3772                         return kvm_pmu_set_msr(vcpu, msr_info);
3773
3774                 if (pr || data != 0)
3775                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3776                                     "0x%x data 0x%llx\n", msr, data);
3777                 break;
3778         case MSR_K7_CLK_CTL:
3779                 /*
3780                  * Ignore all writes to this no longer documented MSR.
3781                  * Writes are only relevant for old K7 processors,
3782                  * all pre-dating SVM, but a recommended workaround from
3783                  * AMD for these chips. It is possible to specify the
3784                  * affected processor models on the command line, hence
3785                  * the need to ignore the workaround.
3786                  */
3787                 break;
3788         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3789         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3790         case HV_X64_MSR_SYNDBG_OPTIONS:
3791         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3792         case HV_X64_MSR_CRASH_CTL:
3793         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3794         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3795         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3796         case HV_X64_MSR_TSC_EMULATION_STATUS:
3797                 return kvm_hv_set_msr_common(vcpu, msr, data,
3798                                              msr_info->host_initiated);
3799         case MSR_IA32_BBL_CR_CTL3:
3800                 /* Drop writes to this legacy MSR -- see rdmsr
3801                  * counterpart for further detail.
3802                  */
3803                 if (report_ignored_msrs)
3804                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3805                                 msr, data);
3806                 break;
3807         case MSR_AMD64_OSVW_ID_LENGTH:
3808                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3809                         return 1;
3810                 vcpu->arch.osvw.length = data;
3811                 break;
3812         case MSR_AMD64_OSVW_STATUS:
3813                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3814                         return 1;
3815                 vcpu->arch.osvw.status = data;
3816                 break;
3817         case MSR_PLATFORM_INFO:
3818                 if (!msr_info->host_initiated ||
3819                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3820                      cpuid_fault_enabled(vcpu)))
3821                         return 1;
3822                 vcpu->arch.msr_platform_info = data;
3823                 break;
3824         case MSR_MISC_FEATURES_ENABLES:
3825                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3826                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3827                      !supports_cpuid_fault(vcpu)))
3828                         return 1;
3829                 vcpu->arch.msr_misc_features_enables = data;
3830                 break;
3831 #ifdef CONFIG_X86_64
3832         case MSR_IA32_XFD:
3833                 if (!msr_info->host_initiated &&
3834                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3835                         return 1;
3836
3837                 if (data & ~kvm_guest_supported_xfd(vcpu))
3838                         return 1;
3839
3840                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3841                 break;
3842         case MSR_IA32_XFD_ERR:
3843                 if (!msr_info->host_initiated &&
3844                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3845                         return 1;
3846
3847                 if (data & ~kvm_guest_supported_xfd(vcpu))
3848                         return 1;
3849
3850                 vcpu->arch.guest_fpu.xfd_err = data;
3851                 break;
3852 #endif
3853         case MSR_IA32_PEBS_ENABLE:
3854         case MSR_IA32_DS_AREA:
3855         case MSR_PEBS_DATA_CFG:
3856         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3857                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3858                         return kvm_pmu_set_msr(vcpu, msr_info);
3859                 /*
3860                  * Userspace is allowed to write '0' to MSRs that KVM reports
3861                  * as to-be-saved, even if an MSRs isn't fully supported.
3862                  */
3863                 return !msr_info->host_initiated || data;
3864         default:
3865                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3866                         return kvm_pmu_set_msr(vcpu, msr_info);
3867                 return KVM_MSR_RET_INVALID;
3868         }
3869         return 0;
3870 }
3871 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3872
3873 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3874 {
3875         u64 data;
3876         u64 mcg_cap = vcpu->arch.mcg_cap;
3877         unsigned bank_num = mcg_cap & 0xff;
3878         u32 offset, last_msr;
3879
3880         switch (msr) {
3881         case MSR_IA32_P5_MC_ADDR:
3882         case MSR_IA32_P5_MC_TYPE:
3883                 data = 0;
3884                 break;
3885         case MSR_IA32_MCG_CAP:
3886                 data = vcpu->arch.mcg_cap;
3887                 break;
3888         case MSR_IA32_MCG_CTL:
3889                 if (!(mcg_cap & MCG_CTL_P) && !host)
3890                         return 1;
3891                 data = vcpu->arch.mcg_ctl;
3892                 break;
3893         case MSR_IA32_MCG_STATUS:
3894                 data = vcpu->arch.mcg_status;
3895                 break;
3896         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3897                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3898                 if (msr > last_msr)
3899                         return 1;
3900
3901                 if (!(mcg_cap & MCG_CMCI_P) && !host)
3902                         return 1;
3903                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3904                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3905                 data = vcpu->arch.mci_ctl2_banks[offset];
3906                 break;
3907         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3908                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3909                 if (msr > last_msr)
3910                         return 1;
3911
3912                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3913                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3914                 data = vcpu->arch.mce_banks[offset];
3915                 break;
3916         default:
3917                 return 1;
3918         }
3919         *pdata = data;
3920         return 0;
3921 }
3922
3923 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3924 {
3925         switch (msr_info->index) {
3926         case MSR_IA32_PLATFORM_ID:
3927         case MSR_IA32_EBL_CR_POWERON:
3928         case MSR_IA32_LASTBRANCHFROMIP:
3929         case MSR_IA32_LASTBRANCHTOIP:
3930         case MSR_IA32_LASTINTFROMIP:
3931         case MSR_IA32_LASTINTTOIP:
3932         case MSR_AMD64_SYSCFG:
3933         case MSR_K8_TSEG_ADDR:
3934         case MSR_K8_TSEG_MASK:
3935         case MSR_VM_HSAVE_PA:
3936         case MSR_K8_INT_PENDING_MSG:
3937         case MSR_AMD64_NB_CFG:
3938         case MSR_FAM10H_MMIO_CONF_BASE:
3939         case MSR_AMD64_BU_CFG2:
3940         case MSR_IA32_PERF_CTL:
3941         case MSR_AMD64_DC_CFG:
3942         case MSR_F15H_EX_CFG:
3943         /*
3944          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3945          * limit) MSRs. Just return 0, as we do not want to expose the host
3946          * data here. Do not conditionalize this on CPUID, as KVM does not do
3947          * so for existing CPU-specific MSRs.
3948          */
3949         case MSR_RAPL_POWER_UNIT:
3950         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3951         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3952         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3953         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3954                 msr_info->data = 0;
3955                 break;
3956         case MSR_IA32_PEBS_ENABLE:
3957         case MSR_IA32_DS_AREA:
3958         case MSR_PEBS_DATA_CFG:
3959         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3960                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3961                         return kvm_pmu_get_msr(vcpu, msr_info);
3962                 /*
3963                  * Userspace is allowed to read MSRs that KVM reports as
3964                  * to-be-saved, even if an MSR isn't fully supported.
3965                  */
3966                 if (!msr_info->host_initiated)
3967                         return 1;
3968                 msr_info->data = 0;
3969                 break;
3970         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3971         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3972         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3973         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3974                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3975                         return kvm_pmu_get_msr(vcpu, msr_info);
3976                 msr_info->data = 0;
3977                 break;
3978         case MSR_IA32_UCODE_REV:
3979                 msr_info->data = vcpu->arch.microcode_version;
3980                 break;
3981         case MSR_IA32_ARCH_CAPABILITIES:
3982                 if (!msr_info->host_initiated &&
3983                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3984                         return 1;
3985                 msr_info->data = vcpu->arch.arch_capabilities;
3986                 break;
3987         case MSR_IA32_PERF_CAPABILITIES:
3988                 if (!msr_info->host_initiated &&
3989                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3990                         return 1;
3991                 msr_info->data = vcpu->arch.perf_capabilities;
3992                 break;
3993         case MSR_IA32_POWER_CTL:
3994                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3995                 break;
3996         case MSR_IA32_TSC: {
3997                 /*
3998                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3999                  * even when not intercepted. AMD manual doesn't explicitly
4000                  * state this but appears to behave the same.
4001                  *
4002                  * On userspace reads and writes, however, we unconditionally
4003                  * return L1's TSC value to ensure backwards-compatible
4004                  * behavior for migration.
4005                  */
4006                 u64 offset, ratio;
4007
4008                 if (msr_info->host_initiated) {
4009                         offset = vcpu->arch.l1_tsc_offset;
4010                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4011                 } else {
4012                         offset = vcpu->arch.tsc_offset;
4013                         ratio = vcpu->arch.tsc_scaling_ratio;
4014                 }
4015
4016                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4017                 break;
4018         }
4019         case MSR_MTRRcap:
4020         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4021         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4022                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4023         case 0xcd: /* fsb frequency */
4024                 msr_info->data = 3;
4025                 break;
4026                 /*
4027                  * MSR_EBC_FREQUENCY_ID
4028                  * Conservative value valid for even the basic CPU models.
4029                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4030                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4031                  * and 266MHz for model 3, or 4. Set Core Clock
4032                  * Frequency to System Bus Frequency Ratio to 1 (bits
4033                  * 31:24) even though these are only valid for CPU
4034                  * models > 2, however guests may end up dividing or
4035                  * multiplying by zero otherwise.
4036                  */
4037         case MSR_EBC_FREQUENCY_ID:
4038                 msr_info->data = 1 << 24;
4039                 break;
4040         case MSR_IA32_APICBASE:
4041                 msr_info->data = kvm_get_apic_base(vcpu);
4042                 break;
4043         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4044                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4045         case MSR_IA32_TSC_DEADLINE:
4046                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4047                 break;
4048         case MSR_IA32_TSC_ADJUST:
4049                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4050                 break;
4051         case MSR_IA32_MISC_ENABLE:
4052                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4053                 break;
4054         case MSR_IA32_SMBASE:
4055                 if (!msr_info->host_initiated)
4056                         return 1;
4057                 msr_info->data = vcpu->arch.smbase;
4058                 break;
4059         case MSR_SMI_COUNT:
4060                 msr_info->data = vcpu->arch.smi_count;
4061                 break;
4062         case MSR_IA32_PERF_STATUS:
4063                 /* TSC increment by tick */
4064                 msr_info->data = 1000ULL;
4065                 /* CPU multiplier */
4066                 msr_info->data |= (((uint64_t)4ULL) << 40);
4067                 break;
4068         case MSR_EFER:
4069                 msr_info->data = vcpu->arch.efer;
4070                 break;
4071         case MSR_KVM_WALL_CLOCK:
4072                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4073                         return 1;
4074
4075                 msr_info->data = vcpu->kvm->arch.wall_clock;
4076                 break;
4077         case MSR_KVM_WALL_CLOCK_NEW:
4078                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4079                         return 1;
4080
4081                 msr_info->data = vcpu->kvm->arch.wall_clock;
4082                 break;
4083         case MSR_KVM_SYSTEM_TIME:
4084                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4085                         return 1;
4086
4087                 msr_info->data = vcpu->arch.time;
4088                 break;
4089         case MSR_KVM_SYSTEM_TIME_NEW:
4090                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4091                         return 1;
4092
4093                 msr_info->data = vcpu->arch.time;
4094                 break;
4095         case MSR_KVM_ASYNC_PF_EN:
4096                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4097                         return 1;
4098
4099                 msr_info->data = vcpu->arch.apf.msr_en_val;
4100                 break;
4101         case MSR_KVM_ASYNC_PF_INT:
4102                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4103                         return 1;
4104
4105                 msr_info->data = vcpu->arch.apf.msr_int_val;
4106                 break;
4107         case MSR_KVM_ASYNC_PF_ACK:
4108                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4109                         return 1;
4110
4111                 msr_info->data = 0;
4112                 break;
4113         case MSR_KVM_STEAL_TIME:
4114                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4115                         return 1;
4116
4117                 msr_info->data = vcpu->arch.st.msr_val;
4118                 break;
4119         case MSR_KVM_PV_EOI_EN:
4120                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4121                         return 1;
4122
4123                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4124                 break;
4125         case MSR_KVM_POLL_CONTROL:
4126                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4127                         return 1;
4128
4129                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4130                 break;
4131         case MSR_IA32_P5_MC_ADDR:
4132         case MSR_IA32_P5_MC_TYPE:
4133         case MSR_IA32_MCG_CAP:
4134         case MSR_IA32_MCG_CTL:
4135         case MSR_IA32_MCG_STATUS:
4136         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4137         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4138                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4139                                    msr_info->host_initiated);
4140         case MSR_IA32_XSS:
4141                 if (!msr_info->host_initiated &&
4142                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4143                         return 1;
4144                 msr_info->data = vcpu->arch.ia32_xss;
4145                 break;
4146         case MSR_K7_CLK_CTL:
4147                 /*
4148                  * Provide expected ramp-up count for K7. All other
4149                  * are set to zero, indicating minimum divisors for
4150                  * every field.
4151                  *
4152                  * This prevents guest kernels on AMD host with CPU
4153                  * type 6, model 8 and higher from exploding due to
4154                  * the rdmsr failing.
4155                  */
4156                 msr_info->data = 0x20000000;
4157                 break;
4158         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4159         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4160         case HV_X64_MSR_SYNDBG_OPTIONS:
4161         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4162         case HV_X64_MSR_CRASH_CTL:
4163         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4164         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4165         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4166         case HV_X64_MSR_TSC_EMULATION_STATUS:
4167                 return kvm_hv_get_msr_common(vcpu,
4168                                              msr_info->index, &msr_info->data,
4169                                              msr_info->host_initiated);
4170         case MSR_IA32_BBL_CR_CTL3:
4171                 /* This legacy MSR exists but isn't fully documented in current
4172                  * silicon.  It is however accessed by winxp in very narrow
4173                  * scenarios where it sets bit #19, itself documented as
4174                  * a "reserved" bit.  Best effort attempt to source coherent
4175                  * read data here should the balance of the register be
4176                  * interpreted by the guest:
4177                  *
4178                  * L2 cache control register 3: 64GB range, 256KB size,
4179                  * enabled, latency 0x1, configured
4180                  */
4181                 msr_info->data = 0xbe702111;
4182                 break;
4183         case MSR_AMD64_OSVW_ID_LENGTH:
4184                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4185                         return 1;
4186                 msr_info->data = vcpu->arch.osvw.length;
4187                 break;
4188         case MSR_AMD64_OSVW_STATUS:
4189                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4190                         return 1;
4191                 msr_info->data = vcpu->arch.osvw.status;
4192                 break;
4193         case MSR_PLATFORM_INFO:
4194                 if (!msr_info->host_initiated &&
4195                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4196                         return 1;
4197                 msr_info->data = vcpu->arch.msr_platform_info;
4198                 break;
4199         case MSR_MISC_FEATURES_ENABLES:
4200                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4201                 break;
4202         case MSR_K7_HWCR:
4203                 msr_info->data = vcpu->arch.msr_hwcr;
4204                 break;
4205 #ifdef CONFIG_X86_64
4206         case MSR_IA32_XFD:
4207                 if (!msr_info->host_initiated &&
4208                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4209                         return 1;
4210
4211                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4212                 break;
4213         case MSR_IA32_XFD_ERR:
4214                 if (!msr_info->host_initiated &&
4215                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4216                         return 1;
4217
4218                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4219                 break;
4220 #endif
4221         default:
4222                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4223                         return kvm_pmu_get_msr(vcpu, msr_info);
4224                 return KVM_MSR_RET_INVALID;
4225         }
4226         return 0;
4227 }
4228 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4229
4230 /*
4231  * Read or write a bunch of msrs. All parameters are kernel addresses.
4232  *
4233  * @return number of msrs set successfully.
4234  */
4235 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4236                     struct kvm_msr_entry *entries,
4237                     int (*do_msr)(struct kvm_vcpu *vcpu,
4238                                   unsigned index, u64 *data))
4239 {
4240         int i;
4241
4242         for (i = 0; i < msrs->nmsrs; ++i)
4243                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4244                         break;
4245
4246         return i;
4247 }
4248
4249 /*
4250  * Read or write a bunch of msrs. Parameters are user addresses.
4251  *
4252  * @return number of msrs set successfully.
4253  */
4254 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4255                   int (*do_msr)(struct kvm_vcpu *vcpu,
4256                                 unsigned index, u64 *data),
4257                   int writeback)
4258 {
4259         struct kvm_msrs msrs;
4260         struct kvm_msr_entry *entries;
4261         int r, n;
4262         unsigned size;
4263
4264         r = -EFAULT;
4265         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4266                 goto out;
4267
4268         r = -E2BIG;
4269         if (msrs.nmsrs >= MAX_IO_MSRS)
4270                 goto out;
4271
4272         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4273         entries = memdup_user(user_msrs->entries, size);
4274         if (IS_ERR(entries)) {
4275                 r = PTR_ERR(entries);
4276                 goto out;
4277         }
4278
4279         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4280         if (r < 0)
4281                 goto out_free;
4282
4283         r = -EFAULT;
4284         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4285                 goto out_free;
4286
4287         r = n;
4288
4289 out_free:
4290         kfree(entries);
4291 out:
4292         return r;
4293 }
4294
4295 static inline bool kvm_can_mwait_in_guest(void)
4296 {
4297         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4298                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4299                 boot_cpu_has(X86_FEATURE_ARAT);
4300 }
4301
4302 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4303                                             struct kvm_cpuid2 __user *cpuid_arg)
4304 {
4305         struct kvm_cpuid2 cpuid;
4306         int r;
4307
4308         r = -EFAULT;
4309         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4310                 return r;
4311
4312         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4313         if (r)
4314                 return r;
4315
4316         r = -EFAULT;
4317         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4318                 return r;
4319
4320         return 0;
4321 }
4322
4323 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4324 {
4325         int r = 0;
4326
4327         switch (ext) {
4328         case KVM_CAP_IRQCHIP:
4329         case KVM_CAP_HLT:
4330         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4331         case KVM_CAP_SET_TSS_ADDR:
4332         case KVM_CAP_EXT_CPUID:
4333         case KVM_CAP_EXT_EMUL_CPUID:
4334         case KVM_CAP_CLOCKSOURCE:
4335         case KVM_CAP_PIT:
4336         case KVM_CAP_NOP_IO_DELAY:
4337         case KVM_CAP_MP_STATE:
4338         case KVM_CAP_SYNC_MMU:
4339         case KVM_CAP_USER_NMI:
4340         case KVM_CAP_REINJECT_CONTROL:
4341         case KVM_CAP_IRQ_INJECT_STATUS:
4342         case KVM_CAP_IOEVENTFD:
4343         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4344         case KVM_CAP_PIT2:
4345         case KVM_CAP_PIT_STATE2:
4346         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4347         case KVM_CAP_VCPU_EVENTS:
4348         case KVM_CAP_HYPERV:
4349         case KVM_CAP_HYPERV_VAPIC:
4350         case KVM_CAP_HYPERV_SPIN:
4351         case KVM_CAP_HYPERV_SYNIC:
4352         case KVM_CAP_HYPERV_SYNIC2:
4353         case KVM_CAP_HYPERV_VP_INDEX:
4354         case KVM_CAP_HYPERV_EVENTFD:
4355         case KVM_CAP_HYPERV_TLBFLUSH:
4356         case KVM_CAP_HYPERV_SEND_IPI:
4357         case KVM_CAP_HYPERV_CPUID:
4358         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4359         case KVM_CAP_SYS_HYPERV_CPUID:
4360         case KVM_CAP_PCI_SEGMENT:
4361         case KVM_CAP_DEBUGREGS:
4362         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4363         case KVM_CAP_XSAVE:
4364         case KVM_CAP_ASYNC_PF:
4365         case KVM_CAP_ASYNC_PF_INT:
4366         case KVM_CAP_GET_TSC_KHZ:
4367         case KVM_CAP_KVMCLOCK_CTRL:
4368         case KVM_CAP_READONLY_MEM:
4369         case KVM_CAP_HYPERV_TIME:
4370         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4371         case KVM_CAP_TSC_DEADLINE_TIMER:
4372         case KVM_CAP_DISABLE_QUIRKS:
4373         case KVM_CAP_SET_BOOT_CPU_ID:
4374         case KVM_CAP_SPLIT_IRQCHIP:
4375         case KVM_CAP_IMMEDIATE_EXIT:
4376         case KVM_CAP_PMU_EVENT_FILTER:
4377         case KVM_CAP_GET_MSR_FEATURES:
4378         case KVM_CAP_MSR_PLATFORM_INFO:
4379         case KVM_CAP_EXCEPTION_PAYLOAD:
4380         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4381         case KVM_CAP_SET_GUEST_DEBUG:
4382         case KVM_CAP_LAST_CPU:
4383         case KVM_CAP_X86_USER_SPACE_MSR:
4384         case KVM_CAP_X86_MSR_FILTER:
4385         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4386 #ifdef CONFIG_X86_SGX_KVM
4387         case KVM_CAP_SGX_ATTRIBUTE:
4388 #endif
4389         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4390         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4391         case KVM_CAP_SREGS2:
4392         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4393         case KVM_CAP_VCPU_ATTRIBUTES:
4394         case KVM_CAP_SYS_ATTRIBUTES:
4395         case KVM_CAP_VAPIC:
4396         case KVM_CAP_ENABLE_CAP:
4397         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4398                 r = 1;
4399                 break;
4400         case KVM_CAP_EXIT_HYPERCALL:
4401                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4402                 break;
4403         case KVM_CAP_SET_GUEST_DEBUG2:
4404                 return KVM_GUESTDBG_VALID_MASK;
4405 #ifdef CONFIG_KVM_XEN
4406         case KVM_CAP_XEN_HVM:
4407                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4408                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4409                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4410                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4411                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4412                 if (sched_info_on())
4413                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4414                 break;
4415 #endif
4416         case KVM_CAP_SYNC_REGS:
4417                 r = KVM_SYNC_X86_VALID_FIELDS;
4418                 break;
4419         case KVM_CAP_ADJUST_CLOCK:
4420                 r = KVM_CLOCK_VALID_FLAGS;
4421                 break;
4422         case KVM_CAP_X86_DISABLE_EXITS:
4423                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4424                       KVM_X86_DISABLE_EXITS_CSTATE;
4425                 if(kvm_can_mwait_in_guest())
4426                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4427                 break;
4428         case KVM_CAP_X86_SMM:
4429                 /* SMBASE is usually relocated above 1M on modern chipsets,
4430                  * and SMM handlers might indeed rely on 4G segment limits,
4431                  * so do not report SMM to be available if real mode is
4432                  * emulated via vm86 mode.  Still, do not go to great lengths
4433                  * to avoid userspace's usage of the feature, because it is a
4434                  * fringe case that is not enabled except via specific settings
4435                  * of the module parameters.
4436                  */
4437                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4438                 break;
4439         case KVM_CAP_NR_VCPUS:
4440                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4441                 break;
4442         case KVM_CAP_MAX_VCPUS:
4443                 r = KVM_MAX_VCPUS;
4444                 break;
4445         case KVM_CAP_MAX_VCPU_ID:
4446                 r = KVM_MAX_VCPU_IDS;
4447                 break;
4448         case KVM_CAP_PV_MMU:    /* obsolete */
4449                 r = 0;
4450                 break;
4451         case KVM_CAP_MCE:
4452                 r = KVM_MAX_MCE_BANKS;
4453                 break;
4454         case KVM_CAP_XCRS:
4455                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4456                 break;
4457         case KVM_CAP_TSC_CONTROL:
4458         case KVM_CAP_VM_TSC_CONTROL:
4459                 r = kvm_caps.has_tsc_control;
4460                 break;
4461         case KVM_CAP_X2APIC_API:
4462                 r = KVM_X2APIC_API_VALID_FLAGS;
4463                 break;
4464         case KVM_CAP_NESTED_STATE:
4465                 r = kvm_x86_ops.nested_ops->get_state ?
4466                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4467                 break;
4468         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4469                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4470                 break;
4471         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4472                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4473                 break;
4474         case KVM_CAP_SMALLER_MAXPHYADDR:
4475                 r = (int) allow_smaller_maxphyaddr;
4476                 break;
4477         case KVM_CAP_STEAL_TIME:
4478                 r = sched_info_on();
4479                 break;
4480         case KVM_CAP_X86_BUS_LOCK_EXIT:
4481                 if (kvm_caps.has_bus_lock_exit)
4482                         r = KVM_BUS_LOCK_DETECTION_OFF |
4483                             KVM_BUS_LOCK_DETECTION_EXIT;
4484                 else
4485                         r = 0;
4486                 break;
4487         case KVM_CAP_XSAVE2: {
4488                 u64 guest_perm = xstate_get_guest_group_perm();
4489
4490                 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4491                 if (r < sizeof(struct kvm_xsave))
4492                         r = sizeof(struct kvm_xsave);
4493                 break;
4494         }
4495         case KVM_CAP_PMU_CAPABILITY:
4496                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4497                 break;
4498         case KVM_CAP_DISABLE_QUIRKS2:
4499                 r = KVM_X86_VALID_QUIRKS;
4500                 break;
4501         case KVM_CAP_X86_NOTIFY_VMEXIT:
4502                 r = kvm_caps.has_notify_vmexit;
4503                 break;
4504         default:
4505                 break;
4506         }
4507         return r;
4508 }
4509
4510 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4511 {
4512         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4513
4514         if ((u64)(unsigned long)uaddr != attr->addr)
4515                 return ERR_PTR_USR(-EFAULT);
4516         return uaddr;
4517 }
4518
4519 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4520 {
4521         u64 __user *uaddr = kvm_get_attr_addr(attr);
4522
4523         if (attr->group)
4524                 return -ENXIO;
4525
4526         if (IS_ERR(uaddr))
4527                 return PTR_ERR(uaddr);
4528
4529         switch (attr->attr) {
4530         case KVM_X86_XCOMP_GUEST_SUPP:
4531                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4532                         return -EFAULT;
4533                 return 0;
4534         default:
4535                 return -ENXIO;
4536                 break;
4537         }
4538 }
4539
4540 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4541 {
4542         if (attr->group)
4543                 return -ENXIO;
4544
4545         switch (attr->attr) {
4546         case KVM_X86_XCOMP_GUEST_SUPP:
4547                 return 0;
4548         default:
4549                 return -ENXIO;
4550         }
4551 }
4552
4553 long kvm_arch_dev_ioctl(struct file *filp,
4554                         unsigned int ioctl, unsigned long arg)
4555 {
4556         void __user *argp = (void __user *)arg;
4557         long r;
4558
4559         switch (ioctl) {
4560         case KVM_GET_MSR_INDEX_LIST: {
4561                 struct kvm_msr_list __user *user_msr_list = argp;
4562                 struct kvm_msr_list msr_list;
4563                 unsigned n;
4564
4565                 r = -EFAULT;
4566                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4567                         goto out;
4568                 n = msr_list.nmsrs;
4569                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4570                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4571                         goto out;
4572                 r = -E2BIG;
4573                 if (n < msr_list.nmsrs)
4574                         goto out;
4575                 r = -EFAULT;
4576                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4577                                  num_msrs_to_save * sizeof(u32)))
4578                         goto out;
4579                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4580                                  &emulated_msrs,
4581                                  num_emulated_msrs * sizeof(u32)))
4582                         goto out;
4583                 r = 0;
4584                 break;
4585         }
4586         case KVM_GET_SUPPORTED_CPUID:
4587         case KVM_GET_EMULATED_CPUID: {
4588                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4589                 struct kvm_cpuid2 cpuid;
4590
4591                 r = -EFAULT;
4592                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4593                         goto out;
4594
4595                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4596                                             ioctl);
4597                 if (r)
4598                         goto out;
4599
4600                 r = -EFAULT;
4601                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4602                         goto out;
4603                 r = 0;
4604                 break;
4605         }
4606         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4607                 r = -EFAULT;
4608                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4609                                  sizeof(kvm_caps.supported_mce_cap)))
4610                         goto out;
4611                 r = 0;
4612                 break;
4613         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4614                 struct kvm_msr_list __user *user_msr_list = argp;
4615                 struct kvm_msr_list msr_list;
4616                 unsigned int n;
4617
4618                 r = -EFAULT;
4619                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4620                         goto out;
4621                 n = msr_list.nmsrs;
4622                 msr_list.nmsrs = num_msr_based_features;
4623                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4624                         goto out;
4625                 r = -E2BIG;
4626                 if (n < msr_list.nmsrs)
4627                         goto out;
4628                 r = -EFAULT;
4629                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4630                                  num_msr_based_features * sizeof(u32)))
4631                         goto out;
4632                 r = 0;
4633                 break;
4634         }
4635         case KVM_GET_MSRS:
4636                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4637                 break;
4638         case KVM_GET_SUPPORTED_HV_CPUID:
4639                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4640                 break;
4641         case KVM_GET_DEVICE_ATTR: {
4642                 struct kvm_device_attr attr;
4643                 r = -EFAULT;
4644                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4645                         break;
4646                 r = kvm_x86_dev_get_attr(&attr);
4647                 break;
4648         }
4649         case KVM_HAS_DEVICE_ATTR: {
4650                 struct kvm_device_attr attr;
4651                 r = -EFAULT;
4652                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4653                         break;
4654                 r = kvm_x86_dev_has_attr(&attr);
4655                 break;
4656         }
4657         default:
4658                 r = -EINVAL;
4659                 break;
4660         }
4661 out:
4662         return r;
4663 }
4664
4665 static void wbinvd_ipi(void *garbage)
4666 {
4667         wbinvd();
4668 }
4669
4670 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4671 {
4672         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4673 }
4674
4675 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4676 {
4677         /* Address WBINVD may be executed by guest */
4678         if (need_emulate_wbinvd(vcpu)) {
4679                 if (static_call(kvm_x86_has_wbinvd_exit)())
4680                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4681                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4682                         smp_call_function_single(vcpu->cpu,
4683                                         wbinvd_ipi, NULL, 1);
4684         }
4685
4686         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4687
4688         /* Save host pkru register if supported */
4689         vcpu->arch.host_pkru = read_pkru();
4690
4691         /* Apply any externally detected TSC adjustments (due to suspend) */
4692         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4693                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4694                 vcpu->arch.tsc_offset_adjustment = 0;
4695                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4696         }
4697
4698         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4699                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4700                                 rdtsc() - vcpu->arch.last_host_tsc;
4701                 if (tsc_delta < 0)
4702                         mark_tsc_unstable("KVM discovered backwards TSC");
4703
4704                 if (kvm_check_tsc_unstable()) {
4705                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4706                                                 vcpu->arch.last_guest_tsc);
4707                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4708                         vcpu->arch.tsc_catchup = 1;
4709                 }
4710
4711                 if (kvm_lapic_hv_timer_in_use(vcpu))
4712                         kvm_lapic_restart_hv_timer(vcpu);
4713
4714                 /*
4715                  * On a host with synchronized TSC, there is no need to update
4716                  * kvmclock on vcpu->cpu migration
4717                  */
4718                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4719                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4720                 if (vcpu->cpu != cpu)
4721                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4722                 vcpu->cpu = cpu;
4723         }
4724
4725         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4726 }
4727
4728 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4729 {
4730         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4731         struct kvm_steal_time __user *st;
4732         struct kvm_memslots *slots;
4733         static const u8 preempted = KVM_VCPU_PREEMPTED;
4734         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4735
4736         /*
4737          * The vCPU can be marked preempted if and only if the VM-Exit was on
4738          * an instruction boundary and will not trigger guest emulation of any
4739          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4740          * when this is true, for example allowing the vCPU to be marked
4741          * preempted if and only if the VM-Exit was due to a host interrupt.
4742          */
4743         if (!vcpu->arch.at_instruction_boundary) {
4744                 vcpu->stat.preemption_other++;
4745                 return;
4746         }
4747
4748         vcpu->stat.preemption_reported++;
4749         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4750                 return;
4751
4752         if (vcpu->arch.st.preempted)
4753                 return;
4754
4755         /* This happens on process exit */
4756         if (unlikely(current->mm != vcpu->kvm->mm))
4757                 return;
4758
4759         slots = kvm_memslots(vcpu->kvm);
4760
4761         if (unlikely(slots->generation != ghc->generation ||
4762                      gpa != ghc->gpa ||
4763                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4764                 return;
4765
4766         st = (struct kvm_steal_time __user *)ghc->hva;
4767         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4768
4769         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4770                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4771
4772         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4773 }
4774
4775 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4776 {
4777         int idx;
4778
4779         if (vcpu->preempted) {
4780                 if (!vcpu->arch.guest_state_protected)
4781                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4782
4783                 /*
4784                  * Take the srcu lock as memslots will be accessed to check the gfn
4785                  * cache generation against the memslots generation.
4786                  */
4787                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4788                 if (kvm_xen_msr_enabled(vcpu->kvm))
4789                         kvm_xen_runstate_set_preempted(vcpu);
4790                 else
4791                         kvm_steal_time_set_preempted(vcpu);
4792                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4793         }
4794
4795         static_call(kvm_x86_vcpu_put)(vcpu);
4796         vcpu->arch.last_host_tsc = rdtsc();
4797 }
4798
4799 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4800                                     struct kvm_lapic_state *s)
4801 {
4802         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4803
4804         return kvm_apic_get_state(vcpu, s);
4805 }
4806
4807 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4808                                     struct kvm_lapic_state *s)
4809 {
4810         int r;
4811
4812         r = kvm_apic_set_state(vcpu, s);
4813         if (r)
4814                 return r;
4815         update_cr8_intercept(vcpu);
4816
4817         return 0;
4818 }
4819
4820 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4821 {
4822         /*
4823          * We can accept userspace's request for interrupt injection
4824          * as long as we have a place to store the interrupt number.
4825          * The actual injection will happen when the CPU is able to
4826          * deliver the interrupt.
4827          */
4828         if (kvm_cpu_has_extint(vcpu))
4829                 return false;
4830
4831         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4832         return (!lapic_in_kernel(vcpu) ||
4833                 kvm_apic_accept_pic_intr(vcpu));
4834 }
4835
4836 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4837 {
4838         /*
4839          * Do not cause an interrupt window exit if an exception
4840          * is pending or an event needs reinjection; userspace
4841          * might want to inject the interrupt manually using KVM_SET_REGS
4842          * or KVM_SET_SREGS.  For that to work, we must be at an
4843          * instruction boundary and with no events half-injected.
4844          */
4845         return (kvm_arch_interrupt_allowed(vcpu) &&
4846                 kvm_cpu_accept_dm_intr(vcpu) &&
4847                 !kvm_event_needs_reinjection(vcpu) &&
4848                 !vcpu->arch.exception.pending);
4849 }
4850
4851 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4852                                     struct kvm_interrupt *irq)
4853 {
4854         if (irq->irq >= KVM_NR_INTERRUPTS)
4855                 return -EINVAL;
4856
4857         if (!irqchip_in_kernel(vcpu->kvm)) {
4858                 kvm_queue_interrupt(vcpu, irq->irq, false);
4859                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4860                 return 0;
4861         }
4862
4863         /*
4864          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4865          * fail for in-kernel 8259.
4866          */
4867         if (pic_in_kernel(vcpu->kvm))
4868                 return -ENXIO;
4869
4870         if (vcpu->arch.pending_external_vector != -1)
4871                 return -EEXIST;
4872
4873         vcpu->arch.pending_external_vector = irq->irq;
4874         kvm_make_request(KVM_REQ_EVENT, vcpu);
4875         return 0;
4876 }
4877
4878 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4879 {
4880         kvm_inject_nmi(vcpu);
4881
4882         return 0;
4883 }
4884
4885 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4886 {
4887         kvm_make_request(KVM_REQ_SMI, vcpu);
4888
4889         return 0;
4890 }
4891
4892 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4893                                            struct kvm_tpr_access_ctl *tac)
4894 {
4895         if (tac->flags)
4896                 return -EINVAL;
4897         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4898         return 0;
4899 }
4900
4901 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4902                                         u64 mcg_cap)
4903 {
4904         int r;
4905         unsigned bank_num = mcg_cap & 0xff, bank;
4906
4907         r = -EINVAL;
4908         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4909                 goto out;
4910         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4911                 goto out;
4912         r = 0;
4913         vcpu->arch.mcg_cap = mcg_cap;
4914         /* Init IA32_MCG_CTL to all 1s */
4915         if (mcg_cap & MCG_CTL_P)
4916                 vcpu->arch.mcg_ctl = ~(u64)0;
4917         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4918         for (bank = 0; bank < bank_num; bank++) {
4919                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4920                 if (mcg_cap & MCG_CMCI_P)
4921                         vcpu->arch.mci_ctl2_banks[bank] = 0;
4922         }
4923
4924         kvm_apic_after_set_mcg_cap(vcpu);
4925
4926         static_call(kvm_x86_setup_mce)(vcpu);
4927 out:
4928         return r;
4929 }
4930
4931 /*
4932  * Validate this is an UCNA (uncorrectable no action) error by checking the
4933  * MCG_STATUS and MCi_STATUS registers:
4934  * - none of the bits for Machine Check Exceptions are set
4935  * - both the VAL (valid) and UC (uncorrectable) bits are set
4936  * MCI_STATUS_PCC - Processor Context Corrupted
4937  * MCI_STATUS_S - Signaled as a Machine Check Exception
4938  * MCI_STATUS_AR - Software recoverable Action Required
4939  */
4940 static bool is_ucna(struct kvm_x86_mce *mce)
4941 {
4942         return  !mce->mcg_status &&
4943                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4944                 (mce->status & MCI_STATUS_VAL) &&
4945                 (mce->status & MCI_STATUS_UC);
4946 }
4947
4948 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4949 {
4950         u64 mcg_cap = vcpu->arch.mcg_cap;
4951
4952         banks[1] = mce->status;
4953         banks[2] = mce->addr;
4954         banks[3] = mce->misc;
4955         vcpu->arch.mcg_status = mce->mcg_status;
4956
4957         if (!(mcg_cap & MCG_CMCI_P) ||
4958             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4959                 return 0;
4960
4961         if (lapic_in_kernel(vcpu))
4962                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4963
4964         return 0;
4965 }
4966
4967 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4968                                       struct kvm_x86_mce *mce)
4969 {
4970         u64 mcg_cap = vcpu->arch.mcg_cap;
4971         unsigned bank_num = mcg_cap & 0xff;
4972         u64 *banks = vcpu->arch.mce_banks;
4973
4974         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4975                 return -EINVAL;
4976
4977         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4978
4979         if (is_ucna(mce))
4980                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4981
4982         /*
4983          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4984          * reporting is disabled
4985          */
4986         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4987             vcpu->arch.mcg_ctl != ~(u64)0)
4988                 return 0;
4989         /*
4990          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4991          * reporting is disabled for the bank
4992          */
4993         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4994                 return 0;
4995         if (mce->status & MCI_STATUS_UC) {
4996                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4997                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4998                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4999                         return 0;
5000                 }
5001                 if (banks[1] & MCI_STATUS_VAL)
5002                         mce->status |= MCI_STATUS_OVER;
5003                 banks[2] = mce->addr;
5004                 banks[3] = mce->misc;
5005                 vcpu->arch.mcg_status = mce->mcg_status;
5006                 banks[1] = mce->status;
5007                 kvm_queue_exception(vcpu, MC_VECTOR);
5008         } else if (!(banks[1] & MCI_STATUS_VAL)
5009                    || !(banks[1] & MCI_STATUS_UC)) {
5010                 if (banks[1] & MCI_STATUS_VAL)
5011                         mce->status |= MCI_STATUS_OVER;
5012                 banks[2] = mce->addr;
5013                 banks[3] = mce->misc;
5014                 banks[1] = mce->status;
5015         } else
5016                 banks[1] |= MCI_STATUS_OVER;
5017         return 0;
5018 }
5019
5020 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5021                                                struct kvm_vcpu_events *events)
5022 {
5023         process_nmi(vcpu);
5024
5025         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5026                 process_smi(vcpu);
5027
5028         /*
5029          * In guest mode, payload delivery should be deferred,
5030          * so that the L1 hypervisor can intercept #PF before
5031          * CR2 is modified (or intercept #DB before DR6 is
5032          * modified under nVMX). Unless the per-VM capability,
5033          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5034          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5035          * opportunistically defer the exception payload, deliver it if the
5036          * capability hasn't been requested before processing a
5037          * KVM_GET_VCPU_EVENTS.
5038          */
5039         if (!vcpu->kvm->arch.exception_payload_enabled &&
5040             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5041                 kvm_deliver_exception_payload(vcpu);
5042
5043         /*
5044          * The API doesn't provide the instruction length for software
5045          * exceptions, so don't report them. As long as the guest RIP
5046          * isn't advanced, we should expect to encounter the exception
5047          * again.
5048          */
5049         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5050                 events->exception.injected = 0;
5051                 events->exception.pending = 0;
5052         } else {
5053                 events->exception.injected = vcpu->arch.exception.injected;
5054                 events->exception.pending = vcpu->arch.exception.pending;
5055                 /*
5056                  * For ABI compatibility, deliberately conflate
5057                  * pending and injected exceptions when
5058                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5059                  */
5060                 if (!vcpu->kvm->arch.exception_payload_enabled)
5061                         events->exception.injected |=
5062                                 vcpu->arch.exception.pending;
5063         }
5064         events->exception.nr = vcpu->arch.exception.nr;
5065         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5066         events->exception.error_code = vcpu->arch.exception.error_code;
5067         events->exception_has_payload = vcpu->arch.exception.has_payload;
5068         events->exception_payload = vcpu->arch.exception.payload;
5069
5070         events->interrupt.injected =
5071                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5072         events->interrupt.nr = vcpu->arch.interrupt.nr;
5073         events->interrupt.soft = 0;
5074         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5075
5076         events->nmi.injected = vcpu->arch.nmi_injected;
5077         events->nmi.pending = vcpu->arch.nmi_pending != 0;
5078         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5079         events->nmi.pad = 0;
5080
5081         events->sipi_vector = 0; /* never valid when reporting to user space */
5082
5083         events->smi.smm = is_smm(vcpu);
5084         events->smi.pending = vcpu->arch.smi_pending;
5085         events->smi.smm_inside_nmi =
5086                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5087         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5088
5089         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5090                          | KVM_VCPUEVENT_VALID_SHADOW
5091                          | KVM_VCPUEVENT_VALID_SMM);
5092         if (vcpu->kvm->arch.exception_payload_enabled)
5093                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5094         if (vcpu->kvm->arch.triple_fault_event) {
5095                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5096                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5097         }
5098
5099         memset(&events->reserved, 0, sizeof(events->reserved));
5100 }
5101
5102 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5103
5104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5105                                               struct kvm_vcpu_events *events)
5106 {
5107         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5108                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5109                               | KVM_VCPUEVENT_VALID_SHADOW
5110                               | KVM_VCPUEVENT_VALID_SMM
5111                               | KVM_VCPUEVENT_VALID_PAYLOAD
5112                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5113                 return -EINVAL;
5114
5115         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5116                 if (!vcpu->kvm->arch.exception_payload_enabled)
5117                         return -EINVAL;
5118                 if (events->exception.pending)
5119                         events->exception.injected = 0;
5120                 else
5121                         events->exception_has_payload = 0;
5122         } else {
5123                 events->exception.pending = 0;
5124                 events->exception_has_payload = 0;
5125         }
5126
5127         if ((events->exception.injected || events->exception.pending) &&
5128             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5129                 return -EINVAL;
5130
5131         /* INITs are latched while in SMM */
5132         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5133             (events->smi.smm || events->smi.pending) &&
5134             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5135                 return -EINVAL;
5136
5137         process_nmi(vcpu);
5138         vcpu->arch.exception.injected = events->exception.injected;
5139         vcpu->arch.exception.pending = events->exception.pending;
5140         vcpu->arch.exception.nr = events->exception.nr;
5141         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5142         vcpu->arch.exception.error_code = events->exception.error_code;
5143         vcpu->arch.exception.has_payload = events->exception_has_payload;
5144         vcpu->arch.exception.payload = events->exception_payload;
5145
5146         vcpu->arch.interrupt.injected = events->interrupt.injected;
5147         vcpu->arch.interrupt.nr = events->interrupt.nr;
5148         vcpu->arch.interrupt.soft = events->interrupt.soft;
5149         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5150                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5151                                                 events->interrupt.shadow);
5152
5153         vcpu->arch.nmi_injected = events->nmi.injected;
5154         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5155                 vcpu->arch.nmi_pending = events->nmi.pending;
5156         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5157
5158         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5159             lapic_in_kernel(vcpu))
5160                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5161
5162         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5163                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5164                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
5165                         kvm_smm_changed(vcpu, events->smi.smm);
5166                 }
5167
5168                 vcpu->arch.smi_pending = events->smi.pending;
5169
5170                 if (events->smi.smm) {
5171                         if (events->smi.smm_inside_nmi)
5172                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5173                         else
5174                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5175                 }
5176
5177                 if (lapic_in_kernel(vcpu)) {
5178                         if (events->smi.latched_init)
5179                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5180                         else
5181                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5182                 }
5183         }
5184
5185         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5186                 if (!vcpu->kvm->arch.triple_fault_event)
5187                         return -EINVAL;
5188                 if (events->triple_fault.pending)
5189                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5190                 else
5191                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5192         }
5193
5194         kvm_make_request(KVM_REQ_EVENT, vcpu);
5195
5196         return 0;
5197 }
5198
5199 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5200                                              struct kvm_debugregs *dbgregs)
5201 {
5202         unsigned long val;
5203
5204         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5205         kvm_get_dr(vcpu, 6, &val);
5206         dbgregs->dr6 = val;
5207         dbgregs->dr7 = vcpu->arch.dr7;
5208         dbgregs->flags = 0;
5209         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5210 }
5211
5212 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5213                                             struct kvm_debugregs *dbgregs)
5214 {
5215         if (dbgregs->flags)
5216                 return -EINVAL;
5217
5218         if (!kvm_dr6_valid(dbgregs->dr6))
5219                 return -EINVAL;
5220         if (!kvm_dr7_valid(dbgregs->dr7))
5221                 return -EINVAL;
5222
5223         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5224         kvm_update_dr0123(vcpu);
5225         vcpu->arch.dr6 = dbgregs->dr6;
5226         vcpu->arch.dr7 = dbgregs->dr7;
5227         kvm_update_dr7(vcpu);
5228
5229         return 0;
5230 }
5231
5232 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5233                                          struct kvm_xsave *guest_xsave)
5234 {
5235         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5236                 return;
5237
5238         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5239                                        guest_xsave->region,
5240                                        sizeof(guest_xsave->region),
5241                                        vcpu->arch.pkru);
5242 }
5243
5244 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5245                                           u8 *state, unsigned int size)
5246 {
5247         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5248                 return;
5249
5250         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5251                                        state, size, vcpu->arch.pkru);
5252 }
5253
5254 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5255                                         struct kvm_xsave *guest_xsave)
5256 {
5257         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5258                 return 0;
5259
5260         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5261                                               guest_xsave->region,
5262                                               kvm_caps.supported_xcr0,
5263                                               &vcpu->arch.pkru);
5264 }
5265
5266 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5267                                         struct kvm_xcrs *guest_xcrs)
5268 {
5269         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5270                 guest_xcrs->nr_xcrs = 0;
5271                 return;
5272         }
5273
5274         guest_xcrs->nr_xcrs = 1;
5275         guest_xcrs->flags = 0;
5276         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5277         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5278 }
5279
5280 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5281                                        struct kvm_xcrs *guest_xcrs)
5282 {
5283         int i, r = 0;
5284
5285         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5286                 return -EINVAL;
5287
5288         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5289                 return -EINVAL;
5290
5291         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5292                 /* Only support XCR0 currently */
5293                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5294                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5295                                 guest_xcrs->xcrs[i].value);
5296                         break;
5297                 }
5298         if (r)
5299                 r = -EINVAL;
5300         return r;
5301 }
5302
5303 /*
5304  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5305  * stopped by the hypervisor.  This function will be called from the host only.
5306  * EINVAL is returned when the host attempts to set the flag for a guest that
5307  * does not support pv clocks.
5308  */
5309 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5310 {
5311         if (!vcpu->arch.pv_time.active)
5312                 return -EINVAL;
5313         vcpu->arch.pvclock_set_guest_stopped_request = true;
5314         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5315         return 0;
5316 }
5317
5318 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5319                                  struct kvm_device_attr *attr)
5320 {
5321         int r;
5322
5323         switch (attr->attr) {
5324         case KVM_VCPU_TSC_OFFSET:
5325                 r = 0;
5326                 break;
5327         default:
5328                 r = -ENXIO;
5329         }
5330
5331         return r;
5332 }
5333
5334 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5335                                  struct kvm_device_attr *attr)
5336 {
5337         u64 __user *uaddr = kvm_get_attr_addr(attr);
5338         int r;
5339
5340         if (IS_ERR(uaddr))
5341                 return PTR_ERR(uaddr);
5342
5343         switch (attr->attr) {
5344         case KVM_VCPU_TSC_OFFSET:
5345                 r = -EFAULT;
5346                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5347                         break;
5348                 r = 0;
5349                 break;
5350         default:
5351                 r = -ENXIO;
5352         }
5353
5354         return r;
5355 }
5356
5357 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5358                                  struct kvm_device_attr *attr)
5359 {
5360         u64 __user *uaddr = kvm_get_attr_addr(attr);
5361         struct kvm *kvm = vcpu->kvm;
5362         int r;
5363
5364         if (IS_ERR(uaddr))
5365                 return PTR_ERR(uaddr);
5366
5367         switch (attr->attr) {
5368         case KVM_VCPU_TSC_OFFSET: {
5369                 u64 offset, tsc, ns;
5370                 unsigned long flags;
5371                 bool matched;
5372
5373                 r = -EFAULT;
5374                 if (get_user(offset, uaddr))
5375                         break;
5376
5377                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5378
5379                 matched = (vcpu->arch.virtual_tsc_khz &&
5380                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5381                            kvm->arch.last_tsc_offset == offset);
5382
5383                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5384                 ns = get_kvmclock_base_ns();
5385
5386                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5387                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5388
5389                 r = 0;
5390                 break;
5391         }
5392         default:
5393                 r = -ENXIO;
5394         }
5395
5396         return r;
5397 }
5398
5399 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5400                                       unsigned int ioctl,
5401                                       void __user *argp)
5402 {
5403         struct kvm_device_attr attr;
5404         int r;
5405
5406         if (copy_from_user(&attr, argp, sizeof(attr)))
5407                 return -EFAULT;
5408
5409         if (attr.group != KVM_VCPU_TSC_CTRL)
5410                 return -ENXIO;
5411
5412         switch (ioctl) {
5413         case KVM_HAS_DEVICE_ATTR:
5414                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5415                 break;
5416         case KVM_GET_DEVICE_ATTR:
5417                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5418                 break;
5419         case KVM_SET_DEVICE_ATTR:
5420                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5421                 break;
5422         }
5423
5424         return r;
5425 }
5426
5427 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5428                                      struct kvm_enable_cap *cap)
5429 {
5430         int r;
5431         uint16_t vmcs_version;
5432         void __user *user_ptr;
5433
5434         if (cap->flags)
5435                 return -EINVAL;
5436
5437         switch (cap->cap) {
5438         case KVM_CAP_HYPERV_SYNIC2:
5439                 if (cap->args[0])
5440                         return -EINVAL;
5441                 fallthrough;
5442
5443         case KVM_CAP_HYPERV_SYNIC:
5444                 if (!irqchip_in_kernel(vcpu->kvm))
5445                         return -EINVAL;
5446                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5447                                              KVM_CAP_HYPERV_SYNIC2);
5448         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5449                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5450                         return -ENOTTY;
5451                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5452                 if (!r) {
5453                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5454                         if (copy_to_user(user_ptr, &vmcs_version,
5455                                          sizeof(vmcs_version)))
5456                                 r = -EFAULT;
5457                 }
5458                 return r;
5459         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5460                 if (!kvm_x86_ops.enable_direct_tlbflush)
5461                         return -ENOTTY;
5462
5463                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5464
5465         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5466                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5467
5468         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5469                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5470                 if (vcpu->arch.pv_cpuid.enforce)
5471                         kvm_update_pv_runtime(vcpu);
5472
5473                 return 0;
5474         default:
5475                 return -EINVAL;
5476         }
5477 }
5478
5479 long kvm_arch_vcpu_ioctl(struct file *filp,
5480                          unsigned int ioctl, unsigned long arg)
5481 {
5482         struct kvm_vcpu *vcpu = filp->private_data;
5483         void __user *argp = (void __user *)arg;
5484         int r;
5485         union {
5486                 struct kvm_sregs2 *sregs2;
5487                 struct kvm_lapic_state *lapic;
5488                 struct kvm_xsave *xsave;
5489                 struct kvm_xcrs *xcrs;
5490                 void *buffer;
5491         } u;
5492
5493         vcpu_load(vcpu);
5494
5495         u.buffer = NULL;
5496         switch (ioctl) {
5497         case KVM_GET_LAPIC: {
5498                 r = -EINVAL;
5499                 if (!lapic_in_kernel(vcpu))
5500                         goto out;
5501                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5502                                 GFP_KERNEL_ACCOUNT);
5503
5504                 r = -ENOMEM;
5505                 if (!u.lapic)
5506                         goto out;
5507                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5508                 if (r)
5509                         goto out;
5510                 r = -EFAULT;
5511                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5512                         goto out;
5513                 r = 0;
5514                 break;
5515         }
5516         case KVM_SET_LAPIC: {
5517                 r = -EINVAL;
5518                 if (!lapic_in_kernel(vcpu))
5519                         goto out;
5520                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5521                 if (IS_ERR(u.lapic)) {
5522                         r = PTR_ERR(u.lapic);
5523                         goto out_nofree;
5524                 }
5525
5526                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5527                 break;
5528         }
5529         case KVM_INTERRUPT: {
5530                 struct kvm_interrupt irq;
5531
5532                 r = -EFAULT;
5533                 if (copy_from_user(&irq, argp, sizeof(irq)))
5534                         goto out;
5535                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5536                 break;
5537         }
5538         case KVM_NMI: {
5539                 r = kvm_vcpu_ioctl_nmi(vcpu);
5540                 break;
5541         }
5542         case KVM_SMI: {
5543                 r = kvm_vcpu_ioctl_smi(vcpu);
5544                 break;
5545         }
5546         case KVM_SET_CPUID: {
5547                 struct kvm_cpuid __user *cpuid_arg = argp;
5548                 struct kvm_cpuid cpuid;
5549
5550                 r = -EFAULT;
5551                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5552                         goto out;
5553                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5554                 break;
5555         }
5556         case KVM_SET_CPUID2: {
5557                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5558                 struct kvm_cpuid2 cpuid;
5559
5560                 r = -EFAULT;
5561                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5562                         goto out;
5563                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5564                                               cpuid_arg->entries);
5565                 break;
5566         }
5567         case KVM_GET_CPUID2: {
5568                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5569                 struct kvm_cpuid2 cpuid;
5570
5571                 r = -EFAULT;
5572                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5573                         goto out;
5574                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5575                                               cpuid_arg->entries);
5576                 if (r)
5577                         goto out;
5578                 r = -EFAULT;
5579                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5580                         goto out;
5581                 r = 0;
5582                 break;
5583         }
5584         case KVM_GET_MSRS: {
5585                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5586                 r = msr_io(vcpu, argp, do_get_msr, 1);
5587                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5588                 break;
5589         }
5590         case KVM_SET_MSRS: {
5591                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5592                 r = msr_io(vcpu, argp, do_set_msr, 0);
5593                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5594                 break;
5595         }
5596         case KVM_TPR_ACCESS_REPORTING: {
5597                 struct kvm_tpr_access_ctl tac;
5598
5599                 r = -EFAULT;
5600                 if (copy_from_user(&tac, argp, sizeof(tac)))
5601                         goto out;
5602                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5603                 if (r)
5604                         goto out;
5605                 r = -EFAULT;
5606                 if (copy_to_user(argp, &tac, sizeof(tac)))
5607                         goto out;
5608                 r = 0;
5609                 break;
5610         };
5611         case KVM_SET_VAPIC_ADDR: {
5612                 struct kvm_vapic_addr va;
5613                 int idx;
5614
5615                 r = -EINVAL;
5616                 if (!lapic_in_kernel(vcpu))
5617                         goto out;
5618                 r = -EFAULT;
5619                 if (copy_from_user(&va, argp, sizeof(va)))
5620                         goto out;
5621                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5622                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5623                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5624                 break;
5625         }
5626         case KVM_X86_SETUP_MCE: {
5627                 u64 mcg_cap;
5628
5629                 r = -EFAULT;
5630                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5631                         goto out;
5632                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5633                 break;
5634         }
5635         case KVM_X86_SET_MCE: {
5636                 struct kvm_x86_mce mce;
5637
5638                 r = -EFAULT;
5639                 if (copy_from_user(&mce, argp, sizeof(mce)))
5640                         goto out;
5641                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5642                 break;
5643         }
5644         case KVM_GET_VCPU_EVENTS: {
5645                 struct kvm_vcpu_events events;
5646
5647                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5648
5649                 r = -EFAULT;
5650                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5651                         break;
5652                 r = 0;
5653                 break;
5654         }
5655         case KVM_SET_VCPU_EVENTS: {
5656                 struct kvm_vcpu_events events;
5657
5658                 r = -EFAULT;
5659                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5660                         break;
5661
5662                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5663                 break;
5664         }
5665         case KVM_GET_DEBUGREGS: {
5666                 struct kvm_debugregs dbgregs;
5667
5668                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5669
5670                 r = -EFAULT;
5671                 if (copy_to_user(argp, &dbgregs,
5672                                  sizeof(struct kvm_debugregs)))
5673                         break;
5674                 r = 0;
5675                 break;
5676         }
5677         case KVM_SET_DEBUGREGS: {
5678                 struct kvm_debugregs dbgregs;
5679
5680                 r = -EFAULT;
5681                 if (copy_from_user(&dbgregs, argp,
5682                                    sizeof(struct kvm_debugregs)))
5683                         break;
5684
5685                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5686                 break;
5687         }
5688         case KVM_GET_XSAVE: {
5689                 r = -EINVAL;
5690                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5691                         break;
5692
5693                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5694                 r = -ENOMEM;
5695                 if (!u.xsave)
5696                         break;
5697
5698                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5699
5700                 r = -EFAULT;
5701                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5702                         break;
5703                 r = 0;
5704                 break;
5705         }
5706         case KVM_SET_XSAVE: {
5707                 int size = vcpu->arch.guest_fpu.uabi_size;
5708
5709                 u.xsave = memdup_user(argp, size);
5710                 if (IS_ERR(u.xsave)) {
5711                         r = PTR_ERR(u.xsave);
5712                         goto out_nofree;
5713                 }
5714
5715                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5716                 break;
5717         }
5718
5719         case KVM_GET_XSAVE2: {
5720                 int size = vcpu->arch.guest_fpu.uabi_size;
5721
5722                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5723                 r = -ENOMEM;
5724                 if (!u.xsave)
5725                         break;
5726
5727                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5728
5729                 r = -EFAULT;
5730                 if (copy_to_user(argp, u.xsave, size))
5731                         break;
5732
5733                 r = 0;
5734                 break;
5735         }
5736
5737         case KVM_GET_XCRS: {
5738                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5739                 r = -ENOMEM;
5740                 if (!u.xcrs)
5741                         break;
5742
5743                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5744
5745                 r = -EFAULT;
5746                 if (copy_to_user(argp, u.xcrs,
5747                                  sizeof(struct kvm_xcrs)))
5748                         break;
5749                 r = 0;
5750                 break;
5751         }
5752         case KVM_SET_XCRS: {
5753                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5754                 if (IS_ERR(u.xcrs)) {
5755                         r = PTR_ERR(u.xcrs);
5756                         goto out_nofree;
5757                 }
5758
5759                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5760                 break;
5761         }
5762         case KVM_SET_TSC_KHZ: {
5763                 u32 user_tsc_khz;
5764
5765                 r = -EINVAL;
5766                 user_tsc_khz = (u32)arg;
5767
5768                 if (kvm_caps.has_tsc_control &&
5769                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5770                         goto out;
5771
5772                 if (user_tsc_khz == 0)
5773                         user_tsc_khz = tsc_khz;
5774
5775                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5776                         r = 0;
5777
5778                 goto out;
5779         }
5780         case KVM_GET_TSC_KHZ: {
5781                 r = vcpu->arch.virtual_tsc_khz;
5782                 goto out;
5783         }
5784         case KVM_KVMCLOCK_CTRL: {
5785                 r = kvm_set_guest_paused(vcpu);
5786                 goto out;
5787         }
5788         case KVM_ENABLE_CAP: {
5789                 struct kvm_enable_cap cap;
5790
5791                 r = -EFAULT;
5792                 if (copy_from_user(&cap, argp, sizeof(cap)))
5793                         goto out;
5794                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5795                 break;
5796         }
5797         case KVM_GET_NESTED_STATE: {
5798                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5799                 u32 user_data_size;
5800
5801                 r = -EINVAL;
5802                 if (!kvm_x86_ops.nested_ops->get_state)
5803                         break;
5804
5805                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5806                 r = -EFAULT;
5807                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5808                         break;
5809
5810                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5811                                                      user_data_size);
5812                 if (r < 0)
5813                         break;
5814
5815                 if (r > user_data_size) {
5816                         if (put_user(r, &user_kvm_nested_state->size))
5817                                 r = -EFAULT;
5818                         else
5819                                 r = -E2BIG;
5820                         break;
5821                 }
5822
5823                 r = 0;
5824                 break;
5825         }
5826         case KVM_SET_NESTED_STATE: {
5827                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5828                 struct kvm_nested_state kvm_state;
5829                 int idx;
5830
5831                 r = -EINVAL;
5832                 if (!kvm_x86_ops.nested_ops->set_state)
5833                         break;
5834
5835                 r = -EFAULT;
5836                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5837                         break;
5838
5839                 r = -EINVAL;
5840                 if (kvm_state.size < sizeof(kvm_state))
5841                         break;
5842
5843                 if (kvm_state.flags &
5844                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5845                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5846                       | KVM_STATE_NESTED_GIF_SET))
5847                         break;
5848
5849                 /* nested_run_pending implies guest_mode.  */
5850                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5851                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5852                         break;
5853
5854                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5855                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5856                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5857                 break;
5858         }
5859         case KVM_GET_SUPPORTED_HV_CPUID:
5860                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5861                 break;
5862 #ifdef CONFIG_KVM_XEN
5863         case KVM_XEN_VCPU_GET_ATTR: {
5864                 struct kvm_xen_vcpu_attr xva;
5865
5866                 r = -EFAULT;
5867                 if (copy_from_user(&xva, argp, sizeof(xva)))
5868                         goto out;
5869                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5870                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5871                         r = -EFAULT;
5872                 break;
5873         }
5874         case KVM_XEN_VCPU_SET_ATTR: {
5875                 struct kvm_xen_vcpu_attr xva;
5876
5877                 r = -EFAULT;
5878                 if (copy_from_user(&xva, argp, sizeof(xva)))
5879                         goto out;
5880                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5881                 break;
5882         }
5883 #endif
5884         case KVM_GET_SREGS2: {
5885                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5886                 r = -ENOMEM;
5887                 if (!u.sregs2)
5888                         goto out;
5889                 __get_sregs2(vcpu, u.sregs2);
5890                 r = -EFAULT;
5891                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5892                         goto out;
5893                 r = 0;
5894                 break;
5895         }
5896         case KVM_SET_SREGS2: {
5897                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5898                 if (IS_ERR(u.sregs2)) {
5899                         r = PTR_ERR(u.sregs2);
5900                         u.sregs2 = NULL;
5901                         goto out;
5902                 }
5903                 r = __set_sregs2(vcpu, u.sregs2);
5904                 break;
5905         }
5906         case KVM_HAS_DEVICE_ATTR:
5907         case KVM_GET_DEVICE_ATTR:
5908         case KVM_SET_DEVICE_ATTR:
5909                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5910                 break;
5911         default:
5912                 r = -EINVAL;
5913         }
5914 out:
5915         kfree(u.buffer);
5916 out_nofree:
5917         vcpu_put(vcpu);
5918         return r;
5919 }
5920
5921 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5922 {
5923         return VM_FAULT_SIGBUS;
5924 }
5925
5926 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5927 {
5928         int ret;
5929
5930         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5931                 return -EINVAL;
5932         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5933         return ret;
5934 }
5935
5936 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5937                                               u64 ident_addr)
5938 {
5939         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5940 }
5941
5942 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5943                                          unsigned long kvm_nr_mmu_pages)
5944 {
5945         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5946                 return -EINVAL;
5947
5948         mutex_lock(&kvm->slots_lock);
5949
5950         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5951         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5952
5953         mutex_unlock(&kvm->slots_lock);
5954         return 0;
5955 }
5956
5957 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5958 {
5959         return kvm->arch.n_max_mmu_pages;
5960 }
5961
5962 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5963 {
5964         struct kvm_pic *pic = kvm->arch.vpic;
5965         int r;
5966
5967         r = 0;
5968         switch (chip->chip_id) {
5969         case KVM_IRQCHIP_PIC_MASTER:
5970                 memcpy(&chip->chip.pic, &pic->pics[0],
5971                         sizeof(struct kvm_pic_state));
5972                 break;
5973         case KVM_IRQCHIP_PIC_SLAVE:
5974                 memcpy(&chip->chip.pic, &pic->pics[1],
5975                         sizeof(struct kvm_pic_state));
5976                 break;
5977         case KVM_IRQCHIP_IOAPIC:
5978                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5979                 break;
5980         default:
5981                 r = -EINVAL;
5982                 break;
5983         }
5984         return r;
5985 }
5986
5987 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5988 {
5989         struct kvm_pic *pic = kvm->arch.vpic;
5990         int r;
5991
5992         r = 0;
5993         switch (chip->chip_id) {
5994         case KVM_IRQCHIP_PIC_MASTER:
5995                 spin_lock(&pic->lock);
5996                 memcpy(&pic->pics[0], &chip->chip.pic,
5997                         sizeof(struct kvm_pic_state));
5998                 spin_unlock(&pic->lock);
5999                 break;
6000         case KVM_IRQCHIP_PIC_SLAVE:
6001                 spin_lock(&pic->lock);
6002                 memcpy(&pic->pics[1], &chip->chip.pic,
6003                         sizeof(struct kvm_pic_state));
6004                 spin_unlock(&pic->lock);
6005                 break;
6006         case KVM_IRQCHIP_IOAPIC:
6007                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6008                 break;
6009         default:
6010                 r = -EINVAL;
6011                 break;
6012         }
6013         kvm_pic_update_irq(pic);
6014         return r;
6015 }
6016
6017 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6018 {
6019         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6020
6021         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6022
6023         mutex_lock(&kps->lock);
6024         memcpy(ps, &kps->channels, sizeof(*ps));
6025         mutex_unlock(&kps->lock);
6026         return 0;
6027 }
6028
6029 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6030 {
6031         int i;
6032         struct kvm_pit *pit = kvm->arch.vpit;
6033
6034         mutex_lock(&pit->pit_state.lock);
6035         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6036         for (i = 0; i < 3; i++)
6037                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6038         mutex_unlock(&pit->pit_state.lock);
6039         return 0;
6040 }
6041
6042 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6043 {
6044         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6045         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6046                 sizeof(ps->channels));
6047         ps->flags = kvm->arch.vpit->pit_state.flags;
6048         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6049         memset(&ps->reserved, 0, sizeof(ps->reserved));
6050         return 0;
6051 }
6052
6053 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6054 {
6055         int start = 0;
6056         int i;
6057         u32 prev_legacy, cur_legacy;
6058         struct kvm_pit *pit = kvm->arch.vpit;
6059
6060         mutex_lock(&pit->pit_state.lock);
6061         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6062         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6063         if (!prev_legacy && cur_legacy)
6064                 start = 1;
6065         memcpy(&pit->pit_state.channels, &ps->channels,
6066                sizeof(pit->pit_state.channels));
6067         pit->pit_state.flags = ps->flags;
6068         for (i = 0; i < 3; i++)
6069                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6070                                    start && i == 0);
6071         mutex_unlock(&pit->pit_state.lock);
6072         return 0;
6073 }
6074
6075 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6076                                  struct kvm_reinject_control *control)
6077 {
6078         struct kvm_pit *pit = kvm->arch.vpit;
6079
6080         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6081          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6082          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6083          */
6084         mutex_lock(&pit->pit_state.lock);
6085         kvm_pit_set_reinject(pit, control->pit_reinject);
6086         mutex_unlock(&pit->pit_state.lock);
6087
6088         return 0;
6089 }
6090
6091 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6092 {
6093
6094         /*
6095          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6096          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6097          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6098          * VM-Exit.
6099          */
6100         struct kvm_vcpu *vcpu;
6101         unsigned long i;
6102
6103         kvm_for_each_vcpu(i, vcpu, kvm)
6104                 kvm_vcpu_kick(vcpu);
6105 }
6106
6107 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6108                         bool line_status)
6109 {
6110         if (!irqchip_in_kernel(kvm))
6111                 return -ENXIO;
6112
6113         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6114                                         irq_event->irq, irq_event->level,
6115                                         line_status);
6116         return 0;
6117 }
6118
6119 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6120                             struct kvm_enable_cap *cap)
6121 {
6122         int r;
6123
6124         if (cap->flags)
6125                 return -EINVAL;
6126
6127         switch (cap->cap) {
6128         case KVM_CAP_DISABLE_QUIRKS2:
6129                 r = -EINVAL;
6130                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6131                         break;
6132                 fallthrough;
6133         case KVM_CAP_DISABLE_QUIRKS:
6134                 kvm->arch.disabled_quirks = cap->args[0];
6135                 r = 0;
6136                 break;
6137         case KVM_CAP_SPLIT_IRQCHIP: {
6138                 mutex_lock(&kvm->lock);
6139                 r = -EINVAL;
6140                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6141                         goto split_irqchip_unlock;
6142                 r = -EEXIST;
6143                 if (irqchip_in_kernel(kvm))
6144                         goto split_irqchip_unlock;
6145                 if (kvm->created_vcpus)
6146                         goto split_irqchip_unlock;
6147                 r = kvm_setup_empty_irq_routing(kvm);
6148                 if (r)
6149                         goto split_irqchip_unlock;
6150                 /* Pairs with irqchip_in_kernel. */
6151                 smp_wmb();
6152                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6153                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6154                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6155                 r = 0;
6156 split_irqchip_unlock:
6157                 mutex_unlock(&kvm->lock);
6158                 break;
6159         }
6160         case KVM_CAP_X2APIC_API:
6161                 r = -EINVAL;
6162                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6163                         break;
6164
6165                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6166                         kvm->arch.x2apic_format = true;
6167                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6168                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6169
6170                 r = 0;
6171                 break;
6172         case KVM_CAP_X86_DISABLE_EXITS:
6173                 r = -EINVAL;
6174                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6175                         break;
6176
6177                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6178                         kvm_can_mwait_in_guest())
6179                         kvm->arch.mwait_in_guest = true;
6180                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6181                         kvm->arch.hlt_in_guest = true;
6182                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6183                         kvm->arch.pause_in_guest = true;
6184                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6185                         kvm->arch.cstate_in_guest = true;
6186                 r = 0;
6187                 break;
6188         case KVM_CAP_MSR_PLATFORM_INFO:
6189                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6190                 r = 0;
6191                 break;
6192         case KVM_CAP_EXCEPTION_PAYLOAD:
6193                 kvm->arch.exception_payload_enabled = cap->args[0];
6194                 r = 0;
6195                 break;
6196         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6197                 kvm->arch.triple_fault_event = cap->args[0];
6198                 r = 0;
6199                 break;
6200         case KVM_CAP_X86_USER_SPACE_MSR:
6201                 r = -EINVAL;
6202                 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6203                                      KVM_MSR_EXIT_REASON_UNKNOWN |
6204                                      KVM_MSR_EXIT_REASON_FILTER))
6205                         break;
6206                 kvm->arch.user_space_msr_mask = cap->args[0];
6207                 r = 0;
6208                 break;
6209         case KVM_CAP_X86_BUS_LOCK_EXIT:
6210                 r = -EINVAL;
6211                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6212                         break;
6213
6214                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6215                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6216                         break;
6217
6218                 if (kvm_caps.has_bus_lock_exit &&
6219                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6220                         kvm->arch.bus_lock_detection_enabled = true;
6221                 r = 0;
6222                 break;
6223 #ifdef CONFIG_X86_SGX_KVM
6224         case KVM_CAP_SGX_ATTRIBUTE: {
6225                 unsigned long allowed_attributes = 0;
6226
6227                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6228                 if (r)
6229                         break;
6230
6231                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6232                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6233                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6234                         kvm->arch.sgx_provisioning_allowed = true;
6235                 else
6236                         r = -EINVAL;
6237                 break;
6238         }
6239 #endif
6240         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6241                 r = -EINVAL;
6242                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6243                         break;
6244
6245                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6246                 break;
6247         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6248                 r = -EINVAL;
6249                 if (!kvm_x86_ops.vm_move_enc_context_from)
6250                         break;
6251
6252                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6253                 break;
6254         case KVM_CAP_EXIT_HYPERCALL:
6255                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6256                         r = -EINVAL;
6257                         break;
6258                 }
6259                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6260                 r = 0;
6261                 break;
6262         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6263                 r = -EINVAL;
6264                 if (cap->args[0] & ~1)
6265                         break;
6266                 kvm->arch.exit_on_emulation_error = cap->args[0];
6267                 r = 0;
6268                 break;
6269         case KVM_CAP_PMU_CAPABILITY:
6270                 r = -EINVAL;
6271                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6272                         break;
6273
6274                 mutex_lock(&kvm->lock);
6275                 if (!kvm->created_vcpus) {
6276                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6277                         r = 0;
6278                 }
6279                 mutex_unlock(&kvm->lock);
6280                 break;
6281         case KVM_CAP_MAX_VCPU_ID:
6282                 r = -EINVAL;
6283                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6284                         break;
6285
6286                 mutex_lock(&kvm->lock);
6287                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6288                         r = 0;
6289                 } else if (!kvm->arch.max_vcpu_ids) {
6290                         kvm->arch.max_vcpu_ids = cap->args[0];
6291                         r = 0;
6292                 }
6293                 mutex_unlock(&kvm->lock);
6294                 break;
6295         case KVM_CAP_X86_NOTIFY_VMEXIT:
6296                 r = -EINVAL;
6297                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6298                         break;
6299                 if (!kvm_caps.has_notify_vmexit)
6300                         break;
6301                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6302                         break;
6303                 mutex_lock(&kvm->lock);
6304                 if (!kvm->created_vcpus) {
6305                         kvm->arch.notify_window = cap->args[0] >> 32;
6306                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6307                         r = 0;
6308                 }
6309                 mutex_unlock(&kvm->lock);
6310                 break;
6311         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6312                 r = -EINVAL;
6313
6314                 /*
6315                  * Since the risk of disabling NX hugepages is a guest crashing
6316                  * the system, ensure the userspace process has permission to
6317                  * reboot the system.
6318                  *
6319                  * Note that unlike the reboot() syscall, the process must have
6320                  * this capability in the root namespace because exposing
6321                  * /dev/kvm into a container does not limit the scope of the
6322                  * iTLB multihit bug to that container. In other words,
6323                  * this must use capable(), not ns_capable().
6324                  */
6325                 if (!capable(CAP_SYS_BOOT)) {
6326                         r = -EPERM;
6327                         break;
6328                 }
6329
6330                 if (cap->args[0])
6331                         break;
6332
6333                 mutex_lock(&kvm->lock);
6334                 if (!kvm->created_vcpus) {
6335                         kvm->arch.disable_nx_huge_pages = true;
6336                         r = 0;
6337                 }
6338                 mutex_unlock(&kvm->lock);
6339                 break;
6340         default:
6341                 r = -EINVAL;
6342                 break;
6343         }
6344         return r;
6345 }
6346
6347 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6348 {
6349         struct kvm_x86_msr_filter *msr_filter;
6350
6351         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6352         if (!msr_filter)
6353                 return NULL;
6354
6355         msr_filter->default_allow = default_allow;
6356         return msr_filter;
6357 }
6358
6359 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6360 {
6361         u32 i;
6362
6363         if (!msr_filter)
6364                 return;
6365
6366         for (i = 0; i < msr_filter->count; i++)
6367                 kfree(msr_filter->ranges[i].bitmap);
6368
6369         kfree(msr_filter);
6370 }
6371
6372 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6373                               struct kvm_msr_filter_range *user_range)
6374 {
6375         unsigned long *bitmap = NULL;
6376         size_t bitmap_size;
6377
6378         if (!user_range->nmsrs)
6379                 return 0;
6380
6381         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6382                 return -EINVAL;
6383
6384         if (!user_range->flags)
6385                 return -EINVAL;
6386
6387         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6388         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6389                 return -EINVAL;
6390
6391         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6392         if (IS_ERR(bitmap))
6393                 return PTR_ERR(bitmap);
6394
6395         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6396                 .flags = user_range->flags,
6397                 .base = user_range->base,
6398                 .nmsrs = user_range->nmsrs,
6399                 .bitmap = bitmap,
6400         };
6401
6402         msr_filter->count++;
6403         return 0;
6404 }
6405
6406 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6407 {
6408         struct kvm_msr_filter __user *user_msr_filter = argp;
6409         struct kvm_x86_msr_filter *new_filter, *old_filter;
6410         struct kvm_msr_filter filter;
6411         bool default_allow;
6412         bool empty = true;
6413         int r = 0;
6414         u32 i;
6415
6416         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6417                 return -EFAULT;
6418
6419         if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6420                 return -EINVAL;
6421
6422         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6423                 empty &= !filter.ranges[i].nmsrs;
6424
6425         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6426         if (empty && !default_allow)
6427                 return -EINVAL;
6428
6429         new_filter = kvm_alloc_msr_filter(default_allow);
6430         if (!new_filter)
6431                 return -ENOMEM;
6432
6433         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6434                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6435                 if (r) {
6436                         kvm_free_msr_filter(new_filter);
6437                         return r;
6438                 }
6439         }
6440
6441         mutex_lock(&kvm->lock);
6442
6443         /* The per-VM filter is protected by kvm->lock... */
6444         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6445
6446         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6447         synchronize_srcu(&kvm->srcu);
6448
6449         kvm_free_msr_filter(old_filter);
6450
6451         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6452         mutex_unlock(&kvm->lock);
6453
6454         return 0;
6455 }
6456
6457 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6458 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6459 {
6460         struct kvm_vcpu *vcpu;
6461         unsigned long i;
6462         int ret = 0;
6463
6464         mutex_lock(&kvm->lock);
6465         kvm_for_each_vcpu(i, vcpu, kvm) {
6466                 if (!vcpu->arch.pv_time.active)
6467                         continue;
6468
6469                 ret = kvm_set_guest_paused(vcpu);
6470                 if (ret) {
6471                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6472                                 vcpu->vcpu_id, ret);
6473                         break;
6474                 }
6475         }
6476         mutex_unlock(&kvm->lock);
6477
6478         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6479 }
6480
6481 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6482 {
6483         switch (state) {
6484         case PM_HIBERNATION_PREPARE:
6485         case PM_SUSPEND_PREPARE:
6486                 return kvm_arch_suspend_notifier(kvm);
6487         }
6488
6489         return NOTIFY_DONE;
6490 }
6491 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6492
6493 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6494 {
6495         struct kvm_clock_data data = { 0 };
6496
6497         get_kvmclock(kvm, &data);
6498         if (copy_to_user(argp, &data, sizeof(data)))
6499                 return -EFAULT;
6500
6501         return 0;
6502 }
6503
6504 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6505 {
6506         struct kvm_arch *ka = &kvm->arch;
6507         struct kvm_clock_data data;
6508         u64 now_raw_ns;
6509
6510         if (copy_from_user(&data, argp, sizeof(data)))
6511                 return -EFAULT;
6512
6513         /*
6514          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6515          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6516          */
6517         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6518                 return -EINVAL;
6519
6520         kvm_hv_request_tsc_page_update(kvm);
6521         kvm_start_pvclock_update(kvm);
6522         pvclock_update_vm_gtod_copy(kvm);
6523
6524         /*
6525          * This pairs with kvm_guest_time_update(): when masterclock is
6526          * in use, we use master_kernel_ns + kvmclock_offset to set
6527          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6528          * is slightly ahead) here we risk going negative on unsigned
6529          * 'system_time' when 'data.clock' is very small.
6530          */
6531         if (data.flags & KVM_CLOCK_REALTIME) {
6532                 u64 now_real_ns = ktime_get_real_ns();
6533
6534                 /*
6535                  * Avoid stepping the kvmclock backwards.
6536                  */
6537                 if (now_real_ns > data.realtime)
6538                         data.clock += now_real_ns - data.realtime;
6539         }
6540
6541         if (ka->use_master_clock)
6542                 now_raw_ns = ka->master_kernel_ns;
6543         else
6544                 now_raw_ns = get_kvmclock_base_ns();
6545         ka->kvmclock_offset = data.clock - now_raw_ns;
6546         kvm_end_pvclock_update(kvm);
6547         return 0;
6548 }
6549
6550 long kvm_arch_vm_ioctl(struct file *filp,
6551                        unsigned int ioctl, unsigned long arg)
6552 {
6553         struct kvm *kvm = filp->private_data;
6554         void __user *argp = (void __user *)arg;
6555         int r = -ENOTTY;
6556         /*
6557          * This union makes it completely explicit to gcc-3.x
6558          * that these two variables' stack usage should be
6559          * combined, not added together.
6560          */
6561         union {
6562                 struct kvm_pit_state ps;
6563                 struct kvm_pit_state2 ps2;
6564                 struct kvm_pit_config pit_config;
6565         } u;
6566
6567         switch (ioctl) {
6568         case KVM_SET_TSS_ADDR:
6569                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6570                 break;
6571         case KVM_SET_IDENTITY_MAP_ADDR: {
6572                 u64 ident_addr;
6573
6574                 mutex_lock(&kvm->lock);
6575                 r = -EINVAL;
6576                 if (kvm->created_vcpus)
6577                         goto set_identity_unlock;
6578                 r = -EFAULT;
6579                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6580                         goto set_identity_unlock;
6581                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6582 set_identity_unlock:
6583                 mutex_unlock(&kvm->lock);
6584                 break;
6585         }
6586         case KVM_SET_NR_MMU_PAGES:
6587                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6588                 break;
6589         case KVM_GET_NR_MMU_PAGES:
6590                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6591                 break;
6592         case KVM_CREATE_IRQCHIP: {
6593                 mutex_lock(&kvm->lock);
6594
6595                 r = -EEXIST;
6596                 if (irqchip_in_kernel(kvm))
6597                         goto create_irqchip_unlock;
6598
6599                 r = -EINVAL;
6600                 if (kvm->created_vcpus)
6601                         goto create_irqchip_unlock;
6602
6603                 r = kvm_pic_init(kvm);
6604                 if (r)
6605                         goto create_irqchip_unlock;
6606
6607                 r = kvm_ioapic_init(kvm);
6608                 if (r) {
6609                         kvm_pic_destroy(kvm);
6610                         goto create_irqchip_unlock;
6611                 }
6612
6613                 r = kvm_setup_default_irq_routing(kvm);
6614                 if (r) {
6615                         kvm_ioapic_destroy(kvm);
6616                         kvm_pic_destroy(kvm);
6617                         goto create_irqchip_unlock;
6618                 }
6619                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6620                 smp_wmb();
6621                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6622                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6623         create_irqchip_unlock:
6624                 mutex_unlock(&kvm->lock);
6625                 break;
6626         }
6627         case KVM_CREATE_PIT:
6628                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6629                 goto create_pit;
6630         case KVM_CREATE_PIT2:
6631                 r = -EFAULT;
6632                 if (copy_from_user(&u.pit_config, argp,
6633                                    sizeof(struct kvm_pit_config)))
6634                         goto out;
6635         create_pit:
6636                 mutex_lock(&kvm->lock);
6637                 r = -EEXIST;
6638                 if (kvm->arch.vpit)
6639                         goto create_pit_unlock;
6640                 r = -ENOMEM;
6641                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6642                 if (kvm->arch.vpit)
6643                         r = 0;
6644         create_pit_unlock:
6645                 mutex_unlock(&kvm->lock);
6646                 break;
6647         case KVM_GET_IRQCHIP: {
6648                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6649                 struct kvm_irqchip *chip;
6650
6651                 chip = memdup_user(argp, sizeof(*chip));
6652                 if (IS_ERR(chip)) {
6653                         r = PTR_ERR(chip);
6654                         goto out;
6655                 }
6656
6657                 r = -ENXIO;
6658                 if (!irqchip_kernel(kvm))
6659                         goto get_irqchip_out;
6660                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6661                 if (r)
6662                         goto get_irqchip_out;
6663                 r = -EFAULT;
6664                 if (copy_to_user(argp, chip, sizeof(*chip)))
6665                         goto get_irqchip_out;
6666                 r = 0;
6667         get_irqchip_out:
6668                 kfree(chip);
6669                 break;
6670         }
6671         case KVM_SET_IRQCHIP: {
6672                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6673                 struct kvm_irqchip *chip;
6674
6675                 chip = memdup_user(argp, sizeof(*chip));
6676                 if (IS_ERR(chip)) {
6677                         r = PTR_ERR(chip);
6678                         goto out;
6679                 }
6680
6681                 r = -ENXIO;
6682                 if (!irqchip_kernel(kvm))
6683                         goto set_irqchip_out;
6684                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6685         set_irqchip_out:
6686                 kfree(chip);
6687                 break;
6688         }
6689         case KVM_GET_PIT: {
6690                 r = -EFAULT;
6691                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6692                         goto out;
6693                 r = -ENXIO;
6694                 if (!kvm->arch.vpit)
6695                         goto out;
6696                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6697                 if (r)
6698                         goto out;
6699                 r = -EFAULT;
6700                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6701                         goto out;
6702                 r = 0;
6703                 break;
6704         }
6705         case KVM_SET_PIT: {
6706                 r = -EFAULT;
6707                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6708                         goto out;
6709                 mutex_lock(&kvm->lock);
6710                 r = -ENXIO;
6711                 if (!kvm->arch.vpit)
6712                         goto set_pit_out;
6713                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6714 set_pit_out:
6715                 mutex_unlock(&kvm->lock);
6716                 break;
6717         }
6718         case KVM_GET_PIT2: {
6719                 r = -ENXIO;
6720                 if (!kvm->arch.vpit)
6721                         goto out;
6722                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6723                 if (r)
6724                         goto out;
6725                 r = -EFAULT;
6726                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6727                         goto out;
6728                 r = 0;
6729                 break;
6730         }
6731         case KVM_SET_PIT2: {
6732                 r = -EFAULT;
6733                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6734                         goto out;
6735                 mutex_lock(&kvm->lock);
6736                 r = -ENXIO;
6737                 if (!kvm->arch.vpit)
6738                         goto set_pit2_out;
6739                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6740 set_pit2_out:
6741                 mutex_unlock(&kvm->lock);
6742                 break;
6743         }
6744         case KVM_REINJECT_CONTROL: {
6745                 struct kvm_reinject_control control;
6746                 r =  -EFAULT;
6747                 if (copy_from_user(&control, argp, sizeof(control)))
6748                         goto out;
6749                 r = -ENXIO;
6750                 if (!kvm->arch.vpit)
6751                         goto out;
6752                 r = kvm_vm_ioctl_reinject(kvm, &control);
6753                 break;
6754         }
6755         case KVM_SET_BOOT_CPU_ID:
6756                 r = 0;
6757                 mutex_lock(&kvm->lock);
6758                 if (kvm->created_vcpus)
6759                         r = -EBUSY;
6760                 else
6761                         kvm->arch.bsp_vcpu_id = arg;
6762                 mutex_unlock(&kvm->lock);
6763                 break;
6764 #ifdef CONFIG_KVM_XEN
6765         case KVM_XEN_HVM_CONFIG: {
6766                 struct kvm_xen_hvm_config xhc;
6767                 r = -EFAULT;
6768                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6769                         goto out;
6770                 r = kvm_xen_hvm_config(kvm, &xhc);
6771                 break;
6772         }
6773         case KVM_XEN_HVM_GET_ATTR: {
6774                 struct kvm_xen_hvm_attr xha;
6775
6776                 r = -EFAULT;
6777                 if (copy_from_user(&xha, argp, sizeof(xha)))
6778                         goto out;
6779                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6780                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6781                         r = -EFAULT;
6782                 break;
6783         }
6784         case KVM_XEN_HVM_SET_ATTR: {
6785                 struct kvm_xen_hvm_attr xha;
6786
6787                 r = -EFAULT;
6788                 if (copy_from_user(&xha, argp, sizeof(xha)))
6789                         goto out;
6790                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6791                 break;
6792         }
6793         case KVM_XEN_HVM_EVTCHN_SEND: {
6794                 struct kvm_irq_routing_xen_evtchn uxe;
6795
6796                 r = -EFAULT;
6797                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6798                         goto out;
6799                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6800                 break;
6801         }
6802 #endif
6803         case KVM_SET_CLOCK:
6804                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6805                 break;
6806         case KVM_GET_CLOCK:
6807                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6808                 break;
6809         case KVM_SET_TSC_KHZ: {
6810                 u32 user_tsc_khz;
6811
6812                 r = -EINVAL;
6813                 user_tsc_khz = (u32)arg;
6814
6815                 if (kvm_caps.has_tsc_control &&
6816                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6817                         goto out;
6818
6819                 if (user_tsc_khz == 0)
6820                         user_tsc_khz = tsc_khz;
6821
6822                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6823                 r = 0;
6824
6825                 goto out;
6826         }
6827         case KVM_GET_TSC_KHZ: {
6828                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6829                 goto out;
6830         }
6831         case KVM_MEMORY_ENCRYPT_OP: {
6832                 r = -ENOTTY;
6833                 if (!kvm_x86_ops.mem_enc_ioctl)
6834                         goto out;
6835
6836                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6837                 break;
6838         }
6839         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6840                 struct kvm_enc_region region;
6841
6842                 r = -EFAULT;
6843                 if (copy_from_user(&region, argp, sizeof(region)))
6844                         goto out;
6845
6846                 r = -ENOTTY;
6847                 if (!kvm_x86_ops.mem_enc_register_region)
6848                         goto out;
6849
6850                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6851                 break;
6852         }
6853         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6854                 struct kvm_enc_region region;
6855
6856                 r = -EFAULT;
6857                 if (copy_from_user(&region, argp, sizeof(region)))
6858                         goto out;
6859
6860                 r = -ENOTTY;
6861                 if (!kvm_x86_ops.mem_enc_unregister_region)
6862                         goto out;
6863
6864                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6865                 break;
6866         }
6867         case KVM_HYPERV_EVENTFD: {
6868                 struct kvm_hyperv_eventfd hvevfd;
6869
6870                 r = -EFAULT;
6871                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6872                         goto out;
6873                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6874                 break;
6875         }
6876         case KVM_SET_PMU_EVENT_FILTER:
6877                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6878                 break;
6879         case KVM_X86_SET_MSR_FILTER:
6880                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6881                 break;
6882         default:
6883                 r = -ENOTTY;
6884         }
6885 out:
6886         return r;
6887 }
6888
6889 static void kvm_init_msr_list(void)
6890 {
6891         u32 dummy[2];
6892         unsigned i;
6893
6894         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6895                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6896
6897         num_msrs_to_save = 0;
6898         num_emulated_msrs = 0;
6899         num_msr_based_features = 0;
6900
6901         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6902                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6903                         continue;
6904
6905                 /*
6906                  * Even MSRs that are valid in the host may not be exposed
6907                  * to the guests in some cases.
6908                  */
6909                 switch (msrs_to_save_all[i]) {
6910                 case MSR_IA32_BNDCFGS:
6911                         if (!kvm_mpx_supported())
6912                                 continue;
6913                         break;
6914                 case MSR_TSC_AUX:
6915                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6916                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6917                                 continue;
6918                         break;
6919                 case MSR_IA32_UMWAIT_CONTROL:
6920                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6921                                 continue;
6922                         break;
6923                 case MSR_IA32_RTIT_CTL:
6924                 case MSR_IA32_RTIT_STATUS:
6925                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6926                                 continue;
6927                         break;
6928                 case MSR_IA32_RTIT_CR3_MATCH:
6929                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6930                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6931                                 continue;
6932                         break;
6933                 case MSR_IA32_RTIT_OUTPUT_BASE:
6934                 case MSR_IA32_RTIT_OUTPUT_MASK:
6935                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6936                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6937                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6938                                 continue;
6939                         break;
6940                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6941                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6942                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6943                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6944                                 continue;
6945                         break;
6946                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6947                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6948                             min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6949                                 continue;
6950                         break;
6951                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6952                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6953                             min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6954                                 continue;
6955                         break;
6956                 case MSR_IA32_XFD:
6957                 case MSR_IA32_XFD_ERR:
6958                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6959                                 continue;
6960                         break;
6961                 default:
6962                         break;
6963                 }
6964
6965                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6966         }
6967
6968         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6969                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6970                         continue;
6971
6972                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6973         }
6974
6975         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6976                 struct kvm_msr_entry msr;
6977
6978                 msr.index = msr_based_features_all[i];
6979                 if (kvm_get_msr_feature(&msr))
6980                         continue;
6981
6982                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6983         }
6984 }
6985
6986 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6987                            const void *v)
6988 {
6989         int handled = 0;
6990         int n;
6991
6992         do {
6993                 n = min(len, 8);
6994                 if (!(lapic_in_kernel(vcpu) &&
6995                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6996                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6997                         break;
6998                 handled += n;
6999                 addr += n;
7000                 len -= n;
7001                 v += n;
7002         } while (len);
7003
7004         return handled;
7005 }
7006
7007 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7008 {
7009         int handled = 0;
7010         int n;
7011
7012         do {
7013                 n = min(len, 8);
7014                 if (!(lapic_in_kernel(vcpu) &&
7015                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7016                                          addr, n, v))
7017                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7018                         break;
7019                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7020                 handled += n;
7021                 addr += n;
7022                 len -= n;
7023                 v += n;
7024         } while (len);
7025
7026         return handled;
7027 }
7028
7029 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7030                         struct kvm_segment *var, int seg)
7031 {
7032         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7033 }
7034
7035 void kvm_get_segment(struct kvm_vcpu *vcpu,
7036                      struct kvm_segment *var, int seg)
7037 {
7038         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7039 }
7040
7041 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7042                            struct x86_exception *exception)
7043 {
7044         struct kvm_mmu *mmu = vcpu->arch.mmu;
7045         gpa_t t_gpa;
7046
7047         BUG_ON(!mmu_is_nested(vcpu));
7048
7049         /* NPT walks are always user-walks */
7050         access |= PFERR_USER_MASK;
7051         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7052
7053         return t_gpa;
7054 }
7055
7056 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7057                               struct x86_exception *exception)
7058 {
7059         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7060
7061         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7062         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7063 }
7064 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7065
7066  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7067                                 struct x86_exception *exception)
7068 {
7069         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7070
7071         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7072         access |= PFERR_FETCH_MASK;
7073         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7074 }
7075
7076 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7077                                struct x86_exception *exception)
7078 {
7079         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7080
7081         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7082         access |= PFERR_WRITE_MASK;
7083         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7084 }
7085 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7086
7087 /* uses this to access any guest's mapped memory without checking CPL */
7088 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7089                                 struct x86_exception *exception)
7090 {
7091         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7092
7093         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7094 }
7095
7096 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7097                                       struct kvm_vcpu *vcpu, u64 access,
7098                                       struct x86_exception *exception)
7099 {
7100         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7101         void *data = val;
7102         int r = X86EMUL_CONTINUE;
7103
7104         while (bytes) {
7105                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7106                 unsigned offset = addr & (PAGE_SIZE-1);
7107                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7108                 int ret;
7109
7110                 if (gpa == INVALID_GPA)
7111                         return X86EMUL_PROPAGATE_FAULT;
7112                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7113                                                offset, toread);
7114                 if (ret < 0) {
7115                         r = X86EMUL_IO_NEEDED;
7116                         goto out;
7117                 }
7118
7119                 bytes -= toread;
7120                 data += toread;
7121                 addr += toread;
7122         }
7123 out:
7124         return r;
7125 }
7126
7127 /* used for instruction fetching */
7128 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7129                                 gva_t addr, void *val, unsigned int bytes,
7130                                 struct x86_exception *exception)
7131 {
7132         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7133         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7134         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7135         unsigned offset;
7136         int ret;
7137
7138         /* Inline kvm_read_guest_virt_helper for speed.  */
7139         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7140                                     exception);
7141         if (unlikely(gpa == INVALID_GPA))
7142                 return X86EMUL_PROPAGATE_FAULT;
7143
7144         offset = addr & (PAGE_SIZE-1);
7145         if (WARN_ON(offset + bytes > PAGE_SIZE))
7146                 bytes = (unsigned)PAGE_SIZE - offset;
7147         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7148                                        offset, bytes);
7149         if (unlikely(ret < 0))
7150                 return X86EMUL_IO_NEEDED;
7151
7152         return X86EMUL_CONTINUE;
7153 }
7154
7155 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7156                                gva_t addr, void *val, unsigned int bytes,
7157                                struct x86_exception *exception)
7158 {
7159         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7160
7161         /*
7162          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7163          * is returned, but our callers are not ready for that and they blindly
7164          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7165          * uninitialized kernel stack memory into cr2 and error code.
7166          */
7167         memset(exception, 0, sizeof(*exception));
7168         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7169                                           exception);
7170 }
7171 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7172
7173 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7174                              gva_t addr, void *val, unsigned int bytes,
7175                              struct x86_exception *exception, bool system)
7176 {
7177         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7178         u64 access = 0;
7179
7180         if (system)
7181                 access |= PFERR_IMPLICIT_ACCESS;
7182         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7183                 access |= PFERR_USER_MASK;
7184
7185         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7186 }
7187
7188 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7189                 unsigned long addr, void *val, unsigned int bytes)
7190 {
7191         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7192         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7193
7194         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7195 }
7196
7197 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7198                                       struct kvm_vcpu *vcpu, u64 access,
7199                                       struct x86_exception *exception)
7200 {
7201         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7202         void *data = val;
7203         int r = X86EMUL_CONTINUE;
7204
7205         while (bytes) {
7206                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7207                 unsigned offset = addr & (PAGE_SIZE-1);
7208                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7209                 int ret;
7210
7211                 if (gpa == INVALID_GPA)
7212                         return X86EMUL_PROPAGATE_FAULT;
7213                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7214                 if (ret < 0) {
7215                         r = X86EMUL_IO_NEEDED;
7216                         goto out;
7217                 }
7218
7219                 bytes -= towrite;
7220                 data += towrite;
7221                 addr += towrite;
7222         }
7223 out:
7224         return r;
7225 }
7226
7227 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7228                               unsigned int bytes, struct x86_exception *exception,
7229                               bool system)
7230 {
7231         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7232         u64 access = PFERR_WRITE_MASK;
7233
7234         if (system)
7235                 access |= PFERR_IMPLICIT_ACCESS;
7236         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7237                 access |= PFERR_USER_MASK;
7238
7239         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7240                                            access, exception);
7241 }
7242
7243 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7244                                 unsigned int bytes, struct x86_exception *exception)
7245 {
7246         /* kvm_write_guest_virt_system can pull in tons of pages. */
7247         vcpu->arch.l1tf_flush_l1d = true;
7248
7249         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7250                                            PFERR_WRITE_MASK, exception);
7251 }
7252 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7253
7254 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7255                                 void *insn, int insn_len)
7256 {
7257         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7258                                                             insn, insn_len);
7259 }
7260
7261 int handle_ud(struct kvm_vcpu *vcpu)
7262 {
7263         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7264         int emul_type = EMULTYPE_TRAP_UD;
7265         char sig[5]; /* ud2; .ascii "kvm" */
7266         struct x86_exception e;
7267
7268         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7269                 return 1;
7270
7271         if (force_emulation_prefix &&
7272             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7273                                 sig, sizeof(sig), &e) == 0 &&
7274             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7275                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7276                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7277         }
7278
7279         return kvm_emulate_instruction(vcpu, emul_type);
7280 }
7281 EXPORT_SYMBOL_GPL(handle_ud);
7282
7283 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7284                             gpa_t gpa, bool write)
7285 {
7286         /* For APIC access vmexit */
7287         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7288                 return 1;
7289
7290         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7291                 trace_vcpu_match_mmio(gva, gpa, write, true);
7292                 return 1;
7293         }
7294
7295         return 0;
7296 }
7297
7298 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7299                                 gpa_t *gpa, struct x86_exception *exception,
7300                                 bool write)
7301 {
7302         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7303         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7304                 | (write ? PFERR_WRITE_MASK : 0);
7305
7306         /*
7307          * currently PKRU is only applied to ept enabled guest so
7308          * there is no pkey in EPT page table for L1 guest or EPT
7309          * shadow page table for L2 guest.
7310          */
7311         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7312             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7313                               vcpu->arch.mmio_access, 0, access))) {
7314                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7315                                         (gva & (PAGE_SIZE - 1));
7316                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7317                 return 1;
7318         }
7319
7320         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7321
7322         if (*gpa == INVALID_GPA)
7323                 return -1;
7324
7325         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7326 }
7327
7328 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7329                         const void *val, int bytes)
7330 {
7331         int ret;
7332
7333         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7334         if (ret < 0)
7335                 return 0;
7336         kvm_page_track_write(vcpu, gpa, val, bytes);
7337         return 1;
7338 }
7339
7340 struct read_write_emulator_ops {
7341         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7342                                   int bytes);
7343         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7344                                   void *val, int bytes);
7345         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7346                                int bytes, void *val);
7347         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7348                                     void *val, int bytes);
7349         bool write;
7350 };
7351
7352 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7353 {
7354         if (vcpu->mmio_read_completed) {
7355                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7356                                vcpu->mmio_fragments[0].gpa, val);
7357                 vcpu->mmio_read_completed = 0;
7358                 return 1;
7359         }
7360
7361         return 0;
7362 }
7363
7364 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7365                         void *val, int bytes)
7366 {
7367         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7368 }
7369
7370 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7371                          void *val, int bytes)
7372 {
7373         return emulator_write_phys(vcpu, gpa, val, bytes);
7374 }
7375
7376 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7377 {
7378         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7379         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7380 }
7381
7382 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7383                           void *val, int bytes)
7384 {
7385         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7386         return X86EMUL_IO_NEEDED;
7387 }
7388
7389 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7390                            void *val, int bytes)
7391 {
7392         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7393
7394         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7395         return X86EMUL_CONTINUE;
7396 }
7397
7398 static const struct read_write_emulator_ops read_emultor = {
7399         .read_write_prepare = read_prepare,
7400         .read_write_emulate = read_emulate,
7401         .read_write_mmio = vcpu_mmio_read,
7402         .read_write_exit_mmio = read_exit_mmio,
7403 };
7404
7405 static const struct read_write_emulator_ops write_emultor = {
7406         .read_write_emulate = write_emulate,
7407         .read_write_mmio = write_mmio,
7408         .read_write_exit_mmio = write_exit_mmio,
7409         .write = true,
7410 };
7411
7412 static int emulator_read_write_onepage(unsigned long addr, void *val,
7413                                        unsigned int bytes,
7414                                        struct x86_exception *exception,
7415                                        struct kvm_vcpu *vcpu,
7416                                        const struct read_write_emulator_ops *ops)
7417 {
7418         gpa_t gpa;
7419         int handled, ret;
7420         bool write = ops->write;
7421         struct kvm_mmio_fragment *frag;
7422         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7423
7424         /*
7425          * If the exit was due to a NPF we may already have a GPA.
7426          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7427          * Note, this cannot be used on string operations since string
7428          * operation using rep will only have the initial GPA from the NPF
7429          * occurred.
7430          */
7431         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7432             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7433                 gpa = ctxt->gpa_val;
7434                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7435         } else {
7436                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7437                 if (ret < 0)
7438                         return X86EMUL_PROPAGATE_FAULT;
7439         }
7440
7441         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7442                 return X86EMUL_CONTINUE;
7443
7444         /*
7445          * Is this MMIO handled locally?
7446          */
7447         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7448         if (handled == bytes)
7449                 return X86EMUL_CONTINUE;
7450
7451         gpa += handled;
7452         bytes -= handled;
7453         val += handled;
7454
7455         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7456         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7457         frag->gpa = gpa;
7458         frag->data = val;
7459         frag->len = bytes;
7460         return X86EMUL_CONTINUE;
7461 }
7462
7463 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7464                         unsigned long addr,
7465                         void *val, unsigned int bytes,
7466                         struct x86_exception *exception,
7467                         const struct read_write_emulator_ops *ops)
7468 {
7469         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7470         gpa_t gpa;
7471         int rc;
7472
7473         if (ops->read_write_prepare &&
7474                   ops->read_write_prepare(vcpu, val, bytes))
7475                 return X86EMUL_CONTINUE;
7476
7477         vcpu->mmio_nr_fragments = 0;
7478
7479         /* Crossing a page boundary? */
7480         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7481                 int now;
7482
7483                 now = -addr & ~PAGE_MASK;
7484                 rc = emulator_read_write_onepage(addr, val, now, exception,
7485                                                  vcpu, ops);
7486
7487                 if (rc != X86EMUL_CONTINUE)
7488                         return rc;
7489                 addr += now;
7490                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7491                         addr = (u32)addr;
7492                 val += now;
7493                 bytes -= now;
7494         }
7495
7496         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7497                                          vcpu, ops);
7498         if (rc != X86EMUL_CONTINUE)
7499                 return rc;
7500
7501         if (!vcpu->mmio_nr_fragments)
7502                 return rc;
7503
7504         gpa = vcpu->mmio_fragments[0].gpa;
7505
7506         vcpu->mmio_needed = 1;
7507         vcpu->mmio_cur_fragment = 0;
7508
7509         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7510         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7511         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7512         vcpu->run->mmio.phys_addr = gpa;
7513
7514         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7515 }
7516
7517 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7518                                   unsigned long addr,
7519                                   void *val,
7520                                   unsigned int bytes,
7521                                   struct x86_exception *exception)
7522 {
7523         return emulator_read_write(ctxt, addr, val, bytes,
7524                                    exception, &read_emultor);
7525 }
7526
7527 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7528                             unsigned long addr,
7529                             const void *val,
7530                             unsigned int bytes,
7531                             struct x86_exception *exception)
7532 {
7533         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7534                                    exception, &write_emultor);
7535 }
7536
7537 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7538         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7539
7540 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7541                                      unsigned long addr,
7542                                      const void *old,
7543                                      const void *new,
7544                                      unsigned int bytes,
7545                                      struct x86_exception *exception)
7546 {
7547         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7548         u64 page_line_mask;
7549         unsigned long hva;
7550         gpa_t gpa;
7551         int r;
7552
7553         /* guests cmpxchg8b have to be emulated atomically */
7554         if (bytes > 8 || (bytes & (bytes - 1)))
7555                 goto emul_write;
7556
7557         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7558
7559         if (gpa == INVALID_GPA ||
7560             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7561                 goto emul_write;
7562
7563         /*
7564          * Emulate the atomic as a straight write to avoid #AC if SLD is
7565          * enabled in the host and the access splits a cache line.
7566          */
7567         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7568                 page_line_mask = ~(cache_line_size() - 1);
7569         else
7570                 page_line_mask = PAGE_MASK;
7571
7572         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7573                 goto emul_write;
7574
7575         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7576         if (kvm_is_error_hva(hva))
7577                 goto emul_write;
7578
7579         hva += offset_in_page(gpa);
7580
7581         switch (bytes) {
7582         case 1:
7583                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7584                 break;
7585         case 2:
7586                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7587                 break;
7588         case 4:
7589                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7590                 break;
7591         case 8:
7592                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7593                 break;
7594         default:
7595                 BUG();
7596         }
7597
7598         if (r < 0)
7599                 return X86EMUL_UNHANDLEABLE;
7600         if (r)
7601                 return X86EMUL_CMPXCHG_FAILED;
7602
7603         kvm_page_track_write(vcpu, gpa, new, bytes);
7604
7605         return X86EMUL_CONTINUE;
7606
7607 emul_write:
7608         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7609
7610         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7611 }
7612
7613 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7614                                unsigned short port, void *data,
7615                                unsigned int count, bool in)
7616 {
7617         unsigned i;
7618         int r;
7619
7620         WARN_ON_ONCE(vcpu->arch.pio.count);
7621         for (i = 0; i < count; i++) {
7622                 if (in)
7623                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7624                 else
7625                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7626
7627                 if (r) {
7628                         if (i == 0)
7629                                 goto userspace_io;
7630
7631                         /*
7632                          * Userspace must have unregistered the device while PIO
7633                          * was running.  Drop writes / read as 0.
7634                          */
7635                         if (in)
7636                                 memset(data, 0, size * (count - i));
7637                         break;
7638                 }
7639
7640                 data += size;
7641         }
7642         return 1;
7643
7644 userspace_io:
7645         vcpu->arch.pio.port = port;
7646         vcpu->arch.pio.in = in;
7647         vcpu->arch.pio.count = count;
7648         vcpu->arch.pio.size = size;
7649
7650         if (in)
7651                 memset(vcpu->arch.pio_data, 0, size * count);
7652         else
7653                 memcpy(vcpu->arch.pio_data, data, size * count);
7654
7655         vcpu->run->exit_reason = KVM_EXIT_IO;
7656         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7657         vcpu->run->io.size = size;
7658         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7659         vcpu->run->io.count = count;
7660         vcpu->run->io.port = port;
7661         return 0;
7662 }
7663
7664 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7665                            unsigned short port, void *val, unsigned int count)
7666 {
7667         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7668         if (r)
7669                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7670
7671         return r;
7672 }
7673
7674 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7675 {
7676         int size = vcpu->arch.pio.size;
7677         unsigned int count = vcpu->arch.pio.count;
7678         memcpy(val, vcpu->arch.pio_data, size * count);
7679         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7680         vcpu->arch.pio.count = 0;
7681 }
7682
7683 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7684                                     int size, unsigned short port, void *val,
7685                                     unsigned int count)
7686 {
7687         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7688         if (vcpu->arch.pio.count) {
7689                 /*
7690                  * Complete a previous iteration that required userspace I/O.
7691                  * Note, @count isn't guaranteed to match pio.count as userspace
7692                  * can modify ECX before rerunning the vCPU.  Ignore any such
7693                  * shenanigans as KVM doesn't support modifying the rep count,
7694                  * and the emulator ensures @count doesn't overflow the buffer.
7695                  */
7696                 complete_emulator_pio_in(vcpu, val);
7697                 return 1;
7698         }
7699
7700         return emulator_pio_in(vcpu, size, port, val, count);
7701 }
7702
7703 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7704                             unsigned short port, const void *val,
7705                             unsigned int count)
7706 {
7707         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7708         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7709 }
7710
7711 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7712                                      int size, unsigned short port,
7713                                      const void *val, unsigned int count)
7714 {
7715         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7716 }
7717
7718 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7719 {
7720         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7721 }
7722
7723 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7724 {
7725         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7726 }
7727
7728 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7729 {
7730         if (!need_emulate_wbinvd(vcpu))
7731                 return X86EMUL_CONTINUE;
7732
7733         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7734                 int cpu = get_cpu();
7735
7736                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7737                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7738                                 wbinvd_ipi, NULL, 1);
7739                 put_cpu();
7740                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7741         } else
7742                 wbinvd();
7743         return X86EMUL_CONTINUE;
7744 }
7745
7746 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7747 {
7748         kvm_emulate_wbinvd_noskip(vcpu);
7749         return kvm_skip_emulated_instruction(vcpu);
7750 }
7751 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7752
7753
7754
7755 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7756 {
7757         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7758 }
7759
7760 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7761                             unsigned long *dest)
7762 {
7763         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7764 }
7765
7766 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7767                            unsigned long value)
7768 {
7769
7770         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7771 }
7772
7773 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7774 {
7775         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7776 }
7777
7778 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7779 {
7780         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7781         unsigned long value;
7782
7783         switch (cr) {
7784         case 0:
7785                 value = kvm_read_cr0(vcpu);
7786                 break;
7787         case 2:
7788                 value = vcpu->arch.cr2;
7789                 break;
7790         case 3:
7791                 value = kvm_read_cr3(vcpu);
7792                 break;
7793         case 4:
7794                 value = kvm_read_cr4(vcpu);
7795                 break;
7796         case 8:
7797                 value = kvm_get_cr8(vcpu);
7798                 break;
7799         default:
7800                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7801                 return 0;
7802         }
7803
7804         return value;
7805 }
7806
7807 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7808 {
7809         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7810         int res = 0;
7811
7812         switch (cr) {
7813         case 0:
7814                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7815                 break;
7816         case 2:
7817                 vcpu->arch.cr2 = val;
7818                 break;
7819         case 3:
7820                 res = kvm_set_cr3(vcpu, val);
7821                 break;
7822         case 4:
7823                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7824                 break;
7825         case 8:
7826                 res = kvm_set_cr8(vcpu, val);
7827                 break;
7828         default:
7829                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7830                 res = -1;
7831         }
7832
7833         return res;
7834 }
7835
7836 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7837 {
7838         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7839 }
7840
7841 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7842 {
7843         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7844 }
7845
7846 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7847 {
7848         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7849 }
7850
7851 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7852 {
7853         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7854 }
7855
7856 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7857 {
7858         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7859 }
7860
7861 static unsigned long emulator_get_cached_segment_base(
7862         struct x86_emulate_ctxt *ctxt, int seg)
7863 {
7864         return get_segment_base(emul_to_vcpu(ctxt), seg);
7865 }
7866
7867 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7868                                  struct desc_struct *desc, u32 *base3,
7869                                  int seg)
7870 {
7871         struct kvm_segment var;
7872
7873         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7874         *selector = var.selector;
7875
7876         if (var.unusable) {
7877                 memset(desc, 0, sizeof(*desc));
7878                 if (base3)
7879                         *base3 = 0;
7880                 return false;
7881         }
7882
7883         if (var.g)
7884                 var.limit >>= 12;
7885         set_desc_limit(desc, var.limit);
7886         set_desc_base(desc, (unsigned long)var.base);
7887 #ifdef CONFIG_X86_64
7888         if (base3)
7889                 *base3 = var.base >> 32;
7890 #endif
7891         desc->type = var.type;
7892         desc->s = var.s;
7893         desc->dpl = var.dpl;
7894         desc->p = var.present;
7895         desc->avl = var.avl;
7896         desc->l = var.l;
7897         desc->d = var.db;
7898         desc->g = var.g;
7899
7900         return true;
7901 }
7902
7903 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7904                                  struct desc_struct *desc, u32 base3,
7905                                  int seg)
7906 {
7907         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7908         struct kvm_segment var;
7909
7910         var.selector = selector;
7911         var.base = get_desc_base(desc);
7912 #ifdef CONFIG_X86_64
7913         var.base |= ((u64)base3) << 32;
7914 #endif
7915         var.limit = get_desc_limit(desc);
7916         if (desc->g)
7917                 var.limit = (var.limit << 12) | 0xfff;
7918         var.type = desc->type;
7919         var.dpl = desc->dpl;
7920         var.db = desc->d;
7921         var.s = desc->s;
7922         var.l = desc->l;
7923         var.g = desc->g;
7924         var.avl = desc->avl;
7925         var.present = desc->p;
7926         var.unusable = !var.present;
7927         var.padding = 0;
7928
7929         kvm_set_segment(vcpu, &var, seg);
7930         return;
7931 }
7932
7933 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7934                                         u32 msr_index, u64 *pdata)
7935 {
7936         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7937         int r;
7938
7939         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7940
7941         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7942                                     complete_emulated_rdmsr, r)) {
7943                 /* Bounce to user space */
7944                 return X86EMUL_IO_NEEDED;
7945         }
7946
7947         return r;
7948 }
7949
7950 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7951                                         u32 msr_index, u64 data)
7952 {
7953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7954         int r;
7955
7956         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7957
7958         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7959                                     complete_emulated_msr_access, r)) {
7960                 /* Bounce to user space */
7961                 return X86EMUL_IO_NEEDED;
7962         }
7963
7964         return r;
7965 }
7966
7967 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7968                             u32 msr_index, u64 *pdata)
7969 {
7970         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7971 }
7972
7973 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7974                             u32 msr_index, u64 data)
7975 {
7976         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7977 }
7978
7979 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7980 {
7981         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7982
7983         return vcpu->arch.smbase;
7984 }
7985
7986 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7987 {
7988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7989
7990         vcpu->arch.smbase = smbase;
7991 }
7992
7993 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7994                               u32 pmc)
7995 {
7996         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7997                 return 0;
7998         return -EINVAL;
7999 }
8000
8001 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8002                              u32 pmc, u64 *pdata)
8003 {
8004         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8005 }
8006
8007 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8008 {
8009         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8010 }
8011
8012 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8013                               struct x86_instruction_info *info,
8014                               enum x86_intercept_stage stage)
8015 {
8016         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8017                                             &ctxt->exception);
8018 }
8019
8020 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8021                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8022                               bool exact_only)
8023 {
8024         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8025 }
8026
8027 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8028 {
8029         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8030 }
8031
8032 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8033 {
8034         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8035 }
8036
8037 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8038 {
8039         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8040 }
8041
8042 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8043 {
8044         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8045 }
8046
8047 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8048 {
8049         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8050 }
8051
8052 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8053 {
8054         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8055 }
8056
8057 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8058 {
8059         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8060 }
8061
8062 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8063 {
8064         return emul_to_vcpu(ctxt)->arch.hflags;
8065 }
8066
8067 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8068 {
8069         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8070
8071         kvm_smm_changed(vcpu, false);
8072 }
8073
8074 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8075                                   const char *smstate)
8076 {
8077         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8078 }
8079
8080 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8081 {
8082         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8083 }
8084
8085 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8086 {
8087         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8088 }
8089
8090 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8091 {
8092         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8093
8094         if (!kvm->vm_bugged)
8095                 kvm_vm_bugged(kvm);
8096 }
8097
8098 static const struct x86_emulate_ops emulate_ops = {
8099         .vm_bugged           = emulator_vm_bugged,
8100         .read_gpr            = emulator_read_gpr,
8101         .write_gpr           = emulator_write_gpr,
8102         .read_std            = emulator_read_std,
8103         .write_std           = emulator_write_std,
8104         .read_phys           = kvm_read_guest_phys_system,
8105         .fetch               = kvm_fetch_guest_virt,
8106         .read_emulated       = emulator_read_emulated,
8107         .write_emulated      = emulator_write_emulated,
8108         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8109         .invlpg              = emulator_invlpg,
8110         .pio_in_emulated     = emulator_pio_in_emulated,
8111         .pio_out_emulated    = emulator_pio_out_emulated,
8112         .get_segment         = emulator_get_segment,
8113         .set_segment         = emulator_set_segment,
8114         .get_cached_segment_base = emulator_get_cached_segment_base,
8115         .get_gdt             = emulator_get_gdt,
8116         .get_idt             = emulator_get_idt,
8117         .set_gdt             = emulator_set_gdt,
8118         .set_idt             = emulator_set_idt,
8119         .get_cr              = emulator_get_cr,
8120         .set_cr              = emulator_set_cr,
8121         .cpl                 = emulator_get_cpl,
8122         .get_dr              = emulator_get_dr,
8123         .set_dr              = emulator_set_dr,
8124         .get_smbase          = emulator_get_smbase,
8125         .set_smbase          = emulator_set_smbase,
8126         .set_msr_with_filter = emulator_set_msr_with_filter,
8127         .get_msr_with_filter = emulator_get_msr_with_filter,
8128         .set_msr             = emulator_set_msr,
8129         .get_msr             = emulator_get_msr,
8130         .check_pmc           = emulator_check_pmc,
8131         .read_pmc            = emulator_read_pmc,
8132         .halt                = emulator_halt,
8133         .wbinvd              = emulator_wbinvd,
8134         .fix_hypercall       = emulator_fix_hypercall,
8135         .intercept           = emulator_intercept,
8136         .get_cpuid           = emulator_get_cpuid,
8137         .guest_has_long_mode = emulator_guest_has_long_mode,
8138         .guest_has_movbe     = emulator_guest_has_movbe,
8139         .guest_has_fxsr      = emulator_guest_has_fxsr,
8140         .guest_has_rdpid     = emulator_guest_has_rdpid,
8141         .set_nmi_mask        = emulator_set_nmi_mask,
8142         .get_hflags          = emulator_get_hflags,
8143         .exiting_smm         = emulator_exiting_smm,
8144         .leave_smm           = emulator_leave_smm,
8145         .triple_fault        = emulator_triple_fault,
8146         .set_xcr             = emulator_set_xcr,
8147 };
8148
8149 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8150 {
8151         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8152         /*
8153          * an sti; sti; sequence only disable interrupts for the first
8154          * instruction. So, if the last instruction, be it emulated or
8155          * not, left the system with the INT_STI flag enabled, it
8156          * means that the last instruction is an sti. We should not
8157          * leave the flag on in this case. The same goes for mov ss
8158          */
8159         if (int_shadow & mask)
8160                 mask = 0;
8161         if (unlikely(int_shadow || mask)) {
8162                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8163                 if (!mask)
8164                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8165         }
8166 }
8167
8168 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8169 {
8170         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8171         if (ctxt->exception.vector == PF_VECTOR)
8172                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8173
8174         if (ctxt->exception.error_code_valid)
8175                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8176                                       ctxt->exception.error_code);
8177         else
8178                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8179         return false;
8180 }
8181
8182 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8183 {
8184         struct x86_emulate_ctxt *ctxt;
8185
8186         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8187         if (!ctxt) {
8188                 pr_err("kvm: failed to allocate vcpu's emulator\n");
8189                 return NULL;
8190         }
8191
8192         ctxt->vcpu = vcpu;
8193         ctxt->ops = &emulate_ops;
8194         vcpu->arch.emulate_ctxt = ctxt;
8195
8196         return ctxt;
8197 }
8198
8199 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8200 {
8201         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8202         int cs_db, cs_l;
8203
8204         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8205
8206         ctxt->gpa_available = false;
8207         ctxt->eflags = kvm_get_rflags(vcpu);
8208         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8209
8210         ctxt->eip = kvm_rip_read(vcpu);
8211         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8212                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8213                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8214                      cs_db                              ? X86EMUL_MODE_PROT32 :
8215                                                           X86EMUL_MODE_PROT16;
8216         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8217         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8218         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8219
8220         ctxt->interruptibility = 0;
8221         ctxt->have_exception = false;
8222         ctxt->exception.vector = -1;
8223         ctxt->perm_ok = false;
8224
8225         init_decode_cache(ctxt);
8226         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8227 }
8228
8229 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8230 {
8231         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8232         int ret;
8233
8234         init_emulate_ctxt(vcpu);
8235
8236         ctxt->op_bytes = 2;
8237         ctxt->ad_bytes = 2;
8238         ctxt->_eip = ctxt->eip + inc_eip;
8239         ret = emulate_int_real(ctxt, irq);
8240
8241         if (ret != X86EMUL_CONTINUE) {
8242                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8243         } else {
8244                 ctxt->eip = ctxt->_eip;
8245                 kvm_rip_write(vcpu, ctxt->eip);
8246                 kvm_set_rflags(vcpu, ctxt->eflags);
8247         }
8248 }
8249 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8250
8251 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8252                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8253 {
8254         struct kvm_run *run = vcpu->run;
8255         u64 info[5];
8256         u8 info_start;
8257
8258         /*
8259          * Zero the whole array used to retrieve the exit info, as casting to
8260          * u32 for select entries will leave some chunks uninitialized.
8261          */
8262         memset(&info, 0, sizeof(info));
8263
8264         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8265                                            &info[2], (u32 *)&info[3],
8266                                            (u32 *)&info[4]);
8267
8268         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8269         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8270
8271         /*
8272          * There's currently space for 13 entries, but 5 are used for the exit
8273          * reason and info.  Restrict to 4 to reduce the maintenance burden
8274          * when expanding kvm_run.emulation_failure in the future.
8275          */
8276         if (WARN_ON_ONCE(ndata > 4))
8277                 ndata = 4;
8278
8279         /* Always include the flags as a 'data' entry. */
8280         info_start = 1;
8281         run->emulation_failure.flags = 0;
8282
8283         if (insn_size) {
8284                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8285                               sizeof(run->emulation_failure.insn_bytes) != 16));
8286                 info_start += 2;
8287                 run->emulation_failure.flags |=
8288                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8289                 run->emulation_failure.insn_size = insn_size;
8290                 memset(run->emulation_failure.insn_bytes, 0x90,
8291                        sizeof(run->emulation_failure.insn_bytes));
8292                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8293         }
8294
8295         memcpy(&run->internal.data[info_start], info, sizeof(info));
8296         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8297                ndata * sizeof(data[0]));
8298
8299         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8300 }
8301
8302 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8303 {
8304         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8305
8306         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8307                                        ctxt->fetch.end - ctxt->fetch.data);
8308 }
8309
8310 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8311                                           u8 ndata)
8312 {
8313         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8314 }
8315 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8316
8317 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8318 {
8319         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8320 }
8321 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8322
8323 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8324 {
8325         struct kvm *kvm = vcpu->kvm;
8326
8327         ++vcpu->stat.insn_emulation_fail;
8328         trace_kvm_emulate_insn_failed(vcpu);
8329
8330         if (emulation_type & EMULTYPE_VMWARE_GP) {
8331                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8332                 return 1;
8333         }
8334
8335         if (kvm->arch.exit_on_emulation_error ||
8336             (emulation_type & EMULTYPE_SKIP)) {
8337                 prepare_emulation_ctxt_failure_exit(vcpu);
8338                 return 0;
8339         }
8340
8341         kvm_queue_exception(vcpu, UD_VECTOR);
8342
8343         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8344                 prepare_emulation_ctxt_failure_exit(vcpu);
8345                 return 0;
8346         }
8347
8348         return 1;
8349 }
8350
8351 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8352                                   bool write_fault_to_shadow_pgtable,
8353                                   int emulation_type)
8354 {
8355         gpa_t gpa = cr2_or_gpa;
8356         kvm_pfn_t pfn;
8357
8358         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8359                 return false;
8360
8361         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8362             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8363                 return false;
8364
8365         if (!vcpu->arch.mmu->root_role.direct) {
8366                 /*
8367                  * Write permission should be allowed since only
8368                  * write access need to be emulated.
8369                  */
8370                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8371
8372                 /*
8373                  * If the mapping is invalid in guest, let cpu retry
8374                  * it to generate fault.
8375                  */
8376                 if (gpa == INVALID_GPA)
8377                         return true;
8378         }
8379
8380         /*
8381          * Do not retry the unhandleable instruction if it faults on the
8382          * readonly host memory, otherwise it will goto a infinite loop:
8383          * retry instruction -> write #PF -> emulation fail -> retry
8384          * instruction -> ...
8385          */
8386         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8387
8388         /*
8389          * If the instruction failed on the error pfn, it can not be fixed,
8390          * report the error to userspace.
8391          */
8392         if (is_error_noslot_pfn(pfn))
8393                 return false;
8394
8395         kvm_release_pfn_clean(pfn);
8396
8397         /* The instructions are well-emulated on direct mmu. */
8398         if (vcpu->arch.mmu->root_role.direct) {
8399                 unsigned int indirect_shadow_pages;
8400
8401                 write_lock(&vcpu->kvm->mmu_lock);
8402                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8403                 write_unlock(&vcpu->kvm->mmu_lock);
8404
8405                 if (indirect_shadow_pages)
8406                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8407
8408                 return true;
8409         }
8410
8411         /*
8412          * if emulation was due to access to shadowed page table
8413          * and it failed try to unshadow page and re-enter the
8414          * guest to let CPU execute the instruction.
8415          */
8416         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8417
8418         /*
8419          * If the access faults on its page table, it can not
8420          * be fixed by unprotecting shadow page and it should
8421          * be reported to userspace.
8422          */
8423         return !write_fault_to_shadow_pgtable;
8424 }
8425
8426 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8427                               gpa_t cr2_or_gpa,  int emulation_type)
8428 {
8429         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8430         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8431
8432         last_retry_eip = vcpu->arch.last_retry_eip;
8433         last_retry_addr = vcpu->arch.last_retry_addr;
8434
8435         /*
8436          * If the emulation is caused by #PF and it is non-page_table
8437          * writing instruction, it means the VM-EXIT is caused by shadow
8438          * page protected, we can zap the shadow page and retry this
8439          * instruction directly.
8440          *
8441          * Note: if the guest uses a non-page-table modifying instruction
8442          * on the PDE that points to the instruction, then we will unmap
8443          * the instruction and go to an infinite loop. So, we cache the
8444          * last retried eip and the last fault address, if we meet the eip
8445          * and the address again, we can break out of the potential infinite
8446          * loop.
8447          */
8448         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8449
8450         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8451                 return false;
8452
8453         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8454             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8455                 return false;
8456
8457         if (x86_page_table_writing_insn(ctxt))
8458                 return false;
8459
8460         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8461                 return false;
8462
8463         vcpu->arch.last_retry_eip = ctxt->eip;
8464         vcpu->arch.last_retry_addr = cr2_or_gpa;
8465
8466         if (!vcpu->arch.mmu->root_role.direct)
8467                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8468
8469         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8470
8471         return true;
8472 }
8473
8474 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8475 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8476
8477 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8478 {
8479         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8480
8481         if (entering_smm) {
8482                 vcpu->arch.hflags |= HF_SMM_MASK;
8483         } else {
8484                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8485
8486                 /* Process a latched INIT or SMI, if any.  */
8487                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8488
8489                 /*
8490                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8491                  * on SMM exit we still need to reload them from
8492                  * guest memory
8493                  */
8494                 vcpu->arch.pdptrs_from_userspace = false;
8495         }
8496
8497         kvm_mmu_reset_context(vcpu);
8498 }
8499
8500 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8501                                 unsigned long *db)
8502 {
8503         u32 dr6 = 0;
8504         int i;
8505         u32 enable, rwlen;
8506
8507         enable = dr7;
8508         rwlen = dr7 >> 16;
8509         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8510                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8511                         dr6 |= (1 << i);
8512         return dr6;
8513 }
8514
8515 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8516 {
8517         struct kvm_run *kvm_run = vcpu->run;
8518
8519         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8520                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8521                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8522                 kvm_run->debug.arch.exception = DB_VECTOR;
8523                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8524                 return 0;
8525         }
8526         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8527         return 1;
8528 }
8529
8530 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8531 {
8532         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8533         int r;
8534
8535         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8536         if (unlikely(!r))
8537                 return 0;
8538
8539         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8540
8541         /*
8542          * rflags is the old, "raw" value of the flags.  The new value has
8543          * not been saved yet.
8544          *
8545          * This is correct even for TF set by the guest, because "the
8546          * processor will not generate this exception after the instruction
8547          * that sets the TF flag".
8548          */
8549         if (unlikely(rflags & X86_EFLAGS_TF))
8550                 r = kvm_vcpu_do_singlestep(vcpu);
8551         return r;
8552 }
8553 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8554
8555 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8556 {
8557         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8558             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8559                 struct kvm_run *kvm_run = vcpu->run;
8560                 unsigned long eip = kvm_get_linear_rip(vcpu);
8561                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8562                                            vcpu->arch.guest_debug_dr7,
8563                                            vcpu->arch.eff_db);
8564
8565                 if (dr6 != 0) {
8566                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8567                         kvm_run->debug.arch.pc = eip;
8568                         kvm_run->debug.arch.exception = DB_VECTOR;
8569                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8570                         *r = 0;
8571                         return true;
8572                 }
8573         }
8574
8575         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8576             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8577                 unsigned long eip = kvm_get_linear_rip(vcpu);
8578                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8579                                            vcpu->arch.dr7,
8580                                            vcpu->arch.db);
8581
8582                 if (dr6 != 0) {
8583                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8584                         *r = 1;
8585                         return true;
8586                 }
8587         }
8588
8589         return false;
8590 }
8591
8592 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8593 {
8594         switch (ctxt->opcode_len) {
8595         case 1:
8596                 switch (ctxt->b) {
8597                 case 0xe4:      /* IN */
8598                 case 0xe5:
8599                 case 0xec:
8600                 case 0xed:
8601                 case 0xe6:      /* OUT */
8602                 case 0xe7:
8603                 case 0xee:
8604                 case 0xef:
8605                 case 0x6c:      /* INS */
8606                 case 0x6d:
8607                 case 0x6e:      /* OUTS */
8608                 case 0x6f:
8609                         return true;
8610                 }
8611                 break;
8612         case 2:
8613                 switch (ctxt->b) {
8614                 case 0x33:      /* RDPMC */
8615                         return true;
8616                 }
8617                 break;
8618         }
8619
8620         return false;
8621 }
8622
8623 /*
8624  * Decode an instruction for emulation.  The caller is responsible for handling
8625  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8626  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8627  * code breakpoints have higher priority and thus have already been done by
8628  * hardware.
8629  *
8630  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8631  *     response to a machine check.
8632  */
8633 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8634                                     void *insn, int insn_len)
8635 {
8636         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8637         int r;
8638
8639         init_emulate_ctxt(vcpu);
8640
8641         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8642
8643         trace_kvm_emulate_insn_start(vcpu);
8644         ++vcpu->stat.insn_emulation;
8645
8646         return r;
8647 }
8648 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8649
8650 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8651                             int emulation_type, void *insn, int insn_len)
8652 {
8653         int r;
8654         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8655         bool writeback = true;
8656         bool write_fault_to_spt;
8657
8658         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8659                 return 1;
8660
8661         vcpu->arch.l1tf_flush_l1d = true;
8662
8663         /*
8664          * Clear write_fault_to_shadow_pgtable here to ensure it is
8665          * never reused.
8666          */
8667         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8668         vcpu->arch.write_fault_to_shadow_pgtable = false;
8669
8670         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8671                 kvm_clear_exception_queue(vcpu);
8672
8673                 /*
8674                  * Return immediately if RIP hits a code breakpoint, such #DBs
8675                  * are fault-like and are higher priority than any faults on
8676                  * the code fetch itself.
8677                  */
8678                 if (!(emulation_type & EMULTYPE_SKIP) &&
8679                     kvm_vcpu_check_code_breakpoint(vcpu, &r))
8680                         return r;
8681
8682                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8683                                                     insn, insn_len);
8684                 if (r != EMULATION_OK)  {
8685                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8686                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8687                                 kvm_queue_exception(vcpu, UD_VECTOR);
8688                                 return 1;
8689                         }
8690                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8691                                                   write_fault_to_spt,
8692                                                   emulation_type))
8693                                 return 1;
8694                         if (ctxt->have_exception) {
8695                                 /*
8696                                  * #UD should result in just EMULATION_FAILED, and trap-like
8697                                  * exception should not be encountered during decode.
8698                                  */
8699                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8700                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8701                                 inject_emulated_exception(vcpu);
8702                                 return 1;
8703                         }
8704                         return handle_emulation_failure(vcpu, emulation_type);
8705                 }
8706         }
8707
8708         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8709             !is_vmware_backdoor_opcode(ctxt)) {
8710                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8711                 return 1;
8712         }
8713
8714         /*
8715          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8716          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8717          * The caller is responsible for updating interruptibility state and
8718          * injecting single-step #DBs.
8719          */
8720         if (emulation_type & EMULTYPE_SKIP) {
8721                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8722                         ctxt->eip = (u32)ctxt->_eip;
8723                 else
8724                         ctxt->eip = ctxt->_eip;
8725
8726                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8727                         r = 1;
8728                         goto writeback;
8729                 }
8730
8731                 kvm_rip_write(vcpu, ctxt->eip);
8732                 if (ctxt->eflags & X86_EFLAGS_RF)
8733                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8734                 return 1;
8735         }
8736
8737         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8738                 return 1;
8739
8740         /* this is needed for vmware backdoor interface to work since it
8741            changes registers values  during IO operation */
8742         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8743                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8744                 emulator_invalidate_register_cache(ctxt);
8745         }
8746
8747 restart:
8748         if (emulation_type & EMULTYPE_PF) {
8749                 /* Save the faulting GPA (cr2) in the address field */
8750                 ctxt->exception.address = cr2_or_gpa;
8751
8752                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8753                 if (vcpu->arch.mmu->root_role.direct) {
8754                         ctxt->gpa_available = true;
8755                         ctxt->gpa_val = cr2_or_gpa;
8756                 }
8757         } else {
8758                 /* Sanitize the address out of an abundance of paranoia. */
8759                 ctxt->exception.address = 0;
8760         }
8761
8762         r = x86_emulate_insn(ctxt);
8763
8764         if (r == EMULATION_INTERCEPTED)
8765                 return 1;
8766
8767         if (r == EMULATION_FAILED) {
8768                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8769                                         emulation_type))
8770                         return 1;
8771
8772                 return handle_emulation_failure(vcpu, emulation_type);
8773         }
8774
8775         if (ctxt->have_exception) {
8776                 r = 1;
8777                 if (inject_emulated_exception(vcpu))
8778                         return r;
8779         } else if (vcpu->arch.pio.count) {
8780                 if (!vcpu->arch.pio.in) {
8781                         /* FIXME: return into emulator if single-stepping.  */
8782                         vcpu->arch.pio.count = 0;
8783                 } else {
8784                         writeback = false;
8785                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8786                 }
8787                 r = 0;
8788         } else if (vcpu->mmio_needed) {
8789                 ++vcpu->stat.mmio_exits;
8790
8791                 if (!vcpu->mmio_is_write)
8792                         writeback = false;
8793                 r = 0;
8794                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8795         } else if (vcpu->arch.complete_userspace_io) {
8796                 writeback = false;
8797                 r = 0;
8798         } else if (r == EMULATION_RESTART)
8799                 goto restart;
8800         else
8801                 r = 1;
8802
8803 writeback:
8804         if (writeback) {
8805                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8806                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8807                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8808                 if (!ctxt->have_exception ||
8809                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8810                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8811                         if (ctxt->is_branch)
8812                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8813                         kvm_rip_write(vcpu, ctxt->eip);
8814                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8815                                 r = kvm_vcpu_do_singlestep(vcpu);
8816                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8817                         __kvm_set_rflags(vcpu, ctxt->eflags);
8818                 }
8819
8820                 /*
8821                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8822                  * do nothing, and it will be requested again as soon as
8823                  * the shadow expires.  But we still need to check here,
8824                  * because POPF has no interrupt shadow.
8825                  */
8826                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8827                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8828         } else
8829                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8830
8831         return r;
8832 }
8833
8834 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8835 {
8836         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8837 }
8838 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8839
8840 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8841                                         void *insn, int insn_len)
8842 {
8843         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8844 }
8845 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8846
8847 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8848 {
8849         vcpu->arch.pio.count = 0;
8850         return 1;
8851 }
8852
8853 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8854 {
8855         vcpu->arch.pio.count = 0;
8856
8857         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8858                 return 1;
8859
8860         return kvm_skip_emulated_instruction(vcpu);
8861 }
8862
8863 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8864                             unsigned short port)
8865 {
8866         unsigned long val = kvm_rax_read(vcpu);
8867         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8868
8869         if (ret)
8870                 return ret;
8871
8872         /*
8873          * Workaround userspace that relies on old KVM behavior of %rip being
8874          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8875          */
8876         if (port == 0x7e &&
8877             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8878                 vcpu->arch.complete_userspace_io =
8879                         complete_fast_pio_out_port_0x7e;
8880                 kvm_skip_emulated_instruction(vcpu);
8881         } else {
8882                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8883                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8884         }
8885         return 0;
8886 }
8887
8888 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8889 {
8890         unsigned long val;
8891
8892         /* We should only ever be called with arch.pio.count equal to 1 */
8893         BUG_ON(vcpu->arch.pio.count != 1);
8894
8895         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8896                 vcpu->arch.pio.count = 0;
8897                 return 1;
8898         }
8899
8900         /* For size less than 4 we merge, else we zero extend */
8901         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8902
8903         complete_emulator_pio_in(vcpu, &val);
8904         kvm_rax_write(vcpu, val);
8905
8906         return kvm_skip_emulated_instruction(vcpu);
8907 }
8908
8909 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8910                            unsigned short port)
8911 {
8912         unsigned long val;
8913         int ret;
8914
8915         /* For size less than 4 we merge, else we zero extend */
8916         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8917
8918         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8919         if (ret) {
8920                 kvm_rax_write(vcpu, val);
8921                 return ret;
8922         }
8923
8924         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8925         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8926
8927         return 0;
8928 }
8929
8930 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8931 {
8932         int ret;
8933
8934         if (in)
8935                 ret = kvm_fast_pio_in(vcpu, size, port);
8936         else
8937                 ret = kvm_fast_pio_out(vcpu, size, port);
8938         return ret && kvm_skip_emulated_instruction(vcpu);
8939 }
8940 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8941
8942 static int kvmclock_cpu_down_prep(unsigned int cpu)
8943 {
8944         __this_cpu_write(cpu_tsc_khz, 0);
8945         return 0;
8946 }
8947
8948 static void tsc_khz_changed(void *data)
8949 {
8950         struct cpufreq_freqs *freq = data;
8951         unsigned long khz = 0;
8952
8953         if (data)
8954                 khz = freq->new;
8955         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8956                 khz = cpufreq_quick_get(raw_smp_processor_id());
8957         if (!khz)
8958                 khz = tsc_khz;
8959         __this_cpu_write(cpu_tsc_khz, khz);
8960 }
8961
8962 #ifdef CONFIG_X86_64
8963 static void kvm_hyperv_tsc_notifier(void)
8964 {
8965         struct kvm *kvm;
8966         int cpu;
8967
8968         mutex_lock(&kvm_lock);
8969         list_for_each_entry(kvm, &vm_list, vm_list)
8970                 kvm_make_mclock_inprogress_request(kvm);
8971
8972         /* no guest entries from this point */
8973         hyperv_stop_tsc_emulation();
8974
8975         /* TSC frequency always matches when on Hyper-V */
8976         for_each_present_cpu(cpu)
8977                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8978         kvm_caps.max_guest_tsc_khz = tsc_khz;
8979
8980         list_for_each_entry(kvm, &vm_list, vm_list) {
8981                 __kvm_start_pvclock_update(kvm);
8982                 pvclock_update_vm_gtod_copy(kvm);
8983                 kvm_end_pvclock_update(kvm);
8984         }
8985
8986         mutex_unlock(&kvm_lock);
8987 }
8988 #endif
8989
8990 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8991 {
8992         struct kvm *kvm;
8993         struct kvm_vcpu *vcpu;
8994         int send_ipi = 0;
8995         unsigned long i;
8996
8997         /*
8998          * We allow guests to temporarily run on slowing clocks,
8999          * provided we notify them after, or to run on accelerating
9000          * clocks, provided we notify them before.  Thus time never
9001          * goes backwards.
9002          *
9003          * However, we have a problem.  We can't atomically update
9004          * the frequency of a given CPU from this function; it is
9005          * merely a notifier, which can be called from any CPU.
9006          * Changing the TSC frequency at arbitrary points in time
9007          * requires a recomputation of local variables related to
9008          * the TSC for each VCPU.  We must flag these local variables
9009          * to be updated and be sure the update takes place with the
9010          * new frequency before any guests proceed.
9011          *
9012          * Unfortunately, the combination of hotplug CPU and frequency
9013          * change creates an intractable locking scenario; the order
9014          * of when these callouts happen is undefined with respect to
9015          * CPU hotplug, and they can race with each other.  As such,
9016          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9017          * undefined; you can actually have a CPU frequency change take
9018          * place in between the computation of X and the setting of the
9019          * variable.  To protect against this problem, all updates of
9020          * the per_cpu tsc_khz variable are done in an interrupt
9021          * protected IPI, and all callers wishing to update the value
9022          * must wait for a synchronous IPI to complete (which is trivial
9023          * if the caller is on the CPU already).  This establishes the
9024          * necessary total order on variable updates.
9025          *
9026          * Note that because a guest time update may take place
9027          * anytime after the setting of the VCPU's request bit, the
9028          * correct TSC value must be set before the request.  However,
9029          * to ensure the update actually makes it to any guest which
9030          * starts running in hardware virtualization between the set
9031          * and the acquisition of the spinlock, we must also ping the
9032          * CPU after setting the request bit.
9033          *
9034          */
9035
9036         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9037
9038         mutex_lock(&kvm_lock);
9039         list_for_each_entry(kvm, &vm_list, vm_list) {
9040                 kvm_for_each_vcpu(i, vcpu, kvm) {
9041                         if (vcpu->cpu != cpu)
9042                                 continue;
9043                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9044                         if (vcpu->cpu != raw_smp_processor_id())
9045                                 send_ipi = 1;
9046                 }
9047         }
9048         mutex_unlock(&kvm_lock);
9049
9050         if (freq->old < freq->new && send_ipi) {
9051                 /*
9052                  * We upscale the frequency.  Must make the guest
9053                  * doesn't see old kvmclock values while running with
9054                  * the new frequency, otherwise we risk the guest sees
9055                  * time go backwards.
9056                  *
9057                  * In case we update the frequency for another cpu
9058                  * (which might be in guest context) send an interrupt
9059                  * to kick the cpu out of guest context.  Next time
9060                  * guest context is entered kvmclock will be updated,
9061                  * so the guest will not see stale values.
9062                  */
9063                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9064         }
9065 }
9066
9067 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9068                                      void *data)
9069 {
9070         struct cpufreq_freqs *freq = data;
9071         int cpu;
9072
9073         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9074                 return 0;
9075         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9076                 return 0;
9077
9078         for_each_cpu(cpu, freq->policy->cpus)
9079                 __kvmclock_cpufreq_notifier(freq, cpu);
9080
9081         return 0;
9082 }
9083
9084 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9085         .notifier_call  = kvmclock_cpufreq_notifier
9086 };
9087
9088 static int kvmclock_cpu_online(unsigned int cpu)
9089 {
9090         tsc_khz_changed(NULL);
9091         return 0;
9092 }
9093
9094 static void kvm_timer_init(void)
9095 {
9096         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9097                 max_tsc_khz = tsc_khz;
9098
9099                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9100                         struct cpufreq_policy *policy;
9101                         int cpu;
9102
9103                         cpu = get_cpu();
9104                         policy = cpufreq_cpu_get(cpu);
9105                         if (policy) {
9106                                 if (policy->cpuinfo.max_freq)
9107                                         max_tsc_khz = policy->cpuinfo.max_freq;
9108                                 cpufreq_cpu_put(policy);
9109                         }
9110                         put_cpu();
9111                 }
9112                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9113                                           CPUFREQ_TRANSITION_NOTIFIER);
9114         }
9115
9116         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9117                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
9118 }
9119
9120 #ifdef CONFIG_X86_64
9121 static void pvclock_gtod_update_fn(struct work_struct *work)
9122 {
9123         struct kvm *kvm;
9124         struct kvm_vcpu *vcpu;
9125         unsigned long i;
9126
9127         mutex_lock(&kvm_lock);
9128         list_for_each_entry(kvm, &vm_list, vm_list)
9129                 kvm_for_each_vcpu(i, vcpu, kvm)
9130                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9131         atomic_set(&kvm_guest_has_master_clock, 0);
9132         mutex_unlock(&kvm_lock);
9133 }
9134
9135 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9136
9137 /*
9138  * Indirection to move queue_work() out of the tk_core.seq write held
9139  * region to prevent possible deadlocks against time accessors which
9140  * are invoked with work related locks held.
9141  */
9142 static void pvclock_irq_work_fn(struct irq_work *w)
9143 {
9144         queue_work(system_long_wq, &pvclock_gtod_work);
9145 }
9146
9147 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9148
9149 /*
9150  * Notification about pvclock gtod data update.
9151  */
9152 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9153                                void *priv)
9154 {
9155         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9156         struct timekeeper *tk = priv;
9157
9158         update_pvclock_gtod(tk);
9159
9160         /*
9161          * Disable master clock if host does not trust, or does not use,
9162          * TSC based clocksource. Delegate queue_work() to irq_work as
9163          * this is invoked with tk_core.seq write held.
9164          */
9165         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9166             atomic_read(&kvm_guest_has_master_clock) != 0)
9167                 irq_work_queue(&pvclock_irq_work);
9168         return 0;
9169 }
9170
9171 static struct notifier_block pvclock_gtod_notifier = {
9172         .notifier_call = pvclock_gtod_notify,
9173 };
9174 #endif
9175
9176 int kvm_arch_init(void *opaque)
9177 {
9178         struct kvm_x86_init_ops *ops = opaque;
9179         u64 host_pat;
9180         int r;
9181
9182         if (kvm_x86_ops.hardware_enable) {
9183                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9184                 return -EEXIST;
9185         }
9186
9187         if (!ops->cpu_has_kvm_support()) {
9188                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9189                                    ops->runtime_ops->name);
9190                 return -EOPNOTSUPP;
9191         }
9192         if (ops->disabled_by_bios()) {
9193                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9194                                    ops->runtime_ops->name);
9195                 return -EOPNOTSUPP;
9196         }
9197
9198         /*
9199          * KVM explicitly assumes that the guest has an FPU and
9200          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9201          * vCPU's FPU state as a fxregs_state struct.
9202          */
9203         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9204                 printk(KERN_ERR "kvm: inadequate fpu\n");
9205                 return -EOPNOTSUPP;
9206         }
9207
9208         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9209                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9210                 return -EOPNOTSUPP;
9211         }
9212
9213         /*
9214          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9215          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9216          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9217          * with an exception.  PAT[0] is set to WB on RESET and also by the
9218          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9219          */
9220         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9221             (host_pat & GENMASK(2, 0)) != 6) {
9222                 pr_err("kvm: host PAT[0] is not WB\n");
9223                 return -EIO;
9224         }
9225
9226         x86_emulator_cache = kvm_alloc_emulator_cache();
9227         if (!x86_emulator_cache) {
9228                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
9229                 return -ENOMEM;
9230         }
9231
9232         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9233         if (!user_return_msrs) {
9234                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9235                 r = -ENOMEM;
9236                 goto out_free_x86_emulator_cache;
9237         }
9238         kvm_nr_uret_msrs = 0;
9239
9240         r = kvm_mmu_vendor_module_init();
9241         if (r)
9242                 goto out_free_percpu;
9243
9244         kvm_timer_init();
9245
9246         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9247                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9248                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9249         }
9250
9251         if (pi_inject_timer == -1)
9252                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9253 #ifdef CONFIG_X86_64
9254         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9255
9256         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9257                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9258 #endif
9259
9260         return 0;
9261
9262 out_free_percpu:
9263         free_percpu(user_return_msrs);
9264 out_free_x86_emulator_cache:
9265         kmem_cache_destroy(x86_emulator_cache);
9266         return r;
9267 }
9268
9269 void kvm_arch_exit(void)
9270 {
9271 #ifdef CONFIG_X86_64
9272         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9273                 clear_hv_tscchange_cb();
9274 #endif
9275         kvm_lapic_exit();
9276
9277         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9278                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9279                                             CPUFREQ_TRANSITION_NOTIFIER);
9280         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9281 #ifdef CONFIG_X86_64
9282         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9283         irq_work_sync(&pvclock_irq_work);
9284         cancel_work_sync(&pvclock_gtod_work);
9285 #endif
9286         kvm_x86_ops.hardware_enable = NULL;
9287         kvm_mmu_vendor_module_exit();
9288         free_percpu(user_return_msrs);
9289         kmem_cache_destroy(x86_emulator_cache);
9290 #ifdef CONFIG_KVM_XEN
9291         static_key_deferred_flush(&kvm_xen_enabled);
9292         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9293 #endif
9294 }
9295
9296 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9297 {
9298         /*
9299          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9300          * local APIC is in-kernel, the run loop will detect the non-runnable
9301          * state and halt the vCPU.  Exit to userspace if the local APIC is
9302          * managed by userspace, in which case userspace is responsible for
9303          * handling wake events.
9304          */
9305         ++vcpu->stat.halt_exits;
9306         if (lapic_in_kernel(vcpu)) {
9307                 vcpu->arch.mp_state = state;
9308                 return 1;
9309         } else {
9310                 vcpu->run->exit_reason = reason;
9311                 return 0;
9312         }
9313 }
9314
9315 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9316 {
9317         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9318 }
9319 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9320
9321 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9322 {
9323         int ret = kvm_skip_emulated_instruction(vcpu);
9324         /*
9325          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9326          * KVM_EXIT_DEBUG here.
9327          */
9328         return kvm_emulate_halt_noskip(vcpu) && ret;
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9331
9332 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9333 {
9334         int ret = kvm_skip_emulated_instruction(vcpu);
9335
9336         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9337                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9338 }
9339 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9340
9341 #ifdef CONFIG_X86_64
9342 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9343                                 unsigned long clock_type)
9344 {
9345         struct kvm_clock_pairing clock_pairing;
9346         struct timespec64 ts;
9347         u64 cycle;
9348         int ret;
9349
9350         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9351                 return -KVM_EOPNOTSUPP;
9352
9353         /*
9354          * When tsc is in permanent catchup mode guests won't be able to use
9355          * pvclock_read_retry loop to get consistent view of pvclock
9356          */
9357         if (vcpu->arch.tsc_always_catchup)
9358                 return -KVM_EOPNOTSUPP;
9359
9360         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9361                 return -KVM_EOPNOTSUPP;
9362
9363         clock_pairing.sec = ts.tv_sec;
9364         clock_pairing.nsec = ts.tv_nsec;
9365         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9366         clock_pairing.flags = 0;
9367         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9368
9369         ret = 0;
9370         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9371                             sizeof(struct kvm_clock_pairing)))
9372                 ret = -KVM_EFAULT;
9373
9374         return ret;
9375 }
9376 #endif
9377
9378 /*
9379  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9380  *
9381  * @apicid - apicid of vcpu to be kicked.
9382  */
9383 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9384 {
9385         /*
9386          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9387          * common code, e.g. for tracing. Defer initialization to the compiler.
9388          */
9389         struct kvm_lapic_irq lapic_irq = {
9390                 .delivery_mode = APIC_DM_REMRD,
9391                 .dest_mode = APIC_DEST_PHYSICAL,
9392                 .shorthand = APIC_DEST_NOSHORT,
9393                 .dest_id = apicid,
9394         };
9395
9396         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9397 }
9398
9399 bool kvm_apicv_activated(struct kvm *kvm)
9400 {
9401         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9402 }
9403 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9404
9405 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9406 {
9407         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9408         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9409
9410         return (vm_reasons | vcpu_reasons) == 0;
9411 }
9412 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9413
9414 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9415                                        enum kvm_apicv_inhibit reason, bool set)
9416 {
9417         if (set)
9418                 __set_bit(reason, inhibits);
9419         else
9420                 __clear_bit(reason, inhibits);
9421
9422         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9423 }
9424
9425 static void kvm_apicv_init(struct kvm *kvm)
9426 {
9427         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9428
9429         init_rwsem(&kvm->arch.apicv_update_lock);
9430
9431         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9432
9433         if (!enable_apicv)
9434                 set_or_clear_apicv_inhibit(inhibits,
9435                                            APICV_INHIBIT_REASON_DISABLE, true);
9436 }
9437
9438 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9439 {
9440         struct kvm_vcpu *target = NULL;
9441         struct kvm_apic_map *map;
9442
9443         vcpu->stat.directed_yield_attempted++;
9444
9445         if (single_task_running())
9446                 goto no_yield;
9447
9448         rcu_read_lock();
9449         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9450
9451         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9452                 target = map->phys_map[dest_id]->vcpu;
9453
9454         rcu_read_unlock();
9455
9456         if (!target || !READ_ONCE(target->ready))
9457                 goto no_yield;
9458
9459         /* Ignore requests to yield to self */
9460         if (vcpu == target)
9461                 goto no_yield;
9462
9463         if (kvm_vcpu_yield_to(target) <= 0)
9464                 goto no_yield;
9465
9466         vcpu->stat.directed_yield_successful++;
9467
9468 no_yield:
9469         return;
9470 }
9471
9472 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9473 {
9474         u64 ret = vcpu->run->hypercall.ret;
9475
9476         if (!is_64_bit_mode(vcpu))
9477                 ret = (u32)ret;
9478         kvm_rax_write(vcpu, ret);
9479         ++vcpu->stat.hypercalls;
9480         return kvm_skip_emulated_instruction(vcpu);
9481 }
9482
9483 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9484 {
9485         unsigned long nr, a0, a1, a2, a3, ret;
9486         int op_64_bit;
9487
9488         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9489                 return kvm_xen_hypercall(vcpu);
9490
9491         if (kvm_hv_hypercall_enabled(vcpu))
9492                 return kvm_hv_hypercall(vcpu);
9493
9494         nr = kvm_rax_read(vcpu);
9495         a0 = kvm_rbx_read(vcpu);
9496         a1 = kvm_rcx_read(vcpu);
9497         a2 = kvm_rdx_read(vcpu);
9498         a3 = kvm_rsi_read(vcpu);
9499
9500         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9501
9502         op_64_bit = is_64_bit_hypercall(vcpu);
9503         if (!op_64_bit) {
9504                 nr &= 0xFFFFFFFF;
9505                 a0 &= 0xFFFFFFFF;
9506                 a1 &= 0xFFFFFFFF;
9507                 a2 &= 0xFFFFFFFF;
9508                 a3 &= 0xFFFFFFFF;
9509         }
9510
9511         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9512                 ret = -KVM_EPERM;
9513                 goto out;
9514         }
9515
9516         ret = -KVM_ENOSYS;
9517
9518         switch (nr) {
9519         case KVM_HC_VAPIC_POLL_IRQ:
9520                 ret = 0;
9521                 break;
9522         case KVM_HC_KICK_CPU:
9523                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9524                         break;
9525
9526                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9527                 kvm_sched_yield(vcpu, a1);
9528                 ret = 0;
9529                 break;
9530 #ifdef CONFIG_X86_64
9531         case KVM_HC_CLOCK_PAIRING:
9532                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9533                 break;
9534 #endif
9535         case KVM_HC_SEND_IPI:
9536                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9537                         break;
9538
9539                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9540                 break;
9541         case KVM_HC_SCHED_YIELD:
9542                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9543                         break;
9544
9545                 kvm_sched_yield(vcpu, a0);
9546                 ret = 0;
9547                 break;
9548         case KVM_HC_MAP_GPA_RANGE: {
9549                 u64 gpa = a0, npages = a1, attrs = a2;
9550
9551                 ret = -KVM_ENOSYS;
9552                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9553                         break;
9554
9555                 if (!PAGE_ALIGNED(gpa) || !npages ||
9556                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9557                         ret = -KVM_EINVAL;
9558                         break;
9559                 }
9560
9561                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9562                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9563                 vcpu->run->hypercall.args[0]  = gpa;
9564                 vcpu->run->hypercall.args[1]  = npages;
9565                 vcpu->run->hypercall.args[2]  = attrs;
9566                 vcpu->run->hypercall.longmode = op_64_bit;
9567                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9568                 return 0;
9569         }
9570         default:
9571                 ret = -KVM_ENOSYS;
9572                 break;
9573         }
9574 out:
9575         if (!op_64_bit)
9576                 ret = (u32)ret;
9577         kvm_rax_write(vcpu, ret);
9578
9579         ++vcpu->stat.hypercalls;
9580         return kvm_skip_emulated_instruction(vcpu);
9581 }
9582 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9583
9584 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9585 {
9586         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9587         char instruction[3];
9588         unsigned long rip = kvm_rip_read(vcpu);
9589
9590         /*
9591          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9592          * the pieces.
9593          */
9594         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9595                 ctxt->exception.error_code_valid = false;
9596                 ctxt->exception.vector = UD_VECTOR;
9597                 ctxt->have_exception = true;
9598                 return X86EMUL_PROPAGATE_FAULT;
9599         }
9600
9601         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9602
9603         return emulator_write_emulated(ctxt, rip, instruction, 3,
9604                 &ctxt->exception);
9605 }
9606
9607 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9608 {
9609         return vcpu->run->request_interrupt_window &&
9610                 likely(!pic_in_kernel(vcpu->kvm));
9611 }
9612
9613 /* Called within kvm->srcu read side.  */
9614 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9615 {
9616         struct kvm_run *kvm_run = vcpu->run;
9617
9618         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9619         kvm_run->cr8 = kvm_get_cr8(vcpu);
9620         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9621
9622         kvm_run->ready_for_interrupt_injection =
9623                 pic_in_kernel(vcpu->kvm) ||
9624                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9625
9626         if (is_smm(vcpu))
9627                 kvm_run->flags |= KVM_RUN_X86_SMM;
9628 }
9629
9630 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9631 {
9632         int max_irr, tpr;
9633
9634         if (!kvm_x86_ops.update_cr8_intercept)
9635                 return;
9636
9637         if (!lapic_in_kernel(vcpu))
9638                 return;
9639
9640         if (vcpu->arch.apic->apicv_active)
9641                 return;
9642
9643         if (!vcpu->arch.apic->vapic_addr)
9644                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9645         else
9646                 max_irr = -1;
9647
9648         if (max_irr != -1)
9649                 max_irr >>= 4;
9650
9651         tpr = kvm_lapic_get_cr8(vcpu);
9652
9653         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9654 }
9655
9656
9657 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9658 {
9659         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9660                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9661                 return 1;
9662         }
9663
9664         return kvm_x86_ops.nested_ops->check_events(vcpu);
9665 }
9666
9667 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9668 {
9669         trace_kvm_inj_exception(vcpu->arch.exception.nr,
9670                                 vcpu->arch.exception.has_error_code,
9671                                 vcpu->arch.exception.error_code,
9672                                 vcpu->arch.exception.injected);
9673
9674         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9675                 vcpu->arch.exception.error_code = false;
9676         static_call(kvm_x86_queue_exception)(vcpu);
9677 }
9678
9679 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9680 {
9681         int r;
9682         bool can_inject = true;
9683
9684         /* try to reinject previous events if any */
9685
9686         if (vcpu->arch.exception.injected) {
9687                 kvm_inject_exception(vcpu);
9688                 can_inject = false;
9689         }
9690         /*
9691          * Do not inject an NMI or interrupt if there is a pending
9692          * exception.  Exceptions and interrupts are recognized at
9693          * instruction boundaries, i.e. the start of an instruction.
9694          * Trap-like exceptions, e.g. #DB, have higher priority than
9695          * NMIs and interrupts, i.e. traps are recognized before an
9696          * NMI/interrupt that's pending on the same instruction.
9697          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9698          * priority, but are only generated (pended) during instruction
9699          * execution, i.e. a pending fault-like exception means the
9700          * fault occurred on the *previous* instruction and must be
9701          * serviced prior to recognizing any new events in order to
9702          * fully complete the previous instruction.
9703          */
9704         else if (!vcpu->arch.exception.pending) {
9705                 if (vcpu->arch.nmi_injected) {
9706                         static_call(kvm_x86_inject_nmi)(vcpu);
9707                         can_inject = false;
9708                 } else if (vcpu->arch.interrupt.injected) {
9709                         static_call(kvm_x86_inject_irq)(vcpu, true);
9710                         can_inject = false;
9711                 }
9712         }
9713
9714         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9715                      vcpu->arch.exception.pending);
9716
9717         /*
9718          * Call check_nested_events() even if we reinjected a previous event
9719          * in order for caller to determine if it should require immediate-exit
9720          * from L2 to L1 due to pending L1 events which require exit
9721          * from L2 to L1.
9722          */
9723         if (is_guest_mode(vcpu)) {
9724                 r = kvm_check_nested_events(vcpu);
9725                 if (r < 0)
9726                         goto out;
9727         }
9728
9729         /* try to inject new event if pending */
9730         if (vcpu->arch.exception.pending) {
9731                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9732                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9733                                              X86_EFLAGS_RF);
9734
9735                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9736                         kvm_deliver_exception_payload(vcpu);
9737                         if (vcpu->arch.dr7 & DR7_GD) {
9738                                 vcpu->arch.dr7 &= ~DR7_GD;
9739                                 kvm_update_dr7(vcpu);
9740                         }
9741                 }
9742
9743                 kvm_inject_exception(vcpu);
9744
9745                 vcpu->arch.exception.pending = false;
9746                 vcpu->arch.exception.injected = true;
9747
9748                 can_inject = false;
9749         }
9750
9751         /* Don't inject interrupts if the user asked to avoid doing so */
9752         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9753                 return 0;
9754
9755         /*
9756          * Finally, inject interrupt events.  If an event cannot be injected
9757          * due to architectural conditions (e.g. IF=0) a window-open exit
9758          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9759          * and can architecturally be injected, but we cannot do it right now:
9760          * an interrupt could have arrived just now and we have to inject it
9761          * as a vmexit, or there could already an event in the queue, which is
9762          * indicated by can_inject.  In that case we request an immediate exit
9763          * in order to make progress and get back here for another iteration.
9764          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9765          */
9766         if (vcpu->arch.smi_pending) {
9767                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9768                 if (r < 0)
9769                         goto out;
9770                 if (r) {
9771                         vcpu->arch.smi_pending = false;
9772                         ++vcpu->arch.smi_count;
9773                         enter_smm(vcpu);
9774                         can_inject = false;
9775                 } else
9776                         static_call(kvm_x86_enable_smi_window)(vcpu);
9777         }
9778
9779         if (vcpu->arch.nmi_pending) {
9780                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9781                 if (r < 0)
9782                         goto out;
9783                 if (r) {
9784                         --vcpu->arch.nmi_pending;
9785                         vcpu->arch.nmi_injected = true;
9786                         static_call(kvm_x86_inject_nmi)(vcpu);
9787                         can_inject = false;
9788                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9789                 }
9790                 if (vcpu->arch.nmi_pending)
9791                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9792         }
9793
9794         if (kvm_cpu_has_injectable_intr(vcpu)) {
9795                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9796                 if (r < 0)
9797                         goto out;
9798                 if (r) {
9799                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9800                         static_call(kvm_x86_inject_irq)(vcpu, false);
9801                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9802                 }
9803                 if (kvm_cpu_has_injectable_intr(vcpu))
9804                         static_call(kvm_x86_enable_irq_window)(vcpu);
9805         }
9806
9807         if (is_guest_mode(vcpu) &&
9808             kvm_x86_ops.nested_ops->hv_timer_pending &&
9809             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9810                 *req_immediate_exit = true;
9811
9812         WARN_ON(vcpu->arch.exception.pending);
9813         return 0;
9814
9815 out:
9816         if (r == -EBUSY) {
9817                 *req_immediate_exit = true;
9818                 r = 0;
9819         }
9820         return r;
9821 }
9822
9823 static void process_nmi(struct kvm_vcpu *vcpu)
9824 {
9825         unsigned limit = 2;
9826
9827         /*
9828          * x86 is limited to one NMI running, and one NMI pending after it.
9829          * If an NMI is already in progress, limit further NMIs to just one.
9830          * Otherwise, allow two (and we'll inject the first one immediately).
9831          */
9832         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9833                 limit = 1;
9834
9835         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9836         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9837         kvm_make_request(KVM_REQ_EVENT, vcpu);
9838 }
9839
9840 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9841 {
9842         u32 flags = 0;
9843         flags |= seg->g       << 23;
9844         flags |= seg->db      << 22;
9845         flags |= seg->l       << 21;
9846         flags |= seg->avl     << 20;
9847         flags |= seg->present << 15;
9848         flags |= seg->dpl     << 13;
9849         flags |= seg->s       << 12;
9850         flags |= seg->type    << 8;
9851         return flags;
9852 }
9853
9854 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9855 {
9856         struct kvm_segment seg;
9857         int offset;
9858
9859         kvm_get_segment(vcpu, &seg, n);
9860         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9861
9862         if (n < 3)
9863                 offset = 0x7f84 + n * 12;
9864         else
9865                 offset = 0x7f2c + (n - 3) * 12;
9866
9867         put_smstate(u32, buf, offset + 8, seg.base);
9868         put_smstate(u32, buf, offset + 4, seg.limit);
9869         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9870 }
9871
9872 #ifdef CONFIG_X86_64
9873 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9874 {
9875         struct kvm_segment seg;
9876         int offset;
9877         u16 flags;
9878
9879         kvm_get_segment(vcpu, &seg, n);
9880         offset = 0x7e00 + n * 16;
9881
9882         flags = enter_smm_get_segment_flags(&seg) >> 8;
9883         put_smstate(u16, buf, offset, seg.selector);
9884         put_smstate(u16, buf, offset + 2, flags);
9885         put_smstate(u32, buf, offset + 4, seg.limit);
9886         put_smstate(u64, buf, offset + 8, seg.base);
9887 }
9888 #endif
9889
9890 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9891 {
9892         struct desc_ptr dt;
9893         struct kvm_segment seg;
9894         unsigned long val;
9895         int i;
9896
9897         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9898         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9899         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9900         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9901
9902         for (i = 0; i < 8; i++)
9903                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9904
9905         kvm_get_dr(vcpu, 6, &val);
9906         put_smstate(u32, buf, 0x7fcc, (u32)val);
9907         kvm_get_dr(vcpu, 7, &val);
9908         put_smstate(u32, buf, 0x7fc8, (u32)val);
9909
9910         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9911         put_smstate(u32, buf, 0x7fc4, seg.selector);
9912         put_smstate(u32, buf, 0x7f64, seg.base);
9913         put_smstate(u32, buf, 0x7f60, seg.limit);
9914         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9915
9916         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9917         put_smstate(u32, buf, 0x7fc0, seg.selector);
9918         put_smstate(u32, buf, 0x7f80, seg.base);
9919         put_smstate(u32, buf, 0x7f7c, seg.limit);
9920         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9921
9922         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9923         put_smstate(u32, buf, 0x7f74, dt.address);
9924         put_smstate(u32, buf, 0x7f70, dt.size);
9925
9926         static_call(kvm_x86_get_idt)(vcpu, &dt);
9927         put_smstate(u32, buf, 0x7f58, dt.address);
9928         put_smstate(u32, buf, 0x7f54, dt.size);
9929
9930         for (i = 0; i < 6; i++)
9931                 enter_smm_save_seg_32(vcpu, buf, i);
9932
9933         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9934
9935         /* revision id */
9936         put_smstate(u32, buf, 0x7efc, 0x00020000);
9937         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9938 }
9939
9940 #ifdef CONFIG_X86_64
9941 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9942 {
9943         struct desc_ptr dt;
9944         struct kvm_segment seg;
9945         unsigned long val;
9946         int i;
9947
9948         for (i = 0; i < 16; i++)
9949                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9950
9951         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9952         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9953
9954         kvm_get_dr(vcpu, 6, &val);
9955         put_smstate(u64, buf, 0x7f68, val);
9956         kvm_get_dr(vcpu, 7, &val);
9957         put_smstate(u64, buf, 0x7f60, val);
9958
9959         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9960         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9961         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9962
9963         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9964
9965         /* revision id */
9966         put_smstate(u32, buf, 0x7efc, 0x00020064);
9967
9968         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9969
9970         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9971         put_smstate(u16, buf, 0x7e90, seg.selector);
9972         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9973         put_smstate(u32, buf, 0x7e94, seg.limit);
9974         put_smstate(u64, buf, 0x7e98, seg.base);
9975
9976         static_call(kvm_x86_get_idt)(vcpu, &dt);
9977         put_smstate(u32, buf, 0x7e84, dt.size);
9978         put_smstate(u64, buf, 0x7e88, dt.address);
9979
9980         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9981         put_smstate(u16, buf, 0x7e70, seg.selector);
9982         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9983         put_smstate(u32, buf, 0x7e74, seg.limit);
9984         put_smstate(u64, buf, 0x7e78, seg.base);
9985
9986         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9987         put_smstate(u32, buf, 0x7e64, dt.size);
9988         put_smstate(u64, buf, 0x7e68, dt.address);
9989
9990         for (i = 0; i < 6; i++)
9991                 enter_smm_save_seg_64(vcpu, buf, i);
9992 }
9993 #endif
9994
9995 static void enter_smm(struct kvm_vcpu *vcpu)
9996 {
9997         struct kvm_segment cs, ds;
9998         struct desc_ptr dt;
9999         unsigned long cr0;
10000         char buf[512];
10001
10002         memset(buf, 0, 512);
10003 #ifdef CONFIG_X86_64
10004         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10005                 enter_smm_save_state_64(vcpu, buf);
10006         else
10007 #endif
10008                 enter_smm_save_state_32(vcpu, buf);
10009
10010         /*
10011          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10012          * state (e.g. leave guest mode) after we've saved the state into the
10013          * SMM state-save area.
10014          */
10015         static_call(kvm_x86_enter_smm)(vcpu, buf);
10016
10017         kvm_smm_changed(vcpu, true);
10018         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10019
10020         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10021                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10022         else
10023                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10024
10025         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10026         kvm_rip_write(vcpu, 0x8000);
10027
10028         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10029         static_call(kvm_x86_set_cr0)(vcpu, cr0);
10030         vcpu->arch.cr0 = cr0;
10031
10032         static_call(kvm_x86_set_cr4)(vcpu, 0);
10033
10034         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
10035         dt.address = dt.size = 0;
10036         static_call(kvm_x86_set_idt)(vcpu, &dt);
10037
10038         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10039
10040         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10041         cs.base = vcpu->arch.smbase;
10042
10043         ds.selector = 0;
10044         ds.base = 0;
10045
10046         cs.limit    = ds.limit = 0xffffffff;
10047         cs.type     = ds.type = 0x3;
10048         cs.dpl      = ds.dpl = 0;
10049         cs.db       = ds.db = 0;
10050         cs.s        = ds.s = 1;
10051         cs.l        = ds.l = 0;
10052         cs.g        = ds.g = 1;
10053         cs.avl      = ds.avl = 0;
10054         cs.present  = ds.present = 1;
10055         cs.unusable = ds.unusable = 0;
10056         cs.padding  = ds.padding = 0;
10057
10058         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10059         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10060         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10061         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10062         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10063         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10064
10065 #ifdef CONFIG_X86_64
10066         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10067                 static_call(kvm_x86_set_efer)(vcpu, 0);
10068 #endif
10069
10070         kvm_update_cpuid_runtime(vcpu);
10071         kvm_mmu_reset_context(vcpu);
10072 }
10073
10074 static void process_smi(struct kvm_vcpu *vcpu)
10075 {
10076         vcpu->arch.smi_pending = true;
10077         kvm_make_request(KVM_REQ_EVENT, vcpu);
10078 }
10079
10080 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10081                                        unsigned long *vcpu_bitmap)
10082 {
10083         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10084 }
10085
10086 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10087 {
10088         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10089 }
10090
10091 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10092 {
10093         struct kvm_lapic *apic = vcpu->arch.apic;
10094         bool activate;
10095
10096         if (!lapic_in_kernel(vcpu))
10097                 return;
10098
10099         down_read(&vcpu->kvm->arch.apicv_update_lock);
10100         preempt_disable();
10101
10102         /* Do not activate APICV when APIC is disabled */
10103         activate = kvm_vcpu_apicv_activated(vcpu) &&
10104                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10105
10106         if (apic->apicv_active == activate)
10107                 goto out;
10108
10109         apic->apicv_active = activate;
10110         kvm_apic_update_apicv(vcpu);
10111         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10112
10113         /*
10114          * When APICv gets disabled, we may still have injected interrupts
10115          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10116          * still active when the interrupt got accepted. Make sure
10117          * inject_pending_event() is called to check for that.
10118          */
10119         if (!apic->apicv_active)
10120                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10121
10122 out:
10123         preempt_enable();
10124         up_read(&vcpu->kvm->arch.apicv_update_lock);
10125 }
10126 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10127
10128 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10129                                       enum kvm_apicv_inhibit reason, bool set)
10130 {
10131         unsigned long old, new;
10132
10133         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10134
10135         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10136                 return;
10137
10138         old = new = kvm->arch.apicv_inhibit_reasons;
10139
10140         set_or_clear_apicv_inhibit(&new, reason, set);
10141
10142         if (!!old != !!new) {
10143                 /*
10144                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10145                  * false positives in the sanity check WARN in svm_vcpu_run().
10146                  * This task will wait for all vCPUs to ack the kick IRQ before
10147                  * updating apicv_inhibit_reasons, and all other vCPUs will
10148                  * block on acquiring apicv_update_lock so that vCPUs can't
10149                  * redo svm_vcpu_run() without seeing the new inhibit state.
10150                  *
10151                  * Note, holding apicv_update_lock and taking it in the read
10152                  * side (handling the request) also prevents other vCPUs from
10153                  * servicing the request with a stale apicv_inhibit_reasons.
10154                  */
10155                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10156                 kvm->arch.apicv_inhibit_reasons = new;
10157                 if (new) {
10158                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10159                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10160                 }
10161         } else {
10162                 kvm->arch.apicv_inhibit_reasons = new;
10163         }
10164 }
10165
10166 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10167                                     enum kvm_apicv_inhibit reason, bool set)
10168 {
10169         if (!enable_apicv)
10170                 return;
10171
10172         down_write(&kvm->arch.apicv_update_lock);
10173         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10174         up_write(&kvm->arch.apicv_update_lock);
10175 }
10176 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10177
10178 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10179 {
10180         if (!kvm_apic_present(vcpu))
10181                 return;
10182
10183         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10184
10185         if (irqchip_split(vcpu->kvm))
10186                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10187         else {
10188                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10189                 if (ioapic_in_kernel(vcpu->kvm))
10190                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10191         }
10192
10193         if (is_guest_mode(vcpu))
10194                 vcpu->arch.load_eoi_exitmap_pending = true;
10195         else
10196                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10197 }
10198
10199 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10200 {
10201         u64 eoi_exit_bitmap[4];
10202
10203         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10204                 return;
10205
10206         if (to_hv_vcpu(vcpu)) {
10207                 bitmap_or((ulong *)eoi_exit_bitmap,
10208                           vcpu->arch.ioapic_handled_vectors,
10209                           to_hv_synic(vcpu)->vec_bitmap, 256);
10210                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10211                 return;
10212         }
10213
10214         static_call_cond(kvm_x86_load_eoi_exitmap)(
10215                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10216 }
10217
10218 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10219                                             unsigned long start, unsigned long end)
10220 {
10221         unsigned long apic_address;
10222
10223         /*
10224          * The physical address of apic access page is stored in the VMCS.
10225          * Update it when it becomes invalid.
10226          */
10227         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10228         if (start <= apic_address && apic_address < end)
10229                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10230 }
10231
10232 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10233 {
10234         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10235 }
10236
10237 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10238 {
10239         if (!lapic_in_kernel(vcpu))
10240                 return;
10241
10242         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10243 }
10244
10245 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10246 {
10247         smp_send_reschedule(vcpu->cpu);
10248 }
10249 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10250
10251 /*
10252  * Called within kvm->srcu read side.
10253  * Returns 1 to let vcpu_run() continue the guest execution loop without
10254  * exiting to the userspace.  Otherwise, the value will be returned to the
10255  * userspace.
10256  */
10257 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10258 {
10259         int r;
10260         bool req_int_win =
10261                 dm_request_for_irq_injection(vcpu) &&
10262                 kvm_cpu_accept_dm_intr(vcpu);
10263         fastpath_t exit_fastpath;
10264
10265         bool req_immediate_exit = false;
10266
10267         /* Forbid vmenter if vcpu dirty ring is soft-full */
10268         if (unlikely(vcpu->kvm->dirty_ring_size &&
10269                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10270                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10271                 trace_kvm_dirty_ring_exit(vcpu);
10272                 r = 0;
10273                 goto out;
10274         }
10275
10276         if (kvm_request_pending(vcpu)) {
10277                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10278                         r = -EIO;
10279                         goto out;
10280                 }
10281                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10282                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10283                                 r = 0;
10284                                 goto out;
10285                         }
10286                 }
10287                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10288                         kvm_mmu_free_obsolete_roots(vcpu);
10289                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10290                         __kvm_migrate_timers(vcpu);
10291                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10292                         kvm_update_masterclock(vcpu->kvm);
10293                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10294                         kvm_gen_kvmclock_update(vcpu);
10295                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10296                         r = kvm_guest_time_update(vcpu);
10297                         if (unlikely(r))
10298                                 goto out;
10299                 }
10300                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10301                         kvm_mmu_sync_roots(vcpu);
10302                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10303                         kvm_mmu_load_pgd(vcpu);
10304                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10305                         kvm_vcpu_flush_tlb_all(vcpu);
10306
10307                         /* Flushing all ASIDs flushes the current ASID... */
10308                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10309                 }
10310                 kvm_service_local_tlb_flush_requests(vcpu);
10311
10312                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10313                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10314                         r = 0;
10315                         goto out;
10316                 }
10317                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10318                         if (is_guest_mode(vcpu)) {
10319                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10320                         } else {
10321                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10322                                 vcpu->mmio_needed = 0;
10323                                 r = 0;
10324                                 goto out;
10325                         }
10326                 }
10327                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10328                         /* Page is swapped out. Do synthetic halt */
10329                         vcpu->arch.apf.halted = true;
10330                         r = 1;
10331                         goto out;
10332                 }
10333                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10334                         record_steal_time(vcpu);
10335                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10336                         process_smi(vcpu);
10337                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10338                         process_nmi(vcpu);
10339                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10340                         kvm_pmu_handle_event(vcpu);
10341                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10342                         kvm_pmu_deliver_pmi(vcpu);
10343                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10344                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10345                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10346                                      vcpu->arch.ioapic_handled_vectors)) {
10347                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10348                                 vcpu->run->eoi.vector =
10349                                                 vcpu->arch.pending_ioapic_eoi;
10350                                 r = 0;
10351                                 goto out;
10352                         }
10353                 }
10354                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10355                         vcpu_scan_ioapic(vcpu);
10356                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10357                         vcpu_load_eoi_exitmap(vcpu);
10358                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10359                         kvm_vcpu_reload_apic_access_page(vcpu);
10360                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10361                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10362                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10363                         vcpu->run->system_event.ndata = 0;
10364                         r = 0;
10365                         goto out;
10366                 }
10367                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10368                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10369                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10370                         vcpu->run->system_event.ndata = 0;
10371                         r = 0;
10372                         goto out;
10373                 }
10374                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10375                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10376
10377                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10378                         vcpu->run->hyperv = hv_vcpu->exit;
10379                         r = 0;
10380                         goto out;
10381                 }
10382
10383                 /*
10384                  * KVM_REQ_HV_STIMER has to be processed after
10385                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10386                  * depend on the guest clock being up-to-date
10387                  */
10388                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10389                         kvm_hv_process_stimers(vcpu);
10390                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10391                         kvm_vcpu_update_apicv(vcpu);
10392                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10393                         kvm_check_async_pf_completion(vcpu);
10394                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10395                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10396
10397                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10398                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10399         }
10400
10401         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10402             kvm_xen_has_interrupt(vcpu)) {
10403                 ++vcpu->stat.req_event;
10404                 r = kvm_apic_accept_events(vcpu);
10405                 if (r < 0) {
10406                         r = 0;
10407                         goto out;
10408                 }
10409                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10410                         r = 1;
10411                         goto out;
10412                 }
10413
10414                 r = inject_pending_event(vcpu, &req_immediate_exit);
10415                 if (r < 0) {
10416                         r = 0;
10417                         goto out;
10418                 }
10419                 if (req_int_win)
10420                         static_call(kvm_x86_enable_irq_window)(vcpu);
10421
10422                 if (kvm_lapic_enabled(vcpu)) {
10423                         update_cr8_intercept(vcpu);
10424                         kvm_lapic_sync_to_vapic(vcpu);
10425                 }
10426         }
10427
10428         r = kvm_mmu_reload(vcpu);
10429         if (unlikely(r)) {
10430                 goto cancel_injection;
10431         }
10432
10433         preempt_disable();
10434
10435         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10436
10437         /*
10438          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10439          * IPI are then delayed after guest entry, which ensures that they
10440          * result in virtual interrupt delivery.
10441          */
10442         local_irq_disable();
10443
10444         /* Store vcpu->apicv_active before vcpu->mode.  */
10445         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10446
10447         kvm_vcpu_srcu_read_unlock(vcpu);
10448
10449         /*
10450          * 1) We should set ->mode before checking ->requests.  Please see
10451          * the comment in kvm_vcpu_exiting_guest_mode().
10452          *
10453          * 2) For APICv, we should set ->mode before checking PID.ON. This
10454          * pairs with the memory barrier implicit in pi_test_and_set_on
10455          * (see vmx_deliver_posted_interrupt).
10456          *
10457          * 3) This also orders the write to mode from any reads to the page
10458          * tables done while the VCPU is running.  Please see the comment
10459          * in kvm_flush_remote_tlbs.
10460          */
10461         smp_mb__after_srcu_read_unlock();
10462
10463         /*
10464          * Process pending posted interrupts to handle the case where the
10465          * notification IRQ arrived in the host, or was never sent (because the
10466          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10467          * status, KVM doesn't update assigned devices when APICv is inhibited,
10468          * i.e. they can post interrupts even if APICv is temporarily disabled.
10469          */
10470         if (kvm_lapic_enabled(vcpu))
10471                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10472
10473         if (kvm_vcpu_exit_request(vcpu)) {
10474                 vcpu->mode = OUTSIDE_GUEST_MODE;
10475                 smp_wmb();
10476                 local_irq_enable();
10477                 preempt_enable();
10478                 kvm_vcpu_srcu_read_lock(vcpu);
10479                 r = 1;
10480                 goto cancel_injection;
10481         }
10482
10483         if (req_immediate_exit) {
10484                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10485                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10486         }
10487
10488         fpregs_assert_state_consistent();
10489         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10490                 switch_fpu_return();
10491
10492         if (vcpu->arch.guest_fpu.xfd_err)
10493                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10494
10495         if (unlikely(vcpu->arch.switch_db_regs)) {
10496                 set_debugreg(0, 7);
10497                 set_debugreg(vcpu->arch.eff_db[0], 0);
10498                 set_debugreg(vcpu->arch.eff_db[1], 1);
10499                 set_debugreg(vcpu->arch.eff_db[2], 2);
10500                 set_debugreg(vcpu->arch.eff_db[3], 3);
10501         } else if (unlikely(hw_breakpoint_active())) {
10502                 set_debugreg(0, 7);
10503         }
10504
10505         guest_timing_enter_irqoff();
10506
10507         for (;;) {
10508                 /*
10509                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10510                  * update must kick and wait for all vCPUs before toggling the
10511                  * per-VM state, and responsing vCPUs must wait for the update
10512                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10513                  */
10514                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10515                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10516
10517                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10518                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10519                         break;
10520
10521                 if (kvm_lapic_enabled(vcpu))
10522                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10523
10524                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10525                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10526                         break;
10527                 }
10528         }
10529
10530         /*
10531          * Do this here before restoring debug registers on the host.  And
10532          * since we do this before handling the vmexit, a DR access vmexit
10533          * can (a) read the correct value of the debug registers, (b) set
10534          * KVM_DEBUGREG_WONT_EXIT again.
10535          */
10536         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10537                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10538                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10539                 kvm_update_dr0123(vcpu);
10540                 kvm_update_dr7(vcpu);
10541         }
10542
10543         /*
10544          * If the guest has used debug registers, at least dr7
10545          * will be disabled while returning to the host.
10546          * If we don't have active breakpoints in the host, we don't
10547          * care about the messed up debug address registers. But if
10548          * we have some of them active, restore the old state.
10549          */
10550         if (hw_breakpoint_active())
10551                 hw_breakpoint_restore();
10552
10553         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10554         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10555
10556         vcpu->mode = OUTSIDE_GUEST_MODE;
10557         smp_wmb();
10558
10559         /*
10560          * Sync xfd before calling handle_exit_irqoff() which may
10561          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10562          * in #NM irqoff handler).
10563          */
10564         if (vcpu->arch.xfd_no_write_intercept)
10565                 fpu_sync_guest_vmexit_xfd_state();
10566
10567         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10568
10569         if (vcpu->arch.guest_fpu.xfd_err)
10570                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10571
10572         /*
10573          * Consume any pending interrupts, including the possible source of
10574          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10575          * An instruction is required after local_irq_enable() to fully unblock
10576          * interrupts on processors that implement an interrupt shadow, the
10577          * stat.exits increment will do nicely.
10578          */
10579         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10580         local_irq_enable();
10581         ++vcpu->stat.exits;
10582         local_irq_disable();
10583         kvm_after_interrupt(vcpu);
10584
10585         /*
10586          * Wait until after servicing IRQs to account guest time so that any
10587          * ticks that occurred while running the guest are properly accounted
10588          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10589          * of accounting via context tracking, but the loss of accuracy is
10590          * acceptable for all known use cases.
10591          */
10592         guest_timing_exit_irqoff();
10593
10594         local_irq_enable();
10595         preempt_enable();
10596
10597         kvm_vcpu_srcu_read_lock(vcpu);
10598
10599         /*
10600          * Profile KVM exit RIPs:
10601          */
10602         if (unlikely(prof_on == KVM_PROFILING)) {
10603                 unsigned long rip = kvm_rip_read(vcpu);
10604                 profile_hit(KVM_PROFILING, (void *)rip);
10605         }
10606
10607         if (unlikely(vcpu->arch.tsc_always_catchup))
10608                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10609
10610         if (vcpu->arch.apic_attention)
10611                 kvm_lapic_sync_from_vapic(vcpu);
10612
10613         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10614         return r;
10615
10616 cancel_injection:
10617         if (req_immediate_exit)
10618                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10619         static_call(kvm_x86_cancel_injection)(vcpu);
10620         if (unlikely(vcpu->arch.apic_attention))
10621                 kvm_lapic_sync_from_vapic(vcpu);
10622 out:
10623         return r;
10624 }
10625
10626 /* Called within kvm->srcu read side.  */
10627 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10628 {
10629         bool hv_timer;
10630
10631         if (!kvm_arch_vcpu_runnable(vcpu)) {
10632                 /*
10633                  * Switch to the software timer before halt-polling/blocking as
10634                  * the guest's timer may be a break event for the vCPU, and the
10635                  * hypervisor timer runs only when the CPU is in guest mode.
10636                  * Switch before halt-polling so that KVM recognizes an expired
10637                  * timer before blocking.
10638                  */
10639                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10640                 if (hv_timer)
10641                         kvm_lapic_switch_to_sw_timer(vcpu);
10642
10643                 kvm_vcpu_srcu_read_unlock(vcpu);
10644                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10645                         kvm_vcpu_halt(vcpu);
10646                 else
10647                         kvm_vcpu_block(vcpu);
10648                 kvm_vcpu_srcu_read_lock(vcpu);
10649
10650                 if (hv_timer)
10651                         kvm_lapic_switch_to_hv_timer(vcpu);
10652
10653                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10654                         return 1;
10655         }
10656
10657         if (kvm_apic_accept_events(vcpu) < 0)
10658                 return 0;
10659         switch(vcpu->arch.mp_state) {
10660         case KVM_MP_STATE_HALTED:
10661         case KVM_MP_STATE_AP_RESET_HOLD:
10662                 vcpu->arch.pv.pv_unhalted = false;
10663                 vcpu->arch.mp_state =
10664                         KVM_MP_STATE_RUNNABLE;
10665                 fallthrough;
10666         case KVM_MP_STATE_RUNNABLE:
10667                 vcpu->arch.apf.halted = false;
10668                 break;
10669         case KVM_MP_STATE_INIT_RECEIVED:
10670                 break;
10671         default:
10672                 return -EINTR;
10673         }
10674         return 1;
10675 }
10676
10677 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10678 {
10679         if (is_guest_mode(vcpu))
10680                 kvm_check_nested_events(vcpu);
10681
10682         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10683                 !vcpu->arch.apf.halted);
10684 }
10685
10686 /* Called within kvm->srcu read side.  */
10687 static int vcpu_run(struct kvm_vcpu *vcpu)
10688 {
10689         int r;
10690
10691         vcpu->arch.l1tf_flush_l1d = true;
10692
10693         for (;;) {
10694                 /*
10695                  * If another guest vCPU requests a PV TLB flush in the middle
10696                  * of instruction emulation, the rest of the emulation could
10697                  * use a stale page translation. Assume that any code after
10698                  * this point can start executing an instruction.
10699                  */
10700                 vcpu->arch.at_instruction_boundary = false;
10701                 if (kvm_vcpu_running(vcpu)) {
10702                         r = vcpu_enter_guest(vcpu);
10703                 } else {
10704                         r = vcpu_block(vcpu);
10705                 }
10706
10707                 if (r <= 0)
10708                         break;
10709
10710                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10711                 if (kvm_xen_has_pending_events(vcpu))
10712                         kvm_xen_inject_pending_events(vcpu);
10713
10714                 if (kvm_cpu_has_pending_timer(vcpu))
10715                         kvm_inject_pending_timer_irqs(vcpu);
10716
10717                 if (dm_request_for_irq_injection(vcpu) &&
10718                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10719                         r = 0;
10720                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10721                         ++vcpu->stat.request_irq_exits;
10722                         break;
10723                 }
10724
10725                 if (__xfer_to_guest_mode_work_pending()) {
10726                         kvm_vcpu_srcu_read_unlock(vcpu);
10727                         r = xfer_to_guest_mode_handle_work(vcpu);
10728                         kvm_vcpu_srcu_read_lock(vcpu);
10729                         if (r)
10730                                 return r;
10731                 }
10732         }
10733
10734         return r;
10735 }
10736
10737 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10738 {
10739         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10740 }
10741
10742 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10743 {
10744         BUG_ON(!vcpu->arch.pio.count);
10745
10746         return complete_emulated_io(vcpu);
10747 }
10748
10749 /*
10750  * Implements the following, as a state machine:
10751  *
10752  * read:
10753  *   for each fragment
10754  *     for each mmio piece in the fragment
10755  *       write gpa, len
10756  *       exit
10757  *       copy data
10758  *   execute insn
10759  *
10760  * write:
10761  *   for each fragment
10762  *     for each mmio piece in the fragment
10763  *       write gpa, len
10764  *       copy data
10765  *       exit
10766  */
10767 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10768 {
10769         struct kvm_run *run = vcpu->run;
10770         struct kvm_mmio_fragment *frag;
10771         unsigned len;
10772
10773         BUG_ON(!vcpu->mmio_needed);
10774
10775         /* Complete previous fragment */
10776         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10777         len = min(8u, frag->len);
10778         if (!vcpu->mmio_is_write)
10779                 memcpy(frag->data, run->mmio.data, len);
10780
10781         if (frag->len <= 8) {
10782                 /* Switch to the next fragment. */
10783                 frag++;
10784                 vcpu->mmio_cur_fragment++;
10785         } else {
10786                 /* Go forward to the next mmio piece. */
10787                 frag->data += len;
10788                 frag->gpa += len;
10789                 frag->len -= len;
10790         }
10791
10792         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10793                 vcpu->mmio_needed = 0;
10794
10795                 /* FIXME: return into emulator if single-stepping.  */
10796                 if (vcpu->mmio_is_write)
10797                         return 1;
10798                 vcpu->mmio_read_completed = 1;
10799                 return complete_emulated_io(vcpu);
10800         }
10801
10802         run->exit_reason = KVM_EXIT_MMIO;
10803         run->mmio.phys_addr = frag->gpa;
10804         if (vcpu->mmio_is_write)
10805                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10806         run->mmio.len = min(8u, frag->len);
10807         run->mmio.is_write = vcpu->mmio_is_write;
10808         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10809         return 0;
10810 }
10811
10812 /* Swap (qemu) user FPU context for the guest FPU context. */
10813 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10814 {
10815         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10816         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10817         trace_kvm_fpu(1);
10818 }
10819
10820 /* When vcpu_run ends, restore user space FPU context. */
10821 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10822 {
10823         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10824         ++vcpu->stat.fpu_reload;
10825         trace_kvm_fpu(0);
10826 }
10827
10828 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10829 {
10830         struct kvm_run *kvm_run = vcpu->run;
10831         int r;
10832
10833         vcpu_load(vcpu);
10834         kvm_sigset_activate(vcpu);
10835         kvm_run->flags = 0;
10836         kvm_load_guest_fpu(vcpu);
10837
10838         kvm_vcpu_srcu_read_lock(vcpu);
10839         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10840                 if (kvm_run->immediate_exit) {
10841                         r = -EINTR;
10842                         goto out;
10843                 }
10844                 /*
10845                  * It should be impossible for the hypervisor timer to be in
10846                  * use before KVM has ever run the vCPU.
10847                  */
10848                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10849
10850                 kvm_vcpu_srcu_read_unlock(vcpu);
10851                 kvm_vcpu_block(vcpu);
10852                 kvm_vcpu_srcu_read_lock(vcpu);
10853
10854                 if (kvm_apic_accept_events(vcpu) < 0) {
10855                         r = 0;
10856                         goto out;
10857                 }
10858                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10859                 r = -EAGAIN;
10860                 if (signal_pending(current)) {
10861                         r = -EINTR;
10862                         kvm_run->exit_reason = KVM_EXIT_INTR;
10863                         ++vcpu->stat.signal_exits;
10864                 }
10865                 goto out;
10866         }
10867
10868         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10869             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10870                 r = -EINVAL;
10871                 goto out;
10872         }
10873
10874         if (kvm_run->kvm_dirty_regs) {
10875                 r = sync_regs(vcpu);
10876                 if (r != 0)
10877                         goto out;
10878         }
10879
10880         /* re-sync apic's tpr */
10881         if (!lapic_in_kernel(vcpu)) {
10882                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10883                         r = -EINVAL;
10884                         goto out;
10885                 }
10886         }
10887
10888         if (unlikely(vcpu->arch.complete_userspace_io)) {
10889                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10890                 vcpu->arch.complete_userspace_io = NULL;
10891                 r = cui(vcpu);
10892                 if (r <= 0)
10893                         goto out;
10894         } else {
10895                 WARN_ON_ONCE(vcpu->arch.pio.count);
10896                 WARN_ON_ONCE(vcpu->mmio_needed);
10897         }
10898
10899         if (kvm_run->immediate_exit) {
10900                 r = -EINTR;
10901                 goto out;
10902         }
10903
10904         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10905         if (r <= 0)
10906                 goto out;
10907
10908         r = vcpu_run(vcpu);
10909
10910 out:
10911         kvm_put_guest_fpu(vcpu);
10912         if (kvm_run->kvm_valid_regs)
10913                 store_regs(vcpu);
10914         post_kvm_run_save(vcpu);
10915         kvm_vcpu_srcu_read_unlock(vcpu);
10916
10917         kvm_sigset_deactivate(vcpu);
10918         vcpu_put(vcpu);
10919         return r;
10920 }
10921
10922 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10923 {
10924         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10925                 /*
10926                  * We are here if userspace calls get_regs() in the middle of
10927                  * instruction emulation. Registers state needs to be copied
10928                  * back from emulation context to vcpu. Userspace shouldn't do
10929                  * that usually, but some bad designed PV devices (vmware
10930                  * backdoor interface) need this to work
10931                  */
10932                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10933                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10934         }
10935         regs->rax = kvm_rax_read(vcpu);
10936         regs->rbx = kvm_rbx_read(vcpu);
10937         regs->rcx = kvm_rcx_read(vcpu);
10938         regs->rdx = kvm_rdx_read(vcpu);
10939         regs->rsi = kvm_rsi_read(vcpu);
10940         regs->rdi = kvm_rdi_read(vcpu);
10941         regs->rsp = kvm_rsp_read(vcpu);
10942         regs->rbp = kvm_rbp_read(vcpu);
10943 #ifdef CONFIG_X86_64
10944         regs->r8 = kvm_r8_read(vcpu);
10945         regs->r9 = kvm_r9_read(vcpu);
10946         regs->r10 = kvm_r10_read(vcpu);
10947         regs->r11 = kvm_r11_read(vcpu);
10948         regs->r12 = kvm_r12_read(vcpu);
10949         regs->r13 = kvm_r13_read(vcpu);
10950         regs->r14 = kvm_r14_read(vcpu);
10951         regs->r15 = kvm_r15_read(vcpu);
10952 #endif
10953
10954         regs->rip = kvm_rip_read(vcpu);
10955         regs->rflags = kvm_get_rflags(vcpu);
10956 }
10957
10958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10959 {
10960         vcpu_load(vcpu);
10961         __get_regs(vcpu, regs);
10962         vcpu_put(vcpu);
10963         return 0;
10964 }
10965
10966 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10967 {
10968         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10969         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10970
10971         kvm_rax_write(vcpu, regs->rax);
10972         kvm_rbx_write(vcpu, regs->rbx);
10973         kvm_rcx_write(vcpu, regs->rcx);
10974         kvm_rdx_write(vcpu, regs->rdx);
10975         kvm_rsi_write(vcpu, regs->rsi);
10976         kvm_rdi_write(vcpu, regs->rdi);
10977         kvm_rsp_write(vcpu, regs->rsp);
10978         kvm_rbp_write(vcpu, regs->rbp);
10979 #ifdef CONFIG_X86_64
10980         kvm_r8_write(vcpu, regs->r8);
10981         kvm_r9_write(vcpu, regs->r9);
10982         kvm_r10_write(vcpu, regs->r10);
10983         kvm_r11_write(vcpu, regs->r11);
10984         kvm_r12_write(vcpu, regs->r12);
10985         kvm_r13_write(vcpu, regs->r13);
10986         kvm_r14_write(vcpu, regs->r14);
10987         kvm_r15_write(vcpu, regs->r15);
10988 #endif
10989
10990         kvm_rip_write(vcpu, regs->rip);
10991         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10992
10993         vcpu->arch.exception.pending = false;
10994
10995         kvm_make_request(KVM_REQ_EVENT, vcpu);
10996 }
10997
10998 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10999 {
11000         vcpu_load(vcpu);
11001         __set_regs(vcpu, regs);
11002         vcpu_put(vcpu);
11003         return 0;
11004 }
11005
11006 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11007 {
11008         struct desc_ptr dt;
11009
11010         if (vcpu->arch.guest_state_protected)
11011                 goto skip_protected_regs;
11012
11013         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11014         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11015         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11016         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11017         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11018         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11019
11020         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11021         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11022
11023         static_call(kvm_x86_get_idt)(vcpu, &dt);
11024         sregs->idt.limit = dt.size;
11025         sregs->idt.base = dt.address;
11026         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11027         sregs->gdt.limit = dt.size;
11028         sregs->gdt.base = dt.address;
11029
11030         sregs->cr2 = vcpu->arch.cr2;
11031         sregs->cr3 = kvm_read_cr3(vcpu);
11032
11033 skip_protected_regs:
11034         sregs->cr0 = kvm_read_cr0(vcpu);
11035         sregs->cr4 = kvm_read_cr4(vcpu);
11036         sregs->cr8 = kvm_get_cr8(vcpu);
11037         sregs->efer = vcpu->arch.efer;
11038         sregs->apic_base = kvm_get_apic_base(vcpu);
11039 }
11040
11041 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11042 {
11043         __get_sregs_common(vcpu, sregs);
11044
11045         if (vcpu->arch.guest_state_protected)
11046                 return;
11047
11048         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11049                 set_bit(vcpu->arch.interrupt.nr,
11050                         (unsigned long *)sregs->interrupt_bitmap);
11051 }
11052
11053 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11054 {
11055         int i;
11056
11057         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11058
11059         if (vcpu->arch.guest_state_protected)
11060                 return;
11061
11062         if (is_pae_paging(vcpu)) {
11063                 for (i = 0 ; i < 4 ; i++)
11064                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11065                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11066         }
11067 }
11068
11069 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11070                                   struct kvm_sregs *sregs)
11071 {
11072         vcpu_load(vcpu);
11073         __get_sregs(vcpu, sregs);
11074         vcpu_put(vcpu);
11075         return 0;
11076 }
11077
11078 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11079                                     struct kvm_mp_state *mp_state)
11080 {
11081         int r;
11082
11083         vcpu_load(vcpu);
11084         if (kvm_mpx_supported())
11085                 kvm_load_guest_fpu(vcpu);
11086
11087         r = kvm_apic_accept_events(vcpu);
11088         if (r < 0)
11089                 goto out;
11090         r = 0;
11091
11092         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11093              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11094             vcpu->arch.pv.pv_unhalted)
11095                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11096         else
11097                 mp_state->mp_state = vcpu->arch.mp_state;
11098
11099 out:
11100         if (kvm_mpx_supported())
11101                 kvm_put_guest_fpu(vcpu);
11102         vcpu_put(vcpu);
11103         return r;
11104 }
11105
11106 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11107                                     struct kvm_mp_state *mp_state)
11108 {
11109         int ret = -EINVAL;
11110
11111         vcpu_load(vcpu);
11112
11113         if (!lapic_in_kernel(vcpu) &&
11114             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
11115                 goto out;
11116
11117         /*
11118          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11119          * INIT state; latched init should be reported using
11120          * KVM_SET_VCPU_EVENTS, so reject it here.
11121          */
11122         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11123             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11124              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11125                 goto out;
11126
11127         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11128                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11129                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11130         } else
11131                 vcpu->arch.mp_state = mp_state->mp_state;
11132         kvm_make_request(KVM_REQ_EVENT, vcpu);
11133
11134         ret = 0;
11135 out:
11136         vcpu_put(vcpu);
11137         return ret;
11138 }
11139
11140 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11141                     int reason, bool has_error_code, u32 error_code)
11142 {
11143         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11144         int ret;
11145
11146         init_emulate_ctxt(vcpu);
11147
11148         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11149                                    has_error_code, error_code);
11150         if (ret) {
11151                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11152                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11153                 vcpu->run->internal.ndata = 0;
11154                 return 0;
11155         }
11156
11157         kvm_rip_write(vcpu, ctxt->eip);
11158         kvm_set_rflags(vcpu, ctxt->eflags);
11159         return 1;
11160 }
11161 EXPORT_SYMBOL_GPL(kvm_task_switch);
11162
11163 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11164 {
11165         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11166                 /*
11167                  * When EFER.LME and CR0.PG are set, the processor is in
11168                  * 64-bit mode (though maybe in a 32-bit code segment).
11169                  * CR4.PAE and EFER.LMA must be set.
11170                  */
11171                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11172                         return false;
11173                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11174                         return false;
11175         } else {
11176                 /*
11177                  * Not in 64-bit mode: EFER.LMA is clear and the code
11178                  * segment cannot be 64-bit.
11179                  */
11180                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11181                         return false;
11182         }
11183
11184         return kvm_is_valid_cr4(vcpu, sregs->cr4);
11185 }
11186
11187 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11188                 int *mmu_reset_needed, bool update_pdptrs)
11189 {
11190         struct msr_data apic_base_msr;
11191         int idx;
11192         struct desc_ptr dt;
11193
11194         if (!kvm_is_valid_sregs(vcpu, sregs))
11195                 return -EINVAL;
11196
11197         apic_base_msr.data = sregs->apic_base;
11198         apic_base_msr.host_initiated = true;
11199         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11200                 return -EINVAL;
11201
11202         if (vcpu->arch.guest_state_protected)
11203                 return 0;
11204
11205         dt.size = sregs->idt.limit;
11206         dt.address = sregs->idt.base;
11207         static_call(kvm_x86_set_idt)(vcpu, &dt);
11208         dt.size = sregs->gdt.limit;
11209         dt.address = sregs->gdt.base;
11210         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11211
11212         vcpu->arch.cr2 = sregs->cr2;
11213         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11214         vcpu->arch.cr3 = sregs->cr3;
11215         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11216         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11217
11218         kvm_set_cr8(vcpu, sregs->cr8);
11219
11220         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11221         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11222
11223         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11224         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11225         vcpu->arch.cr0 = sregs->cr0;
11226
11227         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11228         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11229
11230         if (update_pdptrs) {
11231                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11232                 if (is_pae_paging(vcpu)) {
11233                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11234                         *mmu_reset_needed = 1;
11235                 }
11236                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11237         }
11238
11239         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11240         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11241         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11242         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11243         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11244         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11245
11246         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11247         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11248
11249         update_cr8_intercept(vcpu);
11250
11251         /* Older userspace won't unhalt the vcpu on reset. */
11252         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11253             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11254             !is_protmode(vcpu))
11255                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11256
11257         return 0;
11258 }
11259
11260 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11261 {
11262         int pending_vec, max_bits;
11263         int mmu_reset_needed = 0;
11264         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11265
11266         if (ret)
11267                 return ret;
11268
11269         if (mmu_reset_needed)
11270                 kvm_mmu_reset_context(vcpu);
11271
11272         max_bits = KVM_NR_INTERRUPTS;
11273         pending_vec = find_first_bit(
11274                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11275
11276         if (pending_vec < max_bits) {
11277                 kvm_queue_interrupt(vcpu, pending_vec, false);
11278                 pr_debug("Set back pending irq %d\n", pending_vec);
11279                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11280         }
11281         return 0;
11282 }
11283
11284 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11285 {
11286         int mmu_reset_needed = 0;
11287         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11288         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11289                 !(sregs2->efer & EFER_LMA);
11290         int i, ret;
11291
11292         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11293                 return -EINVAL;
11294
11295         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11296                 return -EINVAL;
11297
11298         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11299                                  &mmu_reset_needed, !valid_pdptrs);
11300         if (ret)
11301                 return ret;
11302
11303         if (valid_pdptrs) {
11304                 for (i = 0; i < 4 ; i++)
11305                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11306
11307                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11308                 mmu_reset_needed = 1;
11309                 vcpu->arch.pdptrs_from_userspace = true;
11310         }
11311         if (mmu_reset_needed)
11312                 kvm_mmu_reset_context(vcpu);
11313         return 0;
11314 }
11315
11316 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11317                                   struct kvm_sregs *sregs)
11318 {
11319         int ret;
11320
11321         vcpu_load(vcpu);
11322         ret = __set_sregs(vcpu, sregs);
11323         vcpu_put(vcpu);
11324         return ret;
11325 }
11326
11327 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11328 {
11329         bool set = false;
11330         struct kvm_vcpu *vcpu;
11331         unsigned long i;
11332
11333         if (!enable_apicv)
11334                 return;
11335
11336         down_write(&kvm->arch.apicv_update_lock);
11337
11338         kvm_for_each_vcpu(i, vcpu, kvm) {
11339                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11340                         set = true;
11341                         break;
11342                 }
11343         }
11344         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11345         up_write(&kvm->arch.apicv_update_lock);
11346 }
11347
11348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11349                                         struct kvm_guest_debug *dbg)
11350 {
11351         unsigned long rflags;
11352         int i, r;
11353
11354         if (vcpu->arch.guest_state_protected)
11355                 return -EINVAL;
11356
11357         vcpu_load(vcpu);
11358
11359         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11360                 r = -EBUSY;
11361                 if (vcpu->arch.exception.pending)
11362                         goto out;
11363                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11364                         kvm_queue_exception(vcpu, DB_VECTOR);
11365                 else
11366                         kvm_queue_exception(vcpu, BP_VECTOR);
11367         }
11368
11369         /*
11370          * Read rflags as long as potentially injected trace flags are still
11371          * filtered out.
11372          */
11373         rflags = kvm_get_rflags(vcpu);
11374
11375         vcpu->guest_debug = dbg->control;
11376         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11377                 vcpu->guest_debug = 0;
11378
11379         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11380                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11381                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11382                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11383         } else {
11384                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11385                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11386         }
11387         kvm_update_dr7(vcpu);
11388
11389         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11390                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11391
11392         /*
11393          * Trigger an rflags update that will inject or remove the trace
11394          * flags.
11395          */
11396         kvm_set_rflags(vcpu, rflags);
11397
11398         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11399
11400         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11401
11402         r = 0;
11403
11404 out:
11405         vcpu_put(vcpu);
11406         return r;
11407 }
11408
11409 /*
11410  * Translate a guest virtual address to a guest physical address.
11411  */
11412 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11413                                     struct kvm_translation *tr)
11414 {
11415         unsigned long vaddr = tr->linear_address;
11416         gpa_t gpa;
11417         int idx;
11418
11419         vcpu_load(vcpu);
11420
11421         idx = srcu_read_lock(&vcpu->kvm->srcu);
11422         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11423         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11424         tr->physical_address = gpa;
11425         tr->valid = gpa != INVALID_GPA;
11426         tr->writeable = 1;
11427         tr->usermode = 0;
11428
11429         vcpu_put(vcpu);
11430         return 0;
11431 }
11432
11433 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11434 {
11435         struct fxregs_state *fxsave;
11436
11437         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11438                 return 0;
11439
11440         vcpu_load(vcpu);
11441
11442         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11443         memcpy(fpu->fpr, fxsave->st_space, 128);
11444         fpu->fcw = fxsave->cwd;
11445         fpu->fsw = fxsave->swd;
11446         fpu->ftwx = fxsave->twd;
11447         fpu->last_opcode = fxsave->fop;
11448         fpu->last_ip = fxsave->rip;
11449         fpu->last_dp = fxsave->rdp;
11450         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11451
11452         vcpu_put(vcpu);
11453         return 0;
11454 }
11455
11456 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11457 {
11458         struct fxregs_state *fxsave;
11459
11460         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11461                 return 0;
11462
11463         vcpu_load(vcpu);
11464
11465         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11466
11467         memcpy(fxsave->st_space, fpu->fpr, 128);
11468         fxsave->cwd = fpu->fcw;
11469         fxsave->swd = fpu->fsw;
11470         fxsave->twd = fpu->ftwx;
11471         fxsave->fop = fpu->last_opcode;
11472         fxsave->rip = fpu->last_ip;
11473         fxsave->rdp = fpu->last_dp;
11474         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11475
11476         vcpu_put(vcpu);
11477         return 0;
11478 }
11479
11480 static void store_regs(struct kvm_vcpu *vcpu)
11481 {
11482         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11483
11484         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11485                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11486
11487         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11488                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11489
11490         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11491                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11492                                 vcpu, &vcpu->run->s.regs.events);
11493 }
11494
11495 static int sync_regs(struct kvm_vcpu *vcpu)
11496 {
11497         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11498                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11499                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11500         }
11501         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11502                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11503                         return -EINVAL;
11504                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11505         }
11506         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11507                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11508                                 vcpu, &vcpu->run->s.regs.events))
11509                         return -EINVAL;
11510                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11511         }
11512
11513         return 0;
11514 }
11515
11516 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11517 {
11518         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11519                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11520                              "guest TSC will not be reliable\n");
11521
11522         if (!kvm->arch.max_vcpu_ids)
11523                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11524
11525         if (id >= kvm->arch.max_vcpu_ids)
11526                 return -EINVAL;
11527
11528         return static_call(kvm_x86_vcpu_precreate)(kvm);
11529 }
11530
11531 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11532 {
11533         struct page *page;
11534         int r;
11535
11536         vcpu->arch.last_vmentry_cpu = -1;
11537         vcpu->arch.regs_avail = ~0;
11538         vcpu->arch.regs_dirty = ~0;
11539
11540         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11541                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11542         else
11543                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11544
11545         r = kvm_mmu_create(vcpu);
11546         if (r < 0)
11547                 return r;
11548
11549         if (irqchip_in_kernel(vcpu->kvm)) {
11550                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11551                 if (r < 0)
11552                         goto fail_mmu_destroy;
11553
11554                 /*
11555                  * Defer evaluating inhibits until the vCPU is first run, as
11556                  * this vCPU will not get notified of any changes until this
11557                  * vCPU is visible to other vCPUs (marked online and added to
11558                  * the set of vCPUs).  Opportunistically mark APICv active as
11559                  * VMX in particularly is highly unlikely to have inhibits.
11560                  * Ignore the current per-VM APICv state so that vCPU creation
11561                  * is guaranteed to run with a deterministic value, the request
11562                  * will ensure the vCPU gets the correct state before VM-Entry.
11563                  */
11564                 if (enable_apicv) {
11565                         vcpu->arch.apic->apicv_active = true;
11566                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11567                 }
11568         } else
11569                 static_branch_inc(&kvm_has_noapic_vcpu);
11570
11571         r = -ENOMEM;
11572
11573         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11574         if (!page)
11575                 goto fail_free_lapic;
11576         vcpu->arch.pio_data = page_address(page);
11577
11578         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11579                                        GFP_KERNEL_ACCOUNT);
11580         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11581                                             GFP_KERNEL_ACCOUNT);
11582         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11583                 goto fail_free_mce_banks;
11584         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11585
11586         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11587                                 GFP_KERNEL_ACCOUNT))
11588                 goto fail_free_mce_banks;
11589
11590         if (!alloc_emulate_ctxt(vcpu))
11591                 goto free_wbinvd_dirty_mask;
11592
11593         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11594                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11595                 goto free_emulate_ctxt;
11596         }
11597
11598         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11599         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11600
11601         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11602
11603         kvm_async_pf_hash_reset(vcpu);
11604         kvm_pmu_init(vcpu);
11605
11606         vcpu->arch.pending_external_vector = -1;
11607         vcpu->arch.preempted_in_kernel = false;
11608
11609 #if IS_ENABLED(CONFIG_HYPERV)
11610         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11611 #endif
11612
11613         r = static_call(kvm_x86_vcpu_create)(vcpu);
11614         if (r)
11615                 goto free_guest_fpu;
11616
11617         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11618         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11619         kvm_xen_init_vcpu(vcpu);
11620         kvm_vcpu_mtrr_init(vcpu);
11621         vcpu_load(vcpu);
11622         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11623         kvm_vcpu_reset(vcpu, false);
11624         kvm_init_mmu(vcpu);
11625         vcpu_put(vcpu);
11626         return 0;
11627
11628 free_guest_fpu:
11629         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11630 free_emulate_ctxt:
11631         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11632 free_wbinvd_dirty_mask:
11633         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11634 fail_free_mce_banks:
11635         kfree(vcpu->arch.mce_banks);
11636         kfree(vcpu->arch.mci_ctl2_banks);
11637         free_page((unsigned long)vcpu->arch.pio_data);
11638 fail_free_lapic:
11639         kvm_free_lapic(vcpu);
11640 fail_mmu_destroy:
11641         kvm_mmu_destroy(vcpu);
11642         return r;
11643 }
11644
11645 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11646 {
11647         struct kvm *kvm = vcpu->kvm;
11648
11649         if (mutex_lock_killable(&vcpu->mutex))
11650                 return;
11651         vcpu_load(vcpu);
11652         kvm_synchronize_tsc(vcpu, 0);
11653         vcpu_put(vcpu);
11654
11655         /* poll control enabled by default */
11656         vcpu->arch.msr_kvm_poll_control = 1;
11657
11658         mutex_unlock(&vcpu->mutex);
11659
11660         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11661                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11662                                                 KVMCLOCK_SYNC_PERIOD);
11663 }
11664
11665 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11666 {
11667         int idx;
11668
11669         kvmclock_reset(vcpu);
11670
11671         static_call(kvm_x86_vcpu_free)(vcpu);
11672
11673         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11674         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11675         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11676
11677         kvm_xen_destroy_vcpu(vcpu);
11678         kvm_hv_vcpu_uninit(vcpu);
11679         kvm_pmu_destroy(vcpu);
11680         kfree(vcpu->arch.mce_banks);
11681         kfree(vcpu->arch.mci_ctl2_banks);
11682         kvm_free_lapic(vcpu);
11683         idx = srcu_read_lock(&vcpu->kvm->srcu);
11684         kvm_mmu_destroy(vcpu);
11685         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11686         free_page((unsigned long)vcpu->arch.pio_data);
11687         kvfree(vcpu->arch.cpuid_entries);
11688         if (!lapic_in_kernel(vcpu))
11689                 static_branch_dec(&kvm_has_noapic_vcpu);
11690 }
11691
11692 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11693 {
11694         struct kvm_cpuid_entry2 *cpuid_0x1;
11695         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11696         unsigned long new_cr0;
11697
11698         /*
11699          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11700          * to handle side effects.  RESET emulation hits those flows and relies
11701          * on emulated/virtualized registers, including those that are loaded
11702          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11703          * to detect improper or missing initialization.
11704          */
11705         WARN_ON_ONCE(!init_event &&
11706                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11707
11708         kvm_lapic_reset(vcpu, init_event);
11709
11710         vcpu->arch.hflags = 0;
11711
11712         vcpu->arch.smi_pending = 0;
11713         vcpu->arch.smi_count = 0;
11714         atomic_set(&vcpu->arch.nmi_queued, 0);
11715         vcpu->arch.nmi_pending = 0;
11716         vcpu->arch.nmi_injected = false;
11717         kvm_clear_interrupt_queue(vcpu);
11718         kvm_clear_exception_queue(vcpu);
11719
11720         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11721         kvm_update_dr0123(vcpu);
11722         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11723         vcpu->arch.dr7 = DR7_FIXED_1;
11724         kvm_update_dr7(vcpu);
11725
11726         vcpu->arch.cr2 = 0;
11727
11728         kvm_make_request(KVM_REQ_EVENT, vcpu);
11729         vcpu->arch.apf.msr_en_val = 0;
11730         vcpu->arch.apf.msr_int_val = 0;
11731         vcpu->arch.st.msr_val = 0;
11732
11733         kvmclock_reset(vcpu);
11734
11735         kvm_clear_async_pf_completion_queue(vcpu);
11736         kvm_async_pf_hash_reset(vcpu);
11737         vcpu->arch.apf.halted = false;
11738
11739         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11740                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11741
11742                 /*
11743                  * To avoid have the INIT path from kvm_apic_has_events() that be
11744                  * called with loaded FPU and does not let userspace fix the state.
11745                  */
11746                 if (init_event)
11747                         kvm_put_guest_fpu(vcpu);
11748
11749                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11750                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11751
11752                 if (init_event)
11753                         kvm_load_guest_fpu(vcpu);
11754         }
11755
11756         if (!init_event) {
11757                 kvm_pmu_reset(vcpu);
11758                 vcpu->arch.smbase = 0x30000;
11759
11760                 vcpu->arch.msr_misc_features_enables = 0;
11761                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11762                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11763
11764                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11765                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11766         }
11767
11768         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11769         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11770         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11771
11772         /*
11773          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11774          * if no CPUID match is found.  Note, it's impossible to get a match at
11775          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11776          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11777          * on RESET.  But, go through the motions in case that's ever remedied.
11778          */
11779         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11780         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11781
11782         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11783
11784         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11785         kvm_rip_write(vcpu, 0xfff0);
11786
11787         vcpu->arch.cr3 = 0;
11788         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11789
11790         /*
11791          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11792          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11793          * (or qualify) that with a footnote stating that CD/NW are preserved.
11794          */
11795         new_cr0 = X86_CR0_ET;
11796         if (init_event)
11797                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11798         else
11799                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11800
11801         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11802         static_call(kvm_x86_set_cr4)(vcpu, 0);
11803         static_call(kvm_x86_set_efer)(vcpu, 0);
11804         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11805
11806         /*
11807          * On the standard CR0/CR4/EFER modification paths, there are several
11808          * complex conditions determining whether the MMU has to be reset and/or
11809          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11810          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11811          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11812          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11813          */
11814         if (old_cr0 & X86_CR0_PG) {
11815                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11816                 kvm_mmu_reset_context(vcpu);
11817         }
11818
11819         /*
11820          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11821          * APM states the TLBs are untouched by INIT, but it also states that
11822          * the TLBs are flushed on "External initialization of the processor."
11823          * Flush the guest TLB regardless of vendor, there is no meaningful
11824          * benefit in relying on the guest to flush the TLB immediately after
11825          * INIT.  A spurious TLB flush is benign and likely negligible from a
11826          * performance perspective.
11827          */
11828         if (init_event)
11829                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11830 }
11831 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11832
11833 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11834 {
11835         struct kvm_segment cs;
11836
11837         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11838         cs.selector = vector << 8;
11839         cs.base = vector << 12;
11840         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11841         kvm_rip_write(vcpu, 0);
11842 }
11843 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11844
11845 int kvm_arch_hardware_enable(void)
11846 {
11847         struct kvm *kvm;
11848         struct kvm_vcpu *vcpu;
11849         unsigned long i;
11850         int ret;
11851         u64 local_tsc;
11852         u64 max_tsc = 0;
11853         bool stable, backwards_tsc = false;
11854
11855         kvm_user_return_msr_cpu_online();
11856         ret = static_call(kvm_x86_hardware_enable)();
11857         if (ret != 0)
11858                 return ret;
11859
11860         local_tsc = rdtsc();
11861         stable = !kvm_check_tsc_unstable();
11862         list_for_each_entry(kvm, &vm_list, vm_list) {
11863                 kvm_for_each_vcpu(i, vcpu, kvm) {
11864                         if (!stable && vcpu->cpu == smp_processor_id())
11865                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11866                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11867                                 backwards_tsc = true;
11868                                 if (vcpu->arch.last_host_tsc > max_tsc)
11869                                         max_tsc = vcpu->arch.last_host_tsc;
11870                         }
11871                 }
11872         }
11873
11874         /*
11875          * Sometimes, even reliable TSCs go backwards.  This happens on
11876          * platforms that reset TSC during suspend or hibernate actions, but
11877          * maintain synchronization.  We must compensate.  Fortunately, we can
11878          * detect that condition here, which happens early in CPU bringup,
11879          * before any KVM threads can be running.  Unfortunately, we can't
11880          * bring the TSCs fully up to date with real time, as we aren't yet far
11881          * enough into CPU bringup that we know how much real time has actually
11882          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11883          * variables that haven't been updated yet.
11884          *
11885          * So we simply find the maximum observed TSC above, then record the
11886          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11887          * the adjustment will be applied.  Note that we accumulate
11888          * adjustments, in case multiple suspend cycles happen before some VCPU
11889          * gets a chance to run again.  In the event that no KVM threads get a
11890          * chance to run, we will miss the entire elapsed period, as we'll have
11891          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11892          * loose cycle time.  This isn't too big a deal, since the loss will be
11893          * uniform across all VCPUs (not to mention the scenario is extremely
11894          * unlikely). It is possible that a second hibernate recovery happens
11895          * much faster than a first, causing the observed TSC here to be
11896          * smaller; this would require additional padding adjustment, which is
11897          * why we set last_host_tsc to the local tsc observed here.
11898          *
11899          * N.B. - this code below runs only on platforms with reliable TSC,
11900          * as that is the only way backwards_tsc is set above.  Also note
11901          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11902          * have the same delta_cyc adjustment applied if backwards_tsc
11903          * is detected.  Note further, this adjustment is only done once,
11904          * as we reset last_host_tsc on all VCPUs to stop this from being
11905          * called multiple times (one for each physical CPU bringup).
11906          *
11907          * Platforms with unreliable TSCs don't have to deal with this, they
11908          * will be compensated by the logic in vcpu_load, which sets the TSC to
11909          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11910          * guarantee that they stay in perfect synchronization.
11911          */
11912         if (backwards_tsc) {
11913                 u64 delta_cyc = max_tsc - local_tsc;
11914                 list_for_each_entry(kvm, &vm_list, vm_list) {
11915                         kvm->arch.backwards_tsc_observed = true;
11916                         kvm_for_each_vcpu(i, vcpu, kvm) {
11917                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11918                                 vcpu->arch.last_host_tsc = local_tsc;
11919                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11920                         }
11921
11922                         /*
11923                          * We have to disable TSC offset matching.. if you were
11924                          * booting a VM while issuing an S4 host suspend....
11925                          * you may have some problem.  Solving this issue is
11926                          * left as an exercise to the reader.
11927                          */
11928                         kvm->arch.last_tsc_nsec = 0;
11929                         kvm->arch.last_tsc_write = 0;
11930                 }
11931
11932         }
11933         return 0;
11934 }
11935
11936 void kvm_arch_hardware_disable(void)
11937 {
11938         static_call(kvm_x86_hardware_disable)();
11939         drop_user_return_notifiers();
11940 }
11941
11942 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11943 {
11944         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11945
11946 #define __KVM_X86_OP(func) \
11947         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11948 #define KVM_X86_OP(func) \
11949         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11950 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11951 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11952         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11953                                            (void *)__static_call_return0);
11954 #include <asm/kvm-x86-ops.h>
11955 #undef __KVM_X86_OP
11956
11957         kvm_pmu_ops_update(ops->pmu_ops);
11958 }
11959
11960 int kvm_arch_hardware_setup(void *opaque)
11961 {
11962         struct kvm_x86_init_ops *ops = opaque;
11963         int r;
11964
11965         rdmsrl_safe(MSR_EFER, &host_efer);
11966
11967         if (boot_cpu_has(X86_FEATURE_XSAVES))
11968                 rdmsrl(MSR_IA32_XSS, host_xss);
11969
11970         kvm_init_pmu_capability();
11971
11972         r = ops->hardware_setup();
11973         if (r != 0)
11974                 return r;
11975
11976         kvm_ops_update(ops);
11977
11978         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11979
11980         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11981                 kvm_caps.supported_xss = 0;
11982
11983 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11984         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11985 #undef __kvm_cpu_cap_has
11986
11987         if (kvm_caps.has_tsc_control) {
11988                 /*
11989                  * Make sure the user can only configure tsc_khz values that
11990                  * fit into a signed integer.
11991                  * A min value is not calculated because it will always
11992                  * be 1 on all machines.
11993                  */
11994                 u64 max = min(0x7fffffffULL,
11995                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
11996                 kvm_caps.max_guest_tsc_khz = max;
11997         }
11998         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
11999         kvm_init_msr_list();
12000         return 0;
12001 }
12002
12003 void kvm_arch_hardware_unsetup(void)
12004 {
12005         kvm_unregister_perf_callbacks();
12006
12007         static_call(kvm_x86_hardware_unsetup)();
12008 }
12009
12010 int kvm_arch_check_processor_compat(void *opaque)
12011 {
12012         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12013         struct kvm_x86_init_ops *ops = opaque;
12014
12015         WARN_ON(!irqs_disabled());
12016
12017         if (__cr4_reserved_bits(cpu_has, c) !=
12018             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12019                 return -EIO;
12020
12021         return ops->check_processor_compatibility();
12022 }
12023
12024 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12025 {
12026         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12027 }
12028 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12029
12030 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12031 {
12032         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12033 }
12034
12035 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12036 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12037
12038 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12039 {
12040         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12041
12042         vcpu->arch.l1tf_flush_l1d = true;
12043         if (pmu->version && unlikely(pmu->event_count)) {
12044                 pmu->need_cleanup = true;
12045                 kvm_make_request(KVM_REQ_PMU, vcpu);
12046         }
12047         static_call(kvm_x86_sched_in)(vcpu, cpu);
12048 }
12049
12050 void kvm_arch_free_vm(struct kvm *kvm)
12051 {
12052         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12053         __kvm_arch_free_vm(kvm);
12054 }
12055
12056
12057 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12058 {
12059         int ret;
12060         unsigned long flags;
12061
12062         if (type)
12063                 return -EINVAL;
12064
12065         ret = kvm_page_track_init(kvm);
12066         if (ret)
12067                 goto out;
12068
12069         ret = kvm_mmu_init_vm(kvm);
12070         if (ret)
12071                 goto out_page_track;
12072
12073         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12074         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12075         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12076
12077         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12078         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12079         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12080         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12081                 &kvm->arch.irq_sources_bitmap);
12082
12083         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12084         mutex_init(&kvm->arch.apic_map_lock);
12085         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12086         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12087
12088         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12089         pvclock_update_vm_gtod_copy(kvm);
12090         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12091
12092         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12093         kvm->arch.guest_can_read_msr_platform_info = true;
12094         kvm->arch.enable_pmu = enable_pmu;
12095
12096 #if IS_ENABLED(CONFIG_HYPERV)
12097         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12098         kvm->arch.hv_root_tdp = INVALID_PAGE;
12099 #endif
12100
12101         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12102         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12103
12104         kvm_apicv_init(kvm);
12105         kvm_hv_init_vm(kvm);
12106         kvm_xen_init_vm(kvm);
12107
12108         return static_call(kvm_x86_vm_init)(kvm);
12109
12110 out_page_track:
12111         kvm_page_track_cleanup(kvm);
12112 out:
12113         return ret;
12114 }
12115
12116 int kvm_arch_post_init_vm(struct kvm *kvm)
12117 {
12118         return kvm_mmu_post_init_vm(kvm);
12119 }
12120
12121 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12122 {
12123         vcpu_load(vcpu);
12124         kvm_mmu_unload(vcpu);
12125         vcpu_put(vcpu);
12126 }
12127
12128 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12129 {
12130         unsigned long i;
12131         struct kvm_vcpu *vcpu;
12132
12133         kvm_for_each_vcpu(i, vcpu, kvm) {
12134                 kvm_clear_async_pf_completion_queue(vcpu);
12135                 kvm_unload_vcpu_mmu(vcpu);
12136         }
12137 }
12138
12139 void kvm_arch_sync_events(struct kvm *kvm)
12140 {
12141         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12142         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12143         kvm_free_pit(kvm);
12144 }
12145
12146 /**
12147  * __x86_set_memory_region: Setup KVM internal memory slot
12148  *
12149  * @kvm: the kvm pointer to the VM.
12150  * @id: the slot ID to setup.
12151  * @gpa: the GPA to install the slot (unused when @size == 0).
12152  * @size: the size of the slot. Set to zero to uninstall a slot.
12153  *
12154  * This function helps to setup a KVM internal memory slot.  Specify
12155  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12156  * slot.  The return code can be one of the following:
12157  *
12158  *   HVA:           on success (uninstall will return a bogus HVA)
12159  *   -errno:        on error
12160  *
12161  * The caller should always use IS_ERR() to check the return value
12162  * before use.  Note, the KVM internal memory slots are guaranteed to
12163  * remain valid and unchanged until the VM is destroyed, i.e., the
12164  * GPA->HVA translation will not change.  However, the HVA is a user
12165  * address, i.e. its accessibility is not guaranteed, and must be
12166  * accessed via __copy_{to,from}_user().
12167  */
12168 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12169                                       u32 size)
12170 {
12171         int i, r;
12172         unsigned long hva, old_npages;
12173         struct kvm_memslots *slots = kvm_memslots(kvm);
12174         struct kvm_memory_slot *slot;
12175
12176         /* Called with kvm->slots_lock held.  */
12177         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12178                 return ERR_PTR_USR(-EINVAL);
12179
12180         slot = id_to_memslot(slots, id);
12181         if (size) {
12182                 if (slot && slot->npages)
12183                         return ERR_PTR_USR(-EEXIST);
12184
12185                 /*
12186                  * MAP_SHARED to prevent internal slot pages from being moved
12187                  * by fork()/COW.
12188                  */
12189                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12190                               MAP_SHARED | MAP_ANONYMOUS, 0);
12191                 if (IS_ERR((void *)hva))
12192                         return (void __user *)hva;
12193         } else {
12194                 if (!slot || !slot->npages)
12195                         return NULL;
12196
12197                 old_npages = slot->npages;
12198                 hva = slot->userspace_addr;
12199         }
12200
12201         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12202                 struct kvm_userspace_memory_region m;
12203
12204                 m.slot = id | (i << 16);
12205                 m.flags = 0;
12206                 m.guest_phys_addr = gpa;
12207                 m.userspace_addr = hva;
12208                 m.memory_size = size;
12209                 r = __kvm_set_memory_region(kvm, &m);
12210                 if (r < 0)
12211                         return ERR_PTR_USR(r);
12212         }
12213
12214         if (!size)
12215                 vm_munmap(hva, old_npages * PAGE_SIZE);
12216
12217         return (void __user *)hva;
12218 }
12219 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12220
12221 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12222 {
12223         kvm_mmu_pre_destroy_vm(kvm);
12224 }
12225
12226 void kvm_arch_destroy_vm(struct kvm *kvm)
12227 {
12228         if (current->mm == kvm->mm) {
12229                 /*
12230                  * Free memory regions allocated on behalf of userspace,
12231                  * unless the memory map has changed due to process exit
12232                  * or fd copying.
12233                  */
12234                 mutex_lock(&kvm->slots_lock);
12235                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12236                                         0, 0);
12237                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12238                                         0, 0);
12239                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12240                 mutex_unlock(&kvm->slots_lock);
12241         }
12242         kvm_unload_vcpu_mmus(kvm);
12243         static_call_cond(kvm_x86_vm_destroy)(kvm);
12244         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12245         kvm_pic_destroy(kvm);
12246         kvm_ioapic_destroy(kvm);
12247         kvm_destroy_vcpus(kvm);
12248         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12249         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12250         kvm_mmu_uninit_vm(kvm);
12251         kvm_page_track_cleanup(kvm);
12252         kvm_xen_destroy_vm(kvm);
12253         kvm_hv_destroy_vm(kvm);
12254 }
12255
12256 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12257 {
12258         int i;
12259
12260         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12261                 kvfree(slot->arch.rmap[i]);
12262                 slot->arch.rmap[i] = NULL;
12263         }
12264 }
12265
12266 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12267 {
12268         int i;
12269
12270         memslot_rmap_free(slot);
12271
12272         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12273                 kvfree(slot->arch.lpage_info[i - 1]);
12274                 slot->arch.lpage_info[i - 1] = NULL;
12275         }
12276
12277         kvm_page_track_free_memslot(slot);
12278 }
12279
12280 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12281 {
12282         const int sz = sizeof(*slot->arch.rmap[0]);
12283         int i;
12284
12285         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12286                 int level = i + 1;
12287                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12288
12289                 if (slot->arch.rmap[i])
12290                         continue;
12291
12292                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12293                 if (!slot->arch.rmap[i]) {
12294                         memslot_rmap_free(slot);
12295                         return -ENOMEM;
12296                 }
12297         }
12298
12299         return 0;
12300 }
12301
12302 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12303                                       struct kvm_memory_slot *slot)
12304 {
12305         unsigned long npages = slot->npages;
12306         int i, r;
12307
12308         /*
12309          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12310          * old arrays will be freed by __kvm_set_memory_region() if installing
12311          * the new memslot is successful.
12312          */
12313         memset(&slot->arch, 0, sizeof(slot->arch));
12314
12315         if (kvm_memslots_have_rmaps(kvm)) {
12316                 r = memslot_rmap_alloc(slot, npages);
12317                 if (r)
12318                         return r;
12319         }
12320
12321         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12322                 struct kvm_lpage_info *linfo;
12323                 unsigned long ugfn;
12324                 int lpages;
12325                 int level = i + 1;
12326
12327                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12328
12329                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12330                 if (!linfo)
12331                         goto out_free;
12332
12333                 slot->arch.lpage_info[i - 1] = linfo;
12334
12335                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12336                         linfo[0].disallow_lpage = 1;
12337                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12338                         linfo[lpages - 1].disallow_lpage = 1;
12339                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12340                 /*
12341                  * If the gfn and userspace address are not aligned wrt each
12342                  * other, disable large page support for this slot.
12343                  */
12344                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12345                         unsigned long j;
12346
12347                         for (j = 0; j < lpages; ++j)
12348                                 linfo[j].disallow_lpage = 1;
12349                 }
12350         }
12351
12352         if (kvm_page_track_create_memslot(kvm, slot, npages))
12353                 goto out_free;
12354
12355         return 0;
12356
12357 out_free:
12358         memslot_rmap_free(slot);
12359
12360         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12361                 kvfree(slot->arch.lpage_info[i - 1]);
12362                 slot->arch.lpage_info[i - 1] = NULL;
12363         }
12364         return -ENOMEM;
12365 }
12366
12367 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12368 {
12369         struct kvm_vcpu *vcpu;
12370         unsigned long i;
12371
12372         /*
12373          * memslots->generation has been incremented.
12374          * mmio generation may have reached its maximum value.
12375          */
12376         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12377
12378         /* Force re-initialization of steal_time cache */
12379         kvm_for_each_vcpu(i, vcpu, kvm)
12380                 kvm_vcpu_kick(vcpu);
12381 }
12382
12383 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12384                                    const struct kvm_memory_slot *old,
12385                                    struct kvm_memory_slot *new,
12386                                    enum kvm_mr_change change)
12387 {
12388         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12389                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12390                         return -EINVAL;
12391
12392                 return kvm_alloc_memslot_metadata(kvm, new);
12393         }
12394
12395         if (change == KVM_MR_FLAGS_ONLY)
12396                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12397         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12398                 return -EIO;
12399
12400         return 0;
12401 }
12402
12403
12404 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12405 {
12406         struct kvm_arch *ka = &kvm->arch;
12407
12408         if (!kvm_x86_ops.cpu_dirty_log_size)
12409                 return;
12410
12411         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12412             (!enable && --ka->cpu_dirty_logging_count == 0))
12413                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12414
12415         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12416 }
12417
12418 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12419                                      struct kvm_memory_slot *old,
12420                                      const struct kvm_memory_slot *new,
12421                                      enum kvm_mr_change change)
12422 {
12423         u32 old_flags = old ? old->flags : 0;
12424         u32 new_flags = new ? new->flags : 0;
12425         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12426
12427         /*
12428          * Update CPU dirty logging if dirty logging is being toggled.  This
12429          * applies to all operations.
12430          */
12431         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12432                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12433
12434         /*
12435          * Nothing more to do for RO slots (which can't be dirtied and can't be
12436          * made writable) or CREATE/MOVE/DELETE of a slot.
12437          *
12438          * For a memslot with dirty logging disabled:
12439          * CREATE:      No dirty mappings will already exist.
12440          * MOVE/DELETE: The old mappings will already have been cleaned up by
12441          *              kvm_arch_flush_shadow_memslot()
12442          *
12443          * For a memslot with dirty logging enabled:
12444          * CREATE:      No shadow pages exist, thus nothing to write-protect
12445          *              and no dirty bits to clear.
12446          * MOVE/DELETE: The old mappings will already have been cleaned up by
12447          *              kvm_arch_flush_shadow_memslot().
12448          */
12449         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12450                 return;
12451
12452         /*
12453          * READONLY and non-flags changes were filtered out above, and the only
12454          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12455          * logging isn't being toggled on or off.
12456          */
12457         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12458                 return;
12459
12460         if (!log_dirty_pages) {
12461                 /*
12462                  * Dirty logging tracks sptes in 4k granularity, meaning that
12463                  * large sptes have to be split.  If live migration succeeds,
12464                  * the guest in the source machine will be destroyed and large
12465                  * sptes will be created in the destination.  However, if the
12466                  * guest continues to run in the source machine (for example if
12467                  * live migration fails), small sptes will remain around and
12468                  * cause bad performance.
12469                  *
12470                  * Scan sptes if dirty logging has been stopped, dropping those
12471                  * which can be collapsed into a single large-page spte.  Later
12472                  * page faults will create the large-page sptes.
12473                  */
12474                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12475         } else {
12476                 /*
12477                  * Initially-all-set does not require write protecting any page,
12478                  * because they're all assumed to be dirty.
12479                  */
12480                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12481                         return;
12482
12483                 if (READ_ONCE(eager_page_split))
12484                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12485
12486                 if (kvm_x86_ops.cpu_dirty_log_size) {
12487                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12488                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12489                 } else {
12490                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12491                 }
12492
12493                 /*
12494                  * Unconditionally flush the TLBs after enabling dirty logging.
12495                  * A flush is almost always going to be necessary (see below),
12496                  * and unconditionally flushing allows the helpers to omit
12497                  * the subtly complex checks when removing write access.
12498                  *
12499                  * Do the flush outside of mmu_lock to reduce the amount of
12500                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12501                  * safe as KVM only needs to guarantee the slot is fully
12502                  * write-protected before returning to userspace, i.e. before
12503                  * userspace can consume the dirty status.
12504                  *
12505                  * Flushing outside of mmu_lock requires KVM to be careful when
12506                  * making decisions based on writable status of an SPTE, e.g. a
12507                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12508                  *
12509                  * Specifically, KVM also write-protects guest page tables to
12510                  * monitor changes when using shadow paging, and must guarantee
12511                  * no CPUs can write to those page before mmu_lock is dropped.
12512                  * Because CPUs may have stale TLB entries at this point, a
12513                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12514                  *
12515                  * KVM also allows making SPTES writable outside of mmu_lock,
12516                  * e.g. to allow dirty logging without taking mmu_lock.
12517                  *
12518                  * To handle these scenarios, KVM uses a separate software-only
12519                  * bit (MMU-writable) to track if a SPTE is !writable due to
12520                  * a guest page table being write-protected (KVM clears the
12521                  * MMU-writable flag when write-protecting for shadow paging).
12522                  *
12523                  * The use of MMU-writable is also the primary motivation for
12524                  * the unconditional flush.  Because KVM must guarantee that a
12525                  * CPU doesn't contain stale, writable TLB entries for a
12526                  * !MMU-writable SPTE, KVM must flush if it encounters any
12527                  * MMU-writable SPTE regardless of whether the actual hardware
12528                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12529                  * to flush, while unconditionally flushing allows the "remove
12530                  * write access" helpers to ignore MMU-writable entirely.
12531                  *
12532                  * See is_writable_pte() for more details (the case involving
12533                  * access-tracked SPTEs is particularly relevant).
12534                  */
12535                 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12536         }
12537 }
12538
12539 void kvm_arch_commit_memory_region(struct kvm *kvm,
12540                                 struct kvm_memory_slot *old,
12541                                 const struct kvm_memory_slot *new,
12542                                 enum kvm_mr_change change)
12543 {
12544         if (!kvm->arch.n_requested_mmu_pages &&
12545             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12546                 unsigned long nr_mmu_pages;
12547
12548                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12549                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12550                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12551         }
12552
12553         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12554
12555         /* Free the arrays associated with the old memslot. */
12556         if (change == KVM_MR_MOVE)
12557                 kvm_arch_free_memslot(kvm, old);
12558 }
12559
12560 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12561 {
12562         kvm_mmu_zap_all(kvm);
12563 }
12564
12565 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12566                                    struct kvm_memory_slot *slot)
12567 {
12568         kvm_page_track_flush_slot(kvm, slot);
12569 }
12570
12571 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12572 {
12573         return (is_guest_mode(vcpu) &&
12574                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12575 }
12576
12577 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12578 {
12579         if (!list_empty_careful(&vcpu->async_pf.done))
12580                 return true;
12581
12582         if (kvm_apic_has_events(vcpu))
12583                 return true;
12584
12585         if (vcpu->arch.pv.pv_unhalted)
12586                 return true;
12587
12588         if (vcpu->arch.exception.pending)
12589                 return true;
12590
12591         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12592             (vcpu->arch.nmi_pending &&
12593              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12594                 return true;
12595
12596         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12597             (vcpu->arch.smi_pending &&
12598              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12599                 return true;
12600
12601         if (kvm_arch_interrupt_allowed(vcpu) &&
12602             (kvm_cpu_has_interrupt(vcpu) ||
12603             kvm_guest_apic_has_interrupt(vcpu)))
12604                 return true;
12605
12606         if (kvm_hv_has_stimer_pending(vcpu))
12607                 return true;
12608
12609         if (is_guest_mode(vcpu) &&
12610             kvm_x86_ops.nested_ops->hv_timer_pending &&
12611             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12612                 return true;
12613
12614         if (kvm_xen_has_pending_events(vcpu))
12615                 return true;
12616
12617         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12618                 return true;
12619
12620         return false;
12621 }
12622
12623 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12624 {
12625         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12626 }
12627
12628 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12629 {
12630         if (kvm_vcpu_apicv_active(vcpu) &&
12631             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12632                 return true;
12633
12634         return false;
12635 }
12636
12637 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12638 {
12639         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12640                 return true;
12641
12642         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12643                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12644                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12645                 return true;
12646
12647         return kvm_arch_dy_has_pending_interrupt(vcpu);
12648 }
12649
12650 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12651 {
12652         if (vcpu->arch.guest_state_protected)
12653                 return true;
12654
12655         return vcpu->arch.preempted_in_kernel;
12656 }
12657
12658 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12659 {
12660         return kvm_rip_read(vcpu);
12661 }
12662
12663 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12664 {
12665         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12666 }
12667
12668 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12669 {
12670         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12671 }
12672
12673 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12674 {
12675         /* Can't read the RIP when guest state is protected, just return 0 */
12676         if (vcpu->arch.guest_state_protected)
12677                 return 0;
12678
12679         if (is_64_bit_mode(vcpu))
12680                 return kvm_rip_read(vcpu);
12681         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12682                      kvm_rip_read(vcpu));
12683 }
12684 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12685
12686 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12687 {
12688         return kvm_get_linear_rip(vcpu) == linear_rip;
12689 }
12690 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12691
12692 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12693 {
12694         unsigned long rflags;
12695
12696         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12697         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12698                 rflags &= ~X86_EFLAGS_TF;
12699         return rflags;
12700 }
12701 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12702
12703 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12704 {
12705         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12706             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12707                 rflags |= X86_EFLAGS_TF;
12708         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12709 }
12710
12711 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12712 {
12713         __kvm_set_rflags(vcpu, rflags);
12714         kvm_make_request(KVM_REQ_EVENT, vcpu);
12715 }
12716 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12717
12718 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12719 {
12720         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12721
12722         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12723 }
12724
12725 static inline u32 kvm_async_pf_next_probe(u32 key)
12726 {
12727         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12728 }
12729
12730 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12731 {
12732         u32 key = kvm_async_pf_hash_fn(gfn);
12733
12734         while (vcpu->arch.apf.gfns[key] != ~0)
12735                 key = kvm_async_pf_next_probe(key);
12736
12737         vcpu->arch.apf.gfns[key] = gfn;
12738 }
12739
12740 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12741 {
12742         int i;
12743         u32 key = kvm_async_pf_hash_fn(gfn);
12744
12745         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12746                      (vcpu->arch.apf.gfns[key] != gfn &&
12747                       vcpu->arch.apf.gfns[key] != ~0); i++)
12748                 key = kvm_async_pf_next_probe(key);
12749
12750         return key;
12751 }
12752
12753 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12754 {
12755         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12756 }
12757
12758 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12759 {
12760         u32 i, j, k;
12761
12762         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12763
12764         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12765                 return;
12766
12767         while (true) {
12768                 vcpu->arch.apf.gfns[i] = ~0;
12769                 do {
12770                         j = kvm_async_pf_next_probe(j);
12771                         if (vcpu->arch.apf.gfns[j] == ~0)
12772                                 return;
12773                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12774                         /*
12775                          * k lies cyclically in ]i,j]
12776                          * |    i.k.j |
12777                          * |....j i.k.| or  |.k..j i...|
12778                          */
12779                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12780                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12781                 i = j;
12782         }
12783 }
12784
12785 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12786 {
12787         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12788
12789         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12790                                       sizeof(reason));
12791 }
12792
12793 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12794 {
12795         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12796
12797         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12798                                              &token, offset, sizeof(token));
12799 }
12800
12801 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12802 {
12803         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12804         u32 val;
12805
12806         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12807                                          &val, offset, sizeof(val)))
12808                 return false;
12809
12810         return !val;
12811 }
12812
12813 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12814 {
12815
12816         if (!kvm_pv_async_pf_enabled(vcpu))
12817                 return false;
12818
12819         if (vcpu->arch.apf.send_user_only &&
12820             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12821                 return false;
12822
12823         if (is_guest_mode(vcpu)) {
12824                 /*
12825                  * L1 needs to opt into the special #PF vmexits that are
12826                  * used to deliver async page faults.
12827                  */
12828                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12829         } else {
12830                 /*
12831                  * Play it safe in case the guest temporarily disables paging.
12832                  * The real mode IDT in particular is unlikely to have a #PF
12833                  * exception setup.
12834                  */
12835                 return is_paging(vcpu);
12836         }
12837 }
12838
12839 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12840 {
12841         if (unlikely(!lapic_in_kernel(vcpu) ||
12842                      kvm_event_needs_reinjection(vcpu) ||
12843                      vcpu->arch.exception.pending))
12844                 return false;
12845
12846         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12847                 return false;
12848
12849         /*
12850          * If interrupts are off we cannot even use an artificial
12851          * halt state.
12852          */
12853         return kvm_arch_interrupt_allowed(vcpu);
12854 }
12855
12856 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12857                                      struct kvm_async_pf *work)
12858 {
12859         struct x86_exception fault;
12860
12861         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12862         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12863
12864         if (kvm_can_deliver_async_pf(vcpu) &&
12865             !apf_put_user_notpresent(vcpu)) {
12866                 fault.vector = PF_VECTOR;
12867                 fault.error_code_valid = true;
12868                 fault.error_code = 0;
12869                 fault.nested_page_fault = false;
12870                 fault.address = work->arch.token;
12871                 fault.async_page_fault = true;
12872                 kvm_inject_page_fault(vcpu, &fault);
12873                 return true;
12874         } else {
12875                 /*
12876                  * It is not possible to deliver a paravirtualized asynchronous
12877                  * page fault, but putting the guest in an artificial halt state
12878                  * can be beneficial nevertheless: if an interrupt arrives, we
12879                  * can deliver it timely and perhaps the guest will schedule
12880                  * another process.  When the instruction that triggered a page
12881                  * fault is retried, hopefully the page will be ready in the host.
12882                  */
12883                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12884                 return false;
12885         }
12886 }
12887
12888 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12889                                  struct kvm_async_pf *work)
12890 {
12891         struct kvm_lapic_irq irq = {
12892                 .delivery_mode = APIC_DM_FIXED,
12893                 .vector = vcpu->arch.apf.vec
12894         };
12895
12896         if (work->wakeup_all)
12897                 work->arch.token = ~0; /* broadcast wakeup */
12898         else
12899                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12900         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12901
12902         if ((work->wakeup_all || work->notpresent_injected) &&
12903             kvm_pv_async_pf_enabled(vcpu) &&
12904             !apf_put_user_ready(vcpu, work->arch.token)) {
12905                 vcpu->arch.apf.pageready_pending = true;
12906                 kvm_apic_set_irq(vcpu, &irq, NULL);
12907         }
12908
12909         vcpu->arch.apf.halted = false;
12910         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12911 }
12912
12913 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12914 {
12915         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12916         if (!vcpu->arch.apf.pageready_pending)
12917                 kvm_vcpu_kick(vcpu);
12918 }
12919
12920 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12921 {
12922         if (!kvm_pv_async_pf_enabled(vcpu))
12923                 return true;
12924         else
12925                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12926 }
12927
12928 void kvm_arch_start_assignment(struct kvm *kvm)
12929 {
12930         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12931                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12932 }
12933 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12934
12935 void kvm_arch_end_assignment(struct kvm *kvm)
12936 {
12937         atomic_dec(&kvm->arch.assigned_device_count);
12938 }
12939 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12940
12941 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12942 {
12943         return arch_atomic_read(&kvm->arch.assigned_device_count);
12944 }
12945 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12946
12947 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12948 {
12949         atomic_inc(&kvm->arch.noncoherent_dma_count);
12950 }
12951 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12952
12953 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12954 {
12955         atomic_dec(&kvm->arch.noncoherent_dma_count);
12956 }
12957 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12958
12959 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12960 {
12961         return atomic_read(&kvm->arch.noncoherent_dma_count);
12962 }
12963 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12964
12965 bool kvm_arch_has_irq_bypass(void)
12966 {
12967         return true;
12968 }
12969
12970 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12971                                       struct irq_bypass_producer *prod)
12972 {
12973         struct kvm_kernel_irqfd *irqfd =
12974                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12975         int ret;
12976
12977         irqfd->producer = prod;
12978         kvm_arch_start_assignment(irqfd->kvm);
12979         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12980                                          prod->irq, irqfd->gsi, 1);
12981
12982         if (ret)
12983                 kvm_arch_end_assignment(irqfd->kvm);
12984
12985         return ret;
12986 }
12987
12988 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12989                                       struct irq_bypass_producer *prod)
12990 {
12991         int ret;
12992         struct kvm_kernel_irqfd *irqfd =
12993                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12994
12995         WARN_ON(irqfd->producer != prod);
12996         irqfd->producer = NULL;
12997
12998         /*
12999          * When producer of consumer is unregistered, we change back to
13000          * remapped mode, so we can re-use the current implementation
13001          * when the irq is masked/disabled or the consumer side (KVM
13002          * int this case doesn't want to receive the interrupts.
13003         */
13004         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13005         if (ret)
13006                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13007                        " fails: %d\n", irqfd->consumer.token, ret);
13008
13009         kvm_arch_end_assignment(irqfd->kvm);
13010 }
13011
13012 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13013                                    uint32_t guest_irq, bool set)
13014 {
13015         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13016 }
13017
13018 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13019                                   struct kvm_kernel_irq_routing_entry *new)
13020 {
13021         if (new->type != KVM_IRQ_ROUTING_MSI)
13022                 return true;
13023
13024         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13025 }
13026
13027 bool kvm_vector_hashing_enabled(void)
13028 {
13029         return vector_hashing;
13030 }
13031
13032 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13033 {
13034         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13035 }
13036 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13037
13038
13039 int kvm_spec_ctrl_test_value(u64 value)
13040 {
13041         /*
13042          * test that setting IA32_SPEC_CTRL to given value
13043          * is allowed by the host processor
13044          */
13045
13046         u64 saved_value;
13047         unsigned long flags;
13048         int ret = 0;
13049
13050         local_irq_save(flags);
13051
13052         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13053                 ret = 1;
13054         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13055                 ret = 1;
13056         else
13057                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13058
13059         local_irq_restore(flags);
13060
13061         return ret;
13062 }
13063 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13064
13065 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13066 {
13067         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13068         struct x86_exception fault;
13069         u64 access = error_code &
13070                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13071
13072         if (!(error_code & PFERR_PRESENT_MASK) ||
13073             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13074                 /*
13075                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13076                  * tables probably do not match the TLB.  Just proceed
13077                  * with the error code that the processor gave.
13078                  */
13079                 fault.vector = PF_VECTOR;
13080                 fault.error_code_valid = true;
13081                 fault.error_code = error_code;
13082                 fault.nested_page_fault = false;
13083                 fault.address = gva;
13084                 fault.async_page_fault = false;
13085         }
13086         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13087 }
13088 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13089
13090 /*
13091  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13092  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13093  * indicates whether exit to userspace is needed.
13094  */
13095 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13096                               struct x86_exception *e)
13097 {
13098         if (r == X86EMUL_PROPAGATE_FAULT) {
13099                 kvm_inject_emulated_page_fault(vcpu, e);
13100                 return 1;
13101         }
13102
13103         /*
13104          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13105          * while handling a VMX instruction KVM could've handled the request
13106          * correctly by exiting to userspace and performing I/O but there
13107          * doesn't seem to be a real use-case behind such requests, just return
13108          * KVM_EXIT_INTERNAL_ERROR for now.
13109          */
13110         kvm_prepare_emulation_failure_exit(vcpu);
13111
13112         return 0;
13113 }
13114 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13115
13116 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13117 {
13118         bool pcid_enabled;
13119         struct x86_exception e;
13120         struct {
13121                 u64 pcid;
13122                 u64 gla;
13123         } operand;
13124         int r;
13125
13126         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13127         if (r != X86EMUL_CONTINUE)
13128                 return kvm_handle_memory_failure(vcpu, r, &e);
13129
13130         if (operand.pcid >> 12 != 0) {
13131                 kvm_inject_gp(vcpu, 0);
13132                 return 1;
13133         }
13134
13135         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13136
13137         switch (type) {
13138         case INVPCID_TYPE_INDIV_ADDR:
13139                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13140                     is_noncanonical_address(operand.gla, vcpu)) {
13141                         kvm_inject_gp(vcpu, 0);
13142                         return 1;
13143                 }
13144                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13145                 return kvm_skip_emulated_instruction(vcpu);
13146
13147         case INVPCID_TYPE_SINGLE_CTXT:
13148                 if (!pcid_enabled && (operand.pcid != 0)) {
13149                         kvm_inject_gp(vcpu, 0);
13150                         return 1;
13151                 }
13152
13153                 kvm_invalidate_pcid(vcpu, operand.pcid);
13154                 return kvm_skip_emulated_instruction(vcpu);
13155
13156         case INVPCID_TYPE_ALL_NON_GLOBAL:
13157                 /*
13158                  * Currently, KVM doesn't mark global entries in the shadow
13159                  * page tables, so a non-global flush just degenerates to a
13160                  * global flush. If needed, we could optimize this later by
13161                  * keeping track of global entries in shadow page tables.
13162                  */
13163
13164                 fallthrough;
13165         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13166                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13167                 return kvm_skip_emulated_instruction(vcpu);
13168
13169         default:
13170                 kvm_inject_gp(vcpu, 0);
13171                 return 1;
13172         }
13173 }
13174 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13175
13176 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13177 {
13178         struct kvm_run *run = vcpu->run;
13179         struct kvm_mmio_fragment *frag;
13180         unsigned int len;
13181
13182         BUG_ON(!vcpu->mmio_needed);
13183
13184         /* Complete previous fragment */
13185         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13186         len = min(8u, frag->len);
13187         if (!vcpu->mmio_is_write)
13188                 memcpy(frag->data, run->mmio.data, len);
13189
13190         if (frag->len <= 8) {
13191                 /* Switch to the next fragment. */
13192                 frag++;
13193                 vcpu->mmio_cur_fragment++;
13194         } else {
13195                 /* Go forward to the next mmio piece. */
13196                 frag->data += len;
13197                 frag->gpa += len;
13198                 frag->len -= len;
13199         }
13200
13201         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13202                 vcpu->mmio_needed = 0;
13203
13204                 // VMG change, at this point, we're always done
13205                 // RIP has already been advanced
13206                 return 1;
13207         }
13208
13209         // More MMIO is needed
13210         run->mmio.phys_addr = frag->gpa;
13211         run->mmio.len = min(8u, frag->len);
13212         run->mmio.is_write = vcpu->mmio_is_write;
13213         if (run->mmio.is_write)
13214                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13215         run->exit_reason = KVM_EXIT_MMIO;
13216
13217         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13218
13219         return 0;
13220 }
13221
13222 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13223                           void *data)
13224 {
13225         int handled;
13226         struct kvm_mmio_fragment *frag;
13227
13228         if (!data)
13229                 return -EINVAL;
13230
13231         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13232         if (handled == bytes)
13233                 return 1;
13234
13235         bytes -= handled;
13236         gpa += handled;
13237         data += handled;
13238
13239         /*TODO: Check if need to increment number of frags */
13240         frag = vcpu->mmio_fragments;
13241         vcpu->mmio_nr_fragments = 1;
13242         frag->len = bytes;
13243         frag->gpa = gpa;
13244         frag->data = data;
13245
13246         vcpu->mmio_needed = 1;
13247         vcpu->mmio_cur_fragment = 0;
13248
13249         vcpu->run->mmio.phys_addr = gpa;
13250         vcpu->run->mmio.len = min(8u, frag->len);
13251         vcpu->run->mmio.is_write = 1;
13252         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13253         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13254
13255         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13256
13257         return 0;
13258 }
13259 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13260
13261 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13262                          void *data)
13263 {
13264         int handled;
13265         struct kvm_mmio_fragment *frag;
13266
13267         if (!data)
13268                 return -EINVAL;
13269
13270         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13271         if (handled == bytes)
13272                 return 1;
13273
13274         bytes -= handled;
13275         gpa += handled;
13276         data += handled;
13277
13278         /*TODO: Check if need to increment number of frags */
13279         frag = vcpu->mmio_fragments;
13280         vcpu->mmio_nr_fragments = 1;
13281         frag->len = bytes;
13282         frag->gpa = gpa;
13283         frag->data = data;
13284
13285         vcpu->mmio_needed = 1;
13286         vcpu->mmio_cur_fragment = 0;
13287
13288         vcpu->run->mmio.phys_addr = gpa;
13289         vcpu->run->mmio.len = min(8u, frag->len);
13290         vcpu->run->mmio.is_write = 0;
13291         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13292
13293         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13294
13295         return 0;
13296 }
13297 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13298
13299 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13300 {
13301         vcpu->arch.sev_pio_count -= count;
13302         vcpu->arch.sev_pio_data += count * size;
13303 }
13304
13305 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13306                            unsigned int port);
13307
13308 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13309 {
13310         int size = vcpu->arch.pio.size;
13311         int port = vcpu->arch.pio.port;
13312
13313         vcpu->arch.pio.count = 0;
13314         if (vcpu->arch.sev_pio_count)
13315                 return kvm_sev_es_outs(vcpu, size, port);
13316         return 1;
13317 }
13318
13319 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13320                            unsigned int port)
13321 {
13322         for (;;) {
13323                 unsigned int count =
13324                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13325                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13326
13327                 /* memcpy done already by emulator_pio_out.  */
13328                 advance_sev_es_emulated_pio(vcpu, count, size);
13329                 if (!ret)
13330                         break;
13331
13332                 /* Emulation done by the kernel.  */
13333                 if (!vcpu->arch.sev_pio_count)
13334                         return 1;
13335         }
13336
13337         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13338         return 0;
13339 }
13340
13341 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13342                           unsigned int port);
13343
13344 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13345 {
13346         unsigned count = vcpu->arch.pio.count;
13347         int size = vcpu->arch.pio.size;
13348         int port = vcpu->arch.pio.port;
13349
13350         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13351         advance_sev_es_emulated_pio(vcpu, count, size);
13352         if (vcpu->arch.sev_pio_count)
13353                 return kvm_sev_es_ins(vcpu, size, port);
13354         return 1;
13355 }
13356
13357 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13358                           unsigned int port)
13359 {
13360         for (;;) {
13361                 unsigned int count =
13362                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13363                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13364                         break;
13365
13366                 /* Emulation done by the kernel.  */
13367                 advance_sev_es_emulated_pio(vcpu, count, size);
13368                 if (!vcpu->arch.sev_pio_count)
13369                         return 1;
13370         }
13371
13372         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13373         return 0;
13374 }
13375
13376 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13377                          unsigned int port, void *data,  unsigned int count,
13378                          int in)
13379 {
13380         vcpu->arch.sev_pio_data = data;
13381         vcpu->arch.sev_pio_count = count;
13382         return in ? kvm_sev_es_ins(vcpu, size, port)
13383                   : kvm_sev_es_outs(vcpu, size, port);
13384 }
13385 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13386
13387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13416
13417 static int __init kvm_x86_init(void)
13418 {
13419         kvm_mmu_x86_module_init();
13420         return 0;
13421 }
13422 module_init(kvm_x86_init);
13423
13424 static void __exit kvm_x86_exit(void)
13425 {
13426         /*
13427          * If module_init() is implemented, module_exit() must also be
13428          * implemented to allow module unload.
13429          */
13430 }
13431 module_exit(kvm_x86_exit);