49fa1f0e59bd8311497fa6554115f6a58fefebf7
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107         int nr;
108         u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112         struct user_return_notifier urn;
113         bool registered;
114         struct kvm_shared_msr_values {
115                 u64 host;
116                 u64 curr;
117         } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124         { "pf_fixed", VCPU_STAT(pf_fixed) },
125         { "pf_guest", VCPU_STAT(pf_guest) },
126         { "tlb_flush", VCPU_STAT(tlb_flush) },
127         { "invlpg", VCPU_STAT(invlpg) },
128         { "exits", VCPU_STAT(exits) },
129         { "io_exits", VCPU_STAT(io_exits) },
130         { "mmio_exits", VCPU_STAT(mmio_exits) },
131         { "signal_exits", VCPU_STAT(signal_exits) },
132         { "irq_window", VCPU_STAT(irq_window_exits) },
133         { "nmi_window", VCPU_STAT(nmi_window_exits) },
134         { "halt_exits", VCPU_STAT(halt_exits) },
135         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136         { "hypercalls", VCPU_STAT(hypercalls) },
137         { "request_irq", VCPU_STAT(request_irq_exits) },
138         { "irq_exits", VCPU_STAT(irq_exits) },
139         { "host_state_reload", VCPU_STAT(host_state_reload) },
140         { "efer_reload", VCPU_STAT(efer_reload) },
141         { "fpu_reload", VCPU_STAT(fpu_reload) },
142         { "insn_emulation", VCPU_STAT(insn_emulation) },
143         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144         { "irq_injections", VCPU_STAT(irq_injections) },
145         { "nmi_injections", VCPU_STAT(nmi_injections) },
146         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150         { "mmu_flooded", VM_STAT(mmu_flooded) },
151         { "mmu_recycled", VM_STAT(mmu_recycled) },
152         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153         { "mmu_unsync", VM_STAT(mmu_unsync) },
154         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155         { "largepages", VM_STAT(lpages) },
156         { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         struct kvm_shared_msrs *smsr;
193         u64 value;
194
195         smsr = &__get_cpu_var(shared_msrs);
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
228
229         if (((value ^ smsr->values[slot].curr) & mask) == 0)
230                 return;
231         smsr->values[slot].curr = value;
232         wrmsrl(shared_msrs_global.msrs[slot], value);
233         if (!smsr->registered) {
234                 smsr->urn.on_user_return = kvm_on_user_return;
235                 user_return_notifier_register(&smsr->urn);
236                 smsr->registered = true;
237         }
238 }
239 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
240
241 static void drop_user_return_notifiers(void *ignore)
242 {
243         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
244
245         if (smsr->registered)
246                 kvm_on_user_return(&smsr->urn);
247 }
248
249 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
250 {
251         return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257         /* TODO: reserve bits check */
258         kvm_lapic_set_base(vcpu, data);
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339         if (err)
340                 kvm_inject_gp(vcpu, 0);
341         else
342                 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348         ++vcpu->stat.pf_guest;
349         vcpu->arch.cr2 = fault->address;
350         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358         else
359                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364         atomic_inc(&vcpu->arch.nmi_queued);
365         kvm_make_request(KVM_REQ_NMI, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377         kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388                 return true;
389         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390         return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400                             gfn_t ngfn, void *data, int offset, int len,
401                             u32 access)
402 {
403         gfn_t real_gfn;
404         gpa_t ngpa;
405
406         ngpa     = gfn_to_gpa(ngfn);
407         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408         if (real_gfn == UNMAPPED_GVA)
409                 return -EFAULT;
410
411         real_gfn = gpa_to_gfn(real_gfn);
412
413         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418                                void *data, int offset, int len, u32 access)
419 {
420         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421                                        data, offset, len, access);
422 }
423
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431         int i;
432         int ret;
433         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436                                       offset * sizeof(u64), sizeof(pdpte),
437                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
438         if (ret < 0) {
439                 ret = 0;
440                 goto out;
441         }
442         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443                 if (is_present_gpte(pdpte[i]) &&
444                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445                         ret = 0;
446                         goto out;
447                 }
448         }
449         ret = 1;
450
451         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452         __set_bit(VCPU_EXREG_PDPTR,
453                   (unsigned long *)&vcpu->arch.regs_avail);
454         __set_bit(VCPU_EXREG_PDPTR,
455                   (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465         bool changed = true;
466         int offset;
467         gfn_t gfn;
468         int r;
469
470         if (is_long_mode(vcpu) || !is_pae(vcpu))
471                 return false;
472
473         if (!test_bit(VCPU_EXREG_PDPTR,
474                       (unsigned long *)&vcpu->arch.regs_avail))
475                 return true;
476
477         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
481         if (r < 0)
482                 goto out;
483         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486         return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491         unsigned long old_cr0 = kvm_read_cr0(vcpu);
492         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493                                     X86_CR0_CD | X86_CR0_NW;
494
495         cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498         if (cr0 & 0xffffffff00000000UL)
499                 return 1;
500 #endif
501
502         cr0 &= ~CR0_RESERVED_BITS;
503
504         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505                 return 1;
506
507         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508                 return 1;
509
510         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512                 if ((vcpu->arch.efer & EFER_LME)) {
513                         int cs_db, cs_l;
514
515                         if (!is_pae(vcpu))
516                                 return 1;
517                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518                         if (cs_l)
519                                 return 1;
520                 } else
521 #endif
522                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523                                                  kvm_read_cr3(vcpu)))
524                         return 1;
525         }
526
527         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
528                 return 1;
529
530         kvm_x86_ops->set_cr0(vcpu, cr0);
531
532         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533                 kvm_clear_async_pf_completion_queue(vcpu);
534                 kvm_async_pf_hash_reset(vcpu);
535         }
536
537         if ((cr0 ^ old_cr0) & update_bits)
538                 kvm_mmu_reset_context(vcpu);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551         u64 xcr0;
552
553         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
554         if (index != XCR_XFEATURE_ENABLED_MASK)
555                 return 1;
556         xcr0 = xcr;
557         if (kvm_x86_ops->get_cpl(vcpu) != 0)
558                 return 1;
559         if (!(xcr0 & XSTATE_FP))
560                 return 1;
561         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562                 return 1;
563         if (xcr0 & ~host_xcr0)
564                 return 1;
565         vcpu->arch.xcr0 = xcr0;
566         vcpu->guest_xcr0_loaded = 0;
567         return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572         if (__kvm_set_xcr(vcpu, index, xcr)) {
573                 kvm_inject_gp(vcpu, 0);
574                 return 1;
575         }
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582         unsigned long old_cr4 = kvm_read_cr4(vcpu);
583         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584                                    X86_CR4_PAE | X86_CR4_SMEP;
585         if (cr4 & CR4_RESERVED_BITS)
586                 return 1;
587
588         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589                 return 1;
590
591         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592                 return 1;
593
594         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595                 return 1;
596
597         if (is_long_mode(vcpu)) {
598                 if (!(cr4 & X86_CR4_PAE))
599                         return 1;
600         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601                    && ((cr4 ^ old_cr4) & pdptr_bits)
602                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603                                    kvm_read_cr3(vcpu)))
604                 return 1;
605
606         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
607                 if (!guest_cpuid_has_pcid(vcpu))
608                         return 1;
609
610                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
611                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
612                         return 1;
613         }
614
615         if (kvm_x86_ops->set_cr4(vcpu, cr4))
616                 return 1;
617
618         if (((cr4 ^ old_cr4) & pdptr_bits) ||
619             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
620                 kvm_mmu_reset_context(vcpu);
621
622         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
623                 kvm_update_cpuid(vcpu);
624
625         return 0;
626 }
627 EXPORT_SYMBOL_GPL(kvm_set_cr4);
628
629 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
630 {
631         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
632                 kvm_mmu_sync_roots(vcpu);
633                 kvm_mmu_flush_tlb(vcpu);
634                 return 0;
635         }
636
637         if (is_long_mode(vcpu)) {
638                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
639                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
640                                 return 1;
641                 } else
642                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
643                                 return 1;
644         } else {
645                 if (is_pae(vcpu)) {
646                         if (cr3 & CR3_PAE_RESERVED_BITS)
647                                 return 1;
648                         if (is_paging(vcpu) &&
649                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650                                 return 1;
651                 }
652                 /*
653                  * We don't check reserved bits in nonpae mode, because
654                  * this isn't enforced, and VMware depends on this.
655                  */
656         }
657
658         /*
659          * Does the new cr3 value map to physical memory? (Note, we
660          * catch an invalid cr3 even in real-mode, because it would
661          * cause trouble later on when we turn on paging anyway.)
662          *
663          * A real CPU would silently accept an invalid cr3 and would
664          * attempt to use it - with largely undefined (and often hard
665          * to debug) behavior on the guest side.
666          */
667         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668                 return 1;
669         vcpu->arch.cr3 = cr3;
670         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671         vcpu->arch.mmu.new_cr3(vcpu);
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678         if (cr8 & CR8_RESERVED_BITS)
679                 return 1;
680         if (irqchip_in_kernel(vcpu->kvm))
681                 kvm_lapic_set_tpr(vcpu, cr8);
682         else
683                 vcpu->arch.cr8 = cr8;
684         return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690         if (irqchip_in_kernel(vcpu->kvm))
691                 return kvm_lapic_get_cr8(vcpu);
692         else
693                 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
698 {
699         unsigned long dr7;
700
701         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
702                 dr7 = vcpu->arch.guest_debug_dr7;
703         else
704                 dr7 = vcpu->arch.dr7;
705         kvm_x86_ops->set_dr7(vcpu, dr7);
706         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
707 }
708
709 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
710 {
711         switch (dr) {
712         case 0 ... 3:
713                 vcpu->arch.db[dr] = val;
714                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
715                         vcpu->arch.eff_db[dr] = val;
716                 break;
717         case 4:
718                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719                         return 1; /* #UD */
720                 /* fall through */
721         case 6:
722                 if (val & 0xffffffff00000000ULL)
723                         return -1; /* #GP */
724                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
725                 break;
726         case 5:
727                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728                         return 1; /* #UD */
729                 /* fall through */
730         default: /* 7 */
731                 if (val & 0xffffffff00000000ULL)
732                         return -1; /* #GP */
733                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
734                 kvm_update_dr7(vcpu);
735                 break;
736         }
737
738         return 0;
739 }
740
741 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
742 {
743         int res;
744
745         res = __kvm_set_dr(vcpu, dr, val);
746         if (res > 0)
747                 kvm_queue_exception(vcpu, UD_VECTOR);
748         else if (res < 0)
749                 kvm_inject_gp(vcpu, 0);
750
751         return res;
752 }
753 EXPORT_SYMBOL_GPL(kvm_set_dr);
754
755 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
756 {
757         switch (dr) {
758         case 0 ... 3:
759                 *val = vcpu->arch.db[dr];
760                 break;
761         case 4:
762                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
763                         return 1;
764                 /* fall through */
765         case 6:
766                 *val = vcpu->arch.dr6;
767                 break;
768         case 5:
769                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
770                         return 1;
771                 /* fall through */
772         default: /* 7 */
773                 *val = vcpu->arch.dr7;
774                 break;
775         }
776
777         return 0;
778 }
779
780 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
781 {
782         if (_kvm_get_dr(vcpu, dr, val)) {
783                 kvm_queue_exception(vcpu, UD_VECTOR);
784                 return 1;
785         }
786         return 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_get_dr);
789
790 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
791 {
792         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
793         u64 data;
794         int err;
795
796         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
797         if (err)
798                 return err;
799         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
800         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
801         return err;
802 }
803 EXPORT_SYMBOL_GPL(kvm_rdpmc);
804
805 /*
806  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
807  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
808  *
809  * This list is modified at module load time to reflect the
810  * capabilities of the host cpu. This capabilities test skips MSRs that are
811  * kvm-specific. Those are put in the beginning of the list.
812  */
813
814 #define KVM_SAVE_MSRS_BEGIN     10
815 static u32 msrs_to_save[] = {
816         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
817         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
818         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
819         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
820         MSR_KVM_PV_EOI_EN,
821         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
822         MSR_STAR,
823 #ifdef CONFIG_X86_64
824         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
825 #endif
826         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
827 };
828
829 static unsigned num_msrs_to_save;
830
831 static const u32 emulated_msrs[] = {
832         MSR_IA32_TSCDEADLINE,
833         MSR_IA32_MISC_ENABLE,
834         MSR_IA32_MCG_STATUS,
835         MSR_IA32_MCG_CTL,
836 };
837
838 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
839 {
840         u64 old_efer = vcpu->arch.efer;
841
842         if (efer & efer_reserved_bits)
843                 return 1;
844
845         if (is_paging(vcpu)
846             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
847                 return 1;
848
849         if (efer & EFER_FFXSR) {
850                 struct kvm_cpuid_entry2 *feat;
851
852                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
853                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
854                         return 1;
855         }
856
857         if (efer & EFER_SVME) {
858                 struct kvm_cpuid_entry2 *feat;
859
860                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
861                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
862                         return 1;
863         }
864
865         efer &= ~EFER_LMA;
866         efer |= vcpu->arch.efer & EFER_LMA;
867
868         kvm_x86_ops->set_efer(vcpu, efer);
869
870         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
871
872         /* Update reserved bits */
873         if ((efer ^ old_efer) & EFER_NX)
874                 kvm_mmu_reset_context(vcpu);
875
876         return 0;
877 }
878
879 void kvm_enable_efer_bits(u64 mask)
880 {
881        efer_reserved_bits &= ~mask;
882 }
883 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
884
885
886 /*
887  * Writes msr value into into the appropriate "register".
888  * Returns 0 on success, non-0 otherwise.
889  * Assumes vcpu_load() was already called.
890  */
891 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
892 {
893         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
894 }
895
896 /*
897  * Adapt set_msr() to msr_io()'s calling convention
898  */
899 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
900 {
901         return kvm_set_msr(vcpu, index, *data);
902 }
903
904 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
905 {
906         int version;
907         int r;
908         struct pvclock_wall_clock wc;
909         struct timespec boot;
910
911         if (!wall_clock)
912                 return;
913
914         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
915         if (r)
916                 return;
917
918         if (version & 1)
919                 ++version;  /* first time write, random junk */
920
921         ++version;
922
923         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
924
925         /*
926          * The guest calculates current wall clock time by adding
927          * system time (updated by kvm_guest_time_update below) to the
928          * wall clock specified here.  guest system time equals host
929          * system time for us, thus we must fill in host boot time here.
930          */
931         getboottime(&boot);
932
933         if (kvm->arch.kvmclock_offset) {
934                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
935                 boot = timespec_sub(boot, ts);
936         }
937         wc.sec = boot.tv_sec;
938         wc.nsec = boot.tv_nsec;
939         wc.version = version;
940
941         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
942
943         version++;
944         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
945 }
946
947 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
948 {
949         uint32_t quotient, remainder;
950
951         /* Don't try to replace with do_div(), this one calculates
952          * "(dividend << 32) / divisor" */
953         __asm__ ( "divl %4"
954                   : "=a" (quotient), "=d" (remainder)
955                   : "0" (0), "1" (dividend), "r" (divisor) );
956         return quotient;
957 }
958
959 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
960                                s8 *pshift, u32 *pmultiplier)
961 {
962         uint64_t scaled64;
963         int32_t  shift = 0;
964         uint64_t tps64;
965         uint32_t tps32;
966
967         tps64 = base_khz * 1000LL;
968         scaled64 = scaled_khz * 1000LL;
969         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
970                 tps64 >>= 1;
971                 shift--;
972         }
973
974         tps32 = (uint32_t)tps64;
975         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
976                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
977                         scaled64 >>= 1;
978                 else
979                         tps32 <<= 1;
980                 shift++;
981         }
982
983         *pshift = shift;
984         *pmultiplier = div_frac(scaled64, tps32);
985
986         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
987                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
988 }
989
990 static inline u64 get_kernel_ns(void)
991 {
992         struct timespec ts;
993
994         WARN_ON(preemptible());
995         ktime_get_ts(&ts);
996         monotonic_to_bootbased(&ts);
997         return timespec_to_ns(&ts);
998 }
999
1000 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1001 unsigned long max_tsc_khz;
1002
1003 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1004 {
1005         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1006                                    vcpu->arch.virtual_tsc_shift);
1007 }
1008
1009 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1010 {
1011         u64 v = (u64)khz * (1000000 + ppm);
1012         do_div(v, 1000000);
1013         return v;
1014 }
1015
1016 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1017 {
1018         u32 thresh_lo, thresh_hi;
1019         int use_scaling = 0;
1020
1021         /* Compute a scale to convert nanoseconds in TSC cycles */
1022         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1023                            &vcpu->arch.virtual_tsc_shift,
1024                            &vcpu->arch.virtual_tsc_mult);
1025         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1026
1027         /*
1028          * Compute the variation in TSC rate which is acceptable
1029          * within the range of tolerance and decide if the
1030          * rate being applied is within that bounds of the hardware
1031          * rate.  If so, no scaling or compensation need be done.
1032          */
1033         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1034         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1035         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1036                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1037                 use_scaling = 1;
1038         }
1039         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1040 }
1041
1042 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1043 {
1044         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1045                                       vcpu->arch.virtual_tsc_mult,
1046                                       vcpu->arch.virtual_tsc_shift);
1047         tsc += vcpu->arch.this_tsc_write;
1048         return tsc;
1049 }
1050
1051 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1052 {
1053         struct kvm *kvm = vcpu->kvm;
1054         u64 offset, ns, elapsed;
1055         unsigned long flags;
1056         s64 usdiff;
1057
1058         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1059         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1060         ns = get_kernel_ns();
1061         elapsed = ns - kvm->arch.last_tsc_nsec;
1062
1063         /* n.b - signed multiplication and division required */
1064         usdiff = data - kvm->arch.last_tsc_write;
1065 #ifdef CONFIG_X86_64
1066         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1067 #else
1068         /* do_div() only does unsigned */
1069         asm("idivl %2; xor %%edx, %%edx"
1070             : "=A"(usdiff)
1071             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1072 #endif
1073         do_div(elapsed, 1000);
1074         usdiff -= elapsed;
1075         if (usdiff < 0)
1076                 usdiff = -usdiff;
1077
1078         /*
1079          * Special case: TSC write with a small delta (1 second) of virtual
1080          * cycle time against real time is interpreted as an attempt to
1081          * synchronize the CPU.
1082          *
1083          * For a reliable TSC, we can match TSC offsets, and for an unstable
1084          * TSC, we add elapsed time in this computation.  We could let the
1085          * compensation code attempt to catch up if we fall behind, but
1086          * it's better to try to match offsets from the beginning.
1087          */
1088         if (usdiff < USEC_PER_SEC &&
1089             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1090                 if (!check_tsc_unstable()) {
1091                         offset = kvm->arch.cur_tsc_offset;
1092                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1093                 } else {
1094                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1095                         data += delta;
1096                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1097                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1098                 }
1099         } else {
1100                 /*
1101                  * We split periods of matched TSC writes into generations.
1102                  * For each generation, we track the original measured
1103                  * nanosecond time, offset, and write, so if TSCs are in
1104                  * sync, we can match exact offset, and if not, we can match
1105                  * exact software computation in compute_guest_tsc()
1106                  *
1107                  * These values are tracked in kvm->arch.cur_xxx variables.
1108                  */
1109                 kvm->arch.cur_tsc_generation++;
1110                 kvm->arch.cur_tsc_nsec = ns;
1111                 kvm->arch.cur_tsc_write = data;
1112                 kvm->arch.cur_tsc_offset = offset;
1113                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1114                          kvm->arch.cur_tsc_generation, data);
1115         }
1116
1117         /*
1118          * We also track th most recent recorded KHZ, write and time to
1119          * allow the matching interval to be extended at each write.
1120          */
1121         kvm->arch.last_tsc_nsec = ns;
1122         kvm->arch.last_tsc_write = data;
1123         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1124
1125         /* Reset of TSC must disable overshoot protection below */
1126         vcpu->arch.hv_clock.tsc_timestamp = 0;
1127         vcpu->arch.last_guest_tsc = data;
1128
1129         /* Keep track of which generation this VCPU has synchronized to */
1130         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1131         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1132         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1133
1134         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1135         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1136 }
1137
1138 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1139
1140 static int kvm_guest_time_update(struct kvm_vcpu *v)
1141 {
1142         unsigned long flags;
1143         struct kvm_vcpu_arch *vcpu = &v->arch;
1144         void *shared_kaddr;
1145         unsigned long this_tsc_khz;
1146         s64 kernel_ns, max_kernel_ns;
1147         u64 tsc_timestamp;
1148         u8 pvclock_flags;
1149
1150         /* Keep irq disabled to prevent changes to the clock */
1151         local_irq_save(flags);
1152         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1153         kernel_ns = get_kernel_ns();
1154         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1155         if (unlikely(this_tsc_khz == 0)) {
1156                 local_irq_restore(flags);
1157                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1158                 return 1;
1159         }
1160
1161         /*
1162          * We may have to catch up the TSC to match elapsed wall clock
1163          * time for two reasons, even if kvmclock is used.
1164          *   1) CPU could have been running below the maximum TSC rate
1165          *   2) Broken TSC compensation resets the base at each VCPU
1166          *      entry to avoid unknown leaps of TSC even when running
1167          *      again on the same CPU.  This may cause apparent elapsed
1168          *      time to disappear, and the guest to stand still or run
1169          *      very slowly.
1170          */
1171         if (vcpu->tsc_catchup) {
1172                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1173                 if (tsc > tsc_timestamp) {
1174                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1175                         tsc_timestamp = tsc;
1176                 }
1177         }
1178
1179         local_irq_restore(flags);
1180
1181         if (!vcpu->time_page)
1182                 return 0;
1183
1184         /*
1185          * Time as measured by the TSC may go backwards when resetting the base
1186          * tsc_timestamp.  The reason for this is that the TSC resolution is
1187          * higher than the resolution of the other clock scales.  Thus, many
1188          * possible measurments of the TSC correspond to one measurement of any
1189          * other clock, and so a spread of values is possible.  This is not a
1190          * problem for the computation of the nanosecond clock; with TSC rates
1191          * around 1GHZ, there can only be a few cycles which correspond to one
1192          * nanosecond value, and any path through this code will inevitably
1193          * take longer than that.  However, with the kernel_ns value itself,
1194          * the precision may be much lower, down to HZ granularity.  If the
1195          * first sampling of TSC against kernel_ns ends in the low part of the
1196          * range, and the second in the high end of the range, we can get:
1197          *
1198          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1199          *
1200          * As the sampling errors potentially range in the thousands of cycles,
1201          * it is possible such a time value has already been observed by the
1202          * guest.  To protect against this, we must compute the system time as
1203          * observed by the guest and ensure the new system time is greater.
1204          */
1205         max_kernel_ns = 0;
1206         if (vcpu->hv_clock.tsc_timestamp) {
1207                 max_kernel_ns = vcpu->last_guest_tsc -
1208                                 vcpu->hv_clock.tsc_timestamp;
1209                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1210                                     vcpu->hv_clock.tsc_to_system_mul,
1211                                     vcpu->hv_clock.tsc_shift);
1212                 max_kernel_ns += vcpu->last_kernel_ns;
1213         }
1214
1215         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1216                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1217                                    &vcpu->hv_clock.tsc_shift,
1218                                    &vcpu->hv_clock.tsc_to_system_mul);
1219                 vcpu->hw_tsc_khz = this_tsc_khz;
1220         }
1221
1222         if (max_kernel_ns > kernel_ns)
1223                 kernel_ns = max_kernel_ns;
1224
1225         /* With all the info we got, fill in the values */
1226         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1227         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1228         vcpu->last_kernel_ns = kernel_ns;
1229         vcpu->last_guest_tsc = tsc_timestamp;
1230
1231         pvclock_flags = 0;
1232         if (vcpu->pvclock_set_guest_stopped_request) {
1233                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1234                 vcpu->pvclock_set_guest_stopped_request = false;
1235         }
1236
1237         vcpu->hv_clock.flags = pvclock_flags;
1238
1239         /*
1240          * The interface expects us to write an even number signaling that the
1241          * update is finished. Since the guest won't see the intermediate
1242          * state, we just increase by 2 at the end.
1243          */
1244         vcpu->hv_clock.version += 2;
1245
1246         shared_kaddr = kmap_atomic(vcpu->time_page);
1247
1248         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1249                sizeof(vcpu->hv_clock));
1250
1251         kunmap_atomic(shared_kaddr);
1252
1253         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1254         return 0;
1255 }
1256
1257 static bool msr_mtrr_valid(unsigned msr)
1258 {
1259         switch (msr) {
1260         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1261         case MSR_MTRRfix64K_00000:
1262         case MSR_MTRRfix16K_80000:
1263         case MSR_MTRRfix16K_A0000:
1264         case MSR_MTRRfix4K_C0000:
1265         case MSR_MTRRfix4K_C8000:
1266         case MSR_MTRRfix4K_D0000:
1267         case MSR_MTRRfix4K_D8000:
1268         case MSR_MTRRfix4K_E0000:
1269         case MSR_MTRRfix4K_E8000:
1270         case MSR_MTRRfix4K_F0000:
1271         case MSR_MTRRfix4K_F8000:
1272         case MSR_MTRRdefType:
1273         case MSR_IA32_CR_PAT:
1274                 return true;
1275         case 0x2f8:
1276                 return true;
1277         }
1278         return false;
1279 }
1280
1281 static bool valid_pat_type(unsigned t)
1282 {
1283         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1284 }
1285
1286 static bool valid_mtrr_type(unsigned t)
1287 {
1288         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1289 }
1290
1291 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1292 {
1293         int i;
1294
1295         if (!msr_mtrr_valid(msr))
1296                 return false;
1297
1298         if (msr == MSR_IA32_CR_PAT) {
1299                 for (i = 0; i < 8; i++)
1300                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1301                                 return false;
1302                 return true;
1303         } else if (msr == MSR_MTRRdefType) {
1304                 if (data & ~0xcff)
1305                         return false;
1306                 return valid_mtrr_type(data & 0xff);
1307         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1308                 for (i = 0; i < 8 ; i++)
1309                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1310                                 return false;
1311                 return true;
1312         }
1313
1314         /* variable MTRRs */
1315         return valid_mtrr_type(data & 0xff);
1316 }
1317
1318 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1319 {
1320         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1321
1322         if (!mtrr_valid(vcpu, msr, data))
1323                 return 1;
1324
1325         if (msr == MSR_MTRRdefType) {
1326                 vcpu->arch.mtrr_state.def_type = data;
1327                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1328         } else if (msr == MSR_MTRRfix64K_00000)
1329                 p[0] = data;
1330         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1331                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1332         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1333                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1334         else if (msr == MSR_IA32_CR_PAT)
1335                 vcpu->arch.pat = data;
1336         else {  /* Variable MTRRs */
1337                 int idx, is_mtrr_mask;
1338                 u64 *pt;
1339
1340                 idx = (msr - 0x200) / 2;
1341                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1342                 if (!is_mtrr_mask)
1343                         pt =
1344                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1345                 else
1346                         pt =
1347                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1348                 *pt = data;
1349         }
1350
1351         kvm_mmu_reset_context(vcpu);
1352         return 0;
1353 }
1354
1355 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1356 {
1357         u64 mcg_cap = vcpu->arch.mcg_cap;
1358         unsigned bank_num = mcg_cap & 0xff;
1359
1360         switch (msr) {
1361         case MSR_IA32_MCG_STATUS:
1362                 vcpu->arch.mcg_status = data;
1363                 break;
1364         case MSR_IA32_MCG_CTL:
1365                 if (!(mcg_cap & MCG_CTL_P))
1366                         return 1;
1367                 if (data != 0 && data != ~(u64)0)
1368                         return -1;
1369                 vcpu->arch.mcg_ctl = data;
1370                 break;
1371         default:
1372                 if (msr >= MSR_IA32_MC0_CTL &&
1373                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1374                         u32 offset = msr - MSR_IA32_MC0_CTL;
1375                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1376                          * some Linux kernels though clear bit 10 in bank 4 to
1377                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1378                          * this to avoid an uncatched #GP in the guest
1379                          */
1380                         if ((offset & 0x3) == 0 &&
1381                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1382                                 return -1;
1383                         vcpu->arch.mce_banks[offset] = data;
1384                         break;
1385                 }
1386                 return 1;
1387         }
1388         return 0;
1389 }
1390
1391 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1392 {
1393         struct kvm *kvm = vcpu->kvm;
1394         int lm = is_long_mode(vcpu);
1395         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1396                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1397         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1398                 : kvm->arch.xen_hvm_config.blob_size_32;
1399         u32 page_num = data & ~PAGE_MASK;
1400         u64 page_addr = data & PAGE_MASK;
1401         u8 *page;
1402         int r;
1403
1404         r = -E2BIG;
1405         if (page_num >= blob_size)
1406                 goto out;
1407         r = -ENOMEM;
1408         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1409         if (IS_ERR(page)) {
1410                 r = PTR_ERR(page);
1411                 goto out;
1412         }
1413         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1414                 goto out_free;
1415         r = 0;
1416 out_free:
1417         kfree(page);
1418 out:
1419         return r;
1420 }
1421
1422 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1423 {
1424         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1425 }
1426
1427 static bool kvm_hv_msr_partition_wide(u32 msr)
1428 {
1429         bool r = false;
1430         switch (msr) {
1431         case HV_X64_MSR_GUEST_OS_ID:
1432         case HV_X64_MSR_HYPERCALL:
1433                 r = true;
1434                 break;
1435         }
1436
1437         return r;
1438 }
1439
1440 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1441 {
1442         struct kvm *kvm = vcpu->kvm;
1443
1444         switch (msr) {
1445         case HV_X64_MSR_GUEST_OS_ID:
1446                 kvm->arch.hv_guest_os_id = data;
1447                 /* setting guest os id to zero disables hypercall page */
1448                 if (!kvm->arch.hv_guest_os_id)
1449                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1450                 break;
1451         case HV_X64_MSR_HYPERCALL: {
1452                 u64 gfn;
1453                 unsigned long addr;
1454                 u8 instructions[4];
1455
1456                 /* if guest os id is not set hypercall should remain disabled */
1457                 if (!kvm->arch.hv_guest_os_id)
1458                         break;
1459                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1460                         kvm->arch.hv_hypercall = data;
1461                         break;
1462                 }
1463                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1464                 addr = gfn_to_hva(kvm, gfn);
1465                 if (kvm_is_error_hva(addr))
1466                         return 1;
1467                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1468                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1469                 if (__copy_to_user((void __user *)addr, instructions, 4))
1470                         return 1;
1471                 kvm->arch.hv_hypercall = data;
1472                 break;
1473         }
1474         default:
1475                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1476                             "data 0x%llx\n", msr, data);
1477                 return 1;
1478         }
1479         return 0;
1480 }
1481
1482 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1483 {
1484         switch (msr) {
1485         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1486                 unsigned long addr;
1487
1488                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1489                         vcpu->arch.hv_vapic = data;
1490                         break;
1491                 }
1492                 addr = gfn_to_hva(vcpu->kvm, data >>
1493                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1494                 if (kvm_is_error_hva(addr))
1495                         return 1;
1496                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1497                         return 1;
1498                 vcpu->arch.hv_vapic = data;
1499                 break;
1500         }
1501         case HV_X64_MSR_EOI:
1502                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1503         case HV_X64_MSR_ICR:
1504                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1505         case HV_X64_MSR_TPR:
1506                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1507         default:
1508                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1509                             "data 0x%llx\n", msr, data);
1510                 return 1;
1511         }
1512
1513         return 0;
1514 }
1515
1516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1517 {
1518         gpa_t gpa = data & ~0x3f;
1519
1520         /* Bits 2:5 are reserved, Should be zero */
1521         if (data & 0x3c)
1522                 return 1;
1523
1524         vcpu->arch.apf.msr_val = data;
1525
1526         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1527                 kvm_clear_async_pf_completion_queue(vcpu);
1528                 kvm_async_pf_hash_reset(vcpu);
1529                 return 0;
1530         }
1531
1532         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1533                 return 1;
1534
1535         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1536         kvm_async_pf_wakeup_all(vcpu);
1537         return 0;
1538 }
1539
1540 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1541 {
1542         if (vcpu->arch.time_page) {
1543                 kvm_release_page_dirty(vcpu->arch.time_page);
1544                 vcpu->arch.time_page = NULL;
1545         }
1546 }
1547
1548 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1549 {
1550         u64 delta;
1551
1552         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1553                 return;
1554
1555         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1556         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1557         vcpu->arch.st.accum_steal = delta;
1558 }
1559
1560 static void record_steal_time(struct kvm_vcpu *vcpu)
1561 {
1562         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1563                 return;
1564
1565         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1566                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1567                 return;
1568
1569         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1570         vcpu->arch.st.steal.version += 2;
1571         vcpu->arch.st.accum_steal = 0;
1572
1573         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1574                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1575 }
1576
1577 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1578 {
1579         bool pr = false;
1580
1581         switch (msr) {
1582         case MSR_EFER:
1583                 return set_efer(vcpu, data);
1584         case MSR_K7_HWCR:
1585                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1586                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1587                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1588                 if (data != 0) {
1589                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1590                                     data);
1591                         return 1;
1592                 }
1593                 break;
1594         case MSR_FAM10H_MMIO_CONF_BASE:
1595                 if (data != 0) {
1596                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1597                                     "0x%llx\n", data);
1598                         return 1;
1599                 }
1600                 break;
1601         case MSR_AMD64_NB_CFG:
1602                 break;
1603         case MSR_IA32_DEBUGCTLMSR:
1604                 if (!data) {
1605                         /* We support the non-activated case already */
1606                         break;
1607                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1608                         /* Values other than LBR and BTF are vendor-specific,
1609                            thus reserved and should throw a #GP */
1610                         return 1;
1611                 }
1612                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1613                             __func__, data);
1614                 break;
1615         case MSR_IA32_UCODE_REV:
1616         case MSR_IA32_UCODE_WRITE:
1617         case MSR_VM_HSAVE_PA:
1618         case MSR_AMD64_PATCH_LOADER:
1619                 break;
1620         case 0x200 ... 0x2ff:
1621                 return set_msr_mtrr(vcpu, msr, data);
1622         case MSR_IA32_APICBASE:
1623                 kvm_set_apic_base(vcpu, data);
1624                 break;
1625         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1626                 return kvm_x2apic_msr_write(vcpu, msr, data);
1627         case MSR_IA32_TSCDEADLINE:
1628                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1629                 break;
1630         case MSR_IA32_MISC_ENABLE:
1631                 vcpu->arch.ia32_misc_enable_msr = data;
1632                 break;
1633         case MSR_KVM_WALL_CLOCK_NEW:
1634         case MSR_KVM_WALL_CLOCK:
1635                 vcpu->kvm->arch.wall_clock = data;
1636                 kvm_write_wall_clock(vcpu->kvm, data);
1637                 break;
1638         case MSR_KVM_SYSTEM_TIME_NEW:
1639         case MSR_KVM_SYSTEM_TIME: {
1640                 kvmclock_reset(vcpu);
1641
1642                 vcpu->arch.time = data;
1643                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1644
1645                 /* we verify if the enable bit is set... */
1646                 if (!(data & 1))
1647                         break;
1648
1649                 /* ...but clean it before doing the actual write */
1650                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1651
1652                 vcpu->arch.time_page =
1653                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1654
1655                 if (is_error_page(vcpu->arch.time_page))
1656                         vcpu->arch.time_page = NULL;
1657
1658                 break;
1659         }
1660         case MSR_KVM_ASYNC_PF_EN:
1661                 if (kvm_pv_enable_async_pf(vcpu, data))
1662                         return 1;
1663                 break;
1664         case MSR_KVM_STEAL_TIME:
1665
1666                 if (unlikely(!sched_info_on()))
1667                         return 1;
1668
1669                 if (data & KVM_STEAL_RESERVED_MASK)
1670                         return 1;
1671
1672                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1673                                                         data & KVM_STEAL_VALID_BITS))
1674                         return 1;
1675
1676                 vcpu->arch.st.msr_val = data;
1677
1678                 if (!(data & KVM_MSR_ENABLED))
1679                         break;
1680
1681                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1682
1683                 preempt_disable();
1684                 accumulate_steal_time(vcpu);
1685                 preempt_enable();
1686
1687                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1688
1689                 break;
1690         case MSR_KVM_PV_EOI_EN:
1691                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1692                         return 1;
1693                 break;
1694
1695         case MSR_IA32_MCG_CTL:
1696         case MSR_IA32_MCG_STATUS:
1697         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1698                 return set_msr_mce(vcpu, msr, data);
1699
1700         /* Performance counters are not protected by a CPUID bit,
1701          * so we should check all of them in the generic path for the sake of
1702          * cross vendor migration.
1703          * Writing a zero into the event select MSRs disables them,
1704          * which we perfectly emulate ;-). Any other value should be at least
1705          * reported, some guests depend on them.
1706          */
1707         case MSR_K7_EVNTSEL0:
1708         case MSR_K7_EVNTSEL1:
1709         case MSR_K7_EVNTSEL2:
1710         case MSR_K7_EVNTSEL3:
1711                 if (data != 0)
1712                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1713                                     "0x%x data 0x%llx\n", msr, data);
1714                 break;
1715         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1716          * so we ignore writes to make it happy.
1717          */
1718         case MSR_K7_PERFCTR0:
1719         case MSR_K7_PERFCTR1:
1720         case MSR_K7_PERFCTR2:
1721         case MSR_K7_PERFCTR3:
1722                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1723                             "0x%x data 0x%llx\n", msr, data);
1724                 break;
1725         case MSR_P6_PERFCTR0:
1726         case MSR_P6_PERFCTR1:
1727                 pr = true;
1728         case MSR_P6_EVNTSEL0:
1729         case MSR_P6_EVNTSEL1:
1730                 if (kvm_pmu_msr(vcpu, msr))
1731                         return kvm_pmu_set_msr(vcpu, msr, data);
1732
1733                 if (pr || data != 0)
1734                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1735                                     "0x%x data 0x%llx\n", msr, data);
1736                 break;
1737         case MSR_K7_CLK_CTL:
1738                 /*
1739                  * Ignore all writes to this no longer documented MSR.
1740                  * Writes are only relevant for old K7 processors,
1741                  * all pre-dating SVM, but a recommended workaround from
1742                  * AMD for these chips. It is possible to specify the
1743                  * affected processor models on the command line, hence
1744                  * the need to ignore the workaround.
1745                  */
1746                 break;
1747         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1748                 if (kvm_hv_msr_partition_wide(msr)) {
1749                         int r;
1750                         mutex_lock(&vcpu->kvm->lock);
1751                         r = set_msr_hyperv_pw(vcpu, msr, data);
1752                         mutex_unlock(&vcpu->kvm->lock);
1753                         return r;
1754                 } else
1755                         return set_msr_hyperv(vcpu, msr, data);
1756                 break;
1757         case MSR_IA32_BBL_CR_CTL3:
1758                 /* Drop writes to this legacy MSR -- see rdmsr
1759                  * counterpart for further detail.
1760                  */
1761                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1762                 break;
1763         case MSR_AMD64_OSVW_ID_LENGTH:
1764                 if (!guest_cpuid_has_osvw(vcpu))
1765                         return 1;
1766                 vcpu->arch.osvw.length = data;
1767                 break;
1768         case MSR_AMD64_OSVW_STATUS:
1769                 if (!guest_cpuid_has_osvw(vcpu))
1770                         return 1;
1771                 vcpu->arch.osvw.status = data;
1772                 break;
1773         default:
1774                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1775                         return xen_hvm_config(vcpu, data);
1776                 if (kvm_pmu_msr(vcpu, msr))
1777                         return kvm_pmu_set_msr(vcpu, msr, data);
1778                 if (!ignore_msrs) {
1779                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1780                                     msr, data);
1781                         return 1;
1782                 } else {
1783                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1784                                     msr, data);
1785                         break;
1786                 }
1787         }
1788         return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1791
1792
1793 /*
1794  * Reads an msr value (of 'msr_index') into 'pdata'.
1795  * Returns 0 on success, non-0 otherwise.
1796  * Assumes vcpu_load() was already called.
1797  */
1798 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1799 {
1800         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1801 }
1802
1803 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1804 {
1805         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1806
1807         if (!msr_mtrr_valid(msr))
1808                 return 1;
1809
1810         if (msr == MSR_MTRRdefType)
1811                 *pdata = vcpu->arch.mtrr_state.def_type +
1812                          (vcpu->arch.mtrr_state.enabled << 10);
1813         else if (msr == MSR_MTRRfix64K_00000)
1814                 *pdata = p[0];
1815         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1816                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1817         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1818                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1819         else if (msr == MSR_IA32_CR_PAT)
1820                 *pdata = vcpu->arch.pat;
1821         else {  /* Variable MTRRs */
1822                 int idx, is_mtrr_mask;
1823                 u64 *pt;
1824
1825                 idx = (msr - 0x200) / 2;
1826                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1827                 if (!is_mtrr_mask)
1828                         pt =
1829                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1830                 else
1831                         pt =
1832                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1833                 *pdata = *pt;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1840 {
1841         u64 data;
1842         u64 mcg_cap = vcpu->arch.mcg_cap;
1843         unsigned bank_num = mcg_cap & 0xff;
1844
1845         switch (msr) {
1846         case MSR_IA32_P5_MC_ADDR:
1847         case MSR_IA32_P5_MC_TYPE:
1848                 data = 0;
1849                 break;
1850         case MSR_IA32_MCG_CAP:
1851                 data = vcpu->arch.mcg_cap;
1852                 break;
1853         case MSR_IA32_MCG_CTL:
1854                 if (!(mcg_cap & MCG_CTL_P))
1855                         return 1;
1856                 data = vcpu->arch.mcg_ctl;
1857                 break;
1858         case MSR_IA32_MCG_STATUS:
1859                 data = vcpu->arch.mcg_status;
1860                 break;
1861         default:
1862                 if (msr >= MSR_IA32_MC0_CTL &&
1863                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1864                         u32 offset = msr - MSR_IA32_MC0_CTL;
1865                         data = vcpu->arch.mce_banks[offset];
1866                         break;
1867                 }
1868                 return 1;
1869         }
1870         *pdata = data;
1871         return 0;
1872 }
1873
1874 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1875 {
1876         u64 data = 0;
1877         struct kvm *kvm = vcpu->kvm;
1878
1879         switch (msr) {
1880         case HV_X64_MSR_GUEST_OS_ID:
1881                 data = kvm->arch.hv_guest_os_id;
1882                 break;
1883         case HV_X64_MSR_HYPERCALL:
1884                 data = kvm->arch.hv_hypercall;
1885                 break;
1886         default:
1887                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1888                 return 1;
1889         }
1890
1891         *pdata = data;
1892         return 0;
1893 }
1894
1895 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1896 {
1897         u64 data = 0;
1898
1899         switch (msr) {
1900         case HV_X64_MSR_VP_INDEX: {
1901                 int r;
1902                 struct kvm_vcpu *v;
1903                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1904                         if (v == vcpu)
1905                                 data = r;
1906                 break;
1907         }
1908         case HV_X64_MSR_EOI:
1909                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1910         case HV_X64_MSR_ICR:
1911                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1912         case HV_X64_MSR_TPR:
1913                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1914         case HV_X64_MSR_APIC_ASSIST_PAGE:
1915                 data = vcpu->arch.hv_vapic;
1916                 break;
1917         default:
1918                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1919                 return 1;
1920         }
1921         *pdata = data;
1922         return 0;
1923 }
1924
1925 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1926 {
1927         u64 data;
1928
1929         switch (msr) {
1930         case MSR_IA32_PLATFORM_ID:
1931         case MSR_IA32_EBL_CR_POWERON:
1932         case MSR_IA32_DEBUGCTLMSR:
1933         case MSR_IA32_LASTBRANCHFROMIP:
1934         case MSR_IA32_LASTBRANCHTOIP:
1935         case MSR_IA32_LASTINTFROMIP:
1936         case MSR_IA32_LASTINTTOIP:
1937         case MSR_K8_SYSCFG:
1938         case MSR_K7_HWCR:
1939         case MSR_VM_HSAVE_PA:
1940         case MSR_K7_EVNTSEL0:
1941         case MSR_K7_PERFCTR0:
1942         case MSR_K8_INT_PENDING_MSG:
1943         case MSR_AMD64_NB_CFG:
1944         case MSR_FAM10H_MMIO_CONF_BASE:
1945                 data = 0;
1946                 break;
1947         case MSR_P6_PERFCTR0:
1948         case MSR_P6_PERFCTR1:
1949         case MSR_P6_EVNTSEL0:
1950         case MSR_P6_EVNTSEL1:
1951                 if (kvm_pmu_msr(vcpu, msr))
1952                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1953                 data = 0;
1954                 break;
1955         case MSR_IA32_UCODE_REV:
1956                 data = 0x100000000ULL;
1957                 break;
1958         case MSR_MTRRcap:
1959                 data = 0x500 | KVM_NR_VAR_MTRR;
1960                 break;
1961         case 0x200 ... 0x2ff:
1962                 return get_msr_mtrr(vcpu, msr, pdata);
1963         case 0xcd: /* fsb frequency */
1964                 data = 3;
1965                 break;
1966                 /*
1967                  * MSR_EBC_FREQUENCY_ID
1968                  * Conservative value valid for even the basic CPU models.
1969                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1970                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1971                  * and 266MHz for model 3, or 4. Set Core Clock
1972                  * Frequency to System Bus Frequency Ratio to 1 (bits
1973                  * 31:24) even though these are only valid for CPU
1974                  * models > 2, however guests may end up dividing or
1975                  * multiplying by zero otherwise.
1976                  */
1977         case MSR_EBC_FREQUENCY_ID:
1978                 data = 1 << 24;
1979                 break;
1980         case MSR_IA32_APICBASE:
1981                 data = kvm_get_apic_base(vcpu);
1982                 break;
1983         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1984                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1985                 break;
1986         case MSR_IA32_TSCDEADLINE:
1987                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1988                 break;
1989         case MSR_IA32_MISC_ENABLE:
1990                 data = vcpu->arch.ia32_misc_enable_msr;
1991                 break;
1992         case MSR_IA32_PERF_STATUS:
1993                 /* TSC increment by tick */
1994                 data = 1000ULL;
1995                 /* CPU multiplier */
1996                 data |= (((uint64_t)4ULL) << 40);
1997                 break;
1998         case MSR_EFER:
1999                 data = vcpu->arch.efer;
2000                 break;
2001         case MSR_KVM_WALL_CLOCK:
2002         case MSR_KVM_WALL_CLOCK_NEW:
2003                 data = vcpu->kvm->arch.wall_clock;
2004                 break;
2005         case MSR_KVM_SYSTEM_TIME:
2006         case MSR_KVM_SYSTEM_TIME_NEW:
2007                 data = vcpu->arch.time;
2008                 break;
2009         case MSR_KVM_ASYNC_PF_EN:
2010                 data = vcpu->arch.apf.msr_val;
2011                 break;
2012         case MSR_KVM_STEAL_TIME:
2013                 data = vcpu->arch.st.msr_val;
2014                 break;
2015         case MSR_KVM_PV_EOI_EN:
2016                 data = vcpu->arch.pv_eoi.msr_val;
2017                 break;
2018         case MSR_IA32_P5_MC_ADDR:
2019         case MSR_IA32_P5_MC_TYPE:
2020         case MSR_IA32_MCG_CAP:
2021         case MSR_IA32_MCG_CTL:
2022         case MSR_IA32_MCG_STATUS:
2023         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2024                 return get_msr_mce(vcpu, msr, pdata);
2025         case MSR_K7_CLK_CTL:
2026                 /*
2027                  * Provide expected ramp-up count for K7. All other
2028                  * are set to zero, indicating minimum divisors for
2029                  * every field.
2030                  *
2031                  * This prevents guest kernels on AMD host with CPU
2032                  * type 6, model 8 and higher from exploding due to
2033                  * the rdmsr failing.
2034                  */
2035                 data = 0x20000000;
2036                 break;
2037         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2038                 if (kvm_hv_msr_partition_wide(msr)) {
2039                         int r;
2040                         mutex_lock(&vcpu->kvm->lock);
2041                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2042                         mutex_unlock(&vcpu->kvm->lock);
2043                         return r;
2044                 } else
2045                         return get_msr_hyperv(vcpu, msr, pdata);
2046                 break;
2047         case MSR_IA32_BBL_CR_CTL3:
2048                 /* This legacy MSR exists but isn't fully documented in current
2049                  * silicon.  It is however accessed by winxp in very narrow
2050                  * scenarios where it sets bit #19, itself documented as
2051                  * a "reserved" bit.  Best effort attempt to source coherent
2052                  * read data here should the balance of the register be
2053                  * interpreted by the guest:
2054                  *
2055                  * L2 cache control register 3: 64GB range, 256KB size,
2056                  * enabled, latency 0x1, configured
2057                  */
2058                 data = 0xbe702111;
2059                 break;
2060         case MSR_AMD64_OSVW_ID_LENGTH:
2061                 if (!guest_cpuid_has_osvw(vcpu))
2062                         return 1;
2063                 data = vcpu->arch.osvw.length;
2064                 break;
2065         case MSR_AMD64_OSVW_STATUS:
2066                 if (!guest_cpuid_has_osvw(vcpu))
2067                         return 1;
2068                 data = vcpu->arch.osvw.status;
2069                 break;
2070         default:
2071                 if (kvm_pmu_msr(vcpu, msr))
2072                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2073                 if (!ignore_msrs) {
2074                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2075                         return 1;
2076                 } else {
2077                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2078                         data = 0;
2079                 }
2080                 break;
2081         }
2082         *pdata = data;
2083         return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2086
2087 /*
2088  * Read or write a bunch of msrs. All parameters are kernel addresses.
2089  *
2090  * @return number of msrs set successfully.
2091  */
2092 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2093                     struct kvm_msr_entry *entries,
2094                     int (*do_msr)(struct kvm_vcpu *vcpu,
2095                                   unsigned index, u64 *data))
2096 {
2097         int i, idx;
2098
2099         idx = srcu_read_lock(&vcpu->kvm->srcu);
2100         for (i = 0; i < msrs->nmsrs; ++i)
2101                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2102                         break;
2103         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2104
2105         return i;
2106 }
2107
2108 /*
2109  * Read or write a bunch of msrs. Parameters are user addresses.
2110  *
2111  * @return number of msrs set successfully.
2112  */
2113 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2114                   int (*do_msr)(struct kvm_vcpu *vcpu,
2115                                 unsigned index, u64 *data),
2116                   int writeback)
2117 {
2118         struct kvm_msrs msrs;
2119         struct kvm_msr_entry *entries;
2120         int r, n;
2121         unsigned size;
2122
2123         r = -EFAULT;
2124         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2125                 goto out;
2126
2127         r = -E2BIG;
2128         if (msrs.nmsrs >= MAX_IO_MSRS)
2129                 goto out;
2130
2131         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2132         entries = memdup_user(user_msrs->entries, size);
2133         if (IS_ERR(entries)) {
2134                 r = PTR_ERR(entries);
2135                 goto out;
2136         }
2137
2138         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2139         if (r < 0)
2140                 goto out_free;
2141
2142         r = -EFAULT;
2143         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2144                 goto out_free;
2145
2146         r = n;
2147
2148 out_free:
2149         kfree(entries);
2150 out:
2151         return r;
2152 }
2153
2154 int kvm_dev_ioctl_check_extension(long ext)
2155 {
2156         int r;
2157
2158         switch (ext) {
2159         case KVM_CAP_IRQCHIP:
2160         case KVM_CAP_HLT:
2161         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2162         case KVM_CAP_SET_TSS_ADDR:
2163         case KVM_CAP_EXT_CPUID:
2164         case KVM_CAP_CLOCKSOURCE:
2165         case KVM_CAP_PIT:
2166         case KVM_CAP_NOP_IO_DELAY:
2167         case KVM_CAP_MP_STATE:
2168         case KVM_CAP_SYNC_MMU:
2169         case KVM_CAP_USER_NMI:
2170         case KVM_CAP_REINJECT_CONTROL:
2171         case KVM_CAP_IRQ_INJECT_STATUS:
2172         case KVM_CAP_ASSIGN_DEV_IRQ:
2173         case KVM_CAP_IRQFD:
2174         case KVM_CAP_IOEVENTFD:
2175         case KVM_CAP_PIT2:
2176         case KVM_CAP_PIT_STATE2:
2177         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2178         case KVM_CAP_XEN_HVM:
2179         case KVM_CAP_ADJUST_CLOCK:
2180         case KVM_CAP_VCPU_EVENTS:
2181         case KVM_CAP_HYPERV:
2182         case KVM_CAP_HYPERV_VAPIC:
2183         case KVM_CAP_HYPERV_SPIN:
2184         case KVM_CAP_PCI_SEGMENT:
2185         case KVM_CAP_DEBUGREGS:
2186         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2187         case KVM_CAP_XSAVE:
2188         case KVM_CAP_ASYNC_PF:
2189         case KVM_CAP_GET_TSC_KHZ:
2190         case KVM_CAP_PCI_2_3:
2191         case KVM_CAP_KVMCLOCK_CTRL:
2192         case KVM_CAP_READONLY_MEM:
2193         case KVM_CAP_IRQFD_RESAMPLE:
2194                 r = 1;
2195                 break;
2196         case KVM_CAP_COALESCED_MMIO:
2197                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2198                 break;
2199         case KVM_CAP_VAPIC:
2200                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2201                 break;
2202         case KVM_CAP_NR_VCPUS:
2203                 r = KVM_SOFT_MAX_VCPUS;
2204                 break;
2205         case KVM_CAP_MAX_VCPUS:
2206                 r = KVM_MAX_VCPUS;
2207                 break;
2208         case KVM_CAP_NR_MEMSLOTS:
2209                 r = KVM_MEMORY_SLOTS;
2210                 break;
2211         case KVM_CAP_PV_MMU:    /* obsolete */
2212                 r = 0;
2213                 break;
2214         case KVM_CAP_IOMMU:
2215                 r = iommu_present(&pci_bus_type);
2216                 break;
2217         case KVM_CAP_MCE:
2218                 r = KVM_MAX_MCE_BANKS;
2219                 break;
2220         case KVM_CAP_XCRS:
2221                 r = cpu_has_xsave;
2222                 break;
2223         case KVM_CAP_TSC_CONTROL:
2224                 r = kvm_has_tsc_control;
2225                 break;
2226         case KVM_CAP_TSC_DEADLINE_TIMER:
2227                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2228                 break;
2229         default:
2230                 r = 0;
2231                 break;
2232         }
2233         return r;
2234
2235 }
2236
2237 long kvm_arch_dev_ioctl(struct file *filp,
2238                         unsigned int ioctl, unsigned long arg)
2239 {
2240         void __user *argp = (void __user *)arg;
2241         long r;
2242
2243         switch (ioctl) {
2244         case KVM_GET_MSR_INDEX_LIST: {
2245                 struct kvm_msr_list __user *user_msr_list = argp;
2246                 struct kvm_msr_list msr_list;
2247                 unsigned n;
2248
2249                 r = -EFAULT;
2250                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2251                         goto out;
2252                 n = msr_list.nmsrs;
2253                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2254                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2255                         goto out;
2256                 r = -E2BIG;
2257                 if (n < msr_list.nmsrs)
2258                         goto out;
2259                 r = -EFAULT;
2260                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2261                                  num_msrs_to_save * sizeof(u32)))
2262                         goto out;
2263                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2264                                  &emulated_msrs,
2265                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2266                         goto out;
2267                 r = 0;
2268                 break;
2269         }
2270         case KVM_GET_SUPPORTED_CPUID: {
2271                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2272                 struct kvm_cpuid2 cpuid;
2273
2274                 r = -EFAULT;
2275                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2276                         goto out;
2277                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2278                                                       cpuid_arg->entries);
2279                 if (r)
2280                         goto out;
2281
2282                 r = -EFAULT;
2283                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2284                         goto out;
2285                 r = 0;
2286                 break;
2287         }
2288         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2289                 u64 mce_cap;
2290
2291                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2292                 r = -EFAULT;
2293                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2294                         goto out;
2295                 r = 0;
2296                 break;
2297         }
2298         default:
2299                 r = -EINVAL;
2300         }
2301 out:
2302         return r;
2303 }
2304
2305 static void wbinvd_ipi(void *garbage)
2306 {
2307         wbinvd();
2308 }
2309
2310 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2311 {
2312         return vcpu->kvm->arch.iommu_domain &&
2313                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2314 }
2315
2316 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2317 {
2318         /* Address WBINVD may be executed by guest */
2319         if (need_emulate_wbinvd(vcpu)) {
2320                 if (kvm_x86_ops->has_wbinvd_exit())
2321                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2322                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2323                         smp_call_function_single(vcpu->cpu,
2324                                         wbinvd_ipi, NULL, 1);
2325         }
2326
2327         kvm_x86_ops->vcpu_load(vcpu, cpu);
2328
2329         /* Apply any externally detected TSC adjustments (due to suspend) */
2330         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2331                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2332                 vcpu->arch.tsc_offset_adjustment = 0;
2333                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2334         }
2335
2336         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2337                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2338                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2339                 if (tsc_delta < 0)
2340                         mark_tsc_unstable("KVM discovered backwards TSC");
2341                 if (check_tsc_unstable()) {
2342                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2343                                                 vcpu->arch.last_guest_tsc);
2344                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2345                         vcpu->arch.tsc_catchup = 1;
2346                 }
2347                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2348                 if (vcpu->cpu != cpu)
2349                         kvm_migrate_timers(vcpu);
2350                 vcpu->cpu = cpu;
2351         }
2352
2353         accumulate_steal_time(vcpu);
2354         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2355 }
2356
2357 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2358 {
2359         kvm_x86_ops->vcpu_put(vcpu);
2360         kvm_put_guest_fpu(vcpu);
2361         vcpu->arch.last_host_tsc = native_read_tsc();
2362 }
2363
2364 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2365                                     struct kvm_lapic_state *s)
2366 {
2367         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2368
2369         return 0;
2370 }
2371
2372 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2373                                     struct kvm_lapic_state *s)
2374 {
2375         kvm_apic_post_state_restore(vcpu, s);
2376         update_cr8_intercept(vcpu);
2377
2378         return 0;
2379 }
2380
2381 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2382                                     struct kvm_interrupt *irq)
2383 {
2384         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2385                 return -EINVAL;
2386         if (irqchip_in_kernel(vcpu->kvm))
2387                 return -ENXIO;
2388
2389         kvm_queue_interrupt(vcpu, irq->irq, false);
2390         kvm_make_request(KVM_REQ_EVENT, vcpu);
2391
2392         return 0;
2393 }
2394
2395 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2396 {
2397         kvm_inject_nmi(vcpu);
2398
2399         return 0;
2400 }
2401
2402 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2403                                            struct kvm_tpr_access_ctl *tac)
2404 {
2405         if (tac->flags)
2406                 return -EINVAL;
2407         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2408         return 0;
2409 }
2410
2411 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2412                                         u64 mcg_cap)
2413 {
2414         int r;
2415         unsigned bank_num = mcg_cap & 0xff, bank;
2416
2417         r = -EINVAL;
2418         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2419                 goto out;
2420         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2421                 goto out;
2422         r = 0;
2423         vcpu->arch.mcg_cap = mcg_cap;
2424         /* Init IA32_MCG_CTL to all 1s */
2425         if (mcg_cap & MCG_CTL_P)
2426                 vcpu->arch.mcg_ctl = ~(u64)0;
2427         /* Init IA32_MCi_CTL to all 1s */
2428         for (bank = 0; bank < bank_num; bank++)
2429                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2430 out:
2431         return r;
2432 }
2433
2434 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2435                                       struct kvm_x86_mce *mce)
2436 {
2437         u64 mcg_cap = vcpu->arch.mcg_cap;
2438         unsigned bank_num = mcg_cap & 0xff;
2439         u64 *banks = vcpu->arch.mce_banks;
2440
2441         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2442                 return -EINVAL;
2443         /*
2444          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2445          * reporting is disabled
2446          */
2447         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2448             vcpu->arch.mcg_ctl != ~(u64)0)
2449                 return 0;
2450         banks += 4 * mce->bank;
2451         /*
2452          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2453          * reporting is disabled for the bank
2454          */
2455         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2456                 return 0;
2457         if (mce->status & MCI_STATUS_UC) {
2458                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2459                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2460                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2461                         return 0;
2462                 }
2463                 if (banks[1] & MCI_STATUS_VAL)
2464                         mce->status |= MCI_STATUS_OVER;
2465                 banks[2] = mce->addr;
2466                 banks[3] = mce->misc;
2467                 vcpu->arch.mcg_status = mce->mcg_status;
2468                 banks[1] = mce->status;
2469                 kvm_queue_exception(vcpu, MC_VECTOR);
2470         } else if (!(banks[1] & MCI_STATUS_VAL)
2471                    || !(banks[1] & MCI_STATUS_UC)) {
2472                 if (banks[1] & MCI_STATUS_VAL)
2473                         mce->status |= MCI_STATUS_OVER;
2474                 banks[2] = mce->addr;
2475                 banks[3] = mce->misc;
2476                 banks[1] = mce->status;
2477         } else
2478                 banks[1] |= MCI_STATUS_OVER;
2479         return 0;
2480 }
2481
2482 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2483                                                struct kvm_vcpu_events *events)
2484 {
2485         process_nmi(vcpu);
2486         events->exception.injected =
2487                 vcpu->arch.exception.pending &&
2488                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2489         events->exception.nr = vcpu->arch.exception.nr;
2490         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2491         events->exception.pad = 0;
2492         events->exception.error_code = vcpu->arch.exception.error_code;
2493
2494         events->interrupt.injected =
2495                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2496         events->interrupt.nr = vcpu->arch.interrupt.nr;
2497         events->interrupt.soft = 0;
2498         events->interrupt.shadow =
2499                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2500                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2501
2502         events->nmi.injected = vcpu->arch.nmi_injected;
2503         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2504         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2505         events->nmi.pad = 0;
2506
2507         events->sipi_vector = vcpu->arch.sipi_vector;
2508
2509         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2510                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2511                          | KVM_VCPUEVENT_VALID_SHADOW);
2512         memset(&events->reserved, 0, sizeof(events->reserved));
2513 }
2514
2515 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2516                                               struct kvm_vcpu_events *events)
2517 {
2518         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2519                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2520                               | KVM_VCPUEVENT_VALID_SHADOW))
2521                 return -EINVAL;
2522
2523         process_nmi(vcpu);
2524         vcpu->arch.exception.pending = events->exception.injected;
2525         vcpu->arch.exception.nr = events->exception.nr;
2526         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2527         vcpu->arch.exception.error_code = events->exception.error_code;
2528
2529         vcpu->arch.interrupt.pending = events->interrupt.injected;
2530         vcpu->arch.interrupt.nr = events->interrupt.nr;
2531         vcpu->arch.interrupt.soft = events->interrupt.soft;
2532         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2533                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2534                                                   events->interrupt.shadow);
2535
2536         vcpu->arch.nmi_injected = events->nmi.injected;
2537         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2538                 vcpu->arch.nmi_pending = events->nmi.pending;
2539         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2540
2541         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2542                 vcpu->arch.sipi_vector = events->sipi_vector;
2543
2544         kvm_make_request(KVM_REQ_EVENT, vcpu);
2545
2546         return 0;
2547 }
2548
2549 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2550                                              struct kvm_debugregs *dbgregs)
2551 {
2552         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2553         dbgregs->dr6 = vcpu->arch.dr6;
2554         dbgregs->dr7 = vcpu->arch.dr7;
2555         dbgregs->flags = 0;
2556         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2557 }
2558
2559 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2560                                             struct kvm_debugregs *dbgregs)
2561 {
2562         if (dbgregs->flags)
2563                 return -EINVAL;
2564
2565         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2566         vcpu->arch.dr6 = dbgregs->dr6;
2567         vcpu->arch.dr7 = dbgregs->dr7;
2568
2569         return 0;
2570 }
2571
2572 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2573                                          struct kvm_xsave *guest_xsave)
2574 {
2575         if (cpu_has_xsave)
2576                 memcpy(guest_xsave->region,
2577                         &vcpu->arch.guest_fpu.state->xsave,
2578                         xstate_size);
2579         else {
2580                 memcpy(guest_xsave->region,
2581                         &vcpu->arch.guest_fpu.state->fxsave,
2582                         sizeof(struct i387_fxsave_struct));
2583                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2584                         XSTATE_FPSSE;
2585         }
2586 }
2587
2588 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2589                                         struct kvm_xsave *guest_xsave)
2590 {
2591         u64 xstate_bv =
2592                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2593
2594         if (cpu_has_xsave)
2595                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2596                         guest_xsave->region, xstate_size);
2597         else {
2598                 if (xstate_bv & ~XSTATE_FPSSE)
2599                         return -EINVAL;
2600                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2601                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2602         }
2603         return 0;
2604 }
2605
2606 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2607                                         struct kvm_xcrs *guest_xcrs)
2608 {
2609         if (!cpu_has_xsave) {
2610                 guest_xcrs->nr_xcrs = 0;
2611                 return;
2612         }
2613
2614         guest_xcrs->nr_xcrs = 1;
2615         guest_xcrs->flags = 0;
2616         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2617         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2618 }
2619
2620 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2621                                        struct kvm_xcrs *guest_xcrs)
2622 {
2623         int i, r = 0;
2624
2625         if (!cpu_has_xsave)
2626                 return -EINVAL;
2627
2628         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2629                 return -EINVAL;
2630
2631         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2632                 /* Only support XCR0 currently */
2633                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2634                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2635                                 guest_xcrs->xcrs[0].value);
2636                         break;
2637                 }
2638         if (r)
2639                 r = -EINVAL;
2640         return r;
2641 }
2642
2643 /*
2644  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2645  * stopped by the hypervisor.  This function will be called from the host only.
2646  * EINVAL is returned when the host attempts to set the flag for a guest that
2647  * does not support pv clocks.
2648  */
2649 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2650 {
2651         if (!vcpu->arch.time_page)
2652                 return -EINVAL;
2653         vcpu->arch.pvclock_set_guest_stopped_request = true;
2654         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2655         return 0;
2656 }
2657
2658 long kvm_arch_vcpu_ioctl(struct file *filp,
2659                          unsigned int ioctl, unsigned long arg)
2660 {
2661         struct kvm_vcpu *vcpu = filp->private_data;
2662         void __user *argp = (void __user *)arg;
2663         int r;
2664         union {
2665                 struct kvm_lapic_state *lapic;
2666                 struct kvm_xsave *xsave;
2667                 struct kvm_xcrs *xcrs;
2668                 void *buffer;
2669         } u;
2670
2671         u.buffer = NULL;
2672         switch (ioctl) {
2673         case KVM_GET_LAPIC: {
2674                 r = -EINVAL;
2675                 if (!vcpu->arch.apic)
2676                         goto out;
2677                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2678
2679                 r = -ENOMEM;
2680                 if (!u.lapic)
2681                         goto out;
2682                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2683                 if (r)
2684                         goto out;
2685                 r = -EFAULT;
2686                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2687                         goto out;
2688                 r = 0;
2689                 break;
2690         }
2691         case KVM_SET_LAPIC: {
2692                 r = -EINVAL;
2693                 if (!vcpu->arch.apic)
2694                         goto out;
2695                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2696                 if (IS_ERR(u.lapic)) {
2697                         r = PTR_ERR(u.lapic);
2698                         goto out;
2699                 }
2700
2701                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2702                 if (r)
2703                         goto out;
2704                 r = 0;
2705                 break;
2706         }
2707         case KVM_INTERRUPT: {
2708                 struct kvm_interrupt irq;
2709
2710                 r = -EFAULT;
2711                 if (copy_from_user(&irq, argp, sizeof irq))
2712                         goto out;
2713                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2714                 if (r)
2715                         goto out;
2716                 r = 0;
2717                 break;
2718         }
2719         case KVM_NMI: {
2720                 r = kvm_vcpu_ioctl_nmi(vcpu);
2721                 if (r)
2722                         goto out;
2723                 r = 0;
2724                 break;
2725         }
2726         case KVM_SET_CPUID: {
2727                 struct kvm_cpuid __user *cpuid_arg = argp;
2728                 struct kvm_cpuid cpuid;
2729
2730                 r = -EFAULT;
2731                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2732                         goto out;
2733                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2734                 if (r)
2735                         goto out;
2736                 break;
2737         }
2738         case KVM_SET_CPUID2: {
2739                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2740                 struct kvm_cpuid2 cpuid;
2741
2742                 r = -EFAULT;
2743                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2744                         goto out;
2745                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2746                                               cpuid_arg->entries);
2747                 if (r)
2748                         goto out;
2749                 break;
2750         }
2751         case KVM_GET_CPUID2: {
2752                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2753                 struct kvm_cpuid2 cpuid;
2754
2755                 r = -EFAULT;
2756                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2757                         goto out;
2758                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2759                                               cpuid_arg->entries);
2760                 if (r)
2761                         goto out;
2762                 r = -EFAULT;
2763                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2764                         goto out;
2765                 r = 0;
2766                 break;
2767         }
2768         case KVM_GET_MSRS:
2769                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2770                 break;
2771         case KVM_SET_MSRS:
2772                 r = msr_io(vcpu, argp, do_set_msr, 0);
2773                 break;
2774         case KVM_TPR_ACCESS_REPORTING: {
2775                 struct kvm_tpr_access_ctl tac;
2776
2777                 r = -EFAULT;
2778                 if (copy_from_user(&tac, argp, sizeof tac))
2779                         goto out;
2780                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2781                 if (r)
2782                         goto out;
2783                 r = -EFAULT;
2784                 if (copy_to_user(argp, &tac, sizeof tac))
2785                         goto out;
2786                 r = 0;
2787                 break;
2788         };
2789         case KVM_SET_VAPIC_ADDR: {
2790                 struct kvm_vapic_addr va;
2791
2792                 r = -EINVAL;
2793                 if (!irqchip_in_kernel(vcpu->kvm))
2794                         goto out;
2795                 r = -EFAULT;
2796                 if (copy_from_user(&va, argp, sizeof va))
2797                         goto out;
2798                 r = 0;
2799                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2800                 break;
2801         }
2802         case KVM_X86_SETUP_MCE: {
2803                 u64 mcg_cap;
2804
2805                 r = -EFAULT;
2806                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2807                         goto out;
2808                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2809                 break;
2810         }
2811         case KVM_X86_SET_MCE: {
2812                 struct kvm_x86_mce mce;
2813
2814                 r = -EFAULT;
2815                 if (copy_from_user(&mce, argp, sizeof mce))
2816                         goto out;
2817                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2818                 break;
2819         }
2820         case KVM_GET_VCPU_EVENTS: {
2821                 struct kvm_vcpu_events events;
2822
2823                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2824
2825                 r = -EFAULT;
2826                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2827                         break;
2828                 r = 0;
2829                 break;
2830         }
2831         case KVM_SET_VCPU_EVENTS: {
2832                 struct kvm_vcpu_events events;
2833
2834                 r = -EFAULT;
2835                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2836                         break;
2837
2838                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2839                 break;
2840         }
2841         case KVM_GET_DEBUGREGS: {
2842                 struct kvm_debugregs dbgregs;
2843
2844                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2845
2846                 r = -EFAULT;
2847                 if (copy_to_user(argp, &dbgregs,
2848                                  sizeof(struct kvm_debugregs)))
2849                         break;
2850                 r = 0;
2851                 break;
2852         }
2853         case KVM_SET_DEBUGREGS: {
2854                 struct kvm_debugregs dbgregs;
2855
2856                 r = -EFAULT;
2857                 if (copy_from_user(&dbgregs, argp,
2858                                    sizeof(struct kvm_debugregs)))
2859                         break;
2860
2861                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2862                 break;
2863         }
2864         case KVM_GET_XSAVE: {
2865                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2866                 r = -ENOMEM;
2867                 if (!u.xsave)
2868                         break;
2869
2870                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2871
2872                 r = -EFAULT;
2873                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2874                         break;
2875                 r = 0;
2876                 break;
2877         }
2878         case KVM_SET_XSAVE: {
2879                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2880                 if (IS_ERR(u.xsave)) {
2881                         r = PTR_ERR(u.xsave);
2882                         goto out;
2883                 }
2884
2885                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2886                 break;
2887         }
2888         case KVM_GET_XCRS: {
2889                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2890                 r = -ENOMEM;
2891                 if (!u.xcrs)
2892                         break;
2893
2894                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2895
2896                 r = -EFAULT;
2897                 if (copy_to_user(argp, u.xcrs,
2898                                  sizeof(struct kvm_xcrs)))
2899                         break;
2900                 r = 0;
2901                 break;
2902         }
2903         case KVM_SET_XCRS: {
2904                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2905                 if (IS_ERR(u.xcrs)) {
2906                         r = PTR_ERR(u.xcrs);
2907                         goto out;
2908                 }
2909
2910                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2911                 break;
2912         }
2913         case KVM_SET_TSC_KHZ: {
2914                 u32 user_tsc_khz;
2915
2916                 r = -EINVAL;
2917                 user_tsc_khz = (u32)arg;
2918
2919                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2920                         goto out;
2921
2922                 if (user_tsc_khz == 0)
2923                         user_tsc_khz = tsc_khz;
2924
2925                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2926
2927                 r = 0;
2928                 goto out;
2929         }
2930         case KVM_GET_TSC_KHZ: {
2931                 r = vcpu->arch.virtual_tsc_khz;
2932                 goto out;
2933         }
2934         case KVM_KVMCLOCK_CTRL: {
2935                 r = kvm_set_guest_paused(vcpu);
2936                 goto out;
2937         }
2938         default:
2939                 r = -EINVAL;
2940         }
2941 out:
2942         kfree(u.buffer);
2943         return r;
2944 }
2945
2946 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2947 {
2948         return VM_FAULT_SIGBUS;
2949 }
2950
2951 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2952 {
2953         int ret;
2954
2955         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2956                 return -1;
2957         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2958         return ret;
2959 }
2960
2961 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2962                                               u64 ident_addr)
2963 {
2964         kvm->arch.ept_identity_map_addr = ident_addr;
2965         return 0;
2966 }
2967
2968 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2969                                           u32 kvm_nr_mmu_pages)
2970 {
2971         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2972                 return -EINVAL;
2973
2974         mutex_lock(&kvm->slots_lock);
2975         spin_lock(&kvm->mmu_lock);
2976
2977         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2978         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2979
2980         spin_unlock(&kvm->mmu_lock);
2981         mutex_unlock(&kvm->slots_lock);
2982         return 0;
2983 }
2984
2985 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2986 {
2987         return kvm->arch.n_max_mmu_pages;
2988 }
2989
2990 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2991 {
2992         int r;
2993
2994         r = 0;
2995         switch (chip->chip_id) {
2996         case KVM_IRQCHIP_PIC_MASTER:
2997                 memcpy(&chip->chip.pic,
2998                         &pic_irqchip(kvm)->pics[0],
2999                         sizeof(struct kvm_pic_state));
3000                 break;
3001         case KVM_IRQCHIP_PIC_SLAVE:
3002                 memcpy(&chip->chip.pic,
3003                         &pic_irqchip(kvm)->pics[1],
3004                         sizeof(struct kvm_pic_state));
3005                 break;
3006         case KVM_IRQCHIP_IOAPIC:
3007                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3008                 break;
3009         default:
3010                 r = -EINVAL;
3011                 break;
3012         }
3013         return r;
3014 }
3015
3016 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3017 {
3018         int r;
3019
3020         r = 0;
3021         switch (chip->chip_id) {
3022         case KVM_IRQCHIP_PIC_MASTER:
3023                 spin_lock(&pic_irqchip(kvm)->lock);
3024                 memcpy(&pic_irqchip(kvm)->pics[0],
3025                         &chip->chip.pic,
3026                         sizeof(struct kvm_pic_state));
3027                 spin_unlock(&pic_irqchip(kvm)->lock);
3028                 break;
3029         case KVM_IRQCHIP_PIC_SLAVE:
3030                 spin_lock(&pic_irqchip(kvm)->lock);
3031                 memcpy(&pic_irqchip(kvm)->pics[1],
3032                         &chip->chip.pic,
3033                         sizeof(struct kvm_pic_state));
3034                 spin_unlock(&pic_irqchip(kvm)->lock);
3035                 break;
3036         case KVM_IRQCHIP_IOAPIC:
3037                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3038                 break;
3039         default:
3040                 r = -EINVAL;
3041                 break;
3042         }
3043         kvm_pic_update_irq(pic_irqchip(kvm));
3044         return r;
3045 }
3046
3047 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3048 {
3049         int r = 0;
3050
3051         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3052         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3053         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3054         return r;
3055 }
3056
3057 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3058 {
3059         int r = 0;
3060
3061         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3062         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3063         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3064         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3065         return r;
3066 }
3067
3068 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3069 {
3070         int r = 0;
3071
3072         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3073         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3074                 sizeof(ps->channels));
3075         ps->flags = kvm->arch.vpit->pit_state.flags;
3076         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3077         memset(&ps->reserved, 0, sizeof(ps->reserved));
3078         return r;
3079 }
3080
3081 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3082 {
3083         int r = 0, start = 0;
3084         u32 prev_legacy, cur_legacy;
3085         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3086         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3087         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3088         if (!prev_legacy && cur_legacy)
3089                 start = 1;
3090         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3091                sizeof(kvm->arch.vpit->pit_state.channels));
3092         kvm->arch.vpit->pit_state.flags = ps->flags;
3093         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3094         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095         return r;
3096 }
3097
3098 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3099                                  struct kvm_reinject_control *control)
3100 {
3101         if (!kvm->arch.vpit)
3102                 return -ENXIO;
3103         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3104         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3105         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3106         return 0;
3107 }
3108
3109 /**
3110  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3111  * @kvm: kvm instance
3112  * @log: slot id and address to which we copy the log
3113  *
3114  * We need to keep it in mind that VCPU threads can write to the bitmap
3115  * concurrently.  So, to avoid losing data, we keep the following order for
3116  * each bit:
3117  *
3118  *   1. Take a snapshot of the bit and clear it if needed.
3119  *   2. Write protect the corresponding page.
3120  *   3. Flush TLB's if needed.
3121  *   4. Copy the snapshot to the userspace.
3122  *
3123  * Between 2 and 3, the guest may write to the page using the remaining TLB
3124  * entry.  This is not a problem because the page will be reported dirty at
3125  * step 4 using the snapshot taken before and step 3 ensures that successive
3126  * writes will be logged for the next call.
3127  */
3128 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3129 {
3130         int r;
3131         struct kvm_memory_slot *memslot;
3132         unsigned long n, i;
3133         unsigned long *dirty_bitmap;
3134         unsigned long *dirty_bitmap_buffer;
3135         bool is_dirty = false;
3136
3137         mutex_lock(&kvm->slots_lock);
3138
3139         r = -EINVAL;
3140         if (log->slot >= KVM_MEMORY_SLOTS)
3141                 goto out;
3142
3143         memslot = id_to_memslot(kvm->memslots, log->slot);
3144
3145         dirty_bitmap = memslot->dirty_bitmap;
3146         r = -ENOENT;
3147         if (!dirty_bitmap)
3148                 goto out;
3149
3150         n = kvm_dirty_bitmap_bytes(memslot);
3151
3152         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3153         memset(dirty_bitmap_buffer, 0, n);
3154
3155         spin_lock(&kvm->mmu_lock);
3156
3157         for (i = 0; i < n / sizeof(long); i++) {
3158                 unsigned long mask;
3159                 gfn_t offset;
3160
3161                 if (!dirty_bitmap[i])
3162                         continue;
3163
3164                 is_dirty = true;
3165
3166                 mask = xchg(&dirty_bitmap[i], 0);
3167                 dirty_bitmap_buffer[i] = mask;
3168
3169                 offset = i * BITS_PER_LONG;
3170                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3171         }
3172         if (is_dirty)
3173                 kvm_flush_remote_tlbs(kvm);
3174
3175         spin_unlock(&kvm->mmu_lock);
3176
3177         r = -EFAULT;
3178         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3179                 goto out;
3180
3181         r = 0;
3182 out:
3183         mutex_unlock(&kvm->slots_lock);
3184         return r;
3185 }
3186
3187 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3188 {
3189         if (!irqchip_in_kernel(kvm))
3190                 return -ENXIO;
3191
3192         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3193                                         irq_event->irq, irq_event->level);
3194         return 0;
3195 }
3196
3197 long kvm_arch_vm_ioctl(struct file *filp,
3198                        unsigned int ioctl, unsigned long arg)
3199 {
3200         struct kvm *kvm = filp->private_data;
3201         void __user *argp = (void __user *)arg;
3202         int r = -ENOTTY;
3203         /*
3204          * This union makes it completely explicit to gcc-3.x
3205          * that these two variables' stack usage should be
3206          * combined, not added together.
3207          */
3208         union {
3209                 struct kvm_pit_state ps;
3210                 struct kvm_pit_state2 ps2;
3211                 struct kvm_pit_config pit_config;
3212         } u;
3213
3214         switch (ioctl) {
3215         case KVM_SET_TSS_ADDR:
3216                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3217                 if (r < 0)
3218                         goto out;
3219                 break;
3220         case KVM_SET_IDENTITY_MAP_ADDR: {
3221                 u64 ident_addr;
3222
3223                 r = -EFAULT;
3224                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3225                         goto out;
3226                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3227                 if (r < 0)
3228                         goto out;
3229                 break;
3230         }
3231         case KVM_SET_NR_MMU_PAGES:
3232                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3233                 if (r)
3234                         goto out;
3235                 break;
3236         case KVM_GET_NR_MMU_PAGES:
3237                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3238                 break;
3239         case KVM_CREATE_IRQCHIP: {
3240                 struct kvm_pic *vpic;
3241
3242                 mutex_lock(&kvm->lock);
3243                 r = -EEXIST;
3244                 if (kvm->arch.vpic)
3245                         goto create_irqchip_unlock;
3246                 r = -EINVAL;
3247                 if (atomic_read(&kvm->online_vcpus))
3248                         goto create_irqchip_unlock;
3249                 r = -ENOMEM;
3250                 vpic = kvm_create_pic(kvm);
3251                 if (vpic) {
3252                         r = kvm_ioapic_init(kvm);
3253                         if (r) {
3254                                 mutex_lock(&kvm->slots_lock);
3255                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3256                                                           &vpic->dev_master);
3257                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3258                                                           &vpic->dev_slave);
3259                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3260                                                           &vpic->dev_eclr);
3261                                 mutex_unlock(&kvm->slots_lock);
3262                                 kfree(vpic);
3263                                 goto create_irqchip_unlock;
3264                         }
3265                 } else
3266                         goto create_irqchip_unlock;
3267                 smp_wmb();
3268                 kvm->arch.vpic = vpic;
3269                 smp_wmb();
3270                 r = kvm_setup_default_irq_routing(kvm);
3271                 if (r) {
3272                         mutex_lock(&kvm->slots_lock);
3273                         mutex_lock(&kvm->irq_lock);
3274                         kvm_ioapic_destroy(kvm);
3275                         kvm_destroy_pic(kvm);
3276                         mutex_unlock(&kvm->irq_lock);
3277                         mutex_unlock(&kvm->slots_lock);
3278                 }
3279         create_irqchip_unlock:
3280                 mutex_unlock(&kvm->lock);
3281                 break;
3282         }
3283         case KVM_CREATE_PIT:
3284                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3285                 goto create_pit;
3286         case KVM_CREATE_PIT2:
3287                 r = -EFAULT;
3288                 if (copy_from_user(&u.pit_config, argp,
3289                                    sizeof(struct kvm_pit_config)))
3290                         goto out;
3291         create_pit:
3292                 mutex_lock(&kvm->slots_lock);
3293                 r = -EEXIST;
3294                 if (kvm->arch.vpit)
3295                         goto create_pit_unlock;
3296                 r = -ENOMEM;
3297                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3298                 if (kvm->arch.vpit)
3299                         r = 0;
3300         create_pit_unlock:
3301                 mutex_unlock(&kvm->slots_lock);
3302                 break;
3303         case KVM_GET_IRQCHIP: {
3304                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3305                 struct kvm_irqchip *chip;
3306
3307                 chip = memdup_user(argp, sizeof(*chip));
3308                 if (IS_ERR(chip)) {
3309                         r = PTR_ERR(chip);
3310                         goto out;
3311                 }
3312
3313                 r = -ENXIO;
3314                 if (!irqchip_in_kernel(kvm))
3315                         goto get_irqchip_out;
3316                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3317                 if (r)
3318                         goto get_irqchip_out;
3319                 r = -EFAULT;
3320                 if (copy_to_user(argp, chip, sizeof *chip))
3321                         goto get_irqchip_out;
3322                 r = 0;
3323         get_irqchip_out:
3324                 kfree(chip);
3325                 if (r)
3326                         goto out;
3327                 break;
3328         }
3329         case KVM_SET_IRQCHIP: {
3330                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3331                 struct kvm_irqchip *chip;
3332
3333                 chip = memdup_user(argp, sizeof(*chip));
3334                 if (IS_ERR(chip)) {
3335                         r = PTR_ERR(chip);
3336                         goto out;
3337                 }
3338
3339                 r = -ENXIO;
3340                 if (!irqchip_in_kernel(kvm))
3341                         goto set_irqchip_out;
3342                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3343                 if (r)
3344                         goto set_irqchip_out;
3345                 r = 0;
3346         set_irqchip_out:
3347                 kfree(chip);
3348                 if (r)
3349                         goto out;
3350                 break;
3351         }
3352         case KVM_GET_PIT: {
3353                 r = -EFAULT;
3354                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3355                         goto out;
3356                 r = -ENXIO;
3357                 if (!kvm->arch.vpit)
3358                         goto out;
3359                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3360                 if (r)
3361                         goto out;
3362                 r = -EFAULT;
3363                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3364                         goto out;
3365                 r = 0;
3366                 break;
3367         }
3368         case KVM_SET_PIT: {
3369                 r = -EFAULT;
3370                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3371                         goto out;
3372                 r = -ENXIO;
3373                 if (!kvm->arch.vpit)
3374                         goto out;
3375                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3376                 if (r)
3377                         goto out;
3378                 r = 0;
3379                 break;
3380         }
3381         case KVM_GET_PIT2: {
3382                 r = -ENXIO;
3383                 if (!kvm->arch.vpit)
3384                         goto out;
3385                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3386                 if (r)
3387                         goto out;
3388                 r = -EFAULT;
3389                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3390                         goto out;
3391                 r = 0;
3392                 break;
3393         }
3394         case KVM_SET_PIT2: {
3395                 r = -EFAULT;
3396                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3397                         goto out;
3398                 r = -ENXIO;
3399                 if (!kvm->arch.vpit)
3400                         goto out;
3401                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3402                 if (r)
3403                         goto out;
3404                 r = 0;
3405                 break;
3406         }
3407         case KVM_REINJECT_CONTROL: {
3408                 struct kvm_reinject_control control;
3409                 r =  -EFAULT;
3410                 if (copy_from_user(&control, argp, sizeof(control)))
3411                         goto out;
3412                 r = kvm_vm_ioctl_reinject(kvm, &control);
3413                 if (r)
3414                         goto out;
3415                 r = 0;
3416                 break;
3417         }
3418         case KVM_XEN_HVM_CONFIG: {
3419                 r = -EFAULT;
3420                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3421                                    sizeof(struct kvm_xen_hvm_config)))
3422                         goto out;
3423                 r = -EINVAL;
3424                 if (kvm->arch.xen_hvm_config.flags)
3425                         goto out;
3426                 r = 0;
3427                 break;
3428         }
3429         case KVM_SET_CLOCK: {
3430                 struct kvm_clock_data user_ns;
3431                 u64 now_ns;
3432                 s64 delta;
3433
3434                 r = -EFAULT;
3435                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3436                         goto out;
3437
3438                 r = -EINVAL;
3439                 if (user_ns.flags)
3440                         goto out;
3441
3442                 r = 0;
3443                 local_irq_disable();
3444                 now_ns = get_kernel_ns();
3445                 delta = user_ns.clock - now_ns;
3446                 local_irq_enable();
3447                 kvm->arch.kvmclock_offset = delta;
3448                 break;
3449         }
3450         case KVM_GET_CLOCK: {
3451                 struct kvm_clock_data user_ns;
3452                 u64 now_ns;
3453
3454                 local_irq_disable();
3455                 now_ns = get_kernel_ns();
3456                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3457                 local_irq_enable();
3458                 user_ns.flags = 0;
3459                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3460
3461                 r = -EFAULT;
3462                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3463                         goto out;
3464                 r = 0;
3465                 break;
3466         }
3467
3468         default:
3469                 ;
3470         }
3471 out:
3472         return r;
3473 }
3474
3475 static void kvm_init_msr_list(void)
3476 {
3477         u32 dummy[2];
3478         unsigned i, j;
3479
3480         /* skip the first msrs in the list. KVM-specific */
3481         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3482                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3483                         continue;
3484                 if (j < i)
3485                         msrs_to_save[j] = msrs_to_save[i];
3486                 j++;
3487         }
3488         num_msrs_to_save = j;
3489 }
3490
3491 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3492                            const void *v)
3493 {
3494         int handled = 0;
3495         int n;
3496
3497         do {
3498                 n = min(len, 8);
3499                 if (!(vcpu->arch.apic &&
3500                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3501                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3502                         break;
3503                 handled += n;
3504                 addr += n;
3505                 len -= n;
3506                 v += n;
3507         } while (len);
3508
3509         return handled;
3510 }
3511
3512 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3513 {
3514         int handled = 0;
3515         int n;
3516
3517         do {
3518                 n = min(len, 8);
3519                 if (!(vcpu->arch.apic &&
3520                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3521                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3522                         break;
3523                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3524                 handled += n;
3525                 addr += n;
3526                 len -= n;
3527                 v += n;
3528         } while (len);
3529
3530         return handled;
3531 }
3532
3533 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3534                         struct kvm_segment *var, int seg)
3535 {
3536         kvm_x86_ops->set_segment(vcpu, var, seg);
3537 }
3538
3539 void kvm_get_segment(struct kvm_vcpu *vcpu,
3540                      struct kvm_segment *var, int seg)
3541 {
3542         kvm_x86_ops->get_segment(vcpu, var, seg);
3543 }
3544
3545 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3546 {
3547         gpa_t t_gpa;
3548         struct x86_exception exception;
3549
3550         BUG_ON(!mmu_is_nested(vcpu));
3551
3552         /* NPT walks are always user-walks */
3553         access |= PFERR_USER_MASK;
3554         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3555
3556         return t_gpa;
3557 }
3558
3559 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3560                               struct x86_exception *exception)
3561 {
3562         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3563         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3564 }
3565
3566  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3567                                 struct x86_exception *exception)
3568 {
3569         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3570         access |= PFERR_FETCH_MASK;
3571         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3572 }
3573
3574 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3575                                struct x86_exception *exception)
3576 {
3577         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3578         access |= PFERR_WRITE_MASK;
3579         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3580 }
3581
3582 /* uses this to access any guest's mapped memory without checking CPL */
3583 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3584                                 struct x86_exception *exception)
3585 {
3586         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3587 }
3588
3589 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3590                                       struct kvm_vcpu *vcpu, u32 access,
3591                                       struct x86_exception *exception)
3592 {
3593         void *data = val;
3594         int r = X86EMUL_CONTINUE;
3595
3596         while (bytes) {
3597                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3598                                                             exception);
3599                 unsigned offset = addr & (PAGE_SIZE-1);
3600                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3601                 int ret;
3602
3603                 if (gpa == UNMAPPED_GVA)
3604                         return X86EMUL_PROPAGATE_FAULT;
3605                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3606                 if (ret < 0) {
3607                         r = X86EMUL_IO_NEEDED;
3608                         goto out;
3609                 }
3610
3611                 bytes -= toread;
3612                 data += toread;
3613                 addr += toread;
3614         }
3615 out:
3616         return r;
3617 }
3618
3619 /* used for instruction fetching */
3620 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3621                                 gva_t addr, void *val, unsigned int bytes,
3622                                 struct x86_exception *exception)
3623 {
3624         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3625         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3626
3627         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3628                                           access | PFERR_FETCH_MASK,
3629                                           exception);
3630 }
3631
3632 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3633                                gva_t addr, void *val, unsigned int bytes,
3634                                struct x86_exception *exception)
3635 {
3636         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3637         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3638
3639         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3640                                           exception);
3641 }
3642 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3643
3644 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3645                                       gva_t addr, void *val, unsigned int bytes,
3646                                       struct x86_exception *exception)
3647 {
3648         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3649         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3650 }
3651
3652 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3653                                        gva_t addr, void *val,
3654                                        unsigned int bytes,
3655                                        struct x86_exception *exception)
3656 {
3657         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3658         void *data = val;
3659         int r = X86EMUL_CONTINUE;
3660
3661         while (bytes) {
3662                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3663                                                              PFERR_WRITE_MASK,
3664                                                              exception);
3665                 unsigned offset = addr & (PAGE_SIZE-1);
3666                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3667                 int ret;
3668
3669                 if (gpa == UNMAPPED_GVA)
3670                         return X86EMUL_PROPAGATE_FAULT;
3671                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3672                 if (ret < 0) {
3673                         r = X86EMUL_IO_NEEDED;
3674                         goto out;
3675                 }
3676
3677                 bytes -= towrite;
3678                 data += towrite;
3679                 addr += towrite;
3680         }
3681 out:
3682         return r;
3683 }
3684 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3685
3686 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3687                                 gpa_t *gpa, struct x86_exception *exception,
3688                                 bool write)
3689 {
3690         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3691                 | (write ? PFERR_WRITE_MASK : 0);
3692
3693         if (vcpu_match_mmio_gva(vcpu, gva)
3694             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3695                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3696                                         (gva & (PAGE_SIZE - 1));
3697                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3698                 return 1;
3699         }
3700
3701         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3702
3703         if (*gpa == UNMAPPED_GVA)
3704                 return -1;
3705
3706         /* For APIC access vmexit */
3707         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3708                 return 1;
3709
3710         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3711                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3712                 return 1;
3713         }
3714
3715         return 0;
3716 }
3717
3718 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3719                         const void *val, int bytes)
3720 {
3721         int ret;
3722
3723         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3724         if (ret < 0)
3725                 return 0;
3726         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3727         return 1;
3728 }
3729
3730 struct read_write_emulator_ops {
3731         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3732                                   int bytes);
3733         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734                                   void *val, int bytes);
3735         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736                                int bytes, void *val);
3737         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3738                                     void *val, int bytes);
3739         bool write;
3740 };
3741
3742 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3743 {
3744         if (vcpu->mmio_read_completed) {
3745                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3746                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3747                 vcpu->mmio_read_completed = 0;
3748                 return 1;
3749         }
3750
3751         return 0;
3752 }
3753
3754 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3755                         void *val, int bytes)
3756 {
3757         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3758 }
3759
3760 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3761                          void *val, int bytes)
3762 {
3763         return emulator_write_phys(vcpu, gpa, val, bytes);
3764 }
3765
3766 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3767 {
3768         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3769         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3770 }
3771
3772 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3773                           void *val, int bytes)
3774 {
3775         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3776         return X86EMUL_IO_NEEDED;
3777 }
3778
3779 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3780                            void *val, int bytes)
3781 {
3782         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3783
3784         memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3785         return X86EMUL_CONTINUE;
3786 }
3787
3788 static const struct read_write_emulator_ops read_emultor = {
3789         .read_write_prepare = read_prepare,
3790         .read_write_emulate = read_emulate,
3791         .read_write_mmio = vcpu_mmio_read,
3792         .read_write_exit_mmio = read_exit_mmio,
3793 };
3794
3795 static const struct read_write_emulator_ops write_emultor = {
3796         .read_write_emulate = write_emulate,
3797         .read_write_mmio = write_mmio,
3798         .read_write_exit_mmio = write_exit_mmio,
3799         .write = true,
3800 };
3801
3802 static int emulator_read_write_onepage(unsigned long addr, void *val,
3803                                        unsigned int bytes,
3804                                        struct x86_exception *exception,
3805                                        struct kvm_vcpu *vcpu,
3806                                        const struct read_write_emulator_ops *ops)
3807 {
3808         gpa_t gpa;
3809         int handled, ret;
3810         bool write = ops->write;
3811         struct kvm_mmio_fragment *frag;
3812
3813         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3814
3815         if (ret < 0)
3816                 return X86EMUL_PROPAGATE_FAULT;
3817
3818         /* For APIC access vmexit */
3819         if (ret)
3820                 goto mmio;
3821
3822         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3823                 return X86EMUL_CONTINUE;
3824
3825 mmio:
3826         /*
3827          * Is this MMIO handled locally?
3828          */
3829         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3830         if (handled == bytes)
3831                 return X86EMUL_CONTINUE;
3832
3833         gpa += handled;
3834         bytes -= handled;
3835         val += handled;
3836
3837         while (bytes) {
3838                 unsigned now = min(bytes, 8U);
3839
3840                 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3841                 frag->gpa = gpa;
3842                 frag->data = val;
3843                 frag->len = now;
3844
3845                 gpa += now;
3846                 val += now;
3847                 bytes -= now;
3848         }
3849         return X86EMUL_CONTINUE;
3850 }
3851
3852 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3853                         void *val, unsigned int bytes,
3854                         struct x86_exception *exception,
3855                         const struct read_write_emulator_ops *ops)
3856 {
3857         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3858         gpa_t gpa;
3859         int rc;
3860
3861         if (ops->read_write_prepare &&
3862                   ops->read_write_prepare(vcpu, val, bytes))
3863                 return X86EMUL_CONTINUE;
3864
3865         vcpu->mmio_nr_fragments = 0;
3866
3867         /* Crossing a page boundary? */
3868         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3869                 int now;
3870
3871                 now = -addr & ~PAGE_MASK;
3872                 rc = emulator_read_write_onepage(addr, val, now, exception,
3873                                                  vcpu, ops);
3874
3875                 if (rc != X86EMUL_CONTINUE)
3876                         return rc;
3877                 addr += now;
3878                 val += now;
3879                 bytes -= now;
3880         }
3881
3882         rc = emulator_read_write_onepage(addr, val, bytes, exception,
3883                                          vcpu, ops);
3884         if (rc != X86EMUL_CONTINUE)
3885                 return rc;
3886
3887         if (!vcpu->mmio_nr_fragments)
3888                 return rc;
3889
3890         gpa = vcpu->mmio_fragments[0].gpa;
3891
3892         vcpu->mmio_needed = 1;
3893         vcpu->mmio_cur_fragment = 0;
3894
3895         vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3896         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3897         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3898         vcpu->run->mmio.phys_addr = gpa;
3899
3900         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3901 }
3902
3903 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3904                                   unsigned long addr,
3905                                   void *val,
3906                                   unsigned int bytes,
3907                                   struct x86_exception *exception)
3908 {
3909         return emulator_read_write(ctxt, addr, val, bytes,
3910                                    exception, &read_emultor);
3911 }
3912
3913 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3914                             unsigned long addr,
3915                             const void *val,
3916                             unsigned int bytes,
3917                             struct x86_exception *exception)
3918 {
3919         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3920                                    exception, &write_emultor);
3921 }
3922
3923 #define CMPXCHG_TYPE(t, ptr, old, new) \
3924         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3925
3926 #ifdef CONFIG_X86_64
3927 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3928 #else
3929 #  define CMPXCHG64(ptr, old, new) \
3930         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3931 #endif
3932
3933 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3934                                      unsigned long addr,
3935                                      const void *old,
3936                                      const void *new,
3937                                      unsigned int bytes,
3938                                      struct x86_exception *exception)
3939 {
3940         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3941         gpa_t gpa;
3942         struct page *page;
3943         char *kaddr;
3944         bool exchanged;
3945
3946         /* guests cmpxchg8b have to be emulated atomically */
3947         if (bytes > 8 || (bytes & (bytes - 1)))
3948                 goto emul_write;
3949
3950         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3951
3952         if (gpa == UNMAPPED_GVA ||
3953             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3954                 goto emul_write;
3955
3956         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3957                 goto emul_write;
3958
3959         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3960         if (is_error_page(page))
3961                 goto emul_write;
3962
3963         kaddr = kmap_atomic(page);
3964         kaddr += offset_in_page(gpa);
3965         switch (bytes) {
3966         case 1:
3967                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3968                 break;
3969         case 2:
3970                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3971                 break;
3972         case 4:
3973                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3974                 break;
3975         case 8:
3976                 exchanged = CMPXCHG64(kaddr, old, new);
3977                 break;
3978         default:
3979                 BUG();
3980         }
3981         kunmap_atomic(kaddr);
3982         kvm_release_page_dirty(page);
3983
3984         if (!exchanged)
3985                 return X86EMUL_CMPXCHG_FAILED;
3986
3987         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3988
3989         return X86EMUL_CONTINUE;
3990
3991 emul_write:
3992         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3993
3994         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3995 }
3996
3997 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3998 {
3999         /* TODO: String I/O for in kernel device */
4000         int r;
4001
4002         if (vcpu->arch.pio.in)
4003                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4004                                     vcpu->arch.pio.size, pd);
4005         else
4006                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4007                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4008                                      pd);
4009         return r;
4010 }
4011
4012 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4013                                unsigned short port, void *val,
4014                                unsigned int count, bool in)
4015 {
4016         trace_kvm_pio(!in, port, size, count);
4017
4018         vcpu->arch.pio.port = port;
4019         vcpu->arch.pio.in = in;
4020         vcpu->arch.pio.count  = count;
4021         vcpu->arch.pio.size = size;
4022
4023         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4024                 vcpu->arch.pio.count = 0;
4025                 return 1;
4026         }
4027
4028         vcpu->run->exit_reason = KVM_EXIT_IO;
4029         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4030         vcpu->run->io.size = size;
4031         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4032         vcpu->run->io.count = count;
4033         vcpu->run->io.port = port;
4034
4035         return 0;
4036 }
4037
4038 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4039                                     int size, unsigned short port, void *val,
4040                                     unsigned int count)
4041 {
4042         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4043         int ret;
4044
4045         if (vcpu->arch.pio.count)
4046                 goto data_avail;
4047
4048         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4049         if (ret) {
4050 data_avail:
4051                 memcpy(val, vcpu->arch.pio_data, size * count);
4052                 vcpu->arch.pio.count = 0;
4053                 return 1;
4054         }
4055
4056         return 0;
4057 }
4058
4059 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4060                                      int size, unsigned short port,
4061                                      const void *val, unsigned int count)
4062 {
4063         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4064
4065         memcpy(vcpu->arch.pio_data, val, size * count);
4066         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4067 }
4068
4069 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4070 {
4071         return kvm_x86_ops->get_segment_base(vcpu, seg);
4072 }
4073
4074 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4075 {
4076         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4077 }
4078
4079 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4080 {
4081         if (!need_emulate_wbinvd(vcpu))
4082                 return X86EMUL_CONTINUE;
4083
4084         if (kvm_x86_ops->has_wbinvd_exit()) {
4085                 int cpu = get_cpu();
4086
4087                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4088                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4089                                 wbinvd_ipi, NULL, 1);
4090                 put_cpu();
4091                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4092         } else
4093                 wbinvd();
4094         return X86EMUL_CONTINUE;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4097
4098 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4099 {
4100         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4101 }
4102
4103 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4104 {
4105         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4106 }
4107
4108 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4109 {
4110
4111         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4112 }
4113
4114 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4115 {
4116         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4117 }
4118
4119 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4120 {
4121         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4122         unsigned long value;
4123
4124         switch (cr) {
4125         case 0:
4126                 value = kvm_read_cr0(vcpu);
4127                 break;
4128         case 2:
4129                 value = vcpu->arch.cr2;
4130                 break;
4131         case 3:
4132                 value = kvm_read_cr3(vcpu);
4133                 break;
4134         case 4:
4135                 value = kvm_read_cr4(vcpu);
4136                 break;
4137         case 8:
4138                 value = kvm_get_cr8(vcpu);
4139                 break;
4140         default:
4141                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4142                 return 0;
4143         }
4144
4145         return value;
4146 }
4147
4148 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4149 {
4150         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4151         int res = 0;
4152
4153         switch (cr) {
4154         case 0:
4155                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4156                 break;
4157         case 2:
4158                 vcpu->arch.cr2 = val;
4159                 break;
4160         case 3:
4161                 res = kvm_set_cr3(vcpu, val);
4162                 break;
4163         case 4:
4164                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4165                 break;
4166         case 8:
4167                 res = kvm_set_cr8(vcpu, val);
4168                 break;
4169         default:
4170                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4171                 res = -1;
4172         }
4173
4174         return res;
4175 }
4176
4177 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4178 {
4179         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4180 }
4181
4182 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4183 {
4184         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4185 }
4186
4187 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4188 {
4189         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4190 }
4191
4192 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4193 {
4194         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4195 }
4196
4197 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4198 {
4199         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4200 }
4201
4202 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4203 {
4204         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4205 }
4206
4207 static unsigned long emulator_get_cached_segment_base(
4208         struct x86_emulate_ctxt *ctxt, int seg)
4209 {
4210         return get_segment_base(emul_to_vcpu(ctxt), seg);
4211 }
4212
4213 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4214                                  struct desc_struct *desc, u32 *base3,
4215                                  int seg)
4216 {
4217         struct kvm_segment var;
4218
4219         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4220         *selector = var.selector;
4221
4222         if (var.unusable)
4223                 return false;
4224
4225         if (var.g)
4226                 var.limit >>= 12;
4227         set_desc_limit(desc, var.limit);
4228         set_desc_base(desc, (unsigned long)var.base);
4229 #ifdef CONFIG_X86_64
4230         if (base3)
4231                 *base3 = var.base >> 32;
4232 #endif
4233         desc->type = var.type;
4234         desc->s = var.s;
4235         desc->dpl = var.dpl;
4236         desc->p = var.present;
4237         desc->avl = var.avl;
4238         desc->l = var.l;
4239         desc->d = var.db;
4240         desc->g = var.g;
4241
4242         return true;
4243 }
4244
4245 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4246                                  struct desc_struct *desc, u32 base3,
4247                                  int seg)
4248 {
4249         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250         struct kvm_segment var;
4251
4252         var.selector = selector;
4253         var.base = get_desc_base(desc);
4254 #ifdef CONFIG_X86_64
4255         var.base |= ((u64)base3) << 32;
4256 #endif
4257         var.limit = get_desc_limit(desc);
4258         if (desc->g)
4259                 var.limit = (var.limit << 12) | 0xfff;
4260         var.type = desc->type;
4261         var.present = desc->p;
4262         var.dpl = desc->dpl;
4263         var.db = desc->d;
4264         var.s = desc->s;
4265         var.l = desc->l;
4266         var.g = desc->g;
4267         var.avl = desc->avl;
4268         var.present = desc->p;
4269         var.unusable = !var.present;
4270         var.padding = 0;
4271
4272         kvm_set_segment(vcpu, &var, seg);
4273         return;
4274 }
4275
4276 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4277                             u32 msr_index, u64 *pdata)
4278 {
4279         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4280 }
4281
4282 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4283                             u32 msr_index, u64 data)
4284 {
4285         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4286 }
4287
4288 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4289                              u32 pmc, u64 *pdata)
4290 {
4291         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4292 }
4293
4294 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4295 {
4296         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4297 }
4298
4299 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4300 {
4301         preempt_disable();
4302         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4303         /*
4304          * CR0.TS may reference the host fpu state, not the guest fpu state,
4305          * so it may be clear at this point.
4306          */
4307         clts();
4308 }
4309
4310 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4311 {
4312         preempt_enable();
4313 }
4314
4315 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4316                               struct x86_instruction_info *info,
4317                               enum x86_intercept_stage stage)
4318 {
4319         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4320 }
4321
4322 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4323                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4324 {
4325         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4326 }
4327
4328 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4329 {
4330         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4331 }
4332
4333 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4334 {
4335         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4336 }
4337
4338 static const struct x86_emulate_ops emulate_ops = {
4339         .read_gpr            = emulator_read_gpr,
4340         .write_gpr           = emulator_write_gpr,
4341         .read_std            = kvm_read_guest_virt_system,
4342         .write_std           = kvm_write_guest_virt_system,
4343         .fetch               = kvm_fetch_guest_virt,
4344         .read_emulated       = emulator_read_emulated,
4345         .write_emulated      = emulator_write_emulated,
4346         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4347         .invlpg              = emulator_invlpg,
4348         .pio_in_emulated     = emulator_pio_in_emulated,
4349         .pio_out_emulated    = emulator_pio_out_emulated,
4350         .get_segment         = emulator_get_segment,
4351         .set_segment         = emulator_set_segment,
4352         .get_cached_segment_base = emulator_get_cached_segment_base,
4353         .get_gdt             = emulator_get_gdt,
4354         .get_idt             = emulator_get_idt,
4355         .set_gdt             = emulator_set_gdt,
4356         .set_idt             = emulator_set_idt,
4357         .get_cr              = emulator_get_cr,
4358         .set_cr              = emulator_set_cr,
4359         .set_rflags          = emulator_set_rflags,
4360         .cpl                 = emulator_get_cpl,
4361         .get_dr              = emulator_get_dr,
4362         .set_dr              = emulator_set_dr,
4363         .set_msr             = emulator_set_msr,
4364         .get_msr             = emulator_get_msr,
4365         .read_pmc            = emulator_read_pmc,
4366         .halt                = emulator_halt,
4367         .wbinvd              = emulator_wbinvd,
4368         .fix_hypercall       = emulator_fix_hypercall,
4369         .get_fpu             = emulator_get_fpu,
4370         .put_fpu             = emulator_put_fpu,
4371         .intercept           = emulator_intercept,
4372         .get_cpuid           = emulator_get_cpuid,
4373 };
4374
4375 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4376 {
4377         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4378         /*
4379          * an sti; sti; sequence only disable interrupts for the first
4380          * instruction. So, if the last instruction, be it emulated or
4381          * not, left the system with the INT_STI flag enabled, it
4382          * means that the last instruction is an sti. We should not
4383          * leave the flag on in this case. The same goes for mov ss
4384          */
4385         if (!(int_shadow & mask))
4386                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4387 }
4388
4389 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4390 {
4391         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4392         if (ctxt->exception.vector == PF_VECTOR)
4393                 kvm_propagate_fault(vcpu, &ctxt->exception);
4394         else if (ctxt->exception.error_code_valid)
4395                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4396                                       ctxt->exception.error_code);
4397         else
4398                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4399 }
4400
4401 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4402 {
4403         memset(&ctxt->twobyte, 0,
4404                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4405
4406         ctxt->fetch.start = 0;
4407         ctxt->fetch.end = 0;
4408         ctxt->io_read.pos = 0;
4409         ctxt->io_read.end = 0;
4410         ctxt->mem_read.pos = 0;
4411         ctxt->mem_read.end = 0;
4412 }
4413
4414 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4415 {
4416         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4417         int cs_db, cs_l;
4418
4419         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4420
4421         ctxt->eflags = kvm_get_rflags(vcpu);
4422         ctxt->eip = kvm_rip_read(vcpu);
4423         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4424                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4425                      cs_l                               ? X86EMUL_MODE_PROT64 :
4426                      cs_db                              ? X86EMUL_MODE_PROT32 :
4427                                                           X86EMUL_MODE_PROT16;
4428         ctxt->guest_mode = is_guest_mode(vcpu);
4429
4430         init_decode_cache(ctxt);
4431         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4432 }
4433
4434 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4435 {
4436         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4437         int ret;
4438
4439         init_emulate_ctxt(vcpu);
4440
4441         ctxt->op_bytes = 2;
4442         ctxt->ad_bytes = 2;
4443         ctxt->_eip = ctxt->eip + inc_eip;
4444         ret = emulate_int_real(ctxt, irq);
4445
4446         if (ret != X86EMUL_CONTINUE)
4447                 return EMULATE_FAIL;
4448
4449         ctxt->eip = ctxt->_eip;
4450         kvm_rip_write(vcpu, ctxt->eip);
4451         kvm_set_rflags(vcpu, ctxt->eflags);
4452
4453         if (irq == NMI_VECTOR)
4454                 vcpu->arch.nmi_pending = 0;
4455         else
4456                 vcpu->arch.interrupt.pending = false;
4457
4458         return EMULATE_DONE;
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4461
4462 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4463 {
4464         int r = EMULATE_DONE;
4465
4466         ++vcpu->stat.insn_emulation_fail;
4467         trace_kvm_emulate_insn_failed(vcpu);
4468         if (!is_guest_mode(vcpu)) {
4469                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4470                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4471                 vcpu->run->internal.ndata = 0;
4472                 r = EMULATE_FAIL;
4473         }
4474         kvm_queue_exception(vcpu, UD_VECTOR);
4475
4476         return r;
4477 }
4478
4479 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4480 {
4481         gpa_t gpa;
4482         pfn_t pfn;
4483
4484         if (tdp_enabled)
4485                 return false;
4486
4487         /*
4488          * if emulation was due to access to shadowed page table
4489          * and it failed try to unshadow page and re-enter the
4490          * guest to let CPU execute the instruction.
4491          */
4492         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4493                 return true;
4494
4495         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4496
4497         if (gpa == UNMAPPED_GVA)
4498                 return true; /* let cpu generate fault */
4499
4500         /*
4501          * Do not retry the unhandleable instruction if it faults on the
4502          * readonly host memory, otherwise it will goto a infinite loop:
4503          * retry instruction -> write #PF -> emulation fail -> retry
4504          * instruction -> ...
4505          */
4506         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4507         if (!is_error_noslot_pfn(pfn)) {
4508                 kvm_release_pfn_clean(pfn);
4509                 return true;
4510         }
4511
4512         return false;
4513 }
4514
4515 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4516                               unsigned long cr2,  int emulation_type)
4517 {
4518         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4520
4521         last_retry_eip = vcpu->arch.last_retry_eip;
4522         last_retry_addr = vcpu->arch.last_retry_addr;
4523
4524         /*
4525          * If the emulation is caused by #PF and it is non-page_table
4526          * writing instruction, it means the VM-EXIT is caused by shadow
4527          * page protected, we can zap the shadow page and retry this
4528          * instruction directly.
4529          *
4530          * Note: if the guest uses a non-page-table modifying instruction
4531          * on the PDE that points to the instruction, then we will unmap
4532          * the instruction and go to an infinite loop. So, we cache the
4533          * last retried eip and the last fault address, if we meet the eip
4534          * and the address again, we can break out of the potential infinite
4535          * loop.
4536          */
4537         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4538
4539         if (!(emulation_type & EMULTYPE_RETRY))
4540                 return false;
4541
4542         if (x86_page_table_writing_insn(ctxt))
4543                 return false;
4544
4545         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4546                 return false;
4547
4548         vcpu->arch.last_retry_eip = ctxt->eip;
4549         vcpu->arch.last_retry_addr = cr2;
4550
4551         if (!vcpu->arch.mmu.direct_map)
4552                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4553
4554         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4555
4556         return true;
4557 }
4558
4559 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4560 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4561
4562 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4563                             unsigned long cr2,
4564                             int emulation_type,
4565                             void *insn,
4566                             int insn_len)
4567 {
4568         int r;
4569         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4570         bool writeback = true;
4571
4572         kvm_clear_exception_queue(vcpu);
4573
4574         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4575                 init_emulate_ctxt(vcpu);
4576                 ctxt->interruptibility = 0;
4577                 ctxt->have_exception = false;
4578                 ctxt->perm_ok = false;
4579
4580                 ctxt->only_vendor_specific_insn
4581                         = emulation_type & EMULTYPE_TRAP_UD;
4582
4583                 r = x86_decode_insn(ctxt, insn, insn_len);
4584
4585                 trace_kvm_emulate_insn_start(vcpu);
4586                 ++vcpu->stat.insn_emulation;
4587                 if (r != EMULATION_OK)  {
4588                         if (emulation_type & EMULTYPE_TRAP_UD)
4589                                 return EMULATE_FAIL;
4590                         if (reexecute_instruction(vcpu, cr2))
4591                                 return EMULATE_DONE;
4592                         if (emulation_type & EMULTYPE_SKIP)
4593                                 return EMULATE_FAIL;
4594                         return handle_emulation_failure(vcpu);
4595                 }
4596         }
4597
4598         if (emulation_type & EMULTYPE_SKIP) {
4599                 kvm_rip_write(vcpu, ctxt->_eip);
4600                 return EMULATE_DONE;
4601         }
4602
4603         if (retry_instruction(ctxt, cr2, emulation_type))
4604                 return EMULATE_DONE;
4605
4606         /* this is needed for vmware backdoor interface to work since it
4607            changes registers values  during IO operation */
4608         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4609                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4610                 emulator_invalidate_register_cache(ctxt);
4611         }
4612
4613 restart:
4614         r = x86_emulate_insn(ctxt);
4615
4616         if (r == EMULATION_INTERCEPTED)
4617                 return EMULATE_DONE;
4618
4619         if (r == EMULATION_FAILED) {
4620                 if (reexecute_instruction(vcpu, cr2))
4621                         return EMULATE_DONE;
4622
4623                 return handle_emulation_failure(vcpu);
4624         }
4625
4626         if (ctxt->have_exception) {
4627                 inject_emulated_exception(vcpu);
4628                 r = EMULATE_DONE;
4629         } else if (vcpu->arch.pio.count) {
4630                 if (!vcpu->arch.pio.in)
4631                         vcpu->arch.pio.count = 0;
4632                 else {
4633                         writeback = false;
4634                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4635                 }
4636                 r = EMULATE_DO_MMIO;
4637         } else if (vcpu->mmio_needed) {
4638                 if (!vcpu->mmio_is_write)
4639                         writeback = false;
4640                 r = EMULATE_DO_MMIO;
4641                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4642         } else if (r == EMULATION_RESTART)
4643                 goto restart;
4644         else
4645                 r = EMULATE_DONE;
4646
4647         if (writeback) {
4648                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4649                 kvm_set_rflags(vcpu, ctxt->eflags);
4650                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4651                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4652                 kvm_rip_write(vcpu, ctxt->eip);
4653         } else
4654                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4655
4656         return r;
4657 }
4658 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4659
4660 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4661 {
4662         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4663         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4664                                             size, port, &val, 1);
4665         /* do not return to emulator after return from userspace */
4666         vcpu->arch.pio.count = 0;
4667         return ret;
4668 }
4669 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4670
4671 static void tsc_bad(void *info)
4672 {
4673         __this_cpu_write(cpu_tsc_khz, 0);
4674 }
4675
4676 static void tsc_khz_changed(void *data)
4677 {
4678         struct cpufreq_freqs *freq = data;
4679         unsigned long khz = 0;
4680
4681         if (data)
4682                 khz = freq->new;
4683         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4684                 khz = cpufreq_quick_get(raw_smp_processor_id());
4685         if (!khz)
4686                 khz = tsc_khz;
4687         __this_cpu_write(cpu_tsc_khz, khz);
4688 }
4689
4690 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4691                                      void *data)
4692 {
4693         struct cpufreq_freqs *freq = data;
4694         struct kvm *kvm;
4695         struct kvm_vcpu *vcpu;
4696         int i, send_ipi = 0;
4697
4698         /*
4699          * We allow guests to temporarily run on slowing clocks,
4700          * provided we notify them after, or to run on accelerating
4701          * clocks, provided we notify them before.  Thus time never
4702          * goes backwards.
4703          *
4704          * However, we have a problem.  We can't atomically update
4705          * the frequency of a given CPU from this function; it is
4706          * merely a notifier, which can be called from any CPU.
4707          * Changing the TSC frequency at arbitrary points in time
4708          * requires a recomputation of local variables related to
4709          * the TSC for each VCPU.  We must flag these local variables
4710          * to be updated and be sure the update takes place with the
4711          * new frequency before any guests proceed.
4712          *
4713          * Unfortunately, the combination of hotplug CPU and frequency
4714          * change creates an intractable locking scenario; the order
4715          * of when these callouts happen is undefined with respect to
4716          * CPU hotplug, and they can race with each other.  As such,
4717          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4718          * undefined; you can actually have a CPU frequency change take
4719          * place in between the computation of X and the setting of the
4720          * variable.  To protect against this problem, all updates of
4721          * the per_cpu tsc_khz variable are done in an interrupt
4722          * protected IPI, and all callers wishing to update the value
4723          * must wait for a synchronous IPI to complete (which is trivial
4724          * if the caller is on the CPU already).  This establishes the
4725          * necessary total order on variable updates.
4726          *
4727          * Note that because a guest time update may take place
4728          * anytime after the setting of the VCPU's request bit, the
4729          * correct TSC value must be set before the request.  However,
4730          * to ensure the update actually makes it to any guest which
4731          * starts running in hardware virtualization between the set
4732          * and the acquisition of the spinlock, we must also ping the
4733          * CPU after setting the request bit.
4734          *
4735          */
4736
4737         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4738                 return 0;
4739         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4740                 return 0;
4741
4742         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4743
4744         raw_spin_lock(&kvm_lock);
4745         list_for_each_entry(kvm, &vm_list, vm_list) {
4746                 kvm_for_each_vcpu(i, vcpu, kvm) {
4747                         if (vcpu->cpu != freq->cpu)
4748                                 continue;
4749                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4750                         if (vcpu->cpu != smp_processor_id())
4751                                 send_ipi = 1;
4752                 }
4753         }
4754         raw_spin_unlock(&kvm_lock);
4755
4756         if (freq->old < freq->new && send_ipi) {
4757                 /*
4758                  * We upscale the frequency.  Must make the guest
4759                  * doesn't see old kvmclock values while running with
4760                  * the new frequency, otherwise we risk the guest sees
4761                  * time go backwards.
4762                  *
4763                  * In case we update the frequency for another cpu
4764                  * (which might be in guest context) send an interrupt
4765                  * to kick the cpu out of guest context.  Next time
4766                  * guest context is entered kvmclock will be updated,
4767                  * so the guest will not see stale values.
4768                  */
4769                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4770         }
4771         return 0;
4772 }
4773
4774 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4775         .notifier_call  = kvmclock_cpufreq_notifier
4776 };
4777
4778 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4779                                         unsigned long action, void *hcpu)
4780 {
4781         unsigned int cpu = (unsigned long)hcpu;
4782
4783         switch (action) {
4784                 case CPU_ONLINE:
4785                 case CPU_DOWN_FAILED:
4786                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4787                         break;
4788                 case CPU_DOWN_PREPARE:
4789                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4790                         break;
4791         }
4792         return NOTIFY_OK;
4793 }
4794
4795 static struct notifier_block kvmclock_cpu_notifier_block = {
4796         .notifier_call  = kvmclock_cpu_notifier,
4797         .priority = -INT_MAX
4798 };
4799
4800 static void kvm_timer_init(void)
4801 {
4802         int cpu;
4803
4804         max_tsc_khz = tsc_khz;
4805         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4806         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4807 #ifdef CONFIG_CPU_FREQ
4808                 struct cpufreq_policy policy;
4809                 memset(&policy, 0, sizeof(policy));
4810                 cpu = get_cpu();
4811                 cpufreq_get_policy(&policy, cpu);
4812                 if (policy.cpuinfo.max_freq)
4813                         max_tsc_khz = policy.cpuinfo.max_freq;
4814                 put_cpu();
4815 #endif
4816                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4817                                           CPUFREQ_TRANSITION_NOTIFIER);
4818         }
4819         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4820         for_each_online_cpu(cpu)
4821                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4822 }
4823
4824 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4825
4826 int kvm_is_in_guest(void)
4827 {
4828         return __this_cpu_read(current_vcpu) != NULL;
4829 }
4830
4831 static int kvm_is_user_mode(void)
4832 {
4833         int user_mode = 3;
4834
4835         if (__this_cpu_read(current_vcpu))
4836                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4837
4838         return user_mode != 0;
4839 }
4840
4841 static unsigned long kvm_get_guest_ip(void)
4842 {
4843         unsigned long ip = 0;
4844
4845         if (__this_cpu_read(current_vcpu))
4846                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4847
4848         return ip;
4849 }
4850
4851 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4852         .is_in_guest            = kvm_is_in_guest,
4853         .is_user_mode           = kvm_is_user_mode,
4854         .get_guest_ip           = kvm_get_guest_ip,
4855 };
4856
4857 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4858 {
4859         __this_cpu_write(current_vcpu, vcpu);
4860 }
4861 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4862
4863 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4864 {
4865         __this_cpu_write(current_vcpu, NULL);
4866 }
4867 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4868
4869 static void kvm_set_mmio_spte_mask(void)
4870 {
4871         u64 mask;
4872         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4873
4874         /*
4875          * Set the reserved bits and the present bit of an paging-structure
4876          * entry to generate page fault with PFER.RSV = 1.
4877          */
4878         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4879         mask |= 1ull;
4880
4881 #ifdef CONFIG_X86_64
4882         /*
4883          * If reserved bit is not supported, clear the present bit to disable
4884          * mmio page fault.
4885          */
4886         if (maxphyaddr == 52)
4887                 mask &= ~1ull;
4888 #endif
4889
4890         kvm_mmu_set_mmio_spte_mask(mask);
4891 }
4892
4893 int kvm_arch_init(void *opaque)
4894 {
4895         int r;
4896         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4897
4898         if (kvm_x86_ops) {
4899                 printk(KERN_ERR "kvm: already loaded the other module\n");
4900                 r = -EEXIST;
4901                 goto out;
4902         }
4903
4904         if (!ops->cpu_has_kvm_support()) {
4905                 printk(KERN_ERR "kvm: no hardware support\n");
4906                 r = -EOPNOTSUPP;
4907                 goto out;
4908         }
4909         if (ops->disabled_by_bios()) {
4910                 printk(KERN_ERR "kvm: disabled by bios\n");
4911                 r = -EOPNOTSUPP;
4912                 goto out;
4913         }
4914
4915         r = kvm_mmu_module_init();
4916         if (r)
4917                 goto out;
4918
4919         kvm_set_mmio_spte_mask();
4920         kvm_init_msr_list();
4921
4922         kvm_x86_ops = ops;
4923         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4924                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4925
4926         kvm_timer_init();
4927
4928         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4929
4930         if (cpu_has_xsave)
4931                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4932
4933         kvm_lapic_init();
4934         return 0;
4935
4936 out:
4937         return r;
4938 }
4939
4940 void kvm_arch_exit(void)
4941 {
4942         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4943
4944         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4945                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4946                                             CPUFREQ_TRANSITION_NOTIFIER);
4947         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4948         kvm_x86_ops = NULL;
4949         kvm_mmu_module_exit();
4950 }
4951
4952 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4953 {
4954         ++vcpu->stat.halt_exits;
4955         if (irqchip_in_kernel(vcpu->kvm)) {
4956                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4957                 return 1;
4958         } else {
4959                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4960                 return 0;
4961         }
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4964
4965 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4966 {
4967         u64 param, ingpa, outgpa, ret;
4968         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4969         bool fast, longmode;
4970         int cs_db, cs_l;
4971
4972         /*
4973          * hypercall generates UD from non zero cpl and real mode
4974          * per HYPER-V spec
4975          */
4976         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4977                 kvm_queue_exception(vcpu, UD_VECTOR);
4978                 return 0;
4979         }
4980
4981         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4982         longmode = is_long_mode(vcpu) && cs_l == 1;
4983
4984         if (!longmode) {
4985                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4986                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4987                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4988                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4989                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4990                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4991         }
4992 #ifdef CONFIG_X86_64
4993         else {
4994                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4995                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4996                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4997         }
4998 #endif
4999
5000         code = param & 0xffff;
5001         fast = (param >> 16) & 0x1;
5002         rep_cnt = (param >> 32) & 0xfff;
5003         rep_idx = (param >> 48) & 0xfff;
5004
5005         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5006
5007         switch (code) {
5008         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5009                 kvm_vcpu_on_spin(vcpu);
5010                 break;
5011         default:
5012                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5013                 break;
5014         }
5015
5016         ret = res | (((u64)rep_done & 0xfff) << 32);
5017         if (longmode) {
5018                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5019         } else {
5020                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5021                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5022         }
5023
5024         return 1;
5025 }
5026
5027 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5028 {
5029         unsigned long nr, a0, a1, a2, a3, ret;
5030         int r = 1;
5031
5032         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5033                 return kvm_hv_hypercall(vcpu);
5034
5035         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5036         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5037         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5038         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5039         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5040
5041         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5042
5043         if (!is_long_mode(vcpu)) {
5044                 nr &= 0xFFFFFFFF;
5045                 a0 &= 0xFFFFFFFF;
5046                 a1 &= 0xFFFFFFFF;
5047                 a2 &= 0xFFFFFFFF;
5048                 a3 &= 0xFFFFFFFF;
5049         }
5050
5051         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5052                 ret = -KVM_EPERM;
5053                 goto out;
5054         }
5055
5056         switch (nr) {
5057         case KVM_HC_VAPIC_POLL_IRQ:
5058                 ret = 0;
5059                 break;
5060         default:
5061                 ret = -KVM_ENOSYS;
5062                 break;
5063         }
5064 out:
5065         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5066         ++vcpu->stat.hypercalls;
5067         return r;
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5070
5071 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5072 {
5073         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5074         char instruction[3];
5075         unsigned long rip = kvm_rip_read(vcpu);
5076
5077         /*
5078          * Blow out the MMU to ensure that no other VCPU has an active mapping
5079          * to ensure that the updated hypercall appears atomically across all
5080          * VCPUs.
5081          */
5082         kvm_mmu_zap_all(vcpu->kvm);
5083
5084         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5085
5086         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5087 }
5088
5089 /*
5090  * Check if userspace requested an interrupt window, and that the
5091  * interrupt window is open.
5092  *
5093  * No need to exit to userspace if we already have an interrupt queued.
5094  */
5095 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5096 {
5097         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5098                 vcpu->run->request_interrupt_window &&
5099                 kvm_arch_interrupt_allowed(vcpu));
5100 }
5101
5102 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5103 {
5104         struct kvm_run *kvm_run = vcpu->run;
5105
5106         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5107         kvm_run->cr8 = kvm_get_cr8(vcpu);
5108         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5109         if (irqchip_in_kernel(vcpu->kvm))
5110                 kvm_run->ready_for_interrupt_injection = 1;
5111         else
5112                 kvm_run->ready_for_interrupt_injection =
5113                         kvm_arch_interrupt_allowed(vcpu) &&
5114                         !kvm_cpu_has_interrupt(vcpu) &&
5115                         !kvm_event_needs_reinjection(vcpu);
5116 }
5117
5118 static int vapic_enter(struct kvm_vcpu *vcpu)
5119 {
5120         struct kvm_lapic *apic = vcpu->arch.apic;
5121         struct page *page;
5122
5123         if (!apic || !apic->vapic_addr)
5124                 return 0;
5125
5126         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5127         if (is_error_page(page))
5128                 return -EFAULT;
5129
5130         vcpu->arch.apic->vapic_page = page;
5131         return 0;
5132 }
5133
5134 static void vapic_exit(struct kvm_vcpu *vcpu)
5135 {
5136         struct kvm_lapic *apic = vcpu->arch.apic;
5137         int idx;
5138
5139         if (!apic || !apic->vapic_addr)
5140                 return;
5141
5142         idx = srcu_read_lock(&vcpu->kvm->srcu);
5143         kvm_release_page_dirty(apic->vapic_page);
5144         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5145         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5146 }
5147
5148 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5149 {
5150         int max_irr, tpr;
5151
5152         if (!kvm_x86_ops->update_cr8_intercept)
5153                 return;
5154
5155         if (!vcpu->arch.apic)
5156                 return;
5157
5158         if (!vcpu->arch.apic->vapic_addr)
5159                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5160         else
5161                 max_irr = -1;
5162
5163         if (max_irr != -1)
5164                 max_irr >>= 4;
5165
5166         tpr = kvm_lapic_get_cr8(vcpu);
5167
5168         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5169 }
5170
5171 static void inject_pending_event(struct kvm_vcpu *vcpu)
5172 {
5173         /* try to reinject previous events if any */
5174         if (vcpu->arch.exception.pending) {
5175                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5176                                         vcpu->arch.exception.has_error_code,
5177                                         vcpu->arch.exception.error_code);
5178                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5179                                           vcpu->arch.exception.has_error_code,
5180                                           vcpu->arch.exception.error_code,
5181                                           vcpu->arch.exception.reinject);
5182                 return;
5183         }
5184
5185         if (vcpu->arch.nmi_injected) {
5186                 kvm_x86_ops->set_nmi(vcpu);
5187                 return;
5188         }
5189
5190         if (vcpu->arch.interrupt.pending) {
5191                 kvm_x86_ops->set_irq(vcpu);
5192                 return;
5193         }
5194
5195         /* try to inject new event if pending */
5196         if (vcpu->arch.nmi_pending) {
5197                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5198                         --vcpu->arch.nmi_pending;
5199                         vcpu->arch.nmi_injected = true;
5200                         kvm_x86_ops->set_nmi(vcpu);
5201                 }
5202         } else if (kvm_cpu_has_interrupt(vcpu)) {
5203                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5204                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5205                                             false);
5206                         kvm_x86_ops->set_irq(vcpu);
5207                 }
5208         }
5209 }
5210
5211 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5212 {
5213         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5214                         !vcpu->guest_xcr0_loaded) {
5215                 /* kvm_set_xcr() also depends on this */
5216                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5217                 vcpu->guest_xcr0_loaded = 1;
5218         }
5219 }
5220
5221 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5222 {
5223         if (vcpu->guest_xcr0_loaded) {
5224                 if (vcpu->arch.xcr0 != host_xcr0)
5225                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5226                 vcpu->guest_xcr0_loaded = 0;
5227         }
5228 }
5229
5230 static void process_nmi(struct kvm_vcpu *vcpu)
5231 {
5232         unsigned limit = 2;
5233
5234         /*
5235          * x86 is limited to one NMI running, and one NMI pending after it.
5236          * If an NMI is already in progress, limit further NMIs to just one.
5237          * Otherwise, allow two (and we'll inject the first one immediately).
5238          */
5239         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5240                 limit = 1;
5241
5242         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5243         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5244         kvm_make_request(KVM_REQ_EVENT, vcpu);
5245 }
5246
5247 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5248 {
5249         int r;
5250         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5251                 vcpu->run->request_interrupt_window;
5252         bool req_immediate_exit = 0;
5253
5254         if (vcpu->requests) {
5255                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5256                         kvm_mmu_unload(vcpu);
5257                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5258                         __kvm_migrate_timers(vcpu);
5259                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5260                         r = kvm_guest_time_update(vcpu);
5261                         if (unlikely(r))
5262                                 goto out;
5263                 }
5264                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5265                         kvm_mmu_sync_roots(vcpu);
5266                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5267                         kvm_x86_ops->tlb_flush(vcpu);
5268                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5269                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5270                         r = 0;
5271                         goto out;
5272                 }
5273                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5274                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5275                         r = 0;
5276                         goto out;
5277                 }
5278                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5279                         vcpu->fpu_active = 0;
5280                         kvm_x86_ops->fpu_deactivate(vcpu);
5281                 }
5282                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5283                         /* Page is swapped out. Do synthetic halt */
5284                         vcpu->arch.apf.halted = true;
5285                         r = 1;
5286                         goto out;
5287                 }
5288                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5289                         record_steal_time(vcpu);
5290                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5291                         process_nmi(vcpu);
5292                 req_immediate_exit =
5293                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5294                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5295                         kvm_handle_pmu_event(vcpu);
5296                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5297                         kvm_deliver_pmi(vcpu);
5298         }
5299
5300         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5301                 inject_pending_event(vcpu);
5302
5303                 /* enable NMI/IRQ window open exits if needed */
5304                 if (vcpu->arch.nmi_pending)
5305                         kvm_x86_ops->enable_nmi_window(vcpu);
5306                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5307                         kvm_x86_ops->enable_irq_window(vcpu);
5308
5309                 if (kvm_lapic_enabled(vcpu)) {
5310                         update_cr8_intercept(vcpu);
5311                         kvm_lapic_sync_to_vapic(vcpu);
5312                 }
5313         }
5314
5315         r = kvm_mmu_reload(vcpu);
5316         if (unlikely(r)) {
5317                 goto cancel_injection;
5318         }
5319
5320         preempt_disable();
5321
5322         kvm_x86_ops->prepare_guest_switch(vcpu);
5323         if (vcpu->fpu_active)
5324                 kvm_load_guest_fpu(vcpu);
5325         kvm_load_guest_xcr0(vcpu);
5326
5327         vcpu->mode = IN_GUEST_MODE;
5328
5329         /* We should set ->mode before check ->requests,
5330          * see the comment in make_all_cpus_request.
5331          */
5332         smp_mb();
5333
5334         local_irq_disable();
5335
5336         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5337             || need_resched() || signal_pending(current)) {
5338                 vcpu->mode = OUTSIDE_GUEST_MODE;
5339                 smp_wmb();
5340                 local_irq_enable();
5341                 preempt_enable();
5342                 r = 1;
5343                 goto cancel_injection;
5344         }
5345
5346         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5347
5348         if (req_immediate_exit)
5349                 smp_send_reschedule(vcpu->cpu);
5350
5351         kvm_guest_enter();
5352
5353         if (unlikely(vcpu->arch.switch_db_regs)) {
5354                 set_debugreg(0, 7);
5355                 set_debugreg(vcpu->arch.eff_db[0], 0);
5356                 set_debugreg(vcpu->arch.eff_db[1], 1);
5357                 set_debugreg(vcpu->arch.eff_db[2], 2);
5358                 set_debugreg(vcpu->arch.eff_db[3], 3);
5359         }
5360
5361         trace_kvm_entry(vcpu->vcpu_id);
5362         kvm_x86_ops->run(vcpu);
5363
5364         /*
5365          * If the guest has used debug registers, at least dr7
5366          * will be disabled while returning to the host.
5367          * If we don't have active breakpoints in the host, we don't
5368          * care about the messed up debug address registers. But if
5369          * we have some of them active, restore the old state.
5370          */
5371         if (hw_breakpoint_active())
5372                 hw_breakpoint_restore();
5373
5374         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5375
5376         vcpu->mode = OUTSIDE_GUEST_MODE;
5377         smp_wmb();
5378         local_irq_enable();
5379
5380         ++vcpu->stat.exits;
5381
5382         /*
5383          * We must have an instruction between local_irq_enable() and
5384          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5385          * the interrupt shadow.  The stat.exits increment will do nicely.
5386          * But we need to prevent reordering, hence this barrier():
5387          */
5388         barrier();
5389
5390         kvm_guest_exit();
5391
5392         preempt_enable();
5393
5394         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5395
5396         /*
5397          * Profile KVM exit RIPs:
5398          */
5399         if (unlikely(prof_on == KVM_PROFILING)) {
5400                 unsigned long rip = kvm_rip_read(vcpu);
5401                 profile_hit(KVM_PROFILING, (void *)rip);
5402         }
5403
5404         if (unlikely(vcpu->arch.tsc_always_catchup))
5405                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5406
5407         if (vcpu->arch.apic_attention)
5408                 kvm_lapic_sync_from_vapic(vcpu);
5409
5410         r = kvm_x86_ops->handle_exit(vcpu);
5411         return r;
5412
5413 cancel_injection:
5414         kvm_x86_ops->cancel_injection(vcpu);
5415         if (unlikely(vcpu->arch.apic_attention))
5416                 kvm_lapic_sync_from_vapic(vcpu);
5417 out:
5418         return r;
5419 }
5420
5421
5422 static int __vcpu_run(struct kvm_vcpu *vcpu)
5423 {
5424         int r;
5425         struct kvm *kvm = vcpu->kvm;
5426
5427         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5428                 pr_debug("vcpu %d received sipi with vector # %x\n",
5429                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5430                 kvm_lapic_reset(vcpu);
5431                 r = kvm_vcpu_reset(vcpu);
5432                 if (r)
5433                         return r;
5434                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5435         }
5436
5437         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5438         r = vapic_enter(vcpu);
5439         if (r) {
5440                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5441                 return r;
5442         }
5443
5444         r = 1;
5445         while (r > 0) {
5446                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5447                     !vcpu->arch.apf.halted)
5448                         r = vcpu_enter_guest(vcpu);
5449                 else {
5450                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5451                         kvm_vcpu_block(vcpu);
5452                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5453                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5454                         {
5455                                 switch(vcpu->arch.mp_state) {
5456                                 case KVM_MP_STATE_HALTED:
5457                                         vcpu->arch.mp_state =
5458                                                 KVM_MP_STATE_RUNNABLE;
5459                                 case KVM_MP_STATE_RUNNABLE:
5460                                         vcpu->arch.apf.halted = false;
5461                                         break;
5462                                 case KVM_MP_STATE_SIPI_RECEIVED:
5463                                 default:
5464                                         r = -EINTR;
5465                                         break;
5466                                 }
5467                         }
5468                 }
5469
5470                 if (r <= 0)
5471                         break;
5472
5473                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5474                 if (kvm_cpu_has_pending_timer(vcpu))
5475                         kvm_inject_pending_timer_irqs(vcpu);
5476
5477                 if (dm_request_for_irq_injection(vcpu)) {
5478                         r = -EINTR;
5479                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5480                         ++vcpu->stat.request_irq_exits;
5481                 }
5482
5483                 kvm_check_async_pf_completion(vcpu);
5484
5485                 if (signal_pending(current)) {
5486                         r = -EINTR;
5487                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5488                         ++vcpu->stat.signal_exits;
5489                 }
5490                 if (need_resched()) {
5491                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5492                         kvm_resched(vcpu);
5493                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5494                 }
5495         }
5496
5497         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5498
5499         vapic_exit(vcpu);
5500
5501         return r;
5502 }
5503
5504 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5505 {
5506         int r;
5507         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5508         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5509         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5510         if (r != EMULATE_DONE)
5511                 return 0;
5512         return 1;
5513 }
5514
5515 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5516 {
5517         BUG_ON(!vcpu->arch.pio.count);
5518
5519         return complete_emulated_io(vcpu);
5520 }
5521
5522 /*
5523  * Implements the following, as a state machine:
5524  *
5525  * read:
5526  *   for each fragment
5527  *     write gpa, len
5528  *     exit
5529  *     copy data
5530  *   execute insn
5531  *
5532  * write:
5533  *   for each fragment
5534  *      write gpa, len
5535  *      copy data
5536  *      exit
5537  */
5538 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5539 {
5540         struct kvm_run *run = vcpu->run;
5541         struct kvm_mmio_fragment *frag;
5542
5543         BUG_ON(!vcpu->mmio_needed);
5544
5545         /* Complete previous fragment */
5546         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5547         if (!vcpu->mmio_is_write)
5548                 memcpy(frag->data, run->mmio.data, frag->len);
5549         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5550                 vcpu->mmio_needed = 0;
5551                 if (vcpu->mmio_is_write)
5552                         return 1;
5553                 vcpu->mmio_read_completed = 1;
5554                 return complete_emulated_io(vcpu);
5555         }
5556         /* Initiate next fragment */
5557         ++frag;
5558         run->exit_reason = KVM_EXIT_MMIO;
5559         run->mmio.phys_addr = frag->gpa;
5560         if (vcpu->mmio_is_write)
5561                 memcpy(run->mmio.data, frag->data, frag->len);
5562         run->mmio.len = frag->len;
5563         run->mmio.is_write = vcpu->mmio_is_write;
5564         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5565         return 0;
5566 }
5567
5568
5569 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5570 {
5571         int r;
5572         sigset_t sigsaved;
5573
5574         if (!tsk_used_math(current) && init_fpu(current))
5575                 return -ENOMEM;
5576
5577         if (vcpu->sigset_active)
5578                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5579
5580         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5581                 kvm_vcpu_block(vcpu);
5582                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5583                 r = -EAGAIN;
5584                 goto out;
5585         }
5586
5587         /* re-sync apic's tpr */
5588         if (!irqchip_in_kernel(vcpu->kvm)) {
5589                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5590                         r = -EINVAL;
5591                         goto out;
5592                 }
5593         }
5594
5595         if (unlikely(vcpu->arch.complete_userspace_io)) {
5596                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5597                 vcpu->arch.complete_userspace_io = NULL;
5598                 r = cui(vcpu);
5599                 if (r <= 0)
5600                         goto out;
5601         } else
5602                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5603
5604         r = __vcpu_run(vcpu);
5605
5606 out:
5607         post_kvm_run_save(vcpu);
5608         if (vcpu->sigset_active)
5609                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5610
5611         return r;
5612 }
5613
5614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5615 {
5616         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5617                 /*
5618                  * We are here if userspace calls get_regs() in the middle of
5619                  * instruction emulation. Registers state needs to be copied
5620                  * back from emulation context to vcpu. Userspace shouldn't do
5621                  * that usually, but some bad designed PV devices (vmware
5622                  * backdoor interface) need this to work
5623                  */
5624                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5625                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5626         }
5627         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5628         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5629         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5630         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5631         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5632         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5633         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5634         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5635 #ifdef CONFIG_X86_64
5636         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5637         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5638         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5639         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5640         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5641         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5642         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5643         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5644 #endif
5645
5646         regs->rip = kvm_rip_read(vcpu);
5647         regs->rflags = kvm_get_rflags(vcpu);
5648
5649         return 0;
5650 }
5651
5652 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5653 {
5654         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5655         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5656
5657         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5658         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5659         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5660         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5661         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5662         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5663         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5664         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5665 #ifdef CONFIG_X86_64
5666         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5667         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5668         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5669         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5670         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5671         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5672         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5673         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5674 #endif
5675
5676         kvm_rip_write(vcpu, regs->rip);
5677         kvm_set_rflags(vcpu, regs->rflags);
5678
5679         vcpu->arch.exception.pending = false;
5680
5681         kvm_make_request(KVM_REQ_EVENT, vcpu);
5682
5683         return 0;
5684 }
5685
5686 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5687 {
5688         struct kvm_segment cs;
5689
5690         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5691         *db = cs.db;
5692         *l = cs.l;
5693 }
5694 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5695
5696 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5697                                   struct kvm_sregs *sregs)
5698 {
5699         struct desc_ptr dt;
5700
5701         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5702         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5703         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5704         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5705         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5706         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5707
5708         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5709         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5710
5711         kvm_x86_ops->get_idt(vcpu, &dt);
5712         sregs->idt.limit = dt.size;
5713         sregs->idt.base = dt.address;
5714         kvm_x86_ops->get_gdt(vcpu, &dt);
5715         sregs->gdt.limit = dt.size;
5716         sregs->gdt.base = dt.address;
5717
5718         sregs->cr0 = kvm_read_cr0(vcpu);
5719         sregs->cr2 = vcpu->arch.cr2;
5720         sregs->cr3 = kvm_read_cr3(vcpu);
5721         sregs->cr4 = kvm_read_cr4(vcpu);
5722         sregs->cr8 = kvm_get_cr8(vcpu);
5723         sregs->efer = vcpu->arch.efer;
5724         sregs->apic_base = kvm_get_apic_base(vcpu);
5725
5726         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5727
5728         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5729                 set_bit(vcpu->arch.interrupt.nr,
5730                         (unsigned long *)sregs->interrupt_bitmap);
5731
5732         return 0;
5733 }
5734
5735 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5736                                     struct kvm_mp_state *mp_state)
5737 {
5738         mp_state->mp_state = vcpu->arch.mp_state;
5739         return 0;
5740 }
5741
5742 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5743                                     struct kvm_mp_state *mp_state)
5744 {
5745         vcpu->arch.mp_state = mp_state->mp_state;
5746         kvm_make_request(KVM_REQ_EVENT, vcpu);
5747         return 0;
5748 }
5749
5750 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5751                     int reason, bool has_error_code, u32 error_code)
5752 {
5753         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5754         int ret;
5755
5756         init_emulate_ctxt(vcpu);
5757
5758         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5759                                    has_error_code, error_code);
5760
5761         if (ret)
5762                 return EMULATE_FAIL;
5763
5764         kvm_rip_write(vcpu, ctxt->eip);
5765         kvm_set_rflags(vcpu, ctxt->eflags);
5766         kvm_make_request(KVM_REQ_EVENT, vcpu);
5767         return EMULATE_DONE;
5768 }
5769 EXPORT_SYMBOL_GPL(kvm_task_switch);
5770
5771 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5772                                   struct kvm_sregs *sregs)
5773 {
5774         int mmu_reset_needed = 0;
5775         int pending_vec, max_bits, idx;
5776         struct desc_ptr dt;
5777
5778         dt.size = sregs->idt.limit;
5779         dt.address = sregs->idt.base;
5780         kvm_x86_ops->set_idt(vcpu, &dt);
5781         dt.size = sregs->gdt.limit;
5782         dt.address = sregs->gdt.base;
5783         kvm_x86_ops->set_gdt(vcpu, &dt);
5784
5785         vcpu->arch.cr2 = sregs->cr2;
5786         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5787         vcpu->arch.cr3 = sregs->cr3;
5788         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5789
5790         kvm_set_cr8(vcpu, sregs->cr8);
5791
5792         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5793         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5794         kvm_set_apic_base(vcpu, sregs->apic_base);
5795
5796         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5797         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5798         vcpu->arch.cr0 = sregs->cr0;
5799
5800         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5801         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5802         if (sregs->cr4 & X86_CR4_OSXSAVE)
5803                 kvm_update_cpuid(vcpu);
5804
5805         idx = srcu_read_lock(&vcpu->kvm->srcu);
5806         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5807                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5808                 mmu_reset_needed = 1;
5809         }
5810         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5811
5812         if (mmu_reset_needed)
5813                 kvm_mmu_reset_context(vcpu);
5814
5815         max_bits = KVM_NR_INTERRUPTS;
5816         pending_vec = find_first_bit(
5817                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5818         if (pending_vec < max_bits) {
5819                 kvm_queue_interrupt(vcpu, pending_vec, false);
5820                 pr_debug("Set back pending irq %d\n", pending_vec);
5821         }
5822
5823         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5824         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5825         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5826         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5827         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5828         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5829
5830         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5831         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5832
5833         update_cr8_intercept(vcpu);
5834
5835         /* Older userspace won't unhalt the vcpu on reset. */
5836         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5837             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5838             !is_protmode(vcpu))
5839                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5840
5841         kvm_make_request(KVM_REQ_EVENT, vcpu);
5842
5843         return 0;
5844 }
5845
5846 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5847                                         struct kvm_guest_debug *dbg)
5848 {
5849         unsigned long rflags;
5850         int i, r;
5851
5852         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5853                 r = -EBUSY;
5854                 if (vcpu->arch.exception.pending)
5855                         goto out;
5856                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5857                         kvm_queue_exception(vcpu, DB_VECTOR);
5858                 else
5859                         kvm_queue_exception(vcpu, BP_VECTOR);
5860         }
5861
5862         /*
5863          * Read rflags as long as potentially injected trace flags are still
5864          * filtered out.
5865          */
5866         rflags = kvm_get_rflags(vcpu);
5867
5868         vcpu->guest_debug = dbg->control;
5869         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5870                 vcpu->guest_debug = 0;
5871
5872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5873                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5874                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5875                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
5876         } else {
5877                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5878                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5879         }
5880         kvm_update_dr7(vcpu);
5881
5882         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5883                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5884                         get_segment_base(vcpu, VCPU_SREG_CS);
5885
5886         /*
5887          * Trigger an rflags update that will inject or remove the trace
5888          * flags.
5889          */
5890         kvm_set_rflags(vcpu, rflags);
5891
5892         kvm_x86_ops->update_db_bp_intercept(vcpu);
5893
5894         r = 0;
5895
5896 out:
5897
5898         return r;
5899 }
5900
5901 /*
5902  * Translate a guest virtual address to a guest physical address.
5903  */
5904 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5905                                     struct kvm_translation *tr)
5906 {
5907         unsigned long vaddr = tr->linear_address;
5908         gpa_t gpa;
5909         int idx;
5910
5911         idx = srcu_read_lock(&vcpu->kvm->srcu);
5912         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5913         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5914         tr->physical_address = gpa;
5915         tr->valid = gpa != UNMAPPED_GVA;
5916         tr->writeable = 1;
5917         tr->usermode = 0;
5918
5919         return 0;
5920 }
5921
5922 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5923 {
5924         struct i387_fxsave_struct *fxsave =
5925                         &vcpu->arch.guest_fpu.state->fxsave;
5926
5927         memcpy(fpu->fpr, fxsave->st_space, 128);
5928         fpu->fcw = fxsave->cwd;
5929         fpu->fsw = fxsave->swd;
5930         fpu->ftwx = fxsave->twd;
5931         fpu->last_opcode = fxsave->fop;
5932         fpu->last_ip = fxsave->rip;
5933         fpu->last_dp = fxsave->rdp;
5934         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5935
5936         return 0;
5937 }
5938
5939 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5940 {
5941         struct i387_fxsave_struct *fxsave =
5942                         &vcpu->arch.guest_fpu.state->fxsave;
5943
5944         memcpy(fxsave->st_space, fpu->fpr, 128);
5945         fxsave->cwd = fpu->fcw;
5946         fxsave->swd = fpu->fsw;
5947         fxsave->twd = fpu->ftwx;
5948         fxsave->fop = fpu->last_opcode;
5949         fxsave->rip = fpu->last_ip;
5950         fxsave->rdp = fpu->last_dp;
5951         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5952
5953         return 0;
5954 }
5955
5956 int fx_init(struct kvm_vcpu *vcpu)
5957 {
5958         int err;
5959
5960         err = fpu_alloc(&vcpu->arch.guest_fpu);
5961         if (err)
5962                 return err;
5963
5964         fpu_finit(&vcpu->arch.guest_fpu);
5965
5966         /*
5967          * Ensure guest xcr0 is valid for loading
5968          */
5969         vcpu->arch.xcr0 = XSTATE_FP;
5970
5971         vcpu->arch.cr0 |= X86_CR0_ET;
5972
5973         return 0;
5974 }
5975 EXPORT_SYMBOL_GPL(fx_init);
5976
5977 static void fx_free(struct kvm_vcpu *vcpu)
5978 {
5979         fpu_free(&vcpu->arch.guest_fpu);
5980 }
5981
5982 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5983 {
5984         if (vcpu->guest_fpu_loaded)
5985                 return;
5986
5987         /*
5988          * Restore all possible states in the guest,
5989          * and assume host would use all available bits.
5990          * Guest xcr0 would be loaded later.
5991          */
5992         kvm_put_guest_xcr0(vcpu);
5993         vcpu->guest_fpu_loaded = 1;
5994         __kernel_fpu_begin();
5995         fpu_restore_checking(&vcpu->arch.guest_fpu);
5996         trace_kvm_fpu(1);
5997 }
5998
5999 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6000 {
6001         kvm_put_guest_xcr0(vcpu);
6002
6003         if (!vcpu->guest_fpu_loaded)
6004                 return;
6005
6006         vcpu->guest_fpu_loaded = 0;
6007         fpu_save_init(&vcpu->arch.guest_fpu);
6008         __kernel_fpu_end();
6009         ++vcpu->stat.fpu_reload;
6010         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6011         trace_kvm_fpu(0);
6012 }
6013
6014 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6015 {
6016         kvmclock_reset(vcpu);
6017
6018         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6019         fx_free(vcpu);
6020         kvm_x86_ops->vcpu_free(vcpu);
6021 }
6022
6023 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6024                                                 unsigned int id)
6025 {
6026         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6027                 printk_once(KERN_WARNING
6028                 "kvm: SMP vm created on host with unstable TSC; "
6029                 "guest TSC will not be reliable\n");
6030         return kvm_x86_ops->vcpu_create(kvm, id);
6031 }
6032
6033 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6034 {
6035         int r;
6036
6037         vcpu->arch.mtrr_state.have_fixed = 1;
6038         r = vcpu_load(vcpu);
6039         if (r)
6040                 return r;
6041         r = kvm_vcpu_reset(vcpu);
6042         if (r == 0)
6043                 r = kvm_mmu_setup(vcpu);
6044         vcpu_put(vcpu);
6045
6046         return r;
6047 }
6048
6049 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6050 {
6051         int r;
6052         vcpu->arch.apf.msr_val = 0;
6053
6054         r = vcpu_load(vcpu);
6055         BUG_ON(r);
6056         kvm_mmu_unload(vcpu);
6057         vcpu_put(vcpu);
6058
6059         fx_free(vcpu);
6060         kvm_x86_ops->vcpu_free(vcpu);
6061 }
6062
6063 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6064 {
6065         atomic_set(&vcpu->arch.nmi_queued, 0);
6066         vcpu->arch.nmi_pending = 0;
6067         vcpu->arch.nmi_injected = false;
6068
6069         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6070         vcpu->arch.dr6 = DR6_FIXED_1;
6071         vcpu->arch.dr7 = DR7_FIXED_1;
6072         kvm_update_dr7(vcpu);
6073
6074         kvm_make_request(KVM_REQ_EVENT, vcpu);
6075         vcpu->arch.apf.msr_val = 0;
6076         vcpu->arch.st.msr_val = 0;
6077
6078         kvmclock_reset(vcpu);
6079
6080         kvm_clear_async_pf_completion_queue(vcpu);
6081         kvm_async_pf_hash_reset(vcpu);
6082         vcpu->arch.apf.halted = false;
6083
6084         kvm_pmu_reset(vcpu);
6085
6086         return kvm_x86_ops->vcpu_reset(vcpu);
6087 }
6088
6089 int kvm_arch_hardware_enable(void *garbage)
6090 {
6091         struct kvm *kvm;
6092         struct kvm_vcpu *vcpu;
6093         int i;
6094         int ret;
6095         u64 local_tsc;
6096         u64 max_tsc = 0;
6097         bool stable, backwards_tsc = false;
6098
6099         kvm_shared_msr_cpu_online();
6100         ret = kvm_x86_ops->hardware_enable(garbage);
6101         if (ret != 0)
6102                 return ret;
6103
6104         local_tsc = native_read_tsc();
6105         stable = !check_tsc_unstable();
6106         list_for_each_entry(kvm, &vm_list, vm_list) {
6107                 kvm_for_each_vcpu(i, vcpu, kvm) {
6108                         if (!stable && vcpu->cpu == smp_processor_id())
6109                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6110                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6111                                 backwards_tsc = true;
6112                                 if (vcpu->arch.last_host_tsc > max_tsc)
6113                                         max_tsc = vcpu->arch.last_host_tsc;
6114                         }
6115                 }
6116         }
6117
6118         /*
6119          * Sometimes, even reliable TSCs go backwards.  This happens on
6120          * platforms that reset TSC during suspend or hibernate actions, but
6121          * maintain synchronization.  We must compensate.  Fortunately, we can
6122          * detect that condition here, which happens early in CPU bringup,
6123          * before any KVM threads can be running.  Unfortunately, we can't
6124          * bring the TSCs fully up to date with real time, as we aren't yet far
6125          * enough into CPU bringup that we know how much real time has actually
6126          * elapsed; our helper function, get_kernel_ns() will be using boot
6127          * variables that haven't been updated yet.
6128          *
6129          * So we simply find the maximum observed TSC above, then record the
6130          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6131          * the adjustment will be applied.  Note that we accumulate
6132          * adjustments, in case multiple suspend cycles happen before some VCPU
6133          * gets a chance to run again.  In the event that no KVM threads get a
6134          * chance to run, we will miss the entire elapsed period, as we'll have
6135          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6136          * loose cycle time.  This isn't too big a deal, since the loss will be
6137          * uniform across all VCPUs (not to mention the scenario is extremely
6138          * unlikely). It is possible that a second hibernate recovery happens
6139          * much faster than a first, causing the observed TSC here to be
6140          * smaller; this would require additional padding adjustment, which is
6141          * why we set last_host_tsc to the local tsc observed here.
6142          *
6143          * N.B. - this code below runs only on platforms with reliable TSC,
6144          * as that is the only way backwards_tsc is set above.  Also note
6145          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6146          * have the same delta_cyc adjustment applied if backwards_tsc
6147          * is detected.  Note further, this adjustment is only done once,
6148          * as we reset last_host_tsc on all VCPUs to stop this from being
6149          * called multiple times (one for each physical CPU bringup).
6150          *
6151          * Platforms with unreliable TSCs don't have to deal with this, they
6152          * will be compensated by the logic in vcpu_load, which sets the TSC to
6153          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6154          * guarantee that they stay in perfect synchronization.
6155          */
6156         if (backwards_tsc) {
6157                 u64 delta_cyc = max_tsc - local_tsc;
6158                 list_for_each_entry(kvm, &vm_list, vm_list) {
6159                         kvm_for_each_vcpu(i, vcpu, kvm) {
6160                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6161                                 vcpu->arch.last_host_tsc = local_tsc;
6162                         }
6163
6164                         /*
6165                          * We have to disable TSC offset matching.. if you were
6166                          * booting a VM while issuing an S4 host suspend....
6167                          * you may have some problem.  Solving this issue is
6168                          * left as an exercise to the reader.
6169                          */
6170                         kvm->arch.last_tsc_nsec = 0;
6171                         kvm->arch.last_tsc_write = 0;
6172                 }
6173
6174         }
6175         return 0;
6176 }
6177
6178 void kvm_arch_hardware_disable(void *garbage)
6179 {
6180         kvm_x86_ops->hardware_disable(garbage);
6181         drop_user_return_notifiers(garbage);
6182 }
6183
6184 int kvm_arch_hardware_setup(void)
6185 {
6186         return kvm_x86_ops->hardware_setup();
6187 }
6188
6189 void kvm_arch_hardware_unsetup(void)
6190 {
6191         kvm_x86_ops->hardware_unsetup();
6192 }
6193
6194 void kvm_arch_check_processor_compat(void *rtn)
6195 {
6196         kvm_x86_ops->check_processor_compatibility(rtn);
6197 }
6198
6199 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6200 {
6201         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6202 }
6203
6204 struct static_key kvm_no_apic_vcpu __read_mostly;
6205
6206 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6207 {
6208         struct page *page;
6209         struct kvm *kvm;
6210         int r;
6211
6212         BUG_ON(vcpu->kvm == NULL);
6213         kvm = vcpu->kvm;
6214
6215         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6216         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6217                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6218         else
6219                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6220
6221         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6222         if (!page) {
6223                 r = -ENOMEM;
6224                 goto fail;
6225         }
6226         vcpu->arch.pio_data = page_address(page);
6227
6228         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6229
6230         r = kvm_mmu_create(vcpu);
6231         if (r < 0)
6232                 goto fail_free_pio_data;
6233
6234         if (irqchip_in_kernel(kvm)) {
6235                 r = kvm_create_lapic(vcpu);
6236                 if (r < 0)
6237                         goto fail_mmu_destroy;
6238         } else
6239                 static_key_slow_inc(&kvm_no_apic_vcpu);
6240
6241         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6242                                        GFP_KERNEL);
6243         if (!vcpu->arch.mce_banks) {
6244                 r = -ENOMEM;
6245                 goto fail_free_lapic;
6246         }
6247         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6248
6249         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6250                 goto fail_free_mce_banks;
6251
6252         kvm_async_pf_hash_reset(vcpu);
6253         kvm_pmu_init(vcpu);
6254
6255         return 0;
6256 fail_free_mce_banks:
6257         kfree(vcpu->arch.mce_banks);
6258 fail_free_lapic:
6259         kvm_free_lapic(vcpu);
6260 fail_mmu_destroy:
6261         kvm_mmu_destroy(vcpu);
6262 fail_free_pio_data:
6263         free_page((unsigned long)vcpu->arch.pio_data);
6264 fail:
6265         return r;
6266 }
6267
6268 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6269 {
6270         int idx;
6271
6272         kvm_pmu_destroy(vcpu);
6273         kfree(vcpu->arch.mce_banks);
6274         kvm_free_lapic(vcpu);
6275         idx = srcu_read_lock(&vcpu->kvm->srcu);
6276         kvm_mmu_destroy(vcpu);
6277         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6278         free_page((unsigned long)vcpu->arch.pio_data);
6279         if (!irqchip_in_kernel(vcpu->kvm))
6280                 static_key_slow_dec(&kvm_no_apic_vcpu);
6281 }
6282
6283 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6284 {
6285         if (type)
6286                 return -EINVAL;
6287
6288         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6289         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6290
6291         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6292         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6293         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6294         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6295                 &kvm->arch.irq_sources_bitmap);
6296
6297         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6298         mutex_init(&kvm->arch.apic_map_lock);
6299
6300         return 0;
6301 }
6302
6303 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6304 {
6305         int r;
6306         r = vcpu_load(vcpu);
6307         BUG_ON(r);
6308         kvm_mmu_unload(vcpu);
6309         vcpu_put(vcpu);
6310 }
6311
6312 static void kvm_free_vcpus(struct kvm *kvm)
6313 {
6314         unsigned int i;
6315         struct kvm_vcpu *vcpu;
6316
6317         /*
6318          * Unpin any mmu pages first.
6319          */
6320         kvm_for_each_vcpu(i, vcpu, kvm) {
6321                 kvm_clear_async_pf_completion_queue(vcpu);
6322                 kvm_unload_vcpu_mmu(vcpu);
6323         }
6324         kvm_for_each_vcpu(i, vcpu, kvm)
6325                 kvm_arch_vcpu_free(vcpu);
6326
6327         mutex_lock(&kvm->lock);
6328         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6329                 kvm->vcpus[i] = NULL;
6330
6331         atomic_set(&kvm->online_vcpus, 0);
6332         mutex_unlock(&kvm->lock);
6333 }
6334
6335 void kvm_arch_sync_events(struct kvm *kvm)
6336 {
6337         kvm_free_all_assigned_devices(kvm);
6338         kvm_free_pit(kvm);
6339 }
6340
6341 void kvm_arch_destroy_vm(struct kvm *kvm)
6342 {
6343         kvm_iommu_unmap_guest(kvm);
6344         kfree(kvm->arch.vpic);
6345         kfree(kvm->arch.vioapic);
6346         kvm_free_vcpus(kvm);
6347         if (kvm->arch.apic_access_page)
6348                 put_page(kvm->arch.apic_access_page);
6349         if (kvm->arch.ept_identity_pagetable)
6350                 put_page(kvm->arch.ept_identity_pagetable);
6351         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6352 }
6353
6354 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6355                            struct kvm_memory_slot *dont)
6356 {
6357         int i;
6358
6359         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6360                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6361                         kvm_kvfree(free->arch.rmap[i]);
6362                         free->arch.rmap[i] = NULL;
6363                 }
6364                 if (i == 0)
6365                         continue;
6366
6367                 if (!dont || free->arch.lpage_info[i - 1] !=
6368                              dont->arch.lpage_info[i - 1]) {
6369                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6370                         free->arch.lpage_info[i - 1] = NULL;
6371                 }
6372         }
6373 }
6374
6375 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6376 {
6377         int i;
6378
6379         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6380                 unsigned long ugfn;
6381                 int lpages;
6382                 int level = i + 1;
6383
6384                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6385                                       slot->base_gfn, level) + 1;
6386
6387                 slot->arch.rmap[i] =
6388                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6389                 if (!slot->arch.rmap[i])
6390                         goto out_free;
6391                 if (i == 0)
6392                         continue;
6393
6394                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6395                                         sizeof(*slot->arch.lpage_info[i - 1]));
6396                 if (!slot->arch.lpage_info[i - 1])
6397                         goto out_free;
6398
6399                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6400                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6401                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6402                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6403                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6404                 /*
6405                  * If the gfn and userspace address are not aligned wrt each
6406                  * other, or if explicitly asked to, disable large page
6407                  * support for this slot
6408                  */
6409                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6410                     !kvm_largepages_enabled()) {
6411                         unsigned long j;
6412
6413                         for (j = 0; j < lpages; ++j)
6414                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6415                 }
6416         }
6417
6418         return 0;
6419
6420 out_free:
6421         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6422                 kvm_kvfree(slot->arch.rmap[i]);
6423                 slot->arch.rmap[i] = NULL;
6424                 if (i == 0)
6425                         continue;
6426
6427                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6428                 slot->arch.lpage_info[i - 1] = NULL;
6429         }
6430         return -ENOMEM;
6431 }
6432
6433 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6434                                 struct kvm_memory_slot *memslot,
6435                                 struct kvm_memory_slot old,
6436                                 struct kvm_userspace_memory_region *mem,
6437                                 int user_alloc)
6438 {
6439         int npages = memslot->npages;
6440         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6441
6442         /* Prevent internal slot pages from being moved by fork()/COW. */
6443         if (memslot->id >= KVM_MEMORY_SLOTS)
6444                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6445
6446         /*To keep backward compatibility with older userspace,
6447          *x86 needs to handle !user_alloc case.
6448          */
6449         if (!user_alloc) {
6450                 if (npages && !old.npages) {
6451                         unsigned long userspace_addr;
6452
6453                         userspace_addr = vm_mmap(NULL, 0,
6454                                                  npages * PAGE_SIZE,
6455                                                  PROT_READ | PROT_WRITE,
6456                                                  map_flags,
6457                                                  0);
6458
6459                         if (IS_ERR((void *)userspace_addr))
6460                                 return PTR_ERR((void *)userspace_addr);
6461
6462                         memslot->userspace_addr = userspace_addr;
6463                 }
6464         }
6465
6466
6467         return 0;
6468 }
6469
6470 void kvm_arch_commit_memory_region(struct kvm *kvm,
6471                                 struct kvm_userspace_memory_region *mem,
6472                                 struct kvm_memory_slot old,
6473                                 int user_alloc)
6474 {
6475
6476         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6477
6478         if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6479                 int ret;
6480
6481                 ret = vm_munmap(old.userspace_addr,
6482                                 old.npages * PAGE_SIZE);
6483                 if (ret < 0)
6484                         printk(KERN_WARNING
6485                                "kvm_vm_ioctl_set_memory_region: "
6486                                "failed to munmap memory\n");
6487         }
6488
6489         if (!kvm->arch.n_requested_mmu_pages)
6490                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6491
6492         spin_lock(&kvm->mmu_lock);
6493         if (nr_mmu_pages)
6494                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6495         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6496         spin_unlock(&kvm->mmu_lock);
6497         /*
6498          * If memory slot is created, or moved, we need to clear all
6499          * mmio sptes.
6500          */
6501         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6502                 kvm_mmu_zap_all(kvm);
6503                 kvm_reload_remote_mmus(kvm);
6504         }
6505 }
6506
6507 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6508 {
6509         kvm_mmu_zap_all(kvm);
6510         kvm_reload_remote_mmus(kvm);
6511 }
6512
6513 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6514                                    struct kvm_memory_slot *slot)
6515 {
6516         kvm_arch_flush_shadow_all(kvm);
6517 }
6518
6519 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6520 {
6521         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6522                 !vcpu->arch.apf.halted)
6523                 || !list_empty_careful(&vcpu->async_pf.done)
6524                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6525                 || atomic_read(&vcpu->arch.nmi_queued) ||
6526                 (kvm_arch_interrupt_allowed(vcpu) &&
6527                  kvm_cpu_has_interrupt(vcpu));
6528 }
6529
6530 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6531 {
6532         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6533 }
6534
6535 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6536 {
6537         return kvm_x86_ops->interrupt_allowed(vcpu);
6538 }
6539
6540 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6541 {
6542         unsigned long current_rip = kvm_rip_read(vcpu) +
6543                 get_segment_base(vcpu, VCPU_SREG_CS);
6544
6545         return current_rip == linear_rip;
6546 }
6547 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6548
6549 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6550 {
6551         unsigned long rflags;
6552
6553         rflags = kvm_x86_ops->get_rflags(vcpu);
6554         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6555                 rflags &= ~X86_EFLAGS_TF;
6556         return rflags;
6557 }
6558 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6559
6560 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6561 {
6562         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6563             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6564                 rflags |= X86_EFLAGS_TF;
6565         kvm_x86_ops->set_rflags(vcpu, rflags);
6566         kvm_make_request(KVM_REQ_EVENT, vcpu);
6567 }
6568 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6569
6570 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6571 {
6572         int r;
6573
6574         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6575               is_error_page(work->page))
6576                 return;
6577
6578         r = kvm_mmu_reload(vcpu);
6579         if (unlikely(r))
6580                 return;
6581
6582         if (!vcpu->arch.mmu.direct_map &&
6583               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6584                 return;
6585
6586         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6587 }
6588
6589 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6590 {
6591         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6592 }
6593
6594 static inline u32 kvm_async_pf_next_probe(u32 key)
6595 {
6596         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6597 }
6598
6599 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6600 {
6601         u32 key = kvm_async_pf_hash_fn(gfn);
6602
6603         while (vcpu->arch.apf.gfns[key] != ~0)
6604                 key = kvm_async_pf_next_probe(key);
6605
6606         vcpu->arch.apf.gfns[key] = gfn;
6607 }
6608
6609 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6610 {
6611         int i;
6612         u32 key = kvm_async_pf_hash_fn(gfn);
6613
6614         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6615                      (vcpu->arch.apf.gfns[key] != gfn &&
6616                       vcpu->arch.apf.gfns[key] != ~0); i++)
6617                 key = kvm_async_pf_next_probe(key);
6618
6619         return key;
6620 }
6621
6622 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6623 {
6624         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6625 }
6626
6627 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6628 {
6629         u32 i, j, k;
6630
6631         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6632         while (true) {
6633                 vcpu->arch.apf.gfns[i] = ~0;
6634                 do {
6635                         j = kvm_async_pf_next_probe(j);
6636                         if (vcpu->arch.apf.gfns[j] == ~0)
6637                                 return;
6638                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6639                         /*
6640                          * k lies cyclically in ]i,j]
6641                          * |    i.k.j |
6642                          * |....j i.k.| or  |.k..j i...|
6643                          */
6644                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6645                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6646                 i = j;
6647         }
6648 }
6649
6650 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6651 {
6652
6653         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6654                                       sizeof(val));
6655 }
6656
6657 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6658                                      struct kvm_async_pf *work)
6659 {
6660         struct x86_exception fault;
6661
6662         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6663         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6664
6665         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6666             (vcpu->arch.apf.send_user_only &&
6667              kvm_x86_ops->get_cpl(vcpu) == 0))
6668                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6669         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6670                 fault.vector = PF_VECTOR;
6671                 fault.error_code_valid = true;
6672                 fault.error_code = 0;
6673                 fault.nested_page_fault = false;
6674                 fault.address = work->arch.token;
6675                 kvm_inject_page_fault(vcpu, &fault);
6676         }
6677 }
6678
6679 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6680                                  struct kvm_async_pf *work)
6681 {
6682         struct x86_exception fault;
6683
6684         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6685         if (is_error_page(work->page))
6686                 work->arch.token = ~0; /* broadcast wakeup */
6687         else
6688                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6689
6690         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6691             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6692                 fault.vector = PF_VECTOR;
6693                 fault.error_code_valid = true;
6694                 fault.error_code = 0;
6695                 fault.nested_page_fault = false;
6696                 fault.address = work->arch.token;
6697                 kvm_inject_page_fault(vcpu, &fault);
6698         }
6699         vcpu->arch.apf.halted = false;
6700         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6701 }
6702
6703 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6704 {
6705         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6706                 return true;
6707         else
6708                 return !kvm_event_needs_reinjection(vcpu) &&
6709                         kvm_x86_ops->interrupt_allowed(vcpu);
6710 }
6711
6712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);