1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
69 #include <asm/debugreg.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
87 #include <clocksource/hyperv_timer.h>
89 #define CREATE_TRACE_POINTS
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
98 EXPORT_SYMBOL_GPL(kvm_caps);
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
213 struct kvm_user_return_msr_values {
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
317 u64 __read_mostly host_xcr0;
319 static struct kmem_cache *x86_emulator_cache;
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
327 const char *op = write ? "wrmsr" : "rdmsr";
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
362 static void kvm_on_user_return(struct user_return_notifier *urn)
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
389 static int kvm_probe_user_return_msr(u32 msr)
395 ret = rdmsrl_safe(msr, &val);
398 ret = wrmsrl_safe(msr, val);
404 int kvm_add_user_return_msr(u32 msr)
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
408 if (kvm_probe_user_return_msr(msr))
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
416 int kvm_find_user_return_msr(u32 msr)
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
428 static void kvm_user_return_msr_cpu_online(void)
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
465 static void drop_user_return_notifiers(void)
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
476 return vcpu->arch.apic_base;
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
513 noinstr void kvm_spurious_fault(void)
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
524 static int exception_class(int vector)
534 return EXCPT_CONTRIBUTORY;
541 #define EXCPT_FAULT 0
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
547 static int exception_type(int vector)
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
560 if (mask & (1 << DB_VECTOR))
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
569 /* Reserved exceptions will result in fault */
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
576 if (!ex->has_payload)
579 switch (ex->vector) {
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
613 vcpu->arch.dr6 &= ~BIT(12);
616 vcpu->arch.cr2 = ex->payload;
620 ex->has_payload = false;
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
632 ex->injected = false;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
683 * A reinjected event has already
684 * delivered its payload.
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
760 kvm_inject_gp(vcpu, 0);
762 return kvm_skip_emulated_instruction(vcpu);
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
771 kvm_inject_gp(vcpu, 0);
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
781 ++vcpu->stat.pf_guest;
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
814 fault_mmu->inject_page_fault(vcpu, fault);
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
853 kvm_queue_exception(vcpu, UD_VECTOR);
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
911 EXPORT_SYMBOL_GPL(load_pdptrs);
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
916 if (cr0 & 0xffffffff00000000UL)
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
975 if (!kvm_is_valid_cr0(vcpu, cr0))
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1020 if (vcpu->arch.guest_state_protected)
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1043 if (vcpu->arch.guest_state_protected)
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1112 vcpu->arch.xcr0 = xcr0;
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1128 return kvm_skip_emulated_instruction(vcpu);
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1134 if (cr4 & cr4_reserved_bits)
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1317 if (cr8 & CR8_RESERVED_BITS)
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1322 vcpu->arch.cr8 = cr8;
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1332 return vcpu->arch.cr8;
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1363 u64 fixed = DR6_FIXED_1;
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1385 if (!kvm_dr6_valid(val))
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1391 if (!kvm_dr7_valid(val))
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1412 *val = vcpu->arch.dr6;
1416 *val = vcpu->arch.dr7;
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1424 u32 ecx = kvm_rcx_read(vcpu);
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1513 HV_X64_MSR_VP_INDEX,
1514 HV_X64_MSR_VP_RUNTIME,
1515 HV_X64_MSR_SCONTROL,
1516 HV_X64_MSR_STIMER0_CONFIG,
1517 HV_X64_MSR_VP_ASSIST_PAGE,
1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 HV_X64_MSR_SYNDBG_OPTIONS,
1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1535 MSR_IA32_MCG_EXT_CTL,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1566 MSR_KVM_POLL_CONTROL,
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1577 static const u32 msr_based_features_all_except_vmx[] = {
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1625 static u64 kvm_get_arch_capabilities(void)
1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631 * the nested hypervisor runs with NX huge pages. If it is not,
1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633 * L1 guests, so it need not worry about its own (L2) guests.
1635 data |= ARCH_CAP_PSCHANGE_MC_NO;
1638 * If we're doing cache flushes (either "always" or "cond")
1639 * we will do one whenever the guest does a vmlaunch/vmresume.
1640 * If an outer hypervisor is doing the cache flush for us
1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642 * capability to the guest too, and if EPT is disabled we're not
1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1644 * require a nested hypervisor to do a flush of its own.
1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650 data |= ARCH_CAP_RDCL_NO;
1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652 data |= ARCH_CAP_SSB_NO;
1653 if (!boot_cpu_has_bug(X86_BUG_MDS))
1654 data |= ARCH_CAP_MDS_NO;
1656 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1658 * If RTM=0 because the kernel has disabled TSX, the host might
1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1660 * and therefore knows that there cannot be TAA) but keep
1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662 * and we want to allow migrating those guests to tsx=off hosts.
1664 data &= ~ARCH_CAP_TAA_NO;
1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666 data |= ARCH_CAP_TAA_NO;
1669 * Nothing to do here; we emulate TSX_CTRL if present on the
1670 * host so the guest can choose between disabling TSX or
1671 * using VERW to clear CPU buffers.
1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676 data |= ARCH_CAP_GDS_NO;
1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1683 switch (msr->index) {
1684 case MSR_IA32_ARCH_CAPABILITIES:
1685 msr->data = kvm_get_arch_capabilities();
1687 case MSR_IA32_PERF_CAPABILITIES:
1688 msr->data = kvm_caps.supported_perf_cap;
1690 case MSR_IA32_UCODE_REV:
1691 rdmsrl_safe(msr->index, &msr->data);
1694 return static_call(kvm_x86_get_msr_feature)(msr);
1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1701 struct kvm_msr_entry msr;
1705 r = kvm_get_msr_feature(&msr);
1707 if (r == KVM_MSR_RET_INVALID) {
1708 /* Unconditionally clear the output for simplicity */
1710 if (kvm_msr_ignored_check(index, 0, false))
1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1733 if (efer & (EFER_LME | EFER_LMA) &&
1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 if (efer & efer_reserved_bits)
1748 return __kvm_valid_efer(vcpu, efer);
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 u64 old_efer = vcpu->arch.efer;
1755 u64 efer = msr_info->data;
1758 if (efer & efer_reserved_bits)
1761 if (!msr_info->host_initiated) {
1762 if (!__kvm_valid_efer(vcpu, efer))
1765 if (is_paging(vcpu) &&
1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1771 efer |= vcpu->arch.efer & EFER_LMA;
1773 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780 kvm_mmu_reset_context(vcpu);
1785 void kvm_enable_efer_bits(u64 mask)
1787 efer_reserved_bits &= ~mask;
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1793 struct kvm_x86_msr_filter *msr_filter;
1794 struct msr_bitmap_range *ranges;
1795 struct kvm *kvm = vcpu->kvm;
1800 /* x2APIC MSRs do not support filtering. */
1801 if (index >= 0x800 && index <= 0x8ff)
1804 idx = srcu_read_lock(&kvm->srcu);
1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812 allowed = msr_filter->default_allow;
1813 ranges = msr_filter->ranges;
1815 for (i = 0; i < msr_filter->count; i++) {
1816 u32 start = ranges[i].base;
1817 u32 end = start + ranges[i].nmsrs;
1818 u32 flags = ranges[i].flags;
1819 unsigned long *bitmap = ranges[i].bitmap;
1821 if ((index >= start) && (index < end) && (flags & type)) {
1822 allowed = test_bit(index - start, bitmap);
1828 srcu_read_unlock(&kvm->srcu, idx);
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1835 * Write @data into the MSR specified by @index. Select MSR specific fault
1836 * checks are bypassed if @host_initiated is %true.
1837 * Returns 0 on success, non-0 otherwise.
1838 * Assumes vcpu_load() was already called.
1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841 bool host_initiated)
1843 struct msr_data msr;
1848 case MSR_KERNEL_GS_BASE:
1851 if (is_noncanonical_address(data, vcpu))
1854 case MSR_IA32_SYSENTER_EIP:
1855 case MSR_IA32_SYSENTER_ESP:
1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858 * non-canonical address is written on Intel but not on
1859 * AMD (which ignores the top 32-bits, because it does
1860 * not implement 64-bit SYSENTER).
1862 * 64-bit code should hence be able to write a non-canonical
1863 * value on AMD. Making the address canonical ensures that
1864 * vmentry does not fail on Intel after writing a non-canonical
1865 * value, and that something deterministic happens if the guest
1866 * invokes 64-bit SYSENTER.
1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 if (!host_initiated &&
1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881 * incomplete and conflicting architectural behavior. Current
1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883 * reserved and always read as zeros. Enforce Intel's reserved
1884 * bits check if and only if the guest CPU is Intel, and clear
1885 * the bits in all other cases. This ensures cross-vendor
1886 * migration will provide consistent behavior for the guest.
1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1897 msr.host_initiated = host_initiated;
1899 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903 u32 index, u64 data, bool host_initiated)
1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1907 if (ret == KVM_MSR_RET_INVALID)
1908 if (kvm_msr_ignored_check(index, data, true))
1915 * Read the MSR specified by @index into @data. Select MSR specific fault
1916 * checks are bypassed if @host_initiated is %true.
1917 * Returns 0 on success, non-0 otherwise.
1918 * Assumes vcpu_load() was already called.
1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921 bool host_initiated)
1923 struct msr_data msr;
1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1931 if (!host_initiated &&
1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939 msr.host_initiated = host_initiated;
1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948 u32 index, u64 *data, bool host_initiated)
1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1952 if (ret == KVM_MSR_RET_INVALID) {
1953 /* Unconditionally clear *data for simplicity */
1955 if (kvm_msr_ignored_check(index, 0, false))
1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965 return KVM_MSR_RET_FILTERED;
1966 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 return KVM_MSR_RET_FILTERED;
1973 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1978 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1984 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1990 if (!vcpu->run->msr.error) {
1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2003 complete_userspace_rdmsr(vcpu);
2004 return complete_emulated_msr_access(vcpu);
2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2014 complete_userspace_rdmsr(vcpu);
2015 return complete_fast_msr_access(vcpu);
2018 static u64 kvm_msr_reason(int r)
2021 case KVM_MSR_RET_INVALID:
2022 return KVM_MSR_EXIT_REASON_UNKNOWN;
2023 case KVM_MSR_RET_FILTERED:
2024 return KVM_MSR_EXIT_REASON_FILTER;
2026 return KVM_MSR_EXIT_REASON_INVAL;
2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031 u32 exit_reason, u64 data,
2032 int (*completion)(struct kvm_vcpu *vcpu),
2035 u64 msr_reason = kvm_msr_reason(r);
2037 /* Check if the user wanted to know about this MSR fault */
2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2041 vcpu->run->exit_reason = exit_reason;
2042 vcpu->run->msr.error = 0;
2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044 vcpu->run->msr.reason = msr_reason;
2045 vcpu->run->msr.index = index;
2046 vcpu->run->msr.data = data;
2047 vcpu->arch.complete_userspace_io = completion;
2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2054 u32 ecx = kvm_rcx_read(vcpu);
2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2061 trace_kvm_msr_read(ecx, data);
2063 kvm_rax_write(vcpu, data & -1u);
2064 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066 /* MSR read failed? See if we should ask user space */
2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068 complete_fast_rdmsr, r))
2070 trace_kvm_msr_read_ex(ecx);
2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2079 u32 ecx = kvm_rcx_read(vcpu);
2080 u64 data = kvm_read_edx_eax(vcpu);
2083 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2086 trace_kvm_msr_write(ecx, data);
2088 /* MSR write failed? See if we should ask user space */
2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090 complete_fast_msr_access, r))
2092 /* Signal all other negative errors to userspace */
2095 trace_kvm_msr_write_ex(ecx, data);
2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2104 return kvm_skip_emulated_instruction(vcpu);
2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2109 /* Treat an INVD instruction as a NOP and just skip it. */
2110 return kvm_emulate_as_nop(vcpu);
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2116 kvm_queue_exception(vcpu, UD_VECTOR);
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126 return kvm_handle_invalid_op(vcpu);
2128 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129 return kvm_emulate_as_nop(vcpu);
2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2145 xfer_to_guest_mode_prepare();
2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147 xfer_to_guest_mode_work_pending();
2151 * The fast path for frequent and performance sensitive wrmsr emulation,
2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155 * other cases which must be called after interrupts are enabled on the host.
2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165 ((u32)(data >> 32) != X2APIC_BROADCAST))
2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2173 if (!kvm_can_use_hv_timer(vcpu))
2176 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2182 u32 msr = kvm_rcx_read(vcpu);
2184 fastpath_t ret = EXIT_FASTPATH_NONE;
2186 kvm_vcpu_srcu_read_lock(vcpu);
2189 case APIC_BASE_MSR + (APIC_ICR >> 4):
2190 data = kvm_read_edx_eax(vcpu);
2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192 kvm_skip_emulated_instruction(vcpu);
2193 ret = EXIT_FASTPATH_EXIT_HANDLED;
2196 case MSR_IA32_TSC_DEADLINE:
2197 data = kvm_read_edx_eax(vcpu);
2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199 kvm_skip_emulated_instruction(vcpu);
2200 ret = EXIT_FASTPATH_REENTER_GUEST;
2207 if (ret != EXIT_FASTPATH_NONE)
2208 trace_kvm_msr_write(msr, data);
2210 kvm_vcpu_srcu_read_unlock(vcpu);
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2217 * Adapt set_msr() to msr_io()'s calling convention
2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2221 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2230 * not support modifying the guest vCPU model on the fly, e.g. changing
2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2232 * writes of the same value, e.g. to allow userspace to blindly stuff
2233 * all MSRs when emulating RESET.
2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236 if (do_get_msr(vcpu, index, &val) || *data != val)
2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2256 struct pvclock_gtod_data {
2259 struct pvclock_clock clock; /* extract of a clocksource struct */
2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2268 static void update_pvclock_gtod(struct timekeeper *tk)
2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2272 write_seqcount_begin(&vdata->seq);
2274 /* copy pvclock gtod data */
2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2277 vdata->clock.mask = tk->tkr_mono.mask;
2278 vdata->clock.mult = tk->tkr_mono.mult;
2279 vdata->clock.shift = tk->tkr_mono.shift;
2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2281 vdata->clock.offset = tk->tkr_mono.base;
2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2285 vdata->raw_clock.mask = tk->tkr_raw.mask;
2286 vdata->raw_clock.mult = tk->tkr_raw.mult;
2287 vdata->raw_clock.shift = tk->tkr_raw.shift;
2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2289 vdata->raw_clock.offset = tk->tkr_raw.base;
2291 vdata->wall_time_sec = tk->xtime_sec;
2293 vdata->offs_boot = tk->offs_boot;
2295 write_seqcount_end(&vdata->seq);
2298 static s64 get_kvmclock_base_ns(void)
2300 /* Count up from boot time, but with the frequency of the raw clock. */
2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304 static s64 get_kvmclock_base_ns(void)
2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2307 return ktime_get_boottime_ns();
2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 struct pvclock_wall_clock wc;
2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2327 ++version; /* first time write, random junk */
2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2334 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2336 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2337 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2338 wc.version = version;
2340 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2343 wc_sec_hi = wall_nsec >> 32;
2344 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2345 &wc_sec_hi, sizeof(wc_sec_hi));
2349 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2352 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2353 bool old_msr, bool host_initiated)
2355 struct kvm_arch *ka = &vcpu->kvm->arch;
2357 if (vcpu->vcpu_id == 0 && !host_initiated) {
2358 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2359 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2361 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2364 vcpu->arch.time = system_time;
2365 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2367 /* we verify if the enable bit is set... */
2368 if (system_time & 1)
2369 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2370 sizeof(struct pvclock_vcpu_time_info));
2372 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2377 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2379 do_shl32_div32(dividend, divisor);
2383 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2384 s8 *pshift, u32 *pmultiplier)
2392 scaled64 = scaled_hz;
2393 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2398 tps32 = (uint32_t)tps64;
2399 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2400 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2408 *pmultiplier = div_frac(scaled64, tps32);
2411 #ifdef CONFIG_X86_64
2412 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2415 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2416 static unsigned long max_tsc_khz;
2418 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2420 u64 v = (u64)khz * (1000000 + ppm);
2425 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2427 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2431 /* Guest TSC same frequency as host TSC? */
2433 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437 /* TSC scaling supported? */
2438 if (!kvm_caps.has_tsc_control) {
2439 if (user_tsc_khz > tsc_khz) {
2440 vcpu->arch.tsc_catchup = 1;
2441 vcpu->arch.tsc_always_catchup = 1;
2444 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2449 /* TSC scaling required - calculate ratio */
2450 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2451 user_tsc_khz, tsc_khz);
2453 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2454 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2459 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2463 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2465 u32 thresh_lo, thresh_hi;
2466 int use_scaling = 0;
2468 /* tsc_khz can be zero if TSC calibration fails */
2469 if (user_tsc_khz == 0) {
2470 /* set tsc_scaling_ratio to a safe value */
2471 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2475 /* Compute a scale to convert nanoseconds in TSC cycles */
2476 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2477 &vcpu->arch.virtual_tsc_shift,
2478 &vcpu->arch.virtual_tsc_mult);
2479 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2482 * Compute the variation in TSC rate which is acceptable
2483 * within the range of tolerance and decide if the
2484 * rate being applied is within that bounds of the hardware
2485 * rate. If so, no scaling or compensation need be done.
2487 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2488 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2489 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2490 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2491 user_tsc_khz, thresh_lo, thresh_hi);
2494 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2497 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2499 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2500 vcpu->arch.virtual_tsc_mult,
2501 vcpu->arch.virtual_tsc_shift);
2502 tsc += vcpu->arch.this_tsc_write;
2506 #ifdef CONFIG_X86_64
2507 static inline int gtod_is_based_on_tsc(int mode)
2509 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2513 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2515 #ifdef CONFIG_X86_64
2517 struct kvm_arch *ka = &vcpu->kvm->arch;
2518 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2520 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2521 atomic_read(&vcpu->kvm->online_vcpus));
2524 * Once the masterclock is enabled, always perform request in
2525 * order to update it.
2527 * In order to enable masterclock, the host clocksource must be TSC
2528 * and the vcpus need to have matched TSCs. When that happens,
2529 * perform request to enable masterclock.
2531 if (ka->use_master_clock ||
2532 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2533 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2535 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2536 atomic_read(&vcpu->kvm->online_vcpus),
2537 ka->use_master_clock, gtod->clock.vclock_mode);
2542 * Multiply tsc by a fixed point number represented by ratio.
2544 * The most significant 64-N bits (mult) of ratio represent the
2545 * integral part of the fixed point number; the remaining N bits
2546 * (frac) represent the fractional part, ie. ratio represents a fixed
2547 * point number (mult + frac * 2^(-N)).
2549 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2551 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2553 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2556 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2560 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2561 _tsc = __scale_tsc(ratio, tsc);
2566 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2570 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2572 return target_tsc - tsc;
2575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2577 return vcpu->arch.l1_tsc_offset +
2578 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2580 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2582 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2586 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2587 nested_offset = l1_offset;
2589 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2590 kvm_caps.tsc_scaling_ratio_frac_bits);
2592 nested_offset += l2_offset;
2593 return nested_offset;
2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2597 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2599 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2600 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2601 kvm_caps.tsc_scaling_ratio_frac_bits);
2603 return l1_multiplier;
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2607 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2609 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2610 vcpu->arch.l1_tsc_offset,
2613 vcpu->arch.l1_tsc_offset = l1_offset;
2616 * If we are here because L1 chose not to trap WRMSR to TSC then
2617 * according to the spec this should set L1's TSC (as opposed to
2618 * setting L1's offset for L2).
2620 if (is_guest_mode(vcpu))
2621 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2623 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2624 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2626 vcpu->arch.tsc_offset = l1_offset;
2628 static_call(kvm_x86_write_tsc_offset)(vcpu);
2631 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2633 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2635 /* Userspace is changing the multiplier while L2 is active */
2636 if (is_guest_mode(vcpu))
2637 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2639 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2641 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2643 if (kvm_caps.has_tsc_control)
2644 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2647 static inline bool kvm_check_tsc_unstable(void)
2649 #ifdef CONFIG_X86_64
2651 * TSC is marked unstable when we're running on Hyper-V,
2652 * 'TSC page' clocksource is good.
2654 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2657 return check_tsc_unstable();
2661 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2662 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2665 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2666 u64 ns, bool matched)
2668 struct kvm *kvm = vcpu->kvm;
2670 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2673 * We also track th most recent recorded KHZ, write and time to
2674 * allow the matching interval to be extended at each write.
2676 kvm->arch.last_tsc_nsec = ns;
2677 kvm->arch.last_tsc_write = tsc;
2678 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2679 kvm->arch.last_tsc_offset = offset;
2681 vcpu->arch.last_guest_tsc = tsc;
2683 kvm_vcpu_write_tsc_offset(vcpu, offset);
2687 * We split periods of matched TSC writes into generations.
2688 * For each generation, we track the original measured
2689 * nanosecond time, offset, and write, so if TSCs are in
2690 * sync, we can match exact offset, and if not, we can match
2691 * exact software computation in compute_guest_tsc()
2693 * These values are tracked in kvm->arch.cur_xxx variables.
2695 kvm->arch.cur_tsc_generation++;
2696 kvm->arch.cur_tsc_nsec = ns;
2697 kvm->arch.cur_tsc_write = tsc;
2698 kvm->arch.cur_tsc_offset = offset;
2699 kvm->arch.nr_vcpus_matched_tsc = 0;
2700 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2701 kvm->arch.nr_vcpus_matched_tsc++;
2704 /* Keep track of which generation this VCPU has synchronized to */
2705 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2706 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2707 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2709 kvm_track_tsc_matching(vcpu);
2712 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2714 u64 data = user_value ? *user_value : 0;
2715 struct kvm *kvm = vcpu->kvm;
2716 u64 offset, ns, elapsed;
2717 unsigned long flags;
2718 bool matched = false;
2719 bool synchronizing = false;
2721 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2722 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2723 ns = get_kvmclock_base_ns();
2724 elapsed = ns - kvm->arch.last_tsc_nsec;
2726 if (vcpu->arch.virtual_tsc_khz) {
2729 * Force synchronization when creating a vCPU, or when
2730 * userspace explicitly writes a zero value.
2732 synchronizing = true;
2733 } else if (kvm->arch.user_set_tsc) {
2734 u64 tsc_exp = kvm->arch.last_tsc_write +
2735 nsec_to_cycles(vcpu, elapsed);
2736 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2738 * Here lies UAPI baggage: when a user-initiated TSC write has
2739 * a small delta (1 second) of virtual cycle time against the
2740 * previously set vCPU, we assume that they were intended to be
2741 * in sync and the delta was only due to the racy nature of the
2744 * This trick falls down when restoring a guest which genuinely
2745 * has been running for less time than the 1 second of imprecision
2746 * which we allow for in the legacy API. In this case, the first
2747 * value written by userspace (on any vCPU) should not be subject
2748 * to this 'correction' to make it sync up with values that only
2749 * come from the kernel's default vCPU creation. Make the 1-second
2750 * slop hack only trigger if the user_set_tsc flag is already set.
2752 synchronizing = data < tsc_exp + tsc_hz &&
2753 data + tsc_hz > tsc_exp;
2758 kvm->arch.user_set_tsc = true;
2761 * For a reliable TSC, we can match TSC offsets, and for an unstable
2762 * TSC, we add elapsed time in this computation. We could let the
2763 * compensation code attempt to catch up if we fall behind, but
2764 * it's better to try to match offsets from the beginning.
2766 if (synchronizing &&
2767 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2768 if (!kvm_check_tsc_unstable()) {
2769 offset = kvm->arch.cur_tsc_offset;
2771 u64 delta = nsec_to_cycles(vcpu, elapsed);
2773 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2778 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2779 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2782 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2785 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2786 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2789 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2791 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2792 WARN_ON(adjustment < 0);
2793 adjustment = kvm_scale_tsc((u64) adjustment,
2794 vcpu->arch.l1_tsc_scaling_ratio);
2795 adjust_tsc_offset_guest(vcpu, adjustment);
2798 #ifdef CONFIG_X86_64
2800 static u64 read_tsc(void)
2802 u64 ret = (u64)rdtsc_ordered();
2803 u64 last = pvclock_gtod_data.clock.cycle_last;
2805 if (likely(ret >= last))
2809 * GCC likes to generate cmov here, but this branch is extremely
2810 * predictable (it's just a function of time and the likely is
2811 * very likely) and there's a data dependence, so force GCC
2812 * to generate a branch instead. I don't barrier() because
2813 * we don't actually need a barrier, and if this function
2814 * ever gets inlined it will generate worse code.
2820 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2826 switch (clock->vclock_mode) {
2827 case VDSO_CLOCKMODE_HVCLOCK:
2828 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2829 tsc_timestamp, &tsc_pg_val)) {
2830 /* TSC page valid */
2831 *mode = VDSO_CLOCKMODE_HVCLOCK;
2832 v = (tsc_pg_val - clock->cycle_last) &
2835 /* TSC page invalid */
2836 *mode = VDSO_CLOCKMODE_NONE;
2839 case VDSO_CLOCKMODE_TSC:
2840 *mode = VDSO_CLOCKMODE_TSC;
2841 *tsc_timestamp = read_tsc();
2842 v = (*tsc_timestamp - clock->cycle_last) &
2846 *mode = VDSO_CLOCKMODE_NONE;
2849 if (*mode == VDSO_CLOCKMODE_NONE)
2850 *tsc_timestamp = v = 0;
2852 return v * clock->mult;
2855 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2863 seq = read_seqcount_begin(>od->seq);
2864 ns = gtod->raw_clock.base_cycles;
2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2866 ns >>= gtod->raw_clock.shift;
2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2868 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2874 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2876 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2882 seq = read_seqcount_begin(>od->seq);
2883 ts->tv_sec = gtod->wall_time_sec;
2884 ns = gtod->clock.base_cycles;
2885 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2886 ns >>= gtod->clock.shift;
2887 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2889 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2895 /* returns true if host is using TSC based clocksource */
2896 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2898 /* checked again under seqlock below */
2899 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2902 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2906 /* returns true if host is using TSC based clocksource */
2907 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2910 /* checked again under seqlock below */
2911 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2914 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2920 * Assuming a stable TSC across physical CPUS, and a stable TSC
2921 * across virtual CPUs, the following condition is possible.
2922 * Each numbered line represents an event visible to both
2923 * CPUs at the next numbered event.
2925 * "timespecX" represents host monotonic time. "tscX" represents
2928 * VCPU0 on CPU0 | VCPU1 on CPU1
2930 * 1. read timespec0,tsc0
2931 * 2. | timespec1 = timespec0 + N
2933 * 3. transition to guest | transition to guest
2934 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2935 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2936 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2938 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2941 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2943 * - 0 < N - M => M < N
2945 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2946 * always the case (the difference between two distinct xtime instances
2947 * might be smaller then the difference between corresponding TSC reads,
2948 * when updating guest vcpus pvclock areas).
2950 * To avoid that problem, do not allow visibility of distinct
2951 * system_timestamp/tsc_timestamp values simultaneously: use a master
2952 * copy of host monotonic time values. Update that master copy
2955 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2959 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2961 #ifdef CONFIG_X86_64
2962 struct kvm_arch *ka = &kvm->arch;
2964 bool host_tsc_clocksource, vcpus_matched;
2966 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2967 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2968 atomic_read(&kvm->online_vcpus));
2971 * If the host uses TSC clock, then passthrough TSC as stable
2974 host_tsc_clocksource = kvm_get_time_and_clockread(
2975 &ka->master_kernel_ns,
2976 &ka->master_cycle_now);
2978 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2979 && !ka->backwards_tsc_observed
2980 && !ka->boot_vcpu_runs_old_kvmclock;
2982 if (ka->use_master_clock)
2983 atomic_set(&kvm_guest_has_master_clock, 1);
2985 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2986 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2991 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2993 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2996 static void __kvm_start_pvclock_update(struct kvm *kvm)
2998 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2999 write_seqcount_begin(&kvm->arch.pvclock_sc);
3002 static void kvm_start_pvclock_update(struct kvm *kvm)
3004 kvm_make_mclock_inprogress_request(kvm);
3006 /* no guest entries from this point */
3007 __kvm_start_pvclock_update(kvm);
3010 static void kvm_end_pvclock_update(struct kvm *kvm)
3012 struct kvm_arch *ka = &kvm->arch;
3013 struct kvm_vcpu *vcpu;
3016 write_seqcount_end(&ka->pvclock_sc);
3017 raw_spin_unlock_irq(&ka->tsc_write_lock);
3018 kvm_for_each_vcpu(i, vcpu, kvm)
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3021 /* guest entries allowed */
3022 kvm_for_each_vcpu(i, vcpu, kvm)
3023 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3026 static void kvm_update_masterclock(struct kvm *kvm)
3028 kvm_hv_request_tsc_page_update(kvm);
3029 kvm_start_pvclock_update(kvm);
3030 pvclock_update_vm_gtod_copy(kvm);
3031 kvm_end_pvclock_update(kvm);
3035 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3036 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3037 * can change during boot even if the TSC is constant, as it's possible for KVM
3038 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3039 * notification when calibration completes, but practically speaking calibration
3040 * will complete before userspace is alive enough to create VMs.
3042 static unsigned long get_cpu_tsc_khz(void)
3044 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3047 return __this_cpu_read(cpu_tsc_khz);
3050 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3051 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3053 struct kvm_arch *ka = &kvm->arch;
3054 struct pvclock_vcpu_time_info hv_clock;
3056 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3060 if (ka->use_master_clock &&
3061 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3062 #ifdef CONFIG_X86_64
3063 struct timespec64 ts;
3065 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3066 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3067 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3070 data->host_tsc = rdtsc();
3072 data->flags |= KVM_CLOCK_TSC_STABLE;
3073 hv_clock.tsc_timestamp = ka->master_cycle_now;
3074 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3075 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3076 &hv_clock.tsc_shift,
3077 &hv_clock.tsc_to_system_mul);
3078 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3080 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3086 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3088 struct kvm_arch *ka = &kvm->arch;
3092 seq = read_seqcount_begin(&ka->pvclock_sc);
3093 __get_kvmclock(kvm, data);
3094 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3097 u64 get_kvmclock_ns(struct kvm *kvm)
3099 struct kvm_clock_data data;
3101 get_kvmclock(kvm, &data);
3105 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3106 struct gfn_to_pfn_cache *gpc,
3107 unsigned int offset)
3109 struct kvm_vcpu_arch *vcpu = &v->arch;
3110 struct pvclock_vcpu_time_info *guest_hv_clock;
3111 unsigned long flags;
3113 read_lock_irqsave(&gpc->lock, flags);
3114 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3115 read_unlock_irqrestore(&gpc->lock, flags);
3117 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3120 read_lock_irqsave(&gpc->lock, flags);
3123 guest_hv_clock = (void *)(gpc->khva + offset);
3126 * This VCPU is paused, but it's legal for a guest to read another
3127 * VCPU's kvmclock, so we really have to follow the specification where
3128 * it says that version is odd if data is being modified, and even after
3132 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3135 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3136 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3138 if (vcpu->pvclock_set_guest_stopped_request) {
3139 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3140 vcpu->pvclock_set_guest_stopped_request = false;
3143 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3146 guest_hv_clock->version = ++vcpu->hv_clock.version;
3148 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3149 read_unlock_irqrestore(&gpc->lock, flags);
3151 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3154 static int kvm_guest_time_update(struct kvm_vcpu *v)
3156 unsigned long flags, tgt_tsc_khz;
3158 struct kvm_vcpu_arch *vcpu = &v->arch;
3159 struct kvm_arch *ka = &v->kvm->arch;
3161 u64 tsc_timestamp, host_tsc;
3163 bool use_master_clock;
3169 * If the host uses TSC clock, then passthrough TSC as stable
3173 seq = read_seqcount_begin(&ka->pvclock_sc);
3174 use_master_clock = ka->use_master_clock;
3175 if (use_master_clock) {
3176 host_tsc = ka->master_cycle_now;
3177 kernel_ns = ka->master_kernel_ns;
3179 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3181 /* Keep irq disabled to prevent changes to the clock */
3182 local_irq_save(flags);
3183 tgt_tsc_khz = get_cpu_tsc_khz();
3184 if (unlikely(tgt_tsc_khz == 0)) {
3185 local_irq_restore(flags);
3186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3189 if (!use_master_clock) {
3191 kernel_ns = get_kvmclock_base_ns();
3194 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3197 * We may have to catch up the TSC to match elapsed wall clock
3198 * time for two reasons, even if kvmclock is used.
3199 * 1) CPU could have been running below the maximum TSC rate
3200 * 2) Broken TSC compensation resets the base at each VCPU
3201 * entry to avoid unknown leaps of TSC even when running
3202 * again on the same CPU. This may cause apparent elapsed
3203 * time to disappear, and the guest to stand still or run
3206 if (vcpu->tsc_catchup) {
3207 u64 tsc = compute_guest_tsc(v, kernel_ns);
3208 if (tsc > tsc_timestamp) {
3209 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3210 tsc_timestamp = tsc;
3214 local_irq_restore(flags);
3216 /* With all the info we got, fill in the values */
3218 if (kvm_caps.has_tsc_control)
3219 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3220 v->arch.l1_tsc_scaling_ratio);
3222 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3223 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3224 &vcpu->hv_clock.tsc_shift,
3225 &vcpu->hv_clock.tsc_to_system_mul);
3226 vcpu->hw_tsc_khz = tgt_tsc_khz;
3227 kvm_xen_update_tsc_info(v);
3230 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3231 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3232 vcpu->last_guest_tsc = tsc_timestamp;
3234 /* If the host uses TSC clocksource, then it is stable */
3236 if (use_master_clock)
3237 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3239 vcpu->hv_clock.flags = pvclock_flags;
3241 if (vcpu->pv_time.active)
3242 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3243 #ifdef CONFIG_KVM_XEN
3244 if (vcpu->xen.vcpu_info_cache.active)
3245 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3246 offsetof(struct compat_vcpu_info, time));
3247 if (vcpu->xen.vcpu_time_info_cache.active)
3248 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3250 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3255 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3256 * which it started (i.e. its epoch, when its kvmclock was zero).
3258 * In fact those clocks are subtly different; wall clock frequency is
3259 * adjusted by NTP and has leap seconds, while the kvmclock is a
3260 * simple function of the TSC without any such adjustment.
3262 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3263 * that and kvmclock, but even that would be subject to change over
3266 * Attempt to calculate the epoch at a given moment using the *same*
3267 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3268 * wallclock and kvmclock times, and subtracting one from the other.
3270 * Fall back to using their values at slightly different moments by
3271 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3273 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3275 #ifdef CONFIG_X86_64
3276 struct pvclock_vcpu_time_info hv_clock;
3277 struct kvm_arch *ka = &kvm->arch;
3278 unsigned long seq, local_tsc_khz;
3279 struct timespec64 ts;
3283 seq = read_seqcount_begin(&ka->pvclock_sc);
3286 if (!ka->use_master_clock)
3290 * The TSC read and the call to get_cpu_tsc_khz() must happen
3295 local_tsc_khz = get_cpu_tsc_khz();
3297 if (local_tsc_khz &&
3298 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3299 local_tsc_khz = 0; /* Fall back to old method */
3304 * These values must be snapshotted within the seqcount loop.
3305 * After that, it's just mathematics which can happen on any
3308 hv_clock.tsc_timestamp = ka->master_cycle_now;
3309 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3311 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3314 * If the conditions were right, and obtaining the wallclock+TSC was
3315 * successful, calculate the KVM clock at the corresponding time and
3316 * subtract one from the other to get the guest's epoch in nanoseconds
3319 if (local_tsc_khz) {
3320 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3321 &hv_clock.tsc_shift,
3322 &hv_clock.tsc_to_system_mul);
3323 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3324 __pvclock_read_cycles(&hv_clock, host_tsc);
3327 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3331 * kvmclock updates which are isolated to a given vcpu, such as
3332 * vcpu->cpu migration, should not allow system_timestamp from
3333 * the rest of the vcpus to remain static. Otherwise ntp frequency
3334 * correction applies to one vcpu's system_timestamp but not
3337 * So in those cases, request a kvmclock update for all vcpus.
3338 * We need to rate-limit these requests though, as they can
3339 * considerably slow guests that have a large number of vcpus.
3340 * The time for a remote vcpu to update its kvmclock is bound
3341 * by the delay we use to rate-limit the updates.
3344 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3346 static void kvmclock_update_fn(struct work_struct *work)
3349 struct delayed_work *dwork = to_delayed_work(work);
3350 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3351 kvmclock_update_work);
3352 struct kvm *kvm = container_of(ka, struct kvm, arch);
3353 struct kvm_vcpu *vcpu;
3355 kvm_for_each_vcpu(i, vcpu, kvm) {
3356 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3357 kvm_vcpu_kick(vcpu);
3361 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3363 struct kvm *kvm = v->kvm;
3365 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3366 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3367 KVMCLOCK_UPDATE_DELAY);
3370 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3372 static void kvmclock_sync_fn(struct work_struct *work)
3374 struct delayed_work *dwork = to_delayed_work(work);
3375 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3376 kvmclock_sync_work);
3377 struct kvm *kvm = container_of(ka, struct kvm, arch);
3379 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3380 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3381 KVMCLOCK_SYNC_PERIOD);
3384 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3385 static bool is_mci_control_msr(u32 msr)
3387 return (msr & 3) == 0;
3389 static bool is_mci_status_msr(u32 msr)
3391 return (msr & 3) == 1;
3395 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3397 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3399 /* McStatusWrEn enabled? */
3400 if (guest_cpuid_is_amd_or_hygon(vcpu))
3401 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3406 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3408 u64 mcg_cap = vcpu->arch.mcg_cap;
3409 unsigned bank_num = mcg_cap & 0xff;
3410 u32 msr = msr_info->index;
3411 u64 data = msr_info->data;
3412 u32 offset, last_msr;
3415 case MSR_IA32_MCG_STATUS:
3416 vcpu->arch.mcg_status = data;
3418 case MSR_IA32_MCG_CTL:
3419 if (!(mcg_cap & MCG_CTL_P) &&
3420 (data || !msr_info->host_initiated))
3422 if (data != 0 && data != ~(u64)0)
3424 vcpu->arch.mcg_ctl = data;
3426 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3427 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3431 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3433 /* An attempt to write a 1 to a reserved bit raises #GP */
3434 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3436 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3437 last_msr + 1 - MSR_IA32_MC0_CTL2);
3438 vcpu->arch.mci_ctl2_banks[offset] = data;
3440 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3441 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3446 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3447 * values are architecturally undefined. But, some Linux
3448 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3449 * issue on AMD K8s, allow bit 10 to be clear when setting all
3450 * other bits in order to avoid an uncaught #GP in the guest.
3452 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3453 * single-bit ECC data errors.
3455 if (is_mci_control_msr(msr) &&
3456 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3460 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3461 * AMD-based CPUs allow non-zero values, but if and only if
3462 * HWCR[McStatusWrEn] is set.
3464 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3465 data != 0 && !can_set_mci_status(vcpu))
3468 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3469 last_msr + 1 - MSR_IA32_MC0_CTL);
3470 vcpu->arch.mce_banks[offset] = data;
3478 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3480 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3482 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3485 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3487 gpa_t gpa = data & ~0x3f;
3489 /* Bits 4:5 are reserved, Should be zero */
3493 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3494 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3498 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3501 if (!lapic_in_kernel(vcpu))
3502 return data ? 1 : 0;
3504 vcpu->arch.apf.msr_en_val = data;
3506 if (!kvm_pv_async_pf_enabled(vcpu)) {
3507 kvm_clear_async_pf_completion_queue(vcpu);
3508 kvm_async_pf_hash_reset(vcpu);
3512 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3516 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3517 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3519 kvm_async_pf_wakeup_all(vcpu);
3524 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3526 /* Bits 8-63 are reserved */
3530 if (!lapic_in_kernel(vcpu))
3533 vcpu->arch.apf.msr_int_val = data;
3535 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3540 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3542 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3543 vcpu->arch.time = 0;
3546 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3548 ++vcpu->stat.tlb_flush;
3549 static_call(kvm_x86_flush_tlb_all)(vcpu);
3551 /* Flushing all ASIDs flushes the current ASID... */
3552 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3555 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3557 ++vcpu->stat.tlb_flush;
3561 * A TLB flush on behalf of the guest is equivalent to
3562 * INVPCID(all), toggling CR4.PGE, etc., which requires
3563 * a forced sync of the shadow page tables. Ensure all the
3564 * roots are synced and the guest TLB in hardware is clean.
3566 kvm_mmu_sync_roots(vcpu);
3567 kvm_mmu_sync_prev_roots(vcpu);
3570 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3573 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3576 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3580 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3582 ++vcpu->stat.tlb_flush;
3583 static_call(kvm_x86_flush_tlb_current)(vcpu);
3587 * Service "local" TLB flush requests, which are specific to the current MMU
3588 * context. In addition to the generic event handling in vcpu_enter_guest(),
3589 * TLB flushes that are targeted at an MMU context also need to be serviced
3590 * prior before nested VM-Enter/VM-Exit.
3592 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3594 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3595 kvm_vcpu_flush_tlb_current(vcpu);
3597 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3598 kvm_vcpu_flush_tlb_guest(vcpu);
3600 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3602 static void record_steal_time(struct kvm_vcpu *vcpu)
3604 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3605 struct kvm_steal_time __user *st;
3606 struct kvm_memslots *slots;
3607 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3611 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3612 kvm_xen_runstate_set_running(vcpu);
3616 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3619 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3622 slots = kvm_memslots(vcpu->kvm);
3624 if (unlikely(slots->generation != ghc->generation ||
3626 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3627 /* We rely on the fact that it fits in a single page. */
3628 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3630 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3631 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3635 st = (struct kvm_steal_time __user *)ghc->hva;
3637 * Doing a TLB flush here, on the guest's behalf, can avoid
3640 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3641 u8 st_preempted = 0;
3644 if (!user_access_begin(st, sizeof(*st)))
3647 asm volatile("1: xchgb %0, %2\n"
3650 _ASM_EXTABLE_UA(1b, 2b)
3651 : "+q" (st_preempted),
3653 "+m" (st->preempted));
3659 vcpu->arch.st.preempted = 0;
3661 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3662 st_preempted & KVM_VCPU_FLUSH_TLB);
3663 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3664 kvm_vcpu_flush_tlb_guest(vcpu);
3666 if (!user_access_begin(st, sizeof(*st)))
3669 if (!user_access_begin(st, sizeof(*st)))
3672 unsafe_put_user(0, &st->preempted, out);
3673 vcpu->arch.st.preempted = 0;
3676 unsafe_get_user(version, &st->version, out);
3678 version += 1; /* first time write, random junk */
3681 unsafe_put_user(version, &st->version, out);
3685 unsafe_get_user(steal, &st->steal, out);
3686 steal += current->sched_info.run_delay -
3687 vcpu->arch.st.last_steal;
3688 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3689 unsafe_put_user(steal, &st->steal, out);
3692 unsafe_put_user(version, &st->version, out);
3697 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3700 static bool kvm_is_msr_to_save(u32 msr_index)
3704 for (i = 0; i < num_msrs_to_save; i++) {
3705 if (msrs_to_save[i] == msr_index)
3712 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3714 u32 msr = msr_info->index;
3715 u64 data = msr_info->data;
3717 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3718 return kvm_xen_write_hypercall_page(vcpu, data);
3721 case MSR_AMD64_NB_CFG:
3722 case MSR_IA32_UCODE_WRITE:
3723 case MSR_VM_HSAVE_PA:
3724 case MSR_AMD64_PATCH_LOADER:
3725 case MSR_AMD64_BU_CFG2:
3726 case MSR_AMD64_DC_CFG:
3727 case MSR_AMD64_TW_CFG:
3728 case MSR_F15H_EX_CFG:
3731 case MSR_IA32_UCODE_REV:
3732 if (msr_info->host_initiated)
3733 vcpu->arch.microcode_version = data;
3735 case MSR_IA32_ARCH_CAPABILITIES:
3736 if (!msr_info->host_initiated)
3738 vcpu->arch.arch_capabilities = data;
3740 case MSR_IA32_PERF_CAPABILITIES:
3741 if (!msr_info->host_initiated)
3743 if (data & ~kvm_caps.supported_perf_cap)
3747 * Note, this is not just a performance optimization! KVM
3748 * disallows changing feature MSRs after the vCPU has run; PMU
3749 * refresh will bug the VM if called after the vCPU has run.
3751 if (vcpu->arch.perf_capabilities == data)
3754 vcpu->arch.perf_capabilities = data;
3755 kvm_pmu_refresh(vcpu);
3757 case MSR_IA32_PRED_CMD: {
3758 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3760 if (!msr_info->host_initiated) {
3761 if ((!guest_has_pred_cmd_msr(vcpu)))
3764 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3765 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3766 reserved_bits |= PRED_CMD_IBPB;
3768 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3769 reserved_bits |= PRED_CMD_SBPB;
3772 if (!boot_cpu_has(X86_FEATURE_IBPB))
3773 reserved_bits |= PRED_CMD_IBPB;
3775 if (!boot_cpu_has(X86_FEATURE_SBPB))
3776 reserved_bits |= PRED_CMD_SBPB;
3778 if (data & reserved_bits)
3784 wrmsrl(MSR_IA32_PRED_CMD, data);
3787 case MSR_IA32_FLUSH_CMD:
3788 if (!msr_info->host_initiated &&
3789 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3792 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3797 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3800 return set_efer(vcpu, msr_info);
3802 data &= ~(u64)0x40; /* ignore flush filter disable */
3803 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3804 data &= ~(u64)0x8; /* ignore TLB cache disable */
3807 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3808 * through at least v6.6 whine if TscFreqSel is clear,
3809 * depending on F/M/S.
3811 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3812 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3815 vcpu->arch.msr_hwcr = data;
3817 case MSR_FAM10H_MMIO_CONF_BASE:
3819 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3823 case MSR_IA32_CR_PAT:
3824 if (!kvm_pat_valid(data))
3827 vcpu->arch.pat = data;
3829 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3830 case MSR_MTRRdefType:
3831 return kvm_mtrr_set_msr(vcpu, msr, data);
3832 case MSR_IA32_APICBASE:
3833 return kvm_set_apic_base(vcpu, msr_info);
3834 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3835 return kvm_x2apic_msr_write(vcpu, msr, data);
3836 case MSR_IA32_TSC_DEADLINE:
3837 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3839 case MSR_IA32_TSC_ADJUST:
3840 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3841 if (!msr_info->host_initiated) {
3842 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3843 adjust_tsc_offset_guest(vcpu, adj);
3844 /* Before back to guest, tsc_timestamp must be adjusted
3845 * as well, otherwise guest's percpu pvclock time could jump.
3847 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3849 vcpu->arch.ia32_tsc_adjust_msr = data;
3852 case MSR_IA32_MISC_ENABLE: {
3853 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3855 if (!msr_info->host_initiated) {
3857 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3860 /* R bits, i.e. writes are ignored, but don't fault. */
3861 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3862 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3865 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3866 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3867 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3869 vcpu->arch.ia32_misc_enable_msr = data;
3870 kvm_update_cpuid_runtime(vcpu);
3872 vcpu->arch.ia32_misc_enable_msr = data;
3876 case MSR_IA32_SMBASE:
3877 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3879 vcpu->arch.smbase = data;
3881 case MSR_IA32_POWER_CTL:
3882 vcpu->arch.msr_ia32_power_ctl = data;
3885 if (msr_info->host_initiated) {
3886 kvm_synchronize_tsc(vcpu, &data);
3888 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3889 adjust_tsc_offset_guest(vcpu, adj);
3890 vcpu->arch.ia32_tsc_adjust_msr += adj;
3894 if (!msr_info->host_initiated &&
3895 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3898 * KVM supports exposing PT to the guest, but does not support
3899 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3900 * XSAVES/XRSTORS to save/restore PT MSRs.
3902 if (data & ~kvm_caps.supported_xss)
3904 vcpu->arch.ia32_xss = data;
3905 kvm_update_cpuid_runtime(vcpu);
3908 if (!msr_info->host_initiated)
3910 vcpu->arch.smi_count = data;
3912 case MSR_KVM_WALL_CLOCK_NEW:
3913 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3916 vcpu->kvm->arch.wall_clock = data;
3917 kvm_write_wall_clock(vcpu->kvm, data, 0);
3919 case MSR_KVM_WALL_CLOCK:
3920 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3923 vcpu->kvm->arch.wall_clock = data;
3924 kvm_write_wall_clock(vcpu->kvm, data, 0);
3926 case MSR_KVM_SYSTEM_TIME_NEW:
3927 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3930 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3932 case MSR_KVM_SYSTEM_TIME:
3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3936 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3938 case MSR_KVM_ASYNC_PF_EN:
3939 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3942 if (kvm_pv_enable_async_pf(vcpu, data))
3945 case MSR_KVM_ASYNC_PF_INT:
3946 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3949 if (kvm_pv_enable_async_pf_int(vcpu, data))
3952 case MSR_KVM_ASYNC_PF_ACK:
3953 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3956 vcpu->arch.apf.pageready_pending = false;
3957 kvm_check_async_pf_completion(vcpu);
3960 case MSR_KVM_STEAL_TIME:
3961 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3964 if (unlikely(!sched_info_on()))
3967 if (data & KVM_STEAL_RESERVED_MASK)
3970 vcpu->arch.st.msr_val = data;
3972 if (!(data & KVM_MSR_ENABLED))
3975 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3978 case MSR_KVM_PV_EOI_EN:
3979 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3982 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3986 case MSR_KVM_POLL_CONTROL:
3987 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3990 /* only enable bit supported */
3991 if (data & (-1ULL << 1))
3994 vcpu->arch.msr_kvm_poll_control = data;
3997 case MSR_IA32_MCG_CTL:
3998 case MSR_IA32_MCG_STATUS:
3999 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4000 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4001 return set_msr_mce(vcpu, msr_info);
4003 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4004 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4005 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4006 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4007 if (kvm_pmu_is_valid_msr(vcpu, msr))
4008 return kvm_pmu_set_msr(vcpu, msr_info);
4011 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4013 case MSR_K7_CLK_CTL:
4015 * Ignore all writes to this no longer documented MSR.
4016 * Writes are only relevant for old K7 processors,
4017 * all pre-dating SVM, but a recommended workaround from
4018 * AMD for these chips. It is possible to specify the
4019 * affected processor models on the command line, hence
4020 * the need to ignore the workaround.
4023 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4024 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4025 case HV_X64_MSR_SYNDBG_OPTIONS:
4026 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4027 case HV_X64_MSR_CRASH_CTL:
4028 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4029 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4030 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4031 case HV_X64_MSR_TSC_EMULATION_STATUS:
4032 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4033 return kvm_hv_set_msr_common(vcpu, msr, data,
4034 msr_info->host_initiated);
4035 case MSR_IA32_BBL_CR_CTL3:
4036 /* Drop writes to this legacy MSR -- see rdmsr
4037 * counterpart for further detail.
4039 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4041 case MSR_AMD64_OSVW_ID_LENGTH:
4042 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4044 vcpu->arch.osvw.length = data;
4046 case MSR_AMD64_OSVW_STATUS:
4047 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4049 vcpu->arch.osvw.status = data;
4051 case MSR_PLATFORM_INFO:
4052 if (!msr_info->host_initiated ||
4053 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4054 cpuid_fault_enabled(vcpu)))
4056 vcpu->arch.msr_platform_info = data;
4058 case MSR_MISC_FEATURES_ENABLES:
4059 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4060 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4061 !supports_cpuid_fault(vcpu)))
4063 vcpu->arch.msr_misc_features_enables = data;
4065 #ifdef CONFIG_X86_64
4067 if (!msr_info->host_initiated &&
4068 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4071 if (data & ~kvm_guest_supported_xfd(vcpu))
4074 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4076 case MSR_IA32_XFD_ERR:
4077 if (!msr_info->host_initiated &&
4078 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4081 if (data & ~kvm_guest_supported_xfd(vcpu))
4084 vcpu->arch.guest_fpu.xfd_err = data;
4088 if (kvm_pmu_is_valid_msr(vcpu, msr))
4089 return kvm_pmu_set_msr(vcpu, msr_info);
4092 * Userspace is allowed to write '0' to MSRs that KVM reports
4093 * as to-be-saved, even if an MSRs isn't fully supported.
4095 if (msr_info->host_initiated && !data &&
4096 kvm_is_msr_to_save(msr))
4099 return KVM_MSR_RET_INVALID;
4103 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4105 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4108 u64 mcg_cap = vcpu->arch.mcg_cap;
4109 unsigned bank_num = mcg_cap & 0xff;
4110 u32 offset, last_msr;
4113 case MSR_IA32_P5_MC_ADDR:
4114 case MSR_IA32_P5_MC_TYPE:
4117 case MSR_IA32_MCG_CAP:
4118 data = vcpu->arch.mcg_cap;
4120 case MSR_IA32_MCG_CTL:
4121 if (!(mcg_cap & MCG_CTL_P) && !host)
4123 data = vcpu->arch.mcg_ctl;
4125 case MSR_IA32_MCG_STATUS:
4126 data = vcpu->arch.mcg_status;
4128 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4129 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4133 if (!(mcg_cap & MCG_CMCI_P) && !host)
4135 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4136 last_msr + 1 - MSR_IA32_MC0_CTL2);
4137 data = vcpu->arch.mci_ctl2_banks[offset];
4139 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4140 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4144 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4145 last_msr + 1 - MSR_IA32_MC0_CTL);
4146 data = vcpu->arch.mce_banks[offset];
4155 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4157 switch (msr_info->index) {
4158 case MSR_IA32_PLATFORM_ID:
4159 case MSR_IA32_EBL_CR_POWERON:
4160 case MSR_IA32_LASTBRANCHFROMIP:
4161 case MSR_IA32_LASTBRANCHTOIP:
4162 case MSR_IA32_LASTINTFROMIP:
4163 case MSR_IA32_LASTINTTOIP:
4164 case MSR_AMD64_SYSCFG:
4165 case MSR_K8_TSEG_ADDR:
4166 case MSR_K8_TSEG_MASK:
4167 case MSR_VM_HSAVE_PA:
4168 case MSR_K8_INT_PENDING_MSG:
4169 case MSR_AMD64_NB_CFG:
4170 case MSR_FAM10H_MMIO_CONF_BASE:
4171 case MSR_AMD64_BU_CFG2:
4172 case MSR_IA32_PERF_CTL:
4173 case MSR_AMD64_DC_CFG:
4174 case MSR_AMD64_TW_CFG:
4175 case MSR_F15H_EX_CFG:
4177 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4178 * limit) MSRs. Just return 0, as we do not want to expose the host
4179 * data here. Do not conditionalize this on CPUID, as KVM does not do
4180 * so for existing CPU-specific MSRs.
4182 case MSR_RAPL_POWER_UNIT:
4183 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4184 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4185 case MSR_PKG_ENERGY_STATUS: /* Total package */
4186 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4189 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4190 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4191 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4192 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4193 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4194 return kvm_pmu_get_msr(vcpu, msr_info);
4197 case MSR_IA32_UCODE_REV:
4198 msr_info->data = vcpu->arch.microcode_version;
4200 case MSR_IA32_ARCH_CAPABILITIES:
4201 if (!msr_info->host_initiated &&
4202 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4204 msr_info->data = vcpu->arch.arch_capabilities;
4206 case MSR_IA32_PERF_CAPABILITIES:
4207 if (!msr_info->host_initiated &&
4208 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4210 msr_info->data = vcpu->arch.perf_capabilities;
4212 case MSR_IA32_POWER_CTL:
4213 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4215 case MSR_IA32_TSC: {
4217 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4218 * even when not intercepted. AMD manual doesn't explicitly
4219 * state this but appears to behave the same.
4221 * On userspace reads and writes, however, we unconditionally
4222 * return L1's TSC value to ensure backwards-compatible
4223 * behavior for migration.
4227 if (msr_info->host_initiated) {
4228 offset = vcpu->arch.l1_tsc_offset;
4229 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4231 offset = vcpu->arch.tsc_offset;
4232 ratio = vcpu->arch.tsc_scaling_ratio;
4235 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4238 case MSR_IA32_CR_PAT:
4239 msr_info->data = vcpu->arch.pat;
4242 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4243 case MSR_MTRRdefType:
4244 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4245 case 0xcd: /* fsb frequency */
4249 * MSR_EBC_FREQUENCY_ID
4250 * Conservative value valid for even the basic CPU models.
4251 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4252 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4253 * and 266MHz for model 3, or 4. Set Core Clock
4254 * Frequency to System Bus Frequency Ratio to 1 (bits
4255 * 31:24) even though these are only valid for CPU
4256 * models > 2, however guests may end up dividing or
4257 * multiplying by zero otherwise.
4259 case MSR_EBC_FREQUENCY_ID:
4260 msr_info->data = 1 << 24;
4262 case MSR_IA32_APICBASE:
4263 msr_info->data = kvm_get_apic_base(vcpu);
4265 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4266 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4267 case MSR_IA32_TSC_DEADLINE:
4268 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4270 case MSR_IA32_TSC_ADJUST:
4271 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4273 case MSR_IA32_MISC_ENABLE:
4274 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4276 case MSR_IA32_SMBASE:
4277 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4279 msr_info->data = vcpu->arch.smbase;
4282 msr_info->data = vcpu->arch.smi_count;
4284 case MSR_IA32_PERF_STATUS:
4285 /* TSC increment by tick */
4286 msr_info->data = 1000ULL;
4287 /* CPU multiplier */
4288 msr_info->data |= (((uint64_t)4ULL) << 40);
4291 msr_info->data = vcpu->arch.efer;
4293 case MSR_KVM_WALL_CLOCK:
4294 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4297 msr_info->data = vcpu->kvm->arch.wall_clock;
4299 case MSR_KVM_WALL_CLOCK_NEW:
4300 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4303 msr_info->data = vcpu->kvm->arch.wall_clock;
4305 case MSR_KVM_SYSTEM_TIME:
4306 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4309 msr_info->data = vcpu->arch.time;
4311 case MSR_KVM_SYSTEM_TIME_NEW:
4312 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4315 msr_info->data = vcpu->arch.time;
4317 case MSR_KVM_ASYNC_PF_EN:
4318 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4321 msr_info->data = vcpu->arch.apf.msr_en_val;
4323 case MSR_KVM_ASYNC_PF_INT:
4324 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4327 msr_info->data = vcpu->arch.apf.msr_int_val;
4329 case MSR_KVM_ASYNC_PF_ACK:
4330 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4335 case MSR_KVM_STEAL_TIME:
4336 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4339 msr_info->data = vcpu->arch.st.msr_val;
4341 case MSR_KVM_PV_EOI_EN:
4342 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4345 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4347 case MSR_KVM_POLL_CONTROL:
4348 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4351 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4353 case MSR_IA32_P5_MC_ADDR:
4354 case MSR_IA32_P5_MC_TYPE:
4355 case MSR_IA32_MCG_CAP:
4356 case MSR_IA32_MCG_CTL:
4357 case MSR_IA32_MCG_STATUS:
4358 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4359 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4360 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4361 msr_info->host_initiated);
4363 if (!msr_info->host_initiated &&
4364 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4366 msr_info->data = vcpu->arch.ia32_xss;
4368 case MSR_K7_CLK_CTL:
4370 * Provide expected ramp-up count for K7. All other
4371 * are set to zero, indicating minimum divisors for
4374 * This prevents guest kernels on AMD host with CPU
4375 * type 6, model 8 and higher from exploding due to
4376 * the rdmsr failing.
4378 msr_info->data = 0x20000000;
4380 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4381 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4382 case HV_X64_MSR_SYNDBG_OPTIONS:
4383 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4384 case HV_X64_MSR_CRASH_CTL:
4385 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4386 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4387 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4388 case HV_X64_MSR_TSC_EMULATION_STATUS:
4389 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4390 return kvm_hv_get_msr_common(vcpu,
4391 msr_info->index, &msr_info->data,
4392 msr_info->host_initiated);
4393 case MSR_IA32_BBL_CR_CTL3:
4394 /* This legacy MSR exists but isn't fully documented in current
4395 * silicon. It is however accessed by winxp in very narrow
4396 * scenarios where it sets bit #19, itself documented as
4397 * a "reserved" bit. Best effort attempt to source coherent
4398 * read data here should the balance of the register be
4399 * interpreted by the guest:
4401 * L2 cache control register 3: 64GB range, 256KB size,
4402 * enabled, latency 0x1, configured
4404 msr_info->data = 0xbe702111;
4406 case MSR_AMD64_OSVW_ID_LENGTH:
4407 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4409 msr_info->data = vcpu->arch.osvw.length;
4411 case MSR_AMD64_OSVW_STATUS:
4412 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4414 msr_info->data = vcpu->arch.osvw.status;
4416 case MSR_PLATFORM_INFO:
4417 if (!msr_info->host_initiated &&
4418 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4420 msr_info->data = vcpu->arch.msr_platform_info;
4422 case MSR_MISC_FEATURES_ENABLES:
4423 msr_info->data = vcpu->arch.msr_misc_features_enables;
4426 msr_info->data = vcpu->arch.msr_hwcr;
4428 #ifdef CONFIG_X86_64
4430 if (!msr_info->host_initiated &&
4431 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4434 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4436 case MSR_IA32_XFD_ERR:
4437 if (!msr_info->host_initiated &&
4438 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4441 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4445 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4446 return kvm_pmu_get_msr(vcpu, msr_info);
4449 * Userspace is allowed to read MSRs that KVM reports as
4450 * to-be-saved, even if an MSR isn't fully supported.
4452 if (msr_info->host_initiated &&
4453 kvm_is_msr_to_save(msr_info->index)) {
4458 return KVM_MSR_RET_INVALID;
4462 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4465 * Read or write a bunch of msrs. All parameters are kernel addresses.
4467 * @return number of msrs set successfully.
4469 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4470 struct kvm_msr_entry *entries,
4471 int (*do_msr)(struct kvm_vcpu *vcpu,
4472 unsigned index, u64 *data))
4476 for (i = 0; i < msrs->nmsrs; ++i)
4477 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4484 * Read or write a bunch of msrs. Parameters are user addresses.
4486 * @return number of msrs set successfully.
4488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4489 int (*do_msr)(struct kvm_vcpu *vcpu,
4490 unsigned index, u64 *data),
4493 struct kvm_msrs msrs;
4494 struct kvm_msr_entry *entries;
4499 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4503 if (msrs.nmsrs >= MAX_IO_MSRS)
4506 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4507 entries = memdup_user(user_msrs->entries, size);
4508 if (IS_ERR(entries)) {
4509 r = PTR_ERR(entries);
4513 r = __msr_io(vcpu, &msrs, entries, do_msr);
4515 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4523 static inline bool kvm_can_mwait_in_guest(void)
4525 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4526 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4527 boot_cpu_has(X86_FEATURE_ARAT);
4530 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4531 struct kvm_cpuid2 __user *cpuid_arg)
4533 struct kvm_cpuid2 cpuid;
4537 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4540 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4545 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4551 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4556 case KVM_CAP_IRQCHIP:
4558 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4559 case KVM_CAP_SET_TSS_ADDR:
4560 case KVM_CAP_EXT_CPUID:
4561 case KVM_CAP_EXT_EMUL_CPUID:
4562 case KVM_CAP_CLOCKSOURCE:
4564 case KVM_CAP_NOP_IO_DELAY:
4565 case KVM_CAP_MP_STATE:
4566 case KVM_CAP_SYNC_MMU:
4567 case KVM_CAP_USER_NMI:
4568 case KVM_CAP_REINJECT_CONTROL:
4569 case KVM_CAP_IRQ_INJECT_STATUS:
4570 case KVM_CAP_IOEVENTFD:
4571 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4573 case KVM_CAP_PIT_STATE2:
4574 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4575 case KVM_CAP_VCPU_EVENTS:
4576 case KVM_CAP_HYPERV:
4577 case KVM_CAP_HYPERV_VAPIC:
4578 case KVM_CAP_HYPERV_SPIN:
4579 case KVM_CAP_HYPERV_SYNIC:
4580 case KVM_CAP_HYPERV_SYNIC2:
4581 case KVM_CAP_HYPERV_VP_INDEX:
4582 case KVM_CAP_HYPERV_EVENTFD:
4583 case KVM_CAP_HYPERV_TLBFLUSH:
4584 case KVM_CAP_HYPERV_SEND_IPI:
4585 case KVM_CAP_HYPERV_CPUID:
4586 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4587 case KVM_CAP_SYS_HYPERV_CPUID:
4588 case KVM_CAP_PCI_SEGMENT:
4589 case KVM_CAP_DEBUGREGS:
4590 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4592 case KVM_CAP_ASYNC_PF:
4593 case KVM_CAP_ASYNC_PF_INT:
4594 case KVM_CAP_GET_TSC_KHZ:
4595 case KVM_CAP_KVMCLOCK_CTRL:
4596 case KVM_CAP_READONLY_MEM:
4597 case KVM_CAP_HYPERV_TIME:
4598 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4599 case KVM_CAP_TSC_DEADLINE_TIMER:
4600 case KVM_CAP_DISABLE_QUIRKS:
4601 case KVM_CAP_SET_BOOT_CPU_ID:
4602 case KVM_CAP_SPLIT_IRQCHIP:
4603 case KVM_CAP_IMMEDIATE_EXIT:
4604 case KVM_CAP_PMU_EVENT_FILTER:
4605 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4606 case KVM_CAP_GET_MSR_FEATURES:
4607 case KVM_CAP_MSR_PLATFORM_INFO:
4608 case KVM_CAP_EXCEPTION_PAYLOAD:
4609 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4610 case KVM_CAP_SET_GUEST_DEBUG:
4611 case KVM_CAP_LAST_CPU:
4612 case KVM_CAP_X86_USER_SPACE_MSR:
4613 case KVM_CAP_X86_MSR_FILTER:
4614 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4615 #ifdef CONFIG_X86_SGX_KVM
4616 case KVM_CAP_SGX_ATTRIBUTE:
4618 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4619 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4620 case KVM_CAP_SREGS2:
4621 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4622 case KVM_CAP_VCPU_ATTRIBUTES:
4623 case KVM_CAP_SYS_ATTRIBUTES:
4625 case KVM_CAP_ENABLE_CAP:
4626 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4627 case KVM_CAP_IRQFD_RESAMPLE:
4630 case KVM_CAP_EXIT_HYPERCALL:
4631 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4633 case KVM_CAP_SET_GUEST_DEBUG2:
4634 return KVM_GUESTDBG_VALID_MASK;
4635 #ifdef CONFIG_KVM_XEN
4636 case KVM_CAP_XEN_HVM:
4637 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4638 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4639 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4640 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4641 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4642 if (sched_info_on())
4643 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4644 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4647 case KVM_CAP_SYNC_REGS:
4648 r = KVM_SYNC_X86_VALID_FIELDS;
4650 case KVM_CAP_ADJUST_CLOCK:
4651 r = KVM_CLOCK_VALID_FLAGS;
4653 case KVM_CAP_X86_DISABLE_EXITS:
4654 r = KVM_X86_DISABLE_EXITS_PAUSE;
4656 if (!mitigate_smt_rsb) {
4657 r |= KVM_X86_DISABLE_EXITS_HLT |
4658 KVM_X86_DISABLE_EXITS_CSTATE;
4660 if (kvm_can_mwait_in_guest())
4661 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4664 case KVM_CAP_X86_SMM:
4665 if (!IS_ENABLED(CONFIG_KVM_SMM))
4668 /* SMBASE is usually relocated above 1M on modern chipsets,
4669 * and SMM handlers might indeed rely on 4G segment limits,
4670 * so do not report SMM to be available if real mode is
4671 * emulated via vm86 mode. Still, do not go to great lengths
4672 * to avoid userspace's usage of the feature, because it is a
4673 * fringe case that is not enabled except via specific settings
4674 * of the module parameters.
4676 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4678 case KVM_CAP_NR_VCPUS:
4679 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4681 case KVM_CAP_MAX_VCPUS:
4684 case KVM_CAP_MAX_VCPU_ID:
4685 r = KVM_MAX_VCPU_IDS;
4687 case KVM_CAP_PV_MMU: /* obsolete */
4691 r = KVM_MAX_MCE_BANKS;
4694 r = boot_cpu_has(X86_FEATURE_XSAVE);
4696 case KVM_CAP_TSC_CONTROL:
4697 case KVM_CAP_VM_TSC_CONTROL:
4698 r = kvm_caps.has_tsc_control;
4700 case KVM_CAP_X2APIC_API:
4701 r = KVM_X2APIC_API_VALID_FLAGS;
4703 case KVM_CAP_NESTED_STATE:
4704 r = kvm_x86_ops.nested_ops->get_state ?
4705 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4707 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4708 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4710 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4711 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4713 case KVM_CAP_SMALLER_MAXPHYADDR:
4714 r = (int) allow_smaller_maxphyaddr;
4716 case KVM_CAP_STEAL_TIME:
4717 r = sched_info_on();
4719 case KVM_CAP_X86_BUS_LOCK_EXIT:
4720 if (kvm_caps.has_bus_lock_exit)
4721 r = KVM_BUS_LOCK_DETECTION_OFF |
4722 KVM_BUS_LOCK_DETECTION_EXIT;
4726 case KVM_CAP_XSAVE2: {
4727 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4728 if (r < sizeof(struct kvm_xsave))
4729 r = sizeof(struct kvm_xsave);
4732 case KVM_CAP_PMU_CAPABILITY:
4733 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4735 case KVM_CAP_DISABLE_QUIRKS2:
4736 r = KVM_X86_VALID_QUIRKS;
4738 case KVM_CAP_X86_NOTIFY_VMEXIT:
4739 r = kvm_caps.has_notify_vmexit;
4747 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4749 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4751 if ((u64)(unsigned long)uaddr != attr->addr)
4752 return ERR_PTR_USR(-EFAULT);
4756 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4758 u64 __user *uaddr = kvm_get_attr_addr(attr);
4764 return PTR_ERR(uaddr);
4766 switch (attr->attr) {
4767 case KVM_X86_XCOMP_GUEST_SUPP:
4768 if (put_user(kvm_caps.supported_xcr0, uaddr))
4776 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4781 switch (attr->attr) {
4782 case KVM_X86_XCOMP_GUEST_SUPP:
4789 long kvm_arch_dev_ioctl(struct file *filp,
4790 unsigned int ioctl, unsigned long arg)
4792 void __user *argp = (void __user *)arg;
4796 case KVM_GET_MSR_INDEX_LIST: {
4797 struct kvm_msr_list __user *user_msr_list = argp;
4798 struct kvm_msr_list msr_list;
4802 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4805 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4806 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4809 if (n < msr_list.nmsrs)
4812 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4813 num_msrs_to_save * sizeof(u32)))
4815 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4817 num_emulated_msrs * sizeof(u32)))
4822 case KVM_GET_SUPPORTED_CPUID:
4823 case KVM_GET_EMULATED_CPUID: {
4824 struct kvm_cpuid2 __user *cpuid_arg = argp;
4825 struct kvm_cpuid2 cpuid;
4828 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4831 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4837 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4842 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4844 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4845 sizeof(kvm_caps.supported_mce_cap)))
4849 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4850 struct kvm_msr_list __user *user_msr_list = argp;
4851 struct kvm_msr_list msr_list;
4855 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4858 msr_list.nmsrs = num_msr_based_features;
4859 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4862 if (n < msr_list.nmsrs)
4865 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4866 num_msr_based_features * sizeof(u32)))
4872 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4874 case KVM_GET_SUPPORTED_HV_CPUID:
4875 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4877 case KVM_GET_DEVICE_ATTR: {
4878 struct kvm_device_attr attr;
4880 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4882 r = kvm_x86_dev_get_attr(&attr);
4885 case KVM_HAS_DEVICE_ATTR: {
4886 struct kvm_device_attr attr;
4888 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4890 r = kvm_x86_dev_has_attr(&attr);
4901 static void wbinvd_ipi(void *garbage)
4906 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4908 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4911 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4913 /* Address WBINVD may be executed by guest */
4914 if (need_emulate_wbinvd(vcpu)) {
4915 if (static_call(kvm_x86_has_wbinvd_exit)())
4916 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4917 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4918 smp_call_function_single(vcpu->cpu,
4919 wbinvd_ipi, NULL, 1);
4922 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4924 /* Save host pkru register if supported */
4925 vcpu->arch.host_pkru = read_pkru();
4927 /* Apply any externally detected TSC adjustments (due to suspend) */
4928 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4929 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4930 vcpu->arch.tsc_offset_adjustment = 0;
4931 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4934 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4935 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4936 rdtsc() - vcpu->arch.last_host_tsc;
4938 mark_tsc_unstable("KVM discovered backwards TSC");
4940 if (kvm_check_tsc_unstable()) {
4941 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4942 vcpu->arch.last_guest_tsc);
4943 kvm_vcpu_write_tsc_offset(vcpu, offset);
4944 vcpu->arch.tsc_catchup = 1;
4947 if (kvm_lapic_hv_timer_in_use(vcpu))
4948 kvm_lapic_restart_hv_timer(vcpu);
4951 * On a host with synchronized TSC, there is no need to update
4952 * kvmclock on vcpu->cpu migration
4954 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4955 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4956 if (vcpu->cpu != cpu)
4957 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4961 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4964 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4966 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4967 struct kvm_steal_time __user *st;
4968 struct kvm_memslots *slots;
4969 static const u8 preempted = KVM_VCPU_PREEMPTED;
4970 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4973 * The vCPU can be marked preempted if and only if the VM-Exit was on
4974 * an instruction boundary and will not trigger guest emulation of any
4975 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4976 * when this is true, for example allowing the vCPU to be marked
4977 * preempted if and only if the VM-Exit was due to a host interrupt.
4979 if (!vcpu->arch.at_instruction_boundary) {
4980 vcpu->stat.preemption_other++;
4984 vcpu->stat.preemption_reported++;
4985 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4988 if (vcpu->arch.st.preempted)
4991 /* This happens on process exit */
4992 if (unlikely(current->mm != vcpu->kvm->mm))
4995 slots = kvm_memslots(vcpu->kvm);
4997 if (unlikely(slots->generation != ghc->generation ||
4999 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5002 st = (struct kvm_steal_time __user *)ghc->hva;
5003 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5005 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5006 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5008 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5011 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5015 if (vcpu->preempted) {
5016 if (!vcpu->arch.guest_state_protected)
5017 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5020 * Take the srcu lock as memslots will be accessed to check the gfn
5021 * cache generation against the memslots generation.
5023 idx = srcu_read_lock(&vcpu->kvm->srcu);
5024 if (kvm_xen_msr_enabled(vcpu->kvm))
5025 kvm_xen_runstate_set_preempted(vcpu);
5027 kvm_steal_time_set_preempted(vcpu);
5028 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5031 static_call(kvm_x86_vcpu_put)(vcpu);
5032 vcpu->arch.last_host_tsc = rdtsc();
5035 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5036 struct kvm_lapic_state *s)
5038 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5040 return kvm_apic_get_state(vcpu, s);
5043 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5044 struct kvm_lapic_state *s)
5048 r = kvm_apic_set_state(vcpu, s);
5051 update_cr8_intercept(vcpu);
5056 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5059 * We can accept userspace's request for interrupt injection
5060 * as long as we have a place to store the interrupt number.
5061 * The actual injection will happen when the CPU is able to
5062 * deliver the interrupt.
5064 if (kvm_cpu_has_extint(vcpu))
5067 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5068 return (!lapic_in_kernel(vcpu) ||
5069 kvm_apic_accept_pic_intr(vcpu));
5072 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5075 * Do not cause an interrupt window exit if an exception
5076 * is pending or an event needs reinjection; userspace
5077 * might want to inject the interrupt manually using KVM_SET_REGS
5078 * or KVM_SET_SREGS. For that to work, we must be at an
5079 * instruction boundary and with no events half-injected.
5081 return (kvm_arch_interrupt_allowed(vcpu) &&
5082 kvm_cpu_accept_dm_intr(vcpu) &&
5083 !kvm_event_needs_reinjection(vcpu) &&
5084 !kvm_is_exception_pending(vcpu));
5087 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5088 struct kvm_interrupt *irq)
5090 if (irq->irq >= KVM_NR_INTERRUPTS)
5093 if (!irqchip_in_kernel(vcpu->kvm)) {
5094 kvm_queue_interrupt(vcpu, irq->irq, false);
5095 kvm_make_request(KVM_REQ_EVENT, vcpu);
5100 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5101 * fail for in-kernel 8259.
5103 if (pic_in_kernel(vcpu->kvm))
5106 if (vcpu->arch.pending_external_vector != -1)
5109 vcpu->arch.pending_external_vector = irq->irq;
5110 kvm_make_request(KVM_REQ_EVENT, vcpu);
5114 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5116 kvm_inject_nmi(vcpu);
5121 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5122 struct kvm_tpr_access_ctl *tac)
5126 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5130 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5134 unsigned bank_num = mcg_cap & 0xff, bank;
5137 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5139 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5142 vcpu->arch.mcg_cap = mcg_cap;
5143 /* Init IA32_MCG_CTL to all 1s */
5144 if (mcg_cap & MCG_CTL_P)
5145 vcpu->arch.mcg_ctl = ~(u64)0;
5146 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5147 for (bank = 0; bank < bank_num; bank++) {
5148 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5149 if (mcg_cap & MCG_CMCI_P)
5150 vcpu->arch.mci_ctl2_banks[bank] = 0;
5153 kvm_apic_after_set_mcg_cap(vcpu);
5155 static_call(kvm_x86_setup_mce)(vcpu);
5161 * Validate this is an UCNA (uncorrectable no action) error by checking the
5162 * MCG_STATUS and MCi_STATUS registers:
5163 * - none of the bits for Machine Check Exceptions are set
5164 * - both the VAL (valid) and UC (uncorrectable) bits are set
5165 * MCI_STATUS_PCC - Processor Context Corrupted
5166 * MCI_STATUS_S - Signaled as a Machine Check Exception
5167 * MCI_STATUS_AR - Software recoverable Action Required
5169 static bool is_ucna(struct kvm_x86_mce *mce)
5171 return !mce->mcg_status &&
5172 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5173 (mce->status & MCI_STATUS_VAL) &&
5174 (mce->status & MCI_STATUS_UC);
5177 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5179 u64 mcg_cap = vcpu->arch.mcg_cap;
5181 banks[1] = mce->status;
5182 banks[2] = mce->addr;
5183 banks[3] = mce->misc;
5184 vcpu->arch.mcg_status = mce->mcg_status;
5186 if (!(mcg_cap & MCG_CMCI_P) ||
5187 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5190 if (lapic_in_kernel(vcpu))
5191 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5196 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5197 struct kvm_x86_mce *mce)
5199 u64 mcg_cap = vcpu->arch.mcg_cap;
5200 unsigned bank_num = mcg_cap & 0xff;
5201 u64 *banks = vcpu->arch.mce_banks;
5203 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5206 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5209 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5212 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5213 * reporting is disabled
5215 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5216 vcpu->arch.mcg_ctl != ~(u64)0)
5219 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5220 * reporting is disabled for the bank
5222 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5224 if (mce->status & MCI_STATUS_UC) {
5225 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5226 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5230 if (banks[1] & MCI_STATUS_VAL)
5231 mce->status |= MCI_STATUS_OVER;
5232 banks[2] = mce->addr;
5233 banks[3] = mce->misc;
5234 vcpu->arch.mcg_status = mce->mcg_status;
5235 banks[1] = mce->status;
5236 kvm_queue_exception(vcpu, MC_VECTOR);
5237 } else if (!(banks[1] & MCI_STATUS_VAL)
5238 || !(banks[1] & MCI_STATUS_UC)) {
5239 if (banks[1] & MCI_STATUS_VAL)
5240 mce->status |= MCI_STATUS_OVER;
5241 banks[2] = mce->addr;
5242 banks[3] = mce->misc;
5243 banks[1] = mce->status;
5245 banks[1] |= MCI_STATUS_OVER;
5249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5250 struct kvm_vcpu_events *events)
5252 struct kvm_queued_exception *ex;
5256 #ifdef CONFIG_KVM_SMM
5257 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5262 * KVM's ABI only allows for one exception to be migrated. Luckily,
5263 * the only time there can be two queued exceptions is if there's a
5264 * non-exiting _injected_ exception, and a pending exiting exception.
5265 * In that case, ignore the VM-Exiting exception as it's an extension
5266 * of the injected exception.
5268 if (vcpu->arch.exception_vmexit.pending &&
5269 !vcpu->arch.exception.pending &&
5270 !vcpu->arch.exception.injected)
5271 ex = &vcpu->arch.exception_vmexit;
5273 ex = &vcpu->arch.exception;
5276 * In guest mode, payload delivery should be deferred if the exception
5277 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5278 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5279 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5280 * propagate the payload and so it cannot be safely deferred. Deliver
5281 * the payload if the capability hasn't been requested.
5283 if (!vcpu->kvm->arch.exception_payload_enabled &&
5284 ex->pending && ex->has_payload)
5285 kvm_deliver_exception_payload(vcpu, ex);
5287 memset(events, 0, sizeof(*events));
5290 * The API doesn't provide the instruction length for software
5291 * exceptions, so don't report them. As long as the guest RIP
5292 * isn't advanced, we should expect to encounter the exception
5295 if (!kvm_exception_is_soft(ex->vector)) {
5296 events->exception.injected = ex->injected;
5297 events->exception.pending = ex->pending;
5299 * For ABI compatibility, deliberately conflate
5300 * pending and injected exceptions when
5301 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5303 if (!vcpu->kvm->arch.exception_payload_enabled)
5304 events->exception.injected |= ex->pending;
5306 events->exception.nr = ex->vector;
5307 events->exception.has_error_code = ex->has_error_code;
5308 events->exception.error_code = ex->error_code;
5309 events->exception_has_payload = ex->has_payload;
5310 events->exception_payload = ex->payload;
5312 events->interrupt.injected =
5313 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5314 events->interrupt.nr = vcpu->arch.interrupt.nr;
5315 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5317 events->nmi.injected = vcpu->arch.nmi_injected;
5318 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5319 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5321 /* events->sipi_vector is never valid when reporting to user space */
5323 #ifdef CONFIG_KVM_SMM
5324 events->smi.smm = is_smm(vcpu);
5325 events->smi.pending = vcpu->arch.smi_pending;
5326 events->smi.smm_inside_nmi =
5327 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5329 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5331 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5332 | KVM_VCPUEVENT_VALID_SHADOW
5333 | KVM_VCPUEVENT_VALID_SMM);
5334 if (vcpu->kvm->arch.exception_payload_enabled)
5335 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5336 if (vcpu->kvm->arch.triple_fault_event) {
5337 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5338 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5342 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5343 struct kvm_vcpu_events *events)
5345 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5346 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5347 | KVM_VCPUEVENT_VALID_SHADOW
5348 | KVM_VCPUEVENT_VALID_SMM
5349 | KVM_VCPUEVENT_VALID_PAYLOAD
5350 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5353 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5354 if (!vcpu->kvm->arch.exception_payload_enabled)
5356 if (events->exception.pending)
5357 events->exception.injected = 0;
5359 events->exception_has_payload = 0;
5361 events->exception.pending = 0;
5362 events->exception_has_payload = 0;
5365 if ((events->exception.injected || events->exception.pending) &&
5366 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5369 /* INITs are latched while in SMM */
5370 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5371 (events->smi.smm || events->smi.pending) &&
5372 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5378 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5379 * morph the exception to a VM-Exit if appropriate. Do this only for
5380 * pending exceptions, already-injected exceptions are not subject to
5381 * intercpetion. Note, userspace that conflates pending and injected
5382 * is hosed, and will incorrectly convert an injected exception into a
5383 * pending exception, which in turn may cause a spurious VM-Exit.
5385 vcpu->arch.exception_from_userspace = events->exception.pending;
5387 vcpu->arch.exception_vmexit.pending = false;
5389 vcpu->arch.exception.injected = events->exception.injected;
5390 vcpu->arch.exception.pending = events->exception.pending;
5391 vcpu->arch.exception.vector = events->exception.nr;
5392 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5393 vcpu->arch.exception.error_code = events->exception.error_code;
5394 vcpu->arch.exception.has_payload = events->exception_has_payload;
5395 vcpu->arch.exception.payload = events->exception_payload;
5397 vcpu->arch.interrupt.injected = events->interrupt.injected;
5398 vcpu->arch.interrupt.nr = events->interrupt.nr;
5399 vcpu->arch.interrupt.soft = events->interrupt.soft;
5400 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5401 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5402 events->interrupt.shadow);
5404 vcpu->arch.nmi_injected = events->nmi.injected;
5405 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5406 vcpu->arch.nmi_pending = 0;
5407 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5408 kvm_make_request(KVM_REQ_NMI, vcpu);
5410 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5412 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5413 lapic_in_kernel(vcpu))
5414 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5416 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5417 #ifdef CONFIG_KVM_SMM
5418 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5419 kvm_leave_nested(vcpu);
5420 kvm_smm_changed(vcpu, events->smi.smm);
5423 vcpu->arch.smi_pending = events->smi.pending;
5425 if (events->smi.smm) {
5426 if (events->smi.smm_inside_nmi)
5427 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5429 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5433 if (events->smi.smm || events->smi.pending ||
5434 events->smi.smm_inside_nmi)
5438 if (lapic_in_kernel(vcpu)) {
5439 if (events->smi.latched_init)
5440 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5442 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5446 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5447 if (!vcpu->kvm->arch.triple_fault_event)
5449 if (events->triple_fault.pending)
5450 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5452 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5455 kvm_make_request(KVM_REQ_EVENT, vcpu);
5460 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5461 struct kvm_debugregs *dbgregs)
5465 memset(dbgregs, 0, sizeof(*dbgregs));
5466 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5467 kvm_get_dr(vcpu, 6, &val);
5469 dbgregs->dr7 = vcpu->arch.dr7;
5472 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5473 struct kvm_debugregs *dbgregs)
5478 if (!kvm_dr6_valid(dbgregs->dr6))
5480 if (!kvm_dr7_valid(dbgregs->dr7))
5483 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5484 kvm_update_dr0123(vcpu);
5485 vcpu->arch.dr6 = dbgregs->dr6;
5486 vcpu->arch.dr7 = dbgregs->dr7;
5487 kvm_update_dr7(vcpu);
5493 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5494 u8 *state, unsigned int size)
5497 * Only copy state for features that are enabled for the guest. The
5498 * state itself isn't problematic, but setting bits in the header for
5499 * features that are supported in *this* host but not exposed to the
5500 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5501 * compatible host without the features that are NOT exposed to the
5504 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5505 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5506 * supported by the host.
5508 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5509 XFEATURE_MASK_FPSSE;
5511 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5514 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5515 supported_xcr0, vcpu->arch.pkru);
5518 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5519 struct kvm_xsave *guest_xsave)
5521 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5522 sizeof(guest_xsave->region));
5525 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5526 struct kvm_xsave *guest_xsave)
5528 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5531 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5532 guest_xsave->region,
5533 kvm_caps.supported_xcr0,
5537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5538 struct kvm_xcrs *guest_xcrs)
5540 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5541 guest_xcrs->nr_xcrs = 0;
5545 guest_xcrs->nr_xcrs = 1;
5546 guest_xcrs->flags = 0;
5547 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5548 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5552 struct kvm_xcrs *guest_xcrs)
5556 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5559 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5562 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5563 /* Only support XCR0 currently */
5564 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5565 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5566 guest_xcrs->xcrs[i].value);
5575 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5576 * stopped by the hypervisor. This function will be called from the host only.
5577 * EINVAL is returned when the host attempts to set the flag for a guest that
5578 * does not support pv clocks.
5580 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5582 if (!vcpu->arch.pv_time.active)
5584 vcpu->arch.pvclock_set_guest_stopped_request = true;
5585 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5589 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5590 struct kvm_device_attr *attr)
5594 switch (attr->attr) {
5595 case KVM_VCPU_TSC_OFFSET:
5605 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5606 struct kvm_device_attr *attr)
5608 u64 __user *uaddr = kvm_get_attr_addr(attr);
5612 return PTR_ERR(uaddr);
5614 switch (attr->attr) {
5615 case KVM_VCPU_TSC_OFFSET:
5617 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5628 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5629 struct kvm_device_attr *attr)
5631 u64 __user *uaddr = kvm_get_attr_addr(attr);
5632 struct kvm *kvm = vcpu->kvm;
5636 return PTR_ERR(uaddr);
5638 switch (attr->attr) {
5639 case KVM_VCPU_TSC_OFFSET: {
5640 u64 offset, tsc, ns;
5641 unsigned long flags;
5645 if (get_user(offset, uaddr))
5648 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5650 matched = (vcpu->arch.virtual_tsc_khz &&
5651 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5652 kvm->arch.last_tsc_offset == offset);
5654 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5655 ns = get_kvmclock_base_ns();
5657 kvm->arch.user_set_tsc = true;
5658 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5659 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5671 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5675 struct kvm_device_attr attr;
5678 if (copy_from_user(&attr, argp, sizeof(attr)))
5681 if (attr.group != KVM_VCPU_TSC_CTRL)
5685 case KVM_HAS_DEVICE_ATTR:
5686 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5688 case KVM_GET_DEVICE_ATTR:
5689 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5691 case KVM_SET_DEVICE_ATTR:
5692 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5699 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5700 struct kvm_enable_cap *cap)
5703 uint16_t vmcs_version;
5704 void __user *user_ptr;
5710 case KVM_CAP_HYPERV_SYNIC2:
5715 case KVM_CAP_HYPERV_SYNIC:
5716 if (!irqchip_in_kernel(vcpu->kvm))
5718 return kvm_hv_activate_synic(vcpu, cap->cap ==
5719 KVM_CAP_HYPERV_SYNIC2);
5720 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5721 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5723 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5725 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5726 if (copy_to_user(user_ptr, &vmcs_version,
5727 sizeof(vmcs_version)))
5731 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5732 if (!kvm_x86_ops.enable_l2_tlb_flush)
5735 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5737 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5738 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5740 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5741 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5742 if (vcpu->arch.pv_cpuid.enforce)
5743 kvm_update_pv_runtime(vcpu);
5751 long kvm_arch_vcpu_ioctl(struct file *filp,
5752 unsigned int ioctl, unsigned long arg)
5754 struct kvm_vcpu *vcpu = filp->private_data;
5755 void __user *argp = (void __user *)arg;
5758 struct kvm_sregs2 *sregs2;
5759 struct kvm_lapic_state *lapic;
5760 struct kvm_xsave *xsave;
5761 struct kvm_xcrs *xcrs;
5769 case KVM_GET_LAPIC: {
5771 if (!lapic_in_kernel(vcpu))
5773 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5774 GFP_KERNEL_ACCOUNT);
5779 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5783 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5788 case KVM_SET_LAPIC: {
5790 if (!lapic_in_kernel(vcpu))
5792 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5793 if (IS_ERR(u.lapic)) {
5794 r = PTR_ERR(u.lapic);
5798 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5801 case KVM_INTERRUPT: {
5802 struct kvm_interrupt irq;
5805 if (copy_from_user(&irq, argp, sizeof(irq)))
5807 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5811 r = kvm_vcpu_ioctl_nmi(vcpu);
5815 r = kvm_inject_smi(vcpu);
5818 case KVM_SET_CPUID: {
5819 struct kvm_cpuid __user *cpuid_arg = argp;
5820 struct kvm_cpuid cpuid;
5823 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5825 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5828 case KVM_SET_CPUID2: {
5829 struct kvm_cpuid2 __user *cpuid_arg = argp;
5830 struct kvm_cpuid2 cpuid;
5833 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5835 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5836 cpuid_arg->entries);
5839 case KVM_GET_CPUID2: {
5840 struct kvm_cpuid2 __user *cpuid_arg = argp;
5841 struct kvm_cpuid2 cpuid;
5844 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5846 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5847 cpuid_arg->entries);
5851 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5856 case KVM_GET_MSRS: {
5857 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5858 r = msr_io(vcpu, argp, do_get_msr, 1);
5859 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5862 case KVM_SET_MSRS: {
5863 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5864 r = msr_io(vcpu, argp, do_set_msr, 0);
5865 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5868 case KVM_TPR_ACCESS_REPORTING: {
5869 struct kvm_tpr_access_ctl tac;
5872 if (copy_from_user(&tac, argp, sizeof(tac)))
5874 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5878 if (copy_to_user(argp, &tac, sizeof(tac)))
5883 case KVM_SET_VAPIC_ADDR: {
5884 struct kvm_vapic_addr va;
5888 if (!lapic_in_kernel(vcpu))
5891 if (copy_from_user(&va, argp, sizeof(va)))
5893 idx = srcu_read_lock(&vcpu->kvm->srcu);
5894 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5895 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5898 case KVM_X86_SETUP_MCE: {
5902 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5904 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5907 case KVM_X86_SET_MCE: {
5908 struct kvm_x86_mce mce;
5911 if (copy_from_user(&mce, argp, sizeof(mce)))
5913 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5916 case KVM_GET_VCPU_EVENTS: {
5917 struct kvm_vcpu_events events;
5919 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5922 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5927 case KVM_SET_VCPU_EVENTS: {
5928 struct kvm_vcpu_events events;
5931 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5934 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5937 case KVM_GET_DEBUGREGS: {
5938 struct kvm_debugregs dbgregs;
5940 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5943 if (copy_to_user(argp, &dbgregs,
5944 sizeof(struct kvm_debugregs)))
5949 case KVM_SET_DEBUGREGS: {
5950 struct kvm_debugregs dbgregs;
5953 if (copy_from_user(&dbgregs, argp,
5954 sizeof(struct kvm_debugregs)))
5957 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5960 case KVM_GET_XSAVE: {
5962 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5965 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5970 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5973 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5978 case KVM_SET_XSAVE: {
5979 int size = vcpu->arch.guest_fpu.uabi_size;
5981 u.xsave = memdup_user(argp, size);
5982 if (IS_ERR(u.xsave)) {
5983 r = PTR_ERR(u.xsave);
5987 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5991 case KVM_GET_XSAVE2: {
5992 int size = vcpu->arch.guest_fpu.uabi_size;
5994 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5999 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6002 if (copy_to_user(argp, u.xsave, size))
6009 case KVM_GET_XCRS: {
6010 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6015 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6018 if (copy_to_user(argp, u.xcrs,
6019 sizeof(struct kvm_xcrs)))
6024 case KVM_SET_XCRS: {
6025 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6026 if (IS_ERR(u.xcrs)) {
6027 r = PTR_ERR(u.xcrs);
6031 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6034 case KVM_SET_TSC_KHZ: {
6038 user_tsc_khz = (u32)arg;
6040 if (kvm_caps.has_tsc_control &&
6041 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6044 if (user_tsc_khz == 0)
6045 user_tsc_khz = tsc_khz;
6047 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6052 case KVM_GET_TSC_KHZ: {
6053 r = vcpu->arch.virtual_tsc_khz;
6056 case KVM_KVMCLOCK_CTRL: {
6057 r = kvm_set_guest_paused(vcpu);
6060 case KVM_ENABLE_CAP: {
6061 struct kvm_enable_cap cap;
6064 if (copy_from_user(&cap, argp, sizeof(cap)))
6066 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6069 case KVM_GET_NESTED_STATE: {
6070 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6074 if (!kvm_x86_ops.nested_ops->get_state)
6077 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6079 if (get_user(user_data_size, &user_kvm_nested_state->size))
6082 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6087 if (r > user_data_size) {
6088 if (put_user(r, &user_kvm_nested_state->size))
6098 case KVM_SET_NESTED_STATE: {
6099 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6100 struct kvm_nested_state kvm_state;
6104 if (!kvm_x86_ops.nested_ops->set_state)
6108 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6112 if (kvm_state.size < sizeof(kvm_state))
6115 if (kvm_state.flags &
6116 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6117 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6118 | KVM_STATE_NESTED_GIF_SET))
6121 /* nested_run_pending implies guest_mode. */
6122 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6123 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6126 idx = srcu_read_lock(&vcpu->kvm->srcu);
6127 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6131 case KVM_GET_SUPPORTED_HV_CPUID:
6132 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6134 #ifdef CONFIG_KVM_XEN
6135 case KVM_XEN_VCPU_GET_ATTR: {
6136 struct kvm_xen_vcpu_attr xva;
6139 if (copy_from_user(&xva, argp, sizeof(xva)))
6141 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6142 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6146 case KVM_XEN_VCPU_SET_ATTR: {
6147 struct kvm_xen_vcpu_attr xva;
6150 if (copy_from_user(&xva, argp, sizeof(xva)))
6152 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6156 case KVM_GET_SREGS2: {
6157 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6161 __get_sregs2(vcpu, u.sregs2);
6163 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6168 case KVM_SET_SREGS2: {
6169 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6170 if (IS_ERR(u.sregs2)) {
6171 r = PTR_ERR(u.sregs2);
6175 r = __set_sregs2(vcpu, u.sregs2);
6178 case KVM_HAS_DEVICE_ATTR:
6179 case KVM_GET_DEVICE_ATTR:
6180 case KVM_SET_DEVICE_ATTR:
6181 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6193 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6195 return VM_FAULT_SIGBUS;
6198 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6202 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6204 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6208 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6211 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6214 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6215 unsigned long kvm_nr_mmu_pages)
6217 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6220 mutex_lock(&kvm->slots_lock);
6222 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6223 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6225 mutex_unlock(&kvm->slots_lock);
6229 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6231 struct kvm_pic *pic = kvm->arch.vpic;
6235 switch (chip->chip_id) {
6236 case KVM_IRQCHIP_PIC_MASTER:
6237 memcpy(&chip->chip.pic, &pic->pics[0],
6238 sizeof(struct kvm_pic_state));
6240 case KVM_IRQCHIP_PIC_SLAVE:
6241 memcpy(&chip->chip.pic, &pic->pics[1],
6242 sizeof(struct kvm_pic_state));
6244 case KVM_IRQCHIP_IOAPIC:
6245 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6254 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6256 struct kvm_pic *pic = kvm->arch.vpic;
6260 switch (chip->chip_id) {
6261 case KVM_IRQCHIP_PIC_MASTER:
6262 spin_lock(&pic->lock);
6263 memcpy(&pic->pics[0], &chip->chip.pic,
6264 sizeof(struct kvm_pic_state));
6265 spin_unlock(&pic->lock);
6267 case KVM_IRQCHIP_PIC_SLAVE:
6268 spin_lock(&pic->lock);
6269 memcpy(&pic->pics[1], &chip->chip.pic,
6270 sizeof(struct kvm_pic_state));
6271 spin_unlock(&pic->lock);
6273 case KVM_IRQCHIP_IOAPIC:
6274 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6280 kvm_pic_update_irq(pic);
6284 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6286 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6288 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6290 mutex_lock(&kps->lock);
6291 memcpy(ps, &kps->channels, sizeof(*ps));
6292 mutex_unlock(&kps->lock);
6296 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6299 struct kvm_pit *pit = kvm->arch.vpit;
6301 mutex_lock(&pit->pit_state.lock);
6302 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6303 for (i = 0; i < 3; i++)
6304 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6305 mutex_unlock(&pit->pit_state.lock);
6309 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6311 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6312 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6313 sizeof(ps->channels));
6314 ps->flags = kvm->arch.vpit->pit_state.flags;
6315 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6316 memset(&ps->reserved, 0, sizeof(ps->reserved));
6320 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6324 u32 prev_legacy, cur_legacy;
6325 struct kvm_pit *pit = kvm->arch.vpit;
6327 mutex_lock(&pit->pit_state.lock);
6328 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6329 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6330 if (!prev_legacy && cur_legacy)
6332 memcpy(&pit->pit_state.channels, &ps->channels,
6333 sizeof(pit->pit_state.channels));
6334 pit->pit_state.flags = ps->flags;
6335 for (i = 0; i < 3; i++)
6336 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6338 mutex_unlock(&pit->pit_state.lock);
6342 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6343 struct kvm_reinject_control *control)
6345 struct kvm_pit *pit = kvm->arch.vpit;
6347 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6348 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6349 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6351 mutex_lock(&pit->pit_state.lock);
6352 kvm_pit_set_reinject(pit, control->pit_reinject);
6353 mutex_unlock(&pit->pit_state.lock);
6358 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6362 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6363 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6364 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6367 struct kvm_vcpu *vcpu;
6370 if (!kvm_x86_ops.cpu_dirty_log_size)
6373 kvm_for_each_vcpu(i, vcpu, kvm)
6374 kvm_vcpu_kick(vcpu);
6377 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6380 if (!irqchip_in_kernel(kvm))
6383 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6384 irq_event->irq, irq_event->level,
6389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6390 struct kvm_enable_cap *cap)
6398 case KVM_CAP_DISABLE_QUIRKS2:
6400 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6403 case KVM_CAP_DISABLE_QUIRKS:
6404 kvm->arch.disabled_quirks = cap->args[0];
6407 case KVM_CAP_SPLIT_IRQCHIP: {
6408 mutex_lock(&kvm->lock);
6410 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6411 goto split_irqchip_unlock;
6413 if (irqchip_in_kernel(kvm))
6414 goto split_irqchip_unlock;
6415 if (kvm->created_vcpus)
6416 goto split_irqchip_unlock;
6417 r = kvm_setup_empty_irq_routing(kvm);
6419 goto split_irqchip_unlock;
6420 /* Pairs with irqchip_in_kernel. */
6422 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6423 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6424 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6426 split_irqchip_unlock:
6427 mutex_unlock(&kvm->lock);
6430 case KVM_CAP_X2APIC_API:
6432 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6435 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6436 kvm->arch.x2apic_format = true;
6437 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6438 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6442 case KVM_CAP_X86_DISABLE_EXITS:
6444 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6447 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6448 kvm->arch.pause_in_guest = true;
6450 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6451 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6453 if (!mitigate_smt_rsb) {
6454 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6455 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6456 pr_warn_once(SMT_RSB_MSG);
6458 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6459 kvm_can_mwait_in_guest())
6460 kvm->arch.mwait_in_guest = true;
6461 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6462 kvm->arch.hlt_in_guest = true;
6463 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6464 kvm->arch.cstate_in_guest = true;
6469 case KVM_CAP_MSR_PLATFORM_INFO:
6470 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6473 case KVM_CAP_EXCEPTION_PAYLOAD:
6474 kvm->arch.exception_payload_enabled = cap->args[0];
6477 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6478 kvm->arch.triple_fault_event = cap->args[0];
6481 case KVM_CAP_X86_USER_SPACE_MSR:
6483 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6485 kvm->arch.user_space_msr_mask = cap->args[0];
6488 case KVM_CAP_X86_BUS_LOCK_EXIT:
6490 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6493 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6494 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6497 if (kvm_caps.has_bus_lock_exit &&
6498 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6499 kvm->arch.bus_lock_detection_enabled = true;
6502 #ifdef CONFIG_X86_SGX_KVM
6503 case KVM_CAP_SGX_ATTRIBUTE: {
6504 unsigned long allowed_attributes = 0;
6506 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6510 /* KVM only supports the PROVISIONKEY privileged attribute. */
6511 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6512 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6513 kvm->arch.sgx_provisioning_allowed = true;
6519 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6521 if (!kvm_x86_ops.vm_copy_enc_context_from)
6524 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6526 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6528 if (!kvm_x86_ops.vm_move_enc_context_from)
6531 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6533 case KVM_CAP_EXIT_HYPERCALL:
6534 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6538 kvm->arch.hypercall_exit_enabled = cap->args[0];
6541 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6543 if (cap->args[0] & ~1)
6545 kvm->arch.exit_on_emulation_error = cap->args[0];
6548 case KVM_CAP_PMU_CAPABILITY:
6550 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6553 mutex_lock(&kvm->lock);
6554 if (!kvm->created_vcpus) {
6555 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6558 mutex_unlock(&kvm->lock);
6560 case KVM_CAP_MAX_VCPU_ID:
6562 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6565 mutex_lock(&kvm->lock);
6566 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6568 } else if (!kvm->arch.max_vcpu_ids) {
6569 kvm->arch.max_vcpu_ids = cap->args[0];
6572 mutex_unlock(&kvm->lock);
6574 case KVM_CAP_X86_NOTIFY_VMEXIT:
6576 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6578 if (!kvm_caps.has_notify_vmexit)
6580 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6582 mutex_lock(&kvm->lock);
6583 if (!kvm->created_vcpus) {
6584 kvm->arch.notify_window = cap->args[0] >> 32;
6585 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6588 mutex_unlock(&kvm->lock);
6590 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6594 * Since the risk of disabling NX hugepages is a guest crashing
6595 * the system, ensure the userspace process has permission to
6596 * reboot the system.
6598 * Note that unlike the reboot() syscall, the process must have
6599 * this capability in the root namespace because exposing
6600 * /dev/kvm into a container does not limit the scope of the
6601 * iTLB multihit bug to that container. In other words,
6602 * this must use capable(), not ns_capable().
6604 if (!capable(CAP_SYS_BOOT)) {
6612 mutex_lock(&kvm->lock);
6613 if (!kvm->created_vcpus) {
6614 kvm->arch.disable_nx_huge_pages = true;
6617 mutex_unlock(&kvm->lock);
6626 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6628 struct kvm_x86_msr_filter *msr_filter;
6630 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6634 msr_filter->default_allow = default_allow;
6638 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6645 for (i = 0; i < msr_filter->count; i++)
6646 kfree(msr_filter->ranges[i].bitmap);
6651 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6652 struct kvm_msr_filter_range *user_range)
6654 unsigned long *bitmap;
6657 if (!user_range->nmsrs)
6660 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6663 if (!user_range->flags)
6666 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6667 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6670 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6672 return PTR_ERR(bitmap);
6674 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6675 .flags = user_range->flags,
6676 .base = user_range->base,
6677 .nmsrs = user_range->nmsrs,
6681 msr_filter->count++;
6685 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6686 struct kvm_msr_filter *filter)
6688 struct kvm_x86_msr_filter *new_filter, *old_filter;
6694 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6697 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6698 empty &= !filter->ranges[i].nmsrs;
6700 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6701 if (empty && !default_allow)
6704 new_filter = kvm_alloc_msr_filter(default_allow);
6708 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6709 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6711 kvm_free_msr_filter(new_filter);
6716 mutex_lock(&kvm->lock);
6717 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6718 mutex_is_locked(&kvm->lock));
6719 mutex_unlock(&kvm->lock);
6720 synchronize_srcu(&kvm->srcu);
6722 kvm_free_msr_filter(old_filter);
6724 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6729 #ifdef CONFIG_KVM_COMPAT
6730 /* for KVM_X86_SET_MSR_FILTER */
6731 struct kvm_msr_filter_range_compat {
6738 struct kvm_msr_filter_compat {
6740 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6743 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6745 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6748 void __user *argp = (void __user *)arg;
6749 struct kvm *kvm = filp->private_data;
6753 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6754 struct kvm_msr_filter __user *user_msr_filter = argp;
6755 struct kvm_msr_filter_compat filter_compat;
6756 struct kvm_msr_filter filter;
6759 if (copy_from_user(&filter_compat, user_msr_filter,
6760 sizeof(filter_compat)))
6763 filter.flags = filter_compat.flags;
6764 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6765 struct kvm_msr_filter_range_compat *cr;
6767 cr = &filter_compat.ranges[i];
6768 filter.ranges[i] = (struct kvm_msr_filter_range) {
6772 .bitmap = (__u8 *)(ulong)cr->bitmap,
6776 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6786 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6788 struct kvm_vcpu *vcpu;
6792 mutex_lock(&kvm->lock);
6793 kvm_for_each_vcpu(i, vcpu, kvm) {
6794 if (!vcpu->arch.pv_time.active)
6797 ret = kvm_set_guest_paused(vcpu);
6799 kvm_err("Failed to pause guest VCPU%d: %d\n",
6800 vcpu->vcpu_id, ret);
6804 mutex_unlock(&kvm->lock);
6806 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6809 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6812 case PM_HIBERNATION_PREPARE:
6813 case PM_SUSPEND_PREPARE:
6814 return kvm_arch_suspend_notifier(kvm);
6819 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6821 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6823 struct kvm_clock_data data = { 0 };
6825 get_kvmclock(kvm, &data);
6826 if (copy_to_user(argp, &data, sizeof(data)))
6832 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6834 struct kvm_arch *ka = &kvm->arch;
6835 struct kvm_clock_data data;
6838 if (copy_from_user(&data, argp, sizeof(data)))
6842 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6843 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6845 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6848 kvm_hv_request_tsc_page_update(kvm);
6849 kvm_start_pvclock_update(kvm);
6850 pvclock_update_vm_gtod_copy(kvm);
6853 * This pairs with kvm_guest_time_update(): when masterclock is
6854 * in use, we use master_kernel_ns + kvmclock_offset to set
6855 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6856 * is slightly ahead) here we risk going negative on unsigned
6857 * 'system_time' when 'data.clock' is very small.
6859 if (data.flags & KVM_CLOCK_REALTIME) {
6860 u64 now_real_ns = ktime_get_real_ns();
6863 * Avoid stepping the kvmclock backwards.
6865 if (now_real_ns > data.realtime)
6866 data.clock += now_real_ns - data.realtime;
6869 if (ka->use_master_clock)
6870 now_raw_ns = ka->master_kernel_ns;
6872 now_raw_ns = get_kvmclock_base_ns();
6873 ka->kvmclock_offset = data.clock - now_raw_ns;
6874 kvm_end_pvclock_update(kvm);
6878 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6880 struct kvm *kvm = filp->private_data;
6881 void __user *argp = (void __user *)arg;
6884 * This union makes it completely explicit to gcc-3.x
6885 * that these two variables' stack usage should be
6886 * combined, not added together.
6889 struct kvm_pit_state ps;
6890 struct kvm_pit_state2 ps2;
6891 struct kvm_pit_config pit_config;
6895 case KVM_SET_TSS_ADDR:
6896 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6898 case KVM_SET_IDENTITY_MAP_ADDR: {
6901 mutex_lock(&kvm->lock);
6903 if (kvm->created_vcpus)
6904 goto set_identity_unlock;
6906 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6907 goto set_identity_unlock;
6908 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6909 set_identity_unlock:
6910 mutex_unlock(&kvm->lock);
6913 case KVM_SET_NR_MMU_PAGES:
6914 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6916 case KVM_CREATE_IRQCHIP: {
6917 mutex_lock(&kvm->lock);
6920 if (irqchip_in_kernel(kvm))
6921 goto create_irqchip_unlock;
6924 if (kvm->created_vcpus)
6925 goto create_irqchip_unlock;
6927 r = kvm_pic_init(kvm);
6929 goto create_irqchip_unlock;
6931 r = kvm_ioapic_init(kvm);
6933 kvm_pic_destroy(kvm);
6934 goto create_irqchip_unlock;
6937 r = kvm_setup_default_irq_routing(kvm);
6939 kvm_ioapic_destroy(kvm);
6940 kvm_pic_destroy(kvm);
6941 goto create_irqchip_unlock;
6943 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6945 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6946 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6947 create_irqchip_unlock:
6948 mutex_unlock(&kvm->lock);
6951 case KVM_CREATE_PIT:
6952 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6954 case KVM_CREATE_PIT2:
6956 if (copy_from_user(&u.pit_config, argp,
6957 sizeof(struct kvm_pit_config)))
6960 mutex_lock(&kvm->lock);
6963 goto create_pit_unlock;
6965 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6969 mutex_unlock(&kvm->lock);
6971 case KVM_GET_IRQCHIP: {
6972 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6973 struct kvm_irqchip *chip;
6975 chip = memdup_user(argp, sizeof(*chip));
6982 if (!irqchip_kernel(kvm))
6983 goto get_irqchip_out;
6984 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6986 goto get_irqchip_out;
6988 if (copy_to_user(argp, chip, sizeof(*chip)))
6989 goto get_irqchip_out;
6995 case KVM_SET_IRQCHIP: {
6996 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6997 struct kvm_irqchip *chip;
6999 chip = memdup_user(argp, sizeof(*chip));
7006 if (!irqchip_kernel(kvm))
7007 goto set_irqchip_out;
7008 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7015 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7018 if (!kvm->arch.vpit)
7020 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7024 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7031 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7033 mutex_lock(&kvm->lock);
7035 if (!kvm->arch.vpit)
7037 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7039 mutex_unlock(&kvm->lock);
7042 case KVM_GET_PIT2: {
7044 if (!kvm->arch.vpit)
7046 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7050 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7055 case KVM_SET_PIT2: {
7057 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7059 mutex_lock(&kvm->lock);
7061 if (!kvm->arch.vpit)
7063 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7065 mutex_unlock(&kvm->lock);
7068 case KVM_REINJECT_CONTROL: {
7069 struct kvm_reinject_control control;
7071 if (copy_from_user(&control, argp, sizeof(control)))
7074 if (!kvm->arch.vpit)
7076 r = kvm_vm_ioctl_reinject(kvm, &control);
7079 case KVM_SET_BOOT_CPU_ID:
7081 mutex_lock(&kvm->lock);
7082 if (kvm->created_vcpus)
7085 kvm->arch.bsp_vcpu_id = arg;
7086 mutex_unlock(&kvm->lock);
7088 #ifdef CONFIG_KVM_XEN
7089 case KVM_XEN_HVM_CONFIG: {
7090 struct kvm_xen_hvm_config xhc;
7092 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7094 r = kvm_xen_hvm_config(kvm, &xhc);
7097 case KVM_XEN_HVM_GET_ATTR: {
7098 struct kvm_xen_hvm_attr xha;
7101 if (copy_from_user(&xha, argp, sizeof(xha)))
7103 r = kvm_xen_hvm_get_attr(kvm, &xha);
7104 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7108 case KVM_XEN_HVM_SET_ATTR: {
7109 struct kvm_xen_hvm_attr xha;
7112 if (copy_from_user(&xha, argp, sizeof(xha)))
7114 r = kvm_xen_hvm_set_attr(kvm, &xha);
7117 case KVM_XEN_HVM_EVTCHN_SEND: {
7118 struct kvm_irq_routing_xen_evtchn uxe;
7121 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7123 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7128 r = kvm_vm_ioctl_set_clock(kvm, argp);
7131 r = kvm_vm_ioctl_get_clock(kvm, argp);
7133 case KVM_SET_TSC_KHZ: {
7137 user_tsc_khz = (u32)arg;
7139 if (kvm_caps.has_tsc_control &&
7140 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7143 if (user_tsc_khz == 0)
7144 user_tsc_khz = tsc_khz;
7146 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7151 case KVM_GET_TSC_KHZ: {
7152 r = READ_ONCE(kvm->arch.default_tsc_khz);
7155 case KVM_MEMORY_ENCRYPT_OP: {
7157 if (!kvm_x86_ops.mem_enc_ioctl)
7160 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7163 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7164 struct kvm_enc_region region;
7167 if (copy_from_user(®ion, argp, sizeof(region)))
7171 if (!kvm_x86_ops.mem_enc_register_region)
7174 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7177 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7178 struct kvm_enc_region region;
7181 if (copy_from_user(®ion, argp, sizeof(region)))
7185 if (!kvm_x86_ops.mem_enc_unregister_region)
7188 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7191 case KVM_HYPERV_EVENTFD: {
7192 struct kvm_hyperv_eventfd hvevfd;
7195 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7197 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7200 case KVM_SET_PMU_EVENT_FILTER:
7201 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7203 case KVM_X86_SET_MSR_FILTER: {
7204 struct kvm_msr_filter __user *user_msr_filter = argp;
7205 struct kvm_msr_filter filter;
7207 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7210 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7220 static void kvm_probe_feature_msr(u32 msr_index)
7222 struct kvm_msr_entry msr = {
7226 if (kvm_get_msr_feature(&msr))
7229 msr_based_features[num_msr_based_features++] = msr_index;
7232 static void kvm_probe_msr_to_save(u32 msr_index)
7236 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7240 * Even MSRs that are valid in the host may not be exposed to guests in
7243 switch (msr_index) {
7244 case MSR_IA32_BNDCFGS:
7245 if (!kvm_mpx_supported())
7249 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7250 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7253 case MSR_IA32_UMWAIT_CONTROL:
7254 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7257 case MSR_IA32_RTIT_CTL:
7258 case MSR_IA32_RTIT_STATUS:
7259 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7262 case MSR_IA32_RTIT_CR3_MATCH:
7263 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7264 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7267 case MSR_IA32_RTIT_OUTPUT_BASE:
7268 case MSR_IA32_RTIT_OUTPUT_MASK:
7269 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7270 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7271 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7274 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7275 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7276 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7277 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7280 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7281 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7282 kvm_pmu_cap.num_counters_gp)
7285 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7286 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7287 kvm_pmu_cap.num_counters_gp)
7290 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7291 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7292 kvm_pmu_cap.num_counters_fixed)
7295 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7296 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7297 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7298 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7302 case MSR_IA32_XFD_ERR:
7303 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7306 case MSR_IA32_TSX_CTRL:
7307 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7314 msrs_to_save[num_msrs_to_save++] = msr_index;
7317 static void kvm_init_msr_lists(void)
7321 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7322 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7324 num_msrs_to_save = 0;
7325 num_emulated_msrs = 0;
7326 num_msr_based_features = 0;
7328 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7329 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7332 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7333 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7336 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7337 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7340 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7343 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7344 kvm_probe_feature_msr(i);
7346 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7347 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7350 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7358 if (!(lapic_in_kernel(vcpu) &&
7359 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7360 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7371 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7378 if (!(lapic_in_kernel(vcpu) &&
7379 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7381 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7383 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7393 void kvm_set_segment(struct kvm_vcpu *vcpu,
7394 struct kvm_segment *var, int seg)
7396 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7399 void kvm_get_segment(struct kvm_vcpu *vcpu,
7400 struct kvm_segment *var, int seg)
7402 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7406 struct x86_exception *exception)
7408 struct kvm_mmu *mmu = vcpu->arch.mmu;
7411 BUG_ON(!mmu_is_nested(vcpu));
7413 /* NPT walks are always user-walks */
7414 access |= PFERR_USER_MASK;
7415 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7420 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7421 struct x86_exception *exception)
7423 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7425 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7426 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7428 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7430 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7431 struct x86_exception *exception)
7433 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7435 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7436 access |= PFERR_WRITE_MASK;
7437 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7439 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7441 /* uses this to access any guest's mapped memory without checking CPL */
7442 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7443 struct x86_exception *exception)
7445 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7447 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7450 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7451 struct kvm_vcpu *vcpu, u64 access,
7452 struct x86_exception *exception)
7454 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7456 int r = X86EMUL_CONTINUE;
7459 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7460 unsigned offset = addr & (PAGE_SIZE-1);
7461 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7464 if (gpa == INVALID_GPA)
7465 return X86EMUL_PROPAGATE_FAULT;
7466 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7469 r = X86EMUL_IO_NEEDED;
7481 /* used for instruction fetching */
7482 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7483 gva_t addr, void *val, unsigned int bytes,
7484 struct x86_exception *exception)
7486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7487 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7488 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7492 /* Inline kvm_read_guest_virt_helper for speed. */
7493 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7495 if (unlikely(gpa == INVALID_GPA))
7496 return X86EMUL_PROPAGATE_FAULT;
7498 offset = addr & (PAGE_SIZE-1);
7499 if (WARN_ON(offset + bytes > PAGE_SIZE))
7500 bytes = (unsigned)PAGE_SIZE - offset;
7501 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7503 if (unlikely(ret < 0))
7504 return X86EMUL_IO_NEEDED;
7506 return X86EMUL_CONTINUE;
7509 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7510 gva_t addr, void *val, unsigned int bytes,
7511 struct x86_exception *exception)
7513 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7516 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7517 * is returned, but our callers are not ready for that and they blindly
7518 * call kvm_inject_page_fault. Ensure that they at least do not leak
7519 * uninitialized kernel stack memory into cr2 and error code.
7521 memset(exception, 0, sizeof(*exception));
7522 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7525 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7527 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7528 gva_t addr, void *val, unsigned int bytes,
7529 struct x86_exception *exception, bool system)
7531 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7535 access |= PFERR_IMPLICIT_ACCESS;
7536 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7537 access |= PFERR_USER_MASK;
7539 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7542 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7543 struct kvm_vcpu *vcpu, u64 access,
7544 struct x86_exception *exception)
7546 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7548 int r = X86EMUL_CONTINUE;
7551 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7552 unsigned offset = addr & (PAGE_SIZE-1);
7553 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7556 if (gpa == INVALID_GPA)
7557 return X86EMUL_PROPAGATE_FAULT;
7558 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7560 r = X86EMUL_IO_NEEDED;
7572 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7573 unsigned int bytes, struct x86_exception *exception,
7576 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7577 u64 access = PFERR_WRITE_MASK;
7580 access |= PFERR_IMPLICIT_ACCESS;
7581 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7582 access |= PFERR_USER_MASK;
7584 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7588 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7589 unsigned int bytes, struct x86_exception *exception)
7591 /* kvm_write_guest_virt_system can pull in tons of pages. */
7592 vcpu->arch.l1tf_flush_l1d = true;
7594 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7595 PFERR_WRITE_MASK, exception);
7597 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7599 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7600 void *insn, int insn_len)
7602 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7606 int handle_ud(struct kvm_vcpu *vcpu)
7608 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7609 int fep_flags = READ_ONCE(force_emulation_prefix);
7610 int emul_type = EMULTYPE_TRAP_UD;
7611 char sig[5]; /* ud2; .ascii "kvm" */
7612 struct x86_exception e;
7615 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7616 if (r != X86EMUL_CONTINUE)
7620 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7621 sig, sizeof(sig), &e) == 0 &&
7622 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7623 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7624 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7625 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7626 emul_type = EMULTYPE_TRAP_UD_FORCED;
7629 return kvm_emulate_instruction(vcpu, emul_type);
7631 EXPORT_SYMBOL_GPL(handle_ud);
7633 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7634 gpa_t gpa, bool write)
7636 /* For APIC access vmexit */
7637 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7640 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7641 trace_vcpu_match_mmio(gva, gpa, write, true);
7648 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7649 gpa_t *gpa, struct x86_exception *exception,
7652 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7653 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7654 | (write ? PFERR_WRITE_MASK : 0);
7657 * currently PKRU is only applied to ept enabled guest so
7658 * there is no pkey in EPT page table for L1 guest or EPT
7659 * shadow page table for L2 guest.
7661 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7662 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7663 vcpu->arch.mmio_access, 0, access))) {
7664 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7665 (gva & (PAGE_SIZE - 1));
7666 trace_vcpu_match_mmio(gva, *gpa, write, false);
7670 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7672 if (*gpa == INVALID_GPA)
7675 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7678 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7679 const void *val, int bytes)
7683 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7686 kvm_page_track_write(vcpu, gpa, val, bytes);
7690 struct read_write_emulator_ops {
7691 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7693 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7694 void *val, int bytes);
7695 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7696 int bytes, void *val);
7697 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7698 void *val, int bytes);
7702 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7704 if (vcpu->mmio_read_completed) {
7705 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7706 vcpu->mmio_fragments[0].gpa, val);
7707 vcpu->mmio_read_completed = 0;
7714 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7715 void *val, int bytes)
7717 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7720 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7721 void *val, int bytes)
7723 return emulator_write_phys(vcpu, gpa, val, bytes);
7726 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7728 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7729 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7732 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7733 void *val, int bytes)
7735 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7736 return X86EMUL_IO_NEEDED;
7739 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7740 void *val, int bytes)
7742 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7744 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7745 return X86EMUL_CONTINUE;
7748 static const struct read_write_emulator_ops read_emultor = {
7749 .read_write_prepare = read_prepare,
7750 .read_write_emulate = read_emulate,
7751 .read_write_mmio = vcpu_mmio_read,
7752 .read_write_exit_mmio = read_exit_mmio,
7755 static const struct read_write_emulator_ops write_emultor = {
7756 .read_write_emulate = write_emulate,
7757 .read_write_mmio = write_mmio,
7758 .read_write_exit_mmio = write_exit_mmio,
7762 static int emulator_read_write_onepage(unsigned long addr, void *val,
7764 struct x86_exception *exception,
7765 struct kvm_vcpu *vcpu,
7766 const struct read_write_emulator_ops *ops)
7770 bool write = ops->write;
7771 struct kvm_mmio_fragment *frag;
7772 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7775 * If the exit was due to a NPF we may already have a GPA.
7776 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7777 * Note, this cannot be used on string operations since string
7778 * operation using rep will only have the initial GPA from the NPF
7781 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7782 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7783 gpa = ctxt->gpa_val;
7784 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7786 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7788 return X86EMUL_PROPAGATE_FAULT;
7791 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7792 return X86EMUL_CONTINUE;
7795 * Is this MMIO handled locally?
7797 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7798 if (handled == bytes)
7799 return X86EMUL_CONTINUE;
7805 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7806 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7810 return X86EMUL_CONTINUE;
7813 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7815 void *val, unsigned int bytes,
7816 struct x86_exception *exception,
7817 const struct read_write_emulator_ops *ops)
7819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7823 if (ops->read_write_prepare &&
7824 ops->read_write_prepare(vcpu, val, bytes))
7825 return X86EMUL_CONTINUE;
7827 vcpu->mmio_nr_fragments = 0;
7829 /* Crossing a page boundary? */
7830 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7833 now = -addr & ~PAGE_MASK;
7834 rc = emulator_read_write_onepage(addr, val, now, exception,
7837 if (rc != X86EMUL_CONTINUE)
7840 if (ctxt->mode != X86EMUL_MODE_PROT64)
7846 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7848 if (rc != X86EMUL_CONTINUE)
7851 if (!vcpu->mmio_nr_fragments)
7854 gpa = vcpu->mmio_fragments[0].gpa;
7856 vcpu->mmio_needed = 1;
7857 vcpu->mmio_cur_fragment = 0;
7859 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7860 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7861 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7862 vcpu->run->mmio.phys_addr = gpa;
7864 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7867 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7871 struct x86_exception *exception)
7873 return emulator_read_write(ctxt, addr, val, bytes,
7874 exception, &read_emultor);
7877 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7881 struct x86_exception *exception)
7883 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7884 exception, &write_emultor);
7887 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7888 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7890 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7895 struct x86_exception *exception)
7897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7903 /* guests cmpxchg8b have to be emulated atomically */
7904 if (bytes > 8 || (bytes & (bytes - 1)))
7907 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7909 if (gpa == INVALID_GPA ||
7910 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7914 * Emulate the atomic as a straight write to avoid #AC if SLD is
7915 * enabled in the host and the access splits a cache line.
7917 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7918 page_line_mask = ~(cache_line_size() - 1);
7920 page_line_mask = PAGE_MASK;
7922 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7925 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7926 if (kvm_is_error_hva(hva))
7929 hva += offset_in_page(gpa);
7933 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7936 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7939 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7942 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7949 return X86EMUL_UNHANDLEABLE;
7951 return X86EMUL_CMPXCHG_FAILED;
7953 kvm_page_track_write(vcpu, gpa, new, bytes);
7955 return X86EMUL_CONTINUE;
7958 pr_warn_once("emulating exchange as write\n");
7960 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7963 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7964 unsigned short port, void *data,
7965 unsigned int count, bool in)
7970 WARN_ON_ONCE(vcpu->arch.pio.count);
7971 for (i = 0; i < count; i++) {
7973 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7975 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7982 * Userspace must have unregistered the device while PIO
7983 * was running. Drop writes / read as 0.
7986 memset(data, 0, size * (count - i));
7995 vcpu->arch.pio.port = port;
7996 vcpu->arch.pio.in = in;
7997 vcpu->arch.pio.count = count;
7998 vcpu->arch.pio.size = size;
8001 memset(vcpu->arch.pio_data, 0, size * count);
8003 memcpy(vcpu->arch.pio_data, data, size * count);
8005 vcpu->run->exit_reason = KVM_EXIT_IO;
8006 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8007 vcpu->run->io.size = size;
8008 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8009 vcpu->run->io.count = count;
8010 vcpu->run->io.port = port;
8014 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8015 unsigned short port, void *val, unsigned int count)
8017 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8019 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8024 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8026 int size = vcpu->arch.pio.size;
8027 unsigned int count = vcpu->arch.pio.count;
8028 memcpy(val, vcpu->arch.pio_data, size * count);
8029 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8030 vcpu->arch.pio.count = 0;
8033 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8034 int size, unsigned short port, void *val,
8037 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038 if (vcpu->arch.pio.count) {
8040 * Complete a previous iteration that required userspace I/O.
8041 * Note, @count isn't guaranteed to match pio.count as userspace
8042 * can modify ECX before rerunning the vCPU. Ignore any such
8043 * shenanigans as KVM doesn't support modifying the rep count,
8044 * and the emulator ensures @count doesn't overflow the buffer.
8046 complete_emulator_pio_in(vcpu, val);
8050 return emulator_pio_in(vcpu, size, port, val, count);
8053 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8054 unsigned short port, const void *val,
8057 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8058 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8062 int size, unsigned short port,
8063 const void *val, unsigned int count)
8065 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8070 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8075 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8078 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8080 if (!need_emulate_wbinvd(vcpu))
8081 return X86EMUL_CONTINUE;
8083 if (static_call(kvm_x86_has_wbinvd_exit)()) {
8084 int cpu = get_cpu();
8086 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8087 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8088 wbinvd_ipi, NULL, 1);
8090 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8093 return X86EMUL_CONTINUE;
8096 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8098 kvm_emulate_wbinvd_noskip(vcpu);
8099 return kvm_skip_emulated_instruction(vcpu);
8101 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8107 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8110 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8111 unsigned long *dest)
8113 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8116 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8117 unsigned long value)
8120 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8123 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8125 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8128 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8130 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8131 unsigned long value;
8135 value = kvm_read_cr0(vcpu);
8138 value = vcpu->arch.cr2;
8141 value = kvm_read_cr3(vcpu);
8144 value = kvm_read_cr4(vcpu);
8147 value = kvm_get_cr8(vcpu);
8150 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8157 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8159 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8164 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8167 vcpu->arch.cr2 = val;
8170 res = kvm_set_cr3(vcpu, val);
8173 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8176 res = kvm_set_cr8(vcpu, val);
8179 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8188 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8193 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8198 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8203 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8208 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8211 static unsigned long emulator_get_cached_segment_base(
8212 struct x86_emulate_ctxt *ctxt, int seg)
8214 return get_segment_base(emul_to_vcpu(ctxt), seg);
8217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8218 struct desc_struct *desc, u32 *base3,
8221 struct kvm_segment var;
8223 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8224 *selector = var.selector;
8227 memset(desc, 0, sizeof(*desc));
8235 set_desc_limit(desc, var.limit);
8236 set_desc_base(desc, (unsigned long)var.base);
8237 #ifdef CONFIG_X86_64
8239 *base3 = var.base >> 32;
8241 desc->type = var.type;
8243 desc->dpl = var.dpl;
8244 desc->p = var.present;
8245 desc->avl = var.avl;
8253 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8254 struct desc_struct *desc, u32 base3,
8257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258 struct kvm_segment var;
8260 var.selector = selector;
8261 var.base = get_desc_base(desc);
8262 #ifdef CONFIG_X86_64
8263 var.base |= ((u64)base3) << 32;
8265 var.limit = get_desc_limit(desc);
8267 var.limit = (var.limit << 12) | 0xfff;
8268 var.type = desc->type;
8269 var.dpl = desc->dpl;
8274 var.avl = desc->avl;
8275 var.present = desc->p;
8276 var.unusable = !var.present;
8279 kvm_set_segment(vcpu, &var, seg);
8283 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8284 u32 msr_index, u64 *pdata)
8286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8289 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8291 return X86EMUL_UNHANDLEABLE;
8294 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8295 complete_emulated_rdmsr, r))
8296 return X86EMUL_IO_NEEDED;
8298 trace_kvm_msr_read_ex(msr_index);
8299 return X86EMUL_PROPAGATE_FAULT;
8302 trace_kvm_msr_read(msr_index, *pdata);
8303 return X86EMUL_CONTINUE;
8306 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8307 u32 msr_index, u64 data)
8309 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8312 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8314 return X86EMUL_UNHANDLEABLE;
8317 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8318 complete_emulated_msr_access, r))
8319 return X86EMUL_IO_NEEDED;
8321 trace_kvm_msr_write_ex(msr_index, data);
8322 return X86EMUL_PROPAGATE_FAULT;
8325 trace_kvm_msr_write(msr_index, data);
8326 return X86EMUL_CONTINUE;
8329 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8330 u32 msr_index, u64 *pdata)
8332 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8335 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8338 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8343 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8344 u32 pmc, u64 *pdata)
8346 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8349 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8351 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8354 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8355 struct x86_instruction_info *info,
8356 enum x86_intercept_stage stage)
8358 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8362 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8363 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8366 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8369 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8371 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8374 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8376 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8379 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8381 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8384 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8386 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8389 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8391 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8394 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8396 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8399 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8401 return is_smm(emul_to_vcpu(ctxt));
8404 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8406 return is_guest_mode(emul_to_vcpu(ctxt));
8409 #ifndef CONFIG_KVM_SMM
8410 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8413 return X86EMUL_UNHANDLEABLE;
8417 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8419 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8424 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8427 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8429 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8431 if (!kvm->vm_bugged)
8435 static const struct x86_emulate_ops emulate_ops = {
8436 .vm_bugged = emulator_vm_bugged,
8437 .read_gpr = emulator_read_gpr,
8438 .write_gpr = emulator_write_gpr,
8439 .read_std = emulator_read_std,
8440 .write_std = emulator_write_std,
8441 .fetch = kvm_fetch_guest_virt,
8442 .read_emulated = emulator_read_emulated,
8443 .write_emulated = emulator_write_emulated,
8444 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8445 .invlpg = emulator_invlpg,
8446 .pio_in_emulated = emulator_pio_in_emulated,
8447 .pio_out_emulated = emulator_pio_out_emulated,
8448 .get_segment = emulator_get_segment,
8449 .set_segment = emulator_set_segment,
8450 .get_cached_segment_base = emulator_get_cached_segment_base,
8451 .get_gdt = emulator_get_gdt,
8452 .get_idt = emulator_get_idt,
8453 .set_gdt = emulator_set_gdt,
8454 .set_idt = emulator_set_idt,
8455 .get_cr = emulator_get_cr,
8456 .set_cr = emulator_set_cr,
8457 .cpl = emulator_get_cpl,
8458 .get_dr = emulator_get_dr,
8459 .set_dr = emulator_set_dr,
8460 .set_msr_with_filter = emulator_set_msr_with_filter,
8461 .get_msr_with_filter = emulator_get_msr_with_filter,
8462 .get_msr = emulator_get_msr,
8463 .check_pmc = emulator_check_pmc,
8464 .read_pmc = emulator_read_pmc,
8465 .halt = emulator_halt,
8466 .wbinvd = emulator_wbinvd,
8467 .fix_hypercall = emulator_fix_hypercall,
8468 .intercept = emulator_intercept,
8469 .get_cpuid = emulator_get_cpuid,
8470 .guest_has_movbe = emulator_guest_has_movbe,
8471 .guest_has_fxsr = emulator_guest_has_fxsr,
8472 .guest_has_rdpid = emulator_guest_has_rdpid,
8473 .set_nmi_mask = emulator_set_nmi_mask,
8474 .is_smm = emulator_is_smm,
8475 .is_guest_mode = emulator_is_guest_mode,
8476 .leave_smm = emulator_leave_smm,
8477 .triple_fault = emulator_triple_fault,
8478 .set_xcr = emulator_set_xcr,
8481 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8483 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8485 * an sti; sti; sequence only disable interrupts for the first
8486 * instruction. So, if the last instruction, be it emulated or
8487 * not, left the system with the INT_STI flag enabled, it
8488 * means that the last instruction is an sti. We should not
8489 * leave the flag on in this case. The same goes for mov ss
8491 if (int_shadow & mask)
8493 if (unlikely(int_shadow || mask)) {
8494 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8496 kvm_make_request(KVM_REQ_EVENT, vcpu);
8500 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8502 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8504 if (ctxt->exception.vector == PF_VECTOR)
8505 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8506 else if (ctxt->exception.error_code_valid)
8507 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8508 ctxt->exception.error_code);
8510 kvm_queue_exception(vcpu, ctxt->exception.vector);
8513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8515 struct x86_emulate_ctxt *ctxt;
8517 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8519 pr_err("failed to allocate vcpu's emulator\n");
8524 ctxt->ops = &emulate_ops;
8525 vcpu->arch.emulate_ctxt = ctxt;
8530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8532 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8535 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8537 ctxt->gpa_available = false;
8538 ctxt->eflags = kvm_get_rflags(vcpu);
8539 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8541 ctxt->eip = kvm_rip_read(vcpu);
8542 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8543 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8544 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8545 cs_db ? X86EMUL_MODE_PROT32 :
8546 X86EMUL_MODE_PROT16;
8547 ctxt->interruptibility = 0;
8548 ctxt->have_exception = false;
8549 ctxt->exception.vector = -1;
8550 ctxt->perm_ok = false;
8552 init_decode_cache(ctxt);
8553 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8556 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8558 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8561 init_emulate_ctxt(vcpu);
8565 ctxt->_eip = ctxt->eip + inc_eip;
8566 ret = emulate_int_real(ctxt, irq);
8568 if (ret != X86EMUL_CONTINUE) {
8569 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8571 ctxt->eip = ctxt->_eip;
8572 kvm_rip_write(vcpu, ctxt->eip);
8573 kvm_set_rflags(vcpu, ctxt->eflags);
8576 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8578 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8579 u8 ndata, u8 *insn_bytes, u8 insn_size)
8581 struct kvm_run *run = vcpu->run;
8586 * Zero the whole array used to retrieve the exit info, as casting to
8587 * u32 for select entries will leave some chunks uninitialized.
8589 memset(&info, 0, sizeof(info));
8591 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8592 &info[2], (u32 *)&info[3],
8595 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8596 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8599 * There's currently space for 13 entries, but 5 are used for the exit
8600 * reason and info. Restrict to 4 to reduce the maintenance burden
8601 * when expanding kvm_run.emulation_failure in the future.
8603 if (WARN_ON_ONCE(ndata > 4))
8606 /* Always include the flags as a 'data' entry. */
8608 run->emulation_failure.flags = 0;
8611 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8612 sizeof(run->emulation_failure.insn_bytes) != 16));
8614 run->emulation_failure.flags |=
8615 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8616 run->emulation_failure.insn_size = insn_size;
8617 memset(run->emulation_failure.insn_bytes, 0x90,
8618 sizeof(run->emulation_failure.insn_bytes));
8619 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8622 memcpy(&run->internal.data[info_start], info, sizeof(info));
8623 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8624 ndata * sizeof(data[0]));
8626 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8629 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8631 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8633 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8634 ctxt->fetch.end - ctxt->fetch.data);
8637 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8640 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8642 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8644 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8646 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8648 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8650 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8652 struct kvm *kvm = vcpu->kvm;
8654 ++vcpu->stat.insn_emulation_fail;
8655 trace_kvm_emulate_insn_failed(vcpu);
8657 if (emulation_type & EMULTYPE_VMWARE_GP) {
8658 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8662 if (kvm->arch.exit_on_emulation_error ||
8663 (emulation_type & EMULTYPE_SKIP)) {
8664 prepare_emulation_ctxt_failure_exit(vcpu);
8668 kvm_queue_exception(vcpu, UD_VECTOR);
8670 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8671 prepare_emulation_ctxt_failure_exit(vcpu);
8678 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8681 gpa_t gpa = cr2_or_gpa;
8684 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8687 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8688 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8691 if (!vcpu->arch.mmu->root_role.direct) {
8693 * Write permission should be allowed since only
8694 * write access need to be emulated.
8696 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8699 * If the mapping is invalid in guest, let cpu retry
8700 * it to generate fault.
8702 if (gpa == INVALID_GPA)
8707 * Do not retry the unhandleable instruction if it faults on the
8708 * readonly host memory, otherwise it will goto a infinite loop:
8709 * retry instruction -> write #PF -> emulation fail -> retry
8710 * instruction -> ...
8712 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8715 * If the instruction failed on the error pfn, it can not be fixed,
8716 * report the error to userspace.
8718 if (is_error_noslot_pfn(pfn))
8721 kvm_release_pfn_clean(pfn);
8723 /* The instructions are well-emulated on direct mmu. */
8724 if (vcpu->arch.mmu->root_role.direct) {
8725 unsigned int indirect_shadow_pages;
8727 write_lock(&vcpu->kvm->mmu_lock);
8728 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8729 write_unlock(&vcpu->kvm->mmu_lock);
8731 if (indirect_shadow_pages)
8732 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8738 * if emulation was due to access to shadowed page table
8739 * and it failed try to unshadow page and re-enter the
8740 * guest to let CPU execute the instruction.
8742 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8745 * If the access faults on its page table, it can not
8746 * be fixed by unprotecting shadow page and it should
8747 * be reported to userspace.
8749 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8752 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8753 gpa_t cr2_or_gpa, int emulation_type)
8755 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8756 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8758 last_retry_eip = vcpu->arch.last_retry_eip;
8759 last_retry_addr = vcpu->arch.last_retry_addr;
8762 * If the emulation is caused by #PF and it is non-page_table
8763 * writing instruction, it means the VM-EXIT is caused by shadow
8764 * page protected, we can zap the shadow page and retry this
8765 * instruction directly.
8767 * Note: if the guest uses a non-page-table modifying instruction
8768 * on the PDE that points to the instruction, then we will unmap
8769 * the instruction and go to an infinite loop. So, we cache the
8770 * last retried eip and the last fault address, if we meet the eip
8771 * and the address again, we can break out of the potential infinite
8774 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8776 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8779 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8780 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8783 if (x86_page_table_writing_insn(ctxt))
8786 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8789 vcpu->arch.last_retry_eip = ctxt->eip;
8790 vcpu->arch.last_retry_addr = cr2_or_gpa;
8792 if (!vcpu->arch.mmu->root_role.direct)
8793 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8795 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8800 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8801 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8803 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8812 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8813 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8818 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8820 struct kvm_run *kvm_run = vcpu->run;
8822 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8823 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8824 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8825 kvm_run->debug.arch.exception = DB_VECTOR;
8826 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8829 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8833 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8835 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8838 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8842 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8845 * rflags is the old, "raw" value of the flags. The new value has
8846 * not been saved yet.
8848 * This is correct even for TF set by the guest, because "the
8849 * processor will not generate this exception after the instruction
8850 * that sets the TF flag".
8852 if (unlikely(rflags & X86_EFLAGS_TF))
8853 r = kvm_vcpu_do_singlestep(vcpu);
8856 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8858 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8862 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8866 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8867 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8868 * to avoid the relatively expensive CPUID lookup.
8870 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8871 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8872 guest_cpuid_is_intel(vcpu);
8875 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8876 int emulation_type, int *r)
8878 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8881 * Do not check for code breakpoints if hardware has already done the
8882 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8883 * the instruction has passed all exception checks, and all intercepted
8884 * exceptions that trigger emulation have lower priority than code
8885 * breakpoints, i.e. the fact that the intercepted exception occurred
8886 * means any code breakpoints have already been serviced.
8888 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8889 * hardware has checked the RIP of the magic prefix, but not the RIP of
8890 * the instruction being emulated. The intent of forced emulation is
8891 * to behave as if KVM intercepted the instruction without an exception
8892 * and without a prefix.
8894 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8895 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8898 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8899 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8900 struct kvm_run *kvm_run = vcpu->run;
8901 unsigned long eip = kvm_get_linear_rip(vcpu);
8902 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8903 vcpu->arch.guest_debug_dr7,
8907 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8908 kvm_run->debug.arch.pc = eip;
8909 kvm_run->debug.arch.exception = DB_VECTOR;
8910 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8916 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8917 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8918 unsigned long eip = kvm_get_linear_rip(vcpu);
8919 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8924 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8933 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8935 switch (ctxt->opcode_len) {
8942 case 0xe6: /* OUT */
8946 case 0x6c: /* INS */
8948 case 0x6e: /* OUTS */
8955 case 0x33: /* RDPMC */
8965 * Decode an instruction for emulation. The caller is responsible for handling
8966 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8967 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8968 * code breakpoints have higher priority and thus have already been done by
8971 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8972 * response to a machine check.
8974 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8975 void *insn, int insn_len)
8977 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8980 init_emulate_ctxt(vcpu);
8982 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8984 trace_kvm_emulate_insn_start(vcpu);
8985 ++vcpu->stat.insn_emulation;
8989 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8991 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8992 int emulation_type, void *insn, int insn_len)
8995 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8996 bool writeback = true;
8998 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
8999 if (r != X86EMUL_CONTINUE) {
9000 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9003 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9004 return handle_emulation_failure(vcpu, emulation_type);
9007 vcpu->arch.l1tf_flush_l1d = true;
9009 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9010 kvm_clear_exception_queue(vcpu);
9013 * Return immediately if RIP hits a code breakpoint, such #DBs
9014 * are fault-like and are higher priority than any faults on
9015 * the code fetch itself.
9017 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9020 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9022 if (r != EMULATION_OK) {
9023 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9024 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9025 kvm_queue_exception(vcpu, UD_VECTOR);
9028 if (reexecute_instruction(vcpu, cr2_or_gpa,
9032 if (ctxt->have_exception &&
9033 !(emulation_type & EMULTYPE_SKIP)) {
9035 * #UD should result in just EMULATION_FAILED, and trap-like
9036 * exception should not be encountered during decode.
9038 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9039 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9040 inject_emulated_exception(vcpu);
9043 return handle_emulation_failure(vcpu, emulation_type);
9047 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9048 !is_vmware_backdoor_opcode(ctxt)) {
9049 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9054 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9055 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9056 * The caller is responsible for updating interruptibility state and
9057 * injecting single-step #DBs.
9059 if (emulation_type & EMULTYPE_SKIP) {
9060 if (ctxt->mode != X86EMUL_MODE_PROT64)
9061 ctxt->eip = (u32)ctxt->_eip;
9063 ctxt->eip = ctxt->_eip;
9065 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9070 kvm_rip_write(vcpu, ctxt->eip);
9071 if (ctxt->eflags & X86_EFLAGS_RF)
9072 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9076 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9079 /* this is needed for vmware backdoor interface to work since it
9080 changes registers values during IO operation */
9081 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9082 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9083 emulator_invalidate_register_cache(ctxt);
9087 if (emulation_type & EMULTYPE_PF) {
9088 /* Save the faulting GPA (cr2) in the address field */
9089 ctxt->exception.address = cr2_or_gpa;
9091 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9092 if (vcpu->arch.mmu->root_role.direct) {
9093 ctxt->gpa_available = true;
9094 ctxt->gpa_val = cr2_or_gpa;
9097 /* Sanitize the address out of an abundance of paranoia. */
9098 ctxt->exception.address = 0;
9101 r = x86_emulate_insn(ctxt);
9103 if (r == EMULATION_INTERCEPTED)
9106 if (r == EMULATION_FAILED) {
9107 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9110 return handle_emulation_failure(vcpu, emulation_type);
9113 if (ctxt->have_exception) {
9114 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9115 vcpu->mmio_needed = false;
9117 inject_emulated_exception(vcpu);
9118 } else if (vcpu->arch.pio.count) {
9119 if (!vcpu->arch.pio.in) {
9120 /* FIXME: return into emulator if single-stepping. */
9121 vcpu->arch.pio.count = 0;
9124 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9127 } else if (vcpu->mmio_needed) {
9128 ++vcpu->stat.mmio_exits;
9130 if (!vcpu->mmio_is_write)
9133 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9134 } else if (vcpu->arch.complete_userspace_io) {
9137 } else if (r == EMULATION_RESTART)
9144 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9145 toggle_interruptibility(vcpu, ctxt->interruptibility);
9146 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9149 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9150 * only supports code breakpoints and general detect #DB, both
9151 * of which are fault-like.
9153 if (!ctxt->have_exception ||
9154 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9155 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9156 if (ctxt->is_branch)
9157 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9158 kvm_rip_write(vcpu, ctxt->eip);
9159 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9160 r = kvm_vcpu_do_singlestep(vcpu);
9161 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9162 __kvm_set_rflags(vcpu, ctxt->eflags);
9166 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9167 * do nothing, and it will be requested again as soon as
9168 * the shadow expires. But we still need to check here,
9169 * because POPF has no interrupt shadow.
9171 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9172 kvm_make_request(KVM_REQ_EVENT, vcpu);
9174 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9179 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9181 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9183 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9185 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9186 void *insn, int insn_len)
9188 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9190 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9192 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9194 vcpu->arch.pio.count = 0;
9198 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9200 vcpu->arch.pio.count = 0;
9202 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9205 return kvm_skip_emulated_instruction(vcpu);
9208 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9209 unsigned short port)
9211 unsigned long val = kvm_rax_read(vcpu);
9212 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9218 * Workaround userspace that relies on old KVM behavior of %rip being
9219 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9222 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9223 vcpu->arch.complete_userspace_io =
9224 complete_fast_pio_out_port_0x7e;
9225 kvm_skip_emulated_instruction(vcpu);
9227 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9228 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9233 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9237 /* We should only ever be called with arch.pio.count equal to 1 */
9238 BUG_ON(vcpu->arch.pio.count != 1);
9240 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9241 vcpu->arch.pio.count = 0;
9245 /* For size less than 4 we merge, else we zero extend */
9246 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9248 complete_emulator_pio_in(vcpu, &val);
9249 kvm_rax_write(vcpu, val);
9251 return kvm_skip_emulated_instruction(vcpu);
9254 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9255 unsigned short port)
9260 /* For size less than 4 we merge, else we zero extend */
9261 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9263 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9265 kvm_rax_write(vcpu, val);
9269 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9270 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9275 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9280 ret = kvm_fast_pio_in(vcpu, size, port);
9282 ret = kvm_fast_pio_out(vcpu, size, port);
9283 return ret && kvm_skip_emulated_instruction(vcpu);
9285 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9287 static int kvmclock_cpu_down_prep(unsigned int cpu)
9289 __this_cpu_write(cpu_tsc_khz, 0);
9293 static void tsc_khz_changed(void *data)
9295 struct cpufreq_freqs *freq = data;
9298 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9303 khz = cpufreq_quick_get(raw_smp_processor_id());
9306 __this_cpu_write(cpu_tsc_khz, khz);
9309 #ifdef CONFIG_X86_64
9310 static void kvm_hyperv_tsc_notifier(void)
9315 mutex_lock(&kvm_lock);
9316 list_for_each_entry(kvm, &vm_list, vm_list)
9317 kvm_make_mclock_inprogress_request(kvm);
9319 /* no guest entries from this point */
9320 hyperv_stop_tsc_emulation();
9322 /* TSC frequency always matches when on Hyper-V */
9323 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9324 for_each_present_cpu(cpu)
9325 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9327 kvm_caps.max_guest_tsc_khz = tsc_khz;
9329 list_for_each_entry(kvm, &vm_list, vm_list) {
9330 __kvm_start_pvclock_update(kvm);
9331 pvclock_update_vm_gtod_copy(kvm);
9332 kvm_end_pvclock_update(kvm);
9335 mutex_unlock(&kvm_lock);
9339 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9342 struct kvm_vcpu *vcpu;
9347 * We allow guests to temporarily run on slowing clocks,
9348 * provided we notify them after, or to run on accelerating
9349 * clocks, provided we notify them before. Thus time never
9352 * However, we have a problem. We can't atomically update
9353 * the frequency of a given CPU from this function; it is
9354 * merely a notifier, which can be called from any CPU.
9355 * Changing the TSC frequency at arbitrary points in time
9356 * requires a recomputation of local variables related to
9357 * the TSC for each VCPU. We must flag these local variables
9358 * to be updated and be sure the update takes place with the
9359 * new frequency before any guests proceed.
9361 * Unfortunately, the combination of hotplug CPU and frequency
9362 * change creates an intractable locking scenario; the order
9363 * of when these callouts happen is undefined with respect to
9364 * CPU hotplug, and they can race with each other. As such,
9365 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9366 * undefined; you can actually have a CPU frequency change take
9367 * place in between the computation of X and the setting of the
9368 * variable. To protect against this problem, all updates of
9369 * the per_cpu tsc_khz variable are done in an interrupt
9370 * protected IPI, and all callers wishing to update the value
9371 * must wait for a synchronous IPI to complete (which is trivial
9372 * if the caller is on the CPU already). This establishes the
9373 * necessary total order on variable updates.
9375 * Note that because a guest time update may take place
9376 * anytime after the setting of the VCPU's request bit, the
9377 * correct TSC value must be set before the request. However,
9378 * to ensure the update actually makes it to any guest which
9379 * starts running in hardware virtualization between the set
9380 * and the acquisition of the spinlock, we must also ping the
9381 * CPU after setting the request bit.
9385 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9387 mutex_lock(&kvm_lock);
9388 list_for_each_entry(kvm, &vm_list, vm_list) {
9389 kvm_for_each_vcpu(i, vcpu, kvm) {
9390 if (vcpu->cpu != cpu)
9392 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9393 if (vcpu->cpu != raw_smp_processor_id())
9397 mutex_unlock(&kvm_lock);
9399 if (freq->old < freq->new && send_ipi) {
9401 * We upscale the frequency. Must make the guest
9402 * doesn't see old kvmclock values while running with
9403 * the new frequency, otherwise we risk the guest sees
9404 * time go backwards.
9406 * In case we update the frequency for another cpu
9407 * (which might be in guest context) send an interrupt
9408 * to kick the cpu out of guest context. Next time
9409 * guest context is entered kvmclock will be updated,
9410 * so the guest will not see stale values.
9412 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9416 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9419 struct cpufreq_freqs *freq = data;
9422 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9424 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9427 for_each_cpu(cpu, freq->policy->cpus)
9428 __kvmclock_cpufreq_notifier(freq, cpu);
9433 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9434 .notifier_call = kvmclock_cpufreq_notifier
9437 static int kvmclock_cpu_online(unsigned int cpu)
9439 tsc_khz_changed(NULL);
9443 static void kvm_timer_init(void)
9445 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9446 max_tsc_khz = tsc_khz;
9448 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9449 struct cpufreq_policy *policy;
9453 policy = cpufreq_cpu_get(cpu);
9455 if (policy->cpuinfo.max_freq)
9456 max_tsc_khz = policy->cpuinfo.max_freq;
9457 cpufreq_cpu_put(policy);
9461 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9462 CPUFREQ_TRANSITION_NOTIFIER);
9464 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9465 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9469 #ifdef CONFIG_X86_64
9470 static void pvclock_gtod_update_fn(struct work_struct *work)
9473 struct kvm_vcpu *vcpu;
9476 mutex_lock(&kvm_lock);
9477 list_for_each_entry(kvm, &vm_list, vm_list)
9478 kvm_for_each_vcpu(i, vcpu, kvm)
9479 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9480 atomic_set(&kvm_guest_has_master_clock, 0);
9481 mutex_unlock(&kvm_lock);
9484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9487 * Indirection to move queue_work() out of the tk_core.seq write held
9488 * region to prevent possible deadlocks against time accessors which
9489 * are invoked with work related locks held.
9491 static void pvclock_irq_work_fn(struct irq_work *w)
9493 queue_work(system_long_wq, &pvclock_gtod_work);
9496 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9499 * Notification about pvclock gtod data update.
9501 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9504 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9505 struct timekeeper *tk = priv;
9507 update_pvclock_gtod(tk);
9510 * Disable master clock if host does not trust, or does not use,
9511 * TSC based clocksource. Delegate queue_work() to irq_work as
9512 * this is invoked with tk_core.seq write held.
9514 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9515 atomic_read(&kvm_guest_has_master_clock) != 0)
9516 irq_work_queue(&pvclock_irq_work);
9520 static struct notifier_block pvclock_gtod_notifier = {
9521 .notifier_call = pvclock_gtod_notify,
9525 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9527 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9529 #define __KVM_X86_OP(func) \
9530 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9531 #define KVM_X86_OP(func) \
9532 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9533 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9534 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9535 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9536 (void *)__static_call_return0);
9537 #include <asm/kvm-x86-ops.h>
9540 kvm_pmu_ops_update(ops->pmu_ops);
9543 static int kvm_x86_check_processor_compatibility(void)
9545 int cpu = smp_processor_id();
9546 struct cpuinfo_x86 *c = &cpu_data(cpu);
9549 * Compatibility checks are done when loading KVM and when enabling
9550 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9551 * compatible, i.e. KVM should never perform a compatibility check on
9554 WARN_ON(!cpu_online(cpu));
9556 if (__cr4_reserved_bits(cpu_has, c) !=
9557 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9560 return static_call(kvm_x86_check_processor_compatibility)();
9563 static void kvm_x86_check_cpu_compat(void *ret)
9565 *(int *)ret = kvm_x86_check_processor_compatibility();
9568 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9573 if (kvm_x86_ops.hardware_enable) {
9574 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9579 * KVM explicitly assumes that the guest has an FPU and
9580 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9581 * vCPU's FPU state as a fxregs_state struct.
9583 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9584 pr_err("inadequate fpu\n");
9588 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9589 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9594 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9595 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9596 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9597 * with an exception. PAT[0] is set to WB on RESET and also by the
9598 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9600 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9601 (host_pat & GENMASK(2, 0)) != 6) {
9602 pr_err("host PAT[0] is not WB\n");
9606 x86_emulator_cache = kvm_alloc_emulator_cache();
9607 if (!x86_emulator_cache) {
9608 pr_err("failed to allocate cache for x86 emulator\n");
9612 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9613 if (!user_return_msrs) {
9614 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9616 goto out_free_x86_emulator_cache;
9618 kvm_nr_uret_msrs = 0;
9620 r = kvm_mmu_vendor_module_init();
9622 goto out_free_percpu;
9624 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9625 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9626 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9629 rdmsrl_safe(MSR_EFER, &host_efer);
9631 if (boot_cpu_has(X86_FEATURE_XSAVES))
9632 rdmsrl(MSR_IA32_XSS, host_xss);
9634 kvm_init_pmu_capability(ops->pmu_ops);
9636 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9637 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9639 r = ops->hardware_setup();
9643 kvm_ops_update(ops);
9645 for_each_online_cpu(cpu) {
9646 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9648 goto out_unwind_ops;
9652 * Point of no return! DO NOT add error paths below this point unless
9653 * absolutely necessary, as most operations from this point forward
9654 * require unwinding.
9658 if (pi_inject_timer == -1)
9659 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9660 #ifdef CONFIG_X86_64
9661 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9663 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9664 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9667 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9669 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9670 kvm_caps.supported_xss = 0;
9672 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9673 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9674 #undef __kvm_cpu_cap_has
9676 if (kvm_caps.has_tsc_control) {
9678 * Make sure the user can only configure tsc_khz values that
9679 * fit into a signed integer.
9680 * A min value is not calculated because it will always
9681 * be 1 on all machines.
9683 u64 max = min(0x7fffffffULL,
9684 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9685 kvm_caps.max_guest_tsc_khz = max;
9687 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9688 kvm_init_msr_lists();
9692 kvm_x86_ops.hardware_enable = NULL;
9693 static_call(kvm_x86_hardware_unsetup)();
9695 kvm_mmu_vendor_module_exit();
9697 free_percpu(user_return_msrs);
9698 out_free_x86_emulator_cache:
9699 kmem_cache_destroy(x86_emulator_cache);
9703 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9707 mutex_lock(&vendor_module_lock);
9708 r = __kvm_x86_vendor_init(ops);
9709 mutex_unlock(&vendor_module_lock);
9713 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9715 void kvm_x86_vendor_exit(void)
9717 kvm_unregister_perf_callbacks();
9719 #ifdef CONFIG_X86_64
9720 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9721 clear_hv_tscchange_cb();
9725 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9726 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9727 CPUFREQ_TRANSITION_NOTIFIER);
9728 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9730 #ifdef CONFIG_X86_64
9731 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9732 irq_work_sync(&pvclock_irq_work);
9733 cancel_work_sync(&pvclock_gtod_work);
9735 static_call(kvm_x86_hardware_unsetup)();
9736 kvm_mmu_vendor_module_exit();
9737 free_percpu(user_return_msrs);
9738 kmem_cache_destroy(x86_emulator_cache);
9739 #ifdef CONFIG_KVM_XEN
9740 static_key_deferred_flush(&kvm_xen_enabled);
9741 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9743 mutex_lock(&vendor_module_lock);
9744 kvm_x86_ops.hardware_enable = NULL;
9745 mutex_unlock(&vendor_module_lock);
9747 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9749 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9752 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9753 * local APIC is in-kernel, the run loop will detect the non-runnable
9754 * state and halt the vCPU. Exit to userspace if the local APIC is
9755 * managed by userspace, in which case userspace is responsible for
9756 * handling wake events.
9758 ++vcpu->stat.halt_exits;
9759 if (lapic_in_kernel(vcpu)) {
9760 vcpu->arch.mp_state = state;
9763 vcpu->run->exit_reason = reason;
9768 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9770 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9772 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9774 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9776 int ret = kvm_skip_emulated_instruction(vcpu);
9778 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9779 * KVM_EXIT_DEBUG here.
9781 return kvm_emulate_halt_noskip(vcpu) && ret;
9783 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9785 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9787 int ret = kvm_skip_emulated_instruction(vcpu);
9789 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9790 KVM_EXIT_AP_RESET_HOLD) && ret;
9792 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9794 #ifdef CONFIG_X86_64
9795 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9796 unsigned long clock_type)
9798 struct kvm_clock_pairing clock_pairing;
9799 struct timespec64 ts;
9803 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9804 return -KVM_EOPNOTSUPP;
9807 * When tsc is in permanent catchup mode guests won't be able to use
9808 * pvclock_read_retry loop to get consistent view of pvclock
9810 if (vcpu->arch.tsc_always_catchup)
9811 return -KVM_EOPNOTSUPP;
9813 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9814 return -KVM_EOPNOTSUPP;
9816 clock_pairing.sec = ts.tv_sec;
9817 clock_pairing.nsec = ts.tv_nsec;
9818 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9819 clock_pairing.flags = 0;
9820 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9823 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9824 sizeof(struct kvm_clock_pairing)))
9832 * kvm_pv_kick_cpu_op: Kick a vcpu.
9834 * @apicid - apicid of vcpu to be kicked.
9836 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9839 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9840 * common code, e.g. for tracing. Defer initialization to the compiler.
9842 struct kvm_lapic_irq lapic_irq = {
9843 .delivery_mode = APIC_DM_REMRD,
9844 .dest_mode = APIC_DEST_PHYSICAL,
9845 .shorthand = APIC_DEST_NOSHORT,
9849 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9852 bool kvm_apicv_activated(struct kvm *kvm)
9854 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9856 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9858 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9860 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9861 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9863 return (vm_reasons | vcpu_reasons) == 0;
9865 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9867 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9868 enum kvm_apicv_inhibit reason, bool set)
9871 __set_bit(reason, inhibits);
9873 __clear_bit(reason, inhibits);
9875 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9878 static void kvm_apicv_init(struct kvm *kvm)
9880 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9882 init_rwsem(&kvm->arch.apicv_update_lock);
9884 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9887 set_or_clear_apicv_inhibit(inhibits,
9888 APICV_INHIBIT_REASON_DISABLE, true);
9891 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9893 struct kvm_vcpu *target = NULL;
9894 struct kvm_apic_map *map;
9896 vcpu->stat.directed_yield_attempted++;
9898 if (single_task_running())
9902 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9904 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9905 target = map->phys_map[dest_id]->vcpu;
9909 if (!target || !READ_ONCE(target->ready))
9912 /* Ignore requests to yield to self */
9916 if (kvm_vcpu_yield_to(target) <= 0)
9919 vcpu->stat.directed_yield_successful++;
9925 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9927 u64 ret = vcpu->run->hypercall.ret;
9929 if (!is_64_bit_mode(vcpu))
9931 kvm_rax_write(vcpu, ret);
9932 ++vcpu->stat.hypercalls;
9933 return kvm_skip_emulated_instruction(vcpu);
9936 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9938 unsigned long nr, a0, a1, a2, a3, ret;
9941 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9942 return kvm_xen_hypercall(vcpu);
9944 if (kvm_hv_hypercall_enabled(vcpu))
9945 return kvm_hv_hypercall(vcpu);
9947 nr = kvm_rax_read(vcpu);
9948 a0 = kvm_rbx_read(vcpu);
9949 a1 = kvm_rcx_read(vcpu);
9950 a2 = kvm_rdx_read(vcpu);
9951 a3 = kvm_rsi_read(vcpu);
9953 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9955 op_64_bit = is_64_bit_hypercall(vcpu);
9964 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9972 case KVM_HC_VAPIC_POLL_IRQ:
9975 case KVM_HC_KICK_CPU:
9976 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9979 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9980 kvm_sched_yield(vcpu, a1);
9983 #ifdef CONFIG_X86_64
9984 case KVM_HC_CLOCK_PAIRING:
9985 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9988 case KVM_HC_SEND_IPI:
9989 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9992 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9994 case KVM_HC_SCHED_YIELD:
9995 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9998 kvm_sched_yield(vcpu, a0);
10001 case KVM_HC_MAP_GPA_RANGE: {
10002 u64 gpa = a0, npages = a1, attrs = a2;
10005 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10008 if (!PAGE_ALIGNED(gpa) || !npages ||
10009 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10014 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10015 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10016 vcpu->run->hypercall.args[0] = gpa;
10017 vcpu->run->hypercall.args[1] = npages;
10018 vcpu->run->hypercall.args[2] = attrs;
10019 vcpu->run->hypercall.flags = 0;
10021 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10023 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10024 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10034 kvm_rax_write(vcpu, ret);
10036 ++vcpu->stat.hypercalls;
10037 return kvm_skip_emulated_instruction(vcpu);
10039 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10041 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10043 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10044 char instruction[3];
10045 unsigned long rip = kvm_rip_read(vcpu);
10048 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10051 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10052 ctxt->exception.error_code_valid = false;
10053 ctxt->exception.vector = UD_VECTOR;
10054 ctxt->have_exception = true;
10055 return X86EMUL_PROPAGATE_FAULT;
10058 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10060 return emulator_write_emulated(ctxt, rip, instruction, 3,
10064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10066 return vcpu->run->request_interrupt_window &&
10067 likely(!pic_in_kernel(vcpu->kvm));
10070 /* Called within kvm->srcu read side. */
10071 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10073 struct kvm_run *kvm_run = vcpu->run;
10075 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10076 kvm_run->cr8 = kvm_get_cr8(vcpu);
10077 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10079 kvm_run->ready_for_interrupt_injection =
10080 pic_in_kernel(vcpu->kvm) ||
10081 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10084 kvm_run->flags |= KVM_RUN_X86_SMM;
10087 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10091 if (!kvm_x86_ops.update_cr8_intercept)
10094 if (!lapic_in_kernel(vcpu))
10097 if (vcpu->arch.apic->apicv_active)
10100 if (!vcpu->arch.apic->vapic_addr)
10101 max_irr = kvm_lapic_find_highest_irr(vcpu);
10108 tpr = kvm_lapic_get_cr8(vcpu);
10110 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10114 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10116 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10117 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10121 return kvm_x86_ops.nested_ops->check_events(vcpu);
10124 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10127 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10128 * exceptions don't report error codes. The presence of an error code
10129 * is carried with the exception and only stripped when the exception
10130 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10131 * report an error code despite the CPU being in Real Mode.
10133 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10135 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10136 vcpu->arch.exception.has_error_code,
10137 vcpu->arch.exception.error_code,
10138 vcpu->arch.exception.injected);
10140 static_call(kvm_x86_inject_exception)(vcpu);
10144 * Check for any event (interrupt or exception) that is ready to be injected,
10145 * and if there is at least one event, inject the event with the highest
10146 * priority. This handles both "pending" events, i.e. events that have never
10147 * been injected into the guest, and "injected" events, i.e. events that were
10148 * injected as part of a previous VM-Enter, but weren't successfully delivered
10149 * and need to be re-injected.
10151 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10152 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10153 * be able to inject exceptions in the "middle" of an instruction, and so must
10154 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10155 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10156 * boundaries is necessary and correct.
10158 * For simplicity, KVM uses a single path to inject all events (except events
10159 * that are injected directly from L1 to L2) and doesn't explicitly track
10160 * instruction boundaries for asynchronous events. However, because VM-Exits
10161 * that can occur during instruction execution typically result in KVM skipping
10162 * the instruction or injecting an exception, e.g. instruction and exception
10163 * intercepts, and because pending exceptions have higher priority than pending
10164 * interrupts, KVM still honors instruction boundaries in most scenarios.
10166 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10167 * the instruction or inject an exception, then KVM can incorrecty inject a new
10168 * asynchrounous event if the event became pending after the CPU fetched the
10169 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10170 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10171 * injected on the restarted instruction instead of being deferred until the
10172 * instruction completes.
10174 * In practice, this virtualization hole is unlikely to be observed by the
10175 * guest, and even less likely to cause functional problems. To detect the
10176 * hole, the guest would have to trigger an event on a side effect of an early
10177 * phase of instruction execution, e.g. on the instruction fetch from memory.
10178 * And for it to be a functional problem, the guest would need to depend on the
10179 * ordering between that side effect, the instruction completing, _and_ the
10180 * delivery of the asynchronous event.
10182 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10183 bool *req_immediate_exit)
10189 * Process nested events first, as nested VM-Exit supercedes event
10190 * re-injection. If there's an event queued for re-injection, it will
10191 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10193 if (is_guest_mode(vcpu))
10194 r = kvm_check_nested_events(vcpu);
10199 * Re-inject exceptions and events *especially* if immediate entry+exit
10200 * to/from L2 is needed, as any event that has already been injected
10201 * into L2 needs to complete its lifecycle before injecting a new event.
10203 * Don't re-inject an NMI or interrupt if there is a pending exception.
10204 * This collision arises if an exception occurred while vectoring the
10205 * injected event, KVM intercepted said exception, and KVM ultimately
10206 * determined the fault belongs to the guest and queues the exception
10207 * for injection back into the guest.
10209 * "Injected" interrupts can also collide with pending exceptions if
10210 * userspace ignores the "ready for injection" flag and blindly queues
10211 * an interrupt. In that case, prioritizing the exception is correct,
10212 * as the exception "occurred" before the exit to userspace. Trap-like
10213 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10214 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10215 * priority, they're only generated (pended) during instruction
10216 * execution, and interrupts are recognized at instruction boundaries.
10217 * Thus a pending fault-like exception means the fault occurred on the
10218 * *previous* instruction and must be serviced prior to recognizing any
10219 * new events in order to fully complete the previous instruction.
10221 if (vcpu->arch.exception.injected)
10222 kvm_inject_exception(vcpu);
10223 else if (kvm_is_exception_pending(vcpu))
10225 else if (vcpu->arch.nmi_injected)
10226 static_call(kvm_x86_inject_nmi)(vcpu);
10227 else if (vcpu->arch.interrupt.injected)
10228 static_call(kvm_x86_inject_irq)(vcpu, true);
10231 * Exceptions that morph to VM-Exits are handled above, and pending
10232 * exceptions on top of injected exceptions that do not VM-Exit should
10233 * either morph to #DF or, sadly, override the injected exception.
10235 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10236 vcpu->arch.exception.pending);
10239 * Bail if immediate entry+exit to/from the guest is needed to complete
10240 * nested VM-Enter or event re-injection so that a different pending
10241 * event can be serviced (or if KVM needs to exit to userspace).
10243 * Otherwise, continue processing events even if VM-Exit occurred. The
10244 * VM-Exit will have cleared exceptions that were meant for L2, but
10245 * there may now be events that can be injected into L1.
10251 * A pending exception VM-Exit should either result in nested VM-Exit
10252 * or force an immediate re-entry and exit to/from L2, and exception
10253 * VM-Exits cannot be injected (flag should _never_ be set).
10255 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10256 vcpu->arch.exception_vmexit.pending);
10259 * New events, other than exceptions, cannot be injected if KVM needs
10260 * to re-inject a previous event. See above comments on re-injecting
10261 * for why pending exceptions get priority.
10263 can_inject = !kvm_event_needs_reinjection(vcpu);
10265 if (vcpu->arch.exception.pending) {
10267 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10268 * value pushed on the stack. Trap-like exception and all #DBs
10269 * leave RF as-is (KVM follows Intel's behavior in this regard;
10270 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10272 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10273 * describe the behavior of General Detect #DBs, which are
10274 * fault-like. They do _not_ set RF, a la code breakpoints.
10276 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10277 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10280 if (vcpu->arch.exception.vector == DB_VECTOR) {
10281 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10282 if (vcpu->arch.dr7 & DR7_GD) {
10283 vcpu->arch.dr7 &= ~DR7_GD;
10284 kvm_update_dr7(vcpu);
10288 kvm_inject_exception(vcpu);
10290 vcpu->arch.exception.pending = false;
10291 vcpu->arch.exception.injected = true;
10293 can_inject = false;
10296 /* Don't inject interrupts if the user asked to avoid doing so */
10297 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10301 * Finally, inject interrupt events. If an event cannot be injected
10302 * due to architectural conditions (e.g. IF=0) a window-open exit
10303 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10304 * and can architecturally be injected, but we cannot do it right now:
10305 * an interrupt could have arrived just now and we have to inject it
10306 * as a vmexit, or there could already an event in the queue, which is
10307 * indicated by can_inject. In that case we request an immediate exit
10308 * in order to make progress and get back here for another iteration.
10309 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10311 #ifdef CONFIG_KVM_SMM
10312 if (vcpu->arch.smi_pending) {
10313 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10317 vcpu->arch.smi_pending = false;
10318 ++vcpu->arch.smi_count;
10320 can_inject = false;
10322 static_call(kvm_x86_enable_smi_window)(vcpu);
10326 if (vcpu->arch.nmi_pending) {
10327 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10331 --vcpu->arch.nmi_pending;
10332 vcpu->arch.nmi_injected = true;
10333 static_call(kvm_x86_inject_nmi)(vcpu);
10334 can_inject = false;
10335 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10337 if (vcpu->arch.nmi_pending)
10338 static_call(kvm_x86_enable_nmi_window)(vcpu);
10341 if (kvm_cpu_has_injectable_intr(vcpu)) {
10342 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10346 int irq = kvm_cpu_get_interrupt(vcpu);
10348 if (!WARN_ON_ONCE(irq == -1)) {
10349 kvm_queue_interrupt(vcpu, irq, false);
10350 static_call(kvm_x86_inject_irq)(vcpu, false);
10351 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10354 if (kvm_cpu_has_injectable_intr(vcpu))
10355 static_call(kvm_x86_enable_irq_window)(vcpu);
10358 if (is_guest_mode(vcpu) &&
10359 kvm_x86_ops.nested_ops->has_events &&
10360 kvm_x86_ops.nested_ops->has_events(vcpu))
10361 *req_immediate_exit = true;
10364 * KVM must never queue a new exception while injecting an event; KVM
10365 * is done emulating and should only propagate the to-be-injected event
10366 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10367 * infinite loop as KVM will bail from VM-Enter to inject the pending
10368 * exception and start the cycle all over.
10370 * Exempt triple faults as they have special handling and won't put the
10371 * vCPU into an infinite loop. Triple fault can be queued when running
10372 * VMX without unrestricted guest, as that requires KVM to emulate Real
10373 * Mode events (see kvm_inject_realmode_interrupt()).
10375 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10376 vcpu->arch.exception_vmexit.pending);
10381 *req_immediate_exit = true;
10387 static void process_nmi(struct kvm_vcpu *vcpu)
10389 unsigned int limit;
10392 * x86 is limited to one NMI pending, but because KVM can't react to
10393 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10394 * scheduled out, KVM needs to play nice with two queued NMIs showing
10395 * up at the same time. To handle this scenario, allow two NMIs to be
10396 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10397 * waiting for a previous NMI injection to complete (which effectively
10398 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10399 * will request an NMI window to handle the second NMI.
10401 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10407 * Adjust the limit to account for pending virtual NMIs, which aren't
10408 * tracked in vcpu->arch.nmi_pending.
10410 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10413 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10414 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10416 if (vcpu->arch.nmi_pending &&
10417 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10418 vcpu->arch.nmi_pending--;
10420 if (vcpu->arch.nmi_pending)
10421 kvm_make_request(KVM_REQ_EVENT, vcpu);
10424 /* Return total number of NMIs pending injection to the VM */
10425 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10427 return vcpu->arch.nmi_pending +
10428 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10431 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10432 unsigned long *vcpu_bitmap)
10434 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10437 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10439 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10442 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10444 struct kvm_lapic *apic = vcpu->arch.apic;
10447 if (!lapic_in_kernel(vcpu))
10450 down_read(&vcpu->kvm->arch.apicv_update_lock);
10453 /* Do not activate APICV when APIC is disabled */
10454 activate = kvm_vcpu_apicv_activated(vcpu) &&
10455 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10457 if (apic->apicv_active == activate)
10460 apic->apicv_active = activate;
10461 kvm_apic_update_apicv(vcpu);
10462 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10465 * When APICv gets disabled, we may still have injected interrupts
10466 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10467 * still active when the interrupt got accepted. Make sure
10468 * kvm_check_and_inject_events() is called to check for that.
10470 if (!apic->apicv_active)
10471 kvm_make_request(KVM_REQ_EVENT, vcpu);
10475 up_read(&vcpu->kvm->arch.apicv_update_lock);
10477 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10479 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10481 if (!lapic_in_kernel(vcpu))
10485 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10486 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10487 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10488 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10489 * this case so that KVM can the AVIC doorbell to inject interrupts to
10490 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10491 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10492 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10493 * access page is sticky.
10495 if (apic_x2apic_mode(vcpu->arch.apic) &&
10496 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10497 kvm_inhibit_apic_access_page(vcpu);
10499 __kvm_vcpu_update_apicv(vcpu);
10502 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10503 enum kvm_apicv_inhibit reason, bool set)
10505 unsigned long old, new;
10507 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10509 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10512 old = new = kvm->arch.apicv_inhibit_reasons;
10514 set_or_clear_apicv_inhibit(&new, reason, set);
10516 if (!!old != !!new) {
10518 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10519 * false positives in the sanity check WARN in svm_vcpu_run().
10520 * This task will wait for all vCPUs to ack the kick IRQ before
10521 * updating apicv_inhibit_reasons, and all other vCPUs will
10522 * block on acquiring apicv_update_lock so that vCPUs can't
10523 * redo svm_vcpu_run() without seeing the new inhibit state.
10525 * Note, holding apicv_update_lock and taking it in the read
10526 * side (handling the request) also prevents other vCPUs from
10527 * servicing the request with a stale apicv_inhibit_reasons.
10529 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10530 kvm->arch.apicv_inhibit_reasons = new;
10532 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10533 int idx = srcu_read_lock(&kvm->srcu);
10535 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10536 srcu_read_unlock(&kvm->srcu, idx);
10539 kvm->arch.apicv_inhibit_reasons = new;
10543 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10544 enum kvm_apicv_inhibit reason, bool set)
10549 down_write(&kvm->arch.apicv_update_lock);
10550 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10551 up_write(&kvm->arch.apicv_update_lock);
10553 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10555 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10557 if (!kvm_apic_present(vcpu))
10560 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10562 if (irqchip_split(vcpu->kvm))
10563 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10565 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10566 if (ioapic_in_kernel(vcpu->kvm))
10567 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10570 if (is_guest_mode(vcpu))
10571 vcpu->arch.load_eoi_exitmap_pending = true;
10573 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10576 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10578 u64 eoi_exit_bitmap[4];
10580 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10583 if (to_hv_vcpu(vcpu)) {
10584 bitmap_or((ulong *)eoi_exit_bitmap,
10585 vcpu->arch.ioapic_handled_vectors,
10586 to_hv_synic(vcpu)->vec_bitmap, 256);
10587 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10591 static_call_cond(kvm_x86_load_eoi_exitmap)(
10592 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10595 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10597 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10600 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10602 if (!lapic_in_kernel(vcpu))
10605 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10608 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10610 smp_send_reschedule(vcpu->cpu);
10612 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10615 * Called within kvm->srcu read side.
10616 * Returns 1 to let vcpu_run() continue the guest execution loop without
10617 * exiting to the userspace. Otherwise, the value will be returned to the
10620 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10624 dm_request_for_irq_injection(vcpu) &&
10625 kvm_cpu_accept_dm_intr(vcpu);
10626 fastpath_t exit_fastpath;
10628 bool req_immediate_exit = false;
10630 if (kvm_request_pending(vcpu)) {
10631 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10636 if (kvm_dirty_ring_check_request(vcpu)) {
10641 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10642 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10647 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10648 kvm_mmu_free_obsolete_roots(vcpu);
10649 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10650 __kvm_migrate_timers(vcpu);
10651 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10652 kvm_update_masterclock(vcpu->kvm);
10653 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10654 kvm_gen_kvmclock_update(vcpu);
10655 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10656 r = kvm_guest_time_update(vcpu);
10660 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10661 kvm_mmu_sync_roots(vcpu);
10662 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10663 kvm_mmu_load_pgd(vcpu);
10666 * Note, the order matters here, as flushing "all" TLB entries
10667 * also flushes the "current" TLB entries, i.e. servicing the
10668 * flush "all" will clear any request to flush "current".
10670 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10671 kvm_vcpu_flush_tlb_all(vcpu);
10673 kvm_service_local_tlb_flush_requests(vcpu);
10676 * Fall back to a "full" guest flush if Hyper-V's precise
10677 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10678 * the flushes are considered "remote" and not "local" because
10679 * the requests can be initiated from other vCPUs.
10681 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10682 kvm_hv_vcpu_flush_tlb(vcpu))
10683 kvm_vcpu_flush_tlb_guest(vcpu);
10685 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10686 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10690 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10691 if (is_guest_mode(vcpu))
10692 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10694 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10695 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10696 vcpu->mmio_needed = 0;
10701 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10702 /* Page is swapped out. Do synthetic halt */
10703 vcpu->arch.apf.halted = true;
10707 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10708 record_steal_time(vcpu);
10709 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10710 kvm_pmu_handle_event(vcpu);
10711 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10712 kvm_pmu_deliver_pmi(vcpu);
10713 #ifdef CONFIG_KVM_SMM
10714 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10717 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10719 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10720 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10721 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10722 vcpu->arch.ioapic_handled_vectors)) {
10723 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10724 vcpu->run->eoi.vector =
10725 vcpu->arch.pending_ioapic_eoi;
10730 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10731 vcpu_scan_ioapic(vcpu);
10732 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10733 vcpu_load_eoi_exitmap(vcpu);
10734 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10735 kvm_vcpu_reload_apic_access_page(vcpu);
10736 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10737 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10738 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10739 vcpu->run->system_event.ndata = 0;
10743 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10744 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10745 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10746 vcpu->run->system_event.ndata = 0;
10750 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10751 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10753 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10754 vcpu->run->hyperv = hv_vcpu->exit;
10760 * KVM_REQ_HV_STIMER has to be processed after
10761 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10762 * depend on the guest clock being up-to-date
10764 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10765 kvm_hv_process_stimers(vcpu);
10766 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10767 kvm_vcpu_update_apicv(vcpu);
10768 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10769 kvm_check_async_pf_completion(vcpu);
10770 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10771 static_call(kvm_x86_msr_filter_changed)(vcpu);
10773 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10774 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10777 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10778 kvm_xen_has_interrupt(vcpu)) {
10779 ++vcpu->stat.req_event;
10780 r = kvm_apic_accept_events(vcpu);
10785 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10790 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10796 static_call(kvm_x86_enable_irq_window)(vcpu);
10798 if (kvm_lapic_enabled(vcpu)) {
10799 update_cr8_intercept(vcpu);
10800 kvm_lapic_sync_to_vapic(vcpu);
10804 r = kvm_mmu_reload(vcpu);
10806 goto cancel_injection;
10811 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10814 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10815 * IPI are then delayed after guest entry, which ensures that they
10816 * result in virtual interrupt delivery.
10818 local_irq_disable();
10820 /* Store vcpu->apicv_active before vcpu->mode. */
10821 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10823 kvm_vcpu_srcu_read_unlock(vcpu);
10826 * 1) We should set ->mode before checking ->requests. Please see
10827 * the comment in kvm_vcpu_exiting_guest_mode().
10829 * 2) For APICv, we should set ->mode before checking PID.ON. This
10830 * pairs with the memory barrier implicit in pi_test_and_set_on
10831 * (see vmx_deliver_posted_interrupt).
10833 * 3) This also orders the write to mode from any reads to the page
10834 * tables done while the VCPU is running. Please see the comment
10835 * in kvm_flush_remote_tlbs.
10837 smp_mb__after_srcu_read_unlock();
10840 * Process pending posted interrupts to handle the case where the
10841 * notification IRQ arrived in the host, or was never sent (because the
10842 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10843 * status, KVM doesn't update assigned devices when APICv is inhibited,
10844 * i.e. they can post interrupts even if APICv is temporarily disabled.
10846 if (kvm_lapic_enabled(vcpu))
10847 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10849 if (kvm_vcpu_exit_request(vcpu)) {
10850 vcpu->mode = OUTSIDE_GUEST_MODE;
10852 local_irq_enable();
10854 kvm_vcpu_srcu_read_lock(vcpu);
10856 goto cancel_injection;
10859 if (req_immediate_exit) {
10860 kvm_make_request(KVM_REQ_EVENT, vcpu);
10861 static_call(kvm_x86_request_immediate_exit)(vcpu);
10864 fpregs_assert_state_consistent();
10865 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10866 switch_fpu_return();
10868 if (vcpu->arch.guest_fpu.xfd_err)
10869 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10871 if (unlikely(vcpu->arch.switch_db_regs)) {
10872 set_debugreg(0, 7);
10873 set_debugreg(vcpu->arch.eff_db[0], 0);
10874 set_debugreg(vcpu->arch.eff_db[1], 1);
10875 set_debugreg(vcpu->arch.eff_db[2], 2);
10876 set_debugreg(vcpu->arch.eff_db[3], 3);
10877 } else if (unlikely(hw_breakpoint_active())) {
10878 set_debugreg(0, 7);
10881 guest_timing_enter_irqoff();
10885 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10886 * update must kick and wait for all vCPUs before toggling the
10887 * per-VM state, and responsing vCPUs must wait for the update
10888 * to complete before servicing KVM_REQ_APICV_UPDATE.
10890 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10891 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10893 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10894 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10897 if (kvm_lapic_enabled(vcpu))
10898 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10900 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10901 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10905 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10906 ++vcpu->stat.exits;
10910 * Do this here before restoring debug registers on the host. And
10911 * since we do this before handling the vmexit, a DR access vmexit
10912 * can (a) read the correct value of the debug registers, (b) set
10913 * KVM_DEBUGREG_WONT_EXIT again.
10915 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10916 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10917 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10918 kvm_update_dr0123(vcpu);
10919 kvm_update_dr7(vcpu);
10923 * If the guest has used debug registers, at least dr7
10924 * will be disabled while returning to the host.
10925 * If we don't have active breakpoints in the host, we don't
10926 * care about the messed up debug address registers. But if
10927 * we have some of them active, restore the old state.
10929 if (hw_breakpoint_active())
10930 hw_breakpoint_restore();
10932 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10933 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10935 vcpu->mode = OUTSIDE_GUEST_MODE;
10939 * Sync xfd before calling handle_exit_irqoff() which may
10940 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10941 * in #NM irqoff handler).
10943 if (vcpu->arch.xfd_no_write_intercept)
10944 fpu_sync_guest_vmexit_xfd_state();
10946 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10948 if (vcpu->arch.guest_fpu.xfd_err)
10949 wrmsrl(MSR_IA32_XFD_ERR, 0);
10952 * Consume any pending interrupts, including the possible source of
10953 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10954 * An instruction is required after local_irq_enable() to fully unblock
10955 * interrupts on processors that implement an interrupt shadow, the
10956 * stat.exits increment will do nicely.
10958 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10959 local_irq_enable();
10960 ++vcpu->stat.exits;
10961 local_irq_disable();
10962 kvm_after_interrupt(vcpu);
10965 * Wait until after servicing IRQs to account guest time so that any
10966 * ticks that occurred while running the guest are properly accounted
10967 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10968 * of accounting via context tracking, but the loss of accuracy is
10969 * acceptable for all known use cases.
10971 guest_timing_exit_irqoff();
10973 local_irq_enable();
10976 kvm_vcpu_srcu_read_lock(vcpu);
10979 * Profile KVM exit RIPs:
10981 if (unlikely(prof_on == KVM_PROFILING)) {
10982 unsigned long rip = kvm_rip_read(vcpu);
10983 profile_hit(KVM_PROFILING, (void *)rip);
10986 if (unlikely(vcpu->arch.tsc_always_catchup))
10987 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10989 if (vcpu->arch.apic_attention)
10990 kvm_lapic_sync_from_vapic(vcpu);
10992 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10996 if (req_immediate_exit)
10997 kvm_make_request(KVM_REQ_EVENT, vcpu);
10998 static_call(kvm_x86_cancel_injection)(vcpu);
10999 if (unlikely(vcpu->arch.apic_attention))
11000 kvm_lapic_sync_from_vapic(vcpu);
11005 /* Called within kvm->srcu read side. */
11006 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11010 if (!kvm_arch_vcpu_runnable(vcpu)) {
11012 * Switch to the software timer before halt-polling/blocking as
11013 * the guest's timer may be a break event for the vCPU, and the
11014 * hypervisor timer runs only when the CPU is in guest mode.
11015 * Switch before halt-polling so that KVM recognizes an expired
11016 * timer before blocking.
11018 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11020 kvm_lapic_switch_to_sw_timer(vcpu);
11022 kvm_vcpu_srcu_read_unlock(vcpu);
11023 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11024 kvm_vcpu_halt(vcpu);
11026 kvm_vcpu_block(vcpu);
11027 kvm_vcpu_srcu_read_lock(vcpu);
11030 kvm_lapic_switch_to_hv_timer(vcpu);
11033 * If the vCPU is not runnable, a signal or another host event
11034 * of some kind is pending; service it without changing the
11035 * vCPU's activity state.
11037 if (!kvm_arch_vcpu_runnable(vcpu))
11042 * Evaluate nested events before exiting the halted state. This allows
11043 * the halt state to be recorded properly in the VMCS12's activity
11044 * state field (AMD does not have a similar field and a VM-Exit always
11045 * causes a spurious wakeup from HLT).
11047 if (is_guest_mode(vcpu)) {
11048 if (kvm_check_nested_events(vcpu) < 0)
11052 if (kvm_apic_accept_events(vcpu) < 0)
11054 switch(vcpu->arch.mp_state) {
11055 case KVM_MP_STATE_HALTED:
11056 case KVM_MP_STATE_AP_RESET_HOLD:
11057 vcpu->arch.pv.pv_unhalted = false;
11058 vcpu->arch.mp_state =
11059 KVM_MP_STATE_RUNNABLE;
11061 case KVM_MP_STATE_RUNNABLE:
11062 vcpu->arch.apf.halted = false;
11064 case KVM_MP_STATE_INIT_RECEIVED:
11073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11075 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11076 !vcpu->arch.apf.halted);
11079 /* Called within kvm->srcu read side. */
11080 static int vcpu_run(struct kvm_vcpu *vcpu)
11084 vcpu->arch.l1tf_flush_l1d = true;
11088 * If another guest vCPU requests a PV TLB flush in the middle
11089 * of instruction emulation, the rest of the emulation could
11090 * use a stale page translation. Assume that any code after
11091 * this point can start executing an instruction.
11093 vcpu->arch.at_instruction_boundary = false;
11094 if (kvm_vcpu_running(vcpu)) {
11095 r = vcpu_enter_guest(vcpu);
11097 r = vcpu_block(vcpu);
11103 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11104 if (kvm_xen_has_pending_events(vcpu))
11105 kvm_xen_inject_pending_events(vcpu);
11107 if (kvm_cpu_has_pending_timer(vcpu))
11108 kvm_inject_pending_timer_irqs(vcpu);
11110 if (dm_request_for_irq_injection(vcpu) &&
11111 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11113 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11114 ++vcpu->stat.request_irq_exits;
11118 if (__xfer_to_guest_mode_work_pending()) {
11119 kvm_vcpu_srcu_read_unlock(vcpu);
11120 r = xfer_to_guest_mode_handle_work(vcpu);
11121 kvm_vcpu_srcu_read_lock(vcpu);
11130 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11132 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11135 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11137 BUG_ON(!vcpu->arch.pio.count);
11139 return complete_emulated_io(vcpu);
11143 * Implements the following, as a state machine:
11146 * for each fragment
11147 * for each mmio piece in the fragment
11154 * for each fragment
11155 * for each mmio piece in the fragment
11160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11162 struct kvm_run *run = vcpu->run;
11163 struct kvm_mmio_fragment *frag;
11166 BUG_ON(!vcpu->mmio_needed);
11168 /* Complete previous fragment */
11169 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11170 len = min(8u, frag->len);
11171 if (!vcpu->mmio_is_write)
11172 memcpy(frag->data, run->mmio.data, len);
11174 if (frag->len <= 8) {
11175 /* Switch to the next fragment. */
11177 vcpu->mmio_cur_fragment++;
11179 /* Go forward to the next mmio piece. */
11185 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11186 vcpu->mmio_needed = 0;
11188 /* FIXME: return into emulator if single-stepping. */
11189 if (vcpu->mmio_is_write)
11191 vcpu->mmio_read_completed = 1;
11192 return complete_emulated_io(vcpu);
11195 run->exit_reason = KVM_EXIT_MMIO;
11196 run->mmio.phys_addr = frag->gpa;
11197 if (vcpu->mmio_is_write)
11198 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11199 run->mmio.len = min(8u, frag->len);
11200 run->mmio.is_write = vcpu->mmio_is_write;
11201 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11205 /* Swap (qemu) user FPU context for the guest FPU context. */
11206 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11208 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11209 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11213 /* When vcpu_run ends, restore user space FPU context. */
11214 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11216 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11217 ++vcpu->stat.fpu_reload;
11221 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11223 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11224 struct kvm_run *kvm_run = vcpu->run;
11228 kvm_sigset_activate(vcpu);
11229 kvm_run->flags = 0;
11230 kvm_load_guest_fpu(vcpu);
11232 kvm_vcpu_srcu_read_lock(vcpu);
11233 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11234 if (kvm_run->immediate_exit) {
11240 * Don't bother switching APIC timer emulation from the
11241 * hypervisor timer to the software timer, the only way for the
11242 * APIC timer to be active is if userspace stuffed vCPU state,
11243 * i.e. put the vCPU into a nonsensical state. Only an INIT
11244 * will transition the vCPU out of UNINITIALIZED (without more
11245 * state stuffing from userspace), which will reset the local
11246 * APIC and thus cancel the timer or drop the IRQ (if the timer
11247 * already expired).
11249 kvm_vcpu_srcu_read_unlock(vcpu);
11250 kvm_vcpu_block(vcpu);
11251 kvm_vcpu_srcu_read_lock(vcpu);
11253 if (kvm_apic_accept_events(vcpu) < 0) {
11258 if (signal_pending(current)) {
11260 kvm_run->exit_reason = KVM_EXIT_INTR;
11261 ++vcpu->stat.signal_exits;
11266 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11267 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11272 if (kvm_run->kvm_dirty_regs) {
11273 r = sync_regs(vcpu);
11278 /* re-sync apic's tpr */
11279 if (!lapic_in_kernel(vcpu)) {
11280 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11287 * If userspace set a pending exception and L2 is active, convert it to
11288 * a pending VM-Exit if L1 wants to intercept the exception.
11290 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11291 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11293 kvm_queue_exception_vmexit(vcpu, ex->vector,
11294 ex->has_error_code, ex->error_code,
11295 ex->has_payload, ex->payload);
11296 ex->injected = false;
11297 ex->pending = false;
11299 vcpu->arch.exception_from_userspace = false;
11301 if (unlikely(vcpu->arch.complete_userspace_io)) {
11302 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11303 vcpu->arch.complete_userspace_io = NULL;
11308 WARN_ON_ONCE(vcpu->arch.pio.count);
11309 WARN_ON_ONCE(vcpu->mmio_needed);
11312 if (kvm_run->immediate_exit) {
11317 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11321 r = vcpu_run(vcpu);
11324 kvm_put_guest_fpu(vcpu);
11325 if (kvm_run->kvm_valid_regs)
11327 post_kvm_run_save(vcpu);
11328 kvm_vcpu_srcu_read_unlock(vcpu);
11330 kvm_sigset_deactivate(vcpu);
11335 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11337 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11339 * We are here if userspace calls get_regs() in the middle of
11340 * instruction emulation. Registers state needs to be copied
11341 * back from emulation context to vcpu. Userspace shouldn't do
11342 * that usually, but some bad designed PV devices (vmware
11343 * backdoor interface) need this to work
11345 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11346 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11348 regs->rax = kvm_rax_read(vcpu);
11349 regs->rbx = kvm_rbx_read(vcpu);
11350 regs->rcx = kvm_rcx_read(vcpu);
11351 regs->rdx = kvm_rdx_read(vcpu);
11352 regs->rsi = kvm_rsi_read(vcpu);
11353 regs->rdi = kvm_rdi_read(vcpu);
11354 regs->rsp = kvm_rsp_read(vcpu);
11355 regs->rbp = kvm_rbp_read(vcpu);
11356 #ifdef CONFIG_X86_64
11357 regs->r8 = kvm_r8_read(vcpu);
11358 regs->r9 = kvm_r9_read(vcpu);
11359 regs->r10 = kvm_r10_read(vcpu);
11360 regs->r11 = kvm_r11_read(vcpu);
11361 regs->r12 = kvm_r12_read(vcpu);
11362 regs->r13 = kvm_r13_read(vcpu);
11363 regs->r14 = kvm_r14_read(vcpu);
11364 regs->r15 = kvm_r15_read(vcpu);
11367 regs->rip = kvm_rip_read(vcpu);
11368 regs->rflags = kvm_get_rflags(vcpu);
11371 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11374 __get_regs(vcpu, regs);
11379 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11381 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11382 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11384 kvm_rax_write(vcpu, regs->rax);
11385 kvm_rbx_write(vcpu, regs->rbx);
11386 kvm_rcx_write(vcpu, regs->rcx);
11387 kvm_rdx_write(vcpu, regs->rdx);
11388 kvm_rsi_write(vcpu, regs->rsi);
11389 kvm_rdi_write(vcpu, regs->rdi);
11390 kvm_rsp_write(vcpu, regs->rsp);
11391 kvm_rbp_write(vcpu, regs->rbp);
11392 #ifdef CONFIG_X86_64
11393 kvm_r8_write(vcpu, regs->r8);
11394 kvm_r9_write(vcpu, regs->r9);
11395 kvm_r10_write(vcpu, regs->r10);
11396 kvm_r11_write(vcpu, regs->r11);
11397 kvm_r12_write(vcpu, regs->r12);
11398 kvm_r13_write(vcpu, regs->r13);
11399 kvm_r14_write(vcpu, regs->r14);
11400 kvm_r15_write(vcpu, regs->r15);
11403 kvm_rip_write(vcpu, regs->rip);
11404 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11406 vcpu->arch.exception.pending = false;
11407 vcpu->arch.exception_vmexit.pending = false;
11409 kvm_make_request(KVM_REQ_EVENT, vcpu);
11412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11415 __set_regs(vcpu, regs);
11420 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11422 struct desc_ptr dt;
11424 if (vcpu->arch.guest_state_protected)
11425 goto skip_protected_regs;
11427 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11428 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11429 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11430 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11431 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11432 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11434 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11435 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11437 static_call(kvm_x86_get_idt)(vcpu, &dt);
11438 sregs->idt.limit = dt.size;
11439 sregs->idt.base = dt.address;
11440 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11441 sregs->gdt.limit = dt.size;
11442 sregs->gdt.base = dt.address;
11444 sregs->cr2 = vcpu->arch.cr2;
11445 sregs->cr3 = kvm_read_cr3(vcpu);
11447 skip_protected_regs:
11448 sregs->cr0 = kvm_read_cr0(vcpu);
11449 sregs->cr4 = kvm_read_cr4(vcpu);
11450 sregs->cr8 = kvm_get_cr8(vcpu);
11451 sregs->efer = vcpu->arch.efer;
11452 sregs->apic_base = kvm_get_apic_base(vcpu);
11455 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11457 __get_sregs_common(vcpu, sregs);
11459 if (vcpu->arch.guest_state_protected)
11462 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11463 set_bit(vcpu->arch.interrupt.nr,
11464 (unsigned long *)sregs->interrupt_bitmap);
11467 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11471 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11473 if (vcpu->arch.guest_state_protected)
11476 if (is_pae_paging(vcpu)) {
11477 for (i = 0 ; i < 4 ; i++)
11478 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11479 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11483 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11484 struct kvm_sregs *sregs)
11487 __get_sregs(vcpu, sregs);
11492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11493 struct kvm_mp_state *mp_state)
11498 if (kvm_mpx_supported())
11499 kvm_load_guest_fpu(vcpu);
11501 r = kvm_apic_accept_events(vcpu);
11506 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11507 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11508 vcpu->arch.pv.pv_unhalted)
11509 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11511 mp_state->mp_state = vcpu->arch.mp_state;
11514 if (kvm_mpx_supported())
11515 kvm_put_guest_fpu(vcpu);
11520 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11521 struct kvm_mp_state *mp_state)
11527 switch (mp_state->mp_state) {
11528 case KVM_MP_STATE_UNINITIALIZED:
11529 case KVM_MP_STATE_HALTED:
11530 case KVM_MP_STATE_AP_RESET_HOLD:
11531 case KVM_MP_STATE_INIT_RECEIVED:
11532 case KVM_MP_STATE_SIPI_RECEIVED:
11533 if (!lapic_in_kernel(vcpu))
11537 case KVM_MP_STATE_RUNNABLE:
11545 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11546 * forcing the guest into INIT/SIPI if those events are supposed to be
11547 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11548 * if an SMI is pending as well.
11550 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11551 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11552 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11555 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11556 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11557 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11559 vcpu->arch.mp_state = mp_state->mp_state;
11560 kvm_make_request(KVM_REQ_EVENT, vcpu);
11568 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11569 int reason, bool has_error_code, u32 error_code)
11571 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11574 init_emulate_ctxt(vcpu);
11576 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11577 has_error_code, error_code);
11579 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11580 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11581 vcpu->run->internal.ndata = 0;
11585 kvm_rip_write(vcpu, ctxt->eip);
11586 kvm_set_rflags(vcpu, ctxt->eflags);
11589 EXPORT_SYMBOL_GPL(kvm_task_switch);
11591 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11593 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11595 * When EFER.LME and CR0.PG are set, the processor is in
11596 * 64-bit mode (though maybe in a 32-bit code segment).
11597 * CR4.PAE and EFER.LMA must be set.
11599 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11601 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11605 * Not in 64-bit mode: EFER.LMA is clear and the code
11606 * segment cannot be 64-bit.
11608 if (sregs->efer & EFER_LMA || sregs->cs.l)
11612 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11613 kvm_is_valid_cr0(vcpu, sregs->cr0);
11616 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11617 int *mmu_reset_needed, bool update_pdptrs)
11619 struct msr_data apic_base_msr;
11621 struct desc_ptr dt;
11623 if (!kvm_is_valid_sregs(vcpu, sregs))
11626 apic_base_msr.data = sregs->apic_base;
11627 apic_base_msr.host_initiated = true;
11628 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11631 if (vcpu->arch.guest_state_protected)
11634 dt.size = sregs->idt.limit;
11635 dt.address = sregs->idt.base;
11636 static_call(kvm_x86_set_idt)(vcpu, &dt);
11637 dt.size = sregs->gdt.limit;
11638 dt.address = sregs->gdt.base;
11639 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11641 vcpu->arch.cr2 = sregs->cr2;
11642 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11643 vcpu->arch.cr3 = sregs->cr3;
11644 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11645 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11647 kvm_set_cr8(vcpu, sregs->cr8);
11649 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11650 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11652 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11653 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11655 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11656 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11658 if (update_pdptrs) {
11659 idx = srcu_read_lock(&vcpu->kvm->srcu);
11660 if (is_pae_paging(vcpu)) {
11661 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11662 *mmu_reset_needed = 1;
11664 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11667 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11668 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11669 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11670 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11671 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11672 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11674 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11675 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11677 update_cr8_intercept(vcpu);
11679 /* Older userspace won't unhalt the vcpu on reset. */
11680 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11681 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11682 !is_protmode(vcpu))
11683 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11688 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11690 int pending_vec, max_bits;
11691 int mmu_reset_needed = 0;
11692 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11697 if (mmu_reset_needed) {
11698 kvm_mmu_reset_context(vcpu);
11699 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11702 max_bits = KVM_NR_INTERRUPTS;
11703 pending_vec = find_first_bit(
11704 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11706 if (pending_vec < max_bits) {
11707 kvm_queue_interrupt(vcpu, pending_vec, false);
11708 pr_debug("Set back pending irq %d\n", pending_vec);
11709 kvm_make_request(KVM_REQ_EVENT, vcpu);
11714 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11716 int mmu_reset_needed = 0;
11717 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11718 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11719 !(sregs2->efer & EFER_LMA);
11722 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11725 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11728 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11729 &mmu_reset_needed, !valid_pdptrs);
11733 if (valid_pdptrs) {
11734 for (i = 0; i < 4 ; i++)
11735 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11737 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11738 mmu_reset_needed = 1;
11739 vcpu->arch.pdptrs_from_userspace = true;
11741 if (mmu_reset_needed) {
11742 kvm_mmu_reset_context(vcpu);
11743 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11748 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11749 struct kvm_sregs *sregs)
11754 ret = __set_sregs(vcpu, sregs);
11759 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11762 struct kvm_vcpu *vcpu;
11768 down_write(&kvm->arch.apicv_update_lock);
11770 kvm_for_each_vcpu(i, vcpu, kvm) {
11771 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11776 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11777 up_write(&kvm->arch.apicv_update_lock);
11780 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11781 struct kvm_guest_debug *dbg)
11783 unsigned long rflags;
11786 if (vcpu->arch.guest_state_protected)
11791 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11793 if (kvm_is_exception_pending(vcpu))
11795 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11796 kvm_queue_exception(vcpu, DB_VECTOR);
11798 kvm_queue_exception(vcpu, BP_VECTOR);
11802 * Read rflags as long as potentially injected trace flags are still
11805 rflags = kvm_get_rflags(vcpu);
11807 vcpu->guest_debug = dbg->control;
11808 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11809 vcpu->guest_debug = 0;
11811 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11812 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11813 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11814 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11816 for (i = 0; i < KVM_NR_DB_REGS; i++)
11817 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11819 kvm_update_dr7(vcpu);
11821 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11822 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11825 * Trigger an rflags update that will inject or remove the trace
11828 kvm_set_rflags(vcpu, rflags);
11830 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11832 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11842 * Translate a guest virtual address to a guest physical address.
11844 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11845 struct kvm_translation *tr)
11847 unsigned long vaddr = tr->linear_address;
11853 idx = srcu_read_lock(&vcpu->kvm->srcu);
11854 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11855 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11856 tr->physical_address = gpa;
11857 tr->valid = gpa != INVALID_GPA;
11865 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11867 struct fxregs_state *fxsave;
11869 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11874 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11875 memcpy(fpu->fpr, fxsave->st_space, 128);
11876 fpu->fcw = fxsave->cwd;
11877 fpu->fsw = fxsave->swd;
11878 fpu->ftwx = fxsave->twd;
11879 fpu->last_opcode = fxsave->fop;
11880 fpu->last_ip = fxsave->rip;
11881 fpu->last_dp = fxsave->rdp;
11882 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11888 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11890 struct fxregs_state *fxsave;
11892 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11897 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11899 memcpy(fxsave->st_space, fpu->fpr, 128);
11900 fxsave->cwd = fpu->fcw;
11901 fxsave->swd = fpu->fsw;
11902 fxsave->twd = fpu->ftwx;
11903 fxsave->fop = fpu->last_opcode;
11904 fxsave->rip = fpu->last_ip;
11905 fxsave->rdp = fpu->last_dp;
11906 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11912 static void store_regs(struct kvm_vcpu *vcpu)
11914 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11916 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11917 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11919 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11920 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11922 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11923 kvm_vcpu_ioctl_x86_get_vcpu_events(
11924 vcpu, &vcpu->run->s.regs.events);
11927 static int sync_regs(struct kvm_vcpu *vcpu)
11929 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11930 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11931 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11934 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11935 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11937 if (__set_sregs(vcpu, &sregs))
11940 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11943 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11944 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11946 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11949 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11955 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11957 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11958 pr_warn_once("SMP vm created on host with unstable TSC; "
11959 "guest TSC will not be reliable\n");
11961 if (!kvm->arch.max_vcpu_ids)
11962 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11964 if (id >= kvm->arch.max_vcpu_ids)
11967 return static_call(kvm_x86_vcpu_precreate)(kvm);
11970 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11975 vcpu->arch.last_vmentry_cpu = -1;
11976 vcpu->arch.regs_avail = ~0;
11977 vcpu->arch.regs_dirty = ~0;
11979 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11981 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11982 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11984 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11986 r = kvm_mmu_create(vcpu);
11990 if (irqchip_in_kernel(vcpu->kvm)) {
11991 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11993 goto fail_mmu_destroy;
11996 * Defer evaluating inhibits until the vCPU is first run, as
11997 * this vCPU will not get notified of any changes until this
11998 * vCPU is visible to other vCPUs (marked online and added to
11999 * the set of vCPUs). Opportunistically mark APICv active as
12000 * VMX in particularly is highly unlikely to have inhibits.
12001 * Ignore the current per-VM APICv state so that vCPU creation
12002 * is guaranteed to run with a deterministic value, the request
12003 * will ensure the vCPU gets the correct state before VM-Entry.
12005 if (enable_apicv) {
12006 vcpu->arch.apic->apicv_active = true;
12007 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12010 static_branch_inc(&kvm_has_noapic_vcpu);
12014 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12016 goto fail_free_lapic;
12017 vcpu->arch.pio_data = page_address(page);
12019 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12020 GFP_KERNEL_ACCOUNT);
12021 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12022 GFP_KERNEL_ACCOUNT);
12023 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12024 goto fail_free_mce_banks;
12025 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12027 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12028 GFP_KERNEL_ACCOUNT))
12029 goto fail_free_mce_banks;
12031 if (!alloc_emulate_ctxt(vcpu))
12032 goto free_wbinvd_dirty_mask;
12034 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12035 pr_err("failed to allocate vcpu's fpu\n");
12036 goto free_emulate_ctxt;
12039 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12040 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12042 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12044 kvm_async_pf_hash_reset(vcpu);
12046 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12047 kvm_pmu_init(vcpu);
12049 vcpu->arch.pending_external_vector = -1;
12050 vcpu->arch.preempted_in_kernel = false;
12052 #if IS_ENABLED(CONFIG_HYPERV)
12053 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12056 r = static_call(kvm_x86_vcpu_create)(vcpu);
12058 goto free_guest_fpu;
12060 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12061 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12062 kvm_xen_init_vcpu(vcpu);
12063 kvm_vcpu_mtrr_init(vcpu);
12065 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12066 kvm_vcpu_reset(vcpu, false);
12067 kvm_init_mmu(vcpu);
12072 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12074 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12075 free_wbinvd_dirty_mask:
12076 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12077 fail_free_mce_banks:
12078 kfree(vcpu->arch.mce_banks);
12079 kfree(vcpu->arch.mci_ctl2_banks);
12080 free_page((unsigned long)vcpu->arch.pio_data);
12082 kvm_free_lapic(vcpu);
12084 kvm_mmu_destroy(vcpu);
12088 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12090 struct kvm *kvm = vcpu->kvm;
12092 if (mutex_lock_killable(&vcpu->mutex))
12095 kvm_synchronize_tsc(vcpu, NULL);
12098 /* poll control enabled by default */
12099 vcpu->arch.msr_kvm_poll_control = 1;
12101 mutex_unlock(&vcpu->mutex);
12103 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12104 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12105 KVMCLOCK_SYNC_PERIOD);
12108 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12112 kvmclock_reset(vcpu);
12114 static_call(kvm_x86_vcpu_free)(vcpu);
12116 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12117 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12118 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12120 kvm_xen_destroy_vcpu(vcpu);
12121 kvm_hv_vcpu_uninit(vcpu);
12122 kvm_pmu_destroy(vcpu);
12123 kfree(vcpu->arch.mce_banks);
12124 kfree(vcpu->arch.mci_ctl2_banks);
12125 kvm_free_lapic(vcpu);
12126 idx = srcu_read_lock(&vcpu->kvm->srcu);
12127 kvm_mmu_destroy(vcpu);
12128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12129 free_page((unsigned long)vcpu->arch.pio_data);
12130 kvfree(vcpu->arch.cpuid_entries);
12131 if (!lapic_in_kernel(vcpu))
12132 static_branch_dec(&kvm_has_noapic_vcpu);
12135 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12137 struct kvm_cpuid_entry2 *cpuid_0x1;
12138 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12139 unsigned long new_cr0;
12142 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12143 * to handle side effects. RESET emulation hits those flows and relies
12144 * on emulated/virtualized registers, including those that are loaded
12145 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12146 * to detect improper or missing initialization.
12148 WARN_ON_ONCE(!init_event &&
12149 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12152 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12153 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12154 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12155 * bits), i.e. virtualization is disabled.
12157 if (is_guest_mode(vcpu))
12158 kvm_leave_nested(vcpu);
12160 kvm_lapic_reset(vcpu, init_event);
12162 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12163 vcpu->arch.hflags = 0;
12165 vcpu->arch.smi_pending = 0;
12166 vcpu->arch.smi_count = 0;
12167 atomic_set(&vcpu->arch.nmi_queued, 0);
12168 vcpu->arch.nmi_pending = 0;
12169 vcpu->arch.nmi_injected = false;
12170 kvm_clear_interrupt_queue(vcpu);
12171 kvm_clear_exception_queue(vcpu);
12173 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12174 kvm_update_dr0123(vcpu);
12175 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12176 vcpu->arch.dr7 = DR7_FIXED_1;
12177 kvm_update_dr7(vcpu);
12179 vcpu->arch.cr2 = 0;
12181 kvm_make_request(KVM_REQ_EVENT, vcpu);
12182 vcpu->arch.apf.msr_en_val = 0;
12183 vcpu->arch.apf.msr_int_val = 0;
12184 vcpu->arch.st.msr_val = 0;
12186 kvmclock_reset(vcpu);
12188 kvm_clear_async_pf_completion_queue(vcpu);
12189 kvm_async_pf_hash_reset(vcpu);
12190 vcpu->arch.apf.halted = false;
12192 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12193 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12196 * All paths that lead to INIT are required to load the guest's
12197 * FPU state (because most paths are buried in KVM_RUN).
12200 kvm_put_guest_fpu(vcpu);
12202 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12203 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12206 kvm_load_guest_fpu(vcpu);
12210 kvm_pmu_reset(vcpu);
12211 vcpu->arch.smbase = 0x30000;
12213 vcpu->arch.msr_misc_features_enables = 0;
12214 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12215 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12217 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12218 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12221 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12222 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12223 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12226 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12227 * if no CPUID match is found. Note, it's impossible to get a match at
12228 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12229 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12230 * on RESET. But, go through the motions in case that's ever remedied.
12232 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12233 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12235 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12237 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12238 kvm_rip_write(vcpu, 0xfff0);
12240 vcpu->arch.cr3 = 0;
12241 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12244 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12245 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12246 * (or qualify) that with a footnote stating that CD/NW are preserved.
12248 new_cr0 = X86_CR0_ET;
12250 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12252 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12254 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12255 static_call(kvm_x86_set_cr4)(vcpu, 0);
12256 static_call(kvm_x86_set_efer)(vcpu, 0);
12257 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12260 * On the standard CR0/CR4/EFER modification paths, there are several
12261 * complex conditions determining whether the MMU has to be reset and/or
12262 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12263 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12264 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12265 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12267 if (old_cr0 & X86_CR0_PG) {
12268 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12269 kvm_mmu_reset_context(vcpu);
12273 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12274 * APM states the TLBs are untouched by INIT, but it also states that
12275 * the TLBs are flushed on "External initialization of the processor."
12276 * Flush the guest TLB regardless of vendor, there is no meaningful
12277 * benefit in relying on the guest to flush the TLB immediately after
12278 * INIT. A spurious TLB flush is benign and likely negligible from a
12279 * performance perspective.
12282 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12284 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12286 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12288 struct kvm_segment cs;
12290 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12291 cs.selector = vector << 8;
12292 cs.base = vector << 12;
12293 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12294 kvm_rip_write(vcpu, 0);
12296 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12298 int kvm_arch_hardware_enable(void)
12301 struct kvm_vcpu *vcpu;
12306 bool stable, backwards_tsc = false;
12308 kvm_user_return_msr_cpu_online();
12310 ret = kvm_x86_check_processor_compatibility();
12314 ret = static_call(kvm_x86_hardware_enable)();
12318 local_tsc = rdtsc();
12319 stable = !kvm_check_tsc_unstable();
12320 list_for_each_entry(kvm, &vm_list, vm_list) {
12321 kvm_for_each_vcpu(i, vcpu, kvm) {
12322 if (!stable && vcpu->cpu == smp_processor_id())
12323 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12324 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12325 backwards_tsc = true;
12326 if (vcpu->arch.last_host_tsc > max_tsc)
12327 max_tsc = vcpu->arch.last_host_tsc;
12333 * Sometimes, even reliable TSCs go backwards. This happens on
12334 * platforms that reset TSC during suspend or hibernate actions, but
12335 * maintain synchronization. We must compensate. Fortunately, we can
12336 * detect that condition here, which happens early in CPU bringup,
12337 * before any KVM threads can be running. Unfortunately, we can't
12338 * bring the TSCs fully up to date with real time, as we aren't yet far
12339 * enough into CPU bringup that we know how much real time has actually
12340 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12341 * variables that haven't been updated yet.
12343 * So we simply find the maximum observed TSC above, then record the
12344 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12345 * the adjustment will be applied. Note that we accumulate
12346 * adjustments, in case multiple suspend cycles happen before some VCPU
12347 * gets a chance to run again. In the event that no KVM threads get a
12348 * chance to run, we will miss the entire elapsed period, as we'll have
12349 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12350 * loose cycle time. This isn't too big a deal, since the loss will be
12351 * uniform across all VCPUs (not to mention the scenario is extremely
12352 * unlikely). It is possible that a second hibernate recovery happens
12353 * much faster than a first, causing the observed TSC here to be
12354 * smaller; this would require additional padding adjustment, which is
12355 * why we set last_host_tsc to the local tsc observed here.
12357 * N.B. - this code below runs only on platforms with reliable TSC,
12358 * as that is the only way backwards_tsc is set above. Also note
12359 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12360 * have the same delta_cyc adjustment applied if backwards_tsc
12361 * is detected. Note further, this adjustment is only done once,
12362 * as we reset last_host_tsc on all VCPUs to stop this from being
12363 * called multiple times (one for each physical CPU bringup).
12365 * Platforms with unreliable TSCs don't have to deal with this, they
12366 * will be compensated by the logic in vcpu_load, which sets the TSC to
12367 * catchup mode. This will catchup all VCPUs to real time, but cannot
12368 * guarantee that they stay in perfect synchronization.
12370 if (backwards_tsc) {
12371 u64 delta_cyc = max_tsc - local_tsc;
12372 list_for_each_entry(kvm, &vm_list, vm_list) {
12373 kvm->arch.backwards_tsc_observed = true;
12374 kvm_for_each_vcpu(i, vcpu, kvm) {
12375 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12376 vcpu->arch.last_host_tsc = local_tsc;
12377 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12381 * We have to disable TSC offset matching.. if you were
12382 * booting a VM while issuing an S4 host suspend....
12383 * you may have some problem. Solving this issue is
12384 * left as an exercise to the reader.
12386 kvm->arch.last_tsc_nsec = 0;
12387 kvm->arch.last_tsc_write = 0;
12394 void kvm_arch_hardware_disable(void)
12396 static_call(kvm_x86_hardware_disable)();
12397 drop_user_return_notifiers();
12400 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12402 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12405 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12407 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12410 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12411 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12413 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12415 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12417 vcpu->arch.l1tf_flush_l1d = true;
12418 if (pmu->version && unlikely(pmu->event_count)) {
12419 pmu->need_cleanup = true;
12420 kvm_make_request(KVM_REQ_PMU, vcpu);
12422 static_call(kvm_x86_sched_in)(vcpu, cpu);
12425 void kvm_arch_free_vm(struct kvm *kvm)
12427 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12428 __kvm_arch_free_vm(kvm);
12432 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12435 unsigned long flags;
12440 ret = kvm_page_track_init(kvm);
12444 kvm_mmu_init_vm(kvm);
12446 ret = static_call(kvm_x86_vm_init)(kvm);
12448 goto out_uninit_mmu;
12450 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12451 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12453 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12454 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12455 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12456 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12457 &kvm->arch.irq_sources_bitmap);
12459 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12460 mutex_init(&kvm->arch.apic_map_lock);
12461 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12462 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12464 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12465 pvclock_update_vm_gtod_copy(kvm);
12466 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12468 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12469 kvm->arch.guest_can_read_msr_platform_info = true;
12470 kvm->arch.enable_pmu = enable_pmu;
12472 #if IS_ENABLED(CONFIG_HYPERV)
12473 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12474 kvm->arch.hv_root_tdp = INVALID_PAGE;
12477 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12478 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12480 kvm_apicv_init(kvm);
12481 kvm_hv_init_vm(kvm);
12482 kvm_xen_init_vm(kvm);
12487 kvm_mmu_uninit_vm(kvm);
12488 kvm_page_track_cleanup(kvm);
12493 int kvm_arch_post_init_vm(struct kvm *kvm)
12495 return kvm_mmu_post_init_vm(kvm);
12498 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12501 kvm_mmu_unload(vcpu);
12505 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12508 struct kvm_vcpu *vcpu;
12510 kvm_for_each_vcpu(i, vcpu, kvm) {
12511 kvm_clear_async_pf_completion_queue(vcpu);
12512 kvm_unload_vcpu_mmu(vcpu);
12516 void kvm_arch_sync_events(struct kvm *kvm)
12518 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12519 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12524 * __x86_set_memory_region: Setup KVM internal memory slot
12526 * @kvm: the kvm pointer to the VM.
12527 * @id: the slot ID to setup.
12528 * @gpa: the GPA to install the slot (unused when @size == 0).
12529 * @size: the size of the slot. Set to zero to uninstall a slot.
12531 * This function helps to setup a KVM internal memory slot. Specify
12532 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12533 * slot. The return code can be one of the following:
12535 * HVA: on success (uninstall will return a bogus HVA)
12538 * The caller should always use IS_ERR() to check the return value
12539 * before use. Note, the KVM internal memory slots are guaranteed to
12540 * remain valid and unchanged until the VM is destroyed, i.e., the
12541 * GPA->HVA translation will not change. However, the HVA is a user
12542 * address, i.e. its accessibility is not guaranteed, and must be
12543 * accessed via __copy_{to,from}_user().
12545 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12549 unsigned long hva, old_npages;
12550 struct kvm_memslots *slots = kvm_memslots(kvm);
12551 struct kvm_memory_slot *slot;
12553 /* Called with kvm->slots_lock held. */
12554 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12555 return ERR_PTR_USR(-EINVAL);
12557 slot = id_to_memslot(slots, id);
12559 if (slot && slot->npages)
12560 return ERR_PTR_USR(-EEXIST);
12563 * MAP_SHARED to prevent internal slot pages from being moved
12566 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12567 MAP_SHARED | MAP_ANONYMOUS, 0);
12568 if (IS_ERR_VALUE(hva))
12569 return (void __user *)hva;
12571 if (!slot || !slot->npages)
12574 old_npages = slot->npages;
12575 hva = slot->userspace_addr;
12578 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12579 struct kvm_userspace_memory_region m;
12581 m.slot = id | (i << 16);
12583 m.guest_phys_addr = gpa;
12584 m.userspace_addr = hva;
12585 m.memory_size = size;
12586 r = __kvm_set_memory_region(kvm, &m);
12588 return ERR_PTR_USR(r);
12592 vm_munmap(hva, old_npages * PAGE_SIZE);
12594 return (void __user *)hva;
12596 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12598 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12600 kvm_mmu_pre_destroy_vm(kvm);
12603 void kvm_arch_destroy_vm(struct kvm *kvm)
12605 if (current->mm == kvm->mm) {
12607 * Free memory regions allocated on behalf of userspace,
12608 * unless the memory map has changed due to process exit
12611 mutex_lock(&kvm->slots_lock);
12612 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12614 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12616 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12617 mutex_unlock(&kvm->slots_lock);
12619 kvm_unload_vcpu_mmus(kvm);
12620 static_call_cond(kvm_x86_vm_destroy)(kvm);
12621 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12622 kvm_pic_destroy(kvm);
12623 kvm_ioapic_destroy(kvm);
12624 kvm_destroy_vcpus(kvm);
12625 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12626 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12627 kvm_mmu_uninit_vm(kvm);
12628 kvm_page_track_cleanup(kvm);
12629 kvm_xen_destroy_vm(kvm);
12630 kvm_hv_destroy_vm(kvm);
12633 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12637 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12638 kvfree(slot->arch.rmap[i]);
12639 slot->arch.rmap[i] = NULL;
12643 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12647 memslot_rmap_free(slot);
12649 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12650 kvfree(slot->arch.lpage_info[i - 1]);
12651 slot->arch.lpage_info[i - 1] = NULL;
12654 kvm_page_track_free_memslot(slot);
12657 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12659 const int sz = sizeof(*slot->arch.rmap[0]);
12662 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12664 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12666 if (slot->arch.rmap[i])
12669 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12670 if (!slot->arch.rmap[i]) {
12671 memslot_rmap_free(slot);
12679 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12680 struct kvm_memory_slot *slot)
12682 unsigned long npages = slot->npages;
12686 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12687 * old arrays will be freed by __kvm_set_memory_region() if installing
12688 * the new memslot is successful.
12690 memset(&slot->arch, 0, sizeof(slot->arch));
12692 if (kvm_memslots_have_rmaps(kvm)) {
12693 r = memslot_rmap_alloc(slot, npages);
12698 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12699 struct kvm_lpage_info *linfo;
12700 unsigned long ugfn;
12704 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12706 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12710 slot->arch.lpage_info[i - 1] = linfo;
12712 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12713 linfo[0].disallow_lpage = 1;
12714 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12715 linfo[lpages - 1].disallow_lpage = 1;
12716 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12718 * If the gfn and userspace address are not aligned wrt each
12719 * other, disable large page support for this slot.
12721 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12724 for (j = 0; j < lpages; ++j)
12725 linfo[j].disallow_lpage = 1;
12729 if (kvm_page_track_create_memslot(kvm, slot, npages))
12735 memslot_rmap_free(slot);
12737 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12738 kvfree(slot->arch.lpage_info[i - 1]);
12739 slot->arch.lpage_info[i - 1] = NULL;
12744 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12746 struct kvm_vcpu *vcpu;
12750 * memslots->generation has been incremented.
12751 * mmio generation may have reached its maximum value.
12753 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12755 /* Force re-initialization of steal_time cache */
12756 kvm_for_each_vcpu(i, vcpu, kvm)
12757 kvm_vcpu_kick(vcpu);
12760 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12761 const struct kvm_memory_slot *old,
12762 struct kvm_memory_slot *new,
12763 enum kvm_mr_change change)
12766 * KVM doesn't support moving memslots when there are external page
12767 * trackers attached to the VM, i.e. if KVMGT is in use.
12769 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12772 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12773 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12776 return kvm_alloc_memslot_metadata(kvm, new);
12779 if (change == KVM_MR_FLAGS_ONLY)
12780 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12781 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12788 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12792 if (!kvm_x86_ops.cpu_dirty_log_size)
12795 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12796 if ((enable && nr_slots == 1) || !nr_slots)
12797 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12800 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12801 struct kvm_memory_slot *old,
12802 const struct kvm_memory_slot *new,
12803 enum kvm_mr_change change)
12805 u32 old_flags = old ? old->flags : 0;
12806 u32 new_flags = new ? new->flags : 0;
12807 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12810 * Update CPU dirty logging if dirty logging is being toggled. This
12811 * applies to all operations.
12813 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12814 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12817 * Nothing more to do for RO slots (which can't be dirtied and can't be
12818 * made writable) or CREATE/MOVE/DELETE of a slot.
12820 * For a memslot with dirty logging disabled:
12821 * CREATE: No dirty mappings will already exist.
12822 * MOVE/DELETE: The old mappings will already have been cleaned up by
12823 * kvm_arch_flush_shadow_memslot()
12825 * For a memslot with dirty logging enabled:
12826 * CREATE: No shadow pages exist, thus nothing to write-protect
12827 * and no dirty bits to clear.
12828 * MOVE/DELETE: The old mappings will already have been cleaned up by
12829 * kvm_arch_flush_shadow_memslot().
12831 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12835 * READONLY and non-flags changes were filtered out above, and the only
12836 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12837 * logging isn't being toggled on or off.
12839 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12842 if (!log_dirty_pages) {
12844 * Dirty logging tracks sptes in 4k granularity, meaning that
12845 * large sptes have to be split. If live migration succeeds,
12846 * the guest in the source machine will be destroyed and large
12847 * sptes will be created in the destination. However, if the
12848 * guest continues to run in the source machine (for example if
12849 * live migration fails), small sptes will remain around and
12850 * cause bad performance.
12852 * Scan sptes if dirty logging has been stopped, dropping those
12853 * which can be collapsed into a single large-page spte. Later
12854 * page faults will create the large-page sptes.
12856 kvm_mmu_zap_collapsible_sptes(kvm, new);
12859 * Initially-all-set does not require write protecting any page,
12860 * because they're all assumed to be dirty.
12862 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12865 if (READ_ONCE(eager_page_split))
12866 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12868 if (kvm_x86_ops.cpu_dirty_log_size) {
12869 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12870 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12872 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12876 * Unconditionally flush the TLBs after enabling dirty logging.
12877 * A flush is almost always going to be necessary (see below),
12878 * and unconditionally flushing allows the helpers to omit
12879 * the subtly complex checks when removing write access.
12881 * Do the flush outside of mmu_lock to reduce the amount of
12882 * time mmu_lock is held. Flushing after dropping mmu_lock is
12883 * safe as KVM only needs to guarantee the slot is fully
12884 * write-protected before returning to userspace, i.e. before
12885 * userspace can consume the dirty status.
12887 * Flushing outside of mmu_lock requires KVM to be careful when
12888 * making decisions based on writable status of an SPTE, e.g. a
12889 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12891 * Specifically, KVM also write-protects guest page tables to
12892 * monitor changes when using shadow paging, and must guarantee
12893 * no CPUs can write to those page before mmu_lock is dropped.
12894 * Because CPUs may have stale TLB entries at this point, a
12895 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12897 * KVM also allows making SPTES writable outside of mmu_lock,
12898 * e.g. to allow dirty logging without taking mmu_lock.
12900 * To handle these scenarios, KVM uses a separate software-only
12901 * bit (MMU-writable) to track if a SPTE is !writable due to
12902 * a guest page table being write-protected (KVM clears the
12903 * MMU-writable flag when write-protecting for shadow paging).
12905 * The use of MMU-writable is also the primary motivation for
12906 * the unconditional flush. Because KVM must guarantee that a
12907 * CPU doesn't contain stale, writable TLB entries for a
12908 * !MMU-writable SPTE, KVM must flush if it encounters any
12909 * MMU-writable SPTE regardless of whether the actual hardware
12910 * writable bit was set. I.e. KVM is almost guaranteed to need
12911 * to flush, while unconditionally flushing allows the "remove
12912 * write access" helpers to ignore MMU-writable entirely.
12914 * See is_writable_pte() for more details (the case involving
12915 * access-tracked SPTEs is particularly relevant).
12917 kvm_flush_remote_tlbs_memslot(kvm, new);
12921 void kvm_arch_commit_memory_region(struct kvm *kvm,
12922 struct kvm_memory_slot *old,
12923 const struct kvm_memory_slot *new,
12924 enum kvm_mr_change change)
12926 if (change == KVM_MR_DELETE)
12927 kvm_page_track_delete_slot(kvm, old);
12929 if (!kvm->arch.n_requested_mmu_pages &&
12930 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12931 unsigned long nr_mmu_pages;
12933 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12934 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12935 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12938 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12940 /* Free the arrays associated with the old memslot. */
12941 if (change == KVM_MR_MOVE)
12942 kvm_arch_free_memslot(kvm, old);
12945 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12947 return (is_guest_mode(vcpu) &&
12948 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12951 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12953 if (!list_empty_careful(&vcpu->async_pf.done))
12956 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12957 kvm_apic_init_sipi_allowed(vcpu))
12960 if (vcpu->arch.pv.pv_unhalted)
12963 if (kvm_is_exception_pending(vcpu))
12966 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12967 (vcpu->arch.nmi_pending &&
12968 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12971 #ifdef CONFIG_KVM_SMM
12972 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12973 (vcpu->arch.smi_pending &&
12974 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12978 if (kvm_test_request(KVM_REQ_PMI, vcpu))
12981 if (kvm_arch_interrupt_allowed(vcpu) &&
12982 (kvm_cpu_has_interrupt(vcpu) ||
12983 kvm_guest_apic_has_interrupt(vcpu)))
12986 if (kvm_hv_has_stimer_pending(vcpu))
12989 if (is_guest_mode(vcpu) &&
12990 kvm_x86_ops.nested_ops->has_events &&
12991 kvm_x86_ops.nested_ops->has_events(vcpu))
12994 if (kvm_xen_has_pending_events(vcpu))
13000 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13002 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13005 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13007 if (kvm_vcpu_apicv_active(vcpu) &&
13008 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13014 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13016 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13019 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13020 #ifdef CONFIG_KVM_SMM
13021 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13023 kvm_test_request(KVM_REQ_EVENT, vcpu))
13026 return kvm_arch_dy_has_pending_interrupt(vcpu);
13029 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13031 if (vcpu->arch.guest_state_protected)
13034 return vcpu->arch.preempted_in_kernel;
13037 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13039 return kvm_rip_read(vcpu);
13042 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13044 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13047 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13049 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13052 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13054 /* Can't read the RIP when guest state is protected, just return 0 */
13055 if (vcpu->arch.guest_state_protected)
13058 if (is_64_bit_mode(vcpu))
13059 return kvm_rip_read(vcpu);
13060 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13061 kvm_rip_read(vcpu));
13063 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13065 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13067 return kvm_get_linear_rip(vcpu) == linear_rip;
13069 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13071 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13073 unsigned long rflags;
13075 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13076 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13077 rflags &= ~X86_EFLAGS_TF;
13080 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13082 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13084 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13085 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13086 rflags |= X86_EFLAGS_TF;
13087 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13090 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13092 __kvm_set_rflags(vcpu, rflags);
13093 kvm_make_request(KVM_REQ_EVENT, vcpu);
13095 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13097 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13099 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13101 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13104 static inline u32 kvm_async_pf_next_probe(u32 key)
13106 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13109 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13111 u32 key = kvm_async_pf_hash_fn(gfn);
13113 while (vcpu->arch.apf.gfns[key] != ~0)
13114 key = kvm_async_pf_next_probe(key);
13116 vcpu->arch.apf.gfns[key] = gfn;
13119 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13122 u32 key = kvm_async_pf_hash_fn(gfn);
13124 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13125 (vcpu->arch.apf.gfns[key] != gfn &&
13126 vcpu->arch.apf.gfns[key] != ~0); i++)
13127 key = kvm_async_pf_next_probe(key);
13132 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13134 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13137 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13141 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13143 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13147 vcpu->arch.apf.gfns[i] = ~0;
13149 j = kvm_async_pf_next_probe(j);
13150 if (vcpu->arch.apf.gfns[j] == ~0)
13152 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13154 * k lies cyclically in ]i,j]
13156 * |....j i.k.| or |.k..j i...|
13158 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13159 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13164 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13166 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13168 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13172 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13174 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13176 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13177 &token, offset, sizeof(token));
13180 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13182 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13185 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13186 &val, offset, sizeof(val)))
13192 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13195 if (!kvm_pv_async_pf_enabled(vcpu))
13198 if (vcpu->arch.apf.send_user_only &&
13199 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13202 if (is_guest_mode(vcpu)) {
13204 * L1 needs to opt into the special #PF vmexits that are
13205 * used to deliver async page faults.
13207 return vcpu->arch.apf.delivery_as_pf_vmexit;
13210 * Play it safe in case the guest temporarily disables paging.
13211 * The real mode IDT in particular is unlikely to have a #PF
13214 return is_paging(vcpu);
13218 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13220 if (unlikely(!lapic_in_kernel(vcpu) ||
13221 kvm_event_needs_reinjection(vcpu) ||
13222 kvm_is_exception_pending(vcpu)))
13225 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13229 * If interrupts are off we cannot even use an artificial
13232 return kvm_arch_interrupt_allowed(vcpu);
13235 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13236 struct kvm_async_pf *work)
13238 struct x86_exception fault;
13240 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13241 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13243 if (kvm_can_deliver_async_pf(vcpu) &&
13244 !apf_put_user_notpresent(vcpu)) {
13245 fault.vector = PF_VECTOR;
13246 fault.error_code_valid = true;
13247 fault.error_code = 0;
13248 fault.nested_page_fault = false;
13249 fault.address = work->arch.token;
13250 fault.async_page_fault = true;
13251 kvm_inject_page_fault(vcpu, &fault);
13255 * It is not possible to deliver a paravirtualized asynchronous
13256 * page fault, but putting the guest in an artificial halt state
13257 * can be beneficial nevertheless: if an interrupt arrives, we
13258 * can deliver it timely and perhaps the guest will schedule
13259 * another process. When the instruction that triggered a page
13260 * fault is retried, hopefully the page will be ready in the host.
13262 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13267 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13268 struct kvm_async_pf *work)
13270 struct kvm_lapic_irq irq = {
13271 .delivery_mode = APIC_DM_FIXED,
13272 .vector = vcpu->arch.apf.vec
13275 if (work->wakeup_all)
13276 work->arch.token = ~0; /* broadcast wakeup */
13278 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13279 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13281 if ((work->wakeup_all || work->notpresent_injected) &&
13282 kvm_pv_async_pf_enabled(vcpu) &&
13283 !apf_put_user_ready(vcpu, work->arch.token)) {
13284 vcpu->arch.apf.pageready_pending = true;
13285 kvm_apic_set_irq(vcpu, &irq, NULL);
13288 vcpu->arch.apf.halted = false;
13289 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13292 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13294 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13295 if (!vcpu->arch.apf.pageready_pending)
13296 kvm_vcpu_kick(vcpu);
13299 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13301 if (!kvm_pv_async_pf_enabled(vcpu))
13304 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13307 void kvm_arch_start_assignment(struct kvm *kvm)
13309 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13310 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13312 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13314 void kvm_arch_end_assignment(struct kvm *kvm)
13316 atomic_dec(&kvm->arch.assigned_device_count);
13318 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13320 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13322 return raw_atomic_read(&kvm->arch.assigned_device_count);
13324 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13326 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13329 * Non-coherent DMA assignment and de-assignment will affect
13330 * whether KVM honors guest MTRRs and cause changes in memtypes
13332 * So, pass %true unconditionally to indicate non-coherent DMA was,
13333 * or will be involved, and that zapping SPTEs might be necessary.
13335 if (__kvm_mmu_honors_guest_mtrrs(true))
13336 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13339 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13341 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13342 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13346 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13348 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13349 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13351 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13353 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13355 return atomic_read(&kvm->arch.noncoherent_dma_count);
13357 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13359 bool kvm_arch_has_irq_bypass(void)
13361 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13364 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13365 struct irq_bypass_producer *prod)
13367 struct kvm_kernel_irqfd *irqfd =
13368 container_of(cons, struct kvm_kernel_irqfd, consumer);
13371 irqfd->producer = prod;
13372 kvm_arch_start_assignment(irqfd->kvm);
13373 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13374 prod->irq, irqfd->gsi, 1);
13377 kvm_arch_end_assignment(irqfd->kvm);
13382 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13383 struct irq_bypass_producer *prod)
13386 struct kvm_kernel_irqfd *irqfd =
13387 container_of(cons, struct kvm_kernel_irqfd, consumer);
13389 WARN_ON(irqfd->producer != prod);
13390 irqfd->producer = NULL;
13393 * When producer of consumer is unregistered, we change back to
13394 * remapped mode, so we can re-use the current implementation
13395 * when the irq is masked/disabled or the consumer side (KVM
13396 * int this case doesn't want to receive the interrupts.
13398 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13400 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13401 " fails: %d\n", irqfd->consumer.token, ret);
13403 kvm_arch_end_assignment(irqfd->kvm);
13406 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13407 uint32_t guest_irq, bool set)
13409 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13412 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13413 struct kvm_kernel_irq_routing_entry *new)
13415 if (new->type != KVM_IRQ_ROUTING_MSI)
13418 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13421 bool kvm_vector_hashing_enabled(void)
13423 return vector_hashing;
13426 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13428 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13430 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13433 int kvm_spec_ctrl_test_value(u64 value)
13436 * test that setting IA32_SPEC_CTRL to given value
13437 * is allowed by the host processor
13441 unsigned long flags;
13444 local_irq_save(flags);
13446 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13448 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13451 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13453 local_irq_restore(flags);
13457 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13459 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13461 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13462 struct x86_exception fault;
13463 u64 access = error_code &
13464 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13466 if (!(error_code & PFERR_PRESENT_MASK) ||
13467 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13469 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13470 * tables probably do not match the TLB. Just proceed
13471 * with the error code that the processor gave.
13473 fault.vector = PF_VECTOR;
13474 fault.error_code_valid = true;
13475 fault.error_code = error_code;
13476 fault.nested_page_fault = false;
13477 fault.address = gva;
13478 fault.async_page_fault = false;
13480 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13482 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13485 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13486 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13487 * indicates whether exit to userspace is needed.
13489 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13490 struct x86_exception *e)
13492 if (r == X86EMUL_PROPAGATE_FAULT) {
13493 if (KVM_BUG_ON(!e, vcpu->kvm))
13496 kvm_inject_emulated_page_fault(vcpu, e);
13501 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13502 * while handling a VMX instruction KVM could've handled the request
13503 * correctly by exiting to userspace and performing I/O but there
13504 * doesn't seem to be a real use-case behind such requests, just return
13505 * KVM_EXIT_INTERNAL_ERROR for now.
13507 kvm_prepare_emulation_failure_exit(vcpu);
13511 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13513 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13516 struct x86_exception e;
13523 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13524 if (r != X86EMUL_CONTINUE)
13525 return kvm_handle_memory_failure(vcpu, r, &e);
13527 if (operand.pcid >> 12 != 0) {
13528 kvm_inject_gp(vcpu, 0);
13532 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13535 case INVPCID_TYPE_INDIV_ADDR:
13536 if ((!pcid_enabled && (operand.pcid != 0)) ||
13537 is_noncanonical_address(operand.gla, vcpu)) {
13538 kvm_inject_gp(vcpu, 0);
13541 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13542 return kvm_skip_emulated_instruction(vcpu);
13544 case INVPCID_TYPE_SINGLE_CTXT:
13545 if (!pcid_enabled && (operand.pcid != 0)) {
13546 kvm_inject_gp(vcpu, 0);
13550 kvm_invalidate_pcid(vcpu, operand.pcid);
13551 return kvm_skip_emulated_instruction(vcpu);
13553 case INVPCID_TYPE_ALL_NON_GLOBAL:
13555 * Currently, KVM doesn't mark global entries in the shadow
13556 * page tables, so a non-global flush just degenerates to a
13557 * global flush. If needed, we could optimize this later by
13558 * keeping track of global entries in shadow page tables.
13562 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13563 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13564 return kvm_skip_emulated_instruction(vcpu);
13567 kvm_inject_gp(vcpu, 0);
13571 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13573 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13575 struct kvm_run *run = vcpu->run;
13576 struct kvm_mmio_fragment *frag;
13579 BUG_ON(!vcpu->mmio_needed);
13581 /* Complete previous fragment */
13582 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13583 len = min(8u, frag->len);
13584 if (!vcpu->mmio_is_write)
13585 memcpy(frag->data, run->mmio.data, len);
13587 if (frag->len <= 8) {
13588 /* Switch to the next fragment. */
13590 vcpu->mmio_cur_fragment++;
13592 /* Go forward to the next mmio piece. */
13598 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13599 vcpu->mmio_needed = 0;
13601 // VMG change, at this point, we're always done
13602 // RIP has already been advanced
13606 // More MMIO is needed
13607 run->mmio.phys_addr = frag->gpa;
13608 run->mmio.len = min(8u, frag->len);
13609 run->mmio.is_write = vcpu->mmio_is_write;
13610 if (run->mmio.is_write)
13611 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13612 run->exit_reason = KVM_EXIT_MMIO;
13614 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13619 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13623 struct kvm_mmio_fragment *frag;
13628 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13629 if (handled == bytes)
13636 /*TODO: Check if need to increment number of frags */
13637 frag = vcpu->mmio_fragments;
13638 vcpu->mmio_nr_fragments = 1;
13643 vcpu->mmio_needed = 1;
13644 vcpu->mmio_cur_fragment = 0;
13646 vcpu->run->mmio.phys_addr = gpa;
13647 vcpu->run->mmio.len = min(8u, frag->len);
13648 vcpu->run->mmio.is_write = 1;
13649 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13650 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13652 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13656 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13658 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13662 struct kvm_mmio_fragment *frag;
13667 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13668 if (handled == bytes)
13675 /*TODO: Check if need to increment number of frags */
13676 frag = vcpu->mmio_fragments;
13677 vcpu->mmio_nr_fragments = 1;
13682 vcpu->mmio_needed = 1;
13683 vcpu->mmio_cur_fragment = 0;
13685 vcpu->run->mmio.phys_addr = gpa;
13686 vcpu->run->mmio.len = min(8u, frag->len);
13687 vcpu->run->mmio.is_write = 0;
13688 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13690 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13694 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13696 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13698 vcpu->arch.sev_pio_count -= count;
13699 vcpu->arch.sev_pio_data += count * size;
13702 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13703 unsigned int port);
13705 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13707 int size = vcpu->arch.pio.size;
13708 int port = vcpu->arch.pio.port;
13710 vcpu->arch.pio.count = 0;
13711 if (vcpu->arch.sev_pio_count)
13712 return kvm_sev_es_outs(vcpu, size, port);
13716 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13720 unsigned int count =
13721 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13722 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13724 /* memcpy done already by emulator_pio_out. */
13725 advance_sev_es_emulated_pio(vcpu, count, size);
13729 /* Emulation done by the kernel. */
13730 if (!vcpu->arch.sev_pio_count)
13734 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13738 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13739 unsigned int port);
13741 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13743 unsigned count = vcpu->arch.pio.count;
13744 int size = vcpu->arch.pio.size;
13745 int port = vcpu->arch.pio.port;
13747 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13748 advance_sev_es_emulated_pio(vcpu, count, size);
13749 if (vcpu->arch.sev_pio_count)
13750 return kvm_sev_es_ins(vcpu, size, port);
13754 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13758 unsigned int count =
13759 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13760 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13763 /* Emulation done by the kernel. */
13764 advance_sev_es_emulated_pio(vcpu, count, size);
13765 if (!vcpu->arch.sev_pio_count)
13769 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13773 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13774 unsigned int port, void *data, unsigned int count,
13777 vcpu->arch.sev_pio_data = data;
13778 vcpu->arch.sev_pio_count = count;
13779 return in ? kvm_sev_es_ins(vcpu, size, port)
13780 : kvm_sev_es_outs(vcpu, size, port);
13782 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13811 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13812 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13814 static int __init kvm_x86_init(void)
13816 kvm_mmu_x86_module_init();
13817 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13820 module_init(kvm_x86_init);
13822 static void __exit kvm_x86_exit(void)
13825 * If module_init() is implemented, module_exit() must also be
13826 * implemented to allow module unload.
13829 module_exit(kvm_x86_exit);