interconnect: qcom: icc-rpm: Fix peak rate calculation
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103         ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func)                                             \
139         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
140                                 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211         struct user_return_notifier urn;
212         bool registered;
213         struct kvm_user_return_msr_values {
214                 u64 host;
215                 u64 curr;
216         } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245         KVM_GENERIC_VM_STATS(),
246         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247         STATS_DESC_COUNTER(VM, mmu_pte_write),
248         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249         STATS_DESC_COUNTER(VM, mmu_flooded),
250         STATS_DESC_COUNTER(VM, mmu_recycled),
251         STATS_DESC_COUNTER(VM, mmu_cache_miss),
252         STATS_DESC_ICOUNTER(VM, mmu_unsync),
253         STATS_DESC_ICOUNTER(VM, pages_4k),
254         STATS_DESC_ICOUNTER(VM, pages_2m),
255         STATS_DESC_ICOUNTER(VM, pages_1g),
256         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262         .name_size = KVM_STATS_NAME_SIZE,
263         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264         .id_offset = sizeof(struct kvm_stats_header),
265         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267                        sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271         KVM_GENERIC_VCPU_STATS(),
272         STATS_DESC_COUNTER(VCPU, pf_taken),
273         STATS_DESC_COUNTER(VCPU, pf_fixed),
274         STATS_DESC_COUNTER(VCPU, pf_emulate),
275         STATS_DESC_COUNTER(VCPU, pf_spurious),
276         STATS_DESC_COUNTER(VCPU, pf_fast),
277         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278         STATS_DESC_COUNTER(VCPU, pf_guest),
279         STATS_DESC_COUNTER(VCPU, tlb_flush),
280         STATS_DESC_COUNTER(VCPU, invlpg),
281         STATS_DESC_COUNTER(VCPU, exits),
282         STATS_DESC_COUNTER(VCPU, io_exits),
283         STATS_DESC_COUNTER(VCPU, mmio_exits),
284         STATS_DESC_COUNTER(VCPU, signal_exits),
285         STATS_DESC_COUNTER(VCPU, irq_window_exits),
286         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287         STATS_DESC_COUNTER(VCPU, l1d_flush),
288         STATS_DESC_COUNTER(VCPU, halt_exits),
289         STATS_DESC_COUNTER(VCPU, request_irq_exits),
290         STATS_DESC_COUNTER(VCPU, irq_exits),
291         STATS_DESC_COUNTER(VCPU, host_state_reload),
292         STATS_DESC_COUNTER(VCPU, fpu_reload),
293         STATS_DESC_COUNTER(VCPU, insn_emulation),
294         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295         STATS_DESC_COUNTER(VCPU, hypercalls),
296         STATS_DESC_COUNTER(VCPU, irq_injections),
297         STATS_DESC_COUNTER(VCPU, nmi_injections),
298         STATS_DESC_COUNTER(VCPU, req_event),
299         STATS_DESC_COUNTER(VCPU, nested_run),
300         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302         STATS_DESC_COUNTER(VCPU, preemption_reported),
303         STATS_DESC_COUNTER(VCPU, preemption_other),
304         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305         STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309         .name_size = KVM_STATS_NAME_SIZE,
310         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311         .id_offset = sizeof(struct kvm_stats_header),
312         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314                        sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327         const char *op = write ? "wrmsr" : "rdmsr";
328
329         if (ignore_msrs) {
330                 if (report_ignored_msrs)
331                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332                                       op, msr, data);
333                 /* Mask the error */
334                 return true;
335         } else {
336                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337                                       op, msr, data);
338                 return false;
339         }
340 }
341
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345         unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347         return kmem_cache_create_usercopy("x86_emulator", size,
348                                           __alignof__(struct x86_emulate_ctxt),
349                                           SLAB_ACCOUNT, useroffset,
350                                           size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357         int i;
358         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359                 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364         unsigned slot;
365         struct kvm_user_return_msrs *msrs
366                 = container_of(urn, struct kvm_user_return_msrs, urn);
367         struct kvm_user_return_msr_values *values;
368         unsigned long flags;
369
370         /*
371          * Disabling irqs at this point since the following code could be
372          * interrupted and executed through kvm_arch_hardware_disable()
373          */
374         local_irq_save(flags);
375         if (msrs->registered) {
376                 msrs->registered = false;
377                 user_return_notifier_unregister(urn);
378         }
379         local_irq_restore(flags);
380         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381                 values = &msrs->values[slot];
382                 if (values->host != values->curr) {
383                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
384                         values->curr = values->host;
385                 }
386         }
387 }
388
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391         u64 val;
392         int ret;
393
394         preempt_disable();
395         ret = rdmsrl_safe(msr, &val);
396         if (ret)
397                 goto out;
398         ret = wrmsrl_safe(msr, val);
399 out:
400         preempt_enable();
401         return ret;
402 }
403
404 int kvm_add_user_return_msr(u32 msr)
405 {
406         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408         if (kvm_probe_user_return_msr(msr))
409                 return -1;
410
411         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412         return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416 int kvm_find_user_return_msr(u32 msr)
417 {
418         int i;
419
420         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421                 if (kvm_uret_msrs_list[i] == msr)
422                         return i;
423         }
424         return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430         unsigned int cpu = smp_processor_id();
431         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432         u64 value;
433         int i;
434
435         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437                 msrs->values[i].host = value;
438                 msrs->values[i].curr = value;
439         }
440 }
441
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444         unsigned int cpu = smp_processor_id();
445         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446         int err;
447
448         value = (value & mask) | (msrs->values[slot].host & ~mask);
449         if (value == msrs->values[slot].curr)
450                 return 0;
451         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452         if (err)
453                 return 1;
454
455         msrs->values[slot].curr = value;
456         if (!msrs->registered) {
457                 msrs->urn.on_user_return = kvm_on_user_return;
458                 user_return_notifier_register(&msrs->urn);
459                 msrs->registered = true;
460         }
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465 static void drop_user_return_notifiers(void)
466 {
467         unsigned int cpu = smp_processor_id();
468         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470         if (msrs->registered)
471                 kvm_on_user_return(&msrs->urn);
472 }
473
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476         return vcpu->arch.apic_base;
477 }
478
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481         return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493                 return 1;
494         if (!msr_info->host_initiated) {
495                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496                         return 1;
497                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498                         return 1;
499         }
500
501         kvm_lapic_set_base(vcpu, msr_info->data);
502         kvm_recalculate_apic_map(vcpu->kvm);
503         return 0;
504 }
505
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515         /* Fault while not rebooting.  We want the trace. */
516         BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN            0
521 #define EXCPT_CONTRIBUTORY      1
522 #define EXCPT_PF                2
523
524 static int exception_class(int vector)
525 {
526         switch (vector) {
527         case PF_VECTOR:
528                 return EXCPT_PF;
529         case DE_VECTOR:
530         case TS_VECTOR:
531         case NP_VECTOR:
532         case SS_VECTOR:
533         case GP_VECTOR:
534                 return EXCPT_CONTRIBUTORY;
535         default:
536                 break;
537         }
538         return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT             0
542 #define EXCPT_TRAP              1
543 #define EXCPT_ABORT             2
544 #define EXCPT_INTERRUPT         3
545 #define EXCPT_DB                4
546
547 static int exception_type(int vector)
548 {
549         unsigned int mask;
550
551         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552                 return EXCPT_INTERRUPT;
553
554         mask = 1 << vector;
555
556         /*
557          * #DBs can be trap-like or fault-like, the caller must check other CPU
558          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559          */
560         if (mask & (1 << DB_VECTOR))
561                 return EXCPT_DB;
562
563         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564                 return EXCPT_TRAP;
565
566         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567                 return EXCPT_ABORT;
568
569         /* Reserved exceptions will result in fault */
570         return EXCPT_FAULT;
571 }
572
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574                                    struct kvm_queued_exception *ex)
575 {
576         if (!ex->has_payload)
577                 return;
578
579         switch (ex->vector) {
580         case DB_VECTOR:
581                 /*
582                  * "Certain debug exceptions may clear bit 0-3.  The
583                  * remaining contents of the DR6 register are never
584                  * cleared by the processor".
585                  */
586                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587                 /*
588                  * In order to reflect the #DB exception payload in guest
589                  * dr6, three components need to be considered: active low
590                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591                  * DR6_BS and DR6_BT)
592                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593                  * In the target guest dr6:
594                  * FIXED_1 bits should always be set.
595                  * Active low bits should be cleared if 1-setting in payload.
596                  * Active high bits should be set if 1-setting in payload.
597                  *
598                  * Note, the payload is compatible with the pending debug
599                  * exceptions/exit qualification under VMX, that active_low bits
600                  * are active high in payload.
601                  * So they need to be flipped for DR6.
602                  */
603                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604                 vcpu->arch.dr6 |= ex->payload;
605                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607                 /*
608                  * The #DB payload is defined as compatible with the 'pending
609                  * debug exceptions' field under VMX, not DR6. While bit 12 is
610                  * defined in the 'pending debug exceptions' field (enabled
611                  * breakpoint), it is reserved and must be zero in DR6.
612                  */
613                 vcpu->arch.dr6 &= ~BIT(12);
614                 break;
615         case PF_VECTOR:
616                 vcpu->arch.cr2 = ex->payload;
617                 break;
618         }
619
620         ex->has_payload = false;
621         ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626                                        bool has_error_code, u32 error_code,
627                                        bool has_payload, unsigned long payload)
628 {
629         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631         ex->vector = vector;
632         ex->injected = false;
633         ex->pending = true;
634         ex->has_error_code = has_error_code;
635         ex->error_code = error_code;
636         ex->has_payload = has_payload;
637         ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643         kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647                 unsigned nr, bool has_error, u32 error_code,
648                 bool has_payload, unsigned long payload, bool reinject)
649 {
650         u32 prev_nr;
651         int class1, class2;
652
653         kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655         /*
656          * If the exception is destined for L2 and isn't being reinjected,
657          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658          * previously injected exception is not checked because it was checked
659          * when it was original queued, and re-checking is incorrect if _L1_
660          * injected the exception, in which case it's exempt from interception.
661          */
662         if (!reinject && is_guest_mode(vcpu) &&
663             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665                                            has_payload, payload);
666                 return;
667         }
668
669         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670         queue:
671                 if (reinject) {
672                         /*
673                          * On VM-Entry, an exception can be pending if and only
674                          * if event injection was blocked by nested_run_pending.
675                          * In that case, however, vcpu_enter_guest() requests an
676                          * immediate exit, and the guest shouldn't proceed far
677                          * enough to need reinjection.
678                          */
679                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680                         vcpu->arch.exception.injected = true;
681                         if (WARN_ON_ONCE(has_payload)) {
682                                 /*
683                                  * A reinjected event has already
684                                  * delivered its payload.
685                                  */
686                                 has_payload = false;
687                                 payload = 0;
688                         }
689                 } else {
690                         vcpu->arch.exception.pending = true;
691                         vcpu->arch.exception.injected = false;
692                 }
693                 vcpu->arch.exception.has_error_code = has_error;
694                 vcpu->arch.exception.vector = nr;
695                 vcpu->arch.exception.error_code = error_code;
696                 vcpu->arch.exception.has_payload = has_payload;
697                 vcpu->arch.exception.payload = payload;
698                 if (!is_guest_mode(vcpu))
699                         kvm_deliver_exception_payload(vcpu,
700                                                       &vcpu->arch.exception);
701                 return;
702         }
703
704         /* to check exception */
705         prev_nr = vcpu->arch.exception.vector;
706         if (prev_nr == DF_VECTOR) {
707                 /* triple fault -> shutdown */
708                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709                 return;
710         }
711         class1 = exception_class(prev_nr);
712         class2 = exception_class(nr);
713         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715                 /*
716                  * Synthesize #DF.  Clear the previously injected or pending
717                  * exception so as not to incorrectly trigger shutdown.
718                  */
719                 vcpu->arch.exception.injected = false;
720                 vcpu->arch.exception.pending = false;
721
722                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723         } else {
724                 /* replace previous exception with a new one in a hope
725                    that instruction re-execution will regenerate lost
726                    exception */
727                 goto queue;
728         }
729 }
730
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744                            unsigned long payload)
745 {
746         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751                                     u32 error_code, unsigned long payload)
752 {
753         kvm_multiple_exception(vcpu, nr, true, error_code,
754                                true, payload, false);
755 }
756
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759         if (err)
760                 kvm_inject_gp(vcpu, 0);
761         else
762                 return kvm_skip_emulated_instruction(vcpu);
763
764         return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770         if (err) {
771                 kvm_inject_gp(vcpu, 0);
772                 return 1;
773         }
774
775         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776                                        EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781         ++vcpu->stat.pf_guest;
782
783         /*
784          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785          * whether or not L1 wants to intercept "regular" #PF.
786          */
787         if (is_guest_mode(vcpu) && fault->async_page_fault)
788                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789                                            true, fault->error_code,
790                                            true, fault->address);
791         else
792                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793                                         fault->address);
794 }
795
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797                                     struct x86_exception *fault)
798 {
799         struct kvm_mmu *fault_mmu;
800         WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803                                                vcpu->arch.walk_mmu;
804
805         /*
806          * Invalidate the TLB entry for the faulting address, if it exists,
807          * else the access will fault indefinitely (and to emulate hardware).
808          */
809         if ((fault->error_code & PFERR_PRESENT_MASK) &&
810             !(fault->error_code & PFERR_RSVD_MASK))
811                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812                                         KVM_MMU_ROOT_CURRENT);
813
814         fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820         atomic_inc(&vcpu->arch.nmi_queued);
821         kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843                 return true;
844         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845         return false;
846 }
847
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851                 return true;
852
853         kvm_queue_exception(vcpu, UD_VECTOR);
854         return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870         gpa_t real_gpa;
871         int i;
872         int ret;
873         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875         /*
876          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877          * to an L1 GPA.
878          */
879         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881         if (real_gpa == INVALID_GPA)
882                 return 0;
883
884         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
887         if (ret < 0)
888                 return 0;
889
890         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891                 if ((pdpte[i] & PT_PRESENT_MASK) &&
892                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893                         return 0;
894                 }
895         }
896
897         /*
898          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899          * Shadow page roots need to be reconstructed instead.
900          */
901         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907         vcpu->arch.pdptrs_from_userspace = false;
908
909         return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916         if (cr0 & 0xffffffff00000000UL)
917                 return false;
918 #endif
919
920         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921                 return false;
922
923         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924                 return false;
925
926         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931         /*
932          * CR0.WP is incorporated into the MMU role, but only for non-nested,
933          * indirect shadow MMUs.  If paging is disabled, no updates are needed
934          * as there are no permission bits to emulate.  If TDP is enabled, the
935          * MMU's metadata needs to be updated, e.g. so that emulating guest
936          * translations does the right thing, but there's no need to unload the
937          * root as CR0.WP doesn't affect SPTEs.
938          */
939         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940                 if (!(cr0 & X86_CR0_PG))
941                         return;
942
943                 if (tdp_enabled) {
944                         kvm_init_mmu(vcpu);
945                         return;
946                 }
947         }
948
949         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950                 kvm_clear_async_pf_completion_queue(vcpu);
951                 kvm_async_pf_hash_reset(vcpu);
952
953                 /*
954                  * Clearing CR0.PG is defined to flush the TLB from the guest's
955                  * perspective.
956                  */
957                 if (!(cr0 & X86_CR0_PG))
958                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959         }
960
961         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962                 kvm_mmu_reset_context(vcpu);
963
964         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965             kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973         unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975         if (!kvm_is_valid_cr0(vcpu, cr0))
976                 return 1;
977
978         cr0 |= X86_CR0_ET;
979
980         /* Write to CR0 reserved bits are ignored, even on Intel. */
981         cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985             (cr0 & X86_CR0_PG)) {
986                 int cs_db, cs_l;
987
988                 if (!is_pae(vcpu))
989                         return 1;
990                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991                 if (cs_l)
992                         return 1;
993         }
994 #endif
995         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998                 return 1;
999
1000         if (!(cr0 & X86_CR0_PG) &&
1001             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002                 return 1;
1003
1004         static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008         return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020         if (vcpu->arch.guest_state_protected)
1021                 return;
1022
1023         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025                 if (vcpu->arch.xcr0 != host_xcr0)
1026                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029                     vcpu->arch.ia32_xss != host_xss)
1030                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031         }
1032
1033         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037                 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043         if (vcpu->arch.guest_state_protected)
1044                 return;
1045
1046         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049                 vcpu->arch.pkru = rdpkru();
1050                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051                         write_pkru(vcpu->arch.host_pkru);
1052         }
1053
1054         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056                 if (vcpu->arch.xcr0 != host_xcr0)
1057                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060                     vcpu->arch.ia32_xss != host_xss)
1061                         wrmsrl(MSR_IA32_XSS, host_xss);
1062         }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076         u64 xcr0 = xcr;
1077         u64 old_xcr0 = vcpu->arch.xcr0;
1078         u64 valid_bits;
1079
1080         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081         if (index != XCR_XFEATURE_ENABLED_MASK)
1082                 return 1;
1083         if (!(xcr0 & XFEATURE_MASK_FP))
1084                 return 1;
1085         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086                 return 1;
1087
1088         /*
1089          * Do not allow the guest to set bits that we do not support
1090          * saving.  However, xcr0 bit 0 is always set, even if the
1091          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092          */
1093         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094         if (xcr0 & ~valid_bits)
1095                 return 1;
1096
1097         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099                 return 1;
1100
1101         if (xcr0 & XFEATURE_MASK_AVX512) {
1102                 if (!(xcr0 & XFEATURE_MASK_YMM))
1103                         return 1;
1104                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105                         return 1;
1106         }
1107
1108         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110                 return 1;
1111
1112         vcpu->arch.xcr0 = xcr0;
1113
1114         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115                 kvm_update_cpuid_runtime(vcpu);
1116         return 0;
1117 }
1118
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124                 kvm_inject_gp(vcpu, 0);
1125                 return 1;
1126         }
1127
1128         return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134         if (cr4 & cr4_reserved_bits)
1135                 return false;
1136
1137         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138                 return false;
1139
1140         return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146         return __kvm_is_valid_cr4(vcpu, cr4) &&
1147                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153                 kvm_mmu_reset_context(vcpu);
1154
1155         /*
1156          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157          * according to the SDM; however, stale prev_roots could be reused
1158          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161          * so fall through.
1162          */
1163         if (!tdp_enabled &&
1164             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165                 kvm_mmu_unload(vcpu);
1166
1167         /*
1168          * The TLB has to be flushed for all PCIDs if any of the following
1169          * (architecturally required) changes happen:
1170          * - CR4.PCIDE is changed from 1 to 0
1171          * - CR4.PGE is toggled
1172          *
1173          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174          */
1175         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179         /*
1180          * The TLB has to be flushed for the current PCID if any of the
1181          * following (architecturally required) changes happen:
1182          * - CR4.SMEP is changed from 0 to 1
1183          * - CR4.PAE is toggled
1184          */
1185         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196         if (!kvm_is_valid_cr4(vcpu, cr4))
1197                 return 1;
1198
1199         if (is_long_mode(vcpu)) {
1200                 if (!(cr4 & X86_CR4_PAE))
1201                         return 1;
1202                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203                         return 1;
1204         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207                 return 1;
1208
1209         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212                         return 1;
1213         }
1214
1215         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219         return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225         struct kvm_mmu *mmu = vcpu->arch.mmu;
1226         unsigned long roots_to_free = 0;
1227         int i;
1228
1229         /*
1230          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232          * also via the emulator.  KVM's TDP page tables are not in the scope of
1233          * the invalidation, but the guest's TLB entries need to be flushed as
1234          * the CPU may have cached entries in its TLB for the target PCID.
1235          */
1236         if (unlikely(tdp_enabled)) {
1237                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238                 return;
1239         }
1240
1241         /*
1242          * If neither the current CR3 nor any of the prev_roots use the given
1243          * PCID, then nothing needs to be done here because a resync will
1244          * happen anyway before switching to any other CR3.
1245          */
1246         if (kvm_get_active_pcid(vcpu) == pcid) {
1247                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249         }
1250
1251         /*
1252          * If PCID is disabled, there is no need to free prev_roots even if the
1253          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254          * with PCIDE=0.
1255          */
1256         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257                 return;
1258
1259         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268         bool skip_tlb_flush = false;
1269         unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274                 pcid = cr3 & X86_CR3_PCID_MASK;
1275         }
1276 #endif
1277
1278         /* PDPTRs are always reloaded for PAE paging. */
1279         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280                 goto handle_tlb_flush;
1281
1282         /*
1283          * Do not condition the GPA check on long mode, this helper is used to
1284          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285          * the current vCPU mode is accurate.
1286          */
1287         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288                 return 1;
1289
1290         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291                 return 1;
1292
1293         if (cr3 != kvm_read_cr3(vcpu))
1294                 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296         vcpu->arch.cr3 = cr3;
1297         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299
1300 handle_tlb_flush:
1301         /*
1302          * A load of CR3 that flushes the TLB flushes only the current PCID,
1303          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305          * and it's impossible to use a non-zero PCID when PCID is disabled,
1306          * i.e. only PCID=0 can be relevant.
1307          */
1308         if (!skip_tlb_flush)
1309                 kvm_invalidate_pcid(vcpu, pcid);
1310
1311         return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317         if (cr8 & CR8_RESERVED_BITS)
1318                 return 1;
1319         if (lapic_in_kernel(vcpu))
1320                 kvm_lapic_set_tpr(vcpu, cr8);
1321         else
1322                 vcpu->arch.cr8 = cr8;
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329         if (lapic_in_kernel(vcpu))
1330                 return kvm_lapic_get_cr8(vcpu);
1331         else
1332                 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338         int i;
1339
1340         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343         }
1344 }
1345
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348         unsigned long dr7;
1349
1350         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351                 dr7 = vcpu->arch.guest_debug_dr7;
1352         else
1353                 dr7 = vcpu->arch.dr7;
1354         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356         if (dr7 & DR7_BP_EN_MASK)
1357                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363         u64 fixed = DR6_FIXED_1;
1364
1365         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366                 fixed |= DR6_RTM;
1367
1368         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369                 fixed |= DR6_BUS_LOCK;
1370         return fixed;
1371 }
1372
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375         size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377         switch (dr) {
1378         case 0 ... 3:
1379                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381                         vcpu->arch.eff_db[dr] = val;
1382                 break;
1383         case 4:
1384         case 6:
1385                 if (!kvm_dr6_valid(val))
1386                         return 1; /* #GP */
1387                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388                 break;
1389         case 5:
1390         default: /* 7 */
1391                 if (!kvm_dr7_valid(val))
1392                         return 1; /* #GP */
1393                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394                 kvm_update_dr7(vcpu);
1395                 break;
1396         }
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404         size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406         switch (dr) {
1407         case 0 ... 3:
1408                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409                 break;
1410         case 4:
1411         case 6:
1412                 *val = vcpu->arch.dr6;
1413                 break;
1414         case 5:
1415         default: /* 7 */
1416                 *val = vcpu->arch.dr7;
1417                 break;
1418         }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424         u32 ecx = kvm_rcx_read(vcpu);
1425         u64 data;
1426
1427         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428                 kvm_inject_gp(vcpu, 0);
1429                 return 1;
1430         }
1431
1432         kvm_rax_write(vcpu, (u32)data);
1433         kvm_rdx_write(vcpu, data >> 32);
1434         return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448
1449 static const u32 msrs_to_save_base[] = {
1450         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451         MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464         MSR_IA32_UMWAIT_CONTROL,
1465
1466         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501                         ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512         HV_X64_MSR_RESET,
1513         HV_X64_MSR_VP_INDEX,
1514         HV_X64_MSR_VP_RUNTIME,
1515         HV_X64_MSR_SCONTROL,
1516         HV_X64_MSR_STIMER0_CONFIG,
1517         HV_X64_MSR_VP_ASSIST_PAGE,
1518         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520         HV_X64_MSR_SYNDBG_OPTIONS,
1521         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528         MSR_IA32_TSC_ADJUST,
1529         MSR_IA32_TSC_DEADLINE,
1530         MSR_IA32_ARCH_CAPABILITIES,
1531         MSR_IA32_PERF_CAPABILITIES,
1532         MSR_IA32_MISC_ENABLE,
1533         MSR_IA32_MCG_STATUS,
1534         MSR_IA32_MCG_CTL,
1535         MSR_IA32_MCG_EXT_CTL,
1536         MSR_IA32_SMBASE,
1537         MSR_SMI_COUNT,
1538         MSR_PLATFORM_INFO,
1539         MSR_MISC_FEATURES_ENABLES,
1540         MSR_AMD64_VIRT_SPEC_CTRL,
1541         MSR_AMD64_TSC_RATIO,
1542         MSR_IA32_POWER_CTL,
1543         MSR_IA32_UCODE_REV,
1544
1545         /*
1546          * KVM always supports the "true" VMX control MSRs, even if the host
1547          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548          * doesn't strictly require them to exist in the host (ignoring that
1549          * KVM would refuse to load in the first place if the core set of MSRs
1550          * aren't supported).
1551          */
1552         MSR_IA32_VMX_BASIC,
1553         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557         MSR_IA32_VMX_MISC,
1558         MSR_IA32_VMX_CR0_FIXED0,
1559         MSR_IA32_VMX_CR4_FIXED0,
1560         MSR_IA32_VMX_VMCS_ENUM,
1561         MSR_IA32_VMX_PROCBASED_CTLS2,
1562         MSR_IA32_VMX_EPT_VPID_CAP,
1563         MSR_IA32_VMX_VMFUNC,
1564
1565         MSR_K7_HWCR,
1566         MSR_KVM_POLL_CONTROL,
1567 };
1568
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578         MSR_AMD64_DE_CFG,
1579         MSR_IA32_UCODE_REV,
1580         MSR_IA32_ARCH_CAPABILITIES,
1581         MSR_IA32_PERF_CAPABILITIES,
1582 };
1583
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594         int i;
1595
1596         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597                 return true;
1598
1599         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600                 if (msr == msr_based_features_all_except_vmx[i])
1601                         return msr != MSR_IA32_UCODE_REV;
1602         }
1603
1604         return false;
1605 }
1606
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1624
1625 static u64 kvm_get_arch_capabilities(void)
1626 {
1627         u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1628
1629         /*
1630          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631          * the nested hypervisor runs with NX huge pages.  If it is not,
1632          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633          * L1 guests, so it need not worry about its own (L2) guests.
1634          */
1635         data |= ARCH_CAP_PSCHANGE_MC_NO;
1636
1637         /*
1638          * If we're doing cache flushes (either "always" or "cond")
1639          * we will do one whenever the guest does a vmlaunch/vmresume.
1640          * If an outer hypervisor is doing the cache flush for us
1641          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642          * capability to the guest too, and if EPT is disabled we're not
1643          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1644          * require a nested hypervisor to do a flush of its own.
1645          */
1646         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1648
1649         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650                 data |= ARCH_CAP_RDCL_NO;
1651         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652                 data |= ARCH_CAP_SSB_NO;
1653         if (!boot_cpu_has_bug(X86_BUG_MDS))
1654                 data |= ARCH_CAP_MDS_NO;
1655
1656         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1657                 /*
1658                  * If RTM=0 because the kernel has disabled TSX, the host might
1659                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1660                  * and therefore knows that there cannot be TAA) but keep
1661                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662                  * and we want to allow migrating those guests to tsx=off hosts.
1663                  */
1664                 data &= ~ARCH_CAP_TAA_NO;
1665         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666                 data |= ARCH_CAP_TAA_NO;
1667         } else {
1668                 /*
1669                  * Nothing to do here; we emulate TSX_CTRL if present on the
1670                  * host so the guest can choose between disabling TSX or
1671                  * using VERW to clear CPU buffers.
1672                  */
1673         }
1674
1675         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676                 data |= ARCH_CAP_GDS_NO;
1677
1678         return data;
1679 }
1680
1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1682 {
1683         switch (msr->index) {
1684         case MSR_IA32_ARCH_CAPABILITIES:
1685                 msr->data = kvm_get_arch_capabilities();
1686                 break;
1687         case MSR_IA32_PERF_CAPABILITIES:
1688                 msr->data = kvm_caps.supported_perf_cap;
1689                 break;
1690         case MSR_IA32_UCODE_REV:
1691                 rdmsrl_safe(msr->index, &msr->data);
1692                 break;
1693         default:
1694                 return static_call(kvm_x86_get_msr_feature)(msr);
1695         }
1696         return 0;
1697 }
1698
1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1700 {
1701         struct kvm_msr_entry msr;
1702         int r;
1703
1704         msr.index = index;
1705         r = kvm_get_msr_feature(&msr);
1706
1707         if (r == KVM_MSR_RET_INVALID) {
1708                 /* Unconditionally clear the output for simplicity */
1709                 *data = 0;
1710                 if (kvm_msr_ignored_check(index, 0, false))
1711                         r = 0;
1712         }
1713
1714         if (r)
1715                 return r;
1716
1717         *data = msr.data;
1718
1719         return 0;
1720 }
1721
1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1723 {
1724         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1725                 return false;
1726
1727         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1728                 return false;
1729
1730         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1731                 return false;
1732
1733         if (efer & (EFER_LME | EFER_LMA) &&
1734             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1735                 return false;
1736
1737         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1738                 return false;
1739
1740         return true;
1741
1742 }
1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1744 {
1745         if (efer & efer_reserved_bits)
1746                 return false;
1747
1748         return __kvm_valid_efer(vcpu, efer);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1751
1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 {
1754         u64 old_efer = vcpu->arch.efer;
1755         u64 efer = msr_info->data;
1756         int r;
1757
1758         if (efer & efer_reserved_bits)
1759                 return 1;
1760
1761         if (!msr_info->host_initiated) {
1762                 if (!__kvm_valid_efer(vcpu, efer))
1763                         return 1;
1764
1765                 if (is_paging(vcpu) &&
1766                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1767                         return 1;
1768         }
1769
1770         efer &= ~EFER_LMA;
1771         efer |= vcpu->arch.efer & EFER_LMA;
1772
1773         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1774         if (r) {
1775                 WARN_ON(r > 0);
1776                 return r;
1777         }
1778
1779         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780                 kvm_mmu_reset_context(vcpu);
1781
1782         return 0;
1783 }
1784
1785 void kvm_enable_efer_bits(u64 mask)
1786 {
1787        efer_reserved_bits &= ~mask;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1790
1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1792 {
1793         struct kvm_x86_msr_filter *msr_filter;
1794         struct msr_bitmap_range *ranges;
1795         struct kvm *kvm = vcpu->kvm;
1796         bool allowed;
1797         int idx;
1798         u32 i;
1799
1800         /* x2APIC MSRs do not support filtering. */
1801         if (index >= 0x800 && index <= 0x8ff)
1802                 return true;
1803
1804         idx = srcu_read_lock(&kvm->srcu);
1805
1806         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1807         if (!msr_filter) {
1808                 allowed = true;
1809                 goto out;
1810         }
1811
1812         allowed = msr_filter->default_allow;
1813         ranges = msr_filter->ranges;
1814
1815         for (i = 0; i < msr_filter->count; i++) {
1816                 u32 start = ranges[i].base;
1817                 u32 end = start + ranges[i].nmsrs;
1818                 u32 flags = ranges[i].flags;
1819                 unsigned long *bitmap = ranges[i].bitmap;
1820
1821                 if ((index >= start) && (index < end) && (flags & type)) {
1822                         allowed = test_bit(index - start, bitmap);
1823                         break;
1824                 }
1825         }
1826
1827 out:
1828         srcu_read_unlock(&kvm->srcu, idx);
1829
1830         return allowed;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1833
1834 /*
1835  * Write @data into the MSR specified by @index.  Select MSR specific fault
1836  * checks are bypassed if @host_initiated is %true.
1837  * Returns 0 on success, non-0 otherwise.
1838  * Assumes vcpu_load() was already called.
1839  */
1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841                          bool host_initiated)
1842 {
1843         struct msr_data msr;
1844
1845         switch (index) {
1846         case MSR_FS_BASE:
1847         case MSR_GS_BASE:
1848         case MSR_KERNEL_GS_BASE:
1849         case MSR_CSTAR:
1850         case MSR_LSTAR:
1851                 if (is_noncanonical_address(data, vcpu))
1852                         return 1;
1853                 break;
1854         case MSR_IA32_SYSENTER_EIP:
1855         case MSR_IA32_SYSENTER_ESP:
1856                 /*
1857                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858                  * non-canonical address is written on Intel but not on
1859                  * AMD (which ignores the top 32-bits, because it does
1860                  * not implement 64-bit SYSENTER).
1861                  *
1862                  * 64-bit code should hence be able to write a non-canonical
1863                  * value on AMD.  Making the address canonical ensures that
1864                  * vmentry does not fail on Intel after writing a non-canonical
1865                  * value, and that something deterministic happens if the guest
1866                  * invokes 64-bit SYSENTER.
1867                  */
1868                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1869                 break;
1870         case MSR_TSC_AUX:
1871                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1872                         return 1;
1873
1874                 if (!host_initiated &&
1875                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1877                         return 1;
1878
1879                 /*
1880                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881                  * incomplete and conflicting architectural behavior.  Current
1882                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883                  * reserved and always read as zeros.  Enforce Intel's reserved
1884                  * bits check if and only if the guest CPU is Intel, and clear
1885                  * the bits in all other cases.  This ensures cross-vendor
1886                  * migration will provide consistent behavior for the guest.
1887                  */
1888                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1889                         return 1;
1890
1891                 data = (u32)data;
1892                 break;
1893         }
1894
1895         msr.data = data;
1896         msr.index = index;
1897         msr.host_initiated = host_initiated;
1898
1899         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1900 }
1901
1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903                                      u32 index, u64 data, bool host_initiated)
1904 {
1905         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1906
1907         if (ret == KVM_MSR_RET_INVALID)
1908                 if (kvm_msr_ignored_check(index, data, true))
1909                         ret = 0;
1910
1911         return ret;
1912 }
1913
1914 /*
1915  * Read the MSR specified by @index into @data.  Select MSR specific fault
1916  * checks are bypassed if @host_initiated is %true.
1917  * Returns 0 on success, non-0 otherwise.
1918  * Assumes vcpu_load() was already called.
1919  */
1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921                   bool host_initiated)
1922 {
1923         struct msr_data msr;
1924         int ret;
1925
1926         switch (index) {
1927         case MSR_TSC_AUX:
1928                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1929                         return 1;
1930
1931                 if (!host_initiated &&
1932                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1934                         return 1;
1935                 break;
1936         }
1937
1938         msr.index = index;
1939         msr.host_initiated = host_initiated;
1940
1941         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1942         if (!ret)
1943                 *data = msr.data;
1944         return ret;
1945 }
1946
1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948                                      u32 index, u64 *data, bool host_initiated)
1949 {
1950         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1951
1952         if (ret == KVM_MSR_RET_INVALID) {
1953                 /* Unconditionally clear *data for simplicity */
1954                 *data = 0;
1955                 if (kvm_msr_ignored_check(index, 0, false))
1956                         ret = 0;
1957         }
1958
1959         return ret;
1960 }
1961
1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 {
1964         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965                 return KVM_MSR_RET_FILTERED;
1966         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 }
1968
1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970 {
1971         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972                 return KVM_MSR_RET_FILTERED;
1973         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975
1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1977 {
1978         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1981
1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1983 {
1984         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1987
1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990         if (!vcpu->run->msr.error) {
1991                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1993         }
1994 }
1995
1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1999 }
2000
2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003         complete_userspace_rdmsr(vcpu);
2004         return complete_emulated_msr_access(vcpu);
2005 }
2006
2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2008 {
2009         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2010 }
2011
2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2013 {
2014         complete_userspace_rdmsr(vcpu);
2015         return complete_fast_msr_access(vcpu);
2016 }
2017
2018 static u64 kvm_msr_reason(int r)
2019 {
2020         switch (r) {
2021         case KVM_MSR_RET_INVALID:
2022                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2023         case KVM_MSR_RET_FILTERED:
2024                 return KVM_MSR_EXIT_REASON_FILTER;
2025         default:
2026                 return KVM_MSR_EXIT_REASON_INVAL;
2027         }
2028 }
2029
2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031                               u32 exit_reason, u64 data,
2032                               int (*completion)(struct kvm_vcpu *vcpu),
2033                               int r)
2034 {
2035         u64 msr_reason = kvm_msr_reason(r);
2036
2037         /* Check if the user wanted to know about this MSR fault */
2038         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2039                 return 0;
2040
2041         vcpu->run->exit_reason = exit_reason;
2042         vcpu->run->msr.error = 0;
2043         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044         vcpu->run->msr.reason = msr_reason;
2045         vcpu->run->msr.index = index;
2046         vcpu->run->msr.data = data;
2047         vcpu->arch.complete_userspace_io = completion;
2048
2049         return 1;
2050 }
2051
2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2053 {
2054         u32 ecx = kvm_rcx_read(vcpu);
2055         u64 data;
2056         int r;
2057
2058         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2059
2060         if (!r) {
2061                 trace_kvm_msr_read(ecx, data);
2062
2063                 kvm_rax_write(vcpu, data & -1u);
2064                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2065         } else {
2066                 /* MSR read failed? See if we should ask user space */
2067                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068                                        complete_fast_rdmsr, r))
2069                         return 0;
2070                 trace_kvm_msr_read_ex(ecx);
2071         }
2072
2073         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2076
2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2078 {
2079         u32 ecx = kvm_rcx_read(vcpu);
2080         u64 data = kvm_read_edx_eax(vcpu);
2081         int r;
2082
2083         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2084
2085         if (!r) {
2086                 trace_kvm_msr_write(ecx, data);
2087         } else {
2088                 /* MSR write failed? See if we should ask user space */
2089                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090                                        complete_fast_msr_access, r))
2091                         return 0;
2092                 /* Signal all other negative errors to userspace */
2093                 if (r < 0)
2094                         return r;
2095                 trace_kvm_msr_write_ex(ecx, data);
2096         }
2097
2098         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2101
2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2103 {
2104         return kvm_skip_emulated_instruction(vcpu);
2105 }
2106
2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2108 {
2109         /* Treat an INVD instruction as a NOP and just skip it. */
2110         return kvm_emulate_as_nop(vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2113
2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2115 {
2116         kvm_queue_exception(vcpu, UD_VECTOR);
2117         return 1;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2120
2121
2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2123 {
2124         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126                 return kvm_handle_invalid_op(vcpu);
2127
2128         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129         return kvm_emulate_as_nop(vcpu);
2130 }
2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2132 {
2133         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2136
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2138 {
2139         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2142
2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2144 {
2145         xfer_to_guest_mode_prepare();
2146         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147                 xfer_to_guest_mode_work_pending();
2148 }
2149
2150 /*
2151  * The fast path for frequent and performance sensitive wrmsr emulation,
2152  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155  * other cases which must be called after interrupts are enabled on the host.
2156  */
2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2158 {
2159         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2160                 return 1;
2161
2162         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165             ((u32)(data >> 32) != X2APIC_BROADCAST))
2166                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167
2168         return 1;
2169 }
2170
2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2172 {
2173         if (!kvm_can_use_hv_timer(vcpu))
2174                 return 1;
2175
2176         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177         return 0;
2178 }
2179
2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2181 {
2182         u32 msr = kvm_rcx_read(vcpu);
2183         u64 data;
2184         fastpath_t ret = EXIT_FASTPATH_NONE;
2185
2186         kvm_vcpu_srcu_read_lock(vcpu);
2187
2188         switch (msr) {
2189         case APIC_BASE_MSR + (APIC_ICR >> 4):
2190                 data = kvm_read_edx_eax(vcpu);
2191                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192                         kvm_skip_emulated_instruction(vcpu);
2193                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2194                 }
2195                 break;
2196         case MSR_IA32_TSC_DEADLINE:
2197                 data = kvm_read_edx_eax(vcpu);
2198                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199                         kvm_skip_emulated_instruction(vcpu);
2200                         ret = EXIT_FASTPATH_REENTER_GUEST;
2201                 }
2202                 break;
2203         default:
2204                 break;
2205         }
2206
2207         if (ret != EXIT_FASTPATH_NONE)
2208                 trace_kvm_msr_write(msr, data);
2209
2210         kvm_vcpu_srcu_read_unlock(vcpu);
2211
2212         return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2215
2216 /*
2217  * Adapt set_msr() to msr_io()'s calling convention
2218  */
2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2222 }
2223
2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226         u64 val;
2227
2228         /*
2229          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2230          * not support modifying the guest vCPU model on the fly, e.g. changing
2231          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2232          * writes of the same value, e.g. to allow userspace to blindly stuff
2233          * all MSRs when emulating RESET.
2234          */
2235         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236                 if (do_get_msr(vcpu, index, &val) || *data != val)
2237                         return -EINVAL;
2238
2239                 return 0;
2240         }
2241
2242         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2243 }
2244
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2247         int vclock_mode;
2248         u64 cycle_last;
2249         u64 mask;
2250         u32 mult;
2251         u32 shift;
2252         u64 base_cycles;
2253         u64 offset;
2254 };
2255
2256 struct pvclock_gtod_data {
2257         seqcount_t      seq;
2258
2259         struct pvclock_clock clock; /* extract of a clocksource struct */
2260         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2261
2262         ktime_t         offs_boot;
2263         u64             wall_time_sec;
2264 };
2265
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2267
2268 static void update_pvclock_gtod(struct timekeeper *tk)
2269 {
2270         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2271
2272         write_seqcount_begin(&vdata->seq);
2273
2274         /* copy pvclock gtod data */
2275         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2276         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2277         vdata->clock.mask               = tk->tkr_mono.mask;
2278         vdata->clock.mult               = tk->tkr_mono.mult;
2279         vdata->clock.shift              = tk->tkr_mono.shift;
2280         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2281         vdata->clock.offset             = tk->tkr_mono.base;
2282
2283         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2284         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2285         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2286         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2287         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2288         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2289         vdata->raw_clock.offset         = tk->tkr_raw.base;
2290
2291         vdata->wall_time_sec            = tk->xtime_sec;
2292
2293         vdata->offs_boot                = tk->offs_boot;
2294
2295         write_seqcount_end(&vdata->seq);
2296 }
2297
2298 static s64 get_kvmclock_base_ns(void)
2299 {
2300         /* Count up from boot time, but with the frequency of the raw clock.  */
2301         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2302 }
2303 #else
2304 static s64 get_kvmclock_base_ns(void)
2305 {
2306         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2307         return ktime_get_boottime_ns();
2308 }
2309 #endif
2310
2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2312 {
2313         int version;
2314         int r;
2315         struct pvclock_wall_clock wc;
2316         u32 wc_sec_hi;
2317         u64 wall_nsec;
2318
2319         if (!wall_clock)
2320                 return;
2321
2322         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2323         if (r)
2324                 return;
2325
2326         if (version & 1)
2327                 ++version;  /* first time write, random junk */
2328
2329         ++version;
2330
2331         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2332                 return;
2333
2334         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2335
2336         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2337         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2338         wc.version = version;
2339
2340         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2341
2342         if (sec_hi_ofs) {
2343                 wc_sec_hi = wall_nsec >> 32;
2344                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2345                                 &wc_sec_hi, sizeof(wc_sec_hi));
2346         }
2347
2348         version++;
2349         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2350 }
2351
2352 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2353                                   bool old_msr, bool host_initiated)
2354 {
2355         struct kvm_arch *ka = &vcpu->kvm->arch;
2356
2357         if (vcpu->vcpu_id == 0 && !host_initiated) {
2358                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2359                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2360
2361                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2362         }
2363
2364         vcpu->arch.time = system_time;
2365         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2366
2367         /* we verify if the enable bit is set... */
2368         if (system_time & 1)
2369                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2370                                  sizeof(struct pvclock_vcpu_time_info));
2371         else
2372                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2373
2374         return;
2375 }
2376
2377 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2378 {
2379         do_shl32_div32(dividend, divisor);
2380         return dividend;
2381 }
2382
2383 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2384                                s8 *pshift, u32 *pmultiplier)
2385 {
2386         uint64_t scaled64;
2387         int32_t  shift = 0;
2388         uint64_t tps64;
2389         uint32_t tps32;
2390
2391         tps64 = base_hz;
2392         scaled64 = scaled_hz;
2393         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2394                 tps64 >>= 1;
2395                 shift--;
2396         }
2397
2398         tps32 = (uint32_t)tps64;
2399         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2400                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2401                         scaled64 >>= 1;
2402                 else
2403                         tps32 <<= 1;
2404                 shift++;
2405         }
2406
2407         *pshift = shift;
2408         *pmultiplier = div_frac(scaled64, tps32);
2409 }
2410
2411 #ifdef CONFIG_X86_64
2412 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2413 #endif
2414
2415 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2416 static unsigned long max_tsc_khz;
2417
2418 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2419 {
2420         u64 v = (u64)khz * (1000000 + ppm);
2421         do_div(v, 1000000);
2422         return v;
2423 }
2424
2425 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2426
2427 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2428 {
2429         u64 ratio;
2430
2431         /* Guest TSC same frequency as host TSC? */
2432         if (!scale) {
2433                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2434                 return 0;
2435         }
2436
2437         /* TSC scaling supported? */
2438         if (!kvm_caps.has_tsc_control) {
2439                 if (user_tsc_khz > tsc_khz) {
2440                         vcpu->arch.tsc_catchup = 1;
2441                         vcpu->arch.tsc_always_catchup = 1;
2442                         return 0;
2443                 } else {
2444                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2445                         return -1;
2446                 }
2447         }
2448
2449         /* TSC scaling required  - calculate ratio */
2450         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2451                                 user_tsc_khz, tsc_khz);
2452
2453         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2454                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2455                                     user_tsc_khz);
2456                 return -1;
2457         }
2458
2459         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2460         return 0;
2461 }
2462
2463 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2464 {
2465         u32 thresh_lo, thresh_hi;
2466         int use_scaling = 0;
2467
2468         /* tsc_khz can be zero if TSC calibration fails */
2469         if (user_tsc_khz == 0) {
2470                 /* set tsc_scaling_ratio to a safe value */
2471                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2472                 return -1;
2473         }
2474
2475         /* Compute a scale to convert nanoseconds in TSC cycles */
2476         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2477                            &vcpu->arch.virtual_tsc_shift,
2478                            &vcpu->arch.virtual_tsc_mult);
2479         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2480
2481         /*
2482          * Compute the variation in TSC rate which is acceptable
2483          * within the range of tolerance and decide if the
2484          * rate being applied is within that bounds of the hardware
2485          * rate.  If so, no scaling or compensation need be done.
2486          */
2487         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2488         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2489         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2490                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2491                          user_tsc_khz, thresh_lo, thresh_hi);
2492                 use_scaling = 1;
2493         }
2494         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2495 }
2496
2497 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2498 {
2499         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2500                                       vcpu->arch.virtual_tsc_mult,
2501                                       vcpu->arch.virtual_tsc_shift);
2502         tsc += vcpu->arch.this_tsc_write;
2503         return tsc;
2504 }
2505
2506 #ifdef CONFIG_X86_64
2507 static inline int gtod_is_based_on_tsc(int mode)
2508 {
2509         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2510 }
2511 #endif
2512
2513 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2514 {
2515 #ifdef CONFIG_X86_64
2516         bool vcpus_matched;
2517         struct kvm_arch *ka = &vcpu->kvm->arch;
2518         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2519
2520         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2521                          atomic_read(&vcpu->kvm->online_vcpus));
2522
2523         /*
2524          * Once the masterclock is enabled, always perform request in
2525          * order to update it.
2526          *
2527          * In order to enable masterclock, the host clocksource must be TSC
2528          * and the vcpus need to have matched TSCs.  When that happens,
2529          * perform request to enable masterclock.
2530          */
2531         if (ka->use_master_clock ||
2532             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2533                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2534
2535         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2536                             atomic_read(&vcpu->kvm->online_vcpus),
2537                             ka->use_master_clock, gtod->clock.vclock_mode);
2538 #endif
2539 }
2540
2541 /*
2542  * Multiply tsc by a fixed point number represented by ratio.
2543  *
2544  * The most significant 64-N bits (mult) of ratio represent the
2545  * integral part of the fixed point number; the remaining N bits
2546  * (frac) represent the fractional part, ie. ratio represents a fixed
2547  * point number (mult + frac * 2^(-N)).
2548  *
2549  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2550  */
2551 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2552 {
2553         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2554 }
2555
2556 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2557 {
2558         u64 _tsc = tsc;
2559
2560         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2561                 _tsc = __scale_tsc(ratio, tsc);
2562
2563         return _tsc;
2564 }
2565
2566 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2567 {
2568         u64 tsc;
2569
2570         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2571
2572         return target_tsc - tsc;
2573 }
2574
2575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2576 {
2577         return vcpu->arch.l1_tsc_offset +
2578                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2579 }
2580 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2581
2582 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2583 {
2584         u64 nested_offset;
2585
2586         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2587                 nested_offset = l1_offset;
2588         else
2589                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2590                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2591
2592         nested_offset += l2_offset;
2593         return nested_offset;
2594 }
2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2596
2597 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2598 {
2599         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2600                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2601                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2602
2603         return l1_multiplier;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2606
2607 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2608 {
2609         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2610                                    vcpu->arch.l1_tsc_offset,
2611                                    l1_offset);
2612
2613         vcpu->arch.l1_tsc_offset = l1_offset;
2614
2615         /*
2616          * If we are here because L1 chose not to trap WRMSR to TSC then
2617          * according to the spec this should set L1's TSC (as opposed to
2618          * setting L1's offset for L2).
2619          */
2620         if (is_guest_mode(vcpu))
2621                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2622                         l1_offset,
2623                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2624                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2625         else
2626                 vcpu->arch.tsc_offset = l1_offset;
2627
2628         static_call(kvm_x86_write_tsc_offset)(vcpu);
2629 }
2630
2631 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2632 {
2633         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2634
2635         /* Userspace is changing the multiplier while L2 is active */
2636         if (is_guest_mode(vcpu))
2637                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2638                         l1_multiplier,
2639                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2640         else
2641                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2642
2643         if (kvm_caps.has_tsc_control)
2644                 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2645 }
2646
2647 static inline bool kvm_check_tsc_unstable(void)
2648 {
2649 #ifdef CONFIG_X86_64
2650         /*
2651          * TSC is marked unstable when we're running on Hyper-V,
2652          * 'TSC page' clocksource is good.
2653          */
2654         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2655                 return false;
2656 #endif
2657         return check_tsc_unstable();
2658 }
2659
2660 /*
2661  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2662  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2663  * participates in.
2664  */
2665 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2666                                   u64 ns, bool matched)
2667 {
2668         struct kvm *kvm = vcpu->kvm;
2669
2670         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2671
2672         /*
2673          * We also track th most recent recorded KHZ, write and time to
2674          * allow the matching interval to be extended at each write.
2675          */
2676         kvm->arch.last_tsc_nsec = ns;
2677         kvm->arch.last_tsc_write = tsc;
2678         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2679         kvm->arch.last_tsc_offset = offset;
2680
2681         vcpu->arch.last_guest_tsc = tsc;
2682
2683         kvm_vcpu_write_tsc_offset(vcpu, offset);
2684
2685         if (!matched) {
2686                 /*
2687                  * We split periods of matched TSC writes into generations.
2688                  * For each generation, we track the original measured
2689                  * nanosecond time, offset, and write, so if TSCs are in
2690                  * sync, we can match exact offset, and if not, we can match
2691                  * exact software computation in compute_guest_tsc()
2692                  *
2693                  * These values are tracked in kvm->arch.cur_xxx variables.
2694                  */
2695                 kvm->arch.cur_tsc_generation++;
2696                 kvm->arch.cur_tsc_nsec = ns;
2697                 kvm->arch.cur_tsc_write = tsc;
2698                 kvm->arch.cur_tsc_offset = offset;
2699                 kvm->arch.nr_vcpus_matched_tsc = 0;
2700         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2701                 kvm->arch.nr_vcpus_matched_tsc++;
2702         }
2703
2704         /* Keep track of which generation this VCPU has synchronized to */
2705         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2706         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2707         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2708
2709         kvm_track_tsc_matching(vcpu);
2710 }
2711
2712 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2713 {
2714         u64 data = user_value ? *user_value : 0;
2715         struct kvm *kvm = vcpu->kvm;
2716         u64 offset, ns, elapsed;
2717         unsigned long flags;
2718         bool matched = false;
2719         bool synchronizing = false;
2720
2721         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2722         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2723         ns = get_kvmclock_base_ns();
2724         elapsed = ns - kvm->arch.last_tsc_nsec;
2725
2726         if (vcpu->arch.virtual_tsc_khz) {
2727                 if (data == 0) {
2728                         /*
2729                          * Force synchronization when creating a vCPU, or when
2730                          * userspace explicitly writes a zero value.
2731                          */
2732                         synchronizing = true;
2733                 } else if (kvm->arch.user_set_tsc) {
2734                         u64 tsc_exp = kvm->arch.last_tsc_write +
2735                                                 nsec_to_cycles(vcpu, elapsed);
2736                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2737                         /*
2738                          * Here lies UAPI baggage: when a user-initiated TSC write has
2739                          * a small delta (1 second) of virtual cycle time against the
2740                          * previously set vCPU, we assume that they were intended to be
2741                          * in sync and the delta was only due to the racy nature of the
2742                          * legacy API.
2743                          *
2744                          * This trick falls down when restoring a guest which genuinely
2745                          * has been running for less time than the 1 second of imprecision
2746                          * which we allow for in the legacy API. In this case, the first
2747                          * value written by userspace (on any vCPU) should not be subject
2748                          * to this 'correction' to make it sync up with values that only
2749                          * come from the kernel's default vCPU creation. Make the 1-second
2750                          * slop hack only trigger if the user_set_tsc flag is already set.
2751                          */
2752                         synchronizing = data < tsc_exp + tsc_hz &&
2753                                         data + tsc_hz > tsc_exp;
2754                 }
2755         }
2756
2757         if (user_value)
2758                 kvm->arch.user_set_tsc = true;
2759
2760         /*
2761          * For a reliable TSC, we can match TSC offsets, and for an unstable
2762          * TSC, we add elapsed time in this computation.  We could let the
2763          * compensation code attempt to catch up if we fall behind, but
2764          * it's better to try to match offsets from the beginning.
2765          */
2766         if (synchronizing &&
2767             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2768                 if (!kvm_check_tsc_unstable()) {
2769                         offset = kvm->arch.cur_tsc_offset;
2770                 } else {
2771                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2772                         data += delta;
2773                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2774                 }
2775                 matched = true;
2776         }
2777
2778         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2779         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2780 }
2781
2782 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2783                                            s64 adjustment)
2784 {
2785         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2786         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2787 }
2788
2789 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2790 {
2791         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2792                 WARN_ON(adjustment < 0);
2793         adjustment = kvm_scale_tsc((u64) adjustment,
2794                                    vcpu->arch.l1_tsc_scaling_ratio);
2795         adjust_tsc_offset_guest(vcpu, adjustment);
2796 }
2797
2798 #ifdef CONFIG_X86_64
2799
2800 static u64 read_tsc(void)
2801 {
2802         u64 ret = (u64)rdtsc_ordered();
2803         u64 last = pvclock_gtod_data.clock.cycle_last;
2804
2805         if (likely(ret >= last))
2806                 return ret;
2807
2808         /*
2809          * GCC likes to generate cmov here, but this branch is extremely
2810          * predictable (it's just a function of time and the likely is
2811          * very likely) and there's a data dependence, so force GCC
2812          * to generate a branch instead.  I don't barrier() because
2813          * we don't actually need a barrier, and if this function
2814          * ever gets inlined it will generate worse code.
2815          */
2816         asm volatile ("");
2817         return last;
2818 }
2819
2820 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2821                           int *mode)
2822 {
2823         u64 tsc_pg_val;
2824         long v;
2825
2826         switch (clock->vclock_mode) {
2827         case VDSO_CLOCKMODE_HVCLOCK:
2828                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2829                                          tsc_timestamp, &tsc_pg_val)) {
2830                         /* TSC page valid */
2831                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2832                         v = (tsc_pg_val - clock->cycle_last) &
2833                                 clock->mask;
2834                 } else {
2835                         /* TSC page invalid */
2836                         *mode = VDSO_CLOCKMODE_NONE;
2837                 }
2838                 break;
2839         case VDSO_CLOCKMODE_TSC:
2840                 *mode = VDSO_CLOCKMODE_TSC;
2841                 *tsc_timestamp = read_tsc();
2842                 v = (*tsc_timestamp - clock->cycle_last) &
2843                         clock->mask;
2844                 break;
2845         default:
2846                 *mode = VDSO_CLOCKMODE_NONE;
2847         }
2848
2849         if (*mode == VDSO_CLOCKMODE_NONE)
2850                 *tsc_timestamp = v = 0;
2851
2852         return v * clock->mult;
2853 }
2854
2855 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2856 {
2857         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2858         unsigned long seq;
2859         int mode;
2860         u64 ns;
2861
2862         do {
2863                 seq = read_seqcount_begin(&gtod->seq);
2864                 ns = gtod->raw_clock.base_cycles;
2865                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2866                 ns >>= gtod->raw_clock.shift;
2867                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2868         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2869         *t = ns;
2870
2871         return mode;
2872 }
2873
2874 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2875 {
2876         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2877         unsigned long seq;
2878         int mode;
2879         u64 ns;
2880
2881         do {
2882                 seq = read_seqcount_begin(&gtod->seq);
2883                 ts->tv_sec = gtod->wall_time_sec;
2884                 ns = gtod->clock.base_cycles;
2885                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2886                 ns >>= gtod->clock.shift;
2887         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2888
2889         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2890         ts->tv_nsec = ns;
2891
2892         return mode;
2893 }
2894
2895 /* returns true if host is using TSC based clocksource */
2896 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2897 {
2898         /* checked again under seqlock below */
2899         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2900                 return false;
2901
2902         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2903                                                       tsc_timestamp));
2904 }
2905
2906 /* returns true if host is using TSC based clocksource */
2907 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2908                                            u64 *tsc_timestamp)
2909 {
2910         /* checked again under seqlock below */
2911         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2912                 return false;
2913
2914         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2915 }
2916 #endif
2917
2918 /*
2919  *
2920  * Assuming a stable TSC across physical CPUS, and a stable TSC
2921  * across virtual CPUs, the following condition is possible.
2922  * Each numbered line represents an event visible to both
2923  * CPUs at the next numbered event.
2924  *
2925  * "timespecX" represents host monotonic time. "tscX" represents
2926  * RDTSC value.
2927  *
2928  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2929  *
2930  * 1.  read timespec0,tsc0
2931  * 2.                                   | timespec1 = timespec0 + N
2932  *                                      | tsc1 = tsc0 + M
2933  * 3. transition to guest               | transition to guest
2934  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2935  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2936  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2937  *
2938  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2939  *
2940  *      - ret0 < ret1
2941  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2942  *              ...
2943  *      - 0 < N - M => M < N
2944  *
2945  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2946  * always the case (the difference between two distinct xtime instances
2947  * might be smaller then the difference between corresponding TSC reads,
2948  * when updating guest vcpus pvclock areas).
2949  *
2950  * To avoid that problem, do not allow visibility of distinct
2951  * system_timestamp/tsc_timestamp values simultaneously: use a master
2952  * copy of host monotonic time values. Update that master copy
2953  * in lockstep.
2954  *
2955  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2956  *
2957  */
2958
2959 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2960 {
2961 #ifdef CONFIG_X86_64
2962         struct kvm_arch *ka = &kvm->arch;
2963         int vclock_mode;
2964         bool host_tsc_clocksource, vcpus_matched;
2965
2966         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2967         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2968                         atomic_read(&kvm->online_vcpus));
2969
2970         /*
2971          * If the host uses TSC clock, then passthrough TSC as stable
2972          * to the guest.
2973          */
2974         host_tsc_clocksource = kvm_get_time_and_clockread(
2975                                         &ka->master_kernel_ns,
2976                                         &ka->master_cycle_now);
2977
2978         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2979                                 && !ka->backwards_tsc_observed
2980                                 && !ka->boot_vcpu_runs_old_kvmclock;
2981
2982         if (ka->use_master_clock)
2983                 atomic_set(&kvm_guest_has_master_clock, 1);
2984
2985         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2986         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2987                                         vcpus_matched);
2988 #endif
2989 }
2990
2991 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2992 {
2993         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2994 }
2995
2996 static void __kvm_start_pvclock_update(struct kvm *kvm)
2997 {
2998         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2999         write_seqcount_begin(&kvm->arch.pvclock_sc);
3000 }
3001
3002 static void kvm_start_pvclock_update(struct kvm *kvm)
3003 {
3004         kvm_make_mclock_inprogress_request(kvm);
3005
3006         /* no guest entries from this point */
3007         __kvm_start_pvclock_update(kvm);
3008 }
3009
3010 static void kvm_end_pvclock_update(struct kvm *kvm)
3011 {
3012         struct kvm_arch *ka = &kvm->arch;
3013         struct kvm_vcpu *vcpu;
3014         unsigned long i;
3015
3016         write_seqcount_end(&ka->pvclock_sc);
3017         raw_spin_unlock_irq(&ka->tsc_write_lock);
3018         kvm_for_each_vcpu(i, vcpu, kvm)
3019                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3020
3021         /* guest entries allowed */
3022         kvm_for_each_vcpu(i, vcpu, kvm)
3023                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3024 }
3025
3026 static void kvm_update_masterclock(struct kvm *kvm)
3027 {
3028         kvm_hv_request_tsc_page_update(kvm);
3029         kvm_start_pvclock_update(kvm);
3030         pvclock_update_vm_gtod_copy(kvm);
3031         kvm_end_pvclock_update(kvm);
3032 }
3033
3034 /*
3035  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3036  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3037  * can change during boot even if the TSC is constant, as it's possible for KVM
3038  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3039  * notification when calibration completes, but practically speaking calibration
3040  * will complete before userspace is alive enough to create VMs.
3041  */
3042 static unsigned long get_cpu_tsc_khz(void)
3043 {
3044         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3045                 return tsc_khz;
3046         else
3047                 return __this_cpu_read(cpu_tsc_khz);
3048 }
3049
3050 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3051 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3052 {
3053         struct kvm_arch *ka = &kvm->arch;
3054         struct pvclock_vcpu_time_info hv_clock;
3055
3056         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3057         get_cpu();
3058
3059         data->flags = 0;
3060         if (ka->use_master_clock &&
3061             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3062 #ifdef CONFIG_X86_64
3063                 struct timespec64 ts;
3064
3065                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3066                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3067                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3068                 } else
3069 #endif
3070                 data->host_tsc = rdtsc();
3071
3072                 data->flags |= KVM_CLOCK_TSC_STABLE;
3073                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3074                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3075                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3076                                    &hv_clock.tsc_shift,
3077                                    &hv_clock.tsc_to_system_mul);
3078                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3079         } else {
3080                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3081         }
3082
3083         put_cpu();
3084 }
3085
3086 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3087 {
3088         struct kvm_arch *ka = &kvm->arch;
3089         unsigned seq;
3090
3091         do {
3092                 seq = read_seqcount_begin(&ka->pvclock_sc);
3093                 __get_kvmclock(kvm, data);
3094         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3095 }
3096
3097 u64 get_kvmclock_ns(struct kvm *kvm)
3098 {
3099         struct kvm_clock_data data;
3100
3101         get_kvmclock(kvm, &data);
3102         return data.clock;
3103 }
3104
3105 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3106                                     struct gfn_to_pfn_cache *gpc,
3107                                     unsigned int offset)
3108 {
3109         struct kvm_vcpu_arch *vcpu = &v->arch;
3110         struct pvclock_vcpu_time_info *guest_hv_clock;
3111         unsigned long flags;
3112
3113         read_lock_irqsave(&gpc->lock, flags);
3114         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3115                 read_unlock_irqrestore(&gpc->lock, flags);
3116
3117                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3118                         return;
3119
3120                 read_lock_irqsave(&gpc->lock, flags);
3121         }
3122
3123         guest_hv_clock = (void *)(gpc->khva + offset);
3124
3125         /*
3126          * This VCPU is paused, but it's legal for a guest to read another
3127          * VCPU's kvmclock, so we really have to follow the specification where
3128          * it says that version is odd if data is being modified, and even after
3129          * it is consistent.
3130          */
3131
3132         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3133         smp_wmb();
3134
3135         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3136         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3137
3138         if (vcpu->pvclock_set_guest_stopped_request) {
3139                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3140                 vcpu->pvclock_set_guest_stopped_request = false;
3141         }
3142
3143         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3144         smp_wmb();
3145
3146         guest_hv_clock->version = ++vcpu->hv_clock.version;
3147
3148         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3149         read_unlock_irqrestore(&gpc->lock, flags);
3150
3151         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3152 }
3153
3154 static int kvm_guest_time_update(struct kvm_vcpu *v)
3155 {
3156         unsigned long flags, tgt_tsc_khz;
3157         unsigned seq;
3158         struct kvm_vcpu_arch *vcpu = &v->arch;
3159         struct kvm_arch *ka = &v->kvm->arch;
3160         s64 kernel_ns;
3161         u64 tsc_timestamp, host_tsc;
3162         u8 pvclock_flags;
3163         bool use_master_clock;
3164
3165         kernel_ns = 0;
3166         host_tsc = 0;
3167
3168         /*
3169          * If the host uses TSC clock, then passthrough TSC as stable
3170          * to the guest.
3171          */
3172         do {
3173                 seq = read_seqcount_begin(&ka->pvclock_sc);
3174                 use_master_clock = ka->use_master_clock;
3175                 if (use_master_clock) {
3176                         host_tsc = ka->master_cycle_now;
3177                         kernel_ns = ka->master_kernel_ns;
3178                 }
3179         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3180
3181         /* Keep irq disabled to prevent changes to the clock */
3182         local_irq_save(flags);
3183         tgt_tsc_khz = get_cpu_tsc_khz();
3184         if (unlikely(tgt_tsc_khz == 0)) {
3185                 local_irq_restore(flags);
3186                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3187                 return 1;
3188         }
3189         if (!use_master_clock) {
3190                 host_tsc = rdtsc();
3191                 kernel_ns = get_kvmclock_base_ns();
3192         }
3193
3194         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3195
3196         /*
3197          * We may have to catch up the TSC to match elapsed wall clock
3198          * time for two reasons, even if kvmclock is used.
3199          *   1) CPU could have been running below the maximum TSC rate
3200          *   2) Broken TSC compensation resets the base at each VCPU
3201          *      entry to avoid unknown leaps of TSC even when running
3202          *      again on the same CPU.  This may cause apparent elapsed
3203          *      time to disappear, and the guest to stand still or run
3204          *      very slowly.
3205          */
3206         if (vcpu->tsc_catchup) {
3207                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3208                 if (tsc > tsc_timestamp) {
3209                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3210                         tsc_timestamp = tsc;
3211                 }
3212         }
3213
3214         local_irq_restore(flags);
3215
3216         /* With all the info we got, fill in the values */
3217
3218         if (kvm_caps.has_tsc_control)
3219                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3220                                             v->arch.l1_tsc_scaling_ratio);
3221
3222         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3223                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3224                                    &vcpu->hv_clock.tsc_shift,
3225                                    &vcpu->hv_clock.tsc_to_system_mul);
3226                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3227                 kvm_xen_update_tsc_info(v);
3228         }
3229
3230         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3231         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3232         vcpu->last_guest_tsc = tsc_timestamp;
3233
3234         /* If the host uses TSC clocksource, then it is stable */
3235         pvclock_flags = 0;
3236         if (use_master_clock)
3237                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3238
3239         vcpu->hv_clock.flags = pvclock_flags;
3240
3241         if (vcpu->pv_time.active)
3242                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3243 #ifdef CONFIG_KVM_XEN
3244         if (vcpu->xen.vcpu_info_cache.active)
3245                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3246                                         offsetof(struct compat_vcpu_info, time));
3247         if (vcpu->xen.vcpu_time_info_cache.active)
3248                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3249 #endif
3250         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3251         return 0;
3252 }
3253
3254 /*
3255  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3256  * which it started (i.e. its epoch, when its kvmclock was zero).
3257  *
3258  * In fact those clocks are subtly different; wall clock frequency is
3259  * adjusted by NTP and has leap seconds, while the kvmclock is a
3260  * simple function of the TSC without any such adjustment.
3261  *
3262  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3263  * that and kvmclock, but even that would be subject to change over
3264  * time.
3265  *
3266  * Attempt to calculate the epoch at a given moment using the *same*
3267  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3268  * wallclock and kvmclock times, and subtracting one from the other.
3269  *
3270  * Fall back to using their values at slightly different moments by
3271  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3272  */
3273 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3274 {
3275 #ifdef CONFIG_X86_64
3276         struct pvclock_vcpu_time_info hv_clock;
3277         struct kvm_arch *ka = &kvm->arch;
3278         unsigned long seq, local_tsc_khz;
3279         struct timespec64 ts;
3280         uint64_t host_tsc;
3281
3282         do {
3283                 seq = read_seqcount_begin(&ka->pvclock_sc);
3284
3285                 local_tsc_khz = 0;
3286                 if (!ka->use_master_clock)
3287                         break;
3288
3289                 /*
3290                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3291                  * on the same CPU.
3292                  */
3293                 get_cpu();
3294
3295                 local_tsc_khz = get_cpu_tsc_khz();
3296
3297                 if (local_tsc_khz &&
3298                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3299                         local_tsc_khz = 0; /* Fall back to old method */
3300
3301                 put_cpu();
3302
3303                 /*
3304                  * These values must be snapshotted within the seqcount loop.
3305                  * After that, it's just mathematics which can happen on any
3306                  * CPU at any time.
3307                  */
3308                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3309                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3310
3311         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3312
3313         /*
3314          * If the conditions were right, and obtaining the wallclock+TSC was
3315          * successful, calculate the KVM clock at the corresponding time and
3316          * subtract one from the other to get the guest's epoch in nanoseconds
3317          * since 1970-01-01.
3318          */
3319         if (local_tsc_khz) {
3320                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3321                                    &hv_clock.tsc_shift,
3322                                    &hv_clock.tsc_to_system_mul);
3323                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3324                         __pvclock_read_cycles(&hv_clock, host_tsc);
3325         }
3326 #endif
3327         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3328 }
3329
3330 /*
3331  * kvmclock updates which are isolated to a given vcpu, such as
3332  * vcpu->cpu migration, should not allow system_timestamp from
3333  * the rest of the vcpus to remain static. Otherwise ntp frequency
3334  * correction applies to one vcpu's system_timestamp but not
3335  * the others.
3336  *
3337  * So in those cases, request a kvmclock update for all vcpus.
3338  * We need to rate-limit these requests though, as they can
3339  * considerably slow guests that have a large number of vcpus.
3340  * The time for a remote vcpu to update its kvmclock is bound
3341  * by the delay we use to rate-limit the updates.
3342  */
3343
3344 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3345
3346 static void kvmclock_update_fn(struct work_struct *work)
3347 {
3348         unsigned long i;
3349         struct delayed_work *dwork = to_delayed_work(work);
3350         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3351                                            kvmclock_update_work);
3352         struct kvm *kvm = container_of(ka, struct kvm, arch);
3353         struct kvm_vcpu *vcpu;
3354
3355         kvm_for_each_vcpu(i, vcpu, kvm) {
3356                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3357                 kvm_vcpu_kick(vcpu);
3358         }
3359 }
3360
3361 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3362 {
3363         struct kvm *kvm = v->kvm;
3364
3365         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3366         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3367                                         KVMCLOCK_UPDATE_DELAY);
3368 }
3369
3370 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3371
3372 static void kvmclock_sync_fn(struct work_struct *work)
3373 {
3374         struct delayed_work *dwork = to_delayed_work(work);
3375         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3376                                            kvmclock_sync_work);
3377         struct kvm *kvm = container_of(ka, struct kvm, arch);
3378
3379         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3380         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3381                                         KVMCLOCK_SYNC_PERIOD);
3382 }
3383
3384 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3385 static bool is_mci_control_msr(u32 msr)
3386 {
3387         return (msr & 3) == 0;
3388 }
3389 static bool is_mci_status_msr(u32 msr)
3390 {
3391         return (msr & 3) == 1;
3392 }
3393
3394 /*
3395  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3396  */
3397 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3398 {
3399         /* McStatusWrEn enabled? */
3400         if (guest_cpuid_is_amd_or_hygon(vcpu))
3401                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3402
3403         return false;
3404 }
3405
3406 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3407 {
3408         u64 mcg_cap = vcpu->arch.mcg_cap;
3409         unsigned bank_num = mcg_cap & 0xff;
3410         u32 msr = msr_info->index;
3411         u64 data = msr_info->data;
3412         u32 offset, last_msr;
3413
3414         switch (msr) {
3415         case MSR_IA32_MCG_STATUS:
3416                 vcpu->arch.mcg_status = data;
3417                 break;
3418         case MSR_IA32_MCG_CTL:
3419                 if (!(mcg_cap & MCG_CTL_P) &&
3420                     (data || !msr_info->host_initiated))
3421                         return 1;
3422                 if (data != 0 && data != ~(u64)0)
3423                         return 1;
3424                 vcpu->arch.mcg_ctl = data;
3425                 break;
3426         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3427                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3428                 if (msr > last_msr)
3429                         return 1;
3430
3431                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3432                         return 1;
3433                 /* An attempt to write a 1 to a reserved bit raises #GP */
3434                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3435                         return 1;
3436                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3437                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3438                 vcpu->arch.mci_ctl2_banks[offset] = data;
3439                 break;
3440         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3441                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3442                 if (msr > last_msr)
3443                         return 1;
3444
3445                 /*
3446                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3447                  * values are architecturally undefined.  But, some Linux
3448                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3449                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3450                  * other bits in order to avoid an uncaught #GP in the guest.
3451                  *
3452                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3453                  * single-bit ECC data errors.
3454                  */
3455                 if (is_mci_control_msr(msr) &&
3456                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3457                         return 1;
3458
3459                 /*
3460                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3461                  * AMD-based CPUs allow non-zero values, but if and only if
3462                  * HWCR[McStatusWrEn] is set.
3463                  */
3464                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3465                     data != 0 && !can_set_mci_status(vcpu))
3466                         return 1;
3467
3468                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3469                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3470                 vcpu->arch.mce_banks[offset] = data;
3471                 break;
3472         default:
3473                 return 1;
3474         }
3475         return 0;
3476 }
3477
3478 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3479 {
3480         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3481
3482         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3483 }
3484
3485 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3486 {
3487         gpa_t gpa = data & ~0x3f;
3488
3489         /* Bits 4:5 are reserved, Should be zero */
3490         if (data & 0x30)
3491                 return 1;
3492
3493         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3494             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3495                 return 1;
3496
3497         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3498             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3499                 return 1;
3500
3501         if (!lapic_in_kernel(vcpu))
3502                 return data ? 1 : 0;
3503
3504         vcpu->arch.apf.msr_en_val = data;
3505
3506         if (!kvm_pv_async_pf_enabled(vcpu)) {
3507                 kvm_clear_async_pf_completion_queue(vcpu);
3508                 kvm_async_pf_hash_reset(vcpu);
3509                 return 0;
3510         }
3511
3512         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3513                                         sizeof(u64)))
3514                 return 1;
3515
3516         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3517         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3518
3519         kvm_async_pf_wakeup_all(vcpu);
3520
3521         return 0;
3522 }
3523
3524 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3525 {
3526         /* Bits 8-63 are reserved */
3527         if (data >> 8)
3528                 return 1;
3529
3530         if (!lapic_in_kernel(vcpu))
3531                 return 1;
3532
3533         vcpu->arch.apf.msr_int_val = data;
3534
3535         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3536
3537         return 0;
3538 }
3539
3540 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3541 {
3542         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3543         vcpu->arch.time = 0;
3544 }
3545
3546 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3547 {
3548         ++vcpu->stat.tlb_flush;
3549         static_call(kvm_x86_flush_tlb_all)(vcpu);
3550
3551         /* Flushing all ASIDs flushes the current ASID... */
3552         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3553 }
3554
3555 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3556 {
3557         ++vcpu->stat.tlb_flush;
3558
3559         if (!tdp_enabled) {
3560                 /*
3561                  * A TLB flush on behalf of the guest is equivalent to
3562                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3563                  * a forced sync of the shadow page tables.  Ensure all the
3564                  * roots are synced and the guest TLB in hardware is clean.
3565                  */
3566                 kvm_mmu_sync_roots(vcpu);
3567                 kvm_mmu_sync_prev_roots(vcpu);
3568         }
3569
3570         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3571
3572         /*
3573          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3574          * grained flushing.
3575          */
3576         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3577 }
3578
3579
3580 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3581 {
3582         ++vcpu->stat.tlb_flush;
3583         static_call(kvm_x86_flush_tlb_current)(vcpu);
3584 }
3585
3586 /*
3587  * Service "local" TLB flush requests, which are specific to the current MMU
3588  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3589  * TLB flushes that are targeted at an MMU context also need to be serviced
3590  * prior before nested VM-Enter/VM-Exit.
3591  */
3592 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3593 {
3594         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3595                 kvm_vcpu_flush_tlb_current(vcpu);
3596
3597         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3598                 kvm_vcpu_flush_tlb_guest(vcpu);
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3601
3602 static void record_steal_time(struct kvm_vcpu *vcpu)
3603 {
3604         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3605         struct kvm_steal_time __user *st;
3606         struct kvm_memslots *slots;
3607         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3608         u64 steal;
3609         u32 version;
3610
3611         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3612                 kvm_xen_runstate_set_running(vcpu);
3613                 return;
3614         }
3615
3616         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3617                 return;
3618
3619         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3620                 return;
3621
3622         slots = kvm_memslots(vcpu->kvm);
3623
3624         if (unlikely(slots->generation != ghc->generation ||
3625                      gpa != ghc->gpa ||
3626                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3627                 /* We rely on the fact that it fits in a single page. */
3628                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3629
3630                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3631                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3632                         return;
3633         }
3634
3635         st = (struct kvm_steal_time __user *)ghc->hva;
3636         /*
3637          * Doing a TLB flush here, on the guest's behalf, can avoid
3638          * expensive IPIs.
3639          */
3640         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3641                 u8 st_preempted = 0;
3642                 int err = -EFAULT;
3643
3644                 if (!user_access_begin(st, sizeof(*st)))
3645                         return;
3646
3647                 asm volatile("1: xchgb %0, %2\n"
3648                              "xor %1, %1\n"
3649                              "2:\n"
3650                              _ASM_EXTABLE_UA(1b, 2b)
3651                              : "+q" (st_preempted),
3652                                "+&r" (err),
3653                                "+m" (st->preempted));
3654                 if (err)
3655                         goto out;
3656
3657                 user_access_end();
3658
3659                 vcpu->arch.st.preempted = 0;
3660
3661                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3662                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3663                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3664                         kvm_vcpu_flush_tlb_guest(vcpu);
3665
3666                 if (!user_access_begin(st, sizeof(*st)))
3667                         goto dirty;
3668         } else {
3669                 if (!user_access_begin(st, sizeof(*st)))
3670                         return;
3671
3672                 unsafe_put_user(0, &st->preempted, out);
3673                 vcpu->arch.st.preempted = 0;
3674         }
3675
3676         unsafe_get_user(version, &st->version, out);
3677         if (version & 1)
3678                 version += 1;  /* first time write, random junk */
3679
3680         version += 1;
3681         unsafe_put_user(version, &st->version, out);
3682
3683         smp_wmb();
3684
3685         unsafe_get_user(steal, &st->steal, out);
3686         steal += current->sched_info.run_delay -
3687                 vcpu->arch.st.last_steal;
3688         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3689         unsafe_put_user(steal, &st->steal, out);
3690
3691         version += 1;
3692         unsafe_put_user(version, &st->version, out);
3693
3694  out:
3695         user_access_end();
3696  dirty:
3697         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3698 }
3699
3700 static bool kvm_is_msr_to_save(u32 msr_index)
3701 {
3702         unsigned int i;
3703
3704         for (i = 0; i < num_msrs_to_save; i++) {
3705                 if (msrs_to_save[i] == msr_index)
3706                         return true;
3707         }
3708
3709         return false;
3710 }
3711
3712 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3713 {
3714         u32 msr = msr_info->index;
3715         u64 data = msr_info->data;
3716
3717         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3718                 return kvm_xen_write_hypercall_page(vcpu, data);
3719
3720         switch (msr) {
3721         case MSR_AMD64_NB_CFG:
3722         case MSR_IA32_UCODE_WRITE:
3723         case MSR_VM_HSAVE_PA:
3724         case MSR_AMD64_PATCH_LOADER:
3725         case MSR_AMD64_BU_CFG2:
3726         case MSR_AMD64_DC_CFG:
3727         case MSR_AMD64_TW_CFG:
3728         case MSR_F15H_EX_CFG:
3729                 break;
3730
3731         case MSR_IA32_UCODE_REV:
3732                 if (msr_info->host_initiated)
3733                         vcpu->arch.microcode_version = data;
3734                 break;
3735         case MSR_IA32_ARCH_CAPABILITIES:
3736                 if (!msr_info->host_initiated)
3737                         return 1;
3738                 vcpu->arch.arch_capabilities = data;
3739                 break;
3740         case MSR_IA32_PERF_CAPABILITIES:
3741                 if (!msr_info->host_initiated)
3742                         return 1;
3743                 if (data & ~kvm_caps.supported_perf_cap)
3744                         return 1;
3745
3746                 /*
3747                  * Note, this is not just a performance optimization!  KVM
3748                  * disallows changing feature MSRs after the vCPU has run; PMU
3749                  * refresh will bug the VM if called after the vCPU has run.
3750                  */
3751                 if (vcpu->arch.perf_capabilities == data)
3752                         break;
3753
3754                 vcpu->arch.perf_capabilities = data;
3755                 kvm_pmu_refresh(vcpu);
3756                 break;
3757         case MSR_IA32_PRED_CMD: {
3758                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3759
3760                 if (!msr_info->host_initiated) {
3761                         if ((!guest_has_pred_cmd_msr(vcpu)))
3762                                 return 1;
3763
3764                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3765                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3766                                 reserved_bits |= PRED_CMD_IBPB;
3767
3768                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3769                                 reserved_bits |= PRED_CMD_SBPB;
3770                 }
3771
3772                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3773                         reserved_bits |= PRED_CMD_IBPB;
3774
3775                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3776                         reserved_bits |= PRED_CMD_SBPB;
3777
3778                 if (data & reserved_bits)
3779                         return 1;
3780
3781                 if (!data)
3782                         break;
3783
3784                 wrmsrl(MSR_IA32_PRED_CMD, data);
3785                 break;
3786         }
3787         case MSR_IA32_FLUSH_CMD:
3788                 if (!msr_info->host_initiated &&
3789                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3790                         return 1;
3791
3792                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3793                         return 1;
3794                 if (!data)
3795                         break;
3796
3797                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3798                 break;
3799         case MSR_EFER:
3800                 return set_efer(vcpu, msr_info);
3801         case MSR_K7_HWCR:
3802                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3803                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3804                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3805
3806                 /*
3807                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3808                  * through at least v6.6 whine if TscFreqSel is clear,
3809                  * depending on F/M/S.
3810                  */
3811                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3812                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3813                         return 1;
3814                 }
3815                 vcpu->arch.msr_hwcr = data;
3816                 break;
3817         case MSR_FAM10H_MMIO_CONF_BASE:
3818                 if (data != 0) {
3819                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3820                         return 1;
3821                 }
3822                 break;
3823         case MSR_IA32_CR_PAT:
3824                 if (!kvm_pat_valid(data))
3825                         return 1;
3826
3827                 vcpu->arch.pat = data;
3828                 break;
3829         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3830         case MSR_MTRRdefType:
3831                 return kvm_mtrr_set_msr(vcpu, msr, data);
3832         case MSR_IA32_APICBASE:
3833                 return kvm_set_apic_base(vcpu, msr_info);
3834         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3835                 return kvm_x2apic_msr_write(vcpu, msr, data);
3836         case MSR_IA32_TSC_DEADLINE:
3837                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3838                 break;
3839         case MSR_IA32_TSC_ADJUST:
3840                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3841                         if (!msr_info->host_initiated) {
3842                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3843                                 adjust_tsc_offset_guest(vcpu, adj);
3844                                 /* Before back to guest, tsc_timestamp must be adjusted
3845                                  * as well, otherwise guest's percpu pvclock time could jump.
3846                                  */
3847                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3848                         }
3849                         vcpu->arch.ia32_tsc_adjust_msr = data;
3850                 }
3851                 break;
3852         case MSR_IA32_MISC_ENABLE: {
3853                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3854
3855                 if (!msr_info->host_initiated) {
3856                         /* RO bits */
3857                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3858                                 return 1;
3859
3860                         /* R bits, i.e. writes are ignored, but don't fault. */
3861                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3862                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3863                 }
3864
3865                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3866                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3867                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3868                                 return 1;
3869                         vcpu->arch.ia32_misc_enable_msr = data;
3870                         kvm_update_cpuid_runtime(vcpu);
3871                 } else {
3872                         vcpu->arch.ia32_misc_enable_msr = data;
3873                 }
3874                 break;
3875         }
3876         case MSR_IA32_SMBASE:
3877                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3878                         return 1;
3879                 vcpu->arch.smbase = data;
3880                 break;
3881         case MSR_IA32_POWER_CTL:
3882                 vcpu->arch.msr_ia32_power_ctl = data;
3883                 break;
3884         case MSR_IA32_TSC:
3885                 if (msr_info->host_initiated) {
3886                         kvm_synchronize_tsc(vcpu, &data);
3887                 } else {
3888                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3889                         adjust_tsc_offset_guest(vcpu, adj);
3890                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3891                 }
3892                 break;
3893         case MSR_IA32_XSS:
3894                 if (!msr_info->host_initiated &&
3895                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3896                         return 1;
3897                 /*
3898                  * KVM supports exposing PT to the guest, but does not support
3899                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3900                  * XSAVES/XRSTORS to save/restore PT MSRs.
3901                  */
3902                 if (data & ~kvm_caps.supported_xss)
3903                         return 1;
3904                 vcpu->arch.ia32_xss = data;
3905                 kvm_update_cpuid_runtime(vcpu);
3906                 break;
3907         case MSR_SMI_COUNT:
3908                 if (!msr_info->host_initiated)
3909                         return 1;
3910                 vcpu->arch.smi_count = data;
3911                 break;
3912         case MSR_KVM_WALL_CLOCK_NEW:
3913                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3914                         return 1;
3915
3916                 vcpu->kvm->arch.wall_clock = data;
3917                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3918                 break;
3919         case MSR_KVM_WALL_CLOCK:
3920                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3921                         return 1;
3922
3923                 vcpu->kvm->arch.wall_clock = data;
3924                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3925                 break;
3926         case MSR_KVM_SYSTEM_TIME_NEW:
3927                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3928                         return 1;
3929
3930                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3931                 break;
3932         case MSR_KVM_SYSTEM_TIME:
3933                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3934                         return 1;
3935
3936                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3937                 break;
3938         case MSR_KVM_ASYNC_PF_EN:
3939                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3940                         return 1;
3941
3942                 if (kvm_pv_enable_async_pf(vcpu, data))
3943                         return 1;
3944                 break;
3945         case MSR_KVM_ASYNC_PF_INT:
3946                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3947                         return 1;
3948
3949                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3950                         return 1;
3951                 break;
3952         case MSR_KVM_ASYNC_PF_ACK:
3953                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3954                         return 1;
3955                 if (data & 0x1) {
3956                         vcpu->arch.apf.pageready_pending = false;
3957                         kvm_check_async_pf_completion(vcpu);
3958                 }
3959                 break;
3960         case MSR_KVM_STEAL_TIME:
3961                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3962                         return 1;
3963
3964                 if (unlikely(!sched_info_on()))
3965                         return 1;
3966
3967                 if (data & KVM_STEAL_RESERVED_MASK)
3968                         return 1;
3969
3970                 vcpu->arch.st.msr_val = data;
3971
3972                 if (!(data & KVM_MSR_ENABLED))
3973                         break;
3974
3975                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3976
3977                 break;
3978         case MSR_KVM_PV_EOI_EN:
3979                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3980                         return 1;
3981
3982                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3983                         return 1;
3984                 break;
3985
3986         case MSR_KVM_POLL_CONTROL:
3987                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3988                         return 1;
3989
3990                 /* only enable bit supported */
3991                 if (data & (-1ULL << 1))
3992                         return 1;
3993
3994                 vcpu->arch.msr_kvm_poll_control = data;
3995                 break;
3996
3997         case MSR_IA32_MCG_CTL:
3998         case MSR_IA32_MCG_STATUS:
3999         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4000         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4001                 return set_msr_mce(vcpu, msr_info);
4002
4003         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4004         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4005         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4006         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4007                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4008                         return kvm_pmu_set_msr(vcpu, msr_info);
4009
4010                 if (data)
4011                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4012                 break;
4013         case MSR_K7_CLK_CTL:
4014                 /*
4015                  * Ignore all writes to this no longer documented MSR.
4016                  * Writes are only relevant for old K7 processors,
4017                  * all pre-dating SVM, but a recommended workaround from
4018                  * AMD for these chips. It is possible to specify the
4019                  * affected processor models on the command line, hence
4020                  * the need to ignore the workaround.
4021                  */
4022                 break;
4023         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4024         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4025         case HV_X64_MSR_SYNDBG_OPTIONS:
4026         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4027         case HV_X64_MSR_CRASH_CTL:
4028         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4029         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4030         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4031         case HV_X64_MSR_TSC_EMULATION_STATUS:
4032         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4033                 return kvm_hv_set_msr_common(vcpu, msr, data,
4034                                              msr_info->host_initiated);
4035         case MSR_IA32_BBL_CR_CTL3:
4036                 /* Drop writes to this legacy MSR -- see rdmsr
4037                  * counterpart for further detail.
4038                  */
4039                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4040                 break;
4041         case MSR_AMD64_OSVW_ID_LENGTH:
4042                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4043                         return 1;
4044                 vcpu->arch.osvw.length = data;
4045                 break;
4046         case MSR_AMD64_OSVW_STATUS:
4047                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4048                         return 1;
4049                 vcpu->arch.osvw.status = data;
4050                 break;
4051         case MSR_PLATFORM_INFO:
4052                 if (!msr_info->host_initiated ||
4053                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4054                      cpuid_fault_enabled(vcpu)))
4055                         return 1;
4056                 vcpu->arch.msr_platform_info = data;
4057                 break;
4058         case MSR_MISC_FEATURES_ENABLES:
4059                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4060                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4061                      !supports_cpuid_fault(vcpu)))
4062                         return 1;
4063                 vcpu->arch.msr_misc_features_enables = data;
4064                 break;
4065 #ifdef CONFIG_X86_64
4066         case MSR_IA32_XFD:
4067                 if (!msr_info->host_initiated &&
4068                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4069                         return 1;
4070
4071                 if (data & ~kvm_guest_supported_xfd(vcpu))
4072                         return 1;
4073
4074                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4075                 break;
4076         case MSR_IA32_XFD_ERR:
4077                 if (!msr_info->host_initiated &&
4078                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4079                         return 1;
4080
4081                 if (data & ~kvm_guest_supported_xfd(vcpu))
4082                         return 1;
4083
4084                 vcpu->arch.guest_fpu.xfd_err = data;
4085                 break;
4086 #endif
4087         default:
4088                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4089                         return kvm_pmu_set_msr(vcpu, msr_info);
4090
4091                 /*
4092                  * Userspace is allowed to write '0' to MSRs that KVM reports
4093                  * as to-be-saved, even if an MSRs isn't fully supported.
4094                  */
4095                 if (msr_info->host_initiated && !data &&
4096                     kvm_is_msr_to_save(msr))
4097                         break;
4098
4099                 return KVM_MSR_RET_INVALID;
4100         }
4101         return 0;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4104
4105 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4106 {
4107         u64 data;
4108         u64 mcg_cap = vcpu->arch.mcg_cap;
4109         unsigned bank_num = mcg_cap & 0xff;
4110         u32 offset, last_msr;
4111
4112         switch (msr) {
4113         case MSR_IA32_P5_MC_ADDR:
4114         case MSR_IA32_P5_MC_TYPE:
4115                 data = 0;
4116                 break;
4117         case MSR_IA32_MCG_CAP:
4118                 data = vcpu->arch.mcg_cap;
4119                 break;
4120         case MSR_IA32_MCG_CTL:
4121                 if (!(mcg_cap & MCG_CTL_P) && !host)
4122                         return 1;
4123                 data = vcpu->arch.mcg_ctl;
4124                 break;
4125         case MSR_IA32_MCG_STATUS:
4126                 data = vcpu->arch.mcg_status;
4127                 break;
4128         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4129                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4130                 if (msr > last_msr)
4131                         return 1;
4132
4133                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4134                         return 1;
4135                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4136                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4137                 data = vcpu->arch.mci_ctl2_banks[offset];
4138                 break;
4139         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4140                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4141                 if (msr > last_msr)
4142                         return 1;
4143
4144                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4145                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4146                 data = vcpu->arch.mce_banks[offset];
4147                 break;
4148         default:
4149                 return 1;
4150         }
4151         *pdata = data;
4152         return 0;
4153 }
4154
4155 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4156 {
4157         switch (msr_info->index) {
4158         case MSR_IA32_PLATFORM_ID:
4159         case MSR_IA32_EBL_CR_POWERON:
4160         case MSR_IA32_LASTBRANCHFROMIP:
4161         case MSR_IA32_LASTBRANCHTOIP:
4162         case MSR_IA32_LASTINTFROMIP:
4163         case MSR_IA32_LASTINTTOIP:
4164         case MSR_AMD64_SYSCFG:
4165         case MSR_K8_TSEG_ADDR:
4166         case MSR_K8_TSEG_MASK:
4167         case MSR_VM_HSAVE_PA:
4168         case MSR_K8_INT_PENDING_MSG:
4169         case MSR_AMD64_NB_CFG:
4170         case MSR_FAM10H_MMIO_CONF_BASE:
4171         case MSR_AMD64_BU_CFG2:
4172         case MSR_IA32_PERF_CTL:
4173         case MSR_AMD64_DC_CFG:
4174         case MSR_AMD64_TW_CFG:
4175         case MSR_F15H_EX_CFG:
4176         /*
4177          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4178          * limit) MSRs. Just return 0, as we do not want to expose the host
4179          * data here. Do not conditionalize this on CPUID, as KVM does not do
4180          * so for existing CPU-specific MSRs.
4181          */
4182         case MSR_RAPL_POWER_UNIT:
4183         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4184         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4185         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4186         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4187                 msr_info->data = 0;
4188                 break;
4189         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4190         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4191         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4192         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4193                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4194                         return kvm_pmu_get_msr(vcpu, msr_info);
4195                 msr_info->data = 0;
4196                 break;
4197         case MSR_IA32_UCODE_REV:
4198                 msr_info->data = vcpu->arch.microcode_version;
4199                 break;
4200         case MSR_IA32_ARCH_CAPABILITIES:
4201                 if (!msr_info->host_initiated &&
4202                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4203                         return 1;
4204                 msr_info->data = vcpu->arch.arch_capabilities;
4205                 break;
4206         case MSR_IA32_PERF_CAPABILITIES:
4207                 if (!msr_info->host_initiated &&
4208                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4209                         return 1;
4210                 msr_info->data = vcpu->arch.perf_capabilities;
4211                 break;
4212         case MSR_IA32_POWER_CTL:
4213                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4214                 break;
4215         case MSR_IA32_TSC: {
4216                 /*
4217                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4218                  * even when not intercepted. AMD manual doesn't explicitly
4219                  * state this but appears to behave the same.
4220                  *
4221                  * On userspace reads and writes, however, we unconditionally
4222                  * return L1's TSC value to ensure backwards-compatible
4223                  * behavior for migration.
4224                  */
4225                 u64 offset, ratio;
4226
4227                 if (msr_info->host_initiated) {
4228                         offset = vcpu->arch.l1_tsc_offset;
4229                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4230                 } else {
4231                         offset = vcpu->arch.tsc_offset;
4232                         ratio = vcpu->arch.tsc_scaling_ratio;
4233                 }
4234
4235                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4236                 break;
4237         }
4238         case MSR_IA32_CR_PAT:
4239                 msr_info->data = vcpu->arch.pat;
4240                 break;
4241         case MSR_MTRRcap:
4242         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4243         case MSR_MTRRdefType:
4244                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4245         case 0xcd: /* fsb frequency */
4246                 msr_info->data = 3;
4247                 break;
4248                 /*
4249                  * MSR_EBC_FREQUENCY_ID
4250                  * Conservative value valid for even the basic CPU models.
4251                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4252                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4253                  * and 266MHz for model 3, or 4. Set Core Clock
4254                  * Frequency to System Bus Frequency Ratio to 1 (bits
4255                  * 31:24) even though these are only valid for CPU
4256                  * models > 2, however guests may end up dividing or
4257                  * multiplying by zero otherwise.
4258                  */
4259         case MSR_EBC_FREQUENCY_ID:
4260                 msr_info->data = 1 << 24;
4261                 break;
4262         case MSR_IA32_APICBASE:
4263                 msr_info->data = kvm_get_apic_base(vcpu);
4264                 break;
4265         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4266                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4267         case MSR_IA32_TSC_DEADLINE:
4268                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4269                 break;
4270         case MSR_IA32_TSC_ADJUST:
4271                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4272                 break;
4273         case MSR_IA32_MISC_ENABLE:
4274                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4275                 break;
4276         case MSR_IA32_SMBASE:
4277                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4278                         return 1;
4279                 msr_info->data = vcpu->arch.smbase;
4280                 break;
4281         case MSR_SMI_COUNT:
4282                 msr_info->data = vcpu->arch.smi_count;
4283                 break;
4284         case MSR_IA32_PERF_STATUS:
4285                 /* TSC increment by tick */
4286                 msr_info->data = 1000ULL;
4287                 /* CPU multiplier */
4288                 msr_info->data |= (((uint64_t)4ULL) << 40);
4289                 break;
4290         case MSR_EFER:
4291                 msr_info->data = vcpu->arch.efer;
4292                 break;
4293         case MSR_KVM_WALL_CLOCK:
4294                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4295                         return 1;
4296
4297                 msr_info->data = vcpu->kvm->arch.wall_clock;
4298                 break;
4299         case MSR_KVM_WALL_CLOCK_NEW:
4300                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4301                         return 1;
4302
4303                 msr_info->data = vcpu->kvm->arch.wall_clock;
4304                 break;
4305         case MSR_KVM_SYSTEM_TIME:
4306                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307                         return 1;
4308
4309                 msr_info->data = vcpu->arch.time;
4310                 break;
4311         case MSR_KVM_SYSTEM_TIME_NEW:
4312                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313                         return 1;
4314
4315                 msr_info->data = vcpu->arch.time;
4316                 break;
4317         case MSR_KVM_ASYNC_PF_EN:
4318                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4319                         return 1;
4320
4321                 msr_info->data = vcpu->arch.apf.msr_en_val;
4322                 break;
4323         case MSR_KVM_ASYNC_PF_INT:
4324                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4325                         return 1;
4326
4327                 msr_info->data = vcpu->arch.apf.msr_int_val;
4328                 break;
4329         case MSR_KVM_ASYNC_PF_ACK:
4330                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4331                         return 1;
4332
4333                 msr_info->data = 0;
4334                 break;
4335         case MSR_KVM_STEAL_TIME:
4336                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4337                         return 1;
4338
4339                 msr_info->data = vcpu->arch.st.msr_val;
4340                 break;
4341         case MSR_KVM_PV_EOI_EN:
4342                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4343                         return 1;
4344
4345                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4346                 break;
4347         case MSR_KVM_POLL_CONTROL:
4348                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4349                         return 1;
4350
4351                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4352                 break;
4353         case MSR_IA32_P5_MC_ADDR:
4354         case MSR_IA32_P5_MC_TYPE:
4355         case MSR_IA32_MCG_CAP:
4356         case MSR_IA32_MCG_CTL:
4357         case MSR_IA32_MCG_STATUS:
4358         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4359         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4360                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4361                                    msr_info->host_initiated);
4362         case MSR_IA32_XSS:
4363                 if (!msr_info->host_initiated &&
4364                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4365                         return 1;
4366                 msr_info->data = vcpu->arch.ia32_xss;
4367                 break;
4368         case MSR_K7_CLK_CTL:
4369                 /*
4370                  * Provide expected ramp-up count for K7. All other
4371                  * are set to zero, indicating minimum divisors for
4372                  * every field.
4373                  *
4374                  * This prevents guest kernels on AMD host with CPU
4375                  * type 6, model 8 and higher from exploding due to
4376                  * the rdmsr failing.
4377                  */
4378                 msr_info->data = 0x20000000;
4379                 break;
4380         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4381         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4382         case HV_X64_MSR_SYNDBG_OPTIONS:
4383         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4384         case HV_X64_MSR_CRASH_CTL:
4385         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4386         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4387         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4388         case HV_X64_MSR_TSC_EMULATION_STATUS:
4389         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4390                 return kvm_hv_get_msr_common(vcpu,
4391                                              msr_info->index, &msr_info->data,
4392                                              msr_info->host_initiated);
4393         case MSR_IA32_BBL_CR_CTL3:
4394                 /* This legacy MSR exists but isn't fully documented in current
4395                  * silicon.  It is however accessed by winxp in very narrow
4396                  * scenarios where it sets bit #19, itself documented as
4397                  * a "reserved" bit.  Best effort attempt to source coherent
4398                  * read data here should the balance of the register be
4399                  * interpreted by the guest:
4400                  *
4401                  * L2 cache control register 3: 64GB range, 256KB size,
4402                  * enabled, latency 0x1, configured
4403                  */
4404                 msr_info->data = 0xbe702111;
4405                 break;
4406         case MSR_AMD64_OSVW_ID_LENGTH:
4407                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4408                         return 1;
4409                 msr_info->data = vcpu->arch.osvw.length;
4410                 break;
4411         case MSR_AMD64_OSVW_STATUS:
4412                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4413                         return 1;
4414                 msr_info->data = vcpu->arch.osvw.status;
4415                 break;
4416         case MSR_PLATFORM_INFO:
4417                 if (!msr_info->host_initiated &&
4418                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4419                         return 1;
4420                 msr_info->data = vcpu->arch.msr_platform_info;
4421                 break;
4422         case MSR_MISC_FEATURES_ENABLES:
4423                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4424                 break;
4425         case MSR_K7_HWCR:
4426                 msr_info->data = vcpu->arch.msr_hwcr;
4427                 break;
4428 #ifdef CONFIG_X86_64
4429         case MSR_IA32_XFD:
4430                 if (!msr_info->host_initiated &&
4431                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4432                         return 1;
4433
4434                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4435                 break;
4436         case MSR_IA32_XFD_ERR:
4437                 if (!msr_info->host_initiated &&
4438                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4439                         return 1;
4440
4441                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4442                 break;
4443 #endif
4444         default:
4445                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4446                         return kvm_pmu_get_msr(vcpu, msr_info);
4447
4448                 /*
4449                  * Userspace is allowed to read MSRs that KVM reports as
4450                  * to-be-saved, even if an MSR isn't fully supported.
4451                  */
4452                 if (msr_info->host_initiated &&
4453                     kvm_is_msr_to_save(msr_info->index)) {
4454                         msr_info->data = 0;
4455                         break;
4456                 }
4457
4458                 return KVM_MSR_RET_INVALID;
4459         }
4460         return 0;
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4463
4464 /*
4465  * Read or write a bunch of msrs. All parameters are kernel addresses.
4466  *
4467  * @return number of msrs set successfully.
4468  */
4469 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4470                     struct kvm_msr_entry *entries,
4471                     int (*do_msr)(struct kvm_vcpu *vcpu,
4472                                   unsigned index, u64 *data))
4473 {
4474         int i;
4475
4476         for (i = 0; i < msrs->nmsrs; ++i)
4477                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4478                         break;
4479
4480         return i;
4481 }
4482
4483 /*
4484  * Read or write a bunch of msrs. Parameters are user addresses.
4485  *
4486  * @return number of msrs set successfully.
4487  */
4488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4489                   int (*do_msr)(struct kvm_vcpu *vcpu,
4490                                 unsigned index, u64 *data),
4491                   int writeback)
4492 {
4493         struct kvm_msrs msrs;
4494         struct kvm_msr_entry *entries;
4495         unsigned size;
4496         int r;
4497
4498         r = -EFAULT;
4499         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4500                 goto out;
4501
4502         r = -E2BIG;
4503         if (msrs.nmsrs >= MAX_IO_MSRS)
4504                 goto out;
4505
4506         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4507         entries = memdup_user(user_msrs->entries, size);
4508         if (IS_ERR(entries)) {
4509                 r = PTR_ERR(entries);
4510                 goto out;
4511         }
4512
4513         r = __msr_io(vcpu, &msrs, entries, do_msr);
4514
4515         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4516                 r = -EFAULT;
4517
4518         kfree(entries);
4519 out:
4520         return r;
4521 }
4522
4523 static inline bool kvm_can_mwait_in_guest(void)
4524 {
4525         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4526                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4527                 boot_cpu_has(X86_FEATURE_ARAT);
4528 }
4529
4530 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4531                                             struct kvm_cpuid2 __user *cpuid_arg)
4532 {
4533         struct kvm_cpuid2 cpuid;
4534         int r;
4535
4536         r = -EFAULT;
4537         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4538                 return r;
4539
4540         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4541         if (r)
4542                 return r;
4543
4544         r = -EFAULT;
4545         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4546                 return r;
4547
4548         return 0;
4549 }
4550
4551 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4552 {
4553         int r = 0;
4554
4555         switch (ext) {
4556         case KVM_CAP_IRQCHIP:
4557         case KVM_CAP_HLT:
4558         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4559         case KVM_CAP_SET_TSS_ADDR:
4560         case KVM_CAP_EXT_CPUID:
4561         case KVM_CAP_EXT_EMUL_CPUID:
4562         case KVM_CAP_CLOCKSOURCE:
4563         case KVM_CAP_PIT:
4564         case KVM_CAP_NOP_IO_DELAY:
4565         case KVM_CAP_MP_STATE:
4566         case KVM_CAP_SYNC_MMU:
4567         case KVM_CAP_USER_NMI:
4568         case KVM_CAP_REINJECT_CONTROL:
4569         case KVM_CAP_IRQ_INJECT_STATUS:
4570         case KVM_CAP_IOEVENTFD:
4571         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4572         case KVM_CAP_PIT2:
4573         case KVM_CAP_PIT_STATE2:
4574         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4575         case KVM_CAP_VCPU_EVENTS:
4576         case KVM_CAP_HYPERV:
4577         case KVM_CAP_HYPERV_VAPIC:
4578         case KVM_CAP_HYPERV_SPIN:
4579         case KVM_CAP_HYPERV_SYNIC:
4580         case KVM_CAP_HYPERV_SYNIC2:
4581         case KVM_CAP_HYPERV_VP_INDEX:
4582         case KVM_CAP_HYPERV_EVENTFD:
4583         case KVM_CAP_HYPERV_TLBFLUSH:
4584         case KVM_CAP_HYPERV_SEND_IPI:
4585         case KVM_CAP_HYPERV_CPUID:
4586         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4587         case KVM_CAP_SYS_HYPERV_CPUID:
4588         case KVM_CAP_PCI_SEGMENT:
4589         case KVM_CAP_DEBUGREGS:
4590         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4591         case KVM_CAP_XSAVE:
4592         case KVM_CAP_ASYNC_PF:
4593         case KVM_CAP_ASYNC_PF_INT:
4594         case KVM_CAP_GET_TSC_KHZ:
4595         case KVM_CAP_KVMCLOCK_CTRL:
4596         case KVM_CAP_READONLY_MEM:
4597         case KVM_CAP_HYPERV_TIME:
4598         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4599         case KVM_CAP_TSC_DEADLINE_TIMER:
4600         case KVM_CAP_DISABLE_QUIRKS:
4601         case KVM_CAP_SET_BOOT_CPU_ID:
4602         case KVM_CAP_SPLIT_IRQCHIP:
4603         case KVM_CAP_IMMEDIATE_EXIT:
4604         case KVM_CAP_PMU_EVENT_FILTER:
4605         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4606         case KVM_CAP_GET_MSR_FEATURES:
4607         case KVM_CAP_MSR_PLATFORM_INFO:
4608         case KVM_CAP_EXCEPTION_PAYLOAD:
4609         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4610         case KVM_CAP_SET_GUEST_DEBUG:
4611         case KVM_CAP_LAST_CPU:
4612         case KVM_CAP_X86_USER_SPACE_MSR:
4613         case KVM_CAP_X86_MSR_FILTER:
4614         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4615 #ifdef CONFIG_X86_SGX_KVM
4616         case KVM_CAP_SGX_ATTRIBUTE:
4617 #endif
4618         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4619         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4620         case KVM_CAP_SREGS2:
4621         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4622         case KVM_CAP_VCPU_ATTRIBUTES:
4623         case KVM_CAP_SYS_ATTRIBUTES:
4624         case KVM_CAP_VAPIC:
4625         case KVM_CAP_ENABLE_CAP:
4626         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4627         case KVM_CAP_IRQFD_RESAMPLE:
4628                 r = 1;
4629                 break;
4630         case KVM_CAP_EXIT_HYPERCALL:
4631                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4632                 break;
4633         case KVM_CAP_SET_GUEST_DEBUG2:
4634                 return KVM_GUESTDBG_VALID_MASK;
4635 #ifdef CONFIG_KVM_XEN
4636         case KVM_CAP_XEN_HVM:
4637                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4638                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4639                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4640                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4641                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4642                 if (sched_info_on())
4643                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4644                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4645                 break;
4646 #endif
4647         case KVM_CAP_SYNC_REGS:
4648                 r = KVM_SYNC_X86_VALID_FIELDS;
4649                 break;
4650         case KVM_CAP_ADJUST_CLOCK:
4651                 r = KVM_CLOCK_VALID_FLAGS;
4652                 break;
4653         case KVM_CAP_X86_DISABLE_EXITS:
4654                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4655
4656                 if (!mitigate_smt_rsb) {
4657                         r |= KVM_X86_DISABLE_EXITS_HLT |
4658                              KVM_X86_DISABLE_EXITS_CSTATE;
4659
4660                         if (kvm_can_mwait_in_guest())
4661                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4662                 }
4663                 break;
4664         case KVM_CAP_X86_SMM:
4665                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4666                         break;
4667
4668                 /* SMBASE is usually relocated above 1M on modern chipsets,
4669                  * and SMM handlers might indeed rely on 4G segment limits,
4670                  * so do not report SMM to be available if real mode is
4671                  * emulated via vm86 mode.  Still, do not go to great lengths
4672                  * to avoid userspace's usage of the feature, because it is a
4673                  * fringe case that is not enabled except via specific settings
4674                  * of the module parameters.
4675                  */
4676                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4677                 break;
4678         case KVM_CAP_NR_VCPUS:
4679                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4680                 break;
4681         case KVM_CAP_MAX_VCPUS:
4682                 r = KVM_MAX_VCPUS;
4683                 break;
4684         case KVM_CAP_MAX_VCPU_ID:
4685                 r = KVM_MAX_VCPU_IDS;
4686                 break;
4687         case KVM_CAP_PV_MMU:    /* obsolete */
4688                 r = 0;
4689                 break;
4690         case KVM_CAP_MCE:
4691                 r = KVM_MAX_MCE_BANKS;
4692                 break;
4693         case KVM_CAP_XCRS:
4694                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4695                 break;
4696         case KVM_CAP_TSC_CONTROL:
4697         case KVM_CAP_VM_TSC_CONTROL:
4698                 r = kvm_caps.has_tsc_control;
4699                 break;
4700         case KVM_CAP_X2APIC_API:
4701                 r = KVM_X2APIC_API_VALID_FLAGS;
4702                 break;
4703         case KVM_CAP_NESTED_STATE:
4704                 r = kvm_x86_ops.nested_ops->get_state ?
4705                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4706                 break;
4707         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4708                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4709                 break;
4710         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4711                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4712                 break;
4713         case KVM_CAP_SMALLER_MAXPHYADDR:
4714                 r = (int) allow_smaller_maxphyaddr;
4715                 break;
4716         case KVM_CAP_STEAL_TIME:
4717                 r = sched_info_on();
4718                 break;
4719         case KVM_CAP_X86_BUS_LOCK_EXIT:
4720                 if (kvm_caps.has_bus_lock_exit)
4721                         r = KVM_BUS_LOCK_DETECTION_OFF |
4722                             KVM_BUS_LOCK_DETECTION_EXIT;
4723                 else
4724                         r = 0;
4725                 break;
4726         case KVM_CAP_XSAVE2: {
4727                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4728                 if (r < sizeof(struct kvm_xsave))
4729                         r = sizeof(struct kvm_xsave);
4730                 break;
4731         }
4732         case KVM_CAP_PMU_CAPABILITY:
4733                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4734                 break;
4735         case KVM_CAP_DISABLE_QUIRKS2:
4736                 r = KVM_X86_VALID_QUIRKS;
4737                 break;
4738         case KVM_CAP_X86_NOTIFY_VMEXIT:
4739                 r = kvm_caps.has_notify_vmexit;
4740                 break;
4741         default:
4742                 break;
4743         }
4744         return r;
4745 }
4746
4747 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4748 {
4749         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4750
4751         if ((u64)(unsigned long)uaddr != attr->addr)
4752                 return ERR_PTR_USR(-EFAULT);
4753         return uaddr;
4754 }
4755
4756 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4757 {
4758         u64 __user *uaddr = kvm_get_attr_addr(attr);
4759
4760         if (attr->group)
4761                 return -ENXIO;
4762
4763         if (IS_ERR(uaddr))
4764                 return PTR_ERR(uaddr);
4765
4766         switch (attr->attr) {
4767         case KVM_X86_XCOMP_GUEST_SUPP:
4768                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4769                         return -EFAULT;
4770                 return 0;
4771         default:
4772                 return -ENXIO;
4773         }
4774 }
4775
4776 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4777 {
4778         if (attr->group)
4779                 return -ENXIO;
4780
4781         switch (attr->attr) {
4782         case KVM_X86_XCOMP_GUEST_SUPP:
4783                 return 0;
4784         default:
4785                 return -ENXIO;
4786         }
4787 }
4788
4789 long kvm_arch_dev_ioctl(struct file *filp,
4790                         unsigned int ioctl, unsigned long arg)
4791 {
4792         void __user *argp = (void __user *)arg;
4793         long r;
4794
4795         switch (ioctl) {
4796         case KVM_GET_MSR_INDEX_LIST: {
4797                 struct kvm_msr_list __user *user_msr_list = argp;
4798                 struct kvm_msr_list msr_list;
4799                 unsigned n;
4800
4801                 r = -EFAULT;
4802                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4803                         goto out;
4804                 n = msr_list.nmsrs;
4805                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4806                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4807                         goto out;
4808                 r = -E2BIG;
4809                 if (n < msr_list.nmsrs)
4810                         goto out;
4811                 r = -EFAULT;
4812                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4813                                  num_msrs_to_save * sizeof(u32)))
4814                         goto out;
4815                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4816                                  &emulated_msrs,
4817                                  num_emulated_msrs * sizeof(u32)))
4818                         goto out;
4819                 r = 0;
4820                 break;
4821         }
4822         case KVM_GET_SUPPORTED_CPUID:
4823         case KVM_GET_EMULATED_CPUID: {
4824                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4825                 struct kvm_cpuid2 cpuid;
4826
4827                 r = -EFAULT;
4828                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4829                         goto out;
4830
4831                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4832                                             ioctl);
4833                 if (r)
4834                         goto out;
4835
4836                 r = -EFAULT;
4837                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4838                         goto out;
4839                 r = 0;
4840                 break;
4841         }
4842         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4843                 r = -EFAULT;
4844                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4845                                  sizeof(kvm_caps.supported_mce_cap)))
4846                         goto out;
4847                 r = 0;
4848                 break;
4849         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4850                 struct kvm_msr_list __user *user_msr_list = argp;
4851                 struct kvm_msr_list msr_list;
4852                 unsigned int n;
4853
4854                 r = -EFAULT;
4855                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4856                         goto out;
4857                 n = msr_list.nmsrs;
4858                 msr_list.nmsrs = num_msr_based_features;
4859                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4860                         goto out;
4861                 r = -E2BIG;
4862                 if (n < msr_list.nmsrs)
4863                         goto out;
4864                 r = -EFAULT;
4865                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4866                                  num_msr_based_features * sizeof(u32)))
4867                         goto out;
4868                 r = 0;
4869                 break;
4870         }
4871         case KVM_GET_MSRS:
4872                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4873                 break;
4874         case KVM_GET_SUPPORTED_HV_CPUID:
4875                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4876                 break;
4877         case KVM_GET_DEVICE_ATTR: {
4878                 struct kvm_device_attr attr;
4879                 r = -EFAULT;
4880                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4881                         break;
4882                 r = kvm_x86_dev_get_attr(&attr);
4883                 break;
4884         }
4885         case KVM_HAS_DEVICE_ATTR: {
4886                 struct kvm_device_attr attr;
4887                 r = -EFAULT;
4888                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4889                         break;
4890                 r = kvm_x86_dev_has_attr(&attr);
4891                 break;
4892         }
4893         default:
4894                 r = -EINVAL;
4895                 break;
4896         }
4897 out:
4898         return r;
4899 }
4900
4901 static void wbinvd_ipi(void *garbage)
4902 {
4903         wbinvd();
4904 }
4905
4906 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4907 {
4908         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4909 }
4910
4911 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4912 {
4913         /* Address WBINVD may be executed by guest */
4914         if (need_emulate_wbinvd(vcpu)) {
4915                 if (static_call(kvm_x86_has_wbinvd_exit)())
4916                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4917                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4918                         smp_call_function_single(vcpu->cpu,
4919                                         wbinvd_ipi, NULL, 1);
4920         }
4921
4922         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4923
4924         /* Save host pkru register if supported */
4925         vcpu->arch.host_pkru = read_pkru();
4926
4927         /* Apply any externally detected TSC adjustments (due to suspend) */
4928         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4929                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4930                 vcpu->arch.tsc_offset_adjustment = 0;
4931                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4932         }
4933
4934         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4935                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4936                                 rdtsc() - vcpu->arch.last_host_tsc;
4937                 if (tsc_delta < 0)
4938                         mark_tsc_unstable("KVM discovered backwards TSC");
4939
4940                 if (kvm_check_tsc_unstable()) {
4941                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4942                                                 vcpu->arch.last_guest_tsc);
4943                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4944                         vcpu->arch.tsc_catchup = 1;
4945                 }
4946
4947                 if (kvm_lapic_hv_timer_in_use(vcpu))
4948                         kvm_lapic_restart_hv_timer(vcpu);
4949
4950                 /*
4951                  * On a host with synchronized TSC, there is no need to update
4952                  * kvmclock on vcpu->cpu migration
4953                  */
4954                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4955                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4956                 if (vcpu->cpu != cpu)
4957                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4958                 vcpu->cpu = cpu;
4959         }
4960
4961         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4962 }
4963
4964 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4965 {
4966         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4967         struct kvm_steal_time __user *st;
4968         struct kvm_memslots *slots;
4969         static const u8 preempted = KVM_VCPU_PREEMPTED;
4970         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4971
4972         /*
4973          * The vCPU can be marked preempted if and only if the VM-Exit was on
4974          * an instruction boundary and will not trigger guest emulation of any
4975          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4976          * when this is true, for example allowing the vCPU to be marked
4977          * preempted if and only if the VM-Exit was due to a host interrupt.
4978          */
4979         if (!vcpu->arch.at_instruction_boundary) {
4980                 vcpu->stat.preemption_other++;
4981                 return;
4982         }
4983
4984         vcpu->stat.preemption_reported++;
4985         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4986                 return;
4987
4988         if (vcpu->arch.st.preempted)
4989                 return;
4990
4991         /* This happens on process exit */
4992         if (unlikely(current->mm != vcpu->kvm->mm))
4993                 return;
4994
4995         slots = kvm_memslots(vcpu->kvm);
4996
4997         if (unlikely(slots->generation != ghc->generation ||
4998                      gpa != ghc->gpa ||
4999                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5000                 return;
5001
5002         st = (struct kvm_steal_time __user *)ghc->hva;
5003         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5004
5005         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5006                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5007
5008         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5009 }
5010
5011 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5012 {
5013         int idx;
5014
5015         if (vcpu->preempted) {
5016                 if (!vcpu->arch.guest_state_protected)
5017                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5018
5019                 /*
5020                  * Take the srcu lock as memslots will be accessed to check the gfn
5021                  * cache generation against the memslots generation.
5022                  */
5023                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5024                 if (kvm_xen_msr_enabled(vcpu->kvm))
5025                         kvm_xen_runstate_set_preempted(vcpu);
5026                 else
5027                         kvm_steal_time_set_preempted(vcpu);
5028                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5029         }
5030
5031         static_call(kvm_x86_vcpu_put)(vcpu);
5032         vcpu->arch.last_host_tsc = rdtsc();
5033 }
5034
5035 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5036                                     struct kvm_lapic_state *s)
5037 {
5038         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5039
5040         return kvm_apic_get_state(vcpu, s);
5041 }
5042
5043 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5044                                     struct kvm_lapic_state *s)
5045 {
5046         int r;
5047
5048         r = kvm_apic_set_state(vcpu, s);
5049         if (r)
5050                 return r;
5051         update_cr8_intercept(vcpu);
5052
5053         return 0;
5054 }
5055
5056 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5057 {
5058         /*
5059          * We can accept userspace's request for interrupt injection
5060          * as long as we have a place to store the interrupt number.
5061          * The actual injection will happen when the CPU is able to
5062          * deliver the interrupt.
5063          */
5064         if (kvm_cpu_has_extint(vcpu))
5065                 return false;
5066
5067         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5068         return (!lapic_in_kernel(vcpu) ||
5069                 kvm_apic_accept_pic_intr(vcpu));
5070 }
5071
5072 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5073 {
5074         /*
5075          * Do not cause an interrupt window exit if an exception
5076          * is pending or an event needs reinjection; userspace
5077          * might want to inject the interrupt manually using KVM_SET_REGS
5078          * or KVM_SET_SREGS.  For that to work, we must be at an
5079          * instruction boundary and with no events half-injected.
5080          */
5081         return (kvm_arch_interrupt_allowed(vcpu) &&
5082                 kvm_cpu_accept_dm_intr(vcpu) &&
5083                 !kvm_event_needs_reinjection(vcpu) &&
5084                 !kvm_is_exception_pending(vcpu));
5085 }
5086
5087 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5088                                     struct kvm_interrupt *irq)
5089 {
5090         if (irq->irq >= KVM_NR_INTERRUPTS)
5091                 return -EINVAL;
5092
5093         if (!irqchip_in_kernel(vcpu->kvm)) {
5094                 kvm_queue_interrupt(vcpu, irq->irq, false);
5095                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5096                 return 0;
5097         }
5098
5099         /*
5100          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5101          * fail for in-kernel 8259.
5102          */
5103         if (pic_in_kernel(vcpu->kvm))
5104                 return -ENXIO;
5105
5106         if (vcpu->arch.pending_external_vector != -1)
5107                 return -EEXIST;
5108
5109         vcpu->arch.pending_external_vector = irq->irq;
5110         kvm_make_request(KVM_REQ_EVENT, vcpu);
5111         return 0;
5112 }
5113
5114 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5115 {
5116         kvm_inject_nmi(vcpu);
5117
5118         return 0;
5119 }
5120
5121 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5122                                            struct kvm_tpr_access_ctl *tac)
5123 {
5124         if (tac->flags)
5125                 return -EINVAL;
5126         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5127         return 0;
5128 }
5129
5130 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5131                                         u64 mcg_cap)
5132 {
5133         int r;
5134         unsigned bank_num = mcg_cap & 0xff, bank;
5135
5136         r = -EINVAL;
5137         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5138                 goto out;
5139         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5140                 goto out;
5141         r = 0;
5142         vcpu->arch.mcg_cap = mcg_cap;
5143         /* Init IA32_MCG_CTL to all 1s */
5144         if (mcg_cap & MCG_CTL_P)
5145                 vcpu->arch.mcg_ctl = ~(u64)0;
5146         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5147         for (bank = 0; bank < bank_num; bank++) {
5148                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5149                 if (mcg_cap & MCG_CMCI_P)
5150                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5151         }
5152
5153         kvm_apic_after_set_mcg_cap(vcpu);
5154
5155         static_call(kvm_x86_setup_mce)(vcpu);
5156 out:
5157         return r;
5158 }
5159
5160 /*
5161  * Validate this is an UCNA (uncorrectable no action) error by checking the
5162  * MCG_STATUS and MCi_STATUS registers:
5163  * - none of the bits for Machine Check Exceptions are set
5164  * - both the VAL (valid) and UC (uncorrectable) bits are set
5165  * MCI_STATUS_PCC - Processor Context Corrupted
5166  * MCI_STATUS_S - Signaled as a Machine Check Exception
5167  * MCI_STATUS_AR - Software recoverable Action Required
5168  */
5169 static bool is_ucna(struct kvm_x86_mce *mce)
5170 {
5171         return  !mce->mcg_status &&
5172                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5173                 (mce->status & MCI_STATUS_VAL) &&
5174                 (mce->status & MCI_STATUS_UC);
5175 }
5176
5177 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5178 {
5179         u64 mcg_cap = vcpu->arch.mcg_cap;
5180
5181         banks[1] = mce->status;
5182         banks[2] = mce->addr;
5183         banks[3] = mce->misc;
5184         vcpu->arch.mcg_status = mce->mcg_status;
5185
5186         if (!(mcg_cap & MCG_CMCI_P) ||
5187             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5188                 return 0;
5189
5190         if (lapic_in_kernel(vcpu))
5191                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5192
5193         return 0;
5194 }
5195
5196 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5197                                       struct kvm_x86_mce *mce)
5198 {
5199         u64 mcg_cap = vcpu->arch.mcg_cap;
5200         unsigned bank_num = mcg_cap & 0xff;
5201         u64 *banks = vcpu->arch.mce_banks;
5202
5203         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5204                 return -EINVAL;
5205
5206         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5207
5208         if (is_ucna(mce))
5209                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5210
5211         /*
5212          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5213          * reporting is disabled
5214          */
5215         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5216             vcpu->arch.mcg_ctl != ~(u64)0)
5217                 return 0;
5218         /*
5219          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5220          * reporting is disabled for the bank
5221          */
5222         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5223                 return 0;
5224         if (mce->status & MCI_STATUS_UC) {
5225                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5226                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5227                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5228                         return 0;
5229                 }
5230                 if (banks[1] & MCI_STATUS_VAL)
5231                         mce->status |= MCI_STATUS_OVER;
5232                 banks[2] = mce->addr;
5233                 banks[3] = mce->misc;
5234                 vcpu->arch.mcg_status = mce->mcg_status;
5235                 banks[1] = mce->status;
5236                 kvm_queue_exception(vcpu, MC_VECTOR);
5237         } else if (!(banks[1] & MCI_STATUS_VAL)
5238                    || !(banks[1] & MCI_STATUS_UC)) {
5239                 if (banks[1] & MCI_STATUS_VAL)
5240                         mce->status |= MCI_STATUS_OVER;
5241                 banks[2] = mce->addr;
5242                 banks[3] = mce->misc;
5243                 banks[1] = mce->status;
5244         } else
5245                 banks[1] |= MCI_STATUS_OVER;
5246         return 0;
5247 }
5248
5249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5250                                                struct kvm_vcpu_events *events)
5251 {
5252         struct kvm_queued_exception *ex;
5253
5254         process_nmi(vcpu);
5255
5256 #ifdef CONFIG_KVM_SMM
5257         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5258                 process_smi(vcpu);
5259 #endif
5260
5261         /*
5262          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5263          * the only time there can be two queued exceptions is if there's a
5264          * non-exiting _injected_ exception, and a pending exiting exception.
5265          * In that case, ignore the VM-Exiting exception as it's an extension
5266          * of the injected exception.
5267          */
5268         if (vcpu->arch.exception_vmexit.pending &&
5269             !vcpu->arch.exception.pending &&
5270             !vcpu->arch.exception.injected)
5271                 ex = &vcpu->arch.exception_vmexit;
5272         else
5273                 ex = &vcpu->arch.exception;
5274
5275         /*
5276          * In guest mode, payload delivery should be deferred if the exception
5277          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5278          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5279          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5280          * propagate the payload and so it cannot be safely deferred.  Deliver
5281          * the payload if the capability hasn't been requested.
5282          */
5283         if (!vcpu->kvm->arch.exception_payload_enabled &&
5284             ex->pending && ex->has_payload)
5285                 kvm_deliver_exception_payload(vcpu, ex);
5286
5287         memset(events, 0, sizeof(*events));
5288
5289         /*
5290          * The API doesn't provide the instruction length for software
5291          * exceptions, so don't report them. As long as the guest RIP
5292          * isn't advanced, we should expect to encounter the exception
5293          * again.
5294          */
5295         if (!kvm_exception_is_soft(ex->vector)) {
5296                 events->exception.injected = ex->injected;
5297                 events->exception.pending = ex->pending;
5298                 /*
5299                  * For ABI compatibility, deliberately conflate
5300                  * pending and injected exceptions when
5301                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5302                  */
5303                 if (!vcpu->kvm->arch.exception_payload_enabled)
5304                         events->exception.injected |= ex->pending;
5305         }
5306         events->exception.nr = ex->vector;
5307         events->exception.has_error_code = ex->has_error_code;
5308         events->exception.error_code = ex->error_code;
5309         events->exception_has_payload = ex->has_payload;
5310         events->exception_payload = ex->payload;
5311
5312         events->interrupt.injected =
5313                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5314         events->interrupt.nr = vcpu->arch.interrupt.nr;
5315         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5316
5317         events->nmi.injected = vcpu->arch.nmi_injected;
5318         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5319         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5320
5321         /* events->sipi_vector is never valid when reporting to user space */
5322
5323 #ifdef CONFIG_KVM_SMM
5324         events->smi.smm = is_smm(vcpu);
5325         events->smi.pending = vcpu->arch.smi_pending;
5326         events->smi.smm_inside_nmi =
5327                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5328 #endif
5329         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5330
5331         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5332                          | KVM_VCPUEVENT_VALID_SHADOW
5333                          | KVM_VCPUEVENT_VALID_SMM);
5334         if (vcpu->kvm->arch.exception_payload_enabled)
5335                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5336         if (vcpu->kvm->arch.triple_fault_event) {
5337                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5338                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5339         }
5340 }
5341
5342 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5343                                               struct kvm_vcpu_events *events)
5344 {
5345         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5346                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5347                               | KVM_VCPUEVENT_VALID_SHADOW
5348                               | KVM_VCPUEVENT_VALID_SMM
5349                               | KVM_VCPUEVENT_VALID_PAYLOAD
5350                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5351                 return -EINVAL;
5352
5353         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5354                 if (!vcpu->kvm->arch.exception_payload_enabled)
5355                         return -EINVAL;
5356                 if (events->exception.pending)
5357                         events->exception.injected = 0;
5358                 else
5359                         events->exception_has_payload = 0;
5360         } else {
5361                 events->exception.pending = 0;
5362                 events->exception_has_payload = 0;
5363         }
5364
5365         if ((events->exception.injected || events->exception.pending) &&
5366             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5367                 return -EINVAL;
5368
5369         /* INITs are latched while in SMM */
5370         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5371             (events->smi.smm || events->smi.pending) &&
5372             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5373                 return -EINVAL;
5374
5375         process_nmi(vcpu);
5376
5377         /*
5378          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5379          * morph the exception to a VM-Exit if appropriate.  Do this only for
5380          * pending exceptions, already-injected exceptions are not subject to
5381          * intercpetion.  Note, userspace that conflates pending and injected
5382          * is hosed, and will incorrectly convert an injected exception into a
5383          * pending exception, which in turn may cause a spurious VM-Exit.
5384          */
5385         vcpu->arch.exception_from_userspace = events->exception.pending;
5386
5387         vcpu->arch.exception_vmexit.pending = false;
5388
5389         vcpu->arch.exception.injected = events->exception.injected;
5390         vcpu->arch.exception.pending = events->exception.pending;
5391         vcpu->arch.exception.vector = events->exception.nr;
5392         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5393         vcpu->arch.exception.error_code = events->exception.error_code;
5394         vcpu->arch.exception.has_payload = events->exception_has_payload;
5395         vcpu->arch.exception.payload = events->exception_payload;
5396
5397         vcpu->arch.interrupt.injected = events->interrupt.injected;
5398         vcpu->arch.interrupt.nr = events->interrupt.nr;
5399         vcpu->arch.interrupt.soft = events->interrupt.soft;
5400         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5401                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5402                                                 events->interrupt.shadow);
5403
5404         vcpu->arch.nmi_injected = events->nmi.injected;
5405         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5406                 vcpu->arch.nmi_pending = 0;
5407                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5408                 kvm_make_request(KVM_REQ_NMI, vcpu);
5409         }
5410         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5411
5412         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5413             lapic_in_kernel(vcpu))
5414                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5415
5416         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5417 #ifdef CONFIG_KVM_SMM
5418                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5419                         kvm_leave_nested(vcpu);
5420                         kvm_smm_changed(vcpu, events->smi.smm);
5421                 }
5422
5423                 vcpu->arch.smi_pending = events->smi.pending;
5424
5425                 if (events->smi.smm) {
5426                         if (events->smi.smm_inside_nmi)
5427                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5428                         else
5429                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5430                 }
5431
5432 #else
5433                 if (events->smi.smm || events->smi.pending ||
5434                     events->smi.smm_inside_nmi)
5435                         return -EINVAL;
5436 #endif
5437
5438                 if (lapic_in_kernel(vcpu)) {
5439                         if (events->smi.latched_init)
5440                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5441                         else
5442                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5443                 }
5444         }
5445
5446         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5447                 if (!vcpu->kvm->arch.triple_fault_event)
5448                         return -EINVAL;
5449                 if (events->triple_fault.pending)
5450                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5451                 else
5452                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5453         }
5454
5455         kvm_make_request(KVM_REQ_EVENT, vcpu);
5456
5457         return 0;
5458 }
5459
5460 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5461                                              struct kvm_debugregs *dbgregs)
5462 {
5463         unsigned long val;
5464
5465         memset(dbgregs, 0, sizeof(*dbgregs));
5466         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5467         kvm_get_dr(vcpu, 6, &val);
5468         dbgregs->dr6 = val;
5469         dbgregs->dr7 = vcpu->arch.dr7;
5470 }
5471
5472 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5473                                             struct kvm_debugregs *dbgregs)
5474 {
5475         if (dbgregs->flags)
5476                 return -EINVAL;
5477
5478         if (!kvm_dr6_valid(dbgregs->dr6))
5479                 return -EINVAL;
5480         if (!kvm_dr7_valid(dbgregs->dr7))
5481                 return -EINVAL;
5482
5483         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5484         kvm_update_dr0123(vcpu);
5485         vcpu->arch.dr6 = dbgregs->dr6;
5486         vcpu->arch.dr7 = dbgregs->dr7;
5487         kvm_update_dr7(vcpu);
5488
5489         return 0;
5490 }
5491
5492
5493 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5494                                           u8 *state, unsigned int size)
5495 {
5496         /*
5497          * Only copy state for features that are enabled for the guest.  The
5498          * state itself isn't problematic, but setting bits in the header for
5499          * features that are supported in *this* host but not exposed to the
5500          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5501          * compatible host without the features that are NOT exposed to the
5502          * guest.
5503          *
5504          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5505          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5506          * supported by the host.
5507          */
5508         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5509                              XFEATURE_MASK_FPSSE;
5510
5511         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5512                 return;
5513
5514         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5515                                        supported_xcr0, vcpu->arch.pkru);
5516 }
5517
5518 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5519                                          struct kvm_xsave *guest_xsave)
5520 {
5521         return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5522                                              sizeof(guest_xsave->region));
5523 }
5524
5525 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5526                                         struct kvm_xsave *guest_xsave)
5527 {
5528         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5529                 return 0;
5530
5531         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5532                                               guest_xsave->region,
5533                                               kvm_caps.supported_xcr0,
5534                                               &vcpu->arch.pkru);
5535 }
5536
5537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5538                                         struct kvm_xcrs *guest_xcrs)
5539 {
5540         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5541                 guest_xcrs->nr_xcrs = 0;
5542                 return;
5543         }
5544
5545         guest_xcrs->nr_xcrs = 1;
5546         guest_xcrs->flags = 0;
5547         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5548         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5549 }
5550
5551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5552                                        struct kvm_xcrs *guest_xcrs)
5553 {
5554         int i, r = 0;
5555
5556         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5557                 return -EINVAL;
5558
5559         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5560                 return -EINVAL;
5561
5562         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5563                 /* Only support XCR0 currently */
5564                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5565                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5566                                 guest_xcrs->xcrs[i].value);
5567                         break;
5568                 }
5569         if (r)
5570                 r = -EINVAL;
5571         return r;
5572 }
5573
5574 /*
5575  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5576  * stopped by the hypervisor.  This function will be called from the host only.
5577  * EINVAL is returned when the host attempts to set the flag for a guest that
5578  * does not support pv clocks.
5579  */
5580 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5581 {
5582         if (!vcpu->arch.pv_time.active)
5583                 return -EINVAL;
5584         vcpu->arch.pvclock_set_guest_stopped_request = true;
5585         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5586         return 0;
5587 }
5588
5589 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5590                                  struct kvm_device_attr *attr)
5591 {
5592         int r;
5593
5594         switch (attr->attr) {
5595         case KVM_VCPU_TSC_OFFSET:
5596                 r = 0;
5597                 break;
5598         default:
5599                 r = -ENXIO;
5600         }
5601
5602         return r;
5603 }
5604
5605 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5606                                  struct kvm_device_attr *attr)
5607 {
5608         u64 __user *uaddr = kvm_get_attr_addr(attr);
5609         int r;
5610
5611         if (IS_ERR(uaddr))
5612                 return PTR_ERR(uaddr);
5613
5614         switch (attr->attr) {
5615         case KVM_VCPU_TSC_OFFSET:
5616                 r = -EFAULT;
5617                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5618                         break;
5619                 r = 0;
5620                 break;
5621         default:
5622                 r = -ENXIO;
5623         }
5624
5625         return r;
5626 }
5627
5628 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5629                                  struct kvm_device_attr *attr)
5630 {
5631         u64 __user *uaddr = kvm_get_attr_addr(attr);
5632         struct kvm *kvm = vcpu->kvm;
5633         int r;
5634
5635         if (IS_ERR(uaddr))
5636                 return PTR_ERR(uaddr);
5637
5638         switch (attr->attr) {
5639         case KVM_VCPU_TSC_OFFSET: {
5640                 u64 offset, tsc, ns;
5641                 unsigned long flags;
5642                 bool matched;
5643
5644                 r = -EFAULT;
5645                 if (get_user(offset, uaddr))
5646                         break;
5647
5648                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5649
5650                 matched = (vcpu->arch.virtual_tsc_khz &&
5651                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5652                            kvm->arch.last_tsc_offset == offset);
5653
5654                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5655                 ns = get_kvmclock_base_ns();
5656
5657                 kvm->arch.user_set_tsc = true;
5658                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5659                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5660
5661                 r = 0;
5662                 break;
5663         }
5664         default:
5665                 r = -ENXIO;
5666         }
5667
5668         return r;
5669 }
5670
5671 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5672                                       unsigned int ioctl,
5673                                       void __user *argp)
5674 {
5675         struct kvm_device_attr attr;
5676         int r;
5677
5678         if (copy_from_user(&attr, argp, sizeof(attr)))
5679                 return -EFAULT;
5680
5681         if (attr.group != KVM_VCPU_TSC_CTRL)
5682                 return -ENXIO;
5683
5684         switch (ioctl) {
5685         case KVM_HAS_DEVICE_ATTR:
5686                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5687                 break;
5688         case KVM_GET_DEVICE_ATTR:
5689                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5690                 break;
5691         case KVM_SET_DEVICE_ATTR:
5692                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5693                 break;
5694         }
5695
5696         return r;
5697 }
5698
5699 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5700                                      struct kvm_enable_cap *cap)
5701 {
5702         int r;
5703         uint16_t vmcs_version;
5704         void __user *user_ptr;
5705
5706         if (cap->flags)
5707                 return -EINVAL;
5708
5709         switch (cap->cap) {
5710         case KVM_CAP_HYPERV_SYNIC2:
5711                 if (cap->args[0])
5712                         return -EINVAL;
5713                 fallthrough;
5714
5715         case KVM_CAP_HYPERV_SYNIC:
5716                 if (!irqchip_in_kernel(vcpu->kvm))
5717                         return -EINVAL;
5718                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5719                                              KVM_CAP_HYPERV_SYNIC2);
5720         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5721                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5722                         return -ENOTTY;
5723                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5724                 if (!r) {
5725                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5726                         if (copy_to_user(user_ptr, &vmcs_version,
5727                                          sizeof(vmcs_version)))
5728                                 r = -EFAULT;
5729                 }
5730                 return r;
5731         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5732                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5733                         return -ENOTTY;
5734
5735                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5736
5737         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5738                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5739
5740         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5741                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5742                 if (vcpu->arch.pv_cpuid.enforce)
5743                         kvm_update_pv_runtime(vcpu);
5744
5745                 return 0;
5746         default:
5747                 return -EINVAL;
5748         }
5749 }
5750
5751 long kvm_arch_vcpu_ioctl(struct file *filp,
5752                          unsigned int ioctl, unsigned long arg)
5753 {
5754         struct kvm_vcpu *vcpu = filp->private_data;
5755         void __user *argp = (void __user *)arg;
5756         int r;
5757         union {
5758                 struct kvm_sregs2 *sregs2;
5759                 struct kvm_lapic_state *lapic;
5760                 struct kvm_xsave *xsave;
5761                 struct kvm_xcrs *xcrs;
5762                 void *buffer;
5763         } u;
5764
5765         vcpu_load(vcpu);
5766
5767         u.buffer = NULL;
5768         switch (ioctl) {
5769         case KVM_GET_LAPIC: {
5770                 r = -EINVAL;
5771                 if (!lapic_in_kernel(vcpu))
5772                         goto out;
5773                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5774                                 GFP_KERNEL_ACCOUNT);
5775
5776                 r = -ENOMEM;
5777                 if (!u.lapic)
5778                         goto out;
5779                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5780                 if (r)
5781                         goto out;
5782                 r = -EFAULT;
5783                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5784                         goto out;
5785                 r = 0;
5786                 break;
5787         }
5788         case KVM_SET_LAPIC: {
5789                 r = -EINVAL;
5790                 if (!lapic_in_kernel(vcpu))
5791                         goto out;
5792                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5793                 if (IS_ERR(u.lapic)) {
5794                         r = PTR_ERR(u.lapic);
5795                         goto out_nofree;
5796                 }
5797
5798                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5799                 break;
5800         }
5801         case KVM_INTERRUPT: {
5802                 struct kvm_interrupt irq;
5803
5804                 r = -EFAULT;
5805                 if (copy_from_user(&irq, argp, sizeof(irq)))
5806                         goto out;
5807                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5808                 break;
5809         }
5810         case KVM_NMI: {
5811                 r = kvm_vcpu_ioctl_nmi(vcpu);
5812                 break;
5813         }
5814         case KVM_SMI: {
5815                 r = kvm_inject_smi(vcpu);
5816                 break;
5817         }
5818         case KVM_SET_CPUID: {
5819                 struct kvm_cpuid __user *cpuid_arg = argp;
5820                 struct kvm_cpuid cpuid;
5821
5822                 r = -EFAULT;
5823                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5824                         goto out;
5825                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5826                 break;
5827         }
5828         case KVM_SET_CPUID2: {
5829                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5830                 struct kvm_cpuid2 cpuid;
5831
5832                 r = -EFAULT;
5833                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5834                         goto out;
5835                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5836                                               cpuid_arg->entries);
5837                 break;
5838         }
5839         case KVM_GET_CPUID2: {
5840                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5841                 struct kvm_cpuid2 cpuid;
5842
5843                 r = -EFAULT;
5844                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5845                         goto out;
5846                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5847                                               cpuid_arg->entries);
5848                 if (r)
5849                         goto out;
5850                 r = -EFAULT;
5851                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5852                         goto out;
5853                 r = 0;
5854                 break;
5855         }
5856         case KVM_GET_MSRS: {
5857                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5858                 r = msr_io(vcpu, argp, do_get_msr, 1);
5859                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5860                 break;
5861         }
5862         case KVM_SET_MSRS: {
5863                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5864                 r = msr_io(vcpu, argp, do_set_msr, 0);
5865                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5866                 break;
5867         }
5868         case KVM_TPR_ACCESS_REPORTING: {
5869                 struct kvm_tpr_access_ctl tac;
5870
5871                 r = -EFAULT;
5872                 if (copy_from_user(&tac, argp, sizeof(tac)))
5873                         goto out;
5874                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5875                 if (r)
5876                         goto out;
5877                 r = -EFAULT;
5878                 if (copy_to_user(argp, &tac, sizeof(tac)))
5879                         goto out;
5880                 r = 0;
5881                 break;
5882         };
5883         case KVM_SET_VAPIC_ADDR: {
5884                 struct kvm_vapic_addr va;
5885                 int idx;
5886
5887                 r = -EINVAL;
5888                 if (!lapic_in_kernel(vcpu))
5889                         goto out;
5890                 r = -EFAULT;
5891                 if (copy_from_user(&va, argp, sizeof(va)))
5892                         goto out;
5893                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5894                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5895                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5896                 break;
5897         }
5898         case KVM_X86_SETUP_MCE: {
5899                 u64 mcg_cap;
5900
5901                 r = -EFAULT;
5902                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5903                         goto out;
5904                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5905                 break;
5906         }
5907         case KVM_X86_SET_MCE: {
5908                 struct kvm_x86_mce mce;
5909
5910                 r = -EFAULT;
5911                 if (copy_from_user(&mce, argp, sizeof(mce)))
5912                         goto out;
5913                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5914                 break;
5915         }
5916         case KVM_GET_VCPU_EVENTS: {
5917                 struct kvm_vcpu_events events;
5918
5919                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5920
5921                 r = -EFAULT;
5922                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5923                         break;
5924                 r = 0;
5925                 break;
5926         }
5927         case KVM_SET_VCPU_EVENTS: {
5928                 struct kvm_vcpu_events events;
5929
5930                 r = -EFAULT;
5931                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5932                         break;
5933
5934                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5935                 break;
5936         }
5937         case KVM_GET_DEBUGREGS: {
5938                 struct kvm_debugregs dbgregs;
5939
5940                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5941
5942                 r = -EFAULT;
5943                 if (copy_to_user(argp, &dbgregs,
5944                                  sizeof(struct kvm_debugregs)))
5945                         break;
5946                 r = 0;
5947                 break;
5948         }
5949         case KVM_SET_DEBUGREGS: {
5950                 struct kvm_debugregs dbgregs;
5951
5952                 r = -EFAULT;
5953                 if (copy_from_user(&dbgregs, argp,
5954                                    sizeof(struct kvm_debugregs)))
5955                         break;
5956
5957                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5958                 break;
5959         }
5960         case KVM_GET_XSAVE: {
5961                 r = -EINVAL;
5962                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5963                         break;
5964
5965                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5966                 r = -ENOMEM;
5967                 if (!u.xsave)
5968                         break;
5969
5970                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5971
5972                 r = -EFAULT;
5973                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5974                         break;
5975                 r = 0;
5976                 break;
5977         }
5978         case KVM_SET_XSAVE: {
5979                 int size = vcpu->arch.guest_fpu.uabi_size;
5980
5981                 u.xsave = memdup_user(argp, size);
5982                 if (IS_ERR(u.xsave)) {
5983                         r = PTR_ERR(u.xsave);
5984                         goto out_nofree;
5985                 }
5986
5987                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5988                 break;
5989         }
5990
5991         case KVM_GET_XSAVE2: {
5992                 int size = vcpu->arch.guest_fpu.uabi_size;
5993
5994                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5995                 r = -ENOMEM;
5996                 if (!u.xsave)
5997                         break;
5998
5999                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6000
6001                 r = -EFAULT;
6002                 if (copy_to_user(argp, u.xsave, size))
6003                         break;
6004
6005                 r = 0;
6006                 break;
6007         }
6008
6009         case KVM_GET_XCRS: {
6010                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6011                 r = -ENOMEM;
6012                 if (!u.xcrs)
6013                         break;
6014
6015                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6016
6017                 r = -EFAULT;
6018                 if (copy_to_user(argp, u.xcrs,
6019                                  sizeof(struct kvm_xcrs)))
6020                         break;
6021                 r = 0;
6022                 break;
6023         }
6024         case KVM_SET_XCRS: {
6025                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6026                 if (IS_ERR(u.xcrs)) {
6027                         r = PTR_ERR(u.xcrs);
6028                         goto out_nofree;
6029                 }
6030
6031                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6032                 break;
6033         }
6034         case KVM_SET_TSC_KHZ: {
6035                 u32 user_tsc_khz;
6036
6037                 r = -EINVAL;
6038                 user_tsc_khz = (u32)arg;
6039
6040                 if (kvm_caps.has_tsc_control &&
6041                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6042                         goto out;
6043
6044                 if (user_tsc_khz == 0)
6045                         user_tsc_khz = tsc_khz;
6046
6047                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6048                         r = 0;
6049
6050                 goto out;
6051         }
6052         case KVM_GET_TSC_KHZ: {
6053                 r = vcpu->arch.virtual_tsc_khz;
6054                 goto out;
6055         }
6056         case KVM_KVMCLOCK_CTRL: {
6057                 r = kvm_set_guest_paused(vcpu);
6058                 goto out;
6059         }
6060         case KVM_ENABLE_CAP: {
6061                 struct kvm_enable_cap cap;
6062
6063                 r = -EFAULT;
6064                 if (copy_from_user(&cap, argp, sizeof(cap)))
6065                         goto out;
6066                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6067                 break;
6068         }
6069         case KVM_GET_NESTED_STATE: {
6070                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6071                 u32 user_data_size;
6072
6073                 r = -EINVAL;
6074                 if (!kvm_x86_ops.nested_ops->get_state)
6075                         break;
6076
6077                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6078                 r = -EFAULT;
6079                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6080                         break;
6081
6082                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6083                                                      user_data_size);
6084                 if (r < 0)
6085                         break;
6086
6087                 if (r > user_data_size) {
6088                         if (put_user(r, &user_kvm_nested_state->size))
6089                                 r = -EFAULT;
6090                         else
6091                                 r = -E2BIG;
6092                         break;
6093                 }
6094
6095                 r = 0;
6096                 break;
6097         }
6098         case KVM_SET_NESTED_STATE: {
6099                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6100                 struct kvm_nested_state kvm_state;
6101                 int idx;
6102
6103                 r = -EINVAL;
6104                 if (!kvm_x86_ops.nested_ops->set_state)
6105                         break;
6106
6107                 r = -EFAULT;
6108                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6109                         break;
6110
6111                 r = -EINVAL;
6112                 if (kvm_state.size < sizeof(kvm_state))
6113                         break;
6114
6115                 if (kvm_state.flags &
6116                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6117                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6118                       | KVM_STATE_NESTED_GIF_SET))
6119                         break;
6120
6121                 /* nested_run_pending implies guest_mode.  */
6122                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6123                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6124                         break;
6125
6126                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6127                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6128                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6129                 break;
6130         }
6131         case KVM_GET_SUPPORTED_HV_CPUID:
6132                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6133                 break;
6134 #ifdef CONFIG_KVM_XEN
6135         case KVM_XEN_VCPU_GET_ATTR: {
6136                 struct kvm_xen_vcpu_attr xva;
6137
6138                 r = -EFAULT;
6139                 if (copy_from_user(&xva, argp, sizeof(xva)))
6140                         goto out;
6141                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6142                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6143                         r = -EFAULT;
6144                 break;
6145         }
6146         case KVM_XEN_VCPU_SET_ATTR: {
6147                 struct kvm_xen_vcpu_attr xva;
6148
6149                 r = -EFAULT;
6150                 if (copy_from_user(&xva, argp, sizeof(xva)))
6151                         goto out;
6152                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6153                 break;
6154         }
6155 #endif
6156         case KVM_GET_SREGS2: {
6157                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6158                 r = -ENOMEM;
6159                 if (!u.sregs2)
6160                         goto out;
6161                 __get_sregs2(vcpu, u.sregs2);
6162                 r = -EFAULT;
6163                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6164                         goto out;
6165                 r = 0;
6166                 break;
6167         }
6168         case KVM_SET_SREGS2: {
6169                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6170                 if (IS_ERR(u.sregs2)) {
6171                         r = PTR_ERR(u.sregs2);
6172                         u.sregs2 = NULL;
6173                         goto out;
6174                 }
6175                 r = __set_sregs2(vcpu, u.sregs2);
6176                 break;
6177         }
6178         case KVM_HAS_DEVICE_ATTR:
6179         case KVM_GET_DEVICE_ATTR:
6180         case KVM_SET_DEVICE_ATTR:
6181                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6182                 break;
6183         default:
6184                 r = -EINVAL;
6185         }
6186 out:
6187         kfree(u.buffer);
6188 out_nofree:
6189         vcpu_put(vcpu);
6190         return r;
6191 }
6192
6193 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6194 {
6195         return VM_FAULT_SIGBUS;
6196 }
6197
6198 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6199 {
6200         int ret;
6201
6202         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6203                 return -EINVAL;
6204         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6205         return ret;
6206 }
6207
6208 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6209                                               u64 ident_addr)
6210 {
6211         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6212 }
6213
6214 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6215                                          unsigned long kvm_nr_mmu_pages)
6216 {
6217         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6218                 return -EINVAL;
6219
6220         mutex_lock(&kvm->slots_lock);
6221
6222         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6223         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6224
6225         mutex_unlock(&kvm->slots_lock);
6226         return 0;
6227 }
6228
6229 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6230 {
6231         struct kvm_pic *pic = kvm->arch.vpic;
6232         int r;
6233
6234         r = 0;
6235         switch (chip->chip_id) {
6236         case KVM_IRQCHIP_PIC_MASTER:
6237                 memcpy(&chip->chip.pic, &pic->pics[0],
6238                         sizeof(struct kvm_pic_state));
6239                 break;
6240         case KVM_IRQCHIP_PIC_SLAVE:
6241                 memcpy(&chip->chip.pic, &pic->pics[1],
6242                         sizeof(struct kvm_pic_state));
6243                 break;
6244         case KVM_IRQCHIP_IOAPIC:
6245                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6246                 break;
6247         default:
6248                 r = -EINVAL;
6249                 break;
6250         }
6251         return r;
6252 }
6253
6254 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6255 {
6256         struct kvm_pic *pic = kvm->arch.vpic;
6257         int r;
6258
6259         r = 0;
6260         switch (chip->chip_id) {
6261         case KVM_IRQCHIP_PIC_MASTER:
6262                 spin_lock(&pic->lock);
6263                 memcpy(&pic->pics[0], &chip->chip.pic,
6264                         sizeof(struct kvm_pic_state));
6265                 spin_unlock(&pic->lock);
6266                 break;
6267         case KVM_IRQCHIP_PIC_SLAVE:
6268                 spin_lock(&pic->lock);
6269                 memcpy(&pic->pics[1], &chip->chip.pic,
6270                         sizeof(struct kvm_pic_state));
6271                 spin_unlock(&pic->lock);
6272                 break;
6273         case KVM_IRQCHIP_IOAPIC:
6274                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6275                 break;
6276         default:
6277                 r = -EINVAL;
6278                 break;
6279         }
6280         kvm_pic_update_irq(pic);
6281         return r;
6282 }
6283
6284 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6285 {
6286         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6287
6288         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6289
6290         mutex_lock(&kps->lock);
6291         memcpy(ps, &kps->channels, sizeof(*ps));
6292         mutex_unlock(&kps->lock);
6293         return 0;
6294 }
6295
6296 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6297 {
6298         int i;
6299         struct kvm_pit *pit = kvm->arch.vpit;
6300
6301         mutex_lock(&pit->pit_state.lock);
6302         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6303         for (i = 0; i < 3; i++)
6304                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6305         mutex_unlock(&pit->pit_state.lock);
6306         return 0;
6307 }
6308
6309 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6310 {
6311         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6312         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6313                 sizeof(ps->channels));
6314         ps->flags = kvm->arch.vpit->pit_state.flags;
6315         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6316         memset(&ps->reserved, 0, sizeof(ps->reserved));
6317         return 0;
6318 }
6319
6320 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6321 {
6322         int start = 0;
6323         int i;
6324         u32 prev_legacy, cur_legacy;
6325         struct kvm_pit *pit = kvm->arch.vpit;
6326
6327         mutex_lock(&pit->pit_state.lock);
6328         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6329         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6330         if (!prev_legacy && cur_legacy)
6331                 start = 1;
6332         memcpy(&pit->pit_state.channels, &ps->channels,
6333                sizeof(pit->pit_state.channels));
6334         pit->pit_state.flags = ps->flags;
6335         for (i = 0; i < 3; i++)
6336                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6337                                    start && i == 0);
6338         mutex_unlock(&pit->pit_state.lock);
6339         return 0;
6340 }
6341
6342 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6343                                  struct kvm_reinject_control *control)
6344 {
6345         struct kvm_pit *pit = kvm->arch.vpit;
6346
6347         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6348          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6349          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6350          */
6351         mutex_lock(&pit->pit_state.lock);
6352         kvm_pit_set_reinject(pit, control->pit_reinject);
6353         mutex_unlock(&pit->pit_state.lock);
6354
6355         return 0;
6356 }
6357
6358 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6359 {
6360
6361         /*
6362          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6363          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6364          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6365          * VM-Exit.
6366          */
6367         struct kvm_vcpu *vcpu;
6368         unsigned long i;
6369
6370         if (!kvm_x86_ops.cpu_dirty_log_size)
6371                 return;
6372
6373         kvm_for_each_vcpu(i, vcpu, kvm)
6374                 kvm_vcpu_kick(vcpu);
6375 }
6376
6377 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6378                         bool line_status)
6379 {
6380         if (!irqchip_in_kernel(kvm))
6381                 return -ENXIO;
6382
6383         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6384                                         irq_event->irq, irq_event->level,
6385                                         line_status);
6386         return 0;
6387 }
6388
6389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6390                             struct kvm_enable_cap *cap)
6391 {
6392         int r;
6393
6394         if (cap->flags)
6395                 return -EINVAL;
6396
6397         switch (cap->cap) {
6398         case KVM_CAP_DISABLE_QUIRKS2:
6399                 r = -EINVAL;
6400                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6401                         break;
6402                 fallthrough;
6403         case KVM_CAP_DISABLE_QUIRKS:
6404                 kvm->arch.disabled_quirks = cap->args[0];
6405                 r = 0;
6406                 break;
6407         case KVM_CAP_SPLIT_IRQCHIP: {
6408                 mutex_lock(&kvm->lock);
6409                 r = -EINVAL;
6410                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6411                         goto split_irqchip_unlock;
6412                 r = -EEXIST;
6413                 if (irqchip_in_kernel(kvm))
6414                         goto split_irqchip_unlock;
6415                 if (kvm->created_vcpus)
6416                         goto split_irqchip_unlock;
6417                 r = kvm_setup_empty_irq_routing(kvm);
6418                 if (r)
6419                         goto split_irqchip_unlock;
6420                 /* Pairs with irqchip_in_kernel. */
6421                 smp_wmb();
6422                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6423                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6424                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6425                 r = 0;
6426 split_irqchip_unlock:
6427                 mutex_unlock(&kvm->lock);
6428                 break;
6429         }
6430         case KVM_CAP_X2APIC_API:
6431                 r = -EINVAL;
6432                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6433                         break;
6434
6435                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6436                         kvm->arch.x2apic_format = true;
6437                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6438                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6439
6440                 r = 0;
6441                 break;
6442         case KVM_CAP_X86_DISABLE_EXITS:
6443                 r = -EINVAL;
6444                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6445                         break;
6446
6447                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6448                         kvm->arch.pause_in_guest = true;
6449
6450 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6451                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6452
6453                 if (!mitigate_smt_rsb) {
6454                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6455                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6456                                 pr_warn_once(SMT_RSB_MSG);
6457
6458                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6459                             kvm_can_mwait_in_guest())
6460                                 kvm->arch.mwait_in_guest = true;
6461                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6462                                 kvm->arch.hlt_in_guest = true;
6463                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6464                                 kvm->arch.cstate_in_guest = true;
6465                 }
6466
6467                 r = 0;
6468                 break;
6469         case KVM_CAP_MSR_PLATFORM_INFO:
6470                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6471                 r = 0;
6472                 break;
6473         case KVM_CAP_EXCEPTION_PAYLOAD:
6474                 kvm->arch.exception_payload_enabled = cap->args[0];
6475                 r = 0;
6476                 break;
6477         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6478                 kvm->arch.triple_fault_event = cap->args[0];
6479                 r = 0;
6480                 break;
6481         case KVM_CAP_X86_USER_SPACE_MSR:
6482                 r = -EINVAL;
6483                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6484                         break;
6485                 kvm->arch.user_space_msr_mask = cap->args[0];
6486                 r = 0;
6487                 break;
6488         case KVM_CAP_X86_BUS_LOCK_EXIT:
6489                 r = -EINVAL;
6490                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6491                         break;
6492
6493                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6494                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6495                         break;
6496
6497                 if (kvm_caps.has_bus_lock_exit &&
6498                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6499                         kvm->arch.bus_lock_detection_enabled = true;
6500                 r = 0;
6501                 break;
6502 #ifdef CONFIG_X86_SGX_KVM
6503         case KVM_CAP_SGX_ATTRIBUTE: {
6504                 unsigned long allowed_attributes = 0;
6505
6506                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6507                 if (r)
6508                         break;
6509
6510                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6511                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6512                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6513                         kvm->arch.sgx_provisioning_allowed = true;
6514                 else
6515                         r = -EINVAL;
6516                 break;
6517         }
6518 #endif
6519         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6520                 r = -EINVAL;
6521                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6522                         break;
6523
6524                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6525                 break;
6526         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6527                 r = -EINVAL;
6528                 if (!kvm_x86_ops.vm_move_enc_context_from)
6529                         break;
6530
6531                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6532                 break;
6533         case KVM_CAP_EXIT_HYPERCALL:
6534                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6535                         r = -EINVAL;
6536                         break;
6537                 }
6538                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6539                 r = 0;
6540                 break;
6541         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6542                 r = -EINVAL;
6543                 if (cap->args[0] & ~1)
6544                         break;
6545                 kvm->arch.exit_on_emulation_error = cap->args[0];
6546                 r = 0;
6547                 break;
6548         case KVM_CAP_PMU_CAPABILITY:
6549                 r = -EINVAL;
6550                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6551                         break;
6552
6553                 mutex_lock(&kvm->lock);
6554                 if (!kvm->created_vcpus) {
6555                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6556                         r = 0;
6557                 }
6558                 mutex_unlock(&kvm->lock);
6559                 break;
6560         case KVM_CAP_MAX_VCPU_ID:
6561                 r = -EINVAL;
6562                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6563                         break;
6564
6565                 mutex_lock(&kvm->lock);
6566                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6567                         r = 0;
6568                 } else if (!kvm->arch.max_vcpu_ids) {
6569                         kvm->arch.max_vcpu_ids = cap->args[0];
6570                         r = 0;
6571                 }
6572                 mutex_unlock(&kvm->lock);
6573                 break;
6574         case KVM_CAP_X86_NOTIFY_VMEXIT:
6575                 r = -EINVAL;
6576                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6577                         break;
6578                 if (!kvm_caps.has_notify_vmexit)
6579                         break;
6580                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6581                         break;
6582                 mutex_lock(&kvm->lock);
6583                 if (!kvm->created_vcpus) {
6584                         kvm->arch.notify_window = cap->args[0] >> 32;
6585                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6586                         r = 0;
6587                 }
6588                 mutex_unlock(&kvm->lock);
6589                 break;
6590         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6591                 r = -EINVAL;
6592
6593                 /*
6594                  * Since the risk of disabling NX hugepages is a guest crashing
6595                  * the system, ensure the userspace process has permission to
6596                  * reboot the system.
6597                  *
6598                  * Note that unlike the reboot() syscall, the process must have
6599                  * this capability in the root namespace because exposing
6600                  * /dev/kvm into a container does not limit the scope of the
6601                  * iTLB multihit bug to that container. In other words,
6602                  * this must use capable(), not ns_capable().
6603                  */
6604                 if (!capable(CAP_SYS_BOOT)) {
6605                         r = -EPERM;
6606                         break;
6607                 }
6608
6609                 if (cap->args[0])
6610                         break;
6611
6612                 mutex_lock(&kvm->lock);
6613                 if (!kvm->created_vcpus) {
6614                         kvm->arch.disable_nx_huge_pages = true;
6615                         r = 0;
6616                 }
6617                 mutex_unlock(&kvm->lock);
6618                 break;
6619         default:
6620                 r = -EINVAL;
6621                 break;
6622         }
6623         return r;
6624 }
6625
6626 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6627 {
6628         struct kvm_x86_msr_filter *msr_filter;
6629
6630         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6631         if (!msr_filter)
6632                 return NULL;
6633
6634         msr_filter->default_allow = default_allow;
6635         return msr_filter;
6636 }
6637
6638 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6639 {
6640         u32 i;
6641
6642         if (!msr_filter)
6643                 return;
6644
6645         for (i = 0; i < msr_filter->count; i++)
6646                 kfree(msr_filter->ranges[i].bitmap);
6647
6648         kfree(msr_filter);
6649 }
6650
6651 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6652                               struct kvm_msr_filter_range *user_range)
6653 {
6654         unsigned long *bitmap;
6655         size_t bitmap_size;
6656
6657         if (!user_range->nmsrs)
6658                 return 0;
6659
6660         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6661                 return -EINVAL;
6662
6663         if (!user_range->flags)
6664                 return -EINVAL;
6665
6666         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6667         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6668                 return -EINVAL;
6669
6670         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6671         if (IS_ERR(bitmap))
6672                 return PTR_ERR(bitmap);
6673
6674         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6675                 .flags = user_range->flags,
6676                 .base = user_range->base,
6677                 .nmsrs = user_range->nmsrs,
6678                 .bitmap = bitmap,
6679         };
6680
6681         msr_filter->count++;
6682         return 0;
6683 }
6684
6685 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6686                                        struct kvm_msr_filter *filter)
6687 {
6688         struct kvm_x86_msr_filter *new_filter, *old_filter;
6689         bool default_allow;
6690         bool empty = true;
6691         int r;
6692         u32 i;
6693
6694         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6695                 return -EINVAL;
6696
6697         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6698                 empty &= !filter->ranges[i].nmsrs;
6699
6700         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6701         if (empty && !default_allow)
6702                 return -EINVAL;
6703
6704         new_filter = kvm_alloc_msr_filter(default_allow);
6705         if (!new_filter)
6706                 return -ENOMEM;
6707
6708         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6709                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6710                 if (r) {
6711                         kvm_free_msr_filter(new_filter);
6712                         return r;
6713                 }
6714         }
6715
6716         mutex_lock(&kvm->lock);
6717         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6718                                          mutex_is_locked(&kvm->lock));
6719         mutex_unlock(&kvm->lock);
6720         synchronize_srcu(&kvm->srcu);
6721
6722         kvm_free_msr_filter(old_filter);
6723
6724         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6725
6726         return 0;
6727 }
6728
6729 #ifdef CONFIG_KVM_COMPAT
6730 /* for KVM_X86_SET_MSR_FILTER */
6731 struct kvm_msr_filter_range_compat {
6732         __u32 flags;
6733         __u32 nmsrs;
6734         __u32 base;
6735         __u32 bitmap;
6736 };
6737
6738 struct kvm_msr_filter_compat {
6739         __u32 flags;
6740         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6741 };
6742
6743 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6744
6745 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6746                               unsigned long arg)
6747 {
6748         void __user *argp = (void __user *)arg;
6749         struct kvm *kvm = filp->private_data;
6750         long r = -ENOTTY;
6751
6752         switch (ioctl) {
6753         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6754                 struct kvm_msr_filter __user *user_msr_filter = argp;
6755                 struct kvm_msr_filter_compat filter_compat;
6756                 struct kvm_msr_filter filter;
6757                 int i;
6758
6759                 if (copy_from_user(&filter_compat, user_msr_filter,
6760                                    sizeof(filter_compat)))
6761                         return -EFAULT;
6762
6763                 filter.flags = filter_compat.flags;
6764                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6765                         struct kvm_msr_filter_range_compat *cr;
6766
6767                         cr = &filter_compat.ranges[i];
6768                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6769                                 .flags = cr->flags,
6770                                 .nmsrs = cr->nmsrs,
6771                                 .base = cr->base,
6772                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6773                         };
6774                 }
6775
6776                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6777                 break;
6778         }
6779         }
6780
6781         return r;
6782 }
6783 #endif
6784
6785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6786 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6787 {
6788         struct kvm_vcpu *vcpu;
6789         unsigned long i;
6790         int ret = 0;
6791
6792         mutex_lock(&kvm->lock);
6793         kvm_for_each_vcpu(i, vcpu, kvm) {
6794                 if (!vcpu->arch.pv_time.active)
6795                         continue;
6796
6797                 ret = kvm_set_guest_paused(vcpu);
6798                 if (ret) {
6799                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6800                                 vcpu->vcpu_id, ret);
6801                         break;
6802                 }
6803         }
6804         mutex_unlock(&kvm->lock);
6805
6806         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6807 }
6808
6809 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6810 {
6811         switch (state) {
6812         case PM_HIBERNATION_PREPARE:
6813         case PM_SUSPEND_PREPARE:
6814                 return kvm_arch_suspend_notifier(kvm);
6815         }
6816
6817         return NOTIFY_DONE;
6818 }
6819 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6820
6821 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6822 {
6823         struct kvm_clock_data data = { 0 };
6824
6825         get_kvmclock(kvm, &data);
6826         if (copy_to_user(argp, &data, sizeof(data)))
6827                 return -EFAULT;
6828
6829         return 0;
6830 }
6831
6832 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6833 {
6834         struct kvm_arch *ka = &kvm->arch;
6835         struct kvm_clock_data data;
6836         u64 now_raw_ns;
6837
6838         if (copy_from_user(&data, argp, sizeof(data)))
6839                 return -EFAULT;
6840
6841         /*
6842          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6843          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6844          */
6845         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6846                 return -EINVAL;
6847
6848         kvm_hv_request_tsc_page_update(kvm);
6849         kvm_start_pvclock_update(kvm);
6850         pvclock_update_vm_gtod_copy(kvm);
6851
6852         /*
6853          * This pairs with kvm_guest_time_update(): when masterclock is
6854          * in use, we use master_kernel_ns + kvmclock_offset to set
6855          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6856          * is slightly ahead) here we risk going negative on unsigned
6857          * 'system_time' when 'data.clock' is very small.
6858          */
6859         if (data.flags & KVM_CLOCK_REALTIME) {
6860                 u64 now_real_ns = ktime_get_real_ns();
6861
6862                 /*
6863                  * Avoid stepping the kvmclock backwards.
6864                  */
6865                 if (now_real_ns > data.realtime)
6866                         data.clock += now_real_ns - data.realtime;
6867         }
6868
6869         if (ka->use_master_clock)
6870                 now_raw_ns = ka->master_kernel_ns;
6871         else
6872                 now_raw_ns = get_kvmclock_base_ns();
6873         ka->kvmclock_offset = data.clock - now_raw_ns;
6874         kvm_end_pvclock_update(kvm);
6875         return 0;
6876 }
6877
6878 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6879 {
6880         struct kvm *kvm = filp->private_data;
6881         void __user *argp = (void __user *)arg;
6882         int r = -ENOTTY;
6883         /*
6884          * This union makes it completely explicit to gcc-3.x
6885          * that these two variables' stack usage should be
6886          * combined, not added together.
6887          */
6888         union {
6889                 struct kvm_pit_state ps;
6890                 struct kvm_pit_state2 ps2;
6891                 struct kvm_pit_config pit_config;
6892         } u;
6893
6894         switch (ioctl) {
6895         case KVM_SET_TSS_ADDR:
6896                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6897                 break;
6898         case KVM_SET_IDENTITY_MAP_ADDR: {
6899                 u64 ident_addr;
6900
6901                 mutex_lock(&kvm->lock);
6902                 r = -EINVAL;
6903                 if (kvm->created_vcpus)
6904                         goto set_identity_unlock;
6905                 r = -EFAULT;
6906                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6907                         goto set_identity_unlock;
6908                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6909 set_identity_unlock:
6910                 mutex_unlock(&kvm->lock);
6911                 break;
6912         }
6913         case KVM_SET_NR_MMU_PAGES:
6914                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6915                 break;
6916         case KVM_CREATE_IRQCHIP: {
6917                 mutex_lock(&kvm->lock);
6918
6919                 r = -EEXIST;
6920                 if (irqchip_in_kernel(kvm))
6921                         goto create_irqchip_unlock;
6922
6923                 r = -EINVAL;
6924                 if (kvm->created_vcpus)
6925                         goto create_irqchip_unlock;
6926
6927                 r = kvm_pic_init(kvm);
6928                 if (r)
6929                         goto create_irqchip_unlock;
6930
6931                 r = kvm_ioapic_init(kvm);
6932                 if (r) {
6933                         kvm_pic_destroy(kvm);
6934                         goto create_irqchip_unlock;
6935                 }
6936
6937                 r = kvm_setup_default_irq_routing(kvm);
6938                 if (r) {
6939                         kvm_ioapic_destroy(kvm);
6940                         kvm_pic_destroy(kvm);
6941                         goto create_irqchip_unlock;
6942                 }
6943                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6944                 smp_wmb();
6945                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6946                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6947         create_irqchip_unlock:
6948                 mutex_unlock(&kvm->lock);
6949                 break;
6950         }
6951         case KVM_CREATE_PIT:
6952                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6953                 goto create_pit;
6954         case KVM_CREATE_PIT2:
6955                 r = -EFAULT;
6956                 if (copy_from_user(&u.pit_config, argp,
6957                                    sizeof(struct kvm_pit_config)))
6958                         goto out;
6959         create_pit:
6960                 mutex_lock(&kvm->lock);
6961                 r = -EEXIST;
6962                 if (kvm->arch.vpit)
6963                         goto create_pit_unlock;
6964                 r = -ENOMEM;
6965                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6966                 if (kvm->arch.vpit)
6967                         r = 0;
6968         create_pit_unlock:
6969                 mutex_unlock(&kvm->lock);
6970                 break;
6971         case KVM_GET_IRQCHIP: {
6972                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6973                 struct kvm_irqchip *chip;
6974
6975                 chip = memdup_user(argp, sizeof(*chip));
6976                 if (IS_ERR(chip)) {
6977                         r = PTR_ERR(chip);
6978                         goto out;
6979                 }
6980
6981                 r = -ENXIO;
6982                 if (!irqchip_kernel(kvm))
6983                         goto get_irqchip_out;
6984                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6985                 if (r)
6986                         goto get_irqchip_out;
6987                 r = -EFAULT;
6988                 if (copy_to_user(argp, chip, sizeof(*chip)))
6989                         goto get_irqchip_out;
6990                 r = 0;
6991         get_irqchip_out:
6992                 kfree(chip);
6993                 break;
6994         }
6995         case KVM_SET_IRQCHIP: {
6996                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6997                 struct kvm_irqchip *chip;
6998
6999                 chip = memdup_user(argp, sizeof(*chip));
7000                 if (IS_ERR(chip)) {
7001                         r = PTR_ERR(chip);
7002                         goto out;
7003                 }
7004
7005                 r = -ENXIO;
7006                 if (!irqchip_kernel(kvm))
7007                         goto set_irqchip_out;
7008                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7009         set_irqchip_out:
7010                 kfree(chip);
7011                 break;
7012         }
7013         case KVM_GET_PIT: {
7014                 r = -EFAULT;
7015                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7016                         goto out;
7017                 r = -ENXIO;
7018                 if (!kvm->arch.vpit)
7019                         goto out;
7020                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7021                 if (r)
7022                         goto out;
7023                 r = -EFAULT;
7024                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7025                         goto out;
7026                 r = 0;
7027                 break;
7028         }
7029         case KVM_SET_PIT: {
7030                 r = -EFAULT;
7031                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7032                         goto out;
7033                 mutex_lock(&kvm->lock);
7034                 r = -ENXIO;
7035                 if (!kvm->arch.vpit)
7036                         goto set_pit_out;
7037                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7038 set_pit_out:
7039                 mutex_unlock(&kvm->lock);
7040                 break;
7041         }
7042         case KVM_GET_PIT2: {
7043                 r = -ENXIO;
7044                 if (!kvm->arch.vpit)
7045                         goto out;
7046                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7047                 if (r)
7048                         goto out;
7049                 r = -EFAULT;
7050                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7051                         goto out;
7052                 r = 0;
7053                 break;
7054         }
7055         case KVM_SET_PIT2: {
7056                 r = -EFAULT;
7057                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7058                         goto out;
7059                 mutex_lock(&kvm->lock);
7060                 r = -ENXIO;
7061                 if (!kvm->arch.vpit)
7062                         goto set_pit2_out;
7063                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7064 set_pit2_out:
7065                 mutex_unlock(&kvm->lock);
7066                 break;
7067         }
7068         case KVM_REINJECT_CONTROL: {
7069                 struct kvm_reinject_control control;
7070                 r =  -EFAULT;
7071                 if (copy_from_user(&control, argp, sizeof(control)))
7072                         goto out;
7073                 r = -ENXIO;
7074                 if (!kvm->arch.vpit)
7075                         goto out;
7076                 r = kvm_vm_ioctl_reinject(kvm, &control);
7077                 break;
7078         }
7079         case KVM_SET_BOOT_CPU_ID:
7080                 r = 0;
7081                 mutex_lock(&kvm->lock);
7082                 if (kvm->created_vcpus)
7083                         r = -EBUSY;
7084                 else
7085                         kvm->arch.bsp_vcpu_id = arg;
7086                 mutex_unlock(&kvm->lock);
7087                 break;
7088 #ifdef CONFIG_KVM_XEN
7089         case KVM_XEN_HVM_CONFIG: {
7090                 struct kvm_xen_hvm_config xhc;
7091                 r = -EFAULT;
7092                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7093                         goto out;
7094                 r = kvm_xen_hvm_config(kvm, &xhc);
7095                 break;
7096         }
7097         case KVM_XEN_HVM_GET_ATTR: {
7098                 struct kvm_xen_hvm_attr xha;
7099
7100                 r = -EFAULT;
7101                 if (copy_from_user(&xha, argp, sizeof(xha)))
7102                         goto out;
7103                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7104                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7105                         r = -EFAULT;
7106                 break;
7107         }
7108         case KVM_XEN_HVM_SET_ATTR: {
7109                 struct kvm_xen_hvm_attr xha;
7110
7111                 r = -EFAULT;
7112                 if (copy_from_user(&xha, argp, sizeof(xha)))
7113                         goto out;
7114                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7115                 break;
7116         }
7117         case KVM_XEN_HVM_EVTCHN_SEND: {
7118                 struct kvm_irq_routing_xen_evtchn uxe;
7119
7120                 r = -EFAULT;
7121                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7122                         goto out;
7123                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7124                 break;
7125         }
7126 #endif
7127         case KVM_SET_CLOCK:
7128                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7129                 break;
7130         case KVM_GET_CLOCK:
7131                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7132                 break;
7133         case KVM_SET_TSC_KHZ: {
7134                 u32 user_tsc_khz;
7135
7136                 r = -EINVAL;
7137                 user_tsc_khz = (u32)arg;
7138
7139                 if (kvm_caps.has_tsc_control &&
7140                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7141                         goto out;
7142
7143                 if (user_tsc_khz == 0)
7144                         user_tsc_khz = tsc_khz;
7145
7146                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7147                 r = 0;
7148
7149                 goto out;
7150         }
7151         case KVM_GET_TSC_KHZ: {
7152                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7153                 goto out;
7154         }
7155         case KVM_MEMORY_ENCRYPT_OP: {
7156                 r = -ENOTTY;
7157                 if (!kvm_x86_ops.mem_enc_ioctl)
7158                         goto out;
7159
7160                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7161                 break;
7162         }
7163         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7164                 struct kvm_enc_region region;
7165
7166                 r = -EFAULT;
7167                 if (copy_from_user(&region, argp, sizeof(region)))
7168                         goto out;
7169
7170                 r = -ENOTTY;
7171                 if (!kvm_x86_ops.mem_enc_register_region)
7172                         goto out;
7173
7174                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7175                 break;
7176         }
7177         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7178                 struct kvm_enc_region region;
7179
7180                 r = -EFAULT;
7181                 if (copy_from_user(&region, argp, sizeof(region)))
7182                         goto out;
7183
7184                 r = -ENOTTY;
7185                 if (!kvm_x86_ops.mem_enc_unregister_region)
7186                         goto out;
7187
7188                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7189                 break;
7190         }
7191         case KVM_HYPERV_EVENTFD: {
7192                 struct kvm_hyperv_eventfd hvevfd;
7193
7194                 r = -EFAULT;
7195                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7196                         goto out;
7197                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7198                 break;
7199         }
7200         case KVM_SET_PMU_EVENT_FILTER:
7201                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7202                 break;
7203         case KVM_X86_SET_MSR_FILTER: {
7204                 struct kvm_msr_filter __user *user_msr_filter = argp;
7205                 struct kvm_msr_filter filter;
7206
7207                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7208                         return -EFAULT;
7209
7210                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7211                 break;
7212         }
7213         default:
7214                 r = -ENOTTY;
7215         }
7216 out:
7217         return r;
7218 }
7219
7220 static void kvm_probe_feature_msr(u32 msr_index)
7221 {
7222         struct kvm_msr_entry msr = {
7223                 .index = msr_index,
7224         };
7225
7226         if (kvm_get_msr_feature(&msr))
7227                 return;
7228
7229         msr_based_features[num_msr_based_features++] = msr_index;
7230 }
7231
7232 static void kvm_probe_msr_to_save(u32 msr_index)
7233 {
7234         u32 dummy[2];
7235
7236         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7237                 return;
7238
7239         /*
7240          * Even MSRs that are valid in the host may not be exposed to guests in
7241          * some cases.
7242          */
7243         switch (msr_index) {
7244         case MSR_IA32_BNDCFGS:
7245                 if (!kvm_mpx_supported())
7246                         return;
7247                 break;
7248         case MSR_TSC_AUX:
7249                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7250                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7251                         return;
7252                 break;
7253         case MSR_IA32_UMWAIT_CONTROL:
7254                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7255                         return;
7256                 break;
7257         case MSR_IA32_RTIT_CTL:
7258         case MSR_IA32_RTIT_STATUS:
7259                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7260                         return;
7261                 break;
7262         case MSR_IA32_RTIT_CR3_MATCH:
7263                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7264                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7265                         return;
7266                 break;
7267         case MSR_IA32_RTIT_OUTPUT_BASE:
7268         case MSR_IA32_RTIT_OUTPUT_MASK:
7269                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7270                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7271                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7272                         return;
7273                 break;
7274         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7275                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7276                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7277                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7278                         return;
7279                 break;
7280         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7281                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7282                     kvm_pmu_cap.num_counters_gp)
7283                         return;
7284                 break;
7285         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7286                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7287                     kvm_pmu_cap.num_counters_gp)
7288                         return;
7289                 break;
7290         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7291                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7292                     kvm_pmu_cap.num_counters_fixed)
7293                         return;
7294                 break;
7295         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7296         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7297         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7298                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7299                         return;
7300                 break;
7301         case MSR_IA32_XFD:
7302         case MSR_IA32_XFD_ERR:
7303                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7304                         return;
7305                 break;
7306         case MSR_IA32_TSX_CTRL:
7307                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7308                         return;
7309                 break;
7310         default:
7311                 break;
7312         }
7313
7314         msrs_to_save[num_msrs_to_save++] = msr_index;
7315 }
7316
7317 static void kvm_init_msr_lists(void)
7318 {
7319         unsigned i;
7320
7321         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7322                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7323
7324         num_msrs_to_save = 0;
7325         num_emulated_msrs = 0;
7326         num_msr_based_features = 0;
7327
7328         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7329                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7330
7331         if (enable_pmu) {
7332                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7333                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7334         }
7335
7336         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7337                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7338                         continue;
7339
7340                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7341         }
7342
7343         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7344                 kvm_probe_feature_msr(i);
7345
7346         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7347                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7348 }
7349
7350 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7351                            const void *v)
7352 {
7353         int handled = 0;
7354         int n;
7355
7356         do {
7357                 n = min(len, 8);
7358                 if (!(lapic_in_kernel(vcpu) &&
7359                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7360                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7361                         break;
7362                 handled += n;
7363                 addr += n;
7364                 len -= n;
7365                 v += n;
7366         } while (len);
7367
7368         return handled;
7369 }
7370
7371 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7372 {
7373         int handled = 0;
7374         int n;
7375
7376         do {
7377                 n = min(len, 8);
7378                 if (!(lapic_in_kernel(vcpu) &&
7379                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7380                                          addr, n, v))
7381                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7382                         break;
7383                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7384                 handled += n;
7385                 addr += n;
7386                 len -= n;
7387                 v += n;
7388         } while (len);
7389
7390         return handled;
7391 }
7392
7393 void kvm_set_segment(struct kvm_vcpu *vcpu,
7394                      struct kvm_segment *var, int seg)
7395 {
7396         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7397 }
7398
7399 void kvm_get_segment(struct kvm_vcpu *vcpu,
7400                      struct kvm_segment *var, int seg)
7401 {
7402         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7403 }
7404
7405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7406                            struct x86_exception *exception)
7407 {
7408         struct kvm_mmu *mmu = vcpu->arch.mmu;
7409         gpa_t t_gpa;
7410
7411         BUG_ON(!mmu_is_nested(vcpu));
7412
7413         /* NPT walks are always user-walks */
7414         access |= PFERR_USER_MASK;
7415         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7416
7417         return t_gpa;
7418 }
7419
7420 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7421                               struct x86_exception *exception)
7422 {
7423         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7424
7425         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7426         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7427 }
7428 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7429
7430 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7431                                struct x86_exception *exception)
7432 {
7433         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7434
7435         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7436         access |= PFERR_WRITE_MASK;
7437         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7438 }
7439 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7440
7441 /* uses this to access any guest's mapped memory without checking CPL */
7442 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7443                                 struct x86_exception *exception)
7444 {
7445         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7446
7447         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7448 }
7449
7450 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7451                                       struct kvm_vcpu *vcpu, u64 access,
7452                                       struct x86_exception *exception)
7453 {
7454         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7455         void *data = val;
7456         int r = X86EMUL_CONTINUE;
7457
7458         while (bytes) {
7459                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7460                 unsigned offset = addr & (PAGE_SIZE-1);
7461                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7462                 int ret;
7463
7464                 if (gpa == INVALID_GPA)
7465                         return X86EMUL_PROPAGATE_FAULT;
7466                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7467                                                offset, toread);
7468                 if (ret < 0) {
7469                         r = X86EMUL_IO_NEEDED;
7470                         goto out;
7471                 }
7472
7473                 bytes -= toread;
7474                 data += toread;
7475                 addr += toread;
7476         }
7477 out:
7478         return r;
7479 }
7480
7481 /* used for instruction fetching */
7482 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7483                                 gva_t addr, void *val, unsigned int bytes,
7484                                 struct x86_exception *exception)
7485 {
7486         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7487         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7488         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7489         unsigned offset;
7490         int ret;
7491
7492         /* Inline kvm_read_guest_virt_helper for speed.  */
7493         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7494                                     exception);
7495         if (unlikely(gpa == INVALID_GPA))
7496                 return X86EMUL_PROPAGATE_FAULT;
7497
7498         offset = addr & (PAGE_SIZE-1);
7499         if (WARN_ON(offset + bytes > PAGE_SIZE))
7500                 bytes = (unsigned)PAGE_SIZE - offset;
7501         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7502                                        offset, bytes);
7503         if (unlikely(ret < 0))
7504                 return X86EMUL_IO_NEEDED;
7505
7506         return X86EMUL_CONTINUE;
7507 }
7508
7509 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7510                                gva_t addr, void *val, unsigned int bytes,
7511                                struct x86_exception *exception)
7512 {
7513         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7514
7515         /*
7516          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7517          * is returned, but our callers are not ready for that and they blindly
7518          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7519          * uninitialized kernel stack memory into cr2 and error code.
7520          */
7521         memset(exception, 0, sizeof(*exception));
7522         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7523                                           exception);
7524 }
7525 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7526
7527 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7528                              gva_t addr, void *val, unsigned int bytes,
7529                              struct x86_exception *exception, bool system)
7530 {
7531         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7532         u64 access = 0;
7533
7534         if (system)
7535                 access |= PFERR_IMPLICIT_ACCESS;
7536         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7537                 access |= PFERR_USER_MASK;
7538
7539         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7540 }
7541
7542 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7543                                       struct kvm_vcpu *vcpu, u64 access,
7544                                       struct x86_exception *exception)
7545 {
7546         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7547         void *data = val;
7548         int r = X86EMUL_CONTINUE;
7549
7550         while (bytes) {
7551                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7552                 unsigned offset = addr & (PAGE_SIZE-1);
7553                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7554                 int ret;
7555
7556                 if (gpa == INVALID_GPA)
7557                         return X86EMUL_PROPAGATE_FAULT;
7558                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7559                 if (ret < 0) {
7560                         r = X86EMUL_IO_NEEDED;
7561                         goto out;
7562                 }
7563
7564                 bytes -= towrite;
7565                 data += towrite;
7566                 addr += towrite;
7567         }
7568 out:
7569         return r;
7570 }
7571
7572 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7573                               unsigned int bytes, struct x86_exception *exception,
7574                               bool system)
7575 {
7576         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7577         u64 access = PFERR_WRITE_MASK;
7578
7579         if (system)
7580                 access |= PFERR_IMPLICIT_ACCESS;
7581         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7582                 access |= PFERR_USER_MASK;
7583
7584         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7585                                            access, exception);
7586 }
7587
7588 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7589                                 unsigned int bytes, struct x86_exception *exception)
7590 {
7591         /* kvm_write_guest_virt_system can pull in tons of pages. */
7592         vcpu->arch.l1tf_flush_l1d = true;
7593
7594         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7595                                            PFERR_WRITE_MASK, exception);
7596 }
7597 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7598
7599 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7600                                   void *insn, int insn_len)
7601 {
7602         return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7603                                                               insn, insn_len);
7604 }
7605
7606 int handle_ud(struct kvm_vcpu *vcpu)
7607 {
7608         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7609         int fep_flags = READ_ONCE(force_emulation_prefix);
7610         int emul_type = EMULTYPE_TRAP_UD;
7611         char sig[5]; /* ud2; .ascii "kvm" */
7612         struct x86_exception e;
7613         int r;
7614
7615         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7616         if (r != X86EMUL_CONTINUE)
7617                 return 1;
7618
7619         if (fep_flags &&
7620             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7621                                 sig, sizeof(sig), &e) == 0 &&
7622             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7623                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7624                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7625                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7626                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7627         }
7628
7629         return kvm_emulate_instruction(vcpu, emul_type);
7630 }
7631 EXPORT_SYMBOL_GPL(handle_ud);
7632
7633 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7634                             gpa_t gpa, bool write)
7635 {
7636         /* For APIC access vmexit */
7637         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7638                 return 1;
7639
7640         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7641                 trace_vcpu_match_mmio(gva, gpa, write, true);
7642                 return 1;
7643         }
7644
7645         return 0;
7646 }
7647
7648 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7649                                 gpa_t *gpa, struct x86_exception *exception,
7650                                 bool write)
7651 {
7652         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7653         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7654                 | (write ? PFERR_WRITE_MASK : 0);
7655
7656         /*
7657          * currently PKRU is only applied to ept enabled guest so
7658          * there is no pkey in EPT page table for L1 guest or EPT
7659          * shadow page table for L2 guest.
7660          */
7661         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7662             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7663                               vcpu->arch.mmio_access, 0, access))) {
7664                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7665                                         (gva & (PAGE_SIZE - 1));
7666                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7667                 return 1;
7668         }
7669
7670         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7671
7672         if (*gpa == INVALID_GPA)
7673                 return -1;
7674
7675         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7676 }
7677
7678 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7679                         const void *val, int bytes)
7680 {
7681         int ret;
7682
7683         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7684         if (ret < 0)
7685                 return 0;
7686         kvm_page_track_write(vcpu, gpa, val, bytes);
7687         return 1;
7688 }
7689
7690 struct read_write_emulator_ops {
7691         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7692                                   int bytes);
7693         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7694                                   void *val, int bytes);
7695         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7696                                int bytes, void *val);
7697         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7698                                     void *val, int bytes);
7699         bool write;
7700 };
7701
7702 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7703 {
7704         if (vcpu->mmio_read_completed) {
7705                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7706                                vcpu->mmio_fragments[0].gpa, val);
7707                 vcpu->mmio_read_completed = 0;
7708                 return 1;
7709         }
7710
7711         return 0;
7712 }
7713
7714 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7715                         void *val, int bytes)
7716 {
7717         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7718 }
7719
7720 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7721                          void *val, int bytes)
7722 {
7723         return emulator_write_phys(vcpu, gpa, val, bytes);
7724 }
7725
7726 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7727 {
7728         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7729         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7730 }
7731
7732 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7733                           void *val, int bytes)
7734 {
7735         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7736         return X86EMUL_IO_NEEDED;
7737 }
7738
7739 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7740                            void *val, int bytes)
7741 {
7742         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7743
7744         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7745         return X86EMUL_CONTINUE;
7746 }
7747
7748 static const struct read_write_emulator_ops read_emultor = {
7749         .read_write_prepare = read_prepare,
7750         .read_write_emulate = read_emulate,
7751         .read_write_mmio = vcpu_mmio_read,
7752         .read_write_exit_mmio = read_exit_mmio,
7753 };
7754
7755 static const struct read_write_emulator_ops write_emultor = {
7756         .read_write_emulate = write_emulate,
7757         .read_write_mmio = write_mmio,
7758         .read_write_exit_mmio = write_exit_mmio,
7759         .write = true,
7760 };
7761
7762 static int emulator_read_write_onepage(unsigned long addr, void *val,
7763                                        unsigned int bytes,
7764                                        struct x86_exception *exception,
7765                                        struct kvm_vcpu *vcpu,
7766                                        const struct read_write_emulator_ops *ops)
7767 {
7768         gpa_t gpa;
7769         int handled, ret;
7770         bool write = ops->write;
7771         struct kvm_mmio_fragment *frag;
7772         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7773
7774         /*
7775          * If the exit was due to a NPF we may already have a GPA.
7776          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7777          * Note, this cannot be used on string operations since string
7778          * operation using rep will only have the initial GPA from the NPF
7779          * occurred.
7780          */
7781         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7782             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7783                 gpa = ctxt->gpa_val;
7784                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7785         } else {
7786                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7787                 if (ret < 0)
7788                         return X86EMUL_PROPAGATE_FAULT;
7789         }
7790
7791         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7792                 return X86EMUL_CONTINUE;
7793
7794         /*
7795          * Is this MMIO handled locally?
7796          */
7797         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7798         if (handled == bytes)
7799                 return X86EMUL_CONTINUE;
7800
7801         gpa += handled;
7802         bytes -= handled;
7803         val += handled;
7804
7805         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7806         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7807         frag->gpa = gpa;
7808         frag->data = val;
7809         frag->len = bytes;
7810         return X86EMUL_CONTINUE;
7811 }
7812
7813 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7814                         unsigned long addr,
7815                         void *val, unsigned int bytes,
7816                         struct x86_exception *exception,
7817                         const struct read_write_emulator_ops *ops)
7818 {
7819         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7820         gpa_t gpa;
7821         int rc;
7822
7823         if (ops->read_write_prepare &&
7824                   ops->read_write_prepare(vcpu, val, bytes))
7825                 return X86EMUL_CONTINUE;
7826
7827         vcpu->mmio_nr_fragments = 0;
7828
7829         /* Crossing a page boundary? */
7830         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7831                 int now;
7832
7833                 now = -addr & ~PAGE_MASK;
7834                 rc = emulator_read_write_onepage(addr, val, now, exception,
7835                                                  vcpu, ops);
7836
7837                 if (rc != X86EMUL_CONTINUE)
7838                         return rc;
7839                 addr += now;
7840                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7841                         addr = (u32)addr;
7842                 val += now;
7843                 bytes -= now;
7844         }
7845
7846         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7847                                          vcpu, ops);
7848         if (rc != X86EMUL_CONTINUE)
7849                 return rc;
7850
7851         if (!vcpu->mmio_nr_fragments)
7852                 return rc;
7853
7854         gpa = vcpu->mmio_fragments[0].gpa;
7855
7856         vcpu->mmio_needed = 1;
7857         vcpu->mmio_cur_fragment = 0;
7858
7859         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7860         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7861         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7862         vcpu->run->mmio.phys_addr = gpa;
7863
7864         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7865 }
7866
7867 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7868                                   unsigned long addr,
7869                                   void *val,
7870                                   unsigned int bytes,
7871                                   struct x86_exception *exception)
7872 {
7873         return emulator_read_write(ctxt, addr, val, bytes,
7874                                    exception, &read_emultor);
7875 }
7876
7877 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7878                             unsigned long addr,
7879                             const void *val,
7880                             unsigned int bytes,
7881                             struct x86_exception *exception)
7882 {
7883         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7884                                    exception, &write_emultor);
7885 }
7886
7887 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7888         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7889
7890 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7891                                      unsigned long addr,
7892                                      const void *old,
7893                                      const void *new,
7894                                      unsigned int bytes,
7895                                      struct x86_exception *exception)
7896 {
7897         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7898         u64 page_line_mask;
7899         unsigned long hva;
7900         gpa_t gpa;
7901         int r;
7902
7903         /* guests cmpxchg8b have to be emulated atomically */
7904         if (bytes > 8 || (bytes & (bytes - 1)))
7905                 goto emul_write;
7906
7907         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7908
7909         if (gpa == INVALID_GPA ||
7910             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7911                 goto emul_write;
7912
7913         /*
7914          * Emulate the atomic as a straight write to avoid #AC if SLD is
7915          * enabled in the host and the access splits a cache line.
7916          */
7917         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7918                 page_line_mask = ~(cache_line_size() - 1);
7919         else
7920                 page_line_mask = PAGE_MASK;
7921
7922         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7923                 goto emul_write;
7924
7925         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7926         if (kvm_is_error_hva(hva))
7927                 goto emul_write;
7928
7929         hva += offset_in_page(gpa);
7930
7931         switch (bytes) {
7932         case 1:
7933                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7934                 break;
7935         case 2:
7936                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7937                 break;
7938         case 4:
7939                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7940                 break;
7941         case 8:
7942                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7943                 break;
7944         default:
7945                 BUG();
7946         }
7947
7948         if (r < 0)
7949                 return X86EMUL_UNHANDLEABLE;
7950         if (r)
7951                 return X86EMUL_CMPXCHG_FAILED;
7952
7953         kvm_page_track_write(vcpu, gpa, new, bytes);
7954
7955         return X86EMUL_CONTINUE;
7956
7957 emul_write:
7958         pr_warn_once("emulating exchange as write\n");
7959
7960         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7961 }
7962
7963 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7964                                unsigned short port, void *data,
7965                                unsigned int count, bool in)
7966 {
7967         unsigned i;
7968         int r;
7969
7970         WARN_ON_ONCE(vcpu->arch.pio.count);
7971         for (i = 0; i < count; i++) {
7972                 if (in)
7973                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7974                 else
7975                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7976
7977                 if (r) {
7978                         if (i == 0)
7979                                 goto userspace_io;
7980
7981                         /*
7982                          * Userspace must have unregistered the device while PIO
7983                          * was running.  Drop writes / read as 0.
7984                          */
7985                         if (in)
7986                                 memset(data, 0, size * (count - i));
7987                         break;
7988                 }
7989
7990                 data += size;
7991         }
7992         return 1;
7993
7994 userspace_io:
7995         vcpu->arch.pio.port = port;
7996         vcpu->arch.pio.in = in;
7997         vcpu->arch.pio.count = count;
7998         vcpu->arch.pio.size = size;
7999
8000         if (in)
8001                 memset(vcpu->arch.pio_data, 0, size * count);
8002         else
8003                 memcpy(vcpu->arch.pio_data, data, size * count);
8004
8005         vcpu->run->exit_reason = KVM_EXIT_IO;
8006         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8007         vcpu->run->io.size = size;
8008         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8009         vcpu->run->io.count = count;
8010         vcpu->run->io.port = port;
8011         return 0;
8012 }
8013
8014 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8015                            unsigned short port, void *val, unsigned int count)
8016 {
8017         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8018         if (r)
8019                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8020
8021         return r;
8022 }
8023
8024 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8025 {
8026         int size = vcpu->arch.pio.size;
8027         unsigned int count = vcpu->arch.pio.count;
8028         memcpy(val, vcpu->arch.pio_data, size * count);
8029         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8030         vcpu->arch.pio.count = 0;
8031 }
8032
8033 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8034                                     int size, unsigned short port, void *val,
8035                                     unsigned int count)
8036 {
8037         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038         if (vcpu->arch.pio.count) {
8039                 /*
8040                  * Complete a previous iteration that required userspace I/O.
8041                  * Note, @count isn't guaranteed to match pio.count as userspace
8042                  * can modify ECX before rerunning the vCPU.  Ignore any such
8043                  * shenanigans as KVM doesn't support modifying the rep count,
8044                  * and the emulator ensures @count doesn't overflow the buffer.
8045                  */
8046                 complete_emulator_pio_in(vcpu, val);
8047                 return 1;
8048         }
8049
8050         return emulator_pio_in(vcpu, size, port, val, count);
8051 }
8052
8053 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8054                             unsigned short port, const void *val,
8055                             unsigned int count)
8056 {
8057         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8058         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8059 }
8060
8061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8062                                      int size, unsigned short port,
8063                                      const void *val, unsigned int count)
8064 {
8065         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8066 }
8067
8068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8069 {
8070         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8071 }
8072
8073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8074 {
8075         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8076 }
8077
8078 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8079 {
8080         if (!need_emulate_wbinvd(vcpu))
8081                 return X86EMUL_CONTINUE;
8082
8083         if (static_call(kvm_x86_has_wbinvd_exit)()) {
8084                 int cpu = get_cpu();
8085
8086                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8087                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8088                                 wbinvd_ipi, NULL, 1);
8089                 put_cpu();
8090                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8091         } else
8092                 wbinvd();
8093         return X86EMUL_CONTINUE;
8094 }
8095
8096 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8097 {
8098         kvm_emulate_wbinvd_noskip(vcpu);
8099         return kvm_skip_emulated_instruction(vcpu);
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8102
8103
8104
8105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8106 {
8107         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8108 }
8109
8110 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8111                             unsigned long *dest)
8112 {
8113         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8114 }
8115
8116 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8117                            unsigned long value)
8118 {
8119
8120         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8121 }
8122
8123 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8124 {
8125         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8126 }
8127
8128 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8129 {
8130         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8131         unsigned long value;
8132
8133         switch (cr) {
8134         case 0:
8135                 value = kvm_read_cr0(vcpu);
8136                 break;
8137         case 2:
8138                 value = vcpu->arch.cr2;
8139                 break;
8140         case 3:
8141                 value = kvm_read_cr3(vcpu);
8142                 break;
8143         case 4:
8144                 value = kvm_read_cr4(vcpu);
8145                 break;
8146         case 8:
8147                 value = kvm_get_cr8(vcpu);
8148                 break;
8149         default:
8150                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8151                 return 0;
8152         }
8153
8154         return value;
8155 }
8156
8157 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8158 {
8159         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8160         int res = 0;
8161
8162         switch (cr) {
8163         case 0:
8164                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8165                 break;
8166         case 2:
8167                 vcpu->arch.cr2 = val;
8168                 break;
8169         case 3:
8170                 res = kvm_set_cr3(vcpu, val);
8171                 break;
8172         case 4:
8173                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8174                 break;
8175         case 8:
8176                 res = kvm_set_cr8(vcpu, val);
8177                 break;
8178         default:
8179                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8180                 res = -1;
8181         }
8182
8183         return res;
8184 }
8185
8186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8187 {
8188         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8189 }
8190
8191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8192 {
8193         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8194 }
8195
8196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8197 {
8198         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8199 }
8200
8201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8202 {
8203         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8204 }
8205
8206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8207 {
8208         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8209 }
8210
8211 static unsigned long emulator_get_cached_segment_base(
8212         struct x86_emulate_ctxt *ctxt, int seg)
8213 {
8214         return get_segment_base(emul_to_vcpu(ctxt), seg);
8215 }
8216
8217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8218                                  struct desc_struct *desc, u32 *base3,
8219                                  int seg)
8220 {
8221         struct kvm_segment var;
8222
8223         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8224         *selector = var.selector;
8225
8226         if (var.unusable) {
8227                 memset(desc, 0, sizeof(*desc));
8228                 if (base3)
8229                         *base3 = 0;
8230                 return false;
8231         }
8232
8233         if (var.g)
8234                 var.limit >>= 12;
8235         set_desc_limit(desc, var.limit);
8236         set_desc_base(desc, (unsigned long)var.base);
8237 #ifdef CONFIG_X86_64
8238         if (base3)
8239                 *base3 = var.base >> 32;
8240 #endif
8241         desc->type = var.type;
8242         desc->s = var.s;
8243         desc->dpl = var.dpl;
8244         desc->p = var.present;
8245         desc->avl = var.avl;
8246         desc->l = var.l;
8247         desc->d = var.db;
8248         desc->g = var.g;
8249
8250         return true;
8251 }
8252
8253 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8254                                  struct desc_struct *desc, u32 base3,
8255                                  int seg)
8256 {
8257         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258         struct kvm_segment var;
8259
8260         var.selector = selector;
8261         var.base = get_desc_base(desc);
8262 #ifdef CONFIG_X86_64
8263         var.base |= ((u64)base3) << 32;
8264 #endif
8265         var.limit = get_desc_limit(desc);
8266         if (desc->g)
8267                 var.limit = (var.limit << 12) | 0xfff;
8268         var.type = desc->type;
8269         var.dpl = desc->dpl;
8270         var.db = desc->d;
8271         var.s = desc->s;
8272         var.l = desc->l;
8273         var.g = desc->g;
8274         var.avl = desc->avl;
8275         var.present = desc->p;
8276         var.unusable = !var.present;
8277         var.padding = 0;
8278
8279         kvm_set_segment(vcpu, &var, seg);
8280         return;
8281 }
8282
8283 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8284                                         u32 msr_index, u64 *pdata)
8285 {
8286         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8287         int r;
8288
8289         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8290         if (r < 0)
8291                 return X86EMUL_UNHANDLEABLE;
8292
8293         if (r) {
8294                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8295                                        complete_emulated_rdmsr, r))
8296                         return X86EMUL_IO_NEEDED;
8297
8298                 trace_kvm_msr_read_ex(msr_index);
8299                 return X86EMUL_PROPAGATE_FAULT;
8300         }
8301
8302         trace_kvm_msr_read(msr_index, *pdata);
8303         return X86EMUL_CONTINUE;
8304 }
8305
8306 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8307                                         u32 msr_index, u64 data)
8308 {
8309         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8310         int r;
8311
8312         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8313         if (r < 0)
8314                 return X86EMUL_UNHANDLEABLE;
8315
8316         if (r) {
8317                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8318                                        complete_emulated_msr_access, r))
8319                         return X86EMUL_IO_NEEDED;
8320
8321                 trace_kvm_msr_write_ex(msr_index, data);
8322                 return X86EMUL_PROPAGATE_FAULT;
8323         }
8324
8325         trace_kvm_msr_write(msr_index, data);
8326         return X86EMUL_CONTINUE;
8327 }
8328
8329 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8330                             u32 msr_index, u64 *pdata)
8331 {
8332         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8333 }
8334
8335 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8336                               u32 pmc)
8337 {
8338         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8339                 return 0;
8340         return -EINVAL;
8341 }
8342
8343 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8344                              u32 pmc, u64 *pdata)
8345 {
8346         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8347 }
8348
8349 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8350 {
8351         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8352 }
8353
8354 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8355                               struct x86_instruction_info *info,
8356                               enum x86_intercept_stage stage)
8357 {
8358         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8359                                             &ctxt->exception);
8360 }
8361
8362 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8363                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8364                               bool exact_only)
8365 {
8366         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8367 }
8368
8369 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8370 {
8371         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8372 }
8373
8374 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8375 {
8376         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8377 }
8378
8379 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8380 {
8381         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8382 }
8383
8384 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8385 {
8386         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8387 }
8388
8389 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8390 {
8391         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8392 }
8393
8394 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8395 {
8396         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8397 }
8398
8399 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8400 {
8401         return is_smm(emul_to_vcpu(ctxt));
8402 }
8403
8404 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8405 {
8406         return is_guest_mode(emul_to_vcpu(ctxt));
8407 }
8408
8409 #ifndef CONFIG_KVM_SMM
8410 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8411 {
8412         WARN_ON_ONCE(1);
8413         return X86EMUL_UNHANDLEABLE;
8414 }
8415 #endif
8416
8417 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8418 {
8419         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8420 }
8421
8422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8423 {
8424         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8425 }
8426
8427 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8428 {
8429         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8430
8431         if (!kvm->vm_bugged)
8432                 kvm_vm_bugged(kvm);
8433 }
8434
8435 static const struct x86_emulate_ops emulate_ops = {
8436         .vm_bugged           = emulator_vm_bugged,
8437         .read_gpr            = emulator_read_gpr,
8438         .write_gpr           = emulator_write_gpr,
8439         .read_std            = emulator_read_std,
8440         .write_std           = emulator_write_std,
8441         .fetch               = kvm_fetch_guest_virt,
8442         .read_emulated       = emulator_read_emulated,
8443         .write_emulated      = emulator_write_emulated,
8444         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8445         .invlpg              = emulator_invlpg,
8446         .pio_in_emulated     = emulator_pio_in_emulated,
8447         .pio_out_emulated    = emulator_pio_out_emulated,
8448         .get_segment         = emulator_get_segment,
8449         .set_segment         = emulator_set_segment,
8450         .get_cached_segment_base = emulator_get_cached_segment_base,
8451         .get_gdt             = emulator_get_gdt,
8452         .get_idt             = emulator_get_idt,
8453         .set_gdt             = emulator_set_gdt,
8454         .set_idt             = emulator_set_idt,
8455         .get_cr              = emulator_get_cr,
8456         .set_cr              = emulator_set_cr,
8457         .cpl                 = emulator_get_cpl,
8458         .get_dr              = emulator_get_dr,
8459         .set_dr              = emulator_set_dr,
8460         .set_msr_with_filter = emulator_set_msr_with_filter,
8461         .get_msr_with_filter = emulator_get_msr_with_filter,
8462         .get_msr             = emulator_get_msr,
8463         .check_pmc           = emulator_check_pmc,
8464         .read_pmc            = emulator_read_pmc,
8465         .halt                = emulator_halt,
8466         .wbinvd              = emulator_wbinvd,
8467         .fix_hypercall       = emulator_fix_hypercall,
8468         .intercept           = emulator_intercept,
8469         .get_cpuid           = emulator_get_cpuid,
8470         .guest_has_movbe     = emulator_guest_has_movbe,
8471         .guest_has_fxsr      = emulator_guest_has_fxsr,
8472         .guest_has_rdpid     = emulator_guest_has_rdpid,
8473         .set_nmi_mask        = emulator_set_nmi_mask,
8474         .is_smm              = emulator_is_smm,
8475         .is_guest_mode       = emulator_is_guest_mode,
8476         .leave_smm           = emulator_leave_smm,
8477         .triple_fault        = emulator_triple_fault,
8478         .set_xcr             = emulator_set_xcr,
8479 };
8480
8481 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8482 {
8483         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8484         /*
8485          * an sti; sti; sequence only disable interrupts for the first
8486          * instruction. So, if the last instruction, be it emulated or
8487          * not, left the system with the INT_STI flag enabled, it
8488          * means that the last instruction is an sti. We should not
8489          * leave the flag on in this case. The same goes for mov ss
8490          */
8491         if (int_shadow & mask)
8492                 mask = 0;
8493         if (unlikely(int_shadow || mask)) {
8494                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8495                 if (!mask)
8496                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8497         }
8498 }
8499
8500 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8501 {
8502         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8503
8504         if (ctxt->exception.vector == PF_VECTOR)
8505                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8506         else if (ctxt->exception.error_code_valid)
8507                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8508                                       ctxt->exception.error_code);
8509         else
8510                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8511 }
8512
8513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8514 {
8515         struct x86_emulate_ctxt *ctxt;
8516
8517         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8518         if (!ctxt) {
8519                 pr_err("failed to allocate vcpu's emulator\n");
8520                 return NULL;
8521         }
8522
8523         ctxt->vcpu = vcpu;
8524         ctxt->ops = &emulate_ops;
8525         vcpu->arch.emulate_ctxt = ctxt;
8526
8527         return ctxt;
8528 }
8529
8530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8531 {
8532         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8533         int cs_db, cs_l;
8534
8535         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8536
8537         ctxt->gpa_available = false;
8538         ctxt->eflags = kvm_get_rflags(vcpu);
8539         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8540
8541         ctxt->eip = kvm_rip_read(vcpu);
8542         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8543                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8544                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8545                      cs_db                              ? X86EMUL_MODE_PROT32 :
8546                                                           X86EMUL_MODE_PROT16;
8547         ctxt->interruptibility = 0;
8548         ctxt->have_exception = false;
8549         ctxt->exception.vector = -1;
8550         ctxt->perm_ok = false;
8551
8552         init_decode_cache(ctxt);
8553         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8554 }
8555
8556 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8557 {
8558         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8559         int ret;
8560
8561         init_emulate_ctxt(vcpu);
8562
8563         ctxt->op_bytes = 2;
8564         ctxt->ad_bytes = 2;
8565         ctxt->_eip = ctxt->eip + inc_eip;
8566         ret = emulate_int_real(ctxt, irq);
8567
8568         if (ret != X86EMUL_CONTINUE) {
8569                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8570         } else {
8571                 ctxt->eip = ctxt->_eip;
8572                 kvm_rip_write(vcpu, ctxt->eip);
8573                 kvm_set_rflags(vcpu, ctxt->eflags);
8574         }
8575 }
8576 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8577
8578 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8579                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8580 {
8581         struct kvm_run *run = vcpu->run;
8582         u64 info[5];
8583         u8 info_start;
8584
8585         /*
8586          * Zero the whole array used to retrieve the exit info, as casting to
8587          * u32 for select entries will leave some chunks uninitialized.
8588          */
8589         memset(&info, 0, sizeof(info));
8590
8591         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8592                                            &info[2], (u32 *)&info[3],
8593                                            (u32 *)&info[4]);
8594
8595         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8596         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8597
8598         /*
8599          * There's currently space for 13 entries, but 5 are used for the exit
8600          * reason and info.  Restrict to 4 to reduce the maintenance burden
8601          * when expanding kvm_run.emulation_failure in the future.
8602          */
8603         if (WARN_ON_ONCE(ndata > 4))
8604                 ndata = 4;
8605
8606         /* Always include the flags as a 'data' entry. */
8607         info_start = 1;
8608         run->emulation_failure.flags = 0;
8609
8610         if (insn_size) {
8611                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8612                               sizeof(run->emulation_failure.insn_bytes) != 16));
8613                 info_start += 2;
8614                 run->emulation_failure.flags |=
8615                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8616                 run->emulation_failure.insn_size = insn_size;
8617                 memset(run->emulation_failure.insn_bytes, 0x90,
8618                        sizeof(run->emulation_failure.insn_bytes));
8619                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8620         }
8621
8622         memcpy(&run->internal.data[info_start], info, sizeof(info));
8623         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8624                ndata * sizeof(data[0]));
8625
8626         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8627 }
8628
8629 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8630 {
8631         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8632
8633         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8634                                        ctxt->fetch.end - ctxt->fetch.data);
8635 }
8636
8637 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8638                                           u8 ndata)
8639 {
8640         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8641 }
8642 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8643
8644 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8645 {
8646         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8647 }
8648 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8649
8650 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8651 {
8652         struct kvm *kvm = vcpu->kvm;
8653
8654         ++vcpu->stat.insn_emulation_fail;
8655         trace_kvm_emulate_insn_failed(vcpu);
8656
8657         if (emulation_type & EMULTYPE_VMWARE_GP) {
8658                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8659                 return 1;
8660         }
8661
8662         if (kvm->arch.exit_on_emulation_error ||
8663             (emulation_type & EMULTYPE_SKIP)) {
8664                 prepare_emulation_ctxt_failure_exit(vcpu);
8665                 return 0;
8666         }
8667
8668         kvm_queue_exception(vcpu, UD_VECTOR);
8669
8670         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8671                 prepare_emulation_ctxt_failure_exit(vcpu);
8672                 return 0;
8673         }
8674
8675         return 1;
8676 }
8677
8678 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8679                                   int emulation_type)
8680 {
8681         gpa_t gpa = cr2_or_gpa;
8682         kvm_pfn_t pfn;
8683
8684         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8685                 return false;
8686
8687         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8688             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8689                 return false;
8690
8691         if (!vcpu->arch.mmu->root_role.direct) {
8692                 /*
8693                  * Write permission should be allowed since only
8694                  * write access need to be emulated.
8695                  */
8696                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8697
8698                 /*
8699                  * If the mapping is invalid in guest, let cpu retry
8700                  * it to generate fault.
8701                  */
8702                 if (gpa == INVALID_GPA)
8703                         return true;
8704         }
8705
8706         /*
8707          * Do not retry the unhandleable instruction if it faults on the
8708          * readonly host memory, otherwise it will goto a infinite loop:
8709          * retry instruction -> write #PF -> emulation fail -> retry
8710          * instruction -> ...
8711          */
8712         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8713
8714         /*
8715          * If the instruction failed on the error pfn, it can not be fixed,
8716          * report the error to userspace.
8717          */
8718         if (is_error_noslot_pfn(pfn))
8719                 return false;
8720
8721         kvm_release_pfn_clean(pfn);
8722
8723         /* The instructions are well-emulated on direct mmu. */
8724         if (vcpu->arch.mmu->root_role.direct) {
8725                 unsigned int indirect_shadow_pages;
8726
8727                 write_lock(&vcpu->kvm->mmu_lock);
8728                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8729                 write_unlock(&vcpu->kvm->mmu_lock);
8730
8731                 if (indirect_shadow_pages)
8732                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8733
8734                 return true;
8735         }
8736
8737         /*
8738          * if emulation was due to access to shadowed page table
8739          * and it failed try to unshadow page and re-enter the
8740          * guest to let CPU execute the instruction.
8741          */
8742         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8743
8744         /*
8745          * If the access faults on its page table, it can not
8746          * be fixed by unprotecting shadow page and it should
8747          * be reported to userspace.
8748          */
8749         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8750 }
8751
8752 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8753                               gpa_t cr2_or_gpa,  int emulation_type)
8754 {
8755         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8756         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8757
8758         last_retry_eip = vcpu->arch.last_retry_eip;
8759         last_retry_addr = vcpu->arch.last_retry_addr;
8760
8761         /*
8762          * If the emulation is caused by #PF and it is non-page_table
8763          * writing instruction, it means the VM-EXIT is caused by shadow
8764          * page protected, we can zap the shadow page and retry this
8765          * instruction directly.
8766          *
8767          * Note: if the guest uses a non-page-table modifying instruction
8768          * on the PDE that points to the instruction, then we will unmap
8769          * the instruction and go to an infinite loop. So, we cache the
8770          * last retried eip and the last fault address, if we meet the eip
8771          * and the address again, we can break out of the potential infinite
8772          * loop.
8773          */
8774         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8775
8776         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8777                 return false;
8778
8779         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8780             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8781                 return false;
8782
8783         if (x86_page_table_writing_insn(ctxt))
8784                 return false;
8785
8786         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8787                 return false;
8788
8789         vcpu->arch.last_retry_eip = ctxt->eip;
8790         vcpu->arch.last_retry_addr = cr2_or_gpa;
8791
8792         if (!vcpu->arch.mmu->root_role.direct)
8793                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8794
8795         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8796
8797         return true;
8798 }
8799
8800 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8801 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8802
8803 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8804                                 unsigned long *db)
8805 {
8806         u32 dr6 = 0;
8807         int i;
8808         u32 enable, rwlen;
8809
8810         enable = dr7;
8811         rwlen = dr7 >> 16;
8812         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8813                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8814                         dr6 |= (1 << i);
8815         return dr6;
8816 }
8817
8818 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8819 {
8820         struct kvm_run *kvm_run = vcpu->run;
8821
8822         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8823                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8824                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8825                 kvm_run->debug.arch.exception = DB_VECTOR;
8826                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8827                 return 0;
8828         }
8829         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8830         return 1;
8831 }
8832
8833 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8834 {
8835         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8836         int r;
8837
8838         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8839         if (unlikely(!r))
8840                 return 0;
8841
8842         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8843
8844         /*
8845          * rflags is the old, "raw" value of the flags.  The new value has
8846          * not been saved yet.
8847          *
8848          * This is correct even for TF set by the guest, because "the
8849          * processor will not generate this exception after the instruction
8850          * that sets the TF flag".
8851          */
8852         if (unlikely(rflags & X86_EFLAGS_TF))
8853                 r = kvm_vcpu_do_singlestep(vcpu);
8854         return r;
8855 }
8856 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8857
8858 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8859 {
8860         u32 shadow;
8861
8862         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8863                 return true;
8864
8865         /*
8866          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8867          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8868          * to avoid the relatively expensive CPUID lookup.
8869          */
8870         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8871         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8872                guest_cpuid_is_intel(vcpu);
8873 }
8874
8875 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8876                                            int emulation_type, int *r)
8877 {
8878         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8879
8880         /*
8881          * Do not check for code breakpoints if hardware has already done the
8882          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8883          * the instruction has passed all exception checks, and all intercepted
8884          * exceptions that trigger emulation have lower priority than code
8885          * breakpoints, i.e. the fact that the intercepted exception occurred
8886          * means any code breakpoints have already been serviced.
8887          *
8888          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8889          * hardware has checked the RIP of the magic prefix, but not the RIP of
8890          * the instruction being emulated.  The intent of forced emulation is
8891          * to behave as if KVM intercepted the instruction without an exception
8892          * and without a prefix.
8893          */
8894         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8895                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8896                 return false;
8897
8898         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8899             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8900                 struct kvm_run *kvm_run = vcpu->run;
8901                 unsigned long eip = kvm_get_linear_rip(vcpu);
8902                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8903                                            vcpu->arch.guest_debug_dr7,
8904                                            vcpu->arch.eff_db);
8905
8906                 if (dr6 != 0) {
8907                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8908                         kvm_run->debug.arch.pc = eip;
8909                         kvm_run->debug.arch.exception = DB_VECTOR;
8910                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8911                         *r = 0;
8912                         return true;
8913                 }
8914         }
8915
8916         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8917             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8918                 unsigned long eip = kvm_get_linear_rip(vcpu);
8919                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8920                                            vcpu->arch.dr7,
8921                                            vcpu->arch.db);
8922
8923                 if (dr6 != 0) {
8924                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8925                         *r = 1;
8926                         return true;
8927                 }
8928         }
8929
8930         return false;
8931 }
8932
8933 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8934 {
8935         switch (ctxt->opcode_len) {
8936         case 1:
8937                 switch (ctxt->b) {
8938                 case 0xe4:      /* IN */
8939                 case 0xe5:
8940                 case 0xec:
8941                 case 0xed:
8942                 case 0xe6:      /* OUT */
8943                 case 0xe7:
8944                 case 0xee:
8945                 case 0xef:
8946                 case 0x6c:      /* INS */
8947                 case 0x6d:
8948                 case 0x6e:      /* OUTS */
8949                 case 0x6f:
8950                         return true;
8951                 }
8952                 break;
8953         case 2:
8954                 switch (ctxt->b) {
8955                 case 0x33:      /* RDPMC */
8956                         return true;
8957                 }
8958                 break;
8959         }
8960
8961         return false;
8962 }
8963
8964 /*
8965  * Decode an instruction for emulation.  The caller is responsible for handling
8966  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8967  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8968  * code breakpoints have higher priority and thus have already been done by
8969  * hardware.
8970  *
8971  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8972  *     response to a machine check.
8973  */
8974 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8975                                     void *insn, int insn_len)
8976 {
8977         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8978         int r;
8979
8980         init_emulate_ctxt(vcpu);
8981
8982         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8983
8984         trace_kvm_emulate_insn_start(vcpu);
8985         ++vcpu->stat.insn_emulation;
8986
8987         return r;
8988 }
8989 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8990
8991 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8992                             int emulation_type, void *insn, int insn_len)
8993 {
8994         int r;
8995         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8996         bool writeback = true;
8997
8998         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
8999         if (r != X86EMUL_CONTINUE) {
9000                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9001                         return 1;
9002
9003                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9004                 return handle_emulation_failure(vcpu, emulation_type);
9005         }
9006
9007         vcpu->arch.l1tf_flush_l1d = true;
9008
9009         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9010                 kvm_clear_exception_queue(vcpu);
9011
9012                 /*
9013                  * Return immediately if RIP hits a code breakpoint, such #DBs
9014                  * are fault-like and are higher priority than any faults on
9015                  * the code fetch itself.
9016                  */
9017                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9018                         return r;
9019
9020                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9021                                                     insn, insn_len);
9022                 if (r != EMULATION_OK)  {
9023                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9024                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9025                                 kvm_queue_exception(vcpu, UD_VECTOR);
9026                                 return 1;
9027                         }
9028                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9029                                                   emulation_type))
9030                                 return 1;
9031
9032                         if (ctxt->have_exception &&
9033                             !(emulation_type & EMULTYPE_SKIP)) {
9034                                 /*
9035                                  * #UD should result in just EMULATION_FAILED, and trap-like
9036                                  * exception should not be encountered during decode.
9037                                  */
9038                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9039                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9040                                 inject_emulated_exception(vcpu);
9041                                 return 1;
9042                         }
9043                         return handle_emulation_failure(vcpu, emulation_type);
9044                 }
9045         }
9046
9047         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9048             !is_vmware_backdoor_opcode(ctxt)) {
9049                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9050                 return 1;
9051         }
9052
9053         /*
9054          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9055          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9056          * The caller is responsible for updating interruptibility state and
9057          * injecting single-step #DBs.
9058          */
9059         if (emulation_type & EMULTYPE_SKIP) {
9060                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9061                         ctxt->eip = (u32)ctxt->_eip;
9062                 else
9063                         ctxt->eip = ctxt->_eip;
9064
9065                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9066                         r = 1;
9067                         goto writeback;
9068                 }
9069
9070                 kvm_rip_write(vcpu, ctxt->eip);
9071                 if (ctxt->eflags & X86_EFLAGS_RF)
9072                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9073                 return 1;
9074         }
9075
9076         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9077                 return 1;
9078
9079         /* this is needed for vmware backdoor interface to work since it
9080            changes registers values  during IO operation */
9081         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9082                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9083                 emulator_invalidate_register_cache(ctxt);
9084         }
9085
9086 restart:
9087         if (emulation_type & EMULTYPE_PF) {
9088                 /* Save the faulting GPA (cr2) in the address field */
9089                 ctxt->exception.address = cr2_or_gpa;
9090
9091                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9092                 if (vcpu->arch.mmu->root_role.direct) {
9093                         ctxt->gpa_available = true;
9094                         ctxt->gpa_val = cr2_or_gpa;
9095                 }
9096         } else {
9097                 /* Sanitize the address out of an abundance of paranoia. */
9098                 ctxt->exception.address = 0;
9099         }
9100
9101         r = x86_emulate_insn(ctxt);
9102
9103         if (r == EMULATION_INTERCEPTED)
9104                 return 1;
9105
9106         if (r == EMULATION_FAILED) {
9107                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9108                         return 1;
9109
9110                 return handle_emulation_failure(vcpu, emulation_type);
9111         }
9112
9113         if (ctxt->have_exception) {
9114                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9115                 vcpu->mmio_needed = false;
9116                 r = 1;
9117                 inject_emulated_exception(vcpu);
9118         } else if (vcpu->arch.pio.count) {
9119                 if (!vcpu->arch.pio.in) {
9120                         /* FIXME: return into emulator if single-stepping.  */
9121                         vcpu->arch.pio.count = 0;
9122                 } else {
9123                         writeback = false;
9124                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9125                 }
9126                 r = 0;
9127         } else if (vcpu->mmio_needed) {
9128                 ++vcpu->stat.mmio_exits;
9129
9130                 if (!vcpu->mmio_is_write)
9131                         writeback = false;
9132                 r = 0;
9133                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9134         } else if (vcpu->arch.complete_userspace_io) {
9135                 writeback = false;
9136                 r = 0;
9137         } else if (r == EMULATION_RESTART)
9138                 goto restart;
9139         else
9140                 r = 1;
9141
9142 writeback:
9143         if (writeback) {
9144                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9145                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9146                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9147
9148                 /*
9149                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9150                  * only supports code breakpoints and general detect #DB, both
9151                  * of which are fault-like.
9152                  */
9153                 if (!ctxt->have_exception ||
9154                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9155                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9156                         if (ctxt->is_branch)
9157                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9158                         kvm_rip_write(vcpu, ctxt->eip);
9159                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9160                                 r = kvm_vcpu_do_singlestep(vcpu);
9161                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9162                         __kvm_set_rflags(vcpu, ctxt->eflags);
9163                 }
9164
9165                 /*
9166                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9167                  * do nothing, and it will be requested again as soon as
9168                  * the shadow expires.  But we still need to check here,
9169                  * because POPF has no interrupt shadow.
9170                  */
9171                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9172                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9173         } else
9174                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9175
9176         return r;
9177 }
9178
9179 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9180 {
9181         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9182 }
9183 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9184
9185 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9186                                         void *insn, int insn_len)
9187 {
9188         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9189 }
9190 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9191
9192 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9193 {
9194         vcpu->arch.pio.count = 0;
9195         return 1;
9196 }
9197
9198 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9199 {
9200         vcpu->arch.pio.count = 0;
9201
9202         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9203                 return 1;
9204
9205         return kvm_skip_emulated_instruction(vcpu);
9206 }
9207
9208 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9209                             unsigned short port)
9210 {
9211         unsigned long val = kvm_rax_read(vcpu);
9212         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9213
9214         if (ret)
9215                 return ret;
9216
9217         /*
9218          * Workaround userspace that relies on old KVM behavior of %rip being
9219          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9220          */
9221         if (port == 0x7e &&
9222             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9223                 vcpu->arch.complete_userspace_io =
9224                         complete_fast_pio_out_port_0x7e;
9225                 kvm_skip_emulated_instruction(vcpu);
9226         } else {
9227                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9228                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9229         }
9230         return 0;
9231 }
9232
9233 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9234 {
9235         unsigned long val;
9236
9237         /* We should only ever be called with arch.pio.count equal to 1 */
9238         BUG_ON(vcpu->arch.pio.count != 1);
9239
9240         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9241                 vcpu->arch.pio.count = 0;
9242                 return 1;
9243         }
9244
9245         /* For size less than 4 we merge, else we zero extend */
9246         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9247
9248         complete_emulator_pio_in(vcpu, &val);
9249         kvm_rax_write(vcpu, val);
9250
9251         return kvm_skip_emulated_instruction(vcpu);
9252 }
9253
9254 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9255                            unsigned short port)
9256 {
9257         unsigned long val;
9258         int ret;
9259
9260         /* For size less than 4 we merge, else we zero extend */
9261         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9262
9263         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9264         if (ret) {
9265                 kvm_rax_write(vcpu, val);
9266                 return ret;
9267         }
9268
9269         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9270         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9271
9272         return 0;
9273 }
9274
9275 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9276 {
9277         int ret;
9278
9279         if (in)
9280                 ret = kvm_fast_pio_in(vcpu, size, port);
9281         else
9282                 ret = kvm_fast_pio_out(vcpu, size, port);
9283         return ret && kvm_skip_emulated_instruction(vcpu);
9284 }
9285 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9286
9287 static int kvmclock_cpu_down_prep(unsigned int cpu)
9288 {
9289         __this_cpu_write(cpu_tsc_khz, 0);
9290         return 0;
9291 }
9292
9293 static void tsc_khz_changed(void *data)
9294 {
9295         struct cpufreq_freqs *freq = data;
9296         unsigned long khz;
9297
9298         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9299
9300         if (data)
9301                 khz = freq->new;
9302         else
9303                 khz = cpufreq_quick_get(raw_smp_processor_id());
9304         if (!khz)
9305                 khz = tsc_khz;
9306         __this_cpu_write(cpu_tsc_khz, khz);
9307 }
9308
9309 #ifdef CONFIG_X86_64
9310 static void kvm_hyperv_tsc_notifier(void)
9311 {
9312         struct kvm *kvm;
9313         int cpu;
9314
9315         mutex_lock(&kvm_lock);
9316         list_for_each_entry(kvm, &vm_list, vm_list)
9317                 kvm_make_mclock_inprogress_request(kvm);
9318
9319         /* no guest entries from this point */
9320         hyperv_stop_tsc_emulation();
9321
9322         /* TSC frequency always matches when on Hyper-V */
9323         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9324                 for_each_present_cpu(cpu)
9325                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9326         }
9327         kvm_caps.max_guest_tsc_khz = tsc_khz;
9328
9329         list_for_each_entry(kvm, &vm_list, vm_list) {
9330                 __kvm_start_pvclock_update(kvm);
9331                 pvclock_update_vm_gtod_copy(kvm);
9332                 kvm_end_pvclock_update(kvm);
9333         }
9334
9335         mutex_unlock(&kvm_lock);
9336 }
9337 #endif
9338
9339 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9340 {
9341         struct kvm *kvm;
9342         struct kvm_vcpu *vcpu;
9343         int send_ipi = 0;
9344         unsigned long i;
9345
9346         /*
9347          * We allow guests to temporarily run on slowing clocks,
9348          * provided we notify them after, or to run on accelerating
9349          * clocks, provided we notify them before.  Thus time never
9350          * goes backwards.
9351          *
9352          * However, we have a problem.  We can't atomically update
9353          * the frequency of a given CPU from this function; it is
9354          * merely a notifier, which can be called from any CPU.
9355          * Changing the TSC frequency at arbitrary points in time
9356          * requires a recomputation of local variables related to
9357          * the TSC for each VCPU.  We must flag these local variables
9358          * to be updated and be sure the update takes place with the
9359          * new frequency before any guests proceed.
9360          *
9361          * Unfortunately, the combination of hotplug CPU and frequency
9362          * change creates an intractable locking scenario; the order
9363          * of when these callouts happen is undefined with respect to
9364          * CPU hotplug, and they can race with each other.  As such,
9365          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9366          * undefined; you can actually have a CPU frequency change take
9367          * place in between the computation of X and the setting of the
9368          * variable.  To protect against this problem, all updates of
9369          * the per_cpu tsc_khz variable are done in an interrupt
9370          * protected IPI, and all callers wishing to update the value
9371          * must wait for a synchronous IPI to complete (which is trivial
9372          * if the caller is on the CPU already).  This establishes the
9373          * necessary total order on variable updates.
9374          *
9375          * Note that because a guest time update may take place
9376          * anytime after the setting of the VCPU's request bit, the
9377          * correct TSC value must be set before the request.  However,
9378          * to ensure the update actually makes it to any guest which
9379          * starts running in hardware virtualization between the set
9380          * and the acquisition of the spinlock, we must also ping the
9381          * CPU after setting the request bit.
9382          *
9383          */
9384
9385         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9386
9387         mutex_lock(&kvm_lock);
9388         list_for_each_entry(kvm, &vm_list, vm_list) {
9389                 kvm_for_each_vcpu(i, vcpu, kvm) {
9390                         if (vcpu->cpu != cpu)
9391                                 continue;
9392                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9393                         if (vcpu->cpu != raw_smp_processor_id())
9394                                 send_ipi = 1;
9395                 }
9396         }
9397         mutex_unlock(&kvm_lock);
9398
9399         if (freq->old < freq->new && send_ipi) {
9400                 /*
9401                  * We upscale the frequency.  Must make the guest
9402                  * doesn't see old kvmclock values while running with
9403                  * the new frequency, otherwise we risk the guest sees
9404                  * time go backwards.
9405                  *
9406                  * In case we update the frequency for another cpu
9407                  * (which might be in guest context) send an interrupt
9408                  * to kick the cpu out of guest context.  Next time
9409                  * guest context is entered kvmclock will be updated,
9410                  * so the guest will not see stale values.
9411                  */
9412                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9413         }
9414 }
9415
9416 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9417                                      void *data)
9418 {
9419         struct cpufreq_freqs *freq = data;
9420         int cpu;
9421
9422         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9423                 return 0;
9424         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9425                 return 0;
9426
9427         for_each_cpu(cpu, freq->policy->cpus)
9428                 __kvmclock_cpufreq_notifier(freq, cpu);
9429
9430         return 0;
9431 }
9432
9433 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9434         .notifier_call  = kvmclock_cpufreq_notifier
9435 };
9436
9437 static int kvmclock_cpu_online(unsigned int cpu)
9438 {
9439         tsc_khz_changed(NULL);
9440         return 0;
9441 }
9442
9443 static void kvm_timer_init(void)
9444 {
9445         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9446                 max_tsc_khz = tsc_khz;
9447
9448                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9449                         struct cpufreq_policy *policy;
9450                         int cpu;
9451
9452                         cpu = get_cpu();
9453                         policy = cpufreq_cpu_get(cpu);
9454                         if (policy) {
9455                                 if (policy->cpuinfo.max_freq)
9456                                         max_tsc_khz = policy->cpuinfo.max_freq;
9457                                 cpufreq_cpu_put(policy);
9458                         }
9459                         put_cpu();
9460                 }
9461                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9462                                           CPUFREQ_TRANSITION_NOTIFIER);
9463
9464                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9465                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9466         }
9467 }
9468
9469 #ifdef CONFIG_X86_64
9470 static void pvclock_gtod_update_fn(struct work_struct *work)
9471 {
9472         struct kvm *kvm;
9473         struct kvm_vcpu *vcpu;
9474         unsigned long i;
9475
9476         mutex_lock(&kvm_lock);
9477         list_for_each_entry(kvm, &vm_list, vm_list)
9478                 kvm_for_each_vcpu(i, vcpu, kvm)
9479                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9480         atomic_set(&kvm_guest_has_master_clock, 0);
9481         mutex_unlock(&kvm_lock);
9482 }
9483
9484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9485
9486 /*
9487  * Indirection to move queue_work() out of the tk_core.seq write held
9488  * region to prevent possible deadlocks against time accessors which
9489  * are invoked with work related locks held.
9490  */
9491 static void pvclock_irq_work_fn(struct irq_work *w)
9492 {
9493         queue_work(system_long_wq, &pvclock_gtod_work);
9494 }
9495
9496 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9497
9498 /*
9499  * Notification about pvclock gtod data update.
9500  */
9501 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9502                                void *priv)
9503 {
9504         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9505         struct timekeeper *tk = priv;
9506
9507         update_pvclock_gtod(tk);
9508
9509         /*
9510          * Disable master clock if host does not trust, or does not use,
9511          * TSC based clocksource. Delegate queue_work() to irq_work as
9512          * this is invoked with tk_core.seq write held.
9513          */
9514         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9515             atomic_read(&kvm_guest_has_master_clock) != 0)
9516                 irq_work_queue(&pvclock_irq_work);
9517         return 0;
9518 }
9519
9520 static struct notifier_block pvclock_gtod_notifier = {
9521         .notifier_call = pvclock_gtod_notify,
9522 };
9523 #endif
9524
9525 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9526 {
9527         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9528
9529 #define __KVM_X86_OP(func) \
9530         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9531 #define KVM_X86_OP(func) \
9532         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9533 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9534 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9535         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9536                                            (void *)__static_call_return0);
9537 #include <asm/kvm-x86-ops.h>
9538 #undef __KVM_X86_OP
9539
9540         kvm_pmu_ops_update(ops->pmu_ops);
9541 }
9542
9543 static int kvm_x86_check_processor_compatibility(void)
9544 {
9545         int cpu = smp_processor_id();
9546         struct cpuinfo_x86 *c = &cpu_data(cpu);
9547
9548         /*
9549          * Compatibility checks are done when loading KVM and when enabling
9550          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9551          * compatible, i.e. KVM should never perform a compatibility check on
9552          * an offline CPU.
9553          */
9554         WARN_ON(!cpu_online(cpu));
9555
9556         if (__cr4_reserved_bits(cpu_has, c) !=
9557             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9558                 return -EIO;
9559
9560         return static_call(kvm_x86_check_processor_compatibility)();
9561 }
9562
9563 static void kvm_x86_check_cpu_compat(void *ret)
9564 {
9565         *(int *)ret = kvm_x86_check_processor_compatibility();
9566 }
9567
9568 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9569 {
9570         u64 host_pat;
9571         int r, cpu;
9572
9573         if (kvm_x86_ops.hardware_enable) {
9574                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9575                 return -EEXIST;
9576         }
9577
9578         /*
9579          * KVM explicitly assumes that the guest has an FPU and
9580          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9581          * vCPU's FPU state as a fxregs_state struct.
9582          */
9583         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9584                 pr_err("inadequate fpu\n");
9585                 return -EOPNOTSUPP;
9586         }
9587
9588         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9589                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9590                 return -EOPNOTSUPP;
9591         }
9592
9593         /*
9594          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9595          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9596          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9597          * with an exception.  PAT[0] is set to WB on RESET and also by the
9598          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9599          */
9600         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9601             (host_pat & GENMASK(2, 0)) != 6) {
9602                 pr_err("host PAT[0] is not WB\n");
9603                 return -EIO;
9604         }
9605
9606         x86_emulator_cache = kvm_alloc_emulator_cache();
9607         if (!x86_emulator_cache) {
9608                 pr_err("failed to allocate cache for x86 emulator\n");
9609                 return -ENOMEM;
9610         }
9611
9612         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9613         if (!user_return_msrs) {
9614                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9615                 r = -ENOMEM;
9616                 goto out_free_x86_emulator_cache;
9617         }
9618         kvm_nr_uret_msrs = 0;
9619
9620         r = kvm_mmu_vendor_module_init();
9621         if (r)
9622                 goto out_free_percpu;
9623
9624         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9625                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9626                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9627         }
9628
9629         rdmsrl_safe(MSR_EFER, &host_efer);
9630
9631         if (boot_cpu_has(X86_FEATURE_XSAVES))
9632                 rdmsrl(MSR_IA32_XSS, host_xss);
9633
9634         kvm_init_pmu_capability(ops->pmu_ops);
9635
9636         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9637                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9638
9639         r = ops->hardware_setup();
9640         if (r != 0)
9641                 goto out_mmu_exit;
9642
9643         kvm_ops_update(ops);
9644
9645         for_each_online_cpu(cpu) {
9646                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9647                 if (r < 0)
9648                         goto out_unwind_ops;
9649         }
9650
9651         /*
9652          * Point of no return!  DO NOT add error paths below this point unless
9653          * absolutely necessary, as most operations from this point forward
9654          * require unwinding.
9655          */
9656         kvm_timer_init();
9657
9658         if (pi_inject_timer == -1)
9659                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9660 #ifdef CONFIG_X86_64
9661         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9662
9663         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9664                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9665 #endif
9666
9667         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9668
9669         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9670                 kvm_caps.supported_xss = 0;
9671
9672 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9673         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9674 #undef __kvm_cpu_cap_has
9675
9676         if (kvm_caps.has_tsc_control) {
9677                 /*
9678                  * Make sure the user can only configure tsc_khz values that
9679                  * fit into a signed integer.
9680                  * A min value is not calculated because it will always
9681                  * be 1 on all machines.
9682                  */
9683                 u64 max = min(0x7fffffffULL,
9684                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9685                 kvm_caps.max_guest_tsc_khz = max;
9686         }
9687         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9688         kvm_init_msr_lists();
9689         return 0;
9690
9691 out_unwind_ops:
9692         kvm_x86_ops.hardware_enable = NULL;
9693         static_call(kvm_x86_hardware_unsetup)();
9694 out_mmu_exit:
9695         kvm_mmu_vendor_module_exit();
9696 out_free_percpu:
9697         free_percpu(user_return_msrs);
9698 out_free_x86_emulator_cache:
9699         kmem_cache_destroy(x86_emulator_cache);
9700         return r;
9701 }
9702
9703 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9704 {
9705         int r;
9706
9707         mutex_lock(&vendor_module_lock);
9708         r = __kvm_x86_vendor_init(ops);
9709         mutex_unlock(&vendor_module_lock);
9710
9711         return r;
9712 }
9713 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9714
9715 void kvm_x86_vendor_exit(void)
9716 {
9717         kvm_unregister_perf_callbacks();
9718
9719 #ifdef CONFIG_X86_64
9720         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9721                 clear_hv_tscchange_cb();
9722 #endif
9723         kvm_lapic_exit();
9724
9725         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9726                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9727                                             CPUFREQ_TRANSITION_NOTIFIER);
9728                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9729         }
9730 #ifdef CONFIG_X86_64
9731         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9732         irq_work_sync(&pvclock_irq_work);
9733         cancel_work_sync(&pvclock_gtod_work);
9734 #endif
9735         static_call(kvm_x86_hardware_unsetup)();
9736         kvm_mmu_vendor_module_exit();
9737         free_percpu(user_return_msrs);
9738         kmem_cache_destroy(x86_emulator_cache);
9739 #ifdef CONFIG_KVM_XEN
9740         static_key_deferred_flush(&kvm_xen_enabled);
9741         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9742 #endif
9743         mutex_lock(&vendor_module_lock);
9744         kvm_x86_ops.hardware_enable = NULL;
9745         mutex_unlock(&vendor_module_lock);
9746 }
9747 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9748
9749 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9750 {
9751         /*
9752          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9753          * local APIC is in-kernel, the run loop will detect the non-runnable
9754          * state and halt the vCPU.  Exit to userspace if the local APIC is
9755          * managed by userspace, in which case userspace is responsible for
9756          * handling wake events.
9757          */
9758         ++vcpu->stat.halt_exits;
9759         if (lapic_in_kernel(vcpu)) {
9760                 vcpu->arch.mp_state = state;
9761                 return 1;
9762         } else {
9763                 vcpu->run->exit_reason = reason;
9764                 return 0;
9765         }
9766 }
9767
9768 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9769 {
9770         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9771 }
9772 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9773
9774 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9775 {
9776         int ret = kvm_skip_emulated_instruction(vcpu);
9777         /*
9778          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9779          * KVM_EXIT_DEBUG here.
9780          */
9781         return kvm_emulate_halt_noskip(vcpu) && ret;
9782 }
9783 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9784
9785 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9786 {
9787         int ret = kvm_skip_emulated_instruction(vcpu);
9788
9789         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9790                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9791 }
9792 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9793
9794 #ifdef CONFIG_X86_64
9795 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9796                                 unsigned long clock_type)
9797 {
9798         struct kvm_clock_pairing clock_pairing;
9799         struct timespec64 ts;
9800         u64 cycle;
9801         int ret;
9802
9803         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9804                 return -KVM_EOPNOTSUPP;
9805
9806         /*
9807          * When tsc is in permanent catchup mode guests won't be able to use
9808          * pvclock_read_retry loop to get consistent view of pvclock
9809          */
9810         if (vcpu->arch.tsc_always_catchup)
9811                 return -KVM_EOPNOTSUPP;
9812
9813         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9814                 return -KVM_EOPNOTSUPP;
9815
9816         clock_pairing.sec = ts.tv_sec;
9817         clock_pairing.nsec = ts.tv_nsec;
9818         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9819         clock_pairing.flags = 0;
9820         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9821
9822         ret = 0;
9823         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9824                             sizeof(struct kvm_clock_pairing)))
9825                 ret = -KVM_EFAULT;
9826
9827         return ret;
9828 }
9829 #endif
9830
9831 /*
9832  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9833  *
9834  * @apicid - apicid of vcpu to be kicked.
9835  */
9836 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9837 {
9838         /*
9839          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9840          * common code, e.g. for tracing. Defer initialization to the compiler.
9841          */
9842         struct kvm_lapic_irq lapic_irq = {
9843                 .delivery_mode = APIC_DM_REMRD,
9844                 .dest_mode = APIC_DEST_PHYSICAL,
9845                 .shorthand = APIC_DEST_NOSHORT,
9846                 .dest_id = apicid,
9847         };
9848
9849         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9850 }
9851
9852 bool kvm_apicv_activated(struct kvm *kvm)
9853 {
9854         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9855 }
9856 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9857
9858 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9859 {
9860         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9861         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9862
9863         return (vm_reasons | vcpu_reasons) == 0;
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9866
9867 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9868                                        enum kvm_apicv_inhibit reason, bool set)
9869 {
9870         if (set)
9871                 __set_bit(reason, inhibits);
9872         else
9873                 __clear_bit(reason, inhibits);
9874
9875         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9876 }
9877
9878 static void kvm_apicv_init(struct kvm *kvm)
9879 {
9880         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9881
9882         init_rwsem(&kvm->arch.apicv_update_lock);
9883
9884         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9885
9886         if (!enable_apicv)
9887                 set_or_clear_apicv_inhibit(inhibits,
9888                                            APICV_INHIBIT_REASON_DISABLE, true);
9889 }
9890
9891 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9892 {
9893         struct kvm_vcpu *target = NULL;
9894         struct kvm_apic_map *map;
9895
9896         vcpu->stat.directed_yield_attempted++;
9897
9898         if (single_task_running())
9899                 goto no_yield;
9900
9901         rcu_read_lock();
9902         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9903
9904         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9905                 target = map->phys_map[dest_id]->vcpu;
9906
9907         rcu_read_unlock();
9908
9909         if (!target || !READ_ONCE(target->ready))
9910                 goto no_yield;
9911
9912         /* Ignore requests to yield to self */
9913         if (vcpu == target)
9914                 goto no_yield;
9915
9916         if (kvm_vcpu_yield_to(target) <= 0)
9917                 goto no_yield;
9918
9919         vcpu->stat.directed_yield_successful++;
9920
9921 no_yield:
9922         return;
9923 }
9924
9925 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9926 {
9927         u64 ret = vcpu->run->hypercall.ret;
9928
9929         if (!is_64_bit_mode(vcpu))
9930                 ret = (u32)ret;
9931         kvm_rax_write(vcpu, ret);
9932         ++vcpu->stat.hypercalls;
9933         return kvm_skip_emulated_instruction(vcpu);
9934 }
9935
9936 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9937 {
9938         unsigned long nr, a0, a1, a2, a3, ret;
9939         int op_64_bit;
9940
9941         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9942                 return kvm_xen_hypercall(vcpu);
9943
9944         if (kvm_hv_hypercall_enabled(vcpu))
9945                 return kvm_hv_hypercall(vcpu);
9946
9947         nr = kvm_rax_read(vcpu);
9948         a0 = kvm_rbx_read(vcpu);
9949         a1 = kvm_rcx_read(vcpu);
9950         a2 = kvm_rdx_read(vcpu);
9951         a3 = kvm_rsi_read(vcpu);
9952
9953         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9954
9955         op_64_bit = is_64_bit_hypercall(vcpu);
9956         if (!op_64_bit) {
9957                 nr &= 0xFFFFFFFF;
9958                 a0 &= 0xFFFFFFFF;
9959                 a1 &= 0xFFFFFFFF;
9960                 a2 &= 0xFFFFFFFF;
9961                 a3 &= 0xFFFFFFFF;
9962         }
9963
9964         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9965                 ret = -KVM_EPERM;
9966                 goto out;
9967         }
9968
9969         ret = -KVM_ENOSYS;
9970
9971         switch (nr) {
9972         case KVM_HC_VAPIC_POLL_IRQ:
9973                 ret = 0;
9974                 break;
9975         case KVM_HC_KICK_CPU:
9976                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9977                         break;
9978
9979                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9980                 kvm_sched_yield(vcpu, a1);
9981                 ret = 0;
9982                 break;
9983 #ifdef CONFIG_X86_64
9984         case KVM_HC_CLOCK_PAIRING:
9985                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9986                 break;
9987 #endif
9988         case KVM_HC_SEND_IPI:
9989                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9990                         break;
9991
9992                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9993                 break;
9994         case KVM_HC_SCHED_YIELD:
9995                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9996                         break;
9997
9998                 kvm_sched_yield(vcpu, a0);
9999                 ret = 0;
10000                 break;
10001         case KVM_HC_MAP_GPA_RANGE: {
10002                 u64 gpa = a0, npages = a1, attrs = a2;
10003
10004                 ret = -KVM_ENOSYS;
10005                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10006                         break;
10007
10008                 if (!PAGE_ALIGNED(gpa) || !npages ||
10009                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10010                         ret = -KVM_EINVAL;
10011                         break;
10012                 }
10013
10014                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10015                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10016                 vcpu->run->hypercall.args[0]  = gpa;
10017                 vcpu->run->hypercall.args[1]  = npages;
10018                 vcpu->run->hypercall.args[2]  = attrs;
10019                 vcpu->run->hypercall.flags    = 0;
10020                 if (op_64_bit)
10021                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10022
10023                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10024                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10025                 return 0;
10026         }
10027         default:
10028                 ret = -KVM_ENOSYS;
10029                 break;
10030         }
10031 out:
10032         if (!op_64_bit)
10033                 ret = (u32)ret;
10034         kvm_rax_write(vcpu, ret);
10035
10036         ++vcpu->stat.hypercalls;
10037         return kvm_skip_emulated_instruction(vcpu);
10038 }
10039 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10040
10041 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10042 {
10043         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10044         char instruction[3];
10045         unsigned long rip = kvm_rip_read(vcpu);
10046
10047         /*
10048          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10049          * the pieces.
10050          */
10051         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10052                 ctxt->exception.error_code_valid = false;
10053                 ctxt->exception.vector = UD_VECTOR;
10054                 ctxt->have_exception = true;
10055                 return X86EMUL_PROPAGATE_FAULT;
10056         }
10057
10058         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10059
10060         return emulator_write_emulated(ctxt, rip, instruction, 3,
10061                 &ctxt->exception);
10062 }
10063
10064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10065 {
10066         return vcpu->run->request_interrupt_window &&
10067                 likely(!pic_in_kernel(vcpu->kvm));
10068 }
10069
10070 /* Called within kvm->srcu read side.  */
10071 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10072 {
10073         struct kvm_run *kvm_run = vcpu->run;
10074
10075         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10076         kvm_run->cr8 = kvm_get_cr8(vcpu);
10077         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10078
10079         kvm_run->ready_for_interrupt_injection =
10080                 pic_in_kernel(vcpu->kvm) ||
10081                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10082
10083         if (is_smm(vcpu))
10084                 kvm_run->flags |= KVM_RUN_X86_SMM;
10085 }
10086
10087 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10088 {
10089         int max_irr, tpr;
10090
10091         if (!kvm_x86_ops.update_cr8_intercept)
10092                 return;
10093
10094         if (!lapic_in_kernel(vcpu))
10095                 return;
10096
10097         if (vcpu->arch.apic->apicv_active)
10098                 return;
10099
10100         if (!vcpu->arch.apic->vapic_addr)
10101                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10102         else
10103                 max_irr = -1;
10104
10105         if (max_irr != -1)
10106                 max_irr >>= 4;
10107
10108         tpr = kvm_lapic_get_cr8(vcpu);
10109
10110         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10111 }
10112
10113
10114 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10115 {
10116         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10117                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10118                 return 1;
10119         }
10120
10121         return kvm_x86_ops.nested_ops->check_events(vcpu);
10122 }
10123
10124 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10125 {
10126         /*
10127          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10128          * exceptions don't report error codes.  The presence of an error code
10129          * is carried with the exception and only stripped when the exception
10130          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10131          * report an error code despite the CPU being in Real Mode.
10132          */
10133         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10134
10135         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10136                                 vcpu->arch.exception.has_error_code,
10137                                 vcpu->arch.exception.error_code,
10138                                 vcpu->arch.exception.injected);
10139
10140         static_call(kvm_x86_inject_exception)(vcpu);
10141 }
10142
10143 /*
10144  * Check for any event (interrupt or exception) that is ready to be injected,
10145  * and if there is at least one event, inject the event with the highest
10146  * priority.  This handles both "pending" events, i.e. events that have never
10147  * been injected into the guest, and "injected" events, i.e. events that were
10148  * injected as part of a previous VM-Enter, but weren't successfully delivered
10149  * and need to be re-injected.
10150  *
10151  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10152  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10153  * be able to inject exceptions in the "middle" of an instruction, and so must
10154  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10155  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10156  * boundaries is necessary and correct.
10157  *
10158  * For simplicity, KVM uses a single path to inject all events (except events
10159  * that are injected directly from L1 to L2) and doesn't explicitly track
10160  * instruction boundaries for asynchronous events.  However, because VM-Exits
10161  * that can occur during instruction execution typically result in KVM skipping
10162  * the instruction or injecting an exception, e.g. instruction and exception
10163  * intercepts, and because pending exceptions have higher priority than pending
10164  * interrupts, KVM still honors instruction boundaries in most scenarios.
10165  *
10166  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10167  * the instruction or inject an exception, then KVM can incorrecty inject a new
10168  * asynchrounous event if the event became pending after the CPU fetched the
10169  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10170  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10171  * injected on the restarted instruction instead of being deferred until the
10172  * instruction completes.
10173  *
10174  * In practice, this virtualization hole is unlikely to be observed by the
10175  * guest, and even less likely to cause functional problems.  To detect the
10176  * hole, the guest would have to trigger an event on a side effect of an early
10177  * phase of instruction execution, e.g. on the instruction fetch from memory.
10178  * And for it to be a functional problem, the guest would need to depend on the
10179  * ordering between that side effect, the instruction completing, _and_ the
10180  * delivery of the asynchronous event.
10181  */
10182 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10183                                        bool *req_immediate_exit)
10184 {
10185         bool can_inject;
10186         int r;
10187
10188         /*
10189          * Process nested events first, as nested VM-Exit supercedes event
10190          * re-injection.  If there's an event queued for re-injection, it will
10191          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10192          */
10193         if (is_guest_mode(vcpu))
10194                 r = kvm_check_nested_events(vcpu);
10195         else
10196                 r = 0;
10197
10198         /*
10199          * Re-inject exceptions and events *especially* if immediate entry+exit
10200          * to/from L2 is needed, as any event that has already been injected
10201          * into L2 needs to complete its lifecycle before injecting a new event.
10202          *
10203          * Don't re-inject an NMI or interrupt if there is a pending exception.
10204          * This collision arises if an exception occurred while vectoring the
10205          * injected event, KVM intercepted said exception, and KVM ultimately
10206          * determined the fault belongs to the guest and queues the exception
10207          * for injection back into the guest.
10208          *
10209          * "Injected" interrupts can also collide with pending exceptions if
10210          * userspace ignores the "ready for injection" flag and blindly queues
10211          * an interrupt.  In that case, prioritizing the exception is correct,
10212          * as the exception "occurred" before the exit to userspace.  Trap-like
10213          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10214          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10215          * priority, they're only generated (pended) during instruction
10216          * execution, and interrupts are recognized at instruction boundaries.
10217          * Thus a pending fault-like exception means the fault occurred on the
10218          * *previous* instruction and must be serviced prior to recognizing any
10219          * new events in order to fully complete the previous instruction.
10220          */
10221         if (vcpu->arch.exception.injected)
10222                 kvm_inject_exception(vcpu);
10223         else if (kvm_is_exception_pending(vcpu))
10224                 ; /* see above */
10225         else if (vcpu->arch.nmi_injected)
10226                 static_call(kvm_x86_inject_nmi)(vcpu);
10227         else if (vcpu->arch.interrupt.injected)
10228                 static_call(kvm_x86_inject_irq)(vcpu, true);
10229
10230         /*
10231          * Exceptions that morph to VM-Exits are handled above, and pending
10232          * exceptions on top of injected exceptions that do not VM-Exit should
10233          * either morph to #DF or, sadly, override the injected exception.
10234          */
10235         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10236                      vcpu->arch.exception.pending);
10237
10238         /*
10239          * Bail if immediate entry+exit to/from the guest is needed to complete
10240          * nested VM-Enter or event re-injection so that a different pending
10241          * event can be serviced (or if KVM needs to exit to userspace).
10242          *
10243          * Otherwise, continue processing events even if VM-Exit occurred.  The
10244          * VM-Exit will have cleared exceptions that were meant for L2, but
10245          * there may now be events that can be injected into L1.
10246          */
10247         if (r < 0)
10248                 goto out;
10249
10250         /*
10251          * A pending exception VM-Exit should either result in nested VM-Exit
10252          * or force an immediate re-entry and exit to/from L2, and exception
10253          * VM-Exits cannot be injected (flag should _never_ be set).
10254          */
10255         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10256                      vcpu->arch.exception_vmexit.pending);
10257
10258         /*
10259          * New events, other than exceptions, cannot be injected if KVM needs
10260          * to re-inject a previous event.  See above comments on re-injecting
10261          * for why pending exceptions get priority.
10262          */
10263         can_inject = !kvm_event_needs_reinjection(vcpu);
10264
10265         if (vcpu->arch.exception.pending) {
10266                 /*
10267                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10268                  * value pushed on the stack.  Trap-like exception and all #DBs
10269                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10270                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10271                  *
10272                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10273                  * describe the behavior of General Detect #DBs, which are
10274                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10275                  */
10276                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10277                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10278                                              X86_EFLAGS_RF);
10279
10280                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10281                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10282                         if (vcpu->arch.dr7 & DR7_GD) {
10283                                 vcpu->arch.dr7 &= ~DR7_GD;
10284                                 kvm_update_dr7(vcpu);
10285                         }
10286                 }
10287
10288                 kvm_inject_exception(vcpu);
10289
10290                 vcpu->arch.exception.pending = false;
10291                 vcpu->arch.exception.injected = true;
10292
10293                 can_inject = false;
10294         }
10295
10296         /* Don't inject interrupts if the user asked to avoid doing so */
10297         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10298                 return 0;
10299
10300         /*
10301          * Finally, inject interrupt events.  If an event cannot be injected
10302          * due to architectural conditions (e.g. IF=0) a window-open exit
10303          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10304          * and can architecturally be injected, but we cannot do it right now:
10305          * an interrupt could have arrived just now and we have to inject it
10306          * as a vmexit, or there could already an event in the queue, which is
10307          * indicated by can_inject.  In that case we request an immediate exit
10308          * in order to make progress and get back here for another iteration.
10309          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10310          */
10311 #ifdef CONFIG_KVM_SMM
10312         if (vcpu->arch.smi_pending) {
10313                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10314                 if (r < 0)
10315                         goto out;
10316                 if (r) {
10317                         vcpu->arch.smi_pending = false;
10318                         ++vcpu->arch.smi_count;
10319                         enter_smm(vcpu);
10320                         can_inject = false;
10321                 } else
10322                         static_call(kvm_x86_enable_smi_window)(vcpu);
10323         }
10324 #endif
10325
10326         if (vcpu->arch.nmi_pending) {
10327                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10328                 if (r < 0)
10329                         goto out;
10330                 if (r) {
10331                         --vcpu->arch.nmi_pending;
10332                         vcpu->arch.nmi_injected = true;
10333                         static_call(kvm_x86_inject_nmi)(vcpu);
10334                         can_inject = false;
10335                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10336                 }
10337                 if (vcpu->arch.nmi_pending)
10338                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10339         }
10340
10341         if (kvm_cpu_has_injectable_intr(vcpu)) {
10342                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10343                 if (r < 0)
10344                         goto out;
10345                 if (r) {
10346                         int irq = kvm_cpu_get_interrupt(vcpu);
10347
10348                         if (!WARN_ON_ONCE(irq == -1)) {
10349                                 kvm_queue_interrupt(vcpu, irq, false);
10350                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10351                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10352                         }
10353                 }
10354                 if (kvm_cpu_has_injectable_intr(vcpu))
10355                         static_call(kvm_x86_enable_irq_window)(vcpu);
10356         }
10357
10358         if (is_guest_mode(vcpu) &&
10359             kvm_x86_ops.nested_ops->has_events &&
10360             kvm_x86_ops.nested_ops->has_events(vcpu))
10361                 *req_immediate_exit = true;
10362
10363         /*
10364          * KVM must never queue a new exception while injecting an event; KVM
10365          * is done emulating and should only propagate the to-be-injected event
10366          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10367          * infinite loop as KVM will bail from VM-Enter to inject the pending
10368          * exception and start the cycle all over.
10369          *
10370          * Exempt triple faults as they have special handling and won't put the
10371          * vCPU into an infinite loop.  Triple fault can be queued when running
10372          * VMX without unrestricted guest, as that requires KVM to emulate Real
10373          * Mode events (see kvm_inject_realmode_interrupt()).
10374          */
10375         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10376                      vcpu->arch.exception_vmexit.pending);
10377         return 0;
10378
10379 out:
10380         if (r == -EBUSY) {
10381                 *req_immediate_exit = true;
10382                 r = 0;
10383         }
10384         return r;
10385 }
10386
10387 static void process_nmi(struct kvm_vcpu *vcpu)
10388 {
10389         unsigned int limit;
10390
10391         /*
10392          * x86 is limited to one NMI pending, but because KVM can't react to
10393          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10394          * scheduled out, KVM needs to play nice with two queued NMIs showing
10395          * up at the same time.  To handle this scenario, allow two NMIs to be
10396          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10397          * waiting for a previous NMI injection to complete (which effectively
10398          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10399          * will request an NMI window to handle the second NMI.
10400          */
10401         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10402                 limit = 1;
10403         else
10404                 limit = 2;
10405
10406         /*
10407          * Adjust the limit to account for pending virtual NMIs, which aren't
10408          * tracked in vcpu->arch.nmi_pending.
10409          */
10410         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10411                 limit--;
10412
10413         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10414         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10415
10416         if (vcpu->arch.nmi_pending &&
10417             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10418                 vcpu->arch.nmi_pending--;
10419
10420         if (vcpu->arch.nmi_pending)
10421                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10422 }
10423
10424 /* Return total number of NMIs pending injection to the VM */
10425 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10426 {
10427         return vcpu->arch.nmi_pending +
10428                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10429 }
10430
10431 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10432                                        unsigned long *vcpu_bitmap)
10433 {
10434         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10435 }
10436
10437 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10438 {
10439         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10440 }
10441
10442 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10443 {
10444         struct kvm_lapic *apic = vcpu->arch.apic;
10445         bool activate;
10446
10447         if (!lapic_in_kernel(vcpu))
10448                 return;
10449
10450         down_read(&vcpu->kvm->arch.apicv_update_lock);
10451         preempt_disable();
10452
10453         /* Do not activate APICV when APIC is disabled */
10454         activate = kvm_vcpu_apicv_activated(vcpu) &&
10455                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10456
10457         if (apic->apicv_active == activate)
10458                 goto out;
10459
10460         apic->apicv_active = activate;
10461         kvm_apic_update_apicv(vcpu);
10462         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10463
10464         /*
10465          * When APICv gets disabled, we may still have injected interrupts
10466          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10467          * still active when the interrupt got accepted. Make sure
10468          * kvm_check_and_inject_events() is called to check for that.
10469          */
10470         if (!apic->apicv_active)
10471                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10472
10473 out:
10474         preempt_enable();
10475         up_read(&vcpu->kvm->arch.apicv_update_lock);
10476 }
10477 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10478
10479 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10480 {
10481         if (!lapic_in_kernel(vcpu))
10482                 return;
10483
10484         /*
10485          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10486          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10487          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10488          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10489          * this case so that KVM can the AVIC doorbell to inject interrupts to
10490          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10491          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10492          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10493          * access page is sticky.
10494          */
10495         if (apic_x2apic_mode(vcpu->arch.apic) &&
10496             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10497                 kvm_inhibit_apic_access_page(vcpu);
10498
10499         __kvm_vcpu_update_apicv(vcpu);
10500 }
10501
10502 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10503                                       enum kvm_apicv_inhibit reason, bool set)
10504 {
10505         unsigned long old, new;
10506
10507         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10508
10509         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10510                 return;
10511
10512         old = new = kvm->arch.apicv_inhibit_reasons;
10513
10514         set_or_clear_apicv_inhibit(&new, reason, set);
10515
10516         if (!!old != !!new) {
10517                 /*
10518                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10519                  * false positives in the sanity check WARN in svm_vcpu_run().
10520                  * This task will wait for all vCPUs to ack the kick IRQ before
10521                  * updating apicv_inhibit_reasons, and all other vCPUs will
10522                  * block on acquiring apicv_update_lock so that vCPUs can't
10523                  * redo svm_vcpu_run() without seeing the new inhibit state.
10524                  *
10525                  * Note, holding apicv_update_lock and taking it in the read
10526                  * side (handling the request) also prevents other vCPUs from
10527                  * servicing the request with a stale apicv_inhibit_reasons.
10528                  */
10529                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10530                 kvm->arch.apicv_inhibit_reasons = new;
10531                 if (new) {
10532                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10533                         int idx = srcu_read_lock(&kvm->srcu);
10534
10535                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10536                         srcu_read_unlock(&kvm->srcu, idx);
10537                 }
10538         } else {
10539                 kvm->arch.apicv_inhibit_reasons = new;
10540         }
10541 }
10542
10543 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10544                                     enum kvm_apicv_inhibit reason, bool set)
10545 {
10546         if (!enable_apicv)
10547                 return;
10548
10549         down_write(&kvm->arch.apicv_update_lock);
10550         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10551         up_write(&kvm->arch.apicv_update_lock);
10552 }
10553 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10554
10555 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10556 {
10557         if (!kvm_apic_present(vcpu))
10558                 return;
10559
10560         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10561
10562         if (irqchip_split(vcpu->kvm))
10563                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10564         else {
10565                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10566                 if (ioapic_in_kernel(vcpu->kvm))
10567                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10568         }
10569
10570         if (is_guest_mode(vcpu))
10571                 vcpu->arch.load_eoi_exitmap_pending = true;
10572         else
10573                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10574 }
10575
10576 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10577 {
10578         u64 eoi_exit_bitmap[4];
10579
10580         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10581                 return;
10582
10583         if (to_hv_vcpu(vcpu)) {
10584                 bitmap_or((ulong *)eoi_exit_bitmap,
10585                           vcpu->arch.ioapic_handled_vectors,
10586                           to_hv_synic(vcpu)->vec_bitmap, 256);
10587                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10588                 return;
10589         }
10590
10591         static_call_cond(kvm_x86_load_eoi_exitmap)(
10592                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10593 }
10594
10595 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10596 {
10597         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10598 }
10599
10600 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10601 {
10602         if (!lapic_in_kernel(vcpu))
10603                 return;
10604
10605         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10606 }
10607
10608 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10609 {
10610         smp_send_reschedule(vcpu->cpu);
10611 }
10612 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10613
10614 /*
10615  * Called within kvm->srcu read side.
10616  * Returns 1 to let vcpu_run() continue the guest execution loop without
10617  * exiting to the userspace.  Otherwise, the value will be returned to the
10618  * userspace.
10619  */
10620 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10621 {
10622         int r;
10623         bool req_int_win =
10624                 dm_request_for_irq_injection(vcpu) &&
10625                 kvm_cpu_accept_dm_intr(vcpu);
10626         fastpath_t exit_fastpath;
10627
10628         bool req_immediate_exit = false;
10629
10630         if (kvm_request_pending(vcpu)) {
10631                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10632                         r = -EIO;
10633                         goto out;
10634                 }
10635
10636                 if (kvm_dirty_ring_check_request(vcpu)) {
10637                         r = 0;
10638                         goto out;
10639                 }
10640
10641                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10642                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10643                                 r = 0;
10644                                 goto out;
10645                         }
10646                 }
10647                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10648                         kvm_mmu_free_obsolete_roots(vcpu);
10649                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10650                         __kvm_migrate_timers(vcpu);
10651                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10652                         kvm_update_masterclock(vcpu->kvm);
10653                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10654                         kvm_gen_kvmclock_update(vcpu);
10655                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10656                         r = kvm_guest_time_update(vcpu);
10657                         if (unlikely(r))
10658                                 goto out;
10659                 }
10660                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10661                         kvm_mmu_sync_roots(vcpu);
10662                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10663                         kvm_mmu_load_pgd(vcpu);
10664
10665                 /*
10666                  * Note, the order matters here, as flushing "all" TLB entries
10667                  * also flushes the "current" TLB entries, i.e. servicing the
10668                  * flush "all" will clear any request to flush "current".
10669                  */
10670                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10671                         kvm_vcpu_flush_tlb_all(vcpu);
10672
10673                 kvm_service_local_tlb_flush_requests(vcpu);
10674
10675                 /*
10676                  * Fall back to a "full" guest flush if Hyper-V's precise
10677                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10678                  * the flushes are considered "remote" and not "local" because
10679                  * the requests can be initiated from other vCPUs.
10680                  */
10681                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10682                     kvm_hv_vcpu_flush_tlb(vcpu))
10683                         kvm_vcpu_flush_tlb_guest(vcpu);
10684
10685                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10686                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10687                         r = 0;
10688                         goto out;
10689                 }
10690                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10691                         if (is_guest_mode(vcpu))
10692                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10693
10694                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10695                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10696                                 vcpu->mmio_needed = 0;
10697                                 r = 0;
10698                                 goto out;
10699                         }
10700                 }
10701                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10702                         /* Page is swapped out. Do synthetic halt */
10703                         vcpu->arch.apf.halted = true;
10704                         r = 1;
10705                         goto out;
10706                 }
10707                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10708                         record_steal_time(vcpu);
10709                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10710                         kvm_pmu_handle_event(vcpu);
10711                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10712                         kvm_pmu_deliver_pmi(vcpu);
10713 #ifdef CONFIG_KVM_SMM
10714                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10715                         process_smi(vcpu);
10716 #endif
10717                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10718                         process_nmi(vcpu);
10719                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10720                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10721                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10722                                      vcpu->arch.ioapic_handled_vectors)) {
10723                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10724                                 vcpu->run->eoi.vector =
10725                                                 vcpu->arch.pending_ioapic_eoi;
10726                                 r = 0;
10727                                 goto out;
10728                         }
10729                 }
10730                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10731                         vcpu_scan_ioapic(vcpu);
10732                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10733                         vcpu_load_eoi_exitmap(vcpu);
10734                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10735                         kvm_vcpu_reload_apic_access_page(vcpu);
10736                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10737                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10738                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10739                         vcpu->run->system_event.ndata = 0;
10740                         r = 0;
10741                         goto out;
10742                 }
10743                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10744                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10745                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10746                         vcpu->run->system_event.ndata = 0;
10747                         r = 0;
10748                         goto out;
10749                 }
10750                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10751                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10752
10753                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10754                         vcpu->run->hyperv = hv_vcpu->exit;
10755                         r = 0;
10756                         goto out;
10757                 }
10758
10759                 /*
10760                  * KVM_REQ_HV_STIMER has to be processed after
10761                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10762                  * depend on the guest clock being up-to-date
10763                  */
10764                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10765                         kvm_hv_process_stimers(vcpu);
10766                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10767                         kvm_vcpu_update_apicv(vcpu);
10768                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10769                         kvm_check_async_pf_completion(vcpu);
10770                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10771                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10772
10773                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10774                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10775         }
10776
10777         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10778             kvm_xen_has_interrupt(vcpu)) {
10779                 ++vcpu->stat.req_event;
10780                 r = kvm_apic_accept_events(vcpu);
10781                 if (r < 0) {
10782                         r = 0;
10783                         goto out;
10784                 }
10785                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10786                         r = 1;
10787                         goto out;
10788                 }
10789
10790                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10791                 if (r < 0) {
10792                         r = 0;
10793                         goto out;
10794                 }
10795                 if (req_int_win)
10796                         static_call(kvm_x86_enable_irq_window)(vcpu);
10797
10798                 if (kvm_lapic_enabled(vcpu)) {
10799                         update_cr8_intercept(vcpu);
10800                         kvm_lapic_sync_to_vapic(vcpu);
10801                 }
10802         }
10803
10804         r = kvm_mmu_reload(vcpu);
10805         if (unlikely(r)) {
10806                 goto cancel_injection;
10807         }
10808
10809         preempt_disable();
10810
10811         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10812
10813         /*
10814          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10815          * IPI are then delayed after guest entry, which ensures that they
10816          * result in virtual interrupt delivery.
10817          */
10818         local_irq_disable();
10819
10820         /* Store vcpu->apicv_active before vcpu->mode.  */
10821         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10822
10823         kvm_vcpu_srcu_read_unlock(vcpu);
10824
10825         /*
10826          * 1) We should set ->mode before checking ->requests.  Please see
10827          * the comment in kvm_vcpu_exiting_guest_mode().
10828          *
10829          * 2) For APICv, we should set ->mode before checking PID.ON. This
10830          * pairs with the memory barrier implicit in pi_test_and_set_on
10831          * (see vmx_deliver_posted_interrupt).
10832          *
10833          * 3) This also orders the write to mode from any reads to the page
10834          * tables done while the VCPU is running.  Please see the comment
10835          * in kvm_flush_remote_tlbs.
10836          */
10837         smp_mb__after_srcu_read_unlock();
10838
10839         /*
10840          * Process pending posted interrupts to handle the case where the
10841          * notification IRQ arrived in the host, or was never sent (because the
10842          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10843          * status, KVM doesn't update assigned devices when APICv is inhibited,
10844          * i.e. they can post interrupts even if APICv is temporarily disabled.
10845          */
10846         if (kvm_lapic_enabled(vcpu))
10847                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10848
10849         if (kvm_vcpu_exit_request(vcpu)) {
10850                 vcpu->mode = OUTSIDE_GUEST_MODE;
10851                 smp_wmb();
10852                 local_irq_enable();
10853                 preempt_enable();
10854                 kvm_vcpu_srcu_read_lock(vcpu);
10855                 r = 1;
10856                 goto cancel_injection;
10857         }
10858
10859         if (req_immediate_exit) {
10860                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10861                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10862         }
10863
10864         fpregs_assert_state_consistent();
10865         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10866                 switch_fpu_return();
10867
10868         if (vcpu->arch.guest_fpu.xfd_err)
10869                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10870
10871         if (unlikely(vcpu->arch.switch_db_regs)) {
10872                 set_debugreg(0, 7);
10873                 set_debugreg(vcpu->arch.eff_db[0], 0);
10874                 set_debugreg(vcpu->arch.eff_db[1], 1);
10875                 set_debugreg(vcpu->arch.eff_db[2], 2);
10876                 set_debugreg(vcpu->arch.eff_db[3], 3);
10877         } else if (unlikely(hw_breakpoint_active())) {
10878                 set_debugreg(0, 7);
10879         }
10880
10881         guest_timing_enter_irqoff();
10882
10883         for (;;) {
10884                 /*
10885                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10886                  * update must kick and wait for all vCPUs before toggling the
10887                  * per-VM state, and responsing vCPUs must wait for the update
10888                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10889                  */
10890                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10891                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10892
10893                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10894                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10895                         break;
10896
10897                 if (kvm_lapic_enabled(vcpu))
10898                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10899
10900                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10901                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10902                         break;
10903                 }
10904
10905                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10906                 ++vcpu->stat.exits;
10907         }
10908
10909         /*
10910          * Do this here before restoring debug registers on the host.  And
10911          * since we do this before handling the vmexit, a DR access vmexit
10912          * can (a) read the correct value of the debug registers, (b) set
10913          * KVM_DEBUGREG_WONT_EXIT again.
10914          */
10915         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10916                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10917                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10918                 kvm_update_dr0123(vcpu);
10919                 kvm_update_dr7(vcpu);
10920         }
10921
10922         /*
10923          * If the guest has used debug registers, at least dr7
10924          * will be disabled while returning to the host.
10925          * If we don't have active breakpoints in the host, we don't
10926          * care about the messed up debug address registers. But if
10927          * we have some of them active, restore the old state.
10928          */
10929         if (hw_breakpoint_active())
10930                 hw_breakpoint_restore();
10931
10932         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10933         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10934
10935         vcpu->mode = OUTSIDE_GUEST_MODE;
10936         smp_wmb();
10937
10938         /*
10939          * Sync xfd before calling handle_exit_irqoff() which may
10940          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10941          * in #NM irqoff handler).
10942          */
10943         if (vcpu->arch.xfd_no_write_intercept)
10944                 fpu_sync_guest_vmexit_xfd_state();
10945
10946         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10947
10948         if (vcpu->arch.guest_fpu.xfd_err)
10949                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10950
10951         /*
10952          * Consume any pending interrupts, including the possible source of
10953          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10954          * An instruction is required after local_irq_enable() to fully unblock
10955          * interrupts on processors that implement an interrupt shadow, the
10956          * stat.exits increment will do nicely.
10957          */
10958         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10959         local_irq_enable();
10960         ++vcpu->stat.exits;
10961         local_irq_disable();
10962         kvm_after_interrupt(vcpu);
10963
10964         /*
10965          * Wait until after servicing IRQs to account guest time so that any
10966          * ticks that occurred while running the guest are properly accounted
10967          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10968          * of accounting via context tracking, but the loss of accuracy is
10969          * acceptable for all known use cases.
10970          */
10971         guest_timing_exit_irqoff();
10972
10973         local_irq_enable();
10974         preempt_enable();
10975
10976         kvm_vcpu_srcu_read_lock(vcpu);
10977
10978         /*
10979          * Profile KVM exit RIPs:
10980          */
10981         if (unlikely(prof_on == KVM_PROFILING)) {
10982                 unsigned long rip = kvm_rip_read(vcpu);
10983                 profile_hit(KVM_PROFILING, (void *)rip);
10984         }
10985
10986         if (unlikely(vcpu->arch.tsc_always_catchup))
10987                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10988
10989         if (vcpu->arch.apic_attention)
10990                 kvm_lapic_sync_from_vapic(vcpu);
10991
10992         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10993         return r;
10994
10995 cancel_injection:
10996         if (req_immediate_exit)
10997                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10998         static_call(kvm_x86_cancel_injection)(vcpu);
10999         if (unlikely(vcpu->arch.apic_attention))
11000                 kvm_lapic_sync_from_vapic(vcpu);
11001 out:
11002         return r;
11003 }
11004
11005 /* Called within kvm->srcu read side.  */
11006 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11007 {
11008         bool hv_timer;
11009
11010         if (!kvm_arch_vcpu_runnable(vcpu)) {
11011                 /*
11012                  * Switch to the software timer before halt-polling/blocking as
11013                  * the guest's timer may be a break event for the vCPU, and the
11014                  * hypervisor timer runs only when the CPU is in guest mode.
11015                  * Switch before halt-polling so that KVM recognizes an expired
11016                  * timer before blocking.
11017                  */
11018                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11019                 if (hv_timer)
11020                         kvm_lapic_switch_to_sw_timer(vcpu);
11021
11022                 kvm_vcpu_srcu_read_unlock(vcpu);
11023                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11024                         kvm_vcpu_halt(vcpu);
11025                 else
11026                         kvm_vcpu_block(vcpu);
11027                 kvm_vcpu_srcu_read_lock(vcpu);
11028
11029                 if (hv_timer)
11030                         kvm_lapic_switch_to_hv_timer(vcpu);
11031
11032                 /*
11033                  * If the vCPU is not runnable, a signal or another host event
11034                  * of some kind is pending; service it without changing the
11035                  * vCPU's activity state.
11036                  */
11037                 if (!kvm_arch_vcpu_runnable(vcpu))
11038                         return 1;
11039         }
11040
11041         /*
11042          * Evaluate nested events before exiting the halted state.  This allows
11043          * the halt state to be recorded properly in the VMCS12's activity
11044          * state field (AMD does not have a similar field and a VM-Exit always
11045          * causes a spurious wakeup from HLT).
11046          */
11047         if (is_guest_mode(vcpu)) {
11048                 if (kvm_check_nested_events(vcpu) < 0)
11049                         return 0;
11050         }
11051
11052         if (kvm_apic_accept_events(vcpu) < 0)
11053                 return 0;
11054         switch(vcpu->arch.mp_state) {
11055         case KVM_MP_STATE_HALTED:
11056         case KVM_MP_STATE_AP_RESET_HOLD:
11057                 vcpu->arch.pv.pv_unhalted = false;
11058                 vcpu->arch.mp_state =
11059                         KVM_MP_STATE_RUNNABLE;
11060                 fallthrough;
11061         case KVM_MP_STATE_RUNNABLE:
11062                 vcpu->arch.apf.halted = false;
11063                 break;
11064         case KVM_MP_STATE_INIT_RECEIVED:
11065                 break;
11066         default:
11067                 WARN_ON_ONCE(1);
11068                 break;
11069         }
11070         return 1;
11071 }
11072
11073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11074 {
11075         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11076                 !vcpu->arch.apf.halted);
11077 }
11078
11079 /* Called within kvm->srcu read side.  */
11080 static int vcpu_run(struct kvm_vcpu *vcpu)
11081 {
11082         int r;
11083
11084         vcpu->arch.l1tf_flush_l1d = true;
11085
11086         for (;;) {
11087                 /*
11088                  * If another guest vCPU requests a PV TLB flush in the middle
11089                  * of instruction emulation, the rest of the emulation could
11090                  * use a stale page translation. Assume that any code after
11091                  * this point can start executing an instruction.
11092                  */
11093                 vcpu->arch.at_instruction_boundary = false;
11094                 if (kvm_vcpu_running(vcpu)) {
11095                         r = vcpu_enter_guest(vcpu);
11096                 } else {
11097                         r = vcpu_block(vcpu);
11098                 }
11099
11100                 if (r <= 0)
11101                         break;
11102
11103                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11104                 if (kvm_xen_has_pending_events(vcpu))
11105                         kvm_xen_inject_pending_events(vcpu);
11106
11107                 if (kvm_cpu_has_pending_timer(vcpu))
11108                         kvm_inject_pending_timer_irqs(vcpu);
11109
11110                 if (dm_request_for_irq_injection(vcpu) &&
11111                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11112                         r = 0;
11113                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11114                         ++vcpu->stat.request_irq_exits;
11115                         break;
11116                 }
11117
11118                 if (__xfer_to_guest_mode_work_pending()) {
11119                         kvm_vcpu_srcu_read_unlock(vcpu);
11120                         r = xfer_to_guest_mode_handle_work(vcpu);
11121                         kvm_vcpu_srcu_read_lock(vcpu);
11122                         if (r)
11123                                 return r;
11124                 }
11125         }
11126
11127         return r;
11128 }
11129
11130 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11131 {
11132         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11133 }
11134
11135 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11136 {
11137         BUG_ON(!vcpu->arch.pio.count);
11138
11139         return complete_emulated_io(vcpu);
11140 }
11141
11142 /*
11143  * Implements the following, as a state machine:
11144  *
11145  * read:
11146  *   for each fragment
11147  *     for each mmio piece in the fragment
11148  *       write gpa, len
11149  *       exit
11150  *       copy data
11151  *   execute insn
11152  *
11153  * write:
11154  *   for each fragment
11155  *     for each mmio piece in the fragment
11156  *       write gpa, len
11157  *       copy data
11158  *       exit
11159  */
11160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11161 {
11162         struct kvm_run *run = vcpu->run;
11163         struct kvm_mmio_fragment *frag;
11164         unsigned len;
11165
11166         BUG_ON(!vcpu->mmio_needed);
11167
11168         /* Complete previous fragment */
11169         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11170         len = min(8u, frag->len);
11171         if (!vcpu->mmio_is_write)
11172                 memcpy(frag->data, run->mmio.data, len);
11173
11174         if (frag->len <= 8) {
11175                 /* Switch to the next fragment. */
11176                 frag++;
11177                 vcpu->mmio_cur_fragment++;
11178         } else {
11179                 /* Go forward to the next mmio piece. */
11180                 frag->data += len;
11181                 frag->gpa += len;
11182                 frag->len -= len;
11183         }
11184
11185         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11186                 vcpu->mmio_needed = 0;
11187
11188                 /* FIXME: return into emulator if single-stepping.  */
11189                 if (vcpu->mmio_is_write)
11190                         return 1;
11191                 vcpu->mmio_read_completed = 1;
11192                 return complete_emulated_io(vcpu);
11193         }
11194
11195         run->exit_reason = KVM_EXIT_MMIO;
11196         run->mmio.phys_addr = frag->gpa;
11197         if (vcpu->mmio_is_write)
11198                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11199         run->mmio.len = min(8u, frag->len);
11200         run->mmio.is_write = vcpu->mmio_is_write;
11201         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11202         return 0;
11203 }
11204
11205 /* Swap (qemu) user FPU context for the guest FPU context. */
11206 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11207 {
11208         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11209         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11210         trace_kvm_fpu(1);
11211 }
11212
11213 /* When vcpu_run ends, restore user space FPU context. */
11214 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11215 {
11216         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11217         ++vcpu->stat.fpu_reload;
11218         trace_kvm_fpu(0);
11219 }
11220
11221 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11222 {
11223         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11224         struct kvm_run *kvm_run = vcpu->run;
11225         int r;
11226
11227         vcpu_load(vcpu);
11228         kvm_sigset_activate(vcpu);
11229         kvm_run->flags = 0;
11230         kvm_load_guest_fpu(vcpu);
11231
11232         kvm_vcpu_srcu_read_lock(vcpu);
11233         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11234                 if (kvm_run->immediate_exit) {
11235                         r = -EINTR;
11236                         goto out;
11237                 }
11238
11239                 /*
11240                  * Don't bother switching APIC timer emulation from the
11241                  * hypervisor timer to the software timer, the only way for the
11242                  * APIC timer to be active is if userspace stuffed vCPU state,
11243                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11244                  * will transition the vCPU out of UNINITIALIZED (without more
11245                  * state stuffing from userspace), which will reset the local
11246                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11247                  * already expired).
11248                  */
11249                 kvm_vcpu_srcu_read_unlock(vcpu);
11250                 kvm_vcpu_block(vcpu);
11251                 kvm_vcpu_srcu_read_lock(vcpu);
11252
11253                 if (kvm_apic_accept_events(vcpu) < 0) {
11254                         r = 0;
11255                         goto out;
11256                 }
11257                 r = -EAGAIN;
11258                 if (signal_pending(current)) {
11259                         r = -EINTR;
11260                         kvm_run->exit_reason = KVM_EXIT_INTR;
11261                         ++vcpu->stat.signal_exits;
11262                 }
11263                 goto out;
11264         }
11265
11266         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11267             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11268                 r = -EINVAL;
11269                 goto out;
11270         }
11271
11272         if (kvm_run->kvm_dirty_regs) {
11273                 r = sync_regs(vcpu);
11274                 if (r != 0)
11275                         goto out;
11276         }
11277
11278         /* re-sync apic's tpr */
11279         if (!lapic_in_kernel(vcpu)) {
11280                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11281                         r = -EINVAL;
11282                         goto out;
11283                 }
11284         }
11285
11286         /*
11287          * If userspace set a pending exception and L2 is active, convert it to
11288          * a pending VM-Exit if L1 wants to intercept the exception.
11289          */
11290         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11291             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11292                                                         ex->error_code)) {
11293                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11294                                            ex->has_error_code, ex->error_code,
11295                                            ex->has_payload, ex->payload);
11296                 ex->injected = false;
11297                 ex->pending = false;
11298         }
11299         vcpu->arch.exception_from_userspace = false;
11300
11301         if (unlikely(vcpu->arch.complete_userspace_io)) {
11302                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11303                 vcpu->arch.complete_userspace_io = NULL;
11304                 r = cui(vcpu);
11305                 if (r <= 0)
11306                         goto out;
11307         } else {
11308                 WARN_ON_ONCE(vcpu->arch.pio.count);
11309                 WARN_ON_ONCE(vcpu->mmio_needed);
11310         }
11311
11312         if (kvm_run->immediate_exit) {
11313                 r = -EINTR;
11314                 goto out;
11315         }
11316
11317         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11318         if (r <= 0)
11319                 goto out;
11320
11321         r = vcpu_run(vcpu);
11322
11323 out:
11324         kvm_put_guest_fpu(vcpu);
11325         if (kvm_run->kvm_valid_regs)
11326                 store_regs(vcpu);
11327         post_kvm_run_save(vcpu);
11328         kvm_vcpu_srcu_read_unlock(vcpu);
11329
11330         kvm_sigset_deactivate(vcpu);
11331         vcpu_put(vcpu);
11332         return r;
11333 }
11334
11335 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11336 {
11337         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11338                 /*
11339                  * We are here if userspace calls get_regs() in the middle of
11340                  * instruction emulation. Registers state needs to be copied
11341                  * back from emulation context to vcpu. Userspace shouldn't do
11342                  * that usually, but some bad designed PV devices (vmware
11343                  * backdoor interface) need this to work
11344                  */
11345                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11346                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11347         }
11348         regs->rax = kvm_rax_read(vcpu);
11349         regs->rbx = kvm_rbx_read(vcpu);
11350         regs->rcx = kvm_rcx_read(vcpu);
11351         regs->rdx = kvm_rdx_read(vcpu);
11352         regs->rsi = kvm_rsi_read(vcpu);
11353         regs->rdi = kvm_rdi_read(vcpu);
11354         regs->rsp = kvm_rsp_read(vcpu);
11355         regs->rbp = kvm_rbp_read(vcpu);
11356 #ifdef CONFIG_X86_64
11357         regs->r8 = kvm_r8_read(vcpu);
11358         regs->r9 = kvm_r9_read(vcpu);
11359         regs->r10 = kvm_r10_read(vcpu);
11360         regs->r11 = kvm_r11_read(vcpu);
11361         regs->r12 = kvm_r12_read(vcpu);
11362         regs->r13 = kvm_r13_read(vcpu);
11363         regs->r14 = kvm_r14_read(vcpu);
11364         regs->r15 = kvm_r15_read(vcpu);
11365 #endif
11366
11367         regs->rip = kvm_rip_read(vcpu);
11368         regs->rflags = kvm_get_rflags(vcpu);
11369 }
11370
11371 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11372 {
11373         vcpu_load(vcpu);
11374         __get_regs(vcpu, regs);
11375         vcpu_put(vcpu);
11376         return 0;
11377 }
11378
11379 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11380 {
11381         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11382         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11383
11384         kvm_rax_write(vcpu, regs->rax);
11385         kvm_rbx_write(vcpu, regs->rbx);
11386         kvm_rcx_write(vcpu, regs->rcx);
11387         kvm_rdx_write(vcpu, regs->rdx);
11388         kvm_rsi_write(vcpu, regs->rsi);
11389         kvm_rdi_write(vcpu, regs->rdi);
11390         kvm_rsp_write(vcpu, regs->rsp);
11391         kvm_rbp_write(vcpu, regs->rbp);
11392 #ifdef CONFIG_X86_64
11393         kvm_r8_write(vcpu, regs->r8);
11394         kvm_r9_write(vcpu, regs->r9);
11395         kvm_r10_write(vcpu, regs->r10);
11396         kvm_r11_write(vcpu, regs->r11);
11397         kvm_r12_write(vcpu, regs->r12);
11398         kvm_r13_write(vcpu, regs->r13);
11399         kvm_r14_write(vcpu, regs->r14);
11400         kvm_r15_write(vcpu, regs->r15);
11401 #endif
11402
11403         kvm_rip_write(vcpu, regs->rip);
11404         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11405
11406         vcpu->arch.exception.pending = false;
11407         vcpu->arch.exception_vmexit.pending = false;
11408
11409         kvm_make_request(KVM_REQ_EVENT, vcpu);
11410 }
11411
11412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11413 {
11414         vcpu_load(vcpu);
11415         __set_regs(vcpu, regs);
11416         vcpu_put(vcpu);
11417         return 0;
11418 }
11419
11420 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11421 {
11422         struct desc_ptr dt;
11423
11424         if (vcpu->arch.guest_state_protected)
11425                 goto skip_protected_regs;
11426
11427         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11428         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11429         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11430         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11431         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11432         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11433
11434         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11435         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11436
11437         static_call(kvm_x86_get_idt)(vcpu, &dt);
11438         sregs->idt.limit = dt.size;
11439         sregs->idt.base = dt.address;
11440         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11441         sregs->gdt.limit = dt.size;
11442         sregs->gdt.base = dt.address;
11443
11444         sregs->cr2 = vcpu->arch.cr2;
11445         sregs->cr3 = kvm_read_cr3(vcpu);
11446
11447 skip_protected_regs:
11448         sregs->cr0 = kvm_read_cr0(vcpu);
11449         sregs->cr4 = kvm_read_cr4(vcpu);
11450         sregs->cr8 = kvm_get_cr8(vcpu);
11451         sregs->efer = vcpu->arch.efer;
11452         sregs->apic_base = kvm_get_apic_base(vcpu);
11453 }
11454
11455 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11456 {
11457         __get_sregs_common(vcpu, sregs);
11458
11459         if (vcpu->arch.guest_state_protected)
11460                 return;
11461
11462         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11463                 set_bit(vcpu->arch.interrupt.nr,
11464                         (unsigned long *)sregs->interrupt_bitmap);
11465 }
11466
11467 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11468 {
11469         int i;
11470
11471         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11472
11473         if (vcpu->arch.guest_state_protected)
11474                 return;
11475
11476         if (is_pae_paging(vcpu)) {
11477                 for (i = 0 ; i < 4 ; i++)
11478                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11479                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11480         }
11481 }
11482
11483 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11484                                   struct kvm_sregs *sregs)
11485 {
11486         vcpu_load(vcpu);
11487         __get_sregs(vcpu, sregs);
11488         vcpu_put(vcpu);
11489         return 0;
11490 }
11491
11492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11493                                     struct kvm_mp_state *mp_state)
11494 {
11495         int r;
11496
11497         vcpu_load(vcpu);
11498         if (kvm_mpx_supported())
11499                 kvm_load_guest_fpu(vcpu);
11500
11501         r = kvm_apic_accept_events(vcpu);
11502         if (r < 0)
11503                 goto out;
11504         r = 0;
11505
11506         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11507              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11508             vcpu->arch.pv.pv_unhalted)
11509                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11510         else
11511                 mp_state->mp_state = vcpu->arch.mp_state;
11512
11513 out:
11514         if (kvm_mpx_supported())
11515                 kvm_put_guest_fpu(vcpu);
11516         vcpu_put(vcpu);
11517         return r;
11518 }
11519
11520 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11521                                     struct kvm_mp_state *mp_state)
11522 {
11523         int ret = -EINVAL;
11524
11525         vcpu_load(vcpu);
11526
11527         switch (mp_state->mp_state) {
11528         case KVM_MP_STATE_UNINITIALIZED:
11529         case KVM_MP_STATE_HALTED:
11530         case KVM_MP_STATE_AP_RESET_HOLD:
11531         case KVM_MP_STATE_INIT_RECEIVED:
11532         case KVM_MP_STATE_SIPI_RECEIVED:
11533                 if (!lapic_in_kernel(vcpu))
11534                         goto out;
11535                 break;
11536
11537         case KVM_MP_STATE_RUNNABLE:
11538                 break;
11539
11540         default:
11541                 goto out;
11542         }
11543
11544         /*
11545          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11546          * forcing the guest into INIT/SIPI if those events are supposed to be
11547          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11548          * if an SMI is pending as well.
11549          */
11550         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11551             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11552              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11553                 goto out;
11554
11555         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11556                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11557                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11558         } else
11559                 vcpu->arch.mp_state = mp_state->mp_state;
11560         kvm_make_request(KVM_REQ_EVENT, vcpu);
11561
11562         ret = 0;
11563 out:
11564         vcpu_put(vcpu);
11565         return ret;
11566 }
11567
11568 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11569                     int reason, bool has_error_code, u32 error_code)
11570 {
11571         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11572         int ret;
11573
11574         init_emulate_ctxt(vcpu);
11575
11576         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11577                                    has_error_code, error_code);
11578         if (ret) {
11579                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11580                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11581                 vcpu->run->internal.ndata = 0;
11582                 return 0;
11583         }
11584
11585         kvm_rip_write(vcpu, ctxt->eip);
11586         kvm_set_rflags(vcpu, ctxt->eflags);
11587         return 1;
11588 }
11589 EXPORT_SYMBOL_GPL(kvm_task_switch);
11590
11591 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11592 {
11593         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11594                 /*
11595                  * When EFER.LME and CR0.PG are set, the processor is in
11596                  * 64-bit mode (though maybe in a 32-bit code segment).
11597                  * CR4.PAE and EFER.LMA must be set.
11598                  */
11599                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11600                         return false;
11601                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11602                         return false;
11603         } else {
11604                 /*
11605                  * Not in 64-bit mode: EFER.LMA is clear and the code
11606                  * segment cannot be 64-bit.
11607                  */
11608                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11609                         return false;
11610         }
11611
11612         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11613                kvm_is_valid_cr0(vcpu, sregs->cr0);
11614 }
11615
11616 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11617                 int *mmu_reset_needed, bool update_pdptrs)
11618 {
11619         struct msr_data apic_base_msr;
11620         int idx;
11621         struct desc_ptr dt;
11622
11623         if (!kvm_is_valid_sregs(vcpu, sregs))
11624                 return -EINVAL;
11625
11626         apic_base_msr.data = sregs->apic_base;
11627         apic_base_msr.host_initiated = true;
11628         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11629                 return -EINVAL;
11630
11631         if (vcpu->arch.guest_state_protected)
11632                 return 0;
11633
11634         dt.size = sregs->idt.limit;
11635         dt.address = sregs->idt.base;
11636         static_call(kvm_x86_set_idt)(vcpu, &dt);
11637         dt.size = sregs->gdt.limit;
11638         dt.address = sregs->gdt.base;
11639         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11640
11641         vcpu->arch.cr2 = sregs->cr2;
11642         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11643         vcpu->arch.cr3 = sregs->cr3;
11644         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11645         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11646
11647         kvm_set_cr8(vcpu, sregs->cr8);
11648
11649         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11650         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11651
11652         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11653         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11654
11655         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11656         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11657
11658         if (update_pdptrs) {
11659                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11660                 if (is_pae_paging(vcpu)) {
11661                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11662                         *mmu_reset_needed = 1;
11663                 }
11664                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11665         }
11666
11667         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11668         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11669         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11670         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11671         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11672         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11673
11674         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11675         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11676
11677         update_cr8_intercept(vcpu);
11678
11679         /* Older userspace won't unhalt the vcpu on reset. */
11680         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11681             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11682             !is_protmode(vcpu))
11683                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11684
11685         return 0;
11686 }
11687
11688 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11689 {
11690         int pending_vec, max_bits;
11691         int mmu_reset_needed = 0;
11692         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11693
11694         if (ret)
11695                 return ret;
11696
11697         if (mmu_reset_needed) {
11698                 kvm_mmu_reset_context(vcpu);
11699                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11700         }
11701
11702         max_bits = KVM_NR_INTERRUPTS;
11703         pending_vec = find_first_bit(
11704                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11705
11706         if (pending_vec < max_bits) {
11707                 kvm_queue_interrupt(vcpu, pending_vec, false);
11708                 pr_debug("Set back pending irq %d\n", pending_vec);
11709                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11710         }
11711         return 0;
11712 }
11713
11714 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11715 {
11716         int mmu_reset_needed = 0;
11717         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11718         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11719                 !(sregs2->efer & EFER_LMA);
11720         int i, ret;
11721
11722         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11723                 return -EINVAL;
11724
11725         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11726                 return -EINVAL;
11727
11728         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11729                                  &mmu_reset_needed, !valid_pdptrs);
11730         if (ret)
11731                 return ret;
11732
11733         if (valid_pdptrs) {
11734                 for (i = 0; i < 4 ; i++)
11735                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11736
11737                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11738                 mmu_reset_needed = 1;
11739                 vcpu->arch.pdptrs_from_userspace = true;
11740         }
11741         if (mmu_reset_needed) {
11742                 kvm_mmu_reset_context(vcpu);
11743                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11744         }
11745         return 0;
11746 }
11747
11748 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11749                                   struct kvm_sregs *sregs)
11750 {
11751         int ret;
11752
11753         vcpu_load(vcpu);
11754         ret = __set_sregs(vcpu, sregs);
11755         vcpu_put(vcpu);
11756         return ret;
11757 }
11758
11759 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11760 {
11761         bool set = false;
11762         struct kvm_vcpu *vcpu;
11763         unsigned long i;
11764
11765         if (!enable_apicv)
11766                 return;
11767
11768         down_write(&kvm->arch.apicv_update_lock);
11769
11770         kvm_for_each_vcpu(i, vcpu, kvm) {
11771                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11772                         set = true;
11773                         break;
11774                 }
11775         }
11776         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11777         up_write(&kvm->arch.apicv_update_lock);
11778 }
11779
11780 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11781                                         struct kvm_guest_debug *dbg)
11782 {
11783         unsigned long rflags;
11784         int i, r;
11785
11786         if (vcpu->arch.guest_state_protected)
11787                 return -EINVAL;
11788
11789         vcpu_load(vcpu);
11790
11791         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11792                 r = -EBUSY;
11793                 if (kvm_is_exception_pending(vcpu))
11794                         goto out;
11795                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11796                         kvm_queue_exception(vcpu, DB_VECTOR);
11797                 else
11798                         kvm_queue_exception(vcpu, BP_VECTOR);
11799         }
11800
11801         /*
11802          * Read rflags as long as potentially injected trace flags are still
11803          * filtered out.
11804          */
11805         rflags = kvm_get_rflags(vcpu);
11806
11807         vcpu->guest_debug = dbg->control;
11808         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11809                 vcpu->guest_debug = 0;
11810
11811         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11812                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11813                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11814                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11815         } else {
11816                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11817                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11818         }
11819         kvm_update_dr7(vcpu);
11820
11821         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11822                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11823
11824         /*
11825          * Trigger an rflags update that will inject or remove the trace
11826          * flags.
11827          */
11828         kvm_set_rflags(vcpu, rflags);
11829
11830         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11831
11832         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11833
11834         r = 0;
11835
11836 out:
11837         vcpu_put(vcpu);
11838         return r;
11839 }
11840
11841 /*
11842  * Translate a guest virtual address to a guest physical address.
11843  */
11844 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11845                                     struct kvm_translation *tr)
11846 {
11847         unsigned long vaddr = tr->linear_address;
11848         gpa_t gpa;
11849         int idx;
11850
11851         vcpu_load(vcpu);
11852
11853         idx = srcu_read_lock(&vcpu->kvm->srcu);
11854         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11855         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11856         tr->physical_address = gpa;
11857         tr->valid = gpa != INVALID_GPA;
11858         tr->writeable = 1;
11859         tr->usermode = 0;
11860
11861         vcpu_put(vcpu);
11862         return 0;
11863 }
11864
11865 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11866 {
11867         struct fxregs_state *fxsave;
11868
11869         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11870                 return 0;
11871
11872         vcpu_load(vcpu);
11873
11874         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11875         memcpy(fpu->fpr, fxsave->st_space, 128);
11876         fpu->fcw = fxsave->cwd;
11877         fpu->fsw = fxsave->swd;
11878         fpu->ftwx = fxsave->twd;
11879         fpu->last_opcode = fxsave->fop;
11880         fpu->last_ip = fxsave->rip;
11881         fpu->last_dp = fxsave->rdp;
11882         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11883
11884         vcpu_put(vcpu);
11885         return 0;
11886 }
11887
11888 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11889 {
11890         struct fxregs_state *fxsave;
11891
11892         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11893                 return 0;
11894
11895         vcpu_load(vcpu);
11896
11897         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11898
11899         memcpy(fxsave->st_space, fpu->fpr, 128);
11900         fxsave->cwd = fpu->fcw;
11901         fxsave->swd = fpu->fsw;
11902         fxsave->twd = fpu->ftwx;
11903         fxsave->fop = fpu->last_opcode;
11904         fxsave->rip = fpu->last_ip;
11905         fxsave->rdp = fpu->last_dp;
11906         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11907
11908         vcpu_put(vcpu);
11909         return 0;
11910 }
11911
11912 static void store_regs(struct kvm_vcpu *vcpu)
11913 {
11914         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11915
11916         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11917                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11918
11919         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11920                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11921
11922         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11923                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11924                                 vcpu, &vcpu->run->s.regs.events);
11925 }
11926
11927 static int sync_regs(struct kvm_vcpu *vcpu)
11928 {
11929         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11930                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11931                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11932         }
11933
11934         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11935                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11936
11937                 if (__set_sregs(vcpu, &sregs))
11938                         return -EINVAL;
11939
11940                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11941         }
11942
11943         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11944                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11945
11946                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11947                         return -EINVAL;
11948
11949                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11950         }
11951
11952         return 0;
11953 }
11954
11955 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11956 {
11957         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11958                 pr_warn_once("SMP vm created on host with unstable TSC; "
11959                              "guest TSC will not be reliable\n");
11960
11961         if (!kvm->arch.max_vcpu_ids)
11962                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11963
11964         if (id >= kvm->arch.max_vcpu_ids)
11965                 return -EINVAL;
11966
11967         return static_call(kvm_x86_vcpu_precreate)(kvm);
11968 }
11969
11970 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11971 {
11972         struct page *page;
11973         int r;
11974
11975         vcpu->arch.last_vmentry_cpu = -1;
11976         vcpu->arch.regs_avail = ~0;
11977         vcpu->arch.regs_dirty = ~0;
11978
11979         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11980
11981         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11982                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11983         else
11984                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11985
11986         r = kvm_mmu_create(vcpu);
11987         if (r < 0)
11988                 return r;
11989
11990         if (irqchip_in_kernel(vcpu->kvm)) {
11991                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11992                 if (r < 0)
11993                         goto fail_mmu_destroy;
11994
11995                 /*
11996                  * Defer evaluating inhibits until the vCPU is first run, as
11997                  * this vCPU will not get notified of any changes until this
11998                  * vCPU is visible to other vCPUs (marked online and added to
11999                  * the set of vCPUs).  Opportunistically mark APICv active as
12000                  * VMX in particularly is highly unlikely to have inhibits.
12001                  * Ignore the current per-VM APICv state so that vCPU creation
12002                  * is guaranteed to run with a deterministic value, the request
12003                  * will ensure the vCPU gets the correct state before VM-Entry.
12004                  */
12005                 if (enable_apicv) {
12006                         vcpu->arch.apic->apicv_active = true;
12007                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12008                 }
12009         } else
12010                 static_branch_inc(&kvm_has_noapic_vcpu);
12011
12012         r = -ENOMEM;
12013
12014         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12015         if (!page)
12016                 goto fail_free_lapic;
12017         vcpu->arch.pio_data = page_address(page);
12018
12019         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12020                                        GFP_KERNEL_ACCOUNT);
12021         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12022                                             GFP_KERNEL_ACCOUNT);
12023         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12024                 goto fail_free_mce_banks;
12025         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12026
12027         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12028                                 GFP_KERNEL_ACCOUNT))
12029                 goto fail_free_mce_banks;
12030
12031         if (!alloc_emulate_ctxt(vcpu))
12032                 goto free_wbinvd_dirty_mask;
12033
12034         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12035                 pr_err("failed to allocate vcpu's fpu\n");
12036                 goto free_emulate_ctxt;
12037         }
12038
12039         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12040         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12041
12042         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12043
12044         kvm_async_pf_hash_reset(vcpu);
12045
12046         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12047         kvm_pmu_init(vcpu);
12048
12049         vcpu->arch.pending_external_vector = -1;
12050         vcpu->arch.preempted_in_kernel = false;
12051
12052 #if IS_ENABLED(CONFIG_HYPERV)
12053         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12054 #endif
12055
12056         r = static_call(kvm_x86_vcpu_create)(vcpu);
12057         if (r)
12058                 goto free_guest_fpu;
12059
12060         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12061         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12062         kvm_xen_init_vcpu(vcpu);
12063         kvm_vcpu_mtrr_init(vcpu);
12064         vcpu_load(vcpu);
12065         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12066         kvm_vcpu_reset(vcpu, false);
12067         kvm_init_mmu(vcpu);
12068         vcpu_put(vcpu);
12069         return 0;
12070
12071 free_guest_fpu:
12072         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12073 free_emulate_ctxt:
12074         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12075 free_wbinvd_dirty_mask:
12076         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12077 fail_free_mce_banks:
12078         kfree(vcpu->arch.mce_banks);
12079         kfree(vcpu->arch.mci_ctl2_banks);
12080         free_page((unsigned long)vcpu->arch.pio_data);
12081 fail_free_lapic:
12082         kvm_free_lapic(vcpu);
12083 fail_mmu_destroy:
12084         kvm_mmu_destroy(vcpu);
12085         return r;
12086 }
12087
12088 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12089 {
12090         struct kvm *kvm = vcpu->kvm;
12091
12092         if (mutex_lock_killable(&vcpu->mutex))
12093                 return;
12094         vcpu_load(vcpu);
12095         kvm_synchronize_tsc(vcpu, NULL);
12096         vcpu_put(vcpu);
12097
12098         /* poll control enabled by default */
12099         vcpu->arch.msr_kvm_poll_control = 1;
12100
12101         mutex_unlock(&vcpu->mutex);
12102
12103         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12104                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12105                                                 KVMCLOCK_SYNC_PERIOD);
12106 }
12107
12108 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12109 {
12110         int idx;
12111
12112         kvmclock_reset(vcpu);
12113
12114         static_call(kvm_x86_vcpu_free)(vcpu);
12115
12116         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12117         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12118         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12119
12120         kvm_xen_destroy_vcpu(vcpu);
12121         kvm_hv_vcpu_uninit(vcpu);
12122         kvm_pmu_destroy(vcpu);
12123         kfree(vcpu->arch.mce_banks);
12124         kfree(vcpu->arch.mci_ctl2_banks);
12125         kvm_free_lapic(vcpu);
12126         idx = srcu_read_lock(&vcpu->kvm->srcu);
12127         kvm_mmu_destroy(vcpu);
12128         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12129         free_page((unsigned long)vcpu->arch.pio_data);
12130         kvfree(vcpu->arch.cpuid_entries);
12131         if (!lapic_in_kernel(vcpu))
12132                 static_branch_dec(&kvm_has_noapic_vcpu);
12133 }
12134
12135 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12136 {
12137         struct kvm_cpuid_entry2 *cpuid_0x1;
12138         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12139         unsigned long new_cr0;
12140
12141         /*
12142          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12143          * to handle side effects.  RESET emulation hits those flows and relies
12144          * on emulated/virtualized registers, including those that are loaded
12145          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12146          * to detect improper or missing initialization.
12147          */
12148         WARN_ON_ONCE(!init_event &&
12149                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12150
12151         /*
12152          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12153          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12154          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12155          * bits), i.e. virtualization is disabled.
12156          */
12157         if (is_guest_mode(vcpu))
12158                 kvm_leave_nested(vcpu);
12159
12160         kvm_lapic_reset(vcpu, init_event);
12161
12162         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12163         vcpu->arch.hflags = 0;
12164
12165         vcpu->arch.smi_pending = 0;
12166         vcpu->arch.smi_count = 0;
12167         atomic_set(&vcpu->arch.nmi_queued, 0);
12168         vcpu->arch.nmi_pending = 0;
12169         vcpu->arch.nmi_injected = false;
12170         kvm_clear_interrupt_queue(vcpu);
12171         kvm_clear_exception_queue(vcpu);
12172
12173         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12174         kvm_update_dr0123(vcpu);
12175         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12176         vcpu->arch.dr7 = DR7_FIXED_1;
12177         kvm_update_dr7(vcpu);
12178
12179         vcpu->arch.cr2 = 0;
12180
12181         kvm_make_request(KVM_REQ_EVENT, vcpu);
12182         vcpu->arch.apf.msr_en_val = 0;
12183         vcpu->arch.apf.msr_int_val = 0;
12184         vcpu->arch.st.msr_val = 0;
12185
12186         kvmclock_reset(vcpu);
12187
12188         kvm_clear_async_pf_completion_queue(vcpu);
12189         kvm_async_pf_hash_reset(vcpu);
12190         vcpu->arch.apf.halted = false;
12191
12192         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12193                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12194
12195                 /*
12196                  * All paths that lead to INIT are required to load the guest's
12197                  * FPU state (because most paths are buried in KVM_RUN).
12198                  */
12199                 if (init_event)
12200                         kvm_put_guest_fpu(vcpu);
12201
12202                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12203                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12204
12205                 if (init_event)
12206                         kvm_load_guest_fpu(vcpu);
12207         }
12208
12209         if (!init_event) {
12210                 kvm_pmu_reset(vcpu);
12211                 vcpu->arch.smbase = 0x30000;
12212
12213                 vcpu->arch.msr_misc_features_enables = 0;
12214                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12215                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12216
12217                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12218                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12219         }
12220
12221         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12222         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12223         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12224
12225         /*
12226          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12227          * if no CPUID match is found.  Note, it's impossible to get a match at
12228          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12229          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12230          * on RESET.  But, go through the motions in case that's ever remedied.
12231          */
12232         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12233         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12234
12235         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12236
12237         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12238         kvm_rip_write(vcpu, 0xfff0);
12239
12240         vcpu->arch.cr3 = 0;
12241         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12242
12243         /*
12244          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12245          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12246          * (or qualify) that with a footnote stating that CD/NW are preserved.
12247          */
12248         new_cr0 = X86_CR0_ET;
12249         if (init_event)
12250                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12251         else
12252                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12253
12254         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12255         static_call(kvm_x86_set_cr4)(vcpu, 0);
12256         static_call(kvm_x86_set_efer)(vcpu, 0);
12257         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12258
12259         /*
12260          * On the standard CR0/CR4/EFER modification paths, there are several
12261          * complex conditions determining whether the MMU has to be reset and/or
12262          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12263          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12264          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12265          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12266          */
12267         if (old_cr0 & X86_CR0_PG) {
12268                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12269                 kvm_mmu_reset_context(vcpu);
12270         }
12271
12272         /*
12273          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12274          * APM states the TLBs are untouched by INIT, but it also states that
12275          * the TLBs are flushed on "External initialization of the processor."
12276          * Flush the guest TLB regardless of vendor, there is no meaningful
12277          * benefit in relying on the guest to flush the TLB immediately after
12278          * INIT.  A spurious TLB flush is benign and likely negligible from a
12279          * performance perspective.
12280          */
12281         if (init_event)
12282                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12283 }
12284 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12285
12286 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12287 {
12288         struct kvm_segment cs;
12289
12290         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12291         cs.selector = vector << 8;
12292         cs.base = vector << 12;
12293         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12294         kvm_rip_write(vcpu, 0);
12295 }
12296 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12297
12298 int kvm_arch_hardware_enable(void)
12299 {
12300         struct kvm *kvm;
12301         struct kvm_vcpu *vcpu;
12302         unsigned long i;
12303         int ret;
12304         u64 local_tsc;
12305         u64 max_tsc = 0;
12306         bool stable, backwards_tsc = false;
12307
12308         kvm_user_return_msr_cpu_online();
12309
12310         ret = kvm_x86_check_processor_compatibility();
12311         if (ret)
12312                 return ret;
12313
12314         ret = static_call(kvm_x86_hardware_enable)();
12315         if (ret != 0)
12316                 return ret;
12317
12318         local_tsc = rdtsc();
12319         stable = !kvm_check_tsc_unstable();
12320         list_for_each_entry(kvm, &vm_list, vm_list) {
12321                 kvm_for_each_vcpu(i, vcpu, kvm) {
12322                         if (!stable && vcpu->cpu == smp_processor_id())
12323                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12324                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12325                                 backwards_tsc = true;
12326                                 if (vcpu->arch.last_host_tsc > max_tsc)
12327                                         max_tsc = vcpu->arch.last_host_tsc;
12328                         }
12329                 }
12330         }
12331
12332         /*
12333          * Sometimes, even reliable TSCs go backwards.  This happens on
12334          * platforms that reset TSC during suspend or hibernate actions, but
12335          * maintain synchronization.  We must compensate.  Fortunately, we can
12336          * detect that condition here, which happens early in CPU bringup,
12337          * before any KVM threads can be running.  Unfortunately, we can't
12338          * bring the TSCs fully up to date with real time, as we aren't yet far
12339          * enough into CPU bringup that we know how much real time has actually
12340          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12341          * variables that haven't been updated yet.
12342          *
12343          * So we simply find the maximum observed TSC above, then record the
12344          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12345          * the adjustment will be applied.  Note that we accumulate
12346          * adjustments, in case multiple suspend cycles happen before some VCPU
12347          * gets a chance to run again.  In the event that no KVM threads get a
12348          * chance to run, we will miss the entire elapsed period, as we'll have
12349          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12350          * loose cycle time.  This isn't too big a deal, since the loss will be
12351          * uniform across all VCPUs (not to mention the scenario is extremely
12352          * unlikely). It is possible that a second hibernate recovery happens
12353          * much faster than a first, causing the observed TSC here to be
12354          * smaller; this would require additional padding adjustment, which is
12355          * why we set last_host_tsc to the local tsc observed here.
12356          *
12357          * N.B. - this code below runs only on platforms with reliable TSC,
12358          * as that is the only way backwards_tsc is set above.  Also note
12359          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12360          * have the same delta_cyc adjustment applied if backwards_tsc
12361          * is detected.  Note further, this adjustment is only done once,
12362          * as we reset last_host_tsc on all VCPUs to stop this from being
12363          * called multiple times (one for each physical CPU bringup).
12364          *
12365          * Platforms with unreliable TSCs don't have to deal with this, they
12366          * will be compensated by the logic in vcpu_load, which sets the TSC to
12367          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12368          * guarantee that they stay in perfect synchronization.
12369          */
12370         if (backwards_tsc) {
12371                 u64 delta_cyc = max_tsc - local_tsc;
12372                 list_for_each_entry(kvm, &vm_list, vm_list) {
12373                         kvm->arch.backwards_tsc_observed = true;
12374                         kvm_for_each_vcpu(i, vcpu, kvm) {
12375                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12376                                 vcpu->arch.last_host_tsc = local_tsc;
12377                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12378                         }
12379
12380                         /*
12381                          * We have to disable TSC offset matching.. if you were
12382                          * booting a VM while issuing an S4 host suspend....
12383                          * you may have some problem.  Solving this issue is
12384                          * left as an exercise to the reader.
12385                          */
12386                         kvm->arch.last_tsc_nsec = 0;
12387                         kvm->arch.last_tsc_write = 0;
12388                 }
12389
12390         }
12391         return 0;
12392 }
12393
12394 void kvm_arch_hardware_disable(void)
12395 {
12396         static_call(kvm_x86_hardware_disable)();
12397         drop_user_return_notifiers();
12398 }
12399
12400 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12401 {
12402         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12403 }
12404
12405 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12406 {
12407         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12408 }
12409
12410 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12411 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12412
12413 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12414 {
12415         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12416
12417         vcpu->arch.l1tf_flush_l1d = true;
12418         if (pmu->version && unlikely(pmu->event_count)) {
12419                 pmu->need_cleanup = true;
12420                 kvm_make_request(KVM_REQ_PMU, vcpu);
12421         }
12422         static_call(kvm_x86_sched_in)(vcpu, cpu);
12423 }
12424
12425 void kvm_arch_free_vm(struct kvm *kvm)
12426 {
12427         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12428         __kvm_arch_free_vm(kvm);
12429 }
12430
12431
12432 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12433 {
12434         int ret;
12435         unsigned long flags;
12436
12437         if (type)
12438                 return -EINVAL;
12439
12440         ret = kvm_page_track_init(kvm);
12441         if (ret)
12442                 goto out;
12443
12444         kvm_mmu_init_vm(kvm);
12445
12446         ret = static_call(kvm_x86_vm_init)(kvm);
12447         if (ret)
12448                 goto out_uninit_mmu;
12449
12450         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12451         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12452
12453         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12454         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12455         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12456         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12457                 &kvm->arch.irq_sources_bitmap);
12458
12459         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12460         mutex_init(&kvm->arch.apic_map_lock);
12461         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12462         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12463
12464         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12465         pvclock_update_vm_gtod_copy(kvm);
12466         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12467
12468         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12469         kvm->arch.guest_can_read_msr_platform_info = true;
12470         kvm->arch.enable_pmu = enable_pmu;
12471
12472 #if IS_ENABLED(CONFIG_HYPERV)
12473         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12474         kvm->arch.hv_root_tdp = INVALID_PAGE;
12475 #endif
12476
12477         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12478         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12479
12480         kvm_apicv_init(kvm);
12481         kvm_hv_init_vm(kvm);
12482         kvm_xen_init_vm(kvm);
12483
12484         return 0;
12485
12486 out_uninit_mmu:
12487         kvm_mmu_uninit_vm(kvm);
12488         kvm_page_track_cleanup(kvm);
12489 out:
12490         return ret;
12491 }
12492
12493 int kvm_arch_post_init_vm(struct kvm *kvm)
12494 {
12495         return kvm_mmu_post_init_vm(kvm);
12496 }
12497
12498 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12499 {
12500         vcpu_load(vcpu);
12501         kvm_mmu_unload(vcpu);
12502         vcpu_put(vcpu);
12503 }
12504
12505 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12506 {
12507         unsigned long i;
12508         struct kvm_vcpu *vcpu;
12509
12510         kvm_for_each_vcpu(i, vcpu, kvm) {
12511                 kvm_clear_async_pf_completion_queue(vcpu);
12512                 kvm_unload_vcpu_mmu(vcpu);
12513         }
12514 }
12515
12516 void kvm_arch_sync_events(struct kvm *kvm)
12517 {
12518         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12519         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12520         kvm_free_pit(kvm);
12521 }
12522
12523 /**
12524  * __x86_set_memory_region: Setup KVM internal memory slot
12525  *
12526  * @kvm: the kvm pointer to the VM.
12527  * @id: the slot ID to setup.
12528  * @gpa: the GPA to install the slot (unused when @size == 0).
12529  * @size: the size of the slot. Set to zero to uninstall a slot.
12530  *
12531  * This function helps to setup a KVM internal memory slot.  Specify
12532  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12533  * slot.  The return code can be one of the following:
12534  *
12535  *   HVA:           on success (uninstall will return a bogus HVA)
12536  *   -errno:        on error
12537  *
12538  * The caller should always use IS_ERR() to check the return value
12539  * before use.  Note, the KVM internal memory slots are guaranteed to
12540  * remain valid and unchanged until the VM is destroyed, i.e., the
12541  * GPA->HVA translation will not change.  However, the HVA is a user
12542  * address, i.e. its accessibility is not guaranteed, and must be
12543  * accessed via __copy_{to,from}_user().
12544  */
12545 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12546                                       u32 size)
12547 {
12548         int i, r;
12549         unsigned long hva, old_npages;
12550         struct kvm_memslots *slots = kvm_memslots(kvm);
12551         struct kvm_memory_slot *slot;
12552
12553         /* Called with kvm->slots_lock held.  */
12554         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12555                 return ERR_PTR_USR(-EINVAL);
12556
12557         slot = id_to_memslot(slots, id);
12558         if (size) {
12559                 if (slot && slot->npages)
12560                         return ERR_PTR_USR(-EEXIST);
12561
12562                 /*
12563                  * MAP_SHARED to prevent internal slot pages from being moved
12564                  * by fork()/COW.
12565                  */
12566                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12567                               MAP_SHARED | MAP_ANONYMOUS, 0);
12568                 if (IS_ERR_VALUE(hva))
12569                         return (void __user *)hva;
12570         } else {
12571                 if (!slot || !slot->npages)
12572                         return NULL;
12573
12574                 old_npages = slot->npages;
12575                 hva = slot->userspace_addr;
12576         }
12577
12578         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12579                 struct kvm_userspace_memory_region m;
12580
12581                 m.slot = id | (i << 16);
12582                 m.flags = 0;
12583                 m.guest_phys_addr = gpa;
12584                 m.userspace_addr = hva;
12585                 m.memory_size = size;
12586                 r = __kvm_set_memory_region(kvm, &m);
12587                 if (r < 0)
12588                         return ERR_PTR_USR(r);
12589         }
12590
12591         if (!size)
12592                 vm_munmap(hva, old_npages * PAGE_SIZE);
12593
12594         return (void __user *)hva;
12595 }
12596 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12597
12598 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12599 {
12600         kvm_mmu_pre_destroy_vm(kvm);
12601 }
12602
12603 void kvm_arch_destroy_vm(struct kvm *kvm)
12604 {
12605         if (current->mm == kvm->mm) {
12606                 /*
12607                  * Free memory regions allocated on behalf of userspace,
12608                  * unless the memory map has changed due to process exit
12609                  * or fd copying.
12610                  */
12611                 mutex_lock(&kvm->slots_lock);
12612                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12613                                         0, 0);
12614                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12615                                         0, 0);
12616                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12617                 mutex_unlock(&kvm->slots_lock);
12618         }
12619         kvm_unload_vcpu_mmus(kvm);
12620         static_call_cond(kvm_x86_vm_destroy)(kvm);
12621         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12622         kvm_pic_destroy(kvm);
12623         kvm_ioapic_destroy(kvm);
12624         kvm_destroy_vcpus(kvm);
12625         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12626         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12627         kvm_mmu_uninit_vm(kvm);
12628         kvm_page_track_cleanup(kvm);
12629         kvm_xen_destroy_vm(kvm);
12630         kvm_hv_destroy_vm(kvm);
12631 }
12632
12633 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12634 {
12635         int i;
12636
12637         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12638                 kvfree(slot->arch.rmap[i]);
12639                 slot->arch.rmap[i] = NULL;
12640         }
12641 }
12642
12643 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12644 {
12645         int i;
12646
12647         memslot_rmap_free(slot);
12648
12649         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12650                 kvfree(slot->arch.lpage_info[i - 1]);
12651                 slot->arch.lpage_info[i - 1] = NULL;
12652         }
12653
12654         kvm_page_track_free_memslot(slot);
12655 }
12656
12657 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12658 {
12659         const int sz = sizeof(*slot->arch.rmap[0]);
12660         int i;
12661
12662         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12663                 int level = i + 1;
12664                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12665
12666                 if (slot->arch.rmap[i])
12667                         continue;
12668
12669                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12670                 if (!slot->arch.rmap[i]) {
12671                         memslot_rmap_free(slot);
12672                         return -ENOMEM;
12673                 }
12674         }
12675
12676         return 0;
12677 }
12678
12679 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12680                                       struct kvm_memory_slot *slot)
12681 {
12682         unsigned long npages = slot->npages;
12683         int i, r;
12684
12685         /*
12686          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12687          * old arrays will be freed by __kvm_set_memory_region() if installing
12688          * the new memslot is successful.
12689          */
12690         memset(&slot->arch, 0, sizeof(slot->arch));
12691
12692         if (kvm_memslots_have_rmaps(kvm)) {
12693                 r = memslot_rmap_alloc(slot, npages);
12694                 if (r)
12695                         return r;
12696         }
12697
12698         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12699                 struct kvm_lpage_info *linfo;
12700                 unsigned long ugfn;
12701                 int lpages;
12702                 int level = i + 1;
12703
12704                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12705
12706                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12707                 if (!linfo)
12708                         goto out_free;
12709
12710                 slot->arch.lpage_info[i - 1] = linfo;
12711
12712                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12713                         linfo[0].disallow_lpage = 1;
12714                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12715                         linfo[lpages - 1].disallow_lpage = 1;
12716                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12717                 /*
12718                  * If the gfn and userspace address are not aligned wrt each
12719                  * other, disable large page support for this slot.
12720                  */
12721                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12722                         unsigned long j;
12723
12724                         for (j = 0; j < lpages; ++j)
12725                                 linfo[j].disallow_lpage = 1;
12726                 }
12727         }
12728
12729         if (kvm_page_track_create_memslot(kvm, slot, npages))
12730                 goto out_free;
12731
12732         return 0;
12733
12734 out_free:
12735         memslot_rmap_free(slot);
12736
12737         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12738                 kvfree(slot->arch.lpage_info[i - 1]);
12739                 slot->arch.lpage_info[i - 1] = NULL;
12740         }
12741         return -ENOMEM;
12742 }
12743
12744 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12745 {
12746         struct kvm_vcpu *vcpu;
12747         unsigned long i;
12748
12749         /*
12750          * memslots->generation has been incremented.
12751          * mmio generation may have reached its maximum value.
12752          */
12753         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12754
12755         /* Force re-initialization of steal_time cache */
12756         kvm_for_each_vcpu(i, vcpu, kvm)
12757                 kvm_vcpu_kick(vcpu);
12758 }
12759
12760 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12761                                    const struct kvm_memory_slot *old,
12762                                    struct kvm_memory_slot *new,
12763                                    enum kvm_mr_change change)
12764 {
12765         /*
12766          * KVM doesn't support moving memslots when there are external page
12767          * trackers attached to the VM, i.e. if KVMGT is in use.
12768          */
12769         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12770                 return -EINVAL;
12771
12772         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12773                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12774                         return -EINVAL;
12775
12776                 return kvm_alloc_memslot_metadata(kvm, new);
12777         }
12778
12779         if (change == KVM_MR_FLAGS_ONLY)
12780                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12781         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12782                 return -EIO;
12783
12784         return 0;
12785 }
12786
12787
12788 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12789 {
12790         int nr_slots;
12791
12792         if (!kvm_x86_ops.cpu_dirty_log_size)
12793                 return;
12794
12795         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12796         if ((enable && nr_slots == 1) || !nr_slots)
12797                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12798 }
12799
12800 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12801                                      struct kvm_memory_slot *old,
12802                                      const struct kvm_memory_slot *new,
12803                                      enum kvm_mr_change change)
12804 {
12805         u32 old_flags = old ? old->flags : 0;
12806         u32 new_flags = new ? new->flags : 0;
12807         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12808
12809         /*
12810          * Update CPU dirty logging if dirty logging is being toggled.  This
12811          * applies to all operations.
12812          */
12813         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12814                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12815
12816         /*
12817          * Nothing more to do for RO slots (which can't be dirtied and can't be
12818          * made writable) or CREATE/MOVE/DELETE of a slot.
12819          *
12820          * For a memslot with dirty logging disabled:
12821          * CREATE:      No dirty mappings will already exist.
12822          * MOVE/DELETE: The old mappings will already have been cleaned up by
12823          *              kvm_arch_flush_shadow_memslot()
12824          *
12825          * For a memslot with dirty logging enabled:
12826          * CREATE:      No shadow pages exist, thus nothing to write-protect
12827          *              and no dirty bits to clear.
12828          * MOVE/DELETE: The old mappings will already have been cleaned up by
12829          *              kvm_arch_flush_shadow_memslot().
12830          */
12831         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12832                 return;
12833
12834         /*
12835          * READONLY and non-flags changes were filtered out above, and the only
12836          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12837          * logging isn't being toggled on or off.
12838          */
12839         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12840                 return;
12841
12842         if (!log_dirty_pages) {
12843                 /*
12844                  * Dirty logging tracks sptes in 4k granularity, meaning that
12845                  * large sptes have to be split.  If live migration succeeds,
12846                  * the guest in the source machine will be destroyed and large
12847                  * sptes will be created in the destination.  However, if the
12848                  * guest continues to run in the source machine (for example if
12849                  * live migration fails), small sptes will remain around and
12850                  * cause bad performance.
12851                  *
12852                  * Scan sptes if dirty logging has been stopped, dropping those
12853                  * which can be collapsed into a single large-page spte.  Later
12854                  * page faults will create the large-page sptes.
12855                  */
12856                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12857         } else {
12858                 /*
12859                  * Initially-all-set does not require write protecting any page,
12860                  * because they're all assumed to be dirty.
12861                  */
12862                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12863                         return;
12864
12865                 if (READ_ONCE(eager_page_split))
12866                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12867
12868                 if (kvm_x86_ops.cpu_dirty_log_size) {
12869                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12870                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12871                 } else {
12872                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12873                 }
12874
12875                 /*
12876                  * Unconditionally flush the TLBs after enabling dirty logging.
12877                  * A flush is almost always going to be necessary (see below),
12878                  * and unconditionally flushing allows the helpers to omit
12879                  * the subtly complex checks when removing write access.
12880                  *
12881                  * Do the flush outside of mmu_lock to reduce the amount of
12882                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12883                  * safe as KVM only needs to guarantee the slot is fully
12884                  * write-protected before returning to userspace, i.e. before
12885                  * userspace can consume the dirty status.
12886                  *
12887                  * Flushing outside of mmu_lock requires KVM to be careful when
12888                  * making decisions based on writable status of an SPTE, e.g. a
12889                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12890                  *
12891                  * Specifically, KVM also write-protects guest page tables to
12892                  * monitor changes when using shadow paging, and must guarantee
12893                  * no CPUs can write to those page before mmu_lock is dropped.
12894                  * Because CPUs may have stale TLB entries at this point, a
12895                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12896                  *
12897                  * KVM also allows making SPTES writable outside of mmu_lock,
12898                  * e.g. to allow dirty logging without taking mmu_lock.
12899                  *
12900                  * To handle these scenarios, KVM uses a separate software-only
12901                  * bit (MMU-writable) to track if a SPTE is !writable due to
12902                  * a guest page table being write-protected (KVM clears the
12903                  * MMU-writable flag when write-protecting for shadow paging).
12904                  *
12905                  * The use of MMU-writable is also the primary motivation for
12906                  * the unconditional flush.  Because KVM must guarantee that a
12907                  * CPU doesn't contain stale, writable TLB entries for a
12908                  * !MMU-writable SPTE, KVM must flush if it encounters any
12909                  * MMU-writable SPTE regardless of whether the actual hardware
12910                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12911                  * to flush, while unconditionally flushing allows the "remove
12912                  * write access" helpers to ignore MMU-writable entirely.
12913                  *
12914                  * See is_writable_pte() for more details (the case involving
12915                  * access-tracked SPTEs is particularly relevant).
12916                  */
12917                 kvm_flush_remote_tlbs_memslot(kvm, new);
12918         }
12919 }
12920
12921 void kvm_arch_commit_memory_region(struct kvm *kvm,
12922                                 struct kvm_memory_slot *old,
12923                                 const struct kvm_memory_slot *new,
12924                                 enum kvm_mr_change change)
12925 {
12926         if (change == KVM_MR_DELETE)
12927                 kvm_page_track_delete_slot(kvm, old);
12928
12929         if (!kvm->arch.n_requested_mmu_pages &&
12930             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12931                 unsigned long nr_mmu_pages;
12932
12933                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12934                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12935                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12936         }
12937
12938         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12939
12940         /* Free the arrays associated with the old memslot. */
12941         if (change == KVM_MR_MOVE)
12942                 kvm_arch_free_memslot(kvm, old);
12943 }
12944
12945 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12946 {
12947         return (is_guest_mode(vcpu) &&
12948                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12949 }
12950
12951 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12952 {
12953         if (!list_empty_careful(&vcpu->async_pf.done))
12954                 return true;
12955
12956         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12957             kvm_apic_init_sipi_allowed(vcpu))
12958                 return true;
12959
12960         if (vcpu->arch.pv.pv_unhalted)
12961                 return true;
12962
12963         if (kvm_is_exception_pending(vcpu))
12964                 return true;
12965
12966         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12967             (vcpu->arch.nmi_pending &&
12968              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12969                 return true;
12970
12971 #ifdef CONFIG_KVM_SMM
12972         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12973             (vcpu->arch.smi_pending &&
12974              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12975                 return true;
12976 #endif
12977
12978         if (kvm_test_request(KVM_REQ_PMI, vcpu))
12979                 return true;
12980
12981         if (kvm_arch_interrupt_allowed(vcpu) &&
12982             (kvm_cpu_has_interrupt(vcpu) ||
12983             kvm_guest_apic_has_interrupt(vcpu)))
12984                 return true;
12985
12986         if (kvm_hv_has_stimer_pending(vcpu))
12987                 return true;
12988
12989         if (is_guest_mode(vcpu) &&
12990             kvm_x86_ops.nested_ops->has_events &&
12991             kvm_x86_ops.nested_ops->has_events(vcpu))
12992                 return true;
12993
12994         if (kvm_xen_has_pending_events(vcpu))
12995                 return true;
12996
12997         return false;
12998 }
12999
13000 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13001 {
13002         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13003 }
13004
13005 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13006 {
13007         if (kvm_vcpu_apicv_active(vcpu) &&
13008             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13009                 return true;
13010
13011         return false;
13012 }
13013
13014 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13015 {
13016         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13017                 return true;
13018
13019         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13020 #ifdef CONFIG_KVM_SMM
13021                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13022 #endif
13023                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13024                 return true;
13025
13026         return kvm_arch_dy_has_pending_interrupt(vcpu);
13027 }
13028
13029 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13030 {
13031         if (vcpu->arch.guest_state_protected)
13032                 return true;
13033
13034         return vcpu->arch.preempted_in_kernel;
13035 }
13036
13037 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13038 {
13039         return kvm_rip_read(vcpu);
13040 }
13041
13042 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13043 {
13044         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13045 }
13046
13047 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13048 {
13049         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13050 }
13051
13052 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13053 {
13054         /* Can't read the RIP when guest state is protected, just return 0 */
13055         if (vcpu->arch.guest_state_protected)
13056                 return 0;
13057
13058         if (is_64_bit_mode(vcpu))
13059                 return kvm_rip_read(vcpu);
13060         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13061                      kvm_rip_read(vcpu));
13062 }
13063 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13064
13065 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13066 {
13067         return kvm_get_linear_rip(vcpu) == linear_rip;
13068 }
13069 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13070
13071 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13072 {
13073         unsigned long rflags;
13074
13075         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13076         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13077                 rflags &= ~X86_EFLAGS_TF;
13078         return rflags;
13079 }
13080 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13081
13082 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13083 {
13084         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13085             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13086                 rflags |= X86_EFLAGS_TF;
13087         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13088 }
13089
13090 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13091 {
13092         __kvm_set_rflags(vcpu, rflags);
13093         kvm_make_request(KVM_REQ_EVENT, vcpu);
13094 }
13095 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13096
13097 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13098 {
13099         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13100
13101         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13102 }
13103
13104 static inline u32 kvm_async_pf_next_probe(u32 key)
13105 {
13106         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13107 }
13108
13109 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13110 {
13111         u32 key = kvm_async_pf_hash_fn(gfn);
13112
13113         while (vcpu->arch.apf.gfns[key] != ~0)
13114                 key = kvm_async_pf_next_probe(key);
13115
13116         vcpu->arch.apf.gfns[key] = gfn;
13117 }
13118
13119 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13120 {
13121         int i;
13122         u32 key = kvm_async_pf_hash_fn(gfn);
13123
13124         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13125                      (vcpu->arch.apf.gfns[key] != gfn &&
13126                       vcpu->arch.apf.gfns[key] != ~0); i++)
13127                 key = kvm_async_pf_next_probe(key);
13128
13129         return key;
13130 }
13131
13132 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13133 {
13134         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13135 }
13136
13137 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13138 {
13139         u32 i, j, k;
13140
13141         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13142
13143         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13144                 return;
13145
13146         while (true) {
13147                 vcpu->arch.apf.gfns[i] = ~0;
13148                 do {
13149                         j = kvm_async_pf_next_probe(j);
13150                         if (vcpu->arch.apf.gfns[j] == ~0)
13151                                 return;
13152                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13153                         /*
13154                          * k lies cyclically in ]i,j]
13155                          * |    i.k.j |
13156                          * |....j i.k.| or  |.k..j i...|
13157                          */
13158                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13159                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13160                 i = j;
13161         }
13162 }
13163
13164 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13165 {
13166         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13167
13168         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13169                                       sizeof(reason));
13170 }
13171
13172 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13173 {
13174         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13175
13176         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13177                                              &token, offset, sizeof(token));
13178 }
13179
13180 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13181 {
13182         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13183         u32 val;
13184
13185         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13186                                          &val, offset, sizeof(val)))
13187                 return false;
13188
13189         return !val;
13190 }
13191
13192 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13193 {
13194
13195         if (!kvm_pv_async_pf_enabled(vcpu))
13196                 return false;
13197
13198         if (vcpu->arch.apf.send_user_only &&
13199             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13200                 return false;
13201
13202         if (is_guest_mode(vcpu)) {
13203                 /*
13204                  * L1 needs to opt into the special #PF vmexits that are
13205                  * used to deliver async page faults.
13206                  */
13207                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13208         } else {
13209                 /*
13210                  * Play it safe in case the guest temporarily disables paging.
13211                  * The real mode IDT in particular is unlikely to have a #PF
13212                  * exception setup.
13213                  */
13214                 return is_paging(vcpu);
13215         }
13216 }
13217
13218 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13219 {
13220         if (unlikely(!lapic_in_kernel(vcpu) ||
13221                      kvm_event_needs_reinjection(vcpu) ||
13222                      kvm_is_exception_pending(vcpu)))
13223                 return false;
13224
13225         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13226                 return false;
13227
13228         /*
13229          * If interrupts are off we cannot even use an artificial
13230          * halt state.
13231          */
13232         return kvm_arch_interrupt_allowed(vcpu);
13233 }
13234
13235 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13236                                      struct kvm_async_pf *work)
13237 {
13238         struct x86_exception fault;
13239
13240         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13241         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13242
13243         if (kvm_can_deliver_async_pf(vcpu) &&
13244             !apf_put_user_notpresent(vcpu)) {
13245                 fault.vector = PF_VECTOR;
13246                 fault.error_code_valid = true;
13247                 fault.error_code = 0;
13248                 fault.nested_page_fault = false;
13249                 fault.address = work->arch.token;
13250                 fault.async_page_fault = true;
13251                 kvm_inject_page_fault(vcpu, &fault);
13252                 return true;
13253         } else {
13254                 /*
13255                  * It is not possible to deliver a paravirtualized asynchronous
13256                  * page fault, but putting the guest in an artificial halt state
13257                  * can be beneficial nevertheless: if an interrupt arrives, we
13258                  * can deliver it timely and perhaps the guest will schedule
13259                  * another process.  When the instruction that triggered a page
13260                  * fault is retried, hopefully the page will be ready in the host.
13261                  */
13262                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13263                 return false;
13264         }
13265 }
13266
13267 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13268                                  struct kvm_async_pf *work)
13269 {
13270         struct kvm_lapic_irq irq = {
13271                 .delivery_mode = APIC_DM_FIXED,
13272                 .vector = vcpu->arch.apf.vec
13273         };
13274
13275         if (work->wakeup_all)
13276                 work->arch.token = ~0; /* broadcast wakeup */
13277         else
13278                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13279         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13280
13281         if ((work->wakeup_all || work->notpresent_injected) &&
13282             kvm_pv_async_pf_enabled(vcpu) &&
13283             !apf_put_user_ready(vcpu, work->arch.token)) {
13284                 vcpu->arch.apf.pageready_pending = true;
13285                 kvm_apic_set_irq(vcpu, &irq, NULL);
13286         }
13287
13288         vcpu->arch.apf.halted = false;
13289         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13290 }
13291
13292 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13293 {
13294         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13295         if (!vcpu->arch.apf.pageready_pending)
13296                 kvm_vcpu_kick(vcpu);
13297 }
13298
13299 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13300 {
13301         if (!kvm_pv_async_pf_enabled(vcpu))
13302                 return true;
13303         else
13304                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13305 }
13306
13307 void kvm_arch_start_assignment(struct kvm *kvm)
13308 {
13309         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13310                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13311 }
13312 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13313
13314 void kvm_arch_end_assignment(struct kvm *kvm)
13315 {
13316         atomic_dec(&kvm->arch.assigned_device_count);
13317 }
13318 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13319
13320 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13321 {
13322         return raw_atomic_read(&kvm->arch.assigned_device_count);
13323 }
13324 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13325
13326 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13327 {
13328         /*
13329          * Non-coherent DMA assignment and de-assignment will affect
13330          * whether KVM honors guest MTRRs and cause changes in memtypes
13331          * in TDP.
13332          * So, pass %true unconditionally to indicate non-coherent DMA was,
13333          * or will be involved, and that zapping SPTEs might be necessary.
13334          */
13335         if (__kvm_mmu_honors_guest_mtrrs(true))
13336                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13337 }
13338
13339 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13340 {
13341         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13342                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13343 }
13344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13345
13346 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13347 {
13348         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13349                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13350 }
13351 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13352
13353 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13354 {
13355         return atomic_read(&kvm->arch.noncoherent_dma_count);
13356 }
13357 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13358
13359 bool kvm_arch_has_irq_bypass(void)
13360 {
13361         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13362 }
13363
13364 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13365                                       struct irq_bypass_producer *prod)
13366 {
13367         struct kvm_kernel_irqfd *irqfd =
13368                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13369         int ret;
13370
13371         irqfd->producer = prod;
13372         kvm_arch_start_assignment(irqfd->kvm);
13373         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13374                                          prod->irq, irqfd->gsi, 1);
13375
13376         if (ret)
13377                 kvm_arch_end_assignment(irqfd->kvm);
13378
13379         return ret;
13380 }
13381
13382 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13383                                       struct irq_bypass_producer *prod)
13384 {
13385         int ret;
13386         struct kvm_kernel_irqfd *irqfd =
13387                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13388
13389         WARN_ON(irqfd->producer != prod);
13390         irqfd->producer = NULL;
13391
13392         /*
13393          * When producer of consumer is unregistered, we change back to
13394          * remapped mode, so we can re-use the current implementation
13395          * when the irq is masked/disabled or the consumer side (KVM
13396          * int this case doesn't want to receive the interrupts.
13397         */
13398         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13399         if (ret)
13400                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13401                        " fails: %d\n", irqfd->consumer.token, ret);
13402
13403         kvm_arch_end_assignment(irqfd->kvm);
13404 }
13405
13406 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13407                                    uint32_t guest_irq, bool set)
13408 {
13409         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13410 }
13411
13412 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13413                                   struct kvm_kernel_irq_routing_entry *new)
13414 {
13415         if (new->type != KVM_IRQ_ROUTING_MSI)
13416                 return true;
13417
13418         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13419 }
13420
13421 bool kvm_vector_hashing_enabled(void)
13422 {
13423         return vector_hashing;
13424 }
13425
13426 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13427 {
13428         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13429 }
13430 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13431
13432
13433 int kvm_spec_ctrl_test_value(u64 value)
13434 {
13435         /*
13436          * test that setting IA32_SPEC_CTRL to given value
13437          * is allowed by the host processor
13438          */
13439
13440         u64 saved_value;
13441         unsigned long flags;
13442         int ret = 0;
13443
13444         local_irq_save(flags);
13445
13446         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13447                 ret = 1;
13448         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13449                 ret = 1;
13450         else
13451                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13452
13453         local_irq_restore(flags);
13454
13455         return ret;
13456 }
13457 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13458
13459 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13460 {
13461         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13462         struct x86_exception fault;
13463         u64 access = error_code &
13464                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13465
13466         if (!(error_code & PFERR_PRESENT_MASK) ||
13467             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13468                 /*
13469                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13470                  * tables probably do not match the TLB.  Just proceed
13471                  * with the error code that the processor gave.
13472                  */
13473                 fault.vector = PF_VECTOR;
13474                 fault.error_code_valid = true;
13475                 fault.error_code = error_code;
13476                 fault.nested_page_fault = false;
13477                 fault.address = gva;
13478                 fault.async_page_fault = false;
13479         }
13480         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13481 }
13482 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13483
13484 /*
13485  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13486  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13487  * indicates whether exit to userspace is needed.
13488  */
13489 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13490                               struct x86_exception *e)
13491 {
13492         if (r == X86EMUL_PROPAGATE_FAULT) {
13493                 if (KVM_BUG_ON(!e, vcpu->kvm))
13494                         return -EIO;
13495
13496                 kvm_inject_emulated_page_fault(vcpu, e);
13497                 return 1;
13498         }
13499
13500         /*
13501          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13502          * while handling a VMX instruction KVM could've handled the request
13503          * correctly by exiting to userspace and performing I/O but there
13504          * doesn't seem to be a real use-case behind such requests, just return
13505          * KVM_EXIT_INTERNAL_ERROR for now.
13506          */
13507         kvm_prepare_emulation_failure_exit(vcpu);
13508
13509         return 0;
13510 }
13511 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13512
13513 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13514 {
13515         bool pcid_enabled;
13516         struct x86_exception e;
13517         struct {
13518                 u64 pcid;
13519                 u64 gla;
13520         } operand;
13521         int r;
13522
13523         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13524         if (r != X86EMUL_CONTINUE)
13525                 return kvm_handle_memory_failure(vcpu, r, &e);
13526
13527         if (operand.pcid >> 12 != 0) {
13528                 kvm_inject_gp(vcpu, 0);
13529                 return 1;
13530         }
13531
13532         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13533
13534         switch (type) {
13535         case INVPCID_TYPE_INDIV_ADDR:
13536                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13537                     is_noncanonical_address(operand.gla, vcpu)) {
13538                         kvm_inject_gp(vcpu, 0);
13539                         return 1;
13540                 }
13541                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13542                 return kvm_skip_emulated_instruction(vcpu);
13543
13544         case INVPCID_TYPE_SINGLE_CTXT:
13545                 if (!pcid_enabled && (operand.pcid != 0)) {
13546                         kvm_inject_gp(vcpu, 0);
13547                         return 1;
13548                 }
13549
13550                 kvm_invalidate_pcid(vcpu, operand.pcid);
13551                 return kvm_skip_emulated_instruction(vcpu);
13552
13553         case INVPCID_TYPE_ALL_NON_GLOBAL:
13554                 /*
13555                  * Currently, KVM doesn't mark global entries in the shadow
13556                  * page tables, so a non-global flush just degenerates to a
13557                  * global flush. If needed, we could optimize this later by
13558                  * keeping track of global entries in shadow page tables.
13559                  */
13560
13561                 fallthrough;
13562         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13563                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13564                 return kvm_skip_emulated_instruction(vcpu);
13565
13566         default:
13567                 kvm_inject_gp(vcpu, 0);
13568                 return 1;
13569         }
13570 }
13571 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13572
13573 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13574 {
13575         struct kvm_run *run = vcpu->run;
13576         struct kvm_mmio_fragment *frag;
13577         unsigned int len;
13578
13579         BUG_ON(!vcpu->mmio_needed);
13580
13581         /* Complete previous fragment */
13582         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13583         len = min(8u, frag->len);
13584         if (!vcpu->mmio_is_write)
13585                 memcpy(frag->data, run->mmio.data, len);
13586
13587         if (frag->len <= 8) {
13588                 /* Switch to the next fragment. */
13589                 frag++;
13590                 vcpu->mmio_cur_fragment++;
13591         } else {
13592                 /* Go forward to the next mmio piece. */
13593                 frag->data += len;
13594                 frag->gpa += len;
13595                 frag->len -= len;
13596         }
13597
13598         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13599                 vcpu->mmio_needed = 0;
13600
13601                 // VMG change, at this point, we're always done
13602                 // RIP has already been advanced
13603                 return 1;
13604         }
13605
13606         // More MMIO is needed
13607         run->mmio.phys_addr = frag->gpa;
13608         run->mmio.len = min(8u, frag->len);
13609         run->mmio.is_write = vcpu->mmio_is_write;
13610         if (run->mmio.is_write)
13611                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13612         run->exit_reason = KVM_EXIT_MMIO;
13613
13614         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13615
13616         return 0;
13617 }
13618
13619 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13620                           void *data)
13621 {
13622         int handled;
13623         struct kvm_mmio_fragment *frag;
13624
13625         if (!data)
13626                 return -EINVAL;
13627
13628         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13629         if (handled == bytes)
13630                 return 1;
13631
13632         bytes -= handled;
13633         gpa += handled;
13634         data += handled;
13635
13636         /*TODO: Check if need to increment number of frags */
13637         frag = vcpu->mmio_fragments;
13638         vcpu->mmio_nr_fragments = 1;
13639         frag->len = bytes;
13640         frag->gpa = gpa;
13641         frag->data = data;
13642
13643         vcpu->mmio_needed = 1;
13644         vcpu->mmio_cur_fragment = 0;
13645
13646         vcpu->run->mmio.phys_addr = gpa;
13647         vcpu->run->mmio.len = min(8u, frag->len);
13648         vcpu->run->mmio.is_write = 1;
13649         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13650         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13651
13652         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13653
13654         return 0;
13655 }
13656 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13657
13658 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13659                          void *data)
13660 {
13661         int handled;
13662         struct kvm_mmio_fragment *frag;
13663
13664         if (!data)
13665                 return -EINVAL;
13666
13667         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13668         if (handled == bytes)
13669                 return 1;
13670
13671         bytes -= handled;
13672         gpa += handled;
13673         data += handled;
13674
13675         /*TODO: Check if need to increment number of frags */
13676         frag = vcpu->mmio_fragments;
13677         vcpu->mmio_nr_fragments = 1;
13678         frag->len = bytes;
13679         frag->gpa = gpa;
13680         frag->data = data;
13681
13682         vcpu->mmio_needed = 1;
13683         vcpu->mmio_cur_fragment = 0;
13684
13685         vcpu->run->mmio.phys_addr = gpa;
13686         vcpu->run->mmio.len = min(8u, frag->len);
13687         vcpu->run->mmio.is_write = 0;
13688         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13689
13690         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13691
13692         return 0;
13693 }
13694 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13695
13696 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13697 {
13698         vcpu->arch.sev_pio_count -= count;
13699         vcpu->arch.sev_pio_data += count * size;
13700 }
13701
13702 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13703                            unsigned int port);
13704
13705 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13706 {
13707         int size = vcpu->arch.pio.size;
13708         int port = vcpu->arch.pio.port;
13709
13710         vcpu->arch.pio.count = 0;
13711         if (vcpu->arch.sev_pio_count)
13712                 return kvm_sev_es_outs(vcpu, size, port);
13713         return 1;
13714 }
13715
13716 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13717                            unsigned int port)
13718 {
13719         for (;;) {
13720                 unsigned int count =
13721                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13722                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13723
13724                 /* memcpy done already by emulator_pio_out.  */
13725                 advance_sev_es_emulated_pio(vcpu, count, size);
13726                 if (!ret)
13727                         break;
13728
13729                 /* Emulation done by the kernel.  */
13730                 if (!vcpu->arch.sev_pio_count)
13731                         return 1;
13732         }
13733
13734         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13735         return 0;
13736 }
13737
13738 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13739                           unsigned int port);
13740
13741 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13742 {
13743         unsigned count = vcpu->arch.pio.count;
13744         int size = vcpu->arch.pio.size;
13745         int port = vcpu->arch.pio.port;
13746
13747         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13748         advance_sev_es_emulated_pio(vcpu, count, size);
13749         if (vcpu->arch.sev_pio_count)
13750                 return kvm_sev_es_ins(vcpu, size, port);
13751         return 1;
13752 }
13753
13754 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13755                           unsigned int port)
13756 {
13757         for (;;) {
13758                 unsigned int count =
13759                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13760                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13761                         break;
13762
13763                 /* Emulation done by the kernel.  */
13764                 advance_sev_es_emulated_pio(vcpu, count, size);
13765                 if (!vcpu->arch.sev_pio_count)
13766                         return 1;
13767         }
13768
13769         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13770         return 0;
13771 }
13772
13773 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13774                          unsigned int port, void *data,  unsigned int count,
13775                          int in)
13776 {
13777         vcpu->arch.sev_pio_data = data;
13778         vcpu->arch.sev_pio_count = count;
13779         return in ? kvm_sev_es_ins(vcpu, size, port)
13780                   : kvm_sev_es_outs(vcpu, size, port);
13781 }
13782 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13783
13784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13811 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13812 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13813
13814 static int __init kvm_x86_init(void)
13815 {
13816         kvm_mmu_x86_module_init();
13817         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13818         return 0;
13819 }
13820 module_init(kvm_x86_init);
13821
13822 static void __exit kvm_x86_exit(void)
13823 {
13824         /*
13825          * If module_init() is implemented, module_exit() must also be
13826          * implemented to allow module unload.
13827          */
13828 }
13829 module_exit(kvm_x86_exit);