thermal/core: Add NULL pointer check before using cooling device stats
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87
88 #define emul_to_vcpu(ctxt) \
89         ((struct kvm_vcpu *)(ctxt)->vcpu)
90
91 /* EFER defaults:
92  * - enable syscall per default because its emulated by KVM
93  * - enable LME and LMA per default on 64 bit KVM
94  */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117
118 #define KVM_X86_OP(func)                                             \
119         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
120                                 *(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32  __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64  __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156
157 /*
158  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
159  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
160  * advancement entirely.  Any other value is used as-is and disables adaptive
161  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
162  */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178
179 /*
180  * Restoring the host value for MSRs that are only consumed when running in
181  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182  * returns to userspace, i.e. the kernel can run with the guest's value.
183  */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185
186 struct kvm_user_return_msrs_global {
187         int nr;
188         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190
191 struct kvm_user_return_msrs {
192         struct user_return_notifier urn;
193         bool registered;
194         struct kvm_user_return_msr_values {
195                 u64 host;
196                 u64 curr;
197         } values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202
203 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206                                 | XFEATURE_MASK_PKRU)
207
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220         VCPU_STAT("pf_fixed", pf_fixed),
221         VCPU_STAT("pf_guest", pf_guest),
222         VCPU_STAT("tlb_flush", tlb_flush),
223         VCPU_STAT("invlpg", invlpg),
224         VCPU_STAT("exits", exits),
225         VCPU_STAT("io_exits", io_exits),
226         VCPU_STAT("mmio_exits", mmio_exits),
227         VCPU_STAT("signal_exits", signal_exits),
228         VCPU_STAT("irq_window", irq_window_exits),
229         VCPU_STAT("nmi_window", nmi_window_exits),
230         VCPU_STAT("halt_exits", halt_exits),
231         VCPU_STAT("halt_successful_poll", halt_successful_poll),
232         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234         VCPU_STAT("halt_wakeup", halt_wakeup),
235         VCPU_STAT("hypercalls", hypercalls),
236         VCPU_STAT("request_irq", request_irq_exits),
237         VCPU_STAT("irq_exits", irq_exits),
238         VCPU_STAT("host_state_reload", host_state_reload),
239         VCPU_STAT("fpu_reload", fpu_reload),
240         VCPU_STAT("insn_emulation", insn_emulation),
241         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242         VCPU_STAT("irq_injections", irq_injections),
243         VCPU_STAT("nmi_injections", nmi_injections),
244         VCPU_STAT("req_event", req_event),
245         VCPU_STAT("l1d_flush", l1d_flush),
246         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249         VM_STAT("mmu_pte_write", mmu_pte_write),
250         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251         VM_STAT("mmu_flooded", mmu_flooded),
252         VM_STAT("mmu_recycled", mmu_recycled),
253         VM_STAT("mmu_cache_miss", mmu_cache_miss),
254         VM_STAT("mmu_unsync", mmu_unsync),
255         VM_STAT("remote_tlb_flush", remote_tlb_flush),
256         VM_STAT("largepages", lpages, .mode = 0444),
257         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259         { NULL }
260 };
261
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265
266 static struct kmem_cache *x86_fpu_cache;
267
268 static struct kmem_cache *x86_emulator_cache;
269
270 /*
271  * When called, it means the previous get/set msr reached an invalid msr.
272  * Return true if we want to ignore/silent this failed msr access.
273  */
274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
275                                   u64 data, bool write)
276 {
277         const char *op = write ? "wrmsr" : "rdmsr";
278
279         if (ignore_msrs) {
280                 if (report_ignored_msrs)
281                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282                                       op, msr, data);
283                 /* Mask the error */
284                 return true;
285         } else {
286                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287                                       op, msr, data);
288                 return false;
289         }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295         unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297         return kmem_cache_create_usercopy("x86_emulator", size,
298                                           __alignof__(struct x86_emulate_ctxt),
299                                           SLAB_ACCOUNT, useroffset,
300                                           size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307         int i;
308         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309                 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314         unsigned slot;
315         struct kvm_user_return_msrs *msrs
316                 = container_of(urn, struct kvm_user_return_msrs, urn);
317         struct kvm_user_return_msr_values *values;
318         unsigned long flags;
319
320         /*
321          * Disabling irqs at this point since the following code could be
322          * interrupted and executed through kvm_arch_hardware_disable()
323          */
324         local_irq_save(flags);
325         if (msrs->registered) {
326                 msrs->registered = false;
327                 user_return_notifier_unregister(urn);
328         }
329         local_irq_restore(flags);
330         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
331                 values = &msrs->values[slot];
332                 if (values->host != values->curr) {
333                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
334                         values->curr = values->host;
335                 }
336         }
337 }
338
339 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 {
341         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
342         user_return_msrs_global.msrs[slot] = msr;
343         if (slot >= user_return_msrs_global.nr)
344                 user_return_msrs_global.nr = slot + 1;
345 }
346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347
348 static void kvm_user_return_msr_cpu_online(void)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         u64 value;
353         int i;
354
355         for (i = 0; i < user_return_msrs_global.nr; ++i) {
356                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
357                 msrs->values[i].host = value;
358                 msrs->values[i].curr = value;
359         }
360 }
361
362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 {
364         unsigned int cpu = smp_processor_id();
365         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
366         int err;
367
368         value = (value & mask) | (msrs->values[slot].host & ~mask);
369         if (value == msrs->values[slot].curr)
370                 return 0;
371         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
372         if (err)
373                 return 1;
374
375         msrs->values[slot].curr = value;
376         if (!msrs->registered) {
377                 msrs->urn.on_user_return = kvm_on_user_return;
378                 user_return_notifier_register(&msrs->urn);
379                 msrs->registered = true;
380         }
381         return 0;
382 }
383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384
385 static void drop_user_return_notifiers(void)
386 {
387         unsigned int cpu = smp_processor_id();
388         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389
390         if (msrs->registered)
391                 kvm_on_user_return(&msrs->urn);
392 }
393
394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 {
396         return vcpu->arch.apic_base;
397 }
398 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399
400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 {
402         return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 }
404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405
406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
409         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
410         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
411                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412
413         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414                 return 1;
415         if (!msr_info->host_initiated) {
416                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417                         return 1;
418                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
419                         return 1;
420         }
421
422         kvm_lapic_set_base(vcpu, msr_info->data);
423         kvm_recalculate_apic_map(vcpu->kvm);
424         return 0;
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427
428 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 {
430         /* Fault while not rebooting.  We want the trace. */
431         BUG_ON(!kvm_rebooting);
432 }
433 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434
435 #define EXCPT_BENIGN            0
436 #define EXCPT_CONTRIBUTORY      1
437 #define EXCPT_PF                2
438
439 static int exception_class(int vector)
440 {
441         switch (vector) {
442         case PF_VECTOR:
443                 return EXCPT_PF;
444         case DE_VECTOR:
445         case TS_VECTOR:
446         case NP_VECTOR:
447         case SS_VECTOR:
448         case GP_VECTOR:
449                 return EXCPT_CONTRIBUTORY;
450         default:
451                 break;
452         }
453         return EXCPT_BENIGN;
454 }
455
456 #define EXCPT_FAULT             0
457 #define EXCPT_TRAP              1
458 #define EXCPT_ABORT             2
459 #define EXCPT_INTERRUPT         3
460
461 static int exception_type(int vector)
462 {
463         unsigned int mask;
464
465         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
466                 return EXCPT_INTERRUPT;
467
468         mask = 1 << vector;
469
470         /* #DB is trap, as instruction watchpoints are handled elsewhere */
471         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
472                 return EXCPT_TRAP;
473
474         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
475                 return EXCPT_ABORT;
476
477         /* Reserved exceptions will result in fault */
478         return EXCPT_FAULT;
479 }
480
481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 {
483         unsigned nr = vcpu->arch.exception.nr;
484         bool has_payload = vcpu->arch.exception.has_payload;
485         unsigned long payload = vcpu->arch.exception.payload;
486
487         if (!has_payload)
488                 return;
489
490         switch (nr) {
491         case DB_VECTOR:
492                 /*
493                  * "Certain debug exceptions may clear bit 0-3.  The
494                  * remaining contents of the DR6 register are never
495                  * cleared by the processor".
496                  */
497                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498                 /*
499                  * In order to reflect the #DB exception payload in guest
500                  * dr6, three components need to be considered: active low
501                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502                  * DR6_BS and DR6_BT)
503                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
504                  * In the target guest dr6:
505                  * FIXED_1 bits should always be set.
506                  * Active low bits should be cleared if 1-setting in payload.
507                  * Active high bits should be set if 1-setting in payload.
508                  *
509                  * Note, the payload is compatible with the pending debug
510                  * exceptions/exit qualification under VMX, that active_low bits
511                  * are active high in payload.
512                  * So they need to be flipped for DR6.
513                  */
514                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
515                 vcpu->arch.dr6 |= payload;
516                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
517
518                 /*
519                  * The #DB payload is defined as compatible with the 'pending
520                  * debug exceptions' field under VMX, not DR6. While bit 12 is
521                  * defined in the 'pending debug exceptions' field (enabled
522                  * breakpoint), it is reserved and must be zero in DR6.
523                  */
524                 vcpu->arch.dr6 &= ~BIT(12);
525                 break;
526         case PF_VECTOR:
527                 vcpu->arch.cr2 = payload;
528                 break;
529         }
530
531         vcpu->arch.exception.has_payload = false;
532         vcpu->arch.exception.payload = 0;
533 }
534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535
536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
537                 unsigned nr, bool has_error, u32 error_code,
538                 bool has_payload, unsigned long payload, bool reinject)
539 {
540         u32 prev_nr;
541         int class1, class2;
542
543         kvm_make_request(KVM_REQ_EVENT, vcpu);
544
545         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546         queue:
547                 if (has_error && !is_protmode(vcpu))
548                         has_error = false;
549                 if (reinject) {
550                         /*
551                          * On vmentry, vcpu->arch.exception.pending is only
552                          * true if an event injection was blocked by
553                          * nested_run_pending.  In that case, however,
554                          * vcpu_enter_guest requests an immediate exit,
555                          * and the guest shouldn't proceed far enough to
556                          * need reinjection.
557                          */
558                         WARN_ON_ONCE(vcpu->arch.exception.pending);
559                         vcpu->arch.exception.injected = true;
560                         if (WARN_ON_ONCE(has_payload)) {
561                                 /*
562                                  * A reinjected event has already
563                                  * delivered its payload.
564                                  */
565                                 has_payload = false;
566                                 payload = 0;
567                         }
568                 } else {
569                         vcpu->arch.exception.pending = true;
570                         vcpu->arch.exception.injected = false;
571                 }
572                 vcpu->arch.exception.has_error_code = has_error;
573                 vcpu->arch.exception.nr = nr;
574                 vcpu->arch.exception.error_code = error_code;
575                 vcpu->arch.exception.has_payload = has_payload;
576                 vcpu->arch.exception.payload = payload;
577                 if (!is_guest_mode(vcpu))
578                         kvm_deliver_exception_payload(vcpu);
579                 return;
580         }
581
582         /* to check exception */
583         prev_nr = vcpu->arch.exception.nr;
584         if (prev_nr == DF_VECTOR) {
585                 /* triple fault -> shutdown */
586                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
587                 return;
588         }
589         class1 = exception_class(prev_nr);
590         class2 = exception_class(nr);
591         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
592                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593                 /*
594                  * Generate double fault per SDM Table 5-5.  Set
595                  * exception.pending = true so that the double fault
596                  * can trigger a nested vmexit.
597                  */
598                 vcpu->arch.exception.pending = true;
599                 vcpu->arch.exception.injected = false;
600                 vcpu->arch.exception.has_error_code = true;
601                 vcpu->arch.exception.nr = DF_VECTOR;
602                 vcpu->arch.exception.error_code = 0;
603                 vcpu->arch.exception.has_payload = false;
604                 vcpu->arch.exception.payload = 0;
605         } else
606                 /* replace previous exception with a new one in a hope
607                    that instruction re-execution will regenerate lost
608                    exception */
609                 goto queue;
610 }
611
612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 {
614         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617
618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 {
620         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623
624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
625                            unsigned long payload)
626 {
627         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 }
629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630
631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
632                                     u32 error_code, unsigned long payload)
633 {
634         kvm_multiple_exception(vcpu, nr, true, error_code,
635                                true, payload, false);
636 }
637
638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
639 {
640         if (err)
641                 kvm_inject_gp(vcpu, 0);
642         else
643                 return kvm_skip_emulated_instruction(vcpu);
644
645         return 1;
646 }
647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648
649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 {
651         ++vcpu->stat.pf_guest;
652         vcpu->arch.exception.nested_apf =
653                 is_guest_mode(vcpu) && fault->async_page_fault;
654         if (vcpu->arch.exception.nested_apf) {
655                 vcpu->arch.apf.nested_apf_token = fault->address;
656                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657         } else {
658                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
659                                         fault->address);
660         }
661 }
662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663
664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
665                                     struct x86_exception *fault)
666 {
667         struct kvm_mmu *fault_mmu;
668         WARN_ON_ONCE(fault->vector != PF_VECTOR);
669
670         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
671                                                vcpu->arch.walk_mmu;
672
673         /*
674          * Invalidate the TLB entry for the faulting address, if it exists,
675          * else the access will fault indefinitely (and to emulate hardware).
676          */
677         if ((fault->error_code & PFERR_PRESENT_MASK) &&
678             !(fault->error_code & PFERR_RSVD_MASK))
679                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
680                                        fault_mmu->root_hpa);
681
682         fault_mmu->inject_page_fault(vcpu, fault);
683         return fault->nested_page_fault;
684 }
685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686
687 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 {
689         atomic_inc(&vcpu->arch.nmi_queued);
690         kvm_make_request(KVM_REQ_NMI, vcpu);
691 }
692 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693
694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 {
696         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699
700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 {
702         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 }
704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
705
706 /*
707  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
708  * a #GP and return false.
709  */
710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 {
712         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713                 return true;
714         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
715         return false;
716 }
717 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718
719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 {
721         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
722                 return true;
723
724         kvm_queue_exception(vcpu, UD_VECTOR);
725         return false;
726 }
727 EXPORT_SYMBOL_GPL(kvm_require_dr);
728
729 /*
730  * This function will be used to read from the physical memory of the currently
731  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
732  * can read from guest physical or from the guest's guest physical memory.
733  */
734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
735                             gfn_t ngfn, void *data, int offset, int len,
736                             u32 access)
737 {
738         struct x86_exception exception;
739         gfn_t real_gfn;
740         gpa_t ngpa;
741
742         ngpa     = gfn_to_gpa(ngfn);
743         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
744         if (real_gfn == UNMAPPED_GVA)
745                 return -EFAULT;
746
747         real_gfn = gpa_to_gfn(real_gfn);
748
749         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 }
751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752
753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
754                                void *data, int offset, int len, u32 access)
755 {
756         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
757                                        data, offset, len, access);
758 }
759
760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 {
762         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
763 }
764
765 /*
766  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
767  */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772         int i;
773         int ret;
774         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775
776         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777                                       offset * sizeof(u64), sizeof(pdpte),
778                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
779         if (ret < 0) {
780                 ret = 0;
781                 goto out;
782         }
783         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784                 if ((pdpte[i] & PT_PRESENT_MASK) &&
785                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786                         ret = 0;
787                         goto out;
788                 }
789         }
790         ret = 1;
791
792         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794
795 out:
796
797         return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804         int offset;
805         gfn_t gfn;
806         int r;
807
808         if (!is_pae_paging(vcpu))
809                 return false;
810
811         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812                 return true;
813
814         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
818         if (r < 0)
819                 return true;
820
821         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828
829         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830                 kvm_clear_async_pf_completion_queue(vcpu);
831                 kvm_async_pf_hash_reset(vcpu);
832         }
833
834         if ((cr0 ^ old_cr0) & update_bits)
835                 kvm_mmu_reset_context(vcpu);
836
837         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846         unsigned long old_cr0 = kvm_read_cr0(vcpu);
847         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848
849         cr0 |= X86_CR0_ET;
850
851 #ifdef CONFIG_X86_64
852         if (cr0 & 0xffffffff00000000UL)
853                 return 1;
854 #endif
855
856         cr0 &= ~CR0_RESERVED_BITS;
857
858         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859                 return 1;
860
861         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862                 return 1;
863
864 #ifdef CONFIG_X86_64
865         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866             (cr0 & X86_CR0_PG)) {
867                 int cs_db, cs_l;
868
869                 if (!is_pae(vcpu))
870                         return 1;
871                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872                 if (cs_l)
873                         return 1;
874         }
875 #endif
876         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879                 return 1;
880
881         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882                 return 1;
883
884         static_call(kvm_x86_set_cr0)(vcpu, cr0);
885
886         kvm_post_set_cr0(vcpu, old_cr0, cr0);
887
888         return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900         if (vcpu->arch.guest_state_protected)
901                 return;
902
903         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905                 if (vcpu->arch.xcr0 != host_xcr0)
906                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907
908                 if (vcpu->arch.xsaves_enabled &&
909                     vcpu->arch.ia32_xss != host_xss)
910                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911         }
912
913         if (static_cpu_has(X86_FEATURE_PKU) &&
914             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916             vcpu->arch.pkru != vcpu->arch.host_pkru)
917                 __write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923         if (vcpu->arch.guest_state_protected)
924                 return;
925
926         if (static_cpu_has(X86_FEATURE_PKU) &&
927             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929                 vcpu->arch.pkru = rdpkru();
930                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931                         __write_pkru(vcpu->arch.host_pkru);
932         }
933
934         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935
936                 if (vcpu->arch.xcr0 != host_xcr0)
937                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938
939                 if (vcpu->arch.xsaves_enabled &&
940                     vcpu->arch.ia32_xss != host_xss)
941                         wrmsrl(MSR_IA32_XSS, host_xss);
942         }
943
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949         u64 xcr0 = xcr;
950         u64 old_xcr0 = vcpu->arch.xcr0;
951         u64 valid_bits;
952
953         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
954         if (index != XCR_XFEATURE_ENABLED_MASK)
955                 return 1;
956         if (!(xcr0 & XFEATURE_MASK_FP))
957                 return 1;
958         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959                 return 1;
960
961         /*
962          * Do not allow the guest to set bits that we do not support
963          * saving.  However, xcr0 bit 0 is always set, even if the
964          * emulated CPU does not support XSAVE (see fx_init).
965          */
966         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967         if (xcr0 & ~valid_bits)
968                 return 1;
969
970         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972                 return 1;
973
974         if (xcr0 & XFEATURE_MASK_AVX512) {
975                 if (!(xcr0 & XFEATURE_MASK_YMM))
976                         return 1;
977                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978                         return 1;
979         }
980         vcpu->arch.xcr0 = xcr0;
981
982         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983                 kvm_update_cpuid_runtime(vcpu);
984         return 0;
985 }
986
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989         if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
990                 return __kvm_set_xcr(vcpu, index, xcr);
991
992         return 1;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995
996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998         if (cr4 & cr4_reserved_bits)
999                 return false;
1000
1001         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1002                 return false;
1003
1004         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007
1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 {
1010         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1011                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012
1013         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015                 kvm_mmu_reset_context(vcpu);
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018
1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 {
1021         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1022         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1023                                    X86_CR4_SMEP;
1024
1025         if (!kvm_is_valid_cr4(vcpu, cr4))
1026                 return 1;
1027
1028         if (is_long_mode(vcpu)) {
1029                 if (!(cr4 & X86_CR4_PAE))
1030                         return 1;
1031                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032                         return 1;
1033         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1034                    && ((cr4 ^ old_cr4) & pdptr_bits)
1035                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1036                                    kvm_read_cr3(vcpu)))
1037                 return 1;
1038
1039         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1040                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1041                         return 1;
1042
1043                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1044                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1045                         return 1;
1046         }
1047
1048         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049
1050         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1051
1052         return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055
1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058         bool skip_tlb_flush = false;
1059 #ifdef CONFIG_X86_64
1060         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1061
1062         if (pcid_enabled) {
1063                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1064                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1065         }
1066 #endif
1067
1068         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1069                 if (!skip_tlb_flush) {
1070                         kvm_mmu_sync_roots(vcpu);
1071                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1072                 }
1073                 return 0;
1074         }
1075
1076         if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077                 return 1;
1078         else if (is_pae_paging(vcpu) &&
1079                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1080                 return 1;
1081
1082         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1083         vcpu->arch.cr3 = cr3;
1084         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1085
1086         return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089
1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 {
1092         if (cr8 & CR8_RESERVED_BITS)
1093                 return 1;
1094         if (lapic_in_kernel(vcpu))
1095                 kvm_lapic_set_tpr(vcpu, cr8);
1096         else
1097                 vcpu->arch.cr8 = cr8;
1098         return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101
1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 {
1104         if (lapic_in_kernel(vcpu))
1105                 return kvm_lapic_get_cr8(vcpu);
1106         else
1107                 return vcpu->arch.cr8;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110
1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1112 {
1113         int i;
1114
1115         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1116                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1117                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1118                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1119         }
1120 }
1121
1122 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1123 {
1124         unsigned long dr7;
1125
1126         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127                 dr7 = vcpu->arch.guest_debug_dr7;
1128         else
1129                 dr7 = vcpu->arch.dr7;
1130         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1131         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1132         if (dr7 & DR7_BP_EN_MASK)
1133                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136
1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 {
1139         u64 fixed = DR6_FIXED_1;
1140
1141         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1142                 fixed |= DR6_RTM;
1143         return fixed;
1144 }
1145
1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 {
1148         size_t size = ARRAY_SIZE(vcpu->arch.db);
1149
1150         switch (dr) {
1151         case 0 ... 3:
1152                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1153                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1154                         vcpu->arch.eff_db[dr] = val;
1155                 break;
1156         case 4:
1157         case 6:
1158                 if (!kvm_dr6_valid(val))
1159                         return 1; /* #GP */
1160                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1161                 break;
1162         case 5:
1163         default: /* 7 */
1164                 if (!kvm_dr7_valid(val))
1165                         return 1; /* #GP */
1166                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1167                 kvm_update_dr7(vcpu);
1168                 break;
1169         }
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174
1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 {
1177         size_t size = ARRAY_SIZE(vcpu->arch.db);
1178
1179         switch (dr) {
1180         case 0 ... 3:
1181                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1182                 break;
1183         case 4:
1184         case 6:
1185                 *val = vcpu->arch.dr6;
1186                 break;
1187         case 5:
1188         default: /* 7 */
1189                 *val = vcpu->arch.dr7;
1190                 break;
1191         }
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194
1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 {
1197         u32 ecx = kvm_rcx_read(vcpu);
1198         u64 data;
1199         int err;
1200
1201         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1202         if (err)
1203                 return err;
1204         kvm_rax_write(vcpu, (u32)data);
1205         kvm_rdx_write(vcpu, data >> 32);
1206         return err;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1209
1210 /*
1211  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1212  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213  *
1214  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1215  * extract the supported MSRs from the related const lists.
1216  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1217  * capabilities of the host cpu. This capabilities test skips MSRs that are
1218  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1219  * may depend on host virtualization features rather than host cpu features.
1220  */
1221
1222 static const u32 msrs_to_save_all[] = {
1223         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224         MSR_STAR,
1225 #ifdef CONFIG_X86_64
1226         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 #endif
1228         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1229         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230         MSR_IA32_SPEC_CTRL,
1231         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1232         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1233         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1234         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1235         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1236         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1237         MSR_IA32_UMWAIT_CONTROL,
1238
1239         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1240         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1241         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1242         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1243         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1244         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1245         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1246         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1247         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1248         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1249         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1250         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1251         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1252         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1253         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1254         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1255         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1256         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1257         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1258         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1259         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1260         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1261 };
1262
1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1264 static unsigned num_msrs_to_save;
1265
1266 static const u32 emulated_msrs_all[] = {
1267         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1268         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1269         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1270         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1271         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1272         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1273         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274         HV_X64_MSR_RESET,
1275         HV_X64_MSR_VP_INDEX,
1276         HV_X64_MSR_VP_RUNTIME,
1277         HV_X64_MSR_SCONTROL,
1278         HV_X64_MSR_STIMER0_CONFIG,
1279         HV_X64_MSR_VP_ASSIST_PAGE,
1280         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1281         HV_X64_MSR_TSC_EMULATION_STATUS,
1282         HV_X64_MSR_SYNDBG_OPTIONS,
1283         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1284         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1285         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286
1287         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1288         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289
1290         MSR_IA32_TSC_ADJUST,
1291         MSR_IA32_TSCDEADLINE,
1292         MSR_IA32_ARCH_CAPABILITIES,
1293         MSR_IA32_PERF_CAPABILITIES,
1294         MSR_IA32_MISC_ENABLE,
1295         MSR_IA32_MCG_STATUS,
1296         MSR_IA32_MCG_CTL,
1297         MSR_IA32_MCG_EXT_CTL,
1298         MSR_IA32_SMBASE,
1299         MSR_SMI_COUNT,
1300         MSR_PLATFORM_INFO,
1301         MSR_MISC_FEATURES_ENABLES,
1302         MSR_AMD64_VIRT_SPEC_CTRL,
1303         MSR_IA32_POWER_CTL,
1304         MSR_IA32_UCODE_REV,
1305
1306         /*
1307          * The following list leaves out MSRs whose values are determined
1308          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1309          * We always support the "true" VMX control MSRs, even if the host
1310          * processor does not, so I am putting these registers here rather
1311          * than in msrs_to_save_all.
1312          */
1313         MSR_IA32_VMX_BASIC,
1314         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1315         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318         MSR_IA32_VMX_MISC,
1319         MSR_IA32_VMX_CR0_FIXED0,
1320         MSR_IA32_VMX_CR4_FIXED0,
1321         MSR_IA32_VMX_VMCS_ENUM,
1322         MSR_IA32_VMX_PROCBASED_CTLS2,
1323         MSR_IA32_VMX_EPT_VPID_CAP,
1324         MSR_IA32_VMX_VMFUNC,
1325
1326         MSR_K7_HWCR,
1327         MSR_KVM_POLL_CONTROL,
1328 };
1329
1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1331 static unsigned num_emulated_msrs;
1332
1333 /*
1334  * List of msr numbers which are used to expose MSR-based features that
1335  * can be used by a hypervisor to validate requested CPU features.
1336  */
1337 static const u32 msr_based_features_all[] = {
1338         MSR_IA32_VMX_BASIC,
1339         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1340         MSR_IA32_VMX_PINBASED_CTLS,
1341         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1342         MSR_IA32_VMX_PROCBASED_CTLS,
1343         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1344         MSR_IA32_VMX_EXIT_CTLS,
1345         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1346         MSR_IA32_VMX_ENTRY_CTLS,
1347         MSR_IA32_VMX_MISC,
1348         MSR_IA32_VMX_CR0_FIXED0,
1349         MSR_IA32_VMX_CR0_FIXED1,
1350         MSR_IA32_VMX_CR4_FIXED0,
1351         MSR_IA32_VMX_CR4_FIXED1,
1352         MSR_IA32_VMX_VMCS_ENUM,
1353         MSR_IA32_VMX_PROCBASED_CTLS2,
1354         MSR_IA32_VMX_EPT_VPID_CAP,
1355         MSR_IA32_VMX_VMFUNC,
1356
1357         MSR_F10H_DECFG,
1358         MSR_IA32_UCODE_REV,
1359         MSR_IA32_ARCH_CAPABILITIES,
1360         MSR_IA32_PERF_CAPABILITIES,
1361 };
1362
1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1364 static unsigned int num_msr_based_features;
1365
1366 static u64 kvm_get_arch_capabilities(void)
1367 {
1368         u64 data = 0;
1369
1370         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1371                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1372
1373         /*
1374          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1375          * the nested hypervisor runs with NX huge pages.  If it is not,
1376          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1377          * L1 guests, so it need not worry about its own (L2) guests.
1378          */
1379         data |= ARCH_CAP_PSCHANGE_MC_NO;
1380
1381         /*
1382          * If we're doing cache flushes (either "always" or "cond")
1383          * we will do one whenever the guest does a vmlaunch/vmresume.
1384          * If an outer hypervisor is doing the cache flush for us
1385          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1386          * capability to the guest too, and if EPT is disabled we're not
1387          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1388          * require a nested hypervisor to do a flush of its own.
1389          */
1390         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1391                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392
1393         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1394                 data |= ARCH_CAP_RDCL_NO;
1395         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1396                 data |= ARCH_CAP_SSB_NO;
1397         if (!boot_cpu_has_bug(X86_BUG_MDS))
1398                 data |= ARCH_CAP_MDS_NO;
1399
1400         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401                 /*
1402                  * If RTM=0 because the kernel has disabled TSX, the host might
1403                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1404                  * and therefore knows that there cannot be TAA) but keep
1405                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1406                  * and we want to allow migrating those guests to tsx=off hosts.
1407                  */
1408                 data &= ~ARCH_CAP_TAA_NO;
1409         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1410                 data |= ARCH_CAP_TAA_NO;
1411         } else {
1412                 /*
1413                  * Nothing to do here; we emulate TSX_CTRL if present on the
1414                  * host so the guest can choose between disabling TSX or
1415                  * using VERW to clear CPU buffers.
1416                  */
1417         }
1418
1419         return data;
1420 }
1421
1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 {
1424         switch (msr->index) {
1425         case MSR_IA32_ARCH_CAPABILITIES:
1426                 msr->data = kvm_get_arch_capabilities();
1427                 break;
1428         case MSR_IA32_UCODE_REV:
1429                 rdmsrl_safe(msr->index, &msr->data);
1430                 break;
1431         default:
1432                 return static_call(kvm_x86_get_msr_feature)(msr);
1433         }
1434         return 0;
1435 }
1436
1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 {
1439         struct kvm_msr_entry msr;
1440         int r;
1441
1442         msr.index = index;
1443         r = kvm_get_msr_feature(&msr);
1444
1445         if (r == KVM_MSR_RET_INVALID) {
1446                 /* Unconditionally clear the output for simplicity */
1447                 *data = 0;
1448                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1449                         r = 0;
1450         }
1451
1452         if (r)
1453                 return r;
1454
1455         *data = msr.data;
1456
1457         return 0;
1458 }
1459
1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 {
1462         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1463                 return false;
1464
1465         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1466                 return false;
1467
1468         if (efer & (EFER_LME | EFER_LMA) &&
1469             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1470                 return false;
1471
1472         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1473                 return false;
1474
1475         return true;
1476
1477 }
1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 {
1480         if (efer & efer_reserved_bits)
1481                 return false;
1482
1483         return __kvm_valid_efer(vcpu, efer);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486
1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 {
1489         u64 old_efer = vcpu->arch.efer;
1490         u64 efer = msr_info->data;
1491         int r;
1492
1493         if (efer & efer_reserved_bits)
1494                 return 1;
1495
1496         if (!msr_info->host_initiated) {
1497                 if (!__kvm_valid_efer(vcpu, efer))
1498                         return 1;
1499
1500                 if (is_paging(vcpu) &&
1501                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1502                         return 1;
1503         }
1504
1505         efer &= ~EFER_LMA;
1506         efer |= vcpu->arch.efer & EFER_LMA;
1507
1508         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1509         if (r) {
1510                 WARN_ON(r > 0);
1511                 return r;
1512         }
1513
1514         /* Update reserved bits */
1515         if ((efer ^ old_efer) & EFER_NX)
1516                 kvm_mmu_reset_context(vcpu);
1517
1518         return 0;
1519 }
1520
1521 void kvm_enable_efer_bits(u64 mask)
1522 {
1523        efer_reserved_bits &= ~mask;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526
1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 {
1529         struct kvm *kvm = vcpu->kvm;
1530         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1531         u32 count = kvm->arch.msr_filter.count;
1532         u32 i;
1533         bool r = kvm->arch.msr_filter.default_allow;
1534         int idx;
1535
1536         /* MSR filtering not set up or x2APIC enabled, allow everything */
1537         if (!count || (index >= 0x800 && index <= 0x8ff))
1538                 return true;
1539
1540         /* Prevent collision with set_msr_filter */
1541         idx = srcu_read_lock(&kvm->srcu);
1542
1543         for (i = 0; i < count; i++) {
1544                 u32 start = ranges[i].base;
1545                 u32 end = start + ranges[i].nmsrs;
1546                 u32 flags = ranges[i].flags;
1547                 unsigned long *bitmap = ranges[i].bitmap;
1548
1549                 if ((index >= start) && (index < end) && (flags & type)) {
1550                         r = !!test_bit(index - start, bitmap);
1551                         break;
1552                 }
1553         }
1554
1555         srcu_read_unlock(&kvm->srcu, idx);
1556
1557         return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1560
1561 /*
1562  * Write @data into the MSR specified by @index.  Select MSR specific fault
1563  * checks are bypassed if @host_initiated is %true.
1564  * Returns 0 on success, non-0 otherwise.
1565  * Assumes vcpu_load() was already called.
1566  */
1567 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1568                          bool host_initiated)
1569 {
1570         struct msr_data msr;
1571
1572         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1573                 return KVM_MSR_RET_FILTERED;
1574
1575         switch (index) {
1576         case MSR_FS_BASE:
1577         case MSR_GS_BASE:
1578         case MSR_KERNEL_GS_BASE:
1579         case MSR_CSTAR:
1580         case MSR_LSTAR:
1581                 if (is_noncanonical_address(data, vcpu))
1582                         return 1;
1583                 break;
1584         case MSR_IA32_SYSENTER_EIP:
1585         case MSR_IA32_SYSENTER_ESP:
1586                 /*
1587                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1588                  * non-canonical address is written on Intel but not on
1589                  * AMD (which ignores the top 32-bits, because it does
1590                  * not implement 64-bit SYSENTER).
1591                  *
1592                  * 64-bit code should hence be able to write a non-canonical
1593                  * value on AMD.  Making the address canonical ensures that
1594                  * vmentry does not fail on Intel after writing a non-canonical
1595                  * value, and that something deterministic happens if the guest
1596                  * invokes 64-bit SYSENTER.
1597                  */
1598                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1599         }
1600
1601         msr.data = data;
1602         msr.index = index;
1603         msr.host_initiated = host_initiated;
1604
1605         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1606 }
1607
1608 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1609                                      u32 index, u64 data, bool host_initiated)
1610 {
1611         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1612
1613         if (ret == KVM_MSR_RET_INVALID)
1614                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1615                         ret = 0;
1616
1617         return ret;
1618 }
1619
1620 /*
1621  * Read the MSR specified by @index into @data.  Select MSR specific fault
1622  * checks are bypassed if @host_initiated is %true.
1623  * Returns 0 on success, non-0 otherwise.
1624  * Assumes vcpu_load() was already called.
1625  */
1626 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1627                   bool host_initiated)
1628 {
1629         struct msr_data msr;
1630         int ret;
1631
1632         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1633                 return KVM_MSR_RET_FILTERED;
1634
1635         msr.index = index;
1636         msr.host_initiated = host_initiated;
1637
1638         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1639         if (!ret)
1640                 *data = msr.data;
1641         return ret;
1642 }
1643
1644 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1645                                      u32 index, u64 *data, bool host_initiated)
1646 {
1647         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1648
1649         if (ret == KVM_MSR_RET_INVALID) {
1650                 /* Unconditionally clear *data for simplicity */
1651                 *data = 0;
1652                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1653                         ret = 0;
1654         }
1655
1656         return ret;
1657 }
1658
1659 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1660 {
1661         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_get_msr);
1664
1665 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1666 {
1667         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr);
1670
1671 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1672 {
1673         int err = vcpu->run->msr.error;
1674         if (!err) {
1675                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1676                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1677         }
1678
1679         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1680 }
1681
1682 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1683 {
1684         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1685 }
1686
1687 static u64 kvm_msr_reason(int r)
1688 {
1689         switch (r) {
1690         case KVM_MSR_RET_INVALID:
1691                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1692         case KVM_MSR_RET_FILTERED:
1693                 return KVM_MSR_EXIT_REASON_FILTER;
1694         default:
1695                 return KVM_MSR_EXIT_REASON_INVAL;
1696         }
1697 }
1698
1699 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1700                               u32 exit_reason, u64 data,
1701                               int (*completion)(struct kvm_vcpu *vcpu),
1702                               int r)
1703 {
1704         u64 msr_reason = kvm_msr_reason(r);
1705
1706         /* Check if the user wanted to know about this MSR fault */
1707         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1708                 return 0;
1709
1710         vcpu->run->exit_reason = exit_reason;
1711         vcpu->run->msr.error = 0;
1712         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1713         vcpu->run->msr.reason = msr_reason;
1714         vcpu->run->msr.index = index;
1715         vcpu->run->msr.data = data;
1716         vcpu->arch.complete_userspace_io = completion;
1717
1718         return 1;
1719 }
1720
1721 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1722 {
1723         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1724                                    complete_emulated_rdmsr, r);
1725 }
1726
1727 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1728 {
1729         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1730                                    complete_emulated_wrmsr, r);
1731 }
1732
1733 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1734 {
1735         u32 ecx = kvm_rcx_read(vcpu);
1736         u64 data;
1737         int r;
1738
1739         r = kvm_get_msr(vcpu, ecx, &data);
1740
1741         /* MSR read failed? See if we should ask user space */
1742         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1743                 /* Bounce to user space */
1744                 return 0;
1745         }
1746
1747         if (!r) {
1748                 trace_kvm_msr_read(ecx, data);
1749
1750                 kvm_rax_write(vcpu, data & -1u);
1751                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1752         } else {
1753                 trace_kvm_msr_read_ex(ecx);
1754         }
1755
1756         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1759
1760 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1761 {
1762         u32 ecx = kvm_rcx_read(vcpu);
1763         u64 data = kvm_read_edx_eax(vcpu);
1764         int r;
1765
1766         r = kvm_set_msr(vcpu, ecx, data);
1767
1768         /* MSR write failed? See if we should ask user space */
1769         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1770                 /* Bounce to user space */
1771                 return 0;
1772
1773         /* Signal all other negative errors to userspace */
1774         if (r < 0)
1775                 return r;
1776
1777         if (!r)
1778                 trace_kvm_msr_write(ecx, data);
1779         else
1780                 trace_kvm_msr_write_ex(ecx, data);
1781
1782         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1785
1786 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1787 {
1788         xfer_to_guest_mode_prepare();
1789         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1790                 xfer_to_guest_mode_work_pending();
1791 }
1792
1793 /*
1794  * The fast path for frequent and performance sensitive wrmsr emulation,
1795  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1796  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1797  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1798  * other cases which must be called after interrupts are enabled on the host.
1799  */
1800 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1801 {
1802         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1803                 return 1;
1804
1805         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1806                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1807                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1808                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1809
1810                 data &= ~(1 << 12);
1811                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1812                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1813                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1814                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1815                 return 0;
1816         }
1817
1818         return 1;
1819 }
1820
1821 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1822 {
1823         if (!kvm_can_use_hv_timer(vcpu))
1824                 return 1;
1825
1826         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1827         return 0;
1828 }
1829
1830 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1831 {
1832         u32 msr = kvm_rcx_read(vcpu);
1833         u64 data;
1834         fastpath_t ret = EXIT_FASTPATH_NONE;
1835
1836         switch (msr) {
1837         case APIC_BASE_MSR + (APIC_ICR >> 4):
1838                 data = kvm_read_edx_eax(vcpu);
1839                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1840                         kvm_skip_emulated_instruction(vcpu);
1841                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1842                 }
1843                 break;
1844         case MSR_IA32_TSCDEADLINE:
1845                 data = kvm_read_edx_eax(vcpu);
1846                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1847                         kvm_skip_emulated_instruction(vcpu);
1848                         ret = EXIT_FASTPATH_REENTER_GUEST;
1849                 }
1850                 break;
1851         default:
1852                 break;
1853         }
1854
1855         if (ret != EXIT_FASTPATH_NONE)
1856                 trace_kvm_msr_write(msr, data);
1857
1858         return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1861
1862 /*
1863  * Adapt set_msr() to msr_io()'s calling convention
1864  */
1865 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1866 {
1867         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1868 }
1869
1870 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1871 {
1872         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1873 }
1874
1875 #ifdef CONFIG_X86_64
1876 struct pvclock_clock {
1877         int vclock_mode;
1878         u64 cycle_last;
1879         u64 mask;
1880         u32 mult;
1881         u32 shift;
1882         u64 base_cycles;
1883         u64 offset;
1884 };
1885
1886 struct pvclock_gtod_data {
1887         seqcount_t      seq;
1888
1889         struct pvclock_clock clock; /* extract of a clocksource struct */
1890         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1891
1892         ktime_t         offs_boot;
1893         u64             wall_time_sec;
1894 };
1895
1896 static struct pvclock_gtod_data pvclock_gtod_data;
1897
1898 static void update_pvclock_gtod(struct timekeeper *tk)
1899 {
1900         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1901
1902         write_seqcount_begin(&vdata->seq);
1903
1904         /* copy pvclock gtod data */
1905         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1906         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1907         vdata->clock.mask               = tk->tkr_mono.mask;
1908         vdata->clock.mult               = tk->tkr_mono.mult;
1909         vdata->clock.shift              = tk->tkr_mono.shift;
1910         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1911         vdata->clock.offset             = tk->tkr_mono.base;
1912
1913         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1914         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1915         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1916         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1917         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1918         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1919         vdata->raw_clock.offset         = tk->tkr_raw.base;
1920
1921         vdata->wall_time_sec            = tk->xtime_sec;
1922
1923         vdata->offs_boot                = tk->offs_boot;
1924
1925         write_seqcount_end(&vdata->seq);
1926 }
1927
1928 static s64 get_kvmclock_base_ns(void)
1929 {
1930         /* Count up from boot time, but with the frequency of the raw clock.  */
1931         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1932 }
1933 #else
1934 static s64 get_kvmclock_base_ns(void)
1935 {
1936         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1937         return ktime_get_boottime_ns();
1938 }
1939 #endif
1940
1941 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1942 {
1943         int version;
1944         int r;
1945         struct pvclock_wall_clock wc;
1946         u32 wc_sec_hi;
1947         u64 wall_nsec;
1948
1949         if (!wall_clock)
1950                 return;
1951
1952         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1953         if (r)
1954                 return;
1955
1956         if (version & 1)
1957                 ++version;  /* first time write, random junk */
1958
1959         ++version;
1960
1961         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1962                 return;
1963
1964         /*
1965          * The guest calculates current wall clock time by adding
1966          * system time (updated by kvm_guest_time_update below) to the
1967          * wall clock specified here.  We do the reverse here.
1968          */
1969         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1970
1971         wc.nsec = do_div(wall_nsec, 1000000000);
1972         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1973         wc.version = version;
1974
1975         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1976
1977         if (sec_hi_ofs) {
1978                 wc_sec_hi = wall_nsec >> 32;
1979                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1980                                 &wc_sec_hi, sizeof(wc_sec_hi));
1981         }
1982
1983         version++;
1984         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1985 }
1986
1987 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1988                                   bool old_msr, bool host_initiated)
1989 {
1990         struct kvm_arch *ka = &vcpu->kvm->arch;
1991
1992         if (vcpu->vcpu_id == 0 && !host_initiated) {
1993                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1994                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1995
1996                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1997         }
1998
1999         vcpu->arch.time = system_time;
2000         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2001
2002         /* we verify if the enable bit is set... */
2003         vcpu->arch.pv_time_enabled = false;
2004         if (!(system_time & 1))
2005                 return;
2006
2007         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2008                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2009                                        sizeof(struct pvclock_vcpu_time_info)))
2010                 vcpu->arch.pv_time_enabled = true;
2011
2012         return;
2013 }
2014
2015 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2016 {
2017         do_shl32_div32(dividend, divisor);
2018         return dividend;
2019 }
2020
2021 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2022                                s8 *pshift, u32 *pmultiplier)
2023 {
2024         uint64_t scaled64;
2025         int32_t  shift = 0;
2026         uint64_t tps64;
2027         uint32_t tps32;
2028
2029         tps64 = base_hz;
2030         scaled64 = scaled_hz;
2031         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2032                 tps64 >>= 1;
2033                 shift--;
2034         }
2035
2036         tps32 = (uint32_t)tps64;
2037         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2038                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2039                         scaled64 >>= 1;
2040                 else
2041                         tps32 <<= 1;
2042                 shift++;
2043         }
2044
2045         *pshift = shift;
2046         *pmultiplier = div_frac(scaled64, tps32);
2047 }
2048
2049 #ifdef CONFIG_X86_64
2050 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2051 #endif
2052
2053 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2054 static unsigned long max_tsc_khz;
2055
2056 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2057 {
2058         u64 v = (u64)khz * (1000000 + ppm);
2059         do_div(v, 1000000);
2060         return v;
2061 }
2062
2063 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2064 {
2065         u64 ratio;
2066
2067         /* Guest TSC same frequency as host TSC? */
2068         if (!scale) {
2069                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2070                 return 0;
2071         }
2072
2073         /* TSC scaling supported? */
2074         if (!kvm_has_tsc_control) {
2075                 if (user_tsc_khz > tsc_khz) {
2076                         vcpu->arch.tsc_catchup = 1;
2077                         vcpu->arch.tsc_always_catchup = 1;
2078                         return 0;
2079                 } else {
2080                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2081                         return -1;
2082                 }
2083         }
2084
2085         /* TSC scaling required  - calculate ratio */
2086         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2087                                 user_tsc_khz, tsc_khz);
2088
2089         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2090                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2091                                     user_tsc_khz);
2092                 return -1;
2093         }
2094
2095         vcpu->arch.tsc_scaling_ratio = ratio;
2096         return 0;
2097 }
2098
2099 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2100 {
2101         u32 thresh_lo, thresh_hi;
2102         int use_scaling = 0;
2103
2104         /* tsc_khz can be zero if TSC calibration fails */
2105         if (user_tsc_khz == 0) {
2106                 /* set tsc_scaling_ratio to a safe value */
2107                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2108                 return -1;
2109         }
2110
2111         /* Compute a scale to convert nanoseconds in TSC cycles */
2112         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2113                            &vcpu->arch.virtual_tsc_shift,
2114                            &vcpu->arch.virtual_tsc_mult);
2115         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2116
2117         /*
2118          * Compute the variation in TSC rate which is acceptable
2119          * within the range of tolerance and decide if the
2120          * rate being applied is within that bounds of the hardware
2121          * rate.  If so, no scaling or compensation need be done.
2122          */
2123         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2124         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2125         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2126                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2127                 use_scaling = 1;
2128         }
2129         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2130 }
2131
2132 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2133 {
2134         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2135                                       vcpu->arch.virtual_tsc_mult,
2136                                       vcpu->arch.virtual_tsc_shift);
2137         tsc += vcpu->arch.this_tsc_write;
2138         return tsc;
2139 }
2140
2141 static inline int gtod_is_based_on_tsc(int mode)
2142 {
2143         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2144 }
2145
2146 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2147 {
2148 #ifdef CONFIG_X86_64
2149         bool vcpus_matched;
2150         struct kvm_arch *ka = &vcpu->kvm->arch;
2151         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2152
2153         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2154                          atomic_read(&vcpu->kvm->online_vcpus));
2155
2156         /*
2157          * Once the masterclock is enabled, always perform request in
2158          * order to update it.
2159          *
2160          * In order to enable masterclock, the host clocksource must be TSC
2161          * and the vcpus need to have matched TSCs.  When that happens,
2162          * perform request to enable masterclock.
2163          */
2164         if (ka->use_master_clock ||
2165             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2166                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2167
2168         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2169                             atomic_read(&vcpu->kvm->online_vcpus),
2170                             ka->use_master_clock, gtod->clock.vclock_mode);
2171 #endif
2172 }
2173
2174 /*
2175  * Multiply tsc by a fixed point number represented by ratio.
2176  *
2177  * The most significant 64-N bits (mult) of ratio represent the
2178  * integral part of the fixed point number; the remaining N bits
2179  * (frac) represent the fractional part, ie. ratio represents a fixed
2180  * point number (mult + frac * 2^(-N)).
2181  *
2182  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2183  */
2184 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2185 {
2186         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2187 }
2188
2189 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2190 {
2191         u64 _tsc = tsc;
2192         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2193
2194         if (ratio != kvm_default_tsc_scaling_ratio)
2195                 _tsc = __scale_tsc(ratio, tsc);
2196
2197         return _tsc;
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2200
2201 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2202 {
2203         u64 tsc;
2204
2205         tsc = kvm_scale_tsc(vcpu, rdtsc());
2206
2207         return target_tsc - tsc;
2208 }
2209
2210 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2211 {
2212         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2215
2216 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2217 {
2218         vcpu->arch.l1_tsc_offset = offset;
2219         vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2220 }
2221
2222 static inline bool kvm_check_tsc_unstable(void)
2223 {
2224 #ifdef CONFIG_X86_64
2225         /*
2226          * TSC is marked unstable when we're running on Hyper-V,
2227          * 'TSC page' clocksource is good.
2228          */
2229         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2230                 return false;
2231 #endif
2232         return check_tsc_unstable();
2233 }
2234
2235 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2236 {
2237         struct kvm *kvm = vcpu->kvm;
2238         u64 offset, ns, elapsed;
2239         unsigned long flags;
2240         bool matched;
2241         bool already_matched;
2242         bool synchronizing = false;
2243
2244         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2245         offset = kvm_compute_tsc_offset(vcpu, data);
2246         ns = get_kvmclock_base_ns();
2247         elapsed = ns - kvm->arch.last_tsc_nsec;
2248
2249         if (vcpu->arch.virtual_tsc_khz) {
2250                 if (data == 0) {
2251                         /*
2252                          * detection of vcpu initialization -- need to sync
2253                          * with other vCPUs. This particularly helps to keep
2254                          * kvm_clock stable after CPU hotplug
2255                          */
2256                         synchronizing = true;
2257                 } else {
2258                         u64 tsc_exp = kvm->arch.last_tsc_write +
2259                                                 nsec_to_cycles(vcpu, elapsed);
2260                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2261                         /*
2262                          * Special case: TSC write with a small delta (1 second)
2263                          * of virtual cycle time against real time is
2264                          * interpreted as an attempt to synchronize the CPU.
2265                          */
2266                         synchronizing = data < tsc_exp + tsc_hz &&
2267                                         data + tsc_hz > tsc_exp;
2268                 }
2269         }
2270
2271         /*
2272          * For a reliable TSC, we can match TSC offsets, and for an unstable
2273          * TSC, we add elapsed time in this computation.  We could let the
2274          * compensation code attempt to catch up if we fall behind, but
2275          * it's better to try to match offsets from the beginning.
2276          */
2277         if (synchronizing &&
2278             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2279                 if (!kvm_check_tsc_unstable()) {
2280                         offset = kvm->arch.cur_tsc_offset;
2281                 } else {
2282                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2283                         data += delta;
2284                         offset = kvm_compute_tsc_offset(vcpu, data);
2285                 }
2286                 matched = true;
2287                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2288         } else {
2289                 /*
2290                  * We split periods of matched TSC writes into generations.
2291                  * For each generation, we track the original measured
2292                  * nanosecond time, offset, and write, so if TSCs are in
2293                  * sync, we can match exact offset, and if not, we can match
2294                  * exact software computation in compute_guest_tsc()
2295                  *
2296                  * These values are tracked in kvm->arch.cur_xxx variables.
2297                  */
2298                 kvm->arch.cur_tsc_generation++;
2299                 kvm->arch.cur_tsc_nsec = ns;
2300                 kvm->arch.cur_tsc_write = data;
2301                 kvm->arch.cur_tsc_offset = offset;
2302                 matched = false;
2303         }
2304
2305         /*
2306          * We also track th most recent recorded KHZ, write and time to
2307          * allow the matching interval to be extended at each write.
2308          */
2309         kvm->arch.last_tsc_nsec = ns;
2310         kvm->arch.last_tsc_write = data;
2311         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2312
2313         vcpu->arch.last_guest_tsc = data;
2314
2315         /* Keep track of which generation this VCPU has synchronized to */
2316         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2317         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2318         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2319
2320         kvm_vcpu_write_tsc_offset(vcpu, offset);
2321         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2322
2323         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2324         if (!matched) {
2325                 kvm->arch.nr_vcpus_matched_tsc = 0;
2326         } else if (!already_matched) {
2327                 kvm->arch.nr_vcpus_matched_tsc++;
2328         }
2329
2330         kvm_track_tsc_matching(vcpu);
2331         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2332 }
2333
2334 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2335                                            s64 adjustment)
2336 {
2337         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2338         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2339 }
2340
2341 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2342 {
2343         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2344                 WARN_ON(adjustment < 0);
2345         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2346         adjust_tsc_offset_guest(vcpu, adjustment);
2347 }
2348
2349 #ifdef CONFIG_X86_64
2350
2351 static u64 read_tsc(void)
2352 {
2353         u64 ret = (u64)rdtsc_ordered();
2354         u64 last = pvclock_gtod_data.clock.cycle_last;
2355
2356         if (likely(ret >= last))
2357                 return ret;
2358
2359         /*
2360          * GCC likes to generate cmov here, but this branch is extremely
2361          * predictable (it's just a function of time and the likely is
2362          * very likely) and there's a data dependence, so force GCC
2363          * to generate a branch instead.  I don't barrier() because
2364          * we don't actually need a barrier, and if this function
2365          * ever gets inlined it will generate worse code.
2366          */
2367         asm volatile ("");
2368         return last;
2369 }
2370
2371 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2372                           int *mode)
2373 {
2374         long v;
2375         u64 tsc_pg_val;
2376
2377         switch (clock->vclock_mode) {
2378         case VDSO_CLOCKMODE_HVCLOCK:
2379                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2380                                                   tsc_timestamp);
2381                 if (tsc_pg_val != U64_MAX) {
2382                         /* TSC page valid */
2383                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2384                         v = (tsc_pg_val - clock->cycle_last) &
2385                                 clock->mask;
2386                 } else {
2387                         /* TSC page invalid */
2388                         *mode = VDSO_CLOCKMODE_NONE;
2389                 }
2390                 break;
2391         case VDSO_CLOCKMODE_TSC:
2392                 *mode = VDSO_CLOCKMODE_TSC;
2393                 *tsc_timestamp = read_tsc();
2394                 v = (*tsc_timestamp - clock->cycle_last) &
2395                         clock->mask;
2396                 break;
2397         default:
2398                 *mode = VDSO_CLOCKMODE_NONE;
2399         }
2400
2401         if (*mode == VDSO_CLOCKMODE_NONE)
2402                 *tsc_timestamp = v = 0;
2403
2404         return v * clock->mult;
2405 }
2406
2407 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2408 {
2409         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2410         unsigned long seq;
2411         int mode;
2412         u64 ns;
2413
2414         do {
2415                 seq = read_seqcount_begin(&gtod->seq);
2416                 ns = gtod->raw_clock.base_cycles;
2417                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2418                 ns >>= gtod->raw_clock.shift;
2419                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2420         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2421         *t = ns;
2422
2423         return mode;
2424 }
2425
2426 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2427 {
2428         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2429         unsigned long seq;
2430         int mode;
2431         u64 ns;
2432
2433         do {
2434                 seq = read_seqcount_begin(&gtod->seq);
2435                 ts->tv_sec = gtod->wall_time_sec;
2436                 ns = gtod->clock.base_cycles;
2437                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2438                 ns >>= gtod->clock.shift;
2439         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2440
2441         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2442         ts->tv_nsec = ns;
2443
2444         return mode;
2445 }
2446
2447 /* returns true if host is using TSC based clocksource */
2448 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2449 {
2450         /* checked again under seqlock below */
2451         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2452                 return false;
2453
2454         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2455                                                       tsc_timestamp));
2456 }
2457
2458 /* returns true if host is using TSC based clocksource */
2459 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2460                                            u64 *tsc_timestamp)
2461 {
2462         /* checked again under seqlock below */
2463         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2464                 return false;
2465
2466         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2467 }
2468 #endif
2469
2470 /*
2471  *
2472  * Assuming a stable TSC across physical CPUS, and a stable TSC
2473  * across virtual CPUs, the following condition is possible.
2474  * Each numbered line represents an event visible to both
2475  * CPUs at the next numbered event.
2476  *
2477  * "timespecX" represents host monotonic time. "tscX" represents
2478  * RDTSC value.
2479  *
2480  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2481  *
2482  * 1.  read timespec0,tsc0
2483  * 2.                                   | timespec1 = timespec0 + N
2484  *                                      | tsc1 = tsc0 + M
2485  * 3. transition to guest               | transition to guest
2486  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2487  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2488  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2489  *
2490  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2491  *
2492  *      - ret0 < ret1
2493  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2494  *              ...
2495  *      - 0 < N - M => M < N
2496  *
2497  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2498  * always the case (the difference between two distinct xtime instances
2499  * might be smaller then the difference between corresponding TSC reads,
2500  * when updating guest vcpus pvclock areas).
2501  *
2502  * To avoid that problem, do not allow visibility of distinct
2503  * system_timestamp/tsc_timestamp values simultaneously: use a master
2504  * copy of host monotonic time values. Update that master copy
2505  * in lockstep.
2506  *
2507  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2508  *
2509  */
2510
2511 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2512 {
2513 #ifdef CONFIG_X86_64
2514         struct kvm_arch *ka = &kvm->arch;
2515         int vclock_mode;
2516         bool host_tsc_clocksource, vcpus_matched;
2517
2518         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2519                         atomic_read(&kvm->online_vcpus));
2520
2521         /*
2522          * If the host uses TSC clock, then passthrough TSC as stable
2523          * to the guest.
2524          */
2525         host_tsc_clocksource = kvm_get_time_and_clockread(
2526                                         &ka->master_kernel_ns,
2527                                         &ka->master_cycle_now);
2528
2529         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2530                                 && !ka->backwards_tsc_observed
2531                                 && !ka->boot_vcpu_runs_old_kvmclock;
2532
2533         if (ka->use_master_clock)
2534                 atomic_set(&kvm_guest_has_master_clock, 1);
2535
2536         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2537         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2538                                         vcpus_matched);
2539 #endif
2540 }
2541
2542 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2543 {
2544         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2545 }
2546
2547 static void kvm_gen_update_masterclock(struct kvm *kvm)
2548 {
2549 #ifdef CONFIG_X86_64
2550         int i;
2551         struct kvm_vcpu *vcpu;
2552         struct kvm_arch *ka = &kvm->arch;
2553
2554         spin_lock(&ka->pvclock_gtod_sync_lock);
2555         kvm_make_mclock_inprogress_request(kvm);
2556         /* no guest entries from this point */
2557         pvclock_update_vm_gtod_copy(kvm);
2558
2559         kvm_for_each_vcpu(i, vcpu, kvm)
2560                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2561
2562         /* guest entries allowed */
2563         kvm_for_each_vcpu(i, vcpu, kvm)
2564                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2565
2566         spin_unlock(&ka->pvclock_gtod_sync_lock);
2567 #endif
2568 }
2569
2570 u64 get_kvmclock_ns(struct kvm *kvm)
2571 {
2572         struct kvm_arch *ka = &kvm->arch;
2573         struct pvclock_vcpu_time_info hv_clock;
2574         u64 ret;
2575
2576         spin_lock(&ka->pvclock_gtod_sync_lock);
2577         if (!ka->use_master_clock) {
2578                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2579                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2580         }
2581
2582         hv_clock.tsc_timestamp = ka->master_cycle_now;
2583         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2584         spin_unlock(&ka->pvclock_gtod_sync_lock);
2585
2586         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2587         get_cpu();
2588
2589         if (__this_cpu_read(cpu_tsc_khz)) {
2590                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2591                                    &hv_clock.tsc_shift,
2592                                    &hv_clock.tsc_to_system_mul);
2593                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2594         } else
2595                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2596
2597         put_cpu();
2598
2599         return ret;
2600 }
2601
2602 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2603                                    struct gfn_to_hva_cache *cache,
2604                                    unsigned int offset)
2605 {
2606         struct kvm_vcpu_arch *vcpu = &v->arch;
2607         struct pvclock_vcpu_time_info guest_hv_clock;
2608
2609         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2610                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2611                 return;
2612
2613         /* This VCPU is paused, but it's legal for a guest to read another
2614          * VCPU's kvmclock, so we really have to follow the specification where
2615          * it says that version is odd if data is being modified, and even after
2616          * it is consistent.
2617          *
2618          * Version field updates must be kept separate.  This is because
2619          * kvm_write_guest_cached might use a "rep movs" instruction, and
2620          * writes within a string instruction are weakly ordered.  So there
2621          * are three writes overall.
2622          *
2623          * As a small optimization, only write the version field in the first
2624          * and third write.  The vcpu->pv_time cache is still valid, because the
2625          * version field is the first in the struct.
2626          */
2627         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2628
2629         if (guest_hv_clock.version & 1)
2630                 ++guest_hv_clock.version;  /* first time write, random junk */
2631
2632         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2633         kvm_write_guest_offset_cached(v->kvm, cache,
2634                                       &vcpu->hv_clock, offset,
2635                                       sizeof(vcpu->hv_clock.version));
2636
2637         smp_wmb();
2638
2639         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2640         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2641
2642         if (vcpu->pvclock_set_guest_stopped_request) {
2643                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2644                 vcpu->pvclock_set_guest_stopped_request = false;
2645         }
2646
2647         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2648
2649         kvm_write_guest_offset_cached(v->kvm, cache,
2650                                       &vcpu->hv_clock, offset,
2651                                       sizeof(vcpu->hv_clock));
2652
2653         smp_wmb();
2654
2655         vcpu->hv_clock.version++;
2656         kvm_write_guest_offset_cached(v->kvm, cache,
2657                                      &vcpu->hv_clock, offset,
2658                                      sizeof(vcpu->hv_clock.version));
2659 }
2660
2661 static int kvm_guest_time_update(struct kvm_vcpu *v)
2662 {
2663         unsigned long flags, tgt_tsc_khz;
2664         struct kvm_vcpu_arch *vcpu = &v->arch;
2665         struct kvm_arch *ka = &v->kvm->arch;
2666         s64 kernel_ns;
2667         u64 tsc_timestamp, host_tsc;
2668         u8 pvclock_flags;
2669         bool use_master_clock;
2670
2671         kernel_ns = 0;
2672         host_tsc = 0;
2673
2674         /*
2675          * If the host uses TSC clock, then passthrough TSC as stable
2676          * to the guest.
2677          */
2678         spin_lock(&ka->pvclock_gtod_sync_lock);
2679         use_master_clock = ka->use_master_clock;
2680         if (use_master_clock) {
2681                 host_tsc = ka->master_cycle_now;
2682                 kernel_ns = ka->master_kernel_ns;
2683         }
2684         spin_unlock(&ka->pvclock_gtod_sync_lock);
2685
2686         /* Keep irq disabled to prevent changes to the clock */
2687         local_irq_save(flags);
2688         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2689         if (unlikely(tgt_tsc_khz == 0)) {
2690                 local_irq_restore(flags);
2691                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2692                 return 1;
2693         }
2694         if (!use_master_clock) {
2695                 host_tsc = rdtsc();
2696                 kernel_ns = get_kvmclock_base_ns();
2697         }
2698
2699         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2700
2701         /*
2702          * We may have to catch up the TSC to match elapsed wall clock
2703          * time for two reasons, even if kvmclock is used.
2704          *   1) CPU could have been running below the maximum TSC rate
2705          *   2) Broken TSC compensation resets the base at each VCPU
2706          *      entry to avoid unknown leaps of TSC even when running
2707          *      again on the same CPU.  This may cause apparent elapsed
2708          *      time to disappear, and the guest to stand still or run
2709          *      very slowly.
2710          */
2711         if (vcpu->tsc_catchup) {
2712                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2713                 if (tsc > tsc_timestamp) {
2714                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2715                         tsc_timestamp = tsc;
2716                 }
2717         }
2718
2719         local_irq_restore(flags);
2720
2721         /* With all the info we got, fill in the values */
2722
2723         if (kvm_has_tsc_control)
2724                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2725
2726         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2727                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2728                                    &vcpu->hv_clock.tsc_shift,
2729                                    &vcpu->hv_clock.tsc_to_system_mul);
2730                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2731         }
2732
2733         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2734         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2735         vcpu->last_guest_tsc = tsc_timestamp;
2736
2737         /* If the host uses TSC clocksource, then it is stable */
2738         pvclock_flags = 0;
2739         if (use_master_clock)
2740                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2741
2742         vcpu->hv_clock.flags = pvclock_flags;
2743
2744         if (vcpu->pv_time_enabled)
2745                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2746         if (vcpu->xen.vcpu_info_set)
2747                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2748                                        offsetof(struct compat_vcpu_info, time));
2749         if (vcpu->xen.vcpu_time_info_set)
2750                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2751         if (v == kvm_get_vcpu(v->kvm, 0))
2752                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2753         return 0;
2754 }
2755
2756 /*
2757  * kvmclock updates which are isolated to a given vcpu, such as
2758  * vcpu->cpu migration, should not allow system_timestamp from
2759  * the rest of the vcpus to remain static. Otherwise ntp frequency
2760  * correction applies to one vcpu's system_timestamp but not
2761  * the others.
2762  *
2763  * So in those cases, request a kvmclock update for all vcpus.
2764  * We need to rate-limit these requests though, as they can
2765  * considerably slow guests that have a large number of vcpus.
2766  * The time for a remote vcpu to update its kvmclock is bound
2767  * by the delay we use to rate-limit the updates.
2768  */
2769
2770 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2771
2772 static void kvmclock_update_fn(struct work_struct *work)
2773 {
2774         int i;
2775         struct delayed_work *dwork = to_delayed_work(work);
2776         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2777                                            kvmclock_update_work);
2778         struct kvm *kvm = container_of(ka, struct kvm, arch);
2779         struct kvm_vcpu *vcpu;
2780
2781         kvm_for_each_vcpu(i, vcpu, kvm) {
2782                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2783                 kvm_vcpu_kick(vcpu);
2784         }
2785 }
2786
2787 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2788 {
2789         struct kvm *kvm = v->kvm;
2790
2791         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2792         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2793                                         KVMCLOCK_UPDATE_DELAY);
2794 }
2795
2796 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2797
2798 static void kvmclock_sync_fn(struct work_struct *work)
2799 {
2800         struct delayed_work *dwork = to_delayed_work(work);
2801         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2802                                            kvmclock_sync_work);
2803         struct kvm *kvm = container_of(ka, struct kvm, arch);
2804
2805         if (!kvmclock_periodic_sync)
2806                 return;
2807
2808         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2809         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2810                                         KVMCLOCK_SYNC_PERIOD);
2811 }
2812
2813 /*
2814  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2815  */
2816 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2817 {
2818         /* McStatusWrEn enabled? */
2819         if (guest_cpuid_is_amd_or_hygon(vcpu))
2820                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2821
2822         return false;
2823 }
2824
2825 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827         u64 mcg_cap = vcpu->arch.mcg_cap;
2828         unsigned bank_num = mcg_cap & 0xff;
2829         u32 msr = msr_info->index;
2830         u64 data = msr_info->data;
2831
2832         switch (msr) {
2833         case MSR_IA32_MCG_STATUS:
2834                 vcpu->arch.mcg_status = data;
2835                 break;
2836         case MSR_IA32_MCG_CTL:
2837                 if (!(mcg_cap & MCG_CTL_P) &&
2838                     (data || !msr_info->host_initiated))
2839                         return 1;
2840                 if (data != 0 && data != ~(u64)0)
2841                         return 1;
2842                 vcpu->arch.mcg_ctl = data;
2843                 break;
2844         default:
2845                 if (msr >= MSR_IA32_MC0_CTL &&
2846                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2847                         u32 offset = array_index_nospec(
2848                                 msr - MSR_IA32_MC0_CTL,
2849                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2850
2851                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2852                          * some Linux kernels though clear bit 10 in bank 4 to
2853                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2854                          * this to avoid an uncatched #GP in the guest
2855                          */
2856                         if ((offset & 0x3) == 0 &&
2857                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2858                                 return -1;
2859
2860                         /* MCi_STATUS */
2861                         if (!msr_info->host_initiated &&
2862                             (offset & 0x3) == 1 && data != 0) {
2863                                 if (!can_set_mci_status(vcpu))
2864                                         return -1;
2865                         }
2866
2867                         vcpu->arch.mce_banks[offset] = data;
2868                         break;
2869                 }
2870                 return 1;
2871         }
2872         return 0;
2873 }
2874
2875 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2876 {
2877         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2878
2879         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2880 }
2881
2882 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2883 {
2884         gpa_t gpa = data & ~0x3f;
2885
2886         /* Bits 4:5 are reserved, Should be zero */
2887         if (data & 0x30)
2888                 return 1;
2889
2890         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2891             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2892                 return 1;
2893
2894         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2895             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2896                 return 1;
2897
2898         if (!lapic_in_kernel(vcpu))
2899                 return data ? 1 : 0;
2900
2901         vcpu->arch.apf.msr_en_val = data;
2902
2903         if (!kvm_pv_async_pf_enabled(vcpu)) {
2904                 kvm_clear_async_pf_completion_queue(vcpu);
2905                 kvm_async_pf_hash_reset(vcpu);
2906                 return 0;
2907         }
2908
2909         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2910                                         sizeof(u64)))
2911                 return 1;
2912
2913         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2914         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2915
2916         kvm_async_pf_wakeup_all(vcpu);
2917
2918         return 0;
2919 }
2920
2921 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2922 {
2923         /* Bits 8-63 are reserved */
2924         if (data >> 8)
2925                 return 1;
2926
2927         if (!lapic_in_kernel(vcpu))
2928                 return 1;
2929
2930         vcpu->arch.apf.msr_int_val = data;
2931
2932         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2933
2934         return 0;
2935 }
2936
2937 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2938 {
2939         vcpu->arch.pv_time_enabled = false;
2940         vcpu->arch.time = 0;
2941 }
2942
2943 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2944 {
2945         ++vcpu->stat.tlb_flush;
2946         static_call(kvm_x86_tlb_flush_all)(vcpu);
2947 }
2948
2949 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2950 {
2951         ++vcpu->stat.tlb_flush;
2952         static_call(kvm_x86_tlb_flush_guest)(vcpu);
2953 }
2954
2955 static void record_steal_time(struct kvm_vcpu *vcpu)
2956 {
2957         struct kvm_host_map map;
2958         struct kvm_steal_time *st;
2959
2960         if (kvm_xen_msr_enabled(vcpu->kvm)) {
2961                 kvm_xen_runstate_set_running(vcpu);
2962                 return;
2963         }
2964
2965         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2966                 return;
2967
2968         /* -EAGAIN is returned in atomic context so we can just return. */
2969         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2970                         &map, &vcpu->arch.st.cache, false))
2971                 return;
2972
2973         st = map.hva +
2974                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2975
2976         /*
2977          * Doing a TLB flush here, on the guest's behalf, can avoid
2978          * expensive IPIs.
2979          */
2980         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2981                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2982                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2983                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2984                         kvm_vcpu_flush_tlb_guest(vcpu);
2985         }
2986
2987         vcpu->arch.st.preempted = 0;
2988
2989         if (st->version & 1)
2990                 st->version += 1;  /* first time write, random junk */
2991
2992         st->version += 1;
2993
2994         smp_wmb();
2995
2996         st->steal += current->sched_info.run_delay -
2997                 vcpu->arch.st.last_steal;
2998         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2999
3000         smp_wmb();
3001
3002         st->version += 1;
3003
3004         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3005 }
3006
3007 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3008 {
3009         bool pr = false;
3010         u32 msr = msr_info->index;
3011         u64 data = msr_info->data;
3012
3013         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3014                 return kvm_xen_write_hypercall_page(vcpu, data);
3015
3016         switch (msr) {
3017         case MSR_AMD64_NB_CFG:
3018         case MSR_IA32_UCODE_WRITE:
3019         case MSR_VM_HSAVE_PA:
3020         case MSR_AMD64_PATCH_LOADER:
3021         case MSR_AMD64_BU_CFG2:
3022         case MSR_AMD64_DC_CFG:
3023         case MSR_F15H_EX_CFG:
3024                 break;
3025
3026         case MSR_IA32_UCODE_REV:
3027                 if (msr_info->host_initiated)
3028                         vcpu->arch.microcode_version = data;
3029                 break;
3030         case MSR_IA32_ARCH_CAPABILITIES:
3031                 if (!msr_info->host_initiated)
3032                         return 1;
3033                 vcpu->arch.arch_capabilities = data;
3034                 break;
3035         case MSR_IA32_PERF_CAPABILITIES: {
3036                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3037
3038                 if (!msr_info->host_initiated)
3039                         return 1;
3040                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3041                         return 1;
3042                 if (data & ~msr_ent.data)
3043                         return 1;
3044
3045                 vcpu->arch.perf_capabilities = data;
3046
3047                 return 0;
3048                 }
3049         case MSR_EFER:
3050                 return set_efer(vcpu, msr_info);
3051         case MSR_K7_HWCR:
3052                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3053                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3054                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3055
3056                 /* Handle McStatusWrEn */
3057                 if (data == BIT_ULL(18)) {
3058                         vcpu->arch.msr_hwcr = data;
3059                 } else if (data != 0) {
3060                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3061                                     data);
3062                         return 1;
3063                 }
3064                 break;
3065         case MSR_FAM10H_MMIO_CONF_BASE:
3066                 if (data != 0) {
3067                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3068                                     "0x%llx\n", data);
3069                         return 1;
3070                 }
3071                 break;
3072         case 0x200 ... 0x2ff:
3073                 return kvm_mtrr_set_msr(vcpu, msr, data);
3074         case MSR_IA32_APICBASE:
3075                 return kvm_set_apic_base(vcpu, msr_info);
3076         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3077                 return kvm_x2apic_msr_write(vcpu, msr, data);
3078         case MSR_IA32_TSCDEADLINE:
3079                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3080                 break;
3081         case MSR_IA32_TSC_ADJUST:
3082                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3083                         if (!msr_info->host_initiated) {
3084                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3085                                 adjust_tsc_offset_guest(vcpu, adj);
3086                         }
3087                         vcpu->arch.ia32_tsc_adjust_msr = data;
3088                 }
3089                 break;
3090         case MSR_IA32_MISC_ENABLE:
3091                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3092                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3093                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3094                                 return 1;
3095                         vcpu->arch.ia32_misc_enable_msr = data;
3096                         kvm_update_cpuid_runtime(vcpu);
3097                 } else {
3098                         vcpu->arch.ia32_misc_enable_msr = data;
3099                 }
3100                 break;
3101         case MSR_IA32_SMBASE:
3102                 if (!msr_info->host_initiated)
3103                         return 1;
3104                 vcpu->arch.smbase = data;
3105                 break;
3106         case MSR_IA32_POWER_CTL:
3107                 vcpu->arch.msr_ia32_power_ctl = data;
3108                 break;
3109         case MSR_IA32_TSC:
3110                 if (msr_info->host_initiated) {
3111                         kvm_synchronize_tsc(vcpu, data);
3112                 } else {
3113                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3114                         adjust_tsc_offset_guest(vcpu, adj);
3115                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3116                 }
3117                 break;
3118         case MSR_IA32_XSS:
3119                 if (!msr_info->host_initiated &&
3120                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3121                         return 1;
3122                 /*
3123                  * KVM supports exposing PT to the guest, but does not support
3124                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3125                  * XSAVES/XRSTORS to save/restore PT MSRs.
3126                  */
3127                 if (data & ~supported_xss)
3128                         return 1;
3129                 vcpu->arch.ia32_xss = data;
3130                 break;
3131         case MSR_SMI_COUNT:
3132                 if (!msr_info->host_initiated)
3133                         return 1;
3134                 vcpu->arch.smi_count = data;
3135                 break;
3136         case MSR_KVM_WALL_CLOCK_NEW:
3137                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3138                         return 1;
3139
3140                 vcpu->kvm->arch.wall_clock = data;
3141                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3142                 break;
3143         case MSR_KVM_WALL_CLOCK:
3144                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3145                         return 1;
3146
3147                 vcpu->kvm->arch.wall_clock = data;
3148                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3149                 break;
3150         case MSR_KVM_SYSTEM_TIME_NEW:
3151                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3152                         return 1;
3153
3154                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3155                 break;
3156         case MSR_KVM_SYSTEM_TIME:
3157                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3158                         return 1;
3159
3160                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3161                 break;
3162         case MSR_KVM_ASYNC_PF_EN:
3163                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3164                         return 1;
3165
3166                 if (kvm_pv_enable_async_pf(vcpu, data))
3167                         return 1;
3168                 break;
3169         case MSR_KVM_ASYNC_PF_INT:
3170                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3171                         return 1;
3172
3173                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3174                         return 1;
3175                 break;
3176         case MSR_KVM_ASYNC_PF_ACK:
3177                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3178                         return 1;
3179                 if (data & 0x1) {
3180                         vcpu->arch.apf.pageready_pending = false;
3181                         kvm_check_async_pf_completion(vcpu);
3182                 }
3183                 break;
3184         case MSR_KVM_STEAL_TIME:
3185                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3186                         return 1;
3187
3188                 if (unlikely(!sched_info_on()))
3189                         return 1;
3190
3191                 if (data & KVM_STEAL_RESERVED_MASK)
3192                         return 1;
3193
3194                 vcpu->arch.st.msr_val = data;
3195
3196                 if (!(data & KVM_MSR_ENABLED))
3197                         break;
3198
3199                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3200
3201                 break;
3202         case MSR_KVM_PV_EOI_EN:
3203                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3204                         return 1;
3205
3206                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3207                         return 1;
3208                 break;
3209
3210         case MSR_KVM_POLL_CONTROL:
3211                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3212                         return 1;
3213
3214                 /* only enable bit supported */
3215                 if (data & (-1ULL << 1))
3216                         return 1;
3217
3218                 vcpu->arch.msr_kvm_poll_control = data;
3219                 break;
3220
3221         case MSR_IA32_MCG_CTL:
3222         case MSR_IA32_MCG_STATUS:
3223         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3224                 return set_msr_mce(vcpu, msr_info);
3225
3226         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3227         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3228                 pr = true;
3229                 fallthrough;
3230         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3231         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3232                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3233                         return kvm_pmu_set_msr(vcpu, msr_info);
3234
3235                 if (pr || data != 0)
3236                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3237                                     "0x%x data 0x%llx\n", msr, data);
3238                 break;
3239         case MSR_K7_CLK_CTL:
3240                 /*
3241                  * Ignore all writes to this no longer documented MSR.
3242                  * Writes are only relevant for old K7 processors,
3243                  * all pre-dating SVM, but a recommended workaround from
3244                  * AMD for these chips. It is possible to specify the
3245                  * affected processor models on the command line, hence
3246                  * the need to ignore the workaround.
3247                  */
3248                 break;
3249         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3250         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3251         case HV_X64_MSR_SYNDBG_OPTIONS:
3252         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3253         case HV_X64_MSR_CRASH_CTL:
3254         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3255         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3256         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3257         case HV_X64_MSR_TSC_EMULATION_STATUS:
3258                 return kvm_hv_set_msr_common(vcpu, msr, data,
3259                                              msr_info->host_initiated);
3260         case MSR_IA32_BBL_CR_CTL3:
3261                 /* Drop writes to this legacy MSR -- see rdmsr
3262                  * counterpart for further detail.
3263                  */
3264                 if (report_ignored_msrs)
3265                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3266                                 msr, data);
3267                 break;
3268         case MSR_AMD64_OSVW_ID_LENGTH:
3269                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3270                         return 1;
3271                 vcpu->arch.osvw.length = data;
3272                 break;
3273         case MSR_AMD64_OSVW_STATUS:
3274                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3275                         return 1;
3276                 vcpu->arch.osvw.status = data;
3277                 break;
3278         case MSR_PLATFORM_INFO:
3279                 if (!msr_info->host_initiated ||
3280                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3281                      cpuid_fault_enabled(vcpu)))
3282                         return 1;
3283                 vcpu->arch.msr_platform_info = data;
3284                 break;
3285         case MSR_MISC_FEATURES_ENABLES:
3286                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3287                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3288                      !supports_cpuid_fault(vcpu)))
3289                         return 1;
3290                 vcpu->arch.msr_misc_features_enables = data;
3291                 break;
3292         default:
3293                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3294                         return kvm_pmu_set_msr(vcpu, msr_info);
3295                 return KVM_MSR_RET_INVALID;
3296         }
3297         return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3300
3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3302 {
3303         u64 data;
3304         u64 mcg_cap = vcpu->arch.mcg_cap;
3305         unsigned bank_num = mcg_cap & 0xff;
3306
3307         switch (msr) {
3308         case MSR_IA32_P5_MC_ADDR:
3309         case MSR_IA32_P5_MC_TYPE:
3310                 data = 0;
3311                 break;
3312         case MSR_IA32_MCG_CAP:
3313                 data = vcpu->arch.mcg_cap;
3314                 break;
3315         case MSR_IA32_MCG_CTL:
3316                 if (!(mcg_cap & MCG_CTL_P) && !host)
3317                         return 1;
3318                 data = vcpu->arch.mcg_ctl;
3319                 break;
3320         case MSR_IA32_MCG_STATUS:
3321                 data = vcpu->arch.mcg_status;
3322                 break;
3323         default:
3324                 if (msr >= MSR_IA32_MC0_CTL &&
3325                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3326                         u32 offset = array_index_nospec(
3327                                 msr - MSR_IA32_MC0_CTL,
3328                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3329
3330                         data = vcpu->arch.mce_banks[offset];
3331                         break;
3332                 }
3333                 return 1;
3334         }
3335         *pdata = data;
3336         return 0;
3337 }
3338
3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3340 {
3341         switch (msr_info->index) {
3342         case MSR_IA32_PLATFORM_ID:
3343         case MSR_IA32_EBL_CR_POWERON:
3344         case MSR_IA32_LASTBRANCHFROMIP:
3345         case MSR_IA32_LASTBRANCHTOIP:
3346         case MSR_IA32_LASTINTFROMIP:
3347         case MSR_IA32_LASTINTTOIP:
3348         case MSR_K8_SYSCFG:
3349         case MSR_K8_TSEG_ADDR:
3350         case MSR_K8_TSEG_MASK:
3351         case MSR_VM_HSAVE_PA:
3352         case MSR_K8_INT_PENDING_MSG:
3353         case MSR_AMD64_NB_CFG:
3354         case MSR_FAM10H_MMIO_CONF_BASE:
3355         case MSR_AMD64_BU_CFG2:
3356         case MSR_IA32_PERF_CTL:
3357         case MSR_AMD64_DC_CFG:
3358         case MSR_F15H_EX_CFG:
3359         /*
3360          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3361          * limit) MSRs. Just return 0, as we do not want to expose the host
3362          * data here. Do not conditionalize this on CPUID, as KVM does not do
3363          * so for existing CPU-specific MSRs.
3364          */
3365         case MSR_RAPL_POWER_UNIT:
3366         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3367         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3368         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3369         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3370                 msr_info->data = 0;
3371                 break;
3372         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3373         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3374         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3375         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3376         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3377                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3378                         return kvm_pmu_get_msr(vcpu, msr_info);
3379                 msr_info->data = 0;
3380                 break;
3381         case MSR_IA32_UCODE_REV:
3382                 msr_info->data = vcpu->arch.microcode_version;
3383                 break;
3384         case MSR_IA32_ARCH_CAPABILITIES:
3385                 if (!msr_info->host_initiated &&
3386                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3387                         return 1;
3388                 msr_info->data = vcpu->arch.arch_capabilities;
3389                 break;
3390         case MSR_IA32_PERF_CAPABILITIES:
3391                 if (!msr_info->host_initiated &&
3392                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3393                         return 1;
3394                 msr_info->data = vcpu->arch.perf_capabilities;
3395                 break;
3396         case MSR_IA32_POWER_CTL:
3397                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3398                 break;
3399         case MSR_IA32_TSC: {
3400                 /*
3401                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3402                  * even when not intercepted. AMD manual doesn't explicitly
3403                  * state this but appears to behave the same.
3404                  *
3405                  * On userspace reads and writes, however, we unconditionally
3406                  * return L1's TSC value to ensure backwards-compatible
3407                  * behavior for migration.
3408                  */
3409                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3410                                                             vcpu->arch.tsc_offset;
3411
3412                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3413                 break;
3414         }
3415         case MSR_MTRRcap:
3416         case 0x200 ... 0x2ff:
3417                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3418         case 0xcd: /* fsb frequency */
3419                 msr_info->data = 3;
3420                 break;
3421                 /*
3422                  * MSR_EBC_FREQUENCY_ID
3423                  * Conservative value valid for even the basic CPU models.
3424                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3425                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3426                  * and 266MHz for model 3, or 4. Set Core Clock
3427                  * Frequency to System Bus Frequency Ratio to 1 (bits
3428                  * 31:24) even though these are only valid for CPU
3429                  * models > 2, however guests may end up dividing or
3430                  * multiplying by zero otherwise.
3431                  */
3432         case MSR_EBC_FREQUENCY_ID:
3433                 msr_info->data = 1 << 24;
3434                 break;
3435         case MSR_IA32_APICBASE:
3436                 msr_info->data = kvm_get_apic_base(vcpu);
3437                 break;
3438         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3439                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3440         case MSR_IA32_TSCDEADLINE:
3441                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3442                 break;
3443         case MSR_IA32_TSC_ADJUST:
3444                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3445                 break;
3446         case MSR_IA32_MISC_ENABLE:
3447                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3448                 break;
3449         case MSR_IA32_SMBASE:
3450                 if (!msr_info->host_initiated)
3451                         return 1;
3452                 msr_info->data = vcpu->arch.smbase;
3453                 break;
3454         case MSR_SMI_COUNT:
3455                 msr_info->data = vcpu->arch.smi_count;
3456                 break;
3457         case MSR_IA32_PERF_STATUS:
3458                 /* TSC increment by tick */
3459                 msr_info->data = 1000ULL;
3460                 /* CPU multiplier */
3461                 msr_info->data |= (((uint64_t)4ULL) << 40);
3462                 break;
3463         case MSR_EFER:
3464                 msr_info->data = vcpu->arch.efer;
3465                 break;
3466         case MSR_KVM_WALL_CLOCK:
3467                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3468                         return 1;
3469
3470                 msr_info->data = vcpu->kvm->arch.wall_clock;
3471                 break;
3472         case MSR_KVM_WALL_CLOCK_NEW:
3473                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3474                         return 1;
3475
3476                 msr_info->data = vcpu->kvm->arch.wall_clock;
3477                 break;
3478         case MSR_KVM_SYSTEM_TIME:
3479                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3480                         return 1;
3481
3482                 msr_info->data = vcpu->arch.time;
3483                 break;
3484         case MSR_KVM_SYSTEM_TIME_NEW:
3485                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3486                         return 1;
3487
3488                 msr_info->data = vcpu->arch.time;
3489                 break;
3490         case MSR_KVM_ASYNC_PF_EN:
3491                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3492                         return 1;
3493
3494                 msr_info->data = vcpu->arch.apf.msr_en_val;
3495                 break;
3496         case MSR_KVM_ASYNC_PF_INT:
3497                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3498                         return 1;
3499
3500                 msr_info->data = vcpu->arch.apf.msr_int_val;
3501                 break;
3502         case MSR_KVM_ASYNC_PF_ACK:
3503                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3504                         return 1;
3505
3506                 msr_info->data = 0;
3507                 break;
3508         case MSR_KVM_STEAL_TIME:
3509                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3510                         return 1;
3511
3512                 msr_info->data = vcpu->arch.st.msr_val;
3513                 break;
3514         case MSR_KVM_PV_EOI_EN:
3515                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3516                         return 1;
3517
3518                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3519                 break;
3520         case MSR_KVM_POLL_CONTROL:
3521                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3522                         return 1;
3523
3524                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3525                 break;
3526         case MSR_IA32_P5_MC_ADDR:
3527         case MSR_IA32_P5_MC_TYPE:
3528         case MSR_IA32_MCG_CAP:
3529         case MSR_IA32_MCG_CTL:
3530         case MSR_IA32_MCG_STATUS:
3531         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3532                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3533                                    msr_info->host_initiated);
3534         case MSR_IA32_XSS:
3535                 if (!msr_info->host_initiated &&
3536                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3537                         return 1;
3538                 msr_info->data = vcpu->arch.ia32_xss;
3539                 break;
3540         case MSR_K7_CLK_CTL:
3541                 /*
3542                  * Provide expected ramp-up count for K7. All other
3543                  * are set to zero, indicating minimum divisors for
3544                  * every field.
3545                  *
3546                  * This prevents guest kernels on AMD host with CPU
3547                  * type 6, model 8 and higher from exploding due to
3548                  * the rdmsr failing.
3549                  */
3550                 msr_info->data = 0x20000000;
3551                 break;
3552         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3553         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3554         case HV_X64_MSR_SYNDBG_OPTIONS:
3555         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3556         case HV_X64_MSR_CRASH_CTL:
3557         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3558         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3559         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3560         case HV_X64_MSR_TSC_EMULATION_STATUS:
3561                 return kvm_hv_get_msr_common(vcpu,
3562                                              msr_info->index, &msr_info->data,
3563                                              msr_info->host_initiated);
3564         case MSR_IA32_BBL_CR_CTL3:
3565                 /* This legacy MSR exists but isn't fully documented in current
3566                  * silicon.  It is however accessed by winxp in very narrow
3567                  * scenarios where it sets bit #19, itself documented as
3568                  * a "reserved" bit.  Best effort attempt to source coherent
3569                  * read data here should the balance of the register be
3570                  * interpreted by the guest:
3571                  *
3572                  * L2 cache control register 3: 64GB range, 256KB size,
3573                  * enabled, latency 0x1, configured
3574                  */
3575                 msr_info->data = 0xbe702111;
3576                 break;
3577         case MSR_AMD64_OSVW_ID_LENGTH:
3578                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3579                         return 1;
3580                 msr_info->data = vcpu->arch.osvw.length;
3581                 break;
3582         case MSR_AMD64_OSVW_STATUS:
3583                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3584                         return 1;
3585                 msr_info->data = vcpu->arch.osvw.status;
3586                 break;
3587         case MSR_PLATFORM_INFO:
3588                 if (!msr_info->host_initiated &&
3589                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3590                         return 1;
3591                 msr_info->data = vcpu->arch.msr_platform_info;
3592                 break;
3593         case MSR_MISC_FEATURES_ENABLES:
3594                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3595                 break;
3596         case MSR_K7_HWCR:
3597                 msr_info->data = vcpu->arch.msr_hwcr;
3598                 break;
3599         default:
3600                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3601                         return kvm_pmu_get_msr(vcpu, msr_info);
3602                 return KVM_MSR_RET_INVALID;
3603         }
3604         return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3607
3608 /*
3609  * Read or write a bunch of msrs. All parameters are kernel addresses.
3610  *
3611  * @return number of msrs set successfully.
3612  */
3613 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3614                     struct kvm_msr_entry *entries,
3615                     int (*do_msr)(struct kvm_vcpu *vcpu,
3616                                   unsigned index, u64 *data))
3617 {
3618         int i;
3619
3620         for (i = 0; i < msrs->nmsrs; ++i)
3621                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3622                         break;
3623
3624         return i;
3625 }
3626
3627 /*
3628  * Read or write a bunch of msrs. Parameters are user addresses.
3629  *
3630  * @return number of msrs set successfully.
3631  */
3632 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3633                   int (*do_msr)(struct kvm_vcpu *vcpu,
3634                                 unsigned index, u64 *data),
3635                   int writeback)
3636 {
3637         struct kvm_msrs msrs;
3638         struct kvm_msr_entry *entries;
3639         int r, n;
3640         unsigned size;
3641
3642         r = -EFAULT;
3643         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3644                 goto out;
3645
3646         r = -E2BIG;
3647         if (msrs.nmsrs >= MAX_IO_MSRS)
3648                 goto out;
3649
3650         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3651         entries = memdup_user(user_msrs->entries, size);
3652         if (IS_ERR(entries)) {
3653                 r = PTR_ERR(entries);
3654                 goto out;
3655         }
3656
3657         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3658         if (r < 0)
3659                 goto out_free;
3660
3661         r = -EFAULT;
3662         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3663                 goto out_free;
3664
3665         r = n;
3666
3667 out_free:
3668         kfree(entries);
3669 out:
3670         return r;
3671 }
3672
3673 static inline bool kvm_can_mwait_in_guest(void)
3674 {
3675         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3676                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3677                 boot_cpu_has(X86_FEATURE_ARAT);
3678 }
3679
3680 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3681                                             struct kvm_cpuid2 __user *cpuid_arg)
3682 {
3683         struct kvm_cpuid2 cpuid;
3684         int r;
3685
3686         r = -EFAULT;
3687         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3688                 return r;
3689
3690         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3691         if (r)
3692                 return r;
3693
3694         r = -EFAULT;
3695         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3696                 return r;
3697
3698         return 0;
3699 }
3700
3701 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3702 {
3703         int r = 0;
3704
3705         switch (ext) {
3706         case KVM_CAP_IRQCHIP:
3707         case KVM_CAP_HLT:
3708         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3709         case KVM_CAP_SET_TSS_ADDR:
3710         case KVM_CAP_EXT_CPUID:
3711         case KVM_CAP_EXT_EMUL_CPUID:
3712         case KVM_CAP_CLOCKSOURCE:
3713         case KVM_CAP_PIT:
3714         case KVM_CAP_NOP_IO_DELAY:
3715         case KVM_CAP_MP_STATE:
3716         case KVM_CAP_SYNC_MMU:
3717         case KVM_CAP_USER_NMI:
3718         case KVM_CAP_REINJECT_CONTROL:
3719         case KVM_CAP_IRQ_INJECT_STATUS:
3720         case KVM_CAP_IOEVENTFD:
3721         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3722         case KVM_CAP_PIT2:
3723         case KVM_CAP_PIT_STATE2:
3724         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3725         case KVM_CAP_VCPU_EVENTS:
3726         case KVM_CAP_HYPERV:
3727         case KVM_CAP_HYPERV_VAPIC:
3728         case KVM_CAP_HYPERV_SPIN:
3729         case KVM_CAP_HYPERV_SYNIC:
3730         case KVM_CAP_HYPERV_SYNIC2:
3731         case KVM_CAP_HYPERV_VP_INDEX:
3732         case KVM_CAP_HYPERV_EVENTFD:
3733         case KVM_CAP_HYPERV_TLBFLUSH:
3734         case KVM_CAP_HYPERV_SEND_IPI:
3735         case KVM_CAP_HYPERV_CPUID:
3736         case KVM_CAP_SYS_HYPERV_CPUID:
3737         case KVM_CAP_PCI_SEGMENT:
3738         case KVM_CAP_DEBUGREGS:
3739         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3740         case KVM_CAP_XSAVE:
3741         case KVM_CAP_ASYNC_PF:
3742         case KVM_CAP_ASYNC_PF_INT:
3743         case KVM_CAP_GET_TSC_KHZ:
3744         case KVM_CAP_KVMCLOCK_CTRL:
3745         case KVM_CAP_READONLY_MEM:
3746         case KVM_CAP_HYPERV_TIME:
3747         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3748         case KVM_CAP_TSC_DEADLINE_TIMER:
3749         case KVM_CAP_DISABLE_QUIRKS:
3750         case KVM_CAP_SET_BOOT_CPU_ID:
3751         case KVM_CAP_SPLIT_IRQCHIP:
3752         case KVM_CAP_IMMEDIATE_EXIT:
3753         case KVM_CAP_PMU_EVENT_FILTER:
3754         case KVM_CAP_GET_MSR_FEATURES:
3755         case KVM_CAP_MSR_PLATFORM_INFO:
3756         case KVM_CAP_EXCEPTION_PAYLOAD:
3757         case KVM_CAP_SET_GUEST_DEBUG:
3758         case KVM_CAP_LAST_CPU:
3759         case KVM_CAP_X86_USER_SPACE_MSR:
3760         case KVM_CAP_X86_MSR_FILTER:
3761         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3762                 r = 1;
3763                 break;
3764 #ifdef CONFIG_KVM_XEN
3765         case KVM_CAP_XEN_HVM:
3766                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3767                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3768                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
3769                 if (sched_info_on())
3770                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3771                 break;
3772 #endif
3773         case KVM_CAP_SYNC_REGS:
3774                 r = KVM_SYNC_X86_VALID_FIELDS;
3775                 break;
3776         case KVM_CAP_ADJUST_CLOCK:
3777                 r = KVM_CLOCK_TSC_STABLE;
3778                 break;
3779         case KVM_CAP_X86_DISABLE_EXITS:
3780                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3781                       KVM_X86_DISABLE_EXITS_CSTATE;
3782                 if(kvm_can_mwait_in_guest())
3783                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3784                 break;
3785         case KVM_CAP_X86_SMM:
3786                 /* SMBASE is usually relocated above 1M on modern chipsets,
3787                  * and SMM handlers might indeed rely on 4G segment limits,
3788                  * so do not report SMM to be available if real mode is
3789                  * emulated via vm86 mode.  Still, do not go to great lengths
3790                  * to avoid userspace's usage of the feature, because it is a
3791                  * fringe case that is not enabled except via specific settings
3792                  * of the module parameters.
3793                  */
3794                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3795                 break;
3796         case KVM_CAP_VAPIC:
3797                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3798                 break;
3799         case KVM_CAP_NR_VCPUS:
3800                 r = KVM_SOFT_MAX_VCPUS;
3801                 break;
3802         case KVM_CAP_MAX_VCPUS:
3803                 r = KVM_MAX_VCPUS;
3804                 break;
3805         case KVM_CAP_MAX_VCPU_ID:
3806                 r = KVM_MAX_VCPU_ID;
3807                 break;
3808         case KVM_CAP_PV_MMU:    /* obsolete */
3809                 r = 0;
3810                 break;
3811         case KVM_CAP_MCE:
3812                 r = KVM_MAX_MCE_BANKS;
3813                 break;
3814         case KVM_CAP_XCRS:
3815                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3816                 break;
3817         case KVM_CAP_TSC_CONTROL:
3818                 r = kvm_has_tsc_control;
3819                 break;
3820         case KVM_CAP_X2APIC_API:
3821                 r = KVM_X2APIC_API_VALID_FLAGS;
3822                 break;
3823         case KVM_CAP_NESTED_STATE:
3824                 r = kvm_x86_ops.nested_ops->get_state ?
3825                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3826                 break;
3827         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3828                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3829                 break;
3830         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3832                 break;
3833         case KVM_CAP_SMALLER_MAXPHYADDR:
3834                 r = (int) allow_smaller_maxphyaddr;
3835                 break;
3836         case KVM_CAP_STEAL_TIME:
3837                 r = sched_info_on();
3838                 break;
3839         case KVM_CAP_X86_BUS_LOCK_EXIT:
3840                 if (kvm_has_bus_lock_exit)
3841                         r = KVM_BUS_LOCK_DETECTION_OFF |
3842                             KVM_BUS_LOCK_DETECTION_EXIT;
3843                 else
3844                         r = 0;
3845                 break;
3846         default:
3847                 break;
3848         }
3849         return r;
3850
3851 }
3852
3853 long kvm_arch_dev_ioctl(struct file *filp,
3854                         unsigned int ioctl, unsigned long arg)
3855 {
3856         void __user *argp = (void __user *)arg;
3857         long r;
3858
3859         switch (ioctl) {
3860         case KVM_GET_MSR_INDEX_LIST: {
3861                 struct kvm_msr_list __user *user_msr_list = argp;
3862                 struct kvm_msr_list msr_list;
3863                 unsigned n;
3864
3865                 r = -EFAULT;
3866                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3867                         goto out;
3868                 n = msr_list.nmsrs;
3869                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3870                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3871                         goto out;
3872                 r = -E2BIG;
3873                 if (n < msr_list.nmsrs)
3874                         goto out;
3875                 r = -EFAULT;
3876                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3877                                  num_msrs_to_save * sizeof(u32)))
3878                         goto out;
3879                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3880                                  &emulated_msrs,
3881                                  num_emulated_msrs * sizeof(u32)))
3882                         goto out;
3883                 r = 0;
3884                 break;
3885         }
3886         case KVM_GET_SUPPORTED_CPUID:
3887         case KVM_GET_EMULATED_CPUID: {
3888                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3889                 struct kvm_cpuid2 cpuid;
3890
3891                 r = -EFAULT;
3892                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3893                         goto out;
3894
3895                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3896                                             ioctl);
3897                 if (r)
3898                         goto out;
3899
3900                 r = -EFAULT;
3901                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3902                         goto out;
3903                 r = 0;
3904                 break;
3905         }
3906         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3907                 r = -EFAULT;
3908                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3909                                  sizeof(kvm_mce_cap_supported)))
3910                         goto out;
3911                 r = 0;
3912                 break;
3913         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3914                 struct kvm_msr_list __user *user_msr_list = argp;
3915                 struct kvm_msr_list msr_list;
3916                 unsigned int n;
3917
3918                 r = -EFAULT;
3919                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3920                         goto out;
3921                 n = msr_list.nmsrs;
3922                 msr_list.nmsrs = num_msr_based_features;
3923                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3924                         goto out;
3925                 r = -E2BIG;
3926                 if (n < msr_list.nmsrs)
3927                         goto out;
3928                 r = -EFAULT;
3929                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3930                                  num_msr_based_features * sizeof(u32)))
3931                         goto out;
3932                 r = 0;
3933                 break;
3934         }
3935         case KVM_GET_MSRS:
3936                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3937                 break;
3938         case KVM_GET_SUPPORTED_HV_CPUID:
3939                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3940                 break;
3941         default:
3942                 r = -EINVAL;
3943                 break;
3944         }
3945 out:
3946         return r;
3947 }
3948
3949 static void wbinvd_ipi(void *garbage)
3950 {
3951         wbinvd();
3952 }
3953
3954 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3955 {
3956         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3957 }
3958
3959 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3960 {
3961         /* Address WBINVD may be executed by guest */
3962         if (need_emulate_wbinvd(vcpu)) {
3963                 if (static_call(kvm_x86_has_wbinvd_exit)())
3964                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3965                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3966                         smp_call_function_single(vcpu->cpu,
3967                                         wbinvd_ipi, NULL, 1);
3968         }
3969
3970         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3971
3972         /* Save host pkru register if supported */
3973         vcpu->arch.host_pkru = read_pkru();
3974
3975         /* Apply any externally detected TSC adjustments (due to suspend) */
3976         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3977                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3978                 vcpu->arch.tsc_offset_adjustment = 0;
3979                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3980         }
3981
3982         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3983                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3984                                 rdtsc() - vcpu->arch.last_host_tsc;
3985                 if (tsc_delta < 0)
3986                         mark_tsc_unstable("KVM discovered backwards TSC");
3987
3988                 if (kvm_check_tsc_unstable()) {
3989                         u64 offset = kvm_compute_tsc_offset(vcpu,
3990                                                 vcpu->arch.last_guest_tsc);
3991                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3992                         vcpu->arch.tsc_catchup = 1;
3993                 }
3994
3995                 if (kvm_lapic_hv_timer_in_use(vcpu))
3996                         kvm_lapic_restart_hv_timer(vcpu);
3997
3998                 /*
3999                  * On a host with synchronized TSC, there is no need to update
4000                  * kvmclock on vcpu->cpu migration
4001                  */
4002                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4003                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4004                 if (vcpu->cpu != cpu)
4005                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4006                 vcpu->cpu = cpu;
4007         }
4008
4009         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4010 }
4011
4012 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4013 {
4014         struct kvm_host_map map;
4015         struct kvm_steal_time *st;
4016         int idx;
4017
4018         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4019                 return;
4020
4021         if (vcpu->arch.st.preempted)
4022                 return;
4023
4024         /*
4025          * Take the srcu lock as memslots will be accessed to check the gfn
4026          * cache generation against the memslots generation.
4027          */
4028         idx = srcu_read_lock(&vcpu->kvm->srcu);
4029
4030         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4031                         &vcpu->arch.st.cache, true))
4032                 goto out;
4033
4034         st = map.hva +
4035                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4036
4037         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4038
4039         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4040
4041 out:
4042         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4043 }
4044
4045 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4046 {
4047         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4048                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4049
4050         if (kvm_xen_msr_enabled(vcpu->kvm))
4051                 kvm_xen_runstate_set_preempted(vcpu);
4052         else
4053                 kvm_steal_time_set_preempted(vcpu);
4054
4055         static_call(kvm_x86_vcpu_put)(vcpu);
4056         vcpu->arch.last_host_tsc = rdtsc();
4057         /*
4058          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4059          * on every vmexit, but if not, we might have a stale dr6 from the
4060          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4061          */
4062         set_debugreg(0, 6);
4063 }
4064
4065 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4066                                     struct kvm_lapic_state *s)
4067 {
4068         if (vcpu->arch.apicv_active)
4069                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4070
4071         return kvm_apic_get_state(vcpu, s);
4072 }
4073
4074 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4075                                     struct kvm_lapic_state *s)
4076 {
4077         int r;
4078
4079         r = kvm_apic_set_state(vcpu, s);
4080         if (r)
4081                 return r;
4082         update_cr8_intercept(vcpu);
4083
4084         return 0;
4085 }
4086
4087 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4088 {
4089         /*
4090          * We can accept userspace's request for interrupt injection
4091          * as long as we have a place to store the interrupt number.
4092          * The actual injection will happen when the CPU is able to
4093          * deliver the interrupt.
4094          */
4095         if (kvm_cpu_has_extint(vcpu))
4096                 return false;
4097
4098         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4099         return (!lapic_in_kernel(vcpu) ||
4100                 kvm_apic_accept_pic_intr(vcpu));
4101 }
4102
4103 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4104 {
4105         return kvm_arch_interrupt_allowed(vcpu) &&
4106                 kvm_cpu_accept_dm_intr(vcpu);
4107 }
4108
4109 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4110                                     struct kvm_interrupt *irq)
4111 {
4112         if (irq->irq >= KVM_NR_INTERRUPTS)
4113                 return -EINVAL;
4114
4115         if (!irqchip_in_kernel(vcpu->kvm)) {
4116                 kvm_queue_interrupt(vcpu, irq->irq, false);
4117                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4118                 return 0;
4119         }
4120
4121         /*
4122          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4123          * fail for in-kernel 8259.
4124          */
4125         if (pic_in_kernel(vcpu->kvm))
4126                 return -ENXIO;
4127
4128         if (vcpu->arch.pending_external_vector != -1)
4129                 return -EEXIST;
4130
4131         vcpu->arch.pending_external_vector = irq->irq;
4132         kvm_make_request(KVM_REQ_EVENT, vcpu);
4133         return 0;
4134 }
4135
4136 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4137 {
4138         kvm_inject_nmi(vcpu);
4139
4140         return 0;
4141 }
4142
4143 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4144 {
4145         kvm_make_request(KVM_REQ_SMI, vcpu);
4146
4147         return 0;
4148 }
4149
4150 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4151                                            struct kvm_tpr_access_ctl *tac)
4152 {
4153         if (tac->flags)
4154                 return -EINVAL;
4155         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4156         return 0;
4157 }
4158
4159 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4160                                         u64 mcg_cap)
4161 {
4162         int r;
4163         unsigned bank_num = mcg_cap & 0xff, bank;
4164
4165         r = -EINVAL;
4166         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4167                 goto out;
4168         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4169                 goto out;
4170         r = 0;
4171         vcpu->arch.mcg_cap = mcg_cap;
4172         /* Init IA32_MCG_CTL to all 1s */
4173         if (mcg_cap & MCG_CTL_P)
4174                 vcpu->arch.mcg_ctl = ~(u64)0;
4175         /* Init IA32_MCi_CTL to all 1s */
4176         for (bank = 0; bank < bank_num; bank++)
4177                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4178
4179         static_call(kvm_x86_setup_mce)(vcpu);
4180 out:
4181         return r;
4182 }
4183
4184 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4185                                       struct kvm_x86_mce *mce)
4186 {
4187         u64 mcg_cap = vcpu->arch.mcg_cap;
4188         unsigned bank_num = mcg_cap & 0xff;
4189         u64 *banks = vcpu->arch.mce_banks;
4190
4191         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4192                 return -EINVAL;
4193         /*
4194          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4195          * reporting is disabled
4196          */
4197         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4198             vcpu->arch.mcg_ctl != ~(u64)0)
4199                 return 0;
4200         banks += 4 * mce->bank;
4201         /*
4202          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4203          * reporting is disabled for the bank
4204          */
4205         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4206                 return 0;
4207         if (mce->status & MCI_STATUS_UC) {
4208                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4209                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4210                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4211                         return 0;
4212                 }
4213                 if (banks[1] & MCI_STATUS_VAL)
4214                         mce->status |= MCI_STATUS_OVER;
4215                 banks[2] = mce->addr;
4216                 banks[3] = mce->misc;
4217                 vcpu->arch.mcg_status = mce->mcg_status;
4218                 banks[1] = mce->status;
4219                 kvm_queue_exception(vcpu, MC_VECTOR);
4220         } else if (!(banks[1] & MCI_STATUS_VAL)
4221                    || !(banks[1] & MCI_STATUS_UC)) {
4222                 if (banks[1] & MCI_STATUS_VAL)
4223                         mce->status |= MCI_STATUS_OVER;
4224                 banks[2] = mce->addr;
4225                 banks[3] = mce->misc;
4226                 banks[1] = mce->status;
4227         } else
4228                 banks[1] |= MCI_STATUS_OVER;
4229         return 0;
4230 }
4231
4232 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4233                                                struct kvm_vcpu_events *events)
4234 {
4235         process_nmi(vcpu);
4236
4237         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4238                 process_smi(vcpu);
4239
4240         /*
4241          * In guest mode, payload delivery should be deferred,
4242          * so that the L1 hypervisor can intercept #PF before
4243          * CR2 is modified (or intercept #DB before DR6 is
4244          * modified under nVMX). Unless the per-VM capability,
4245          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4246          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4247          * opportunistically defer the exception payload, deliver it if the
4248          * capability hasn't been requested before processing a
4249          * KVM_GET_VCPU_EVENTS.
4250          */
4251         if (!vcpu->kvm->arch.exception_payload_enabled &&
4252             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4253                 kvm_deliver_exception_payload(vcpu);
4254
4255         /*
4256          * The API doesn't provide the instruction length for software
4257          * exceptions, so don't report them. As long as the guest RIP
4258          * isn't advanced, we should expect to encounter the exception
4259          * again.
4260          */
4261         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4262                 events->exception.injected = 0;
4263                 events->exception.pending = 0;
4264         } else {
4265                 events->exception.injected = vcpu->arch.exception.injected;
4266                 events->exception.pending = vcpu->arch.exception.pending;
4267                 /*
4268                  * For ABI compatibility, deliberately conflate
4269                  * pending and injected exceptions when
4270                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4271                  */
4272                 if (!vcpu->kvm->arch.exception_payload_enabled)
4273                         events->exception.injected |=
4274                                 vcpu->arch.exception.pending;
4275         }
4276         events->exception.nr = vcpu->arch.exception.nr;
4277         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4278         events->exception.error_code = vcpu->arch.exception.error_code;
4279         events->exception_has_payload = vcpu->arch.exception.has_payload;
4280         events->exception_payload = vcpu->arch.exception.payload;
4281
4282         events->interrupt.injected =
4283                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4284         events->interrupt.nr = vcpu->arch.interrupt.nr;
4285         events->interrupt.soft = 0;
4286         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4287
4288         events->nmi.injected = vcpu->arch.nmi_injected;
4289         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4290         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4291         events->nmi.pad = 0;
4292
4293         events->sipi_vector = 0; /* never valid when reporting to user space */
4294
4295         events->smi.smm = is_smm(vcpu);
4296         events->smi.pending = vcpu->arch.smi_pending;
4297         events->smi.smm_inside_nmi =
4298                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4299         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4300
4301         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4302                          | KVM_VCPUEVENT_VALID_SHADOW
4303                          | KVM_VCPUEVENT_VALID_SMM);
4304         if (vcpu->kvm->arch.exception_payload_enabled)
4305                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4306
4307         memset(&events->reserved, 0, sizeof(events->reserved));
4308 }
4309
4310 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4311
4312 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4313                                               struct kvm_vcpu_events *events)
4314 {
4315         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4316                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4317                               | KVM_VCPUEVENT_VALID_SHADOW
4318                               | KVM_VCPUEVENT_VALID_SMM
4319                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4320                 return -EINVAL;
4321
4322         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4323                 if (!vcpu->kvm->arch.exception_payload_enabled)
4324                         return -EINVAL;
4325                 if (events->exception.pending)
4326                         events->exception.injected = 0;
4327                 else
4328                         events->exception_has_payload = 0;
4329         } else {
4330                 events->exception.pending = 0;
4331                 events->exception_has_payload = 0;
4332         }
4333
4334         if ((events->exception.injected || events->exception.pending) &&
4335             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4336                 return -EINVAL;
4337
4338         /* INITs are latched while in SMM */
4339         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4340             (events->smi.smm || events->smi.pending) &&
4341             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4342                 return -EINVAL;
4343
4344         process_nmi(vcpu);
4345         vcpu->arch.exception.injected = events->exception.injected;
4346         vcpu->arch.exception.pending = events->exception.pending;
4347         vcpu->arch.exception.nr = events->exception.nr;
4348         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4349         vcpu->arch.exception.error_code = events->exception.error_code;
4350         vcpu->arch.exception.has_payload = events->exception_has_payload;
4351         vcpu->arch.exception.payload = events->exception_payload;
4352
4353         vcpu->arch.interrupt.injected = events->interrupt.injected;
4354         vcpu->arch.interrupt.nr = events->interrupt.nr;
4355         vcpu->arch.interrupt.soft = events->interrupt.soft;
4356         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4357                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4358                                                 events->interrupt.shadow);
4359
4360         vcpu->arch.nmi_injected = events->nmi.injected;
4361         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4362                 vcpu->arch.nmi_pending = events->nmi.pending;
4363         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4364
4365         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4366             lapic_in_kernel(vcpu))
4367                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4368
4369         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4370                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4371                         if (events->smi.smm)
4372                                 vcpu->arch.hflags |= HF_SMM_MASK;
4373                         else
4374                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4375                         kvm_smm_changed(vcpu);
4376                 }
4377
4378                 vcpu->arch.smi_pending = events->smi.pending;
4379
4380                 if (events->smi.smm) {
4381                         if (events->smi.smm_inside_nmi)
4382                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4383                         else
4384                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4385                 }
4386
4387                 if (lapic_in_kernel(vcpu)) {
4388                         if (events->smi.latched_init)
4389                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4390                         else
4391                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4392                 }
4393         }
4394
4395         kvm_make_request(KVM_REQ_EVENT, vcpu);
4396
4397         return 0;
4398 }
4399
4400 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4401                                              struct kvm_debugregs *dbgregs)
4402 {
4403         unsigned long val;
4404
4405         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4406         kvm_get_dr(vcpu, 6, &val);
4407         dbgregs->dr6 = val;
4408         dbgregs->dr7 = vcpu->arch.dr7;
4409         dbgregs->flags = 0;
4410         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4411 }
4412
4413 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4414                                             struct kvm_debugregs *dbgregs)
4415 {
4416         if (dbgregs->flags)
4417                 return -EINVAL;
4418
4419         if (!kvm_dr6_valid(dbgregs->dr6))
4420                 return -EINVAL;
4421         if (!kvm_dr7_valid(dbgregs->dr7))
4422                 return -EINVAL;
4423
4424         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4425         kvm_update_dr0123(vcpu);
4426         vcpu->arch.dr6 = dbgregs->dr6;
4427         vcpu->arch.dr7 = dbgregs->dr7;
4428         kvm_update_dr7(vcpu);
4429
4430         return 0;
4431 }
4432
4433 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4434
4435 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4436 {
4437         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4438         u64 xstate_bv = xsave->header.xfeatures;
4439         u64 valid;
4440
4441         /*
4442          * Copy legacy XSAVE area, to avoid complications with CPUID
4443          * leaves 0 and 1 in the loop below.
4444          */
4445         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4446
4447         /* Set XSTATE_BV */
4448         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4449         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4450
4451         /*
4452          * Copy each region from the possibly compacted offset to the
4453          * non-compacted offset.
4454          */
4455         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4456         while (valid) {
4457                 u64 xfeature_mask = valid & -valid;
4458                 int xfeature_nr = fls64(xfeature_mask) - 1;
4459                 void *src = get_xsave_addr(xsave, xfeature_nr);
4460
4461                 if (src) {
4462                         u32 size, offset, ecx, edx;
4463                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4464                                     &size, &offset, &ecx, &edx);
4465                         if (xfeature_nr == XFEATURE_PKRU)
4466                                 memcpy(dest + offset, &vcpu->arch.pkru,
4467                                        sizeof(vcpu->arch.pkru));
4468                         else
4469                                 memcpy(dest + offset, src, size);
4470
4471                 }
4472
4473                 valid -= xfeature_mask;
4474         }
4475 }
4476
4477 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4478 {
4479         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4480         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4481         u64 valid;
4482
4483         /*
4484          * Copy legacy XSAVE area, to avoid complications with CPUID
4485          * leaves 0 and 1 in the loop below.
4486          */
4487         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4488
4489         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4490         xsave->header.xfeatures = xstate_bv;
4491         if (boot_cpu_has(X86_FEATURE_XSAVES))
4492                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4493
4494         /*
4495          * Copy each region from the non-compacted offset to the
4496          * possibly compacted offset.
4497          */
4498         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4499         while (valid) {
4500                 u64 xfeature_mask = valid & -valid;
4501                 int xfeature_nr = fls64(xfeature_mask) - 1;
4502                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4503
4504                 if (dest) {
4505                         u32 size, offset, ecx, edx;
4506                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4507                                     &size, &offset, &ecx, &edx);
4508                         if (xfeature_nr == XFEATURE_PKRU)
4509                                 memcpy(&vcpu->arch.pkru, src + offset,
4510                                        sizeof(vcpu->arch.pkru));
4511                         else
4512                                 memcpy(dest, src + offset, size);
4513                 }
4514
4515                 valid -= xfeature_mask;
4516         }
4517 }
4518
4519 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4520                                          struct kvm_xsave *guest_xsave)
4521 {
4522         if (!vcpu->arch.guest_fpu)
4523                 return;
4524
4525         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4526                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4527                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4528         } else {
4529                 memcpy(guest_xsave->region,
4530                         &vcpu->arch.guest_fpu->state.fxsave,
4531                         sizeof(struct fxregs_state));
4532                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4533                         XFEATURE_MASK_FPSSE;
4534         }
4535 }
4536
4537 #define XSAVE_MXCSR_OFFSET 24
4538
4539 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4540                                         struct kvm_xsave *guest_xsave)
4541 {
4542         u64 xstate_bv;
4543         u32 mxcsr;
4544
4545         if (!vcpu->arch.guest_fpu)
4546                 return 0;
4547
4548         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4549         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4550
4551         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4552                 /*
4553                  * Here we allow setting states that are not present in
4554                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4555                  * with old userspace.
4556                  */
4557                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4558                         return -EINVAL;
4559                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4560         } else {
4561                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4562                         mxcsr & ~mxcsr_feature_mask)
4563                         return -EINVAL;
4564                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4565                         guest_xsave->region, sizeof(struct fxregs_state));
4566         }
4567         return 0;
4568 }
4569
4570 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4571                                         struct kvm_xcrs *guest_xcrs)
4572 {
4573         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4574                 guest_xcrs->nr_xcrs = 0;
4575                 return;
4576         }
4577
4578         guest_xcrs->nr_xcrs = 1;
4579         guest_xcrs->flags = 0;
4580         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4581         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4582 }
4583
4584 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4585                                        struct kvm_xcrs *guest_xcrs)
4586 {
4587         int i, r = 0;
4588
4589         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4590                 return -EINVAL;
4591
4592         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4593                 return -EINVAL;
4594
4595         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4596                 /* Only support XCR0 currently */
4597                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4598                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4599                                 guest_xcrs->xcrs[i].value);
4600                         break;
4601                 }
4602         if (r)
4603                 r = -EINVAL;
4604         return r;
4605 }
4606
4607 /*
4608  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4609  * stopped by the hypervisor.  This function will be called from the host only.
4610  * EINVAL is returned when the host attempts to set the flag for a guest that
4611  * does not support pv clocks.
4612  */
4613 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4614 {
4615         if (!vcpu->arch.pv_time_enabled)
4616                 return -EINVAL;
4617         vcpu->arch.pvclock_set_guest_stopped_request = true;
4618         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4619         return 0;
4620 }
4621
4622 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4623                                      struct kvm_enable_cap *cap)
4624 {
4625         int r;
4626         uint16_t vmcs_version;
4627         void __user *user_ptr;
4628
4629         if (cap->flags)
4630                 return -EINVAL;
4631
4632         switch (cap->cap) {
4633         case KVM_CAP_HYPERV_SYNIC2:
4634                 if (cap->args[0])
4635                         return -EINVAL;
4636                 fallthrough;
4637
4638         case KVM_CAP_HYPERV_SYNIC:
4639                 if (!irqchip_in_kernel(vcpu->kvm))
4640                         return -EINVAL;
4641                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4642                                              KVM_CAP_HYPERV_SYNIC2);
4643         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4644                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4645                         return -ENOTTY;
4646                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4647                 if (!r) {
4648                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4649                         if (copy_to_user(user_ptr, &vmcs_version,
4650                                          sizeof(vmcs_version)))
4651                                 r = -EFAULT;
4652                 }
4653                 return r;
4654         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4655                 if (!kvm_x86_ops.enable_direct_tlbflush)
4656                         return -ENOTTY;
4657
4658                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4659
4660         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4661                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4662                 if (vcpu->arch.pv_cpuid.enforce)
4663                         kvm_update_pv_runtime(vcpu);
4664
4665                 return 0;
4666
4667         default:
4668                 return -EINVAL;
4669         }
4670 }
4671
4672 long kvm_arch_vcpu_ioctl(struct file *filp,
4673                          unsigned int ioctl, unsigned long arg)
4674 {
4675         struct kvm_vcpu *vcpu = filp->private_data;
4676         void __user *argp = (void __user *)arg;
4677         int r;
4678         union {
4679                 struct kvm_lapic_state *lapic;
4680                 struct kvm_xsave *xsave;
4681                 struct kvm_xcrs *xcrs;
4682                 void *buffer;
4683         } u;
4684
4685         vcpu_load(vcpu);
4686
4687         u.buffer = NULL;
4688         switch (ioctl) {
4689         case KVM_GET_LAPIC: {
4690                 r = -EINVAL;
4691                 if (!lapic_in_kernel(vcpu))
4692                         goto out;
4693                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4694                                 GFP_KERNEL_ACCOUNT);
4695
4696                 r = -ENOMEM;
4697                 if (!u.lapic)
4698                         goto out;
4699                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4700                 if (r)
4701                         goto out;
4702                 r = -EFAULT;
4703                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4704                         goto out;
4705                 r = 0;
4706                 break;
4707         }
4708         case KVM_SET_LAPIC: {
4709                 r = -EINVAL;
4710                 if (!lapic_in_kernel(vcpu))
4711                         goto out;
4712                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4713                 if (IS_ERR(u.lapic)) {
4714                         r = PTR_ERR(u.lapic);
4715                         goto out_nofree;
4716                 }
4717
4718                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4719                 break;
4720         }
4721         case KVM_INTERRUPT: {
4722                 struct kvm_interrupt irq;
4723
4724                 r = -EFAULT;
4725                 if (copy_from_user(&irq, argp, sizeof(irq)))
4726                         goto out;
4727                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4728                 break;
4729         }
4730         case KVM_NMI: {
4731                 r = kvm_vcpu_ioctl_nmi(vcpu);
4732                 break;
4733         }
4734         case KVM_SMI: {
4735                 r = kvm_vcpu_ioctl_smi(vcpu);
4736                 break;
4737         }
4738         case KVM_SET_CPUID: {
4739                 struct kvm_cpuid __user *cpuid_arg = argp;
4740                 struct kvm_cpuid cpuid;
4741
4742                 r = -EFAULT;
4743                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4744                         goto out;
4745                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4746                 break;
4747         }
4748         case KVM_SET_CPUID2: {
4749                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4750                 struct kvm_cpuid2 cpuid;
4751
4752                 r = -EFAULT;
4753                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4754                         goto out;
4755                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4756                                               cpuid_arg->entries);
4757                 break;
4758         }
4759         case KVM_GET_CPUID2: {
4760                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4761                 struct kvm_cpuid2 cpuid;
4762
4763                 r = -EFAULT;
4764                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765                         goto out;
4766                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4767                                               cpuid_arg->entries);
4768                 if (r)
4769                         goto out;
4770                 r = -EFAULT;
4771                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4772                         goto out;
4773                 r = 0;
4774                 break;
4775         }
4776         case KVM_GET_MSRS: {
4777                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4778                 r = msr_io(vcpu, argp, do_get_msr, 1);
4779                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4780                 break;
4781         }
4782         case KVM_SET_MSRS: {
4783                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4784                 r = msr_io(vcpu, argp, do_set_msr, 0);
4785                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4786                 break;
4787         }
4788         case KVM_TPR_ACCESS_REPORTING: {
4789                 struct kvm_tpr_access_ctl tac;
4790
4791                 r = -EFAULT;
4792                 if (copy_from_user(&tac, argp, sizeof(tac)))
4793                         goto out;
4794                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4795                 if (r)
4796                         goto out;
4797                 r = -EFAULT;
4798                 if (copy_to_user(argp, &tac, sizeof(tac)))
4799                         goto out;
4800                 r = 0;
4801                 break;
4802         };
4803         case KVM_SET_VAPIC_ADDR: {
4804                 struct kvm_vapic_addr va;
4805                 int idx;
4806
4807                 r = -EINVAL;
4808                 if (!lapic_in_kernel(vcpu))
4809                         goto out;
4810                 r = -EFAULT;
4811                 if (copy_from_user(&va, argp, sizeof(va)))
4812                         goto out;
4813                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4814                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4815                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4816                 break;
4817         }
4818         case KVM_X86_SETUP_MCE: {
4819                 u64 mcg_cap;
4820
4821                 r = -EFAULT;
4822                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4823                         goto out;
4824                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4825                 break;
4826         }
4827         case KVM_X86_SET_MCE: {
4828                 struct kvm_x86_mce mce;
4829
4830                 r = -EFAULT;
4831                 if (copy_from_user(&mce, argp, sizeof(mce)))
4832                         goto out;
4833                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4834                 break;
4835         }
4836         case KVM_GET_VCPU_EVENTS: {
4837                 struct kvm_vcpu_events events;
4838
4839                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4840
4841                 r = -EFAULT;
4842                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4843                         break;
4844                 r = 0;
4845                 break;
4846         }
4847         case KVM_SET_VCPU_EVENTS: {
4848                 struct kvm_vcpu_events events;
4849
4850                 r = -EFAULT;
4851                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4852                         break;
4853
4854                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4855                 break;
4856         }
4857         case KVM_GET_DEBUGREGS: {
4858                 struct kvm_debugregs dbgregs;
4859
4860                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4861
4862                 r = -EFAULT;
4863                 if (copy_to_user(argp, &dbgregs,
4864                                  sizeof(struct kvm_debugregs)))
4865                         break;
4866                 r = 0;
4867                 break;
4868         }
4869         case KVM_SET_DEBUGREGS: {
4870                 struct kvm_debugregs dbgregs;
4871
4872                 r = -EFAULT;
4873                 if (copy_from_user(&dbgregs, argp,
4874                                    sizeof(struct kvm_debugregs)))
4875                         break;
4876
4877                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4878                 break;
4879         }
4880         case KVM_GET_XSAVE: {
4881                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4882                 r = -ENOMEM;
4883                 if (!u.xsave)
4884                         break;
4885
4886                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4887
4888                 r = -EFAULT;
4889                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4890                         break;
4891                 r = 0;
4892                 break;
4893         }
4894         case KVM_SET_XSAVE: {
4895                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4896                 if (IS_ERR(u.xsave)) {
4897                         r = PTR_ERR(u.xsave);
4898                         goto out_nofree;
4899                 }
4900
4901                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4902                 break;
4903         }
4904         case KVM_GET_XCRS: {
4905                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4906                 r = -ENOMEM;
4907                 if (!u.xcrs)
4908                         break;
4909
4910                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4911
4912                 r = -EFAULT;
4913                 if (copy_to_user(argp, u.xcrs,
4914                                  sizeof(struct kvm_xcrs)))
4915                         break;
4916                 r = 0;
4917                 break;
4918         }
4919         case KVM_SET_XCRS: {
4920                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4921                 if (IS_ERR(u.xcrs)) {
4922                         r = PTR_ERR(u.xcrs);
4923                         goto out_nofree;
4924                 }
4925
4926                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4927                 break;
4928         }
4929         case KVM_SET_TSC_KHZ: {
4930                 u32 user_tsc_khz;
4931
4932                 r = -EINVAL;
4933                 user_tsc_khz = (u32)arg;
4934
4935                 if (kvm_has_tsc_control &&
4936                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4937                         goto out;
4938
4939                 if (user_tsc_khz == 0)
4940                         user_tsc_khz = tsc_khz;
4941
4942                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4943                         r = 0;
4944
4945                 goto out;
4946         }
4947         case KVM_GET_TSC_KHZ: {
4948                 r = vcpu->arch.virtual_tsc_khz;
4949                 goto out;
4950         }
4951         case KVM_KVMCLOCK_CTRL: {
4952                 r = kvm_set_guest_paused(vcpu);
4953                 goto out;
4954         }
4955         case KVM_ENABLE_CAP: {
4956                 struct kvm_enable_cap cap;
4957
4958                 r = -EFAULT;
4959                 if (copy_from_user(&cap, argp, sizeof(cap)))
4960                         goto out;
4961                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4962                 break;
4963         }
4964         case KVM_GET_NESTED_STATE: {
4965                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4966                 u32 user_data_size;
4967
4968                 r = -EINVAL;
4969                 if (!kvm_x86_ops.nested_ops->get_state)
4970                         break;
4971
4972                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4973                 r = -EFAULT;
4974                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4975                         break;
4976
4977                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4978                                                      user_data_size);
4979                 if (r < 0)
4980                         break;
4981
4982                 if (r > user_data_size) {
4983                         if (put_user(r, &user_kvm_nested_state->size))
4984                                 r = -EFAULT;
4985                         else
4986                                 r = -E2BIG;
4987                         break;
4988                 }
4989
4990                 r = 0;
4991                 break;
4992         }
4993         case KVM_SET_NESTED_STATE: {
4994                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4995                 struct kvm_nested_state kvm_state;
4996                 int idx;
4997
4998                 r = -EINVAL;
4999                 if (!kvm_x86_ops.nested_ops->set_state)
5000                         break;
5001
5002                 r = -EFAULT;
5003                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5004                         break;
5005
5006                 r = -EINVAL;
5007                 if (kvm_state.size < sizeof(kvm_state))
5008                         break;
5009
5010                 if (kvm_state.flags &
5011                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5012                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5013                       | KVM_STATE_NESTED_GIF_SET))
5014                         break;
5015
5016                 /* nested_run_pending implies guest_mode.  */
5017                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5018                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5019                         break;
5020
5021                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5022                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5023                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5024                 break;
5025         }
5026         case KVM_GET_SUPPORTED_HV_CPUID:
5027                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5028                 break;
5029 #ifdef CONFIG_KVM_XEN
5030         case KVM_XEN_VCPU_GET_ATTR: {
5031                 struct kvm_xen_vcpu_attr xva;
5032
5033                 r = -EFAULT;
5034                 if (copy_from_user(&xva, argp, sizeof(xva)))
5035                         goto out;
5036                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5037                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5038                         r = -EFAULT;
5039                 break;
5040         }
5041         case KVM_XEN_VCPU_SET_ATTR: {
5042                 struct kvm_xen_vcpu_attr xva;
5043
5044                 r = -EFAULT;
5045                 if (copy_from_user(&xva, argp, sizeof(xva)))
5046                         goto out;
5047                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5048                 break;
5049         }
5050 #endif
5051         default:
5052                 r = -EINVAL;
5053         }
5054 out:
5055         kfree(u.buffer);
5056 out_nofree:
5057         vcpu_put(vcpu);
5058         return r;
5059 }
5060
5061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5062 {
5063         return VM_FAULT_SIGBUS;
5064 }
5065
5066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5067 {
5068         int ret;
5069
5070         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5071                 return -EINVAL;
5072         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5073         return ret;
5074 }
5075
5076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5077                                               u64 ident_addr)
5078 {
5079         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5080 }
5081
5082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5083                                          unsigned long kvm_nr_mmu_pages)
5084 {
5085         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5086                 return -EINVAL;
5087
5088         mutex_lock(&kvm->slots_lock);
5089
5090         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5091         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5092
5093         mutex_unlock(&kvm->slots_lock);
5094         return 0;
5095 }
5096
5097 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5098 {
5099         return kvm->arch.n_max_mmu_pages;
5100 }
5101
5102 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5103 {
5104         struct kvm_pic *pic = kvm->arch.vpic;
5105         int r;
5106
5107         r = 0;
5108         switch (chip->chip_id) {
5109         case KVM_IRQCHIP_PIC_MASTER:
5110                 memcpy(&chip->chip.pic, &pic->pics[0],
5111                         sizeof(struct kvm_pic_state));
5112                 break;
5113         case KVM_IRQCHIP_PIC_SLAVE:
5114                 memcpy(&chip->chip.pic, &pic->pics[1],
5115                         sizeof(struct kvm_pic_state));
5116                 break;
5117         case KVM_IRQCHIP_IOAPIC:
5118                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5119                 break;
5120         default:
5121                 r = -EINVAL;
5122                 break;
5123         }
5124         return r;
5125 }
5126
5127 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5128 {
5129         struct kvm_pic *pic = kvm->arch.vpic;
5130         int r;
5131
5132         r = 0;
5133         switch (chip->chip_id) {
5134         case KVM_IRQCHIP_PIC_MASTER:
5135                 spin_lock(&pic->lock);
5136                 memcpy(&pic->pics[0], &chip->chip.pic,
5137                         sizeof(struct kvm_pic_state));
5138                 spin_unlock(&pic->lock);
5139                 break;
5140         case KVM_IRQCHIP_PIC_SLAVE:
5141                 spin_lock(&pic->lock);
5142                 memcpy(&pic->pics[1], &chip->chip.pic,
5143                         sizeof(struct kvm_pic_state));
5144                 spin_unlock(&pic->lock);
5145                 break;
5146         case KVM_IRQCHIP_IOAPIC:
5147                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5148                 break;
5149         default:
5150                 r = -EINVAL;
5151                 break;
5152         }
5153         kvm_pic_update_irq(pic);
5154         return r;
5155 }
5156
5157 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5158 {
5159         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5160
5161         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5162
5163         mutex_lock(&kps->lock);
5164         memcpy(ps, &kps->channels, sizeof(*ps));
5165         mutex_unlock(&kps->lock);
5166         return 0;
5167 }
5168
5169 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5170 {
5171         int i;
5172         struct kvm_pit *pit = kvm->arch.vpit;
5173
5174         mutex_lock(&pit->pit_state.lock);
5175         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5176         for (i = 0; i < 3; i++)
5177                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5178         mutex_unlock(&pit->pit_state.lock);
5179         return 0;
5180 }
5181
5182 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5183 {
5184         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5185         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5186                 sizeof(ps->channels));
5187         ps->flags = kvm->arch.vpit->pit_state.flags;
5188         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5189         memset(&ps->reserved, 0, sizeof(ps->reserved));
5190         return 0;
5191 }
5192
5193 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5194 {
5195         int start = 0;
5196         int i;
5197         u32 prev_legacy, cur_legacy;
5198         struct kvm_pit *pit = kvm->arch.vpit;
5199
5200         mutex_lock(&pit->pit_state.lock);
5201         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5202         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5203         if (!prev_legacy && cur_legacy)
5204                 start = 1;
5205         memcpy(&pit->pit_state.channels, &ps->channels,
5206                sizeof(pit->pit_state.channels));
5207         pit->pit_state.flags = ps->flags;
5208         for (i = 0; i < 3; i++)
5209                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5210                                    start && i == 0);
5211         mutex_unlock(&pit->pit_state.lock);
5212         return 0;
5213 }
5214
5215 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5216                                  struct kvm_reinject_control *control)
5217 {
5218         struct kvm_pit *pit = kvm->arch.vpit;
5219
5220         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5221          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5222          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5223          */
5224         mutex_lock(&pit->pit_state.lock);
5225         kvm_pit_set_reinject(pit, control->pit_reinject);
5226         mutex_unlock(&pit->pit_state.lock);
5227
5228         return 0;
5229 }
5230
5231 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5232 {
5233
5234         /*
5235          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5236          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5237          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5238          * VM-Exit.
5239          */
5240         struct kvm_vcpu *vcpu;
5241         int i;
5242
5243         kvm_for_each_vcpu(i, vcpu, kvm)
5244                 kvm_vcpu_kick(vcpu);
5245 }
5246
5247 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5248                         bool line_status)
5249 {
5250         if (!irqchip_in_kernel(kvm))
5251                 return -ENXIO;
5252
5253         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5254                                         irq_event->irq, irq_event->level,
5255                                         line_status);
5256         return 0;
5257 }
5258
5259 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5260                             struct kvm_enable_cap *cap)
5261 {
5262         int r;
5263
5264         if (cap->flags)
5265                 return -EINVAL;
5266
5267         switch (cap->cap) {
5268         case KVM_CAP_DISABLE_QUIRKS:
5269                 kvm->arch.disabled_quirks = cap->args[0];
5270                 r = 0;
5271                 break;
5272         case KVM_CAP_SPLIT_IRQCHIP: {
5273                 mutex_lock(&kvm->lock);
5274                 r = -EINVAL;
5275                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5276                         goto split_irqchip_unlock;
5277                 r = -EEXIST;
5278                 if (irqchip_in_kernel(kvm))
5279                         goto split_irqchip_unlock;
5280                 if (kvm->created_vcpus)
5281                         goto split_irqchip_unlock;
5282                 r = kvm_setup_empty_irq_routing(kvm);
5283                 if (r)
5284                         goto split_irqchip_unlock;
5285                 /* Pairs with irqchip_in_kernel. */
5286                 smp_wmb();
5287                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5288                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5289                 r = 0;
5290 split_irqchip_unlock:
5291                 mutex_unlock(&kvm->lock);
5292                 break;
5293         }
5294         case KVM_CAP_X2APIC_API:
5295                 r = -EINVAL;
5296                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5297                         break;
5298
5299                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5300                         kvm->arch.x2apic_format = true;
5301                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5302                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5303
5304                 r = 0;
5305                 break;
5306         case KVM_CAP_X86_DISABLE_EXITS:
5307                 r = -EINVAL;
5308                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5309                         break;
5310
5311                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5312                         kvm_can_mwait_in_guest())
5313                         kvm->arch.mwait_in_guest = true;
5314                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5315                         kvm->arch.hlt_in_guest = true;
5316                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5317                         kvm->arch.pause_in_guest = true;
5318                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5319                         kvm->arch.cstate_in_guest = true;
5320                 r = 0;
5321                 break;
5322         case KVM_CAP_MSR_PLATFORM_INFO:
5323                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5324                 r = 0;
5325                 break;
5326         case KVM_CAP_EXCEPTION_PAYLOAD:
5327                 kvm->arch.exception_payload_enabled = cap->args[0];
5328                 r = 0;
5329                 break;
5330         case KVM_CAP_X86_USER_SPACE_MSR:
5331                 kvm->arch.user_space_msr_mask = cap->args[0];
5332                 r = 0;
5333                 break;
5334         case KVM_CAP_X86_BUS_LOCK_EXIT:
5335                 r = -EINVAL;
5336                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5337                         break;
5338
5339                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5340                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5341                         break;
5342
5343                 if (kvm_has_bus_lock_exit &&
5344                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5345                         kvm->arch.bus_lock_detection_enabled = true;
5346                 r = 0;
5347                 break;
5348         default:
5349                 r = -EINVAL;
5350                 break;
5351         }
5352         return r;
5353 }
5354
5355 static void kvm_clear_msr_filter(struct kvm *kvm)
5356 {
5357         u32 i;
5358         u32 count = kvm->arch.msr_filter.count;
5359         struct msr_bitmap_range ranges[16];
5360
5361         mutex_lock(&kvm->lock);
5362         kvm->arch.msr_filter.count = 0;
5363         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5364         mutex_unlock(&kvm->lock);
5365         synchronize_srcu(&kvm->srcu);
5366
5367         for (i = 0; i < count; i++)
5368                 kfree(ranges[i].bitmap);
5369 }
5370
5371 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5372 {
5373         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5374         struct msr_bitmap_range range;
5375         unsigned long *bitmap = NULL;
5376         size_t bitmap_size;
5377         int r;
5378
5379         if (!user_range->nmsrs)
5380                 return 0;
5381
5382         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5383         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5384                 return -EINVAL;
5385
5386         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5387         if (IS_ERR(bitmap))
5388                 return PTR_ERR(bitmap);
5389
5390         range = (struct msr_bitmap_range) {
5391                 .flags = user_range->flags,
5392                 .base = user_range->base,
5393                 .nmsrs = user_range->nmsrs,
5394                 .bitmap = bitmap,
5395         };
5396
5397         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5398                 r = -EINVAL;
5399                 goto err;
5400         }
5401
5402         if (!range.flags) {
5403                 r = -EINVAL;
5404                 goto err;
5405         }
5406
5407         /* Everything ok, add this range identifier to our global pool */
5408         ranges[kvm->arch.msr_filter.count] = range;
5409         /* Make sure we filled the array before we tell anyone to walk it */
5410         smp_wmb();
5411         kvm->arch.msr_filter.count++;
5412
5413         return 0;
5414 err:
5415         kfree(bitmap);
5416         return r;
5417 }
5418
5419 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5420 {
5421         struct kvm_msr_filter __user *user_msr_filter = argp;
5422         struct kvm_msr_filter filter;
5423         bool default_allow;
5424         int r = 0;
5425         bool empty = true;
5426         u32 i;
5427
5428         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5429                 return -EFAULT;
5430
5431         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5432                 empty &= !filter.ranges[i].nmsrs;
5433
5434         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5435         if (empty && !default_allow)
5436                 return -EINVAL;
5437
5438         kvm_clear_msr_filter(kvm);
5439
5440         kvm->arch.msr_filter.default_allow = default_allow;
5441
5442         /*
5443          * Protect from concurrent calls to this function that could trigger
5444          * a TOCTOU violation on kvm->arch.msr_filter.count.
5445          */
5446         mutex_lock(&kvm->lock);
5447         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5448                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5449                 if (r)
5450                         break;
5451         }
5452
5453         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5454         mutex_unlock(&kvm->lock);
5455
5456         return r;
5457 }
5458
5459 long kvm_arch_vm_ioctl(struct file *filp,
5460                        unsigned int ioctl, unsigned long arg)
5461 {
5462         struct kvm *kvm = filp->private_data;
5463         void __user *argp = (void __user *)arg;
5464         int r = -ENOTTY;
5465         /*
5466          * This union makes it completely explicit to gcc-3.x
5467          * that these two variables' stack usage should be
5468          * combined, not added together.
5469          */
5470         union {
5471                 struct kvm_pit_state ps;
5472                 struct kvm_pit_state2 ps2;
5473                 struct kvm_pit_config pit_config;
5474         } u;
5475
5476         switch (ioctl) {
5477         case KVM_SET_TSS_ADDR:
5478                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5479                 break;
5480         case KVM_SET_IDENTITY_MAP_ADDR: {
5481                 u64 ident_addr;
5482
5483                 mutex_lock(&kvm->lock);
5484                 r = -EINVAL;
5485                 if (kvm->created_vcpus)
5486                         goto set_identity_unlock;
5487                 r = -EFAULT;
5488                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5489                         goto set_identity_unlock;
5490                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5491 set_identity_unlock:
5492                 mutex_unlock(&kvm->lock);
5493                 break;
5494         }
5495         case KVM_SET_NR_MMU_PAGES:
5496                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5497                 break;
5498         case KVM_GET_NR_MMU_PAGES:
5499                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5500                 break;
5501         case KVM_CREATE_IRQCHIP: {
5502                 mutex_lock(&kvm->lock);
5503
5504                 r = -EEXIST;
5505                 if (irqchip_in_kernel(kvm))
5506                         goto create_irqchip_unlock;
5507
5508                 r = -EINVAL;
5509                 if (kvm->created_vcpus)
5510                         goto create_irqchip_unlock;
5511
5512                 r = kvm_pic_init(kvm);
5513                 if (r)
5514                         goto create_irqchip_unlock;
5515
5516                 r = kvm_ioapic_init(kvm);
5517                 if (r) {
5518                         kvm_pic_destroy(kvm);
5519                         goto create_irqchip_unlock;
5520                 }
5521
5522                 r = kvm_setup_default_irq_routing(kvm);
5523                 if (r) {
5524                         kvm_ioapic_destroy(kvm);
5525                         kvm_pic_destroy(kvm);
5526                         goto create_irqchip_unlock;
5527                 }
5528                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5529                 smp_wmb();
5530                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5531         create_irqchip_unlock:
5532                 mutex_unlock(&kvm->lock);
5533                 break;
5534         }
5535         case KVM_CREATE_PIT:
5536                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5537                 goto create_pit;
5538         case KVM_CREATE_PIT2:
5539                 r = -EFAULT;
5540                 if (copy_from_user(&u.pit_config, argp,
5541                                    sizeof(struct kvm_pit_config)))
5542                         goto out;
5543         create_pit:
5544                 mutex_lock(&kvm->lock);
5545                 r = -EEXIST;
5546                 if (kvm->arch.vpit)
5547                         goto create_pit_unlock;
5548                 r = -ENOMEM;
5549                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5550                 if (kvm->arch.vpit)
5551                         r = 0;
5552         create_pit_unlock:
5553                 mutex_unlock(&kvm->lock);
5554                 break;
5555         case KVM_GET_IRQCHIP: {
5556                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5557                 struct kvm_irqchip *chip;
5558
5559                 chip = memdup_user(argp, sizeof(*chip));
5560                 if (IS_ERR(chip)) {
5561                         r = PTR_ERR(chip);
5562                         goto out;
5563                 }
5564
5565                 r = -ENXIO;
5566                 if (!irqchip_kernel(kvm))
5567                         goto get_irqchip_out;
5568                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5569                 if (r)
5570                         goto get_irqchip_out;
5571                 r = -EFAULT;
5572                 if (copy_to_user(argp, chip, sizeof(*chip)))
5573                         goto get_irqchip_out;
5574                 r = 0;
5575         get_irqchip_out:
5576                 kfree(chip);
5577                 break;
5578         }
5579         case KVM_SET_IRQCHIP: {
5580                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5581                 struct kvm_irqchip *chip;
5582
5583                 chip = memdup_user(argp, sizeof(*chip));
5584                 if (IS_ERR(chip)) {
5585                         r = PTR_ERR(chip);
5586                         goto out;
5587                 }
5588
5589                 r = -ENXIO;
5590                 if (!irqchip_kernel(kvm))
5591                         goto set_irqchip_out;
5592                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5593         set_irqchip_out:
5594                 kfree(chip);
5595                 break;
5596         }
5597         case KVM_GET_PIT: {
5598                 r = -EFAULT;
5599                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5600                         goto out;
5601                 r = -ENXIO;
5602                 if (!kvm->arch.vpit)
5603                         goto out;
5604                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5605                 if (r)
5606                         goto out;
5607                 r = -EFAULT;
5608                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5609                         goto out;
5610                 r = 0;
5611                 break;
5612         }
5613         case KVM_SET_PIT: {
5614                 r = -EFAULT;
5615                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5616                         goto out;
5617                 mutex_lock(&kvm->lock);
5618                 r = -ENXIO;
5619                 if (!kvm->arch.vpit)
5620                         goto set_pit_out;
5621                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5622 set_pit_out:
5623                 mutex_unlock(&kvm->lock);
5624                 break;
5625         }
5626         case KVM_GET_PIT2: {
5627                 r = -ENXIO;
5628                 if (!kvm->arch.vpit)
5629                         goto out;
5630                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5631                 if (r)
5632                         goto out;
5633                 r = -EFAULT;
5634                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5635                         goto out;
5636                 r = 0;
5637                 break;
5638         }
5639         case KVM_SET_PIT2: {
5640                 r = -EFAULT;
5641                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5642                         goto out;
5643                 mutex_lock(&kvm->lock);
5644                 r = -ENXIO;
5645                 if (!kvm->arch.vpit)
5646                         goto set_pit2_out;
5647                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5648 set_pit2_out:
5649                 mutex_unlock(&kvm->lock);
5650                 break;
5651         }
5652         case KVM_REINJECT_CONTROL: {
5653                 struct kvm_reinject_control control;
5654                 r =  -EFAULT;
5655                 if (copy_from_user(&control, argp, sizeof(control)))
5656                         goto out;
5657                 r = -ENXIO;
5658                 if (!kvm->arch.vpit)
5659                         goto out;
5660                 r = kvm_vm_ioctl_reinject(kvm, &control);
5661                 break;
5662         }
5663         case KVM_SET_BOOT_CPU_ID:
5664                 r = 0;
5665                 mutex_lock(&kvm->lock);
5666                 if (kvm->created_vcpus)
5667                         r = -EBUSY;
5668                 else
5669                         kvm->arch.bsp_vcpu_id = arg;
5670                 mutex_unlock(&kvm->lock);
5671                 break;
5672 #ifdef CONFIG_KVM_XEN
5673         case KVM_XEN_HVM_CONFIG: {
5674                 struct kvm_xen_hvm_config xhc;
5675                 r = -EFAULT;
5676                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5677                         goto out;
5678                 r = kvm_xen_hvm_config(kvm, &xhc);
5679                 break;
5680         }
5681         case KVM_XEN_HVM_GET_ATTR: {
5682                 struct kvm_xen_hvm_attr xha;
5683
5684                 r = -EFAULT;
5685                 if (copy_from_user(&xha, argp, sizeof(xha)))
5686                         goto out;
5687                 r = kvm_xen_hvm_get_attr(kvm, &xha);
5688                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5689                         r = -EFAULT;
5690                 break;
5691         }
5692         case KVM_XEN_HVM_SET_ATTR: {
5693                 struct kvm_xen_hvm_attr xha;
5694
5695                 r = -EFAULT;
5696                 if (copy_from_user(&xha, argp, sizeof(xha)))
5697                         goto out;
5698                 r = kvm_xen_hvm_set_attr(kvm, &xha);
5699                 break;
5700         }
5701 #endif
5702         case KVM_SET_CLOCK: {
5703                 struct kvm_clock_data user_ns;
5704                 u64 now_ns;
5705
5706                 r = -EFAULT;
5707                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5708                         goto out;
5709
5710                 r = -EINVAL;
5711                 if (user_ns.flags)
5712                         goto out;
5713
5714                 r = 0;
5715                 /*
5716                  * TODO: userspace has to take care of races with VCPU_RUN, so
5717                  * kvm_gen_update_masterclock() can be cut down to locked
5718                  * pvclock_update_vm_gtod_copy().
5719                  */
5720                 kvm_gen_update_masterclock(kvm);
5721                 now_ns = get_kvmclock_ns(kvm);
5722                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5723                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5724                 break;
5725         }
5726         case KVM_GET_CLOCK: {
5727                 struct kvm_clock_data user_ns;
5728                 u64 now_ns;
5729
5730                 now_ns = get_kvmclock_ns(kvm);
5731                 user_ns.clock = now_ns;
5732                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5733                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5734
5735                 r = -EFAULT;
5736                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5737                         goto out;
5738                 r = 0;
5739                 break;
5740         }
5741         case KVM_MEMORY_ENCRYPT_OP: {
5742                 r = -ENOTTY;
5743                 if (kvm_x86_ops.mem_enc_op)
5744                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5745                 break;
5746         }
5747         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5748                 struct kvm_enc_region region;
5749
5750                 r = -EFAULT;
5751                 if (copy_from_user(&region, argp, sizeof(region)))
5752                         goto out;
5753
5754                 r = -ENOTTY;
5755                 if (kvm_x86_ops.mem_enc_reg_region)
5756                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5757                 break;
5758         }
5759         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5760                 struct kvm_enc_region region;
5761
5762                 r = -EFAULT;
5763                 if (copy_from_user(&region, argp, sizeof(region)))
5764                         goto out;
5765
5766                 r = -ENOTTY;
5767                 if (kvm_x86_ops.mem_enc_unreg_region)
5768                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5769                 break;
5770         }
5771         case KVM_HYPERV_EVENTFD: {
5772                 struct kvm_hyperv_eventfd hvevfd;
5773
5774                 r = -EFAULT;
5775                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5776                         goto out;
5777                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5778                 break;
5779         }
5780         case KVM_SET_PMU_EVENT_FILTER:
5781                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5782                 break;
5783         case KVM_X86_SET_MSR_FILTER:
5784                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5785                 break;
5786         default:
5787                 r = -ENOTTY;
5788         }
5789 out:
5790         return r;
5791 }
5792
5793 static void kvm_init_msr_list(void)
5794 {
5795         struct x86_pmu_capability x86_pmu;
5796         u32 dummy[2];
5797         unsigned i;
5798
5799         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5800                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5801
5802         perf_get_x86_pmu_capability(&x86_pmu);
5803
5804         num_msrs_to_save = 0;
5805         num_emulated_msrs = 0;
5806         num_msr_based_features = 0;
5807
5808         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5809                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5810                         continue;
5811
5812                 /*
5813                  * Even MSRs that are valid in the host may not be exposed
5814                  * to the guests in some cases.
5815                  */
5816                 switch (msrs_to_save_all[i]) {
5817                 case MSR_IA32_BNDCFGS:
5818                         if (!kvm_mpx_supported())
5819                                 continue;
5820                         break;
5821                 case MSR_TSC_AUX:
5822                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5823                                 continue;
5824                         break;
5825                 case MSR_IA32_UMWAIT_CONTROL:
5826                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5827                                 continue;
5828                         break;
5829                 case MSR_IA32_RTIT_CTL:
5830                 case MSR_IA32_RTIT_STATUS:
5831                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5832                                 continue;
5833                         break;
5834                 case MSR_IA32_RTIT_CR3_MATCH:
5835                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5836                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5837                                 continue;
5838                         break;
5839                 case MSR_IA32_RTIT_OUTPUT_BASE:
5840                 case MSR_IA32_RTIT_OUTPUT_MASK:
5841                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5842                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5843                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5844                                 continue;
5845                         break;
5846                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5847                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5848                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5849                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5850                                 continue;
5851                         break;
5852                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5853                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5854                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5855                                 continue;
5856                         break;
5857                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5858                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5859                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5860                                 continue;
5861                         break;
5862                 default:
5863                         break;
5864                 }
5865
5866                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5867         }
5868
5869         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5870                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5871                         continue;
5872
5873                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5874         }
5875
5876         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5877                 struct kvm_msr_entry msr;
5878
5879                 msr.index = msr_based_features_all[i];
5880                 if (kvm_get_msr_feature(&msr))
5881                         continue;
5882
5883                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5884         }
5885 }
5886
5887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5888                            const void *v)
5889 {
5890         int handled = 0;
5891         int n;
5892
5893         do {
5894                 n = min(len, 8);
5895                 if (!(lapic_in_kernel(vcpu) &&
5896                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5897                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5898                         break;
5899                 handled += n;
5900                 addr += n;
5901                 len -= n;
5902                 v += n;
5903         } while (len);
5904
5905         return handled;
5906 }
5907
5908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5909 {
5910         int handled = 0;
5911         int n;
5912
5913         do {
5914                 n = min(len, 8);
5915                 if (!(lapic_in_kernel(vcpu) &&
5916                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5917                                          addr, n, v))
5918                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5919                         break;
5920                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5921                 handled += n;
5922                 addr += n;
5923                 len -= n;
5924                 v += n;
5925         } while (len);
5926
5927         return handled;
5928 }
5929
5930 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5931                         struct kvm_segment *var, int seg)
5932 {
5933         static_call(kvm_x86_set_segment)(vcpu, var, seg);
5934 }
5935
5936 void kvm_get_segment(struct kvm_vcpu *vcpu,
5937                      struct kvm_segment *var, int seg)
5938 {
5939         static_call(kvm_x86_get_segment)(vcpu, var, seg);
5940 }
5941
5942 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5943                            struct x86_exception *exception)
5944 {
5945         gpa_t t_gpa;
5946
5947         BUG_ON(!mmu_is_nested(vcpu));
5948
5949         /* NPT walks are always user-walks */
5950         access |= PFERR_USER_MASK;
5951         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5952
5953         return t_gpa;
5954 }
5955
5956 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5957                               struct x86_exception *exception)
5958 {
5959         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5960         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5961 }
5962
5963  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5964                                 struct x86_exception *exception)
5965 {
5966         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5967         access |= PFERR_FETCH_MASK;
5968         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5969 }
5970
5971 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5972                                struct x86_exception *exception)
5973 {
5974         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5975         access |= PFERR_WRITE_MASK;
5976         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5977 }
5978
5979 /* uses this to access any guest's mapped memory without checking CPL */
5980 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5981                                 struct x86_exception *exception)
5982 {
5983         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5984 }
5985
5986 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5987                                       struct kvm_vcpu *vcpu, u32 access,
5988                                       struct x86_exception *exception)
5989 {
5990         void *data = val;
5991         int r = X86EMUL_CONTINUE;
5992
5993         while (bytes) {
5994                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5995                                                             exception);
5996                 unsigned offset = addr & (PAGE_SIZE-1);
5997                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5998                 int ret;
5999
6000                 if (gpa == UNMAPPED_GVA)
6001                         return X86EMUL_PROPAGATE_FAULT;
6002                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6003                                                offset, toread);
6004                 if (ret < 0) {
6005                         r = X86EMUL_IO_NEEDED;
6006                         goto out;
6007                 }
6008
6009                 bytes -= toread;
6010                 data += toread;
6011                 addr += toread;
6012         }
6013 out:
6014         return r;
6015 }
6016
6017 /* used for instruction fetching */
6018 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6019                                 gva_t addr, void *val, unsigned int bytes,
6020                                 struct x86_exception *exception)
6021 {
6022         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6023         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6024         unsigned offset;
6025         int ret;
6026
6027         /* Inline kvm_read_guest_virt_helper for speed.  */
6028         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6029                                                     exception);
6030         if (unlikely(gpa == UNMAPPED_GVA))
6031                 return X86EMUL_PROPAGATE_FAULT;
6032
6033         offset = addr & (PAGE_SIZE-1);
6034         if (WARN_ON(offset + bytes > PAGE_SIZE))
6035                 bytes = (unsigned)PAGE_SIZE - offset;
6036         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6037                                        offset, bytes);
6038         if (unlikely(ret < 0))
6039                 return X86EMUL_IO_NEEDED;
6040
6041         return X86EMUL_CONTINUE;
6042 }
6043
6044 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6045                                gva_t addr, void *val, unsigned int bytes,
6046                                struct x86_exception *exception)
6047 {
6048         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6049
6050         /*
6051          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6052          * is returned, but our callers are not ready for that and they blindly
6053          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6054          * uninitialized kernel stack memory into cr2 and error code.
6055          */
6056         memset(exception, 0, sizeof(*exception));
6057         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6058                                           exception);
6059 }
6060 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6061
6062 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6063                              gva_t addr, void *val, unsigned int bytes,
6064                              struct x86_exception *exception, bool system)
6065 {
6066         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6067         u32 access = 0;
6068
6069         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6070                 access |= PFERR_USER_MASK;
6071
6072         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6073 }
6074
6075 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6076                 unsigned long addr, void *val, unsigned int bytes)
6077 {
6078         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6079         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6080
6081         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6082 }
6083
6084 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6085                                       struct kvm_vcpu *vcpu, u32 access,
6086                                       struct x86_exception *exception)
6087 {
6088         void *data = val;
6089         int r = X86EMUL_CONTINUE;
6090
6091         while (bytes) {
6092                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6093                                                              access,
6094                                                              exception);
6095                 unsigned offset = addr & (PAGE_SIZE-1);
6096                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6097                 int ret;
6098
6099                 if (gpa == UNMAPPED_GVA)
6100                         return X86EMUL_PROPAGATE_FAULT;
6101                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6102                 if (ret < 0) {
6103                         r = X86EMUL_IO_NEEDED;
6104                         goto out;
6105                 }
6106
6107                 bytes -= towrite;
6108                 data += towrite;
6109                 addr += towrite;
6110         }
6111 out:
6112         return r;
6113 }
6114
6115 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6116                               unsigned int bytes, struct x86_exception *exception,
6117                               bool system)
6118 {
6119         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6120         u32 access = PFERR_WRITE_MASK;
6121
6122         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6123                 access |= PFERR_USER_MASK;
6124
6125         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6126                                            access, exception);
6127 }
6128
6129 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6130                                 unsigned int bytes, struct x86_exception *exception)
6131 {
6132         /* kvm_write_guest_virt_system can pull in tons of pages. */
6133         vcpu->arch.l1tf_flush_l1d = true;
6134
6135         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6136                                            PFERR_WRITE_MASK, exception);
6137 }
6138 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6139
6140 int handle_ud(struct kvm_vcpu *vcpu)
6141 {
6142         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6143         int emul_type = EMULTYPE_TRAP_UD;
6144         char sig[5]; /* ud2; .ascii "kvm" */
6145         struct x86_exception e;
6146
6147         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6148                 return 1;
6149
6150         if (force_emulation_prefix &&
6151             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6152                                 sig, sizeof(sig), &e) == 0 &&
6153             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6154                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6155                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6156         }
6157
6158         return kvm_emulate_instruction(vcpu, emul_type);
6159 }
6160 EXPORT_SYMBOL_GPL(handle_ud);
6161
6162 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6163                             gpa_t gpa, bool write)
6164 {
6165         /* For APIC access vmexit */
6166         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6167                 return 1;
6168
6169         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6170                 trace_vcpu_match_mmio(gva, gpa, write, true);
6171                 return 1;
6172         }
6173
6174         return 0;
6175 }
6176
6177 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6178                                 gpa_t *gpa, struct x86_exception *exception,
6179                                 bool write)
6180 {
6181         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6182                 | (write ? PFERR_WRITE_MASK : 0);
6183
6184         /*
6185          * currently PKRU is only applied to ept enabled guest so
6186          * there is no pkey in EPT page table for L1 guest or EPT
6187          * shadow page table for L2 guest.
6188          */
6189         if (vcpu_match_mmio_gva(vcpu, gva)
6190             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6191                                  vcpu->arch.mmio_access, 0, access)) {
6192                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6193                                         (gva & (PAGE_SIZE - 1));
6194                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6195                 return 1;
6196         }
6197
6198         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6199
6200         if (*gpa == UNMAPPED_GVA)
6201                 return -1;
6202
6203         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6204 }
6205
6206 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6207                         const void *val, int bytes)
6208 {
6209         int ret;
6210
6211         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6212         if (ret < 0)
6213                 return 0;
6214         kvm_page_track_write(vcpu, gpa, val, bytes);
6215         return 1;
6216 }
6217
6218 struct read_write_emulator_ops {
6219         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6220                                   int bytes);
6221         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6222                                   void *val, int bytes);
6223         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6224                                int bytes, void *val);
6225         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6226                                     void *val, int bytes);
6227         bool write;
6228 };
6229
6230 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6231 {
6232         if (vcpu->mmio_read_completed) {
6233                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6234                                vcpu->mmio_fragments[0].gpa, val);
6235                 vcpu->mmio_read_completed = 0;
6236                 return 1;
6237         }
6238
6239         return 0;
6240 }
6241
6242 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6243                         void *val, int bytes)
6244 {
6245         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6246 }
6247
6248 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6249                          void *val, int bytes)
6250 {
6251         return emulator_write_phys(vcpu, gpa, val, bytes);
6252 }
6253
6254 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6255 {
6256         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6257         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6258 }
6259
6260 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6261                           void *val, int bytes)
6262 {
6263         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6264         return X86EMUL_IO_NEEDED;
6265 }
6266
6267 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6268                            void *val, int bytes)
6269 {
6270         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6271
6272         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6273         return X86EMUL_CONTINUE;
6274 }
6275
6276 static const struct read_write_emulator_ops read_emultor = {
6277         .read_write_prepare = read_prepare,
6278         .read_write_emulate = read_emulate,
6279         .read_write_mmio = vcpu_mmio_read,
6280         .read_write_exit_mmio = read_exit_mmio,
6281 };
6282
6283 static const struct read_write_emulator_ops write_emultor = {
6284         .read_write_emulate = write_emulate,
6285         .read_write_mmio = write_mmio,
6286         .read_write_exit_mmio = write_exit_mmio,
6287         .write = true,
6288 };
6289
6290 static int emulator_read_write_onepage(unsigned long addr, void *val,
6291                                        unsigned int bytes,
6292                                        struct x86_exception *exception,
6293                                        struct kvm_vcpu *vcpu,
6294                                        const struct read_write_emulator_ops *ops)
6295 {
6296         gpa_t gpa;
6297         int handled, ret;
6298         bool write = ops->write;
6299         struct kvm_mmio_fragment *frag;
6300         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6301
6302         /*
6303          * If the exit was due to a NPF we may already have a GPA.
6304          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6305          * Note, this cannot be used on string operations since string
6306          * operation using rep will only have the initial GPA from the NPF
6307          * occurred.
6308          */
6309         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6310             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6311                 gpa = ctxt->gpa_val;
6312                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6313         } else {
6314                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6315                 if (ret < 0)
6316                         return X86EMUL_PROPAGATE_FAULT;
6317         }
6318
6319         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6320                 return X86EMUL_CONTINUE;
6321
6322         /*
6323          * Is this MMIO handled locally?
6324          */
6325         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6326         if (handled == bytes)
6327                 return X86EMUL_CONTINUE;
6328
6329         gpa += handled;
6330         bytes -= handled;
6331         val += handled;
6332
6333         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6334         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6335         frag->gpa = gpa;
6336         frag->data = val;
6337         frag->len = bytes;
6338         return X86EMUL_CONTINUE;
6339 }
6340
6341 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6342                         unsigned long addr,
6343                         void *val, unsigned int bytes,
6344                         struct x86_exception *exception,
6345                         const struct read_write_emulator_ops *ops)
6346 {
6347         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6348         gpa_t gpa;
6349         int rc;
6350
6351         if (ops->read_write_prepare &&
6352                   ops->read_write_prepare(vcpu, val, bytes))
6353                 return X86EMUL_CONTINUE;
6354
6355         vcpu->mmio_nr_fragments = 0;
6356
6357         /* Crossing a page boundary? */
6358         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6359                 int now;
6360
6361                 now = -addr & ~PAGE_MASK;
6362                 rc = emulator_read_write_onepage(addr, val, now, exception,
6363                                                  vcpu, ops);
6364
6365                 if (rc != X86EMUL_CONTINUE)
6366                         return rc;
6367                 addr += now;
6368                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6369                         addr = (u32)addr;
6370                 val += now;
6371                 bytes -= now;
6372         }
6373
6374         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6375                                          vcpu, ops);
6376         if (rc != X86EMUL_CONTINUE)
6377                 return rc;
6378
6379         if (!vcpu->mmio_nr_fragments)
6380                 return rc;
6381
6382         gpa = vcpu->mmio_fragments[0].gpa;
6383
6384         vcpu->mmio_needed = 1;
6385         vcpu->mmio_cur_fragment = 0;
6386
6387         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6388         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6389         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6390         vcpu->run->mmio.phys_addr = gpa;
6391
6392         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6393 }
6394
6395 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6396                                   unsigned long addr,
6397                                   void *val,
6398                                   unsigned int bytes,
6399                                   struct x86_exception *exception)
6400 {
6401         return emulator_read_write(ctxt, addr, val, bytes,
6402                                    exception, &read_emultor);
6403 }
6404
6405 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6406                             unsigned long addr,
6407                             const void *val,
6408                             unsigned int bytes,
6409                             struct x86_exception *exception)
6410 {
6411         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6412                                    exception, &write_emultor);
6413 }
6414
6415 #define CMPXCHG_TYPE(t, ptr, old, new) \
6416         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6417
6418 #ifdef CONFIG_X86_64
6419 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6420 #else
6421 #  define CMPXCHG64(ptr, old, new) \
6422         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6423 #endif
6424
6425 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6426                                      unsigned long addr,
6427                                      const void *old,
6428                                      const void *new,
6429                                      unsigned int bytes,
6430                                      struct x86_exception *exception)
6431 {
6432         struct kvm_host_map map;
6433         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6434         u64 page_line_mask;
6435         gpa_t gpa;
6436         char *kaddr;
6437         bool exchanged;
6438
6439         /* guests cmpxchg8b have to be emulated atomically */
6440         if (bytes > 8 || (bytes & (bytes - 1)))
6441                 goto emul_write;
6442
6443         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6444
6445         if (gpa == UNMAPPED_GVA ||
6446             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6447                 goto emul_write;
6448
6449         /*
6450          * Emulate the atomic as a straight write to avoid #AC if SLD is
6451          * enabled in the host and the access splits a cache line.
6452          */
6453         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6454                 page_line_mask = ~(cache_line_size() - 1);
6455         else
6456                 page_line_mask = PAGE_MASK;
6457
6458         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6459                 goto emul_write;
6460
6461         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6462                 goto emul_write;
6463
6464         kaddr = map.hva + offset_in_page(gpa);
6465
6466         switch (bytes) {
6467         case 1:
6468                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6469                 break;
6470         case 2:
6471                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6472                 break;
6473         case 4:
6474                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6475                 break;
6476         case 8:
6477                 exchanged = CMPXCHG64(kaddr, old, new);
6478                 break;
6479         default:
6480                 BUG();
6481         }
6482
6483         kvm_vcpu_unmap(vcpu, &map, true);
6484
6485         if (!exchanged)
6486                 return X86EMUL_CMPXCHG_FAILED;
6487
6488         kvm_page_track_write(vcpu, gpa, new, bytes);
6489
6490         return X86EMUL_CONTINUE;
6491
6492 emul_write:
6493         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6494
6495         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6496 }
6497
6498 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6499 {
6500         int r = 0, i;
6501
6502         for (i = 0; i < vcpu->arch.pio.count; i++) {
6503                 if (vcpu->arch.pio.in)
6504                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6505                                             vcpu->arch.pio.size, pd);
6506                 else
6507                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6508                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6509                                              pd);
6510                 if (r)
6511                         break;
6512                 pd += vcpu->arch.pio.size;
6513         }
6514         return r;
6515 }
6516
6517 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6518                                unsigned short port, void *val,
6519                                unsigned int count, bool in)
6520 {
6521         vcpu->arch.pio.port = port;
6522         vcpu->arch.pio.in = in;
6523         vcpu->arch.pio.count  = count;
6524         vcpu->arch.pio.size = size;
6525
6526         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6527                 vcpu->arch.pio.count = 0;
6528                 return 1;
6529         }
6530
6531         vcpu->run->exit_reason = KVM_EXIT_IO;
6532         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6533         vcpu->run->io.size = size;
6534         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6535         vcpu->run->io.count = count;
6536         vcpu->run->io.port = port;
6537
6538         return 0;
6539 }
6540
6541 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6542                            unsigned short port, void *val, unsigned int count)
6543 {
6544         int ret;
6545
6546         if (vcpu->arch.pio.count)
6547                 goto data_avail;
6548
6549         memset(vcpu->arch.pio_data, 0, size * count);
6550
6551         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6552         if (ret) {
6553 data_avail:
6554                 memcpy(val, vcpu->arch.pio_data, size * count);
6555                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6556                 vcpu->arch.pio.count = 0;
6557                 return 1;
6558         }
6559
6560         return 0;
6561 }
6562
6563 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6564                                     int size, unsigned short port, void *val,
6565                                     unsigned int count)
6566 {
6567         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6568
6569 }
6570
6571 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6572                             unsigned short port, const void *val,
6573                             unsigned int count)
6574 {
6575         memcpy(vcpu->arch.pio_data, val, size * count);
6576         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6577         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6578 }
6579
6580 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6581                                      int size, unsigned short port,
6582                                      const void *val, unsigned int count)
6583 {
6584         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6585 }
6586
6587 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6588 {
6589         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6590 }
6591
6592 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6593 {
6594         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6595 }
6596
6597 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6598 {
6599         if (!need_emulate_wbinvd(vcpu))
6600                 return X86EMUL_CONTINUE;
6601
6602         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6603                 int cpu = get_cpu();
6604
6605                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6606                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6607                                 wbinvd_ipi, NULL, 1);
6608                 put_cpu();
6609                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6610         } else
6611                 wbinvd();
6612         return X86EMUL_CONTINUE;
6613 }
6614
6615 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6616 {
6617         kvm_emulate_wbinvd_noskip(vcpu);
6618         return kvm_skip_emulated_instruction(vcpu);
6619 }
6620 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6621
6622
6623
6624 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6625 {
6626         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6627 }
6628
6629 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6630                             unsigned long *dest)
6631 {
6632         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6633 }
6634
6635 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6636                            unsigned long value)
6637 {
6638
6639         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6640 }
6641
6642 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6643 {
6644         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6645 }
6646
6647 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6648 {
6649         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6650         unsigned long value;
6651
6652         switch (cr) {
6653         case 0:
6654                 value = kvm_read_cr0(vcpu);
6655                 break;
6656         case 2:
6657                 value = vcpu->arch.cr2;
6658                 break;
6659         case 3:
6660                 value = kvm_read_cr3(vcpu);
6661                 break;
6662         case 4:
6663                 value = kvm_read_cr4(vcpu);
6664                 break;
6665         case 8:
6666                 value = kvm_get_cr8(vcpu);
6667                 break;
6668         default:
6669                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6670                 return 0;
6671         }
6672
6673         return value;
6674 }
6675
6676 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6677 {
6678         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6679         int res = 0;
6680
6681         switch (cr) {
6682         case 0:
6683                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6684                 break;
6685         case 2:
6686                 vcpu->arch.cr2 = val;
6687                 break;
6688         case 3:
6689                 res = kvm_set_cr3(vcpu, val);
6690                 break;
6691         case 4:
6692                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6693                 break;
6694         case 8:
6695                 res = kvm_set_cr8(vcpu, val);
6696                 break;
6697         default:
6698                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6699                 res = -1;
6700         }
6701
6702         return res;
6703 }
6704
6705 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6706 {
6707         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6708 }
6709
6710 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6711 {
6712         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6713 }
6714
6715 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6716 {
6717         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6718 }
6719
6720 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6721 {
6722         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6723 }
6724
6725 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6726 {
6727         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6728 }
6729
6730 static unsigned long emulator_get_cached_segment_base(
6731         struct x86_emulate_ctxt *ctxt, int seg)
6732 {
6733         return get_segment_base(emul_to_vcpu(ctxt), seg);
6734 }
6735
6736 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6737                                  struct desc_struct *desc, u32 *base3,
6738                                  int seg)
6739 {
6740         struct kvm_segment var;
6741
6742         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6743         *selector = var.selector;
6744
6745         if (var.unusable) {
6746                 memset(desc, 0, sizeof(*desc));
6747                 if (base3)
6748                         *base3 = 0;
6749                 return false;
6750         }
6751
6752         if (var.g)
6753                 var.limit >>= 12;
6754         set_desc_limit(desc, var.limit);
6755         set_desc_base(desc, (unsigned long)var.base);
6756 #ifdef CONFIG_X86_64
6757         if (base3)
6758                 *base3 = var.base >> 32;
6759 #endif
6760         desc->type = var.type;
6761         desc->s = var.s;
6762         desc->dpl = var.dpl;
6763         desc->p = var.present;
6764         desc->avl = var.avl;
6765         desc->l = var.l;
6766         desc->d = var.db;
6767         desc->g = var.g;
6768
6769         return true;
6770 }
6771
6772 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6773                                  struct desc_struct *desc, u32 base3,
6774                                  int seg)
6775 {
6776         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6777         struct kvm_segment var;
6778
6779         var.selector = selector;
6780         var.base = get_desc_base(desc);
6781 #ifdef CONFIG_X86_64
6782         var.base |= ((u64)base3) << 32;
6783 #endif
6784         var.limit = get_desc_limit(desc);
6785         if (desc->g)
6786                 var.limit = (var.limit << 12) | 0xfff;
6787         var.type = desc->type;
6788         var.dpl = desc->dpl;
6789         var.db = desc->d;
6790         var.s = desc->s;
6791         var.l = desc->l;
6792         var.g = desc->g;
6793         var.avl = desc->avl;
6794         var.present = desc->p;
6795         var.unusable = !var.present;
6796         var.padding = 0;
6797
6798         kvm_set_segment(vcpu, &var, seg);
6799         return;
6800 }
6801
6802 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6803                             u32 msr_index, u64 *pdata)
6804 {
6805         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6806         int r;
6807
6808         r = kvm_get_msr(vcpu, msr_index, pdata);
6809
6810         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6811                 /* Bounce to user space */
6812                 return X86EMUL_IO_NEEDED;
6813         }
6814
6815         return r;
6816 }
6817
6818 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6819                             u32 msr_index, u64 data)
6820 {
6821         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6822         int r;
6823
6824         r = kvm_set_msr(vcpu, msr_index, data);
6825
6826         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6827                 /* Bounce to user space */
6828                 return X86EMUL_IO_NEEDED;
6829         }
6830
6831         return r;
6832 }
6833
6834 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6835 {
6836         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6837
6838         return vcpu->arch.smbase;
6839 }
6840
6841 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6842 {
6843         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6844
6845         vcpu->arch.smbase = smbase;
6846 }
6847
6848 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6849                               u32 pmc)
6850 {
6851         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6852 }
6853
6854 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6855                              u32 pmc, u64 *pdata)
6856 {
6857         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6858 }
6859
6860 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6861 {
6862         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6863 }
6864
6865 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6866                               struct x86_instruction_info *info,
6867                               enum x86_intercept_stage stage)
6868 {
6869         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6870                                             &ctxt->exception);
6871 }
6872
6873 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6874                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6875                               bool exact_only)
6876 {
6877         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6878 }
6879
6880 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6881 {
6882         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6883 }
6884
6885 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6886 {
6887         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6888 }
6889
6890 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6891 {
6892         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6893 }
6894
6895 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6896 {
6897         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6898 }
6899
6900 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6901 {
6902         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6903 }
6904
6905 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6906 {
6907         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6908 }
6909
6910 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6911 {
6912         return emul_to_vcpu(ctxt)->arch.hflags;
6913 }
6914
6915 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6916 {
6917         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6918 }
6919
6920 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6921                                   const char *smstate)
6922 {
6923         return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6924 }
6925
6926 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6927 {
6928         kvm_smm_changed(emul_to_vcpu(ctxt));
6929 }
6930
6931 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6932 {
6933         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6934 }
6935
6936 static const struct x86_emulate_ops emulate_ops = {
6937         .read_gpr            = emulator_read_gpr,
6938         .write_gpr           = emulator_write_gpr,
6939         .read_std            = emulator_read_std,
6940         .write_std           = emulator_write_std,
6941         .read_phys           = kvm_read_guest_phys_system,
6942         .fetch               = kvm_fetch_guest_virt,
6943         .read_emulated       = emulator_read_emulated,
6944         .write_emulated      = emulator_write_emulated,
6945         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6946         .invlpg              = emulator_invlpg,
6947         .pio_in_emulated     = emulator_pio_in_emulated,
6948         .pio_out_emulated    = emulator_pio_out_emulated,
6949         .get_segment         = emulator_get_segment,
6950         .set_segment         = emulator_set_segment,
6951         .get_cached_segment_base = emulator_get_cached_segment_base,
6952         .get_gdt             = emulator_get_gdt,
6953         .get_idt             = emulator_get_idt,
6954         .set_gdt             = emulator_set_gdt,
6955         .set_idt             = emulator_set_idt,
6956         .get_cr              = emulator_get_cr,
6957         .set_cr              = emulator_set_cr,
6958         .cpl                 = emulator_get_cpl,
6959         .get_dr              = emulator_get_dr,
6960         .set_dr              = emulator_set_dr,
6961         .get_smbase          = emulator_get_smbase,
6962         .set_smbase          = emulator_set_smbase,
6963         .set_msr             = emulator_set_msr,
6964         .get_msr             = emulator_get_msr,
6965         .check_pmc           = emulator_check_pmc,
6966         .read_pmc            = emulator_read_pmc,
6967         .halt                = emulator_halt,
6968         .wbinvd              = emulator_wbinvd,
6969         .fix_hypercall       = emulator_fix_hypercall,
6970         .intercept           = emulator_intercept,
6971         .get_cpuid           = emulator_get_cpuid,
6972         .guest_has_long_mode = emulator_guest_has_long_mode,
6973         .guest_has_movbe     = emulator_guest_has_movbe,
6974         .guest_has_fxsr      = emulator_guest_has_fxsr,
6975         .set_nmi_mask        = emulator_set_nmi_mask,
6976         .get_hflags          = emulator_get_hflags,
6977         .set_hflags          = emulator_set_hflags,
6978         .pre_leave_smm       = emulator_pre_leave_smm,
6979         .post_leave_smm      = emulator_post_leave_smm,
6980         .set_xcr             = emulator_set_xcr,
6981 };
6982
6983 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6984 {
6985         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
6986         /*
6987          * an sti; sti; sequence only disable interrupts for the first
6988          * instruction. So, if the last instruction, be it emulated or
6989          * not, left the system with the INT_STI flag enabled, it
6990          * means that the last instruction is an sti. We should not
6991          * leave the flag on in this case. The same goes for mov ss
6992          */
6993         if (int_shadow & mask)
6994                 mask = 0;
6995         if (unlikely(int_shadow || mask)) {
6996                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6997                 if (!mask)
6998                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6999         }
7000 }
7001
7002 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7003 {
7004         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7005         if (ctxt->exception.vector == PF_VECTOR)
7006                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7007
7008         if (ctxt->exception.error_code_valid)
7009                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7010                                       ctxt->exception.error_code);
7011         else
7012                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7013         return false;
7014 }
7015
7016 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7017 {
7018         struct x86_emulate_ctxt *ctxt;
7019
7020         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7021         if (!ctxt) {
7022                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7023                 return NULL;
7024         }
7025
7026         ctxt->vcpu = vcpu;
7027         ctxt->ops = &emulate_ops;
7028         vcpu->arch.emulate_ctxt = ctxt;
7029
7030         return ctxt;
7031 }
7032
7033 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7034 {
7035         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7036         int cs_db, cs_l;
7037
7038         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7039
7040         ctxt->gpa_available = false;
7041         ctxt->eflags = kvm_get_rflags(vcpu);
7042         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7043
7044         ctxt->eip = kvm_rip_read(vcpu);
7045         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7046                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7047                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7048                      cs_db                              ? X86EMUL_MODE_PROT32 :
7049                                                           X86EMUL_MODE_PROT16;
7050         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7051         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7052         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7053
7054         init_decode_cache(ctxt);
7055         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7056 }
7057
7058 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7059 {
7060         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7061         int ret;
7062
7063         init_emulate_ctxt(vcpu);
7064
7065         ctxt->op_bytes = 2;
7066         ctxt->ad_bytes = 2;
7067         ctxt->_eip = ctxt->eip + inc_eip;
7068         ret = emulate_int_real(ctxt, irq);
7069
7070         if (ret != X86EMUL_CONTINUE) {
7071                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7072         } else {
7073                 ctxt->eip = ctxt->_eip;
7074                 kvm_rip_write(vcpu, ctxt->eip);
7075                 kvm_set_rflags(vcpu, ctxt->eflags);
7076         }
7077 }
7078 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7079
7080 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7081 {
7082         ++vcpu->stat.insn_emulation_fail;
7083         trace_kvm_emulate_insn_failed(vcpu);
7084
7085         if (emulation_type & EMULTYPE_VMWARE_GP) {
7086                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7087                 return 1;
7088         }
7089
7090         if (emulation_type & EMULTYPE_SKIP) {
7091                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7092                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7093                 vcpu->run->internal.ndata = 0;
7094                 return 0;
7095         }
7096
7097         kvm_queue_exception(vcpu, UD_VECTOR);
7098
7099         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7100                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7101                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7102                 vcpu->run->internal.ndata = 0;
7103                 return 0;
7104         }
7105
7106         return 1;
7107 }
7108
7109 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7110                                   bool write_fault_to_shadow_pgtable,
7111                                   int emulation_type)
7112 {
7113         gpa_t gpa = cr2_or_gpa;
7114         kvm_pfn_t pfn;
7115
7116         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7117                 return false;
7118
7119         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7120             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7121                 return false;
7122
7123         if (!vcpu->arch.mmu->direct_map) {
7124                 /*
7125                  * Write permission should be allowed since only
7126                  * write access need to be emulated.
7127                  */
7128                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7129
7130                 /*
7131                  * If the mapping is invalid in guest, let cpu retry
7132                  * it to generate fault.
7133                  */
7134                 if (gpa == UNMAPPED_GVA)
7135                         return true;
7136         }
7137
7138         /*
7139          * Do not retry the unhandleable instruction if it faults on the
7140          * readonly host memory, otherwise it will goto a infinite loop:
7141          * retry instruction -> write #PF -> emulation fail -> retry
7142          * instruction -> ...
7143          */
7144         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7145
7146         /*
7147          * If the instruction failed on the error pfn, it can not be fixed,
7148          * report the error to userspace.
7149          */
7150         if (is_error_noslot_pfn(pfn))
7151                 return false;
7152
7153         kvm_release_pfn_clean(pfn);
7154
7155         /* The instructions are well-emulated on direct mmu. */
7156         if (vcpu->arch.mmu->direct_map) {
7157                 unsigned int indirect_shadow_pages;
7158
7159                 write_lock(&vcpu->kvm->mmu_lock);
7160                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7161                 write_unlock(&vcpu->kvm->mmu_lock);
7162
7163                 if (indirect_shadow_pages)
7164                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7165
7166                 return true;
7167         }
7168
7169         /*
7170          * if emulation was due to access to shadowed page table
7171          * and it failed try to unshadow page and re-enter the
7172          * guest to let CPU execute the instruction.
7173          */
7174         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7175
7176         /*
7177          * If the access faults on its page table, it can not
7178          * be fixed by unprotecting shadow page and it should
7179          * be reported to userspace.
7180          */
7181         return !write_fault_to_shadow_pgtable;
7182 }
7183
7184 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7185                               gpa_t cr2_or_gpa,  int emulation_type)
7186 {
7187         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7188         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7189
7190         last_retry_eip = vcpu->arch.last_retry_eip;
7191         last_retry_addr = vcpu->arch.last_retry_addr;
7192
7193         /*
7194          * If the emulation is caused by #PF and it is non-page_table
7195          * writing instruction, it means the VM-EXIT is caused by shadow
7196          * page protected, we can zap the shadow page and retry this
7197          * instruction directly.
7198          *
7199          * Note: if the guest uses a non-page-table modifying instruction
7200          * on the PDE that points to the instruction, then we will unmap
7201          * the instruction and go to an infinite loop. So, we cache the
7202          * last retried eip and the last fault address, if we meet the eip
7203          * and the address again, we can break out of the potential infinite
7204          * loop.
7205          */
7206         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7207
7208         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7209                 return false;
7210
7211         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7212             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7213                 return false;
7214
7215         if (x86_page_table_writing_insn(ctxt))
7216                 return false;
7217
7218         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7219                 return false;
7220
7221         vcpu->arch.last_retry_eip = ctxt->eip;
7222         vcpu->arch.last_retry_addr = cr2_or_gpa;
7223
7224         if (!vcpu->arch.mmu->direct_map)
7225                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7226
7227         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7228
7229         return true;
7230 }
7231
7232 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7233 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7234
7235 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7236 {
7237         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7238                 /* This is a good place to trace that we are exiting SMM.  */
7239                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7240
7241                 /* Process a latched INIT or SMI, if any.  */
7242                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7243         }
7244
7245         kvm_mmu_reset_context(vcpu);
7246 }
7247
7248 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7249                                 unsigned long *db)
7250 {
7251         u32 dr6 = 0;
7252         int i;
7253         u32 enable, rwlen;
7254
7255         enable = dr7;
7256         rwlen = dr7 >> 16;
7257         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7258                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7259                         dr6 |= (1 << i);
7260         return dr6;
7261 }
7262
7263 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7264 {
7265         struct kvm_run *kvm_run = vcpu->run;
7266
7267         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7268                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7269                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7270                 kvm_run->debug.arch.exception = DB_VECTOR;
7271                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7272                 return 0;
7273         }
7274         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7275         return 1;
7276 }
7277
7278 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7279 {
7280         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7281         int r;
7282
7283         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7284         if (unlikely(!r))
7285                 return 0;
7286
7287         /*
7288          * rflags is the old, "raw" value of the flags.  The new value has
7289          * not been saved yet.
7290          *
7291          * This is correct even for TF set by the guest, because "the
7292          * processor will not generate this exception after the instruction
7293          * that sets the TF flag".
7294          */
7295         if (unlikely(rflags & X86_EFLAGS_TF))
7296                 r = kvm_vcpu_do_singlestep(vcpu);
7297         return r;
7298 }
7299 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7300
7301 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7302 {
7303         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7304             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7305                 struct kvm_run *kvm_run = vcpu->run;
7306                 unsigned long eip = kvm_get_linear_rip(vcpu);
7307                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7308                                            vcpu->arch.guest_debug_dr7,
7309                                            vcpu->arch.eff_db);
7310
7311                 if (dr6 != 0) {
7312                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7313                         kvm_run->debug.arch.pc = eip;
7314                         kvm_run->debug.arch.exception = DB_VECTOR;
7315                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7316                         *r = 0;
7317                         return true;
7318                 }
7319         }
7320
7321         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7322             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7323                 unsigned long eip = kvm_get_linear_rip(vcpu);
7324                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7325                                            vcpu->arch.dr7,
7326                                            vcpu->arch.db);
7327
7328                 if (dr6 != 0) {
7329                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7330                         *r = 1;
7331                         return true;
7332                 }
7333         }
7334
7335         return false;
7336 }
7337
7338 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7339 {
7340         switch (ctxt->opcode_len) {
7341         case 1:
7342                 switch (ctxt->b) {
7343                 case 0xe4:      /* IN */
7344                 case 0xe5:
7345                 case 0xec:
7346                 case 0xed:
7347                 case 0xe6:      /* OUT */
7348                 case 0xe7:
7349                 case 0xee:
7350                 case 0xef:
7351                 case 0x6c:      /* INS */
7352                 case 0x6d:
7353                 case 0x6e:      /* OUTS */
7354                 case 0x6f:
7355                         return true;
7356                 }
7357                 break;
7358         case 2:
7359                 switch (ctxt->b) {
7360                 case 0x33:      /* RDPMC */
7361                         return true;
7362                 }
7363                 break;
7364         }
7365
7366         return false;
7367 }
7368
7369 /*
7370  * Decode to be emulated instruction. Return EMULATION_OK if success.
7371  */
7372 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7373                                     void *insn, int insn_len)
7374 {
7375         int r = EMULATION_OK;
7376         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7377
7378         init_emulate_ctxt(vcpu);
7379
7380         /*
7381          * We will reenter on the same instruction since we do not set
7382          * complete_userspace_io. This does not handle watchpoints yet,
7383          * those would be handled in the emulate_ops.
7384          */
7385         if (!(emulation_type & EMULTYPE_SKIP) &&
7386             kvm_vcpu_check_breakpoint(vcpu, &r))
7387                 return r;
7388
7389         ctxt->interruptibility = 0;
7390         ctxt->have_exception = false;
7391         ctxt->exception.vector = -1;
7392         ctxt->perm_ok = false;
7393
7394         ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7395
7396         r = x86_decode_insn(ctxt, insn, insn_len);
7397
7398         trace_kvm_emulate_insn_start(vcpu);
7399         ++vcpu->stat.insn_emulation;
7400
7401         return r;
7402 }
7403 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7404
7405 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7406                             int emulation_type, void *insn, int insn_len)
7407 {
7408         int r;
7409         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7410         bool writeback = true;
7411         bool write_fault_to_spt;
7412
7413         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7414                 return 1;
7415
7416         vcpu->arch.l1tf_flush_l1d = true;
7417
7418         /*
7419          * Clear write_fault_to_shadow_pgtable here to ensure it is
7420          * never reused.
7421          */
7422         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7423         vcpu->arch.write_fault_to_shadow_pgtable = false;
7424
7425         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7426                 kvm_clear_exception_queue(vcpu);
7427
7428                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7429                                                     insn, insn_len);
7430                 if (r != EMULATION_OK)  {
7431                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7432                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7433                                 kvm_queue_exception(vcpu, UD_VECTOR);
7434                                 return 1;
7435                         }
7436                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7437                                                   write_fault_to_spt,
7438                                                   emulation_type))
7439                                 return 1;
7440                         if (ctxt->have_exception) {
7441                                 /*
7442                                  * #UD should result in just EMULATION_FAILED, and trap-like
7443                                  * exception should not be encountered during decode.
7444                                  */
7445                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7446                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7447                                 inject_emulated_exception(vcpu);
7448                                 return 1;
7449                         }
7450                         return handle_emulation_failure(vcpu, emulation_type);
7451                 }
7452         }
7453
7454         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7455             !is_vmware_backdoor_opcode(ctxt)) {
7456                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7457                 return 1;
7458         }
7459
7460         /*
7461          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7462          * for kvm_skip_emulated_instruction().  The caller is responsible for
7463          * updating interruptibility state and injecting single-step #DBs.
7464          */
7465         if (emulation_type & EMULTYPE_SKIP) {
7466                 kvm_rip_write(vcpu, ctxt->_eip);
7467                 if (ctxt->eflags & X86_EFLAGS_RF)
7468                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7469                 return 1;
7470         }
7471
7472         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7473                 return 1;
7474
7475         /* this is needed for vmware backdoor interface to work since it
7476            changes registers values  during IO operation */
7477         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7478                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7479                 emulator_invalidate_register_cache(ctxt);
7480         }
7481
7482 restart:
7483         if (emulation_type & EMULTYPE_PF) {
7484                 /* Save the faulting GPA (cr2) in the address field */
7485                 ctxt->exception.address = cr2_or_gpa;
7486
7487                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7488                 if (vcpu->arch.mmu->direct_map) {
7489                         ctxt->gpa_available = true;
7490                         ctxt->gpa_val = cr2_or_gpa;
7491                 }
7492         } else {
7493                 /* Sanitize the address out of an abundance of paranoia. */
7494                 ctxt->exception.address = 0;
7495         }
7496
7497         r = x86_emulate_insn(ctxt);
7498
7499         if (r == EMULATION_INTERCEPTED)
7500                 return 1;
7501
7502         if (r == EMULATION_FAILED) {
7503                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7504                                         emulation_type))
7505                         return 1;
7506
7507                 return handle_emulation_failure(vcpu, emulation_type);
7508         }
7509
7510         if (ctxt->have_exception) {
7511                 r = 1;
7512                 if (inject_emulated_exception(vcpu))
7513                         return r;
7514         } else if (vcpu->arch.pio.count) {
7515                 if (!vcpu->arch.pio.in) {
7516                         /* FIXME: return into emulator if single-stepping.  */
7517                         vcpu->arch.pio.count = 0;
7518                 } else {
7519                         writeback = false;
7520                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7521                 }
7522                 r = 0;
7523         } else if (vcpu->mmio_needed) {
7524                 ++vcpu->stat.mmio_exits;
7525
7526                 if (!vcpu->mmio_is_write)
7527                         writeback = false;
7528                 r = 0;
7529                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7530         } else if (r == EMULATION_RESTART)
7531                 goto restart;
7532         else
7533                 r = 1;
7534
7535         if (writeback) {
7536                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7537                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7538                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7539                 if (!ctxt->have_exception ||
7540                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7541                         kvm_rip_write(vcpu, ctxt->eip);
7542                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7543                                 r = kvm_vcpu_do_singlestep(vcpu);
7544                         if (kvm_x86_ops.update_emulated_instruction)
7545                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7546                         __kvm_set_rflags(vcpu, ctxt->eflags);
7547                 }
7548
7549                 /*
7550                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7551                  * do nothing, and it will be requested again as soon as
7552                  * the shadow expires.  But we still need to check here,
7553                  * because POPF has no interrupt shadow.
7554                  */
7555                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7556                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7557         } else
7558                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7559
7560         return r;
7561 }
7562
7563 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7564 {
7565         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7568
7569 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7570                                         void *insn, int insn_len)
7571 {
7572         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7573 }
7574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7575
7576 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7577 {
7578         vcpu->arch.pio.count = 0;
7579         return 1;
7580 }
7581
7582 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7583 {
7584         vcpu->arch.pio.count = 0;
7585
7586         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7587                 return 1;
7588
7589         return kvm_skip_emulated_instruction(vcpu);
7590 }
7591
7592 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7593                             unsigned short port)
7594 {
7595         unsigned long val = kvm_rax_read(vcpu);
7596         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7597
7598         if (ret)
7599                 return ret;
7600
7601         /*
7602          * Workaround userspace that relies on old KVM behavior of %rip being
7603          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7604          */
7605         if (port == 0x7e &&
7606             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7607                 vcpu->arch.complete_userspace_io =
7608                         complete_fast_pio_out_port_0x7e;
7609                 kvm_skip_emulated_instruction(vcpu);
7610         } else {
7611                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7612                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7613         }
7614         return 0;
7615 }
7616
7617 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7618 {
7619         unsigned long val;
7620
7621         /* We should only ever be called with arch.pio.count equal to 1 */
7622         BUG_ON(vcpu->arch.pio.count != 1);
7623
7624         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7625                 vcpu->arch.pio.count = 0;
7626                 return 1;
7627         }
7628
7629         /* For size less than 4 we merge, else we zero extend */
7630         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7631
7632         /*
7633          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7634          * the copy and tracing
7635          */
7636         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7637         kvm_rax_write(vcpu, val);
7638
7639         return kvm_skip_emulated_instruction(vcpu);
7640 }
7641
7642 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7643                            unsigned short port)
7644 {
7645         unsigned long val;
7646         int ret;
7647
7648         /* For size less than 4 we merge, else we zero extend */
7649         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7650
7651         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7652         if (ret) {
7653                 kvm_rax_write(vcpu, val);
7654                 return ret;
7655         }
7656
7657         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7658         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7659
7660         return 0;
7661 }
7662
7663 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7664 {
7665         int ret;
7666
7667         if (in)
7668                 ret = kvm_fast_pio_in(vcpu, size, port);
7669         else
7670                 ret = kvm_fast_pio_out(vcpu, size, port);
7671         return ret && kvm_skip_emulated_instruction(vcpu);
7672 }
7673 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7674
7675 static int kvmclock_cpu_down_prep(unsigned int cpu)
7676 {
7677         __this_cpu_write(cpu_tsc_khz, 0);
7678         return 0;
7679 }
7680
7681 static void tsc_khz_changed(void *data)
7682 {
7683         struct cpufreq_freqs *freq = data;
7684         unsigned long khz = 0;
7685
7686         if (data)
7687                 khz = freq->new;
7688         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7689                 khz = cpufreq_quick_get(raw_smp_processor_id());
7690         if (!khz)
7691                 khz = tsc_khz;
7692         __this_cpu_write(cpu_tsc_khz, khz);
7693 }
7694
7695 #ifdef CONFIG_X86_64
7696 static void kvm_hyperv_tsc_notifier(void)
7697 {
7698         struct kvm *kvm;
7699         struct kvm_vcpu *vcpu;
7700         int cpu;
7701
7702         mutex_lock(&kvm_lock);
7703         list_for_each_entry(kvm, &vm_list, vm_list)
7704                 kvm_make_mclock_inprogress_request(kvm);
7705
7706         hyperv_stop_tsc_emulation();
7707
7708         /* TSC frequency always matches when on Hyper-V */
7709         for_each_present_cpu(cpu)
7710                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7711         kvm_max_guest_tsc_khz = tsc_khz;
7712
7713         list_for_each_entry(kvm, &vm_list, vm_list) {
7714                 struct kvm_arch *ka = &kvm->arch;
7715
7716                 spin_lock(&ka->pvclock_gtod_sync_lock);
7717
7718                 pvclock_update_vm_gtod_copy(kvm);
7719
7720                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7721                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7722
7723                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7724                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7725
7726                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7727         }
7728         mutex_unlock(&kvm_lock);
7729 }
7730 #endif
7731
7732 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7733 {
7734         struct kvm *kvm;
7735         struct kvm_vcpu *vcpu;
7736         int i, send_ipi = 0;
7737
7738         /*
7739          * We allow guests to temporarily run on slowing clocks,
7740          * provided we notify them after, or to run on accelerating
7741          * clocks, provided we notify them before.  Thus time never
7742          * goes backwards.
7743          *
7744          * However, we have a problem.  We can't atomically update
7745          * the frequency of a given CPU from this function; it is
7746          * merely a notifier, which can be called from any CPU.
7747          * Changing the TSC frequency at arbitrary points in time
7748          * requires a recomputation of local variables related to
7749          * the TSC for each VCPU.  We must flag these local variables
7750          * to be updated and be sure the update takes place with the
7751          * new frequency before any guests proceed.
7752          *
7753          * Unfortunately, the combination of hotplug CPU and frequency
7754          * change creates an intractable locking scenario; the order
7755          * of when these callouts happen is undefined with respect to
7756          * CPU hotplug, and they can race with each other.  As such,
7757          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7758          * undefined; you can actually have a CPU frequency change take
7759          * place in between the computation of X and the setting of the
7760          * variable.  To protect against this problem, all updates of
7761          * the per_cpu tsc_khz variable are done in an interrupt
7762          * protected IPI, and all callers wishing to update the value
7763          * must wait for a synchronous IPI to complete (which is trivial
7764          * if the caller is on the CPU already).  This establishes the
7765          * necessary total order on variable updates.
7766          *
7767          * Note that because a guest time update may take place
7768          * anytime after the setting of the VCPU's request bit, the
7769          * correct TSC value must be set before the request.  However,
7770          * to ensure the update actually makes it to any guest which
7771          * starts running in hardware virtualization between the set
7772          * and the acquisition of the spinlock, we must also ping the
7773          * CPU after setting the request bit.
7774          *
7775          */
7776
7777         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7778
7779         mutex_lock(&kvm_lock);
7780         list_for_each_entry(kvm, &vm_list, vm_list) {
7781                 kvm_for_each_vcpu(i, vcpu, kvm) {
7782                         if (vcpu->cpu != cpu)
7783                                 continue;
7784                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7785                         if (vcpu->cpu != raw_smp_processor_id())
7786                                 send_ipi = 1;
7787                 }
7788         }
7789         mutex_unlock(&kvm_lock);
7790
7791         if (freq->old < freq->new && send_ipi) {
7792                 /*
7793                  * We upscale the frequency.  Must make the guest
7794                  * doesn't see old kvmclock values while running with
7795                  * the new frequency, otherwise we risk the guest sees
7796                  * time go backwards.
7797                  *
7798                  * In case we update the frequency for another cpu
7799                  * (which might be in guest context) send an interrupt
7800                  * to kick the cpu out of guest context.  Next time
7801                  * guest context is entered kvmclock will be updated,
7802                  * so the guest will not see stale values.
7803                  */
7804                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7805         }
7806 }
7807
7808 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7809                                      void *data)
7810 {
7811         struct cpufreq_freqs *freq = data;
7812         int cpu;
7813
7814         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7815                 return 0;
7816         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7817                 return 0;
7818
7819         for_each_cpu(cpu, freq->policy->cpus)
7820                 __kvmclock_cpufreq_notifier(freq, cpu);
7821
7822         return 0;
7823 }
7824
7825 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7826         .notifier_call  = kvmclock_cpufreq_notifier
7827 };
7828
7829 static int kvmclock_cpu_online(unsigned int cpu)
7830 {
7831         tsc_khz_changed(NULL);
7832         return 0;
7833 }
7834
7835 static void kvm_timer_init(void)
7836 {
7837         max_tsc_khz = tsc_khz;
7838
7839         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7840 #ifdef CONFIG_CPU_FREQ
7841                 struct cpufreq_policy *policy;
7842                 int cpu;
7843
7844                 cpu = get_cpu();
7845                 policy = cpufreq_cpu_get(cpu);
7846                 if (policy) {
7847                         if (policy->cpuinfo.max_freq)
7848                                 max_tsc_khz = policy->cpuinfo.max_freq;
7849                         cpufreq_cpu_put(policy);
7850                 }
7851                 put_cpu();
7852 #endif
7853                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7854                                           CPUFREQ_TRANSITION_NOTIFIER);
7855         }
7856
7857         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7858                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7859 }
7860
7861 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7862 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7863
7864 int kvm_is_in_guest(void)
7865 {
7866         return __this_cpu_read(current_vcpu) != NULL;
7867 }
7868
7869 static int kvm_is_user_mode(void)
7870 {
7871         int user_mode = 3;
7872
7873         if (__this_cpu_read(current_vcpu))
7874                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7875
7876         return user_mode != 0;
7877 }
7878
7879 static unsigned long kvm_get_guest_ip(void)
7880 {
7881         unsigned long ip = 0;
7882
7883         if (__this_cpu_read(current_vcpu))
7884                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7885
7886         return ip;
7887 }
7888
7889 static void kvm_handle_intel_pt_intr(void)
7890 {
7891         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7892
7893         kvm_make_request(KVM_REQ_PMI, vcpu);
7894         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7895                         (unsigned long *)&vcpu->arch.pmu.global_status);
7896 }
7897
7898 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7899         .is_in_guest            = kvm_is_in_guest,
7900         .is_user_mode           = kvm_is_user_mode,
7901         .get_guest_ip           = kvm_get_guest_ip,
7902         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7903 };
7904
7905 #ifdef CONFIG_X86_64
7906 static void pvclock_gtod_update_fn(struct work_struct *work)
7907 {
7908         struct kvm *kvm;
7909
7910         struct kvm_vcpu *vcpu;
7911         int i;
7912
7913         mutex_lock(&kvm_lock);
7914         list_for_each_entry(kvm, &vm_list, vm_list)
7915                 kvm_for_each_vcpu(i, vcpu, kvm)
7916                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7917         atomic_set(&kvm_guest_has_master_clock, 0);
7918         mutex_unlock(&kvm_lock);
7919 }
7920
7921 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7922
7923 /*
7924  * Notification about pvclock gtod data update.
7925  */
7926 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7927                                void *priv)
7928 {
7929         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7930         struct timekeeper *tk = priv;
7931
7932         update_pvclock_gtod(tk);
7933
7934         /* disable master clock if host does not trust, or does not
7935          * use, TSC based clocksource.
7936          */
7937         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7938             atomic_read(&kvm_guest_has_master_clock) != 0)
7939                 queue_work(system_long_wq, &pvclock_gtod_work);
7940
7941         return 0;
7942 }
7943
7944 static struct notifier_block pvclock_gtod_notifier = {
7945         .notifier_call = pvclock_gtod_notify,
7946 };
7947 #endif
7948
7949 int kvm_arch_init(void *opaque)
7950 {
7951         struct kvm_x86_init_ops *ops = opaque;
7952         int r;
7953
7954         if (kvm_x86_ops.hardware_enable) {
7955                 printk(KERN_ERR "kvm: already loaded the other module\n");
7956                 r = -EEXIST;
7957                 goto out;
7958         }
7959
7960         if (!ops->cpu_has_kvm_support()) {
7961                 pr_err_ratelimited("kvm: no hardware support\n");
7962                 r = -EOPNOTSUPP;
7963                 goto out;
7964         }
7965         if (ops->disabled_by_bios()) {
7966                 pr_err_ratelimited("kvm: disabled by bios\n");
7967                 r = -EOPNOTSUPP;
7968                 goto out;
7969         }
7970
7971         /*
7972          * KVM explicitly assumes that the guest has an FPU and
7973          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7974          * vCPU's FPU state as a fxregs_state struct.
7975          */
7976         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7977                 printk(KERN_ERR "kvm: inadequate fpu\n");
7978                 r = -EOPNOTSUPP;
7979                 goto out;
7980         }
7981
7982         r = -ENOMEM;
7983         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7984                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7985                                           NULL);
7986         if (!x86_fpu_cache) {
7987                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7988                 goto out;
7989         }
7990
7991         x86_emulator_cache = kvm_alloc_emulator_cache();
7992         if (!x86_emulator_cache) {
7993                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7994                 goto out_free_x86_fpu_cache;
7995         }
7996
7997         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7998         if (!user_return_msrs) {
7999                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8000                 goto out_free_x86_emulator_cache;
8001         }
8002
8003         r = kvm_mmu_module_init();
8004         if (r)
8005                 goto out_free_percpu;
8006
8007         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8008                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
8009                         PT_PRESENT_MASK, 0, sme_me_mask);
8010         kvm_timer_init();
8011
8012         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8013
8014         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8015                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8016                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8017         }
8018
8019         if (pi_inject_timer == -1)
8020                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8021 #ifdef CONFIG_X86_64
8022         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8023
8024         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8025                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8026 #endif
8027
8028         return 0;
8029
8030 out_free_percpu:
8031         free_percpu(user_return_msrs);
8032 out_free_x86_emulator_cache:
8033         kmem_cache_destroy(x86_emulator_cache);
8034 out_free_x86_fpu_cache:
8035         kmem_cache_destroy(x86_fpu_cache);
8036 out:
8037         return r;
8038 }
8039
8040 void kvm_arch_exit(void)
8041 {
8042 #ifdef CONFIG_X86_64
8043         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8044                 clear_hv_tscchange_cb();
8045 #endif
8046         kvm_lapic_exit();
8047         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8048
8049         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8050                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8051                                             CPUFREQ_TRANSITION_NOTIFIER);
8052         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8053 #ifdef CONFIG_X86_64
8054         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8055 #endif
8056         kvm_x86_ops.hardware_enable = NULL;
8057         kvm_mmu_module_exit();
8058         free_percpu(user_return_msrs);
8059         kmem_cache_destroy(x86_fpu_cache);
8060 #ifdef CONFIG_KVM_XEN
8061         static_key_deferred_flush(&kvm_xen_enabled);
8062         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8063 #endif
8064 }
8065
8066 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8067 {
8068         ++vcpu->stat.halt_exits;
8069         if (lapic_in_kernel(vcpu)) {
8070                 vcpu->arch.mp_state = state;
8071                 return 1;
8072         } else {
8073                 vcpu->run->exit_reason = reason;
8074                 return 0;
8075         }
8076 }
8077
8078 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8079 {
8080         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8083
8084 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8085 {
8086         int ret = kvm_skip_emulated_instruction(vcpu);
8087         /*
8088          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8089          * KVM_EXIT_DEBUG here.
8090          */
8091         return kvm_vcpu_halt(vcpu) && ret;
8092 }
8093 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8094
8095 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8096 {
8097         int ret = kvm_skip_emulated_instruction(vcpu);
8098
8099         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8102
8103 #ifdef CONFIG_X86_64
8104 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8105                                 unsigned long clock_type)
8106 {
8107         struct kvm_clock_pairing clock_pairing;
8108         struct timespec64 ts;
8109         u64 cycle;
8110         int ret;
8111
8112         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8113                 return -KVM_EOPNOTSUPP;
8114
8115         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8116                 return -KVM_EOPNOTSUPP;
8117
8118         clock_pairing.sec = ts.tv_sec;
8119         clock_pairing.nsec = ts.tv_nsec;
8120         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8121         clock_pairing.flags = 0;
8122         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8123
8124         ret = 0;
8125         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8126                             sizeof(struct kvm_clock_pairing)))
8127                 ret = -KVM_EFAULT;
8128
8129         return ret;
8130 }
8131 #endif
8132
8133 /*
8134  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8135  *
8136  * @apicid - apicid of vcpu to be kicked.
8137  */
8138 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8139 {
8140         struct kvm_lapic_irq lapic_irq;
8141
8142         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8143         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8144         lapic_irq.level = 0;
8145         lapic_irq.dest_id = apicid;
8146         lapic_irq.msi_redir_hint = false;
8147
8148         lapic_irq.delivery_mode = APIC_DM_REMRD;
8149         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8150 }
8151
8152 bool kvm_apicv_activated(struct kvm *kvm)
8153 {
8154         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8155 }
8156 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8157
8158 void kvm_apicv_init(struct kvm *kvm, bool enable)
8159 {
8160         if (enable)
8161                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8162                           &kvm->arch.apicv_inhibit_reasons);
8163         else
8164                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8165                         &kvm->arch.apicv_inhibit_reasons);
8166 }
8167 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8168
8169 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8170 {
8171         struct kvm_vcpu *target = NULL;
8172         struct kvm_apic_map *map;
8173
8174         rcu_read_lock();
8175         map = rcu_dereference(kvm->arch.apic_map);
8176
8177         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8178                 target = map->phys_map[dest_id]->vcpu;
8179
8180         rcu_read_unlock();
8181
8182         if (target && READ_ONCE(target->ready))
8183                 kvm_vcpu_yield_to(target);
8184 }
8185
8186 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8187 {
8188         unsigned long nr, a0, a1, a2, a3, ret;
8189         int op_64_bit;
8190
8191         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8192                 return kvm_xen_hypercall(vcpu);
8193
8194         if (kvm_hv_hypercall_enabled(vcpu))
8195                 return kvm_hv_hypercall(vcpu);
8196
8197         nr = kvm_rax_read(vcpu);
8198         a0 = kvm_rbx_read(vcpu);
8199         a1 = kvm_rcx_read(vcpu);
8200         a2 = kvm_rdx_read(vcpu);
8201         a3 = kvm_rsi_read(vcpu);
8202
8203         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8204
8205         op_64_bit = is_64_bit_mode(vcpu);
8206         if (!op_64_bit) {
8207                 nr &= 0xFFFFFFFF;
8208                 a0 &= 0xFFFFFFFF;
8209                 a1 &= 0xFFFFFFFF;
8210                 a2 &= 0xFFFFFFFF;
8211                 a3 &= 0xFFFFFFFF;
8212         }
8213
8214         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8215                 ret = -KVM_EPERM;
8216                 goto out;
8217         }
8218
8219         ret = -KVM_ENOSYS;
8220
8221         switch (nr) {
8222         case KVM_HC_VAPIC_POLL_IRQ:
8223                 ret = 0;
8224                 break;
8225         case KVM_HC_KICK_CPU:
8226                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8227                         break;
8228
8229                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8230                 kvm_sched_yield(vcpu->kvm, a1);
8231                 ret = 0;
8232                 break;
8233 #ifdef CONFIG_X86_64
8234         case KVM_HC_CLOCK_PAIRING:
8235                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8236                 break;
8237 #endif
8238         case KVM_HC_SEND_IPI:
8239                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8240                         break;
8241
8242                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8243                 break;
8244         case KVM_HC_SCHED_YIELD:
8245                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8246                         break;
8247
8248                 kvm_sched_yield(vcpu->kvm, a0);
8249                 ret = 0;
8250                 break;
8251         default:
8252                 ret = -KVM_ENOSYS;
8253                 break;
8254         }
8255 out:
8256         if (!op_64_bit)
8257                 ret = (u32)ret;
8258         kvm_rax_write(vcpu, ret);
8259
8260         ++vcpu->stat.hypercalls;
8261         return kvm_skip_emulated_instruction(vcpu);
8262 }
8263 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8264
8265 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8266 {
8267         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8268         char instruction[3];
8269         unsigned long rip = kvm_rip_read(vcpu);
8270
8271         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8272
8273         return emulator_write_emulated(ctxt, rip, instruction, 3,
8274                 &ctxt->exception);
8275 }
8276
8277 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8278 {
8279         return vcpu->run->request_interrupt_window &&
8280                 likely(!pic_in_kernel(vcpu->kvm));
8281 }
8282
8283 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8284 {
8285         struct kvm_run *kvm_run = vcpu->run;
8286
8287         /*
8288          * if_flag is obsolete and useless, so do not bother
8289          * setting it for SEV-ES guests.  Userspace can just
8290          * use kvm_run->ready_for_interrupt_injection.
8291          */
8292         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8293                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8294
8295         kvm_run->cr8 = kvm_get_cr8(vcpu);
8296         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8297         kvm_run->ready_for_interrupt_injection =
8298                 pic_in_kernel(vcpu->kvm) ||
8299                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8300
8301         if (is_smm(vcpu))
8302                 kvm_run->flags |= KVM_RUN_X86_SMM;
8303 }
8304
8305 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8306 {
8307         int max_irr, tpr;
8308
8309         if (!kvm_x86_ops.update_cr8_intercept)
8310                 return;
8311
8312         if (!lapic_in_kernel(vcpu))
8313                 return;
8314
8315         if (vcpu->arch.apicv_active)
8316                 return;
8317
8318         if (!vcpu->arch.apic->vapic_addr)
8319                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8320         else
8321                 max_irr = -1;
8322
8323         if (max_irr != -1)
8324                 max_irr >>= 4;
8325
8326         tpr = kvm_lapic_get_cr8(vcpu);
8327
8328         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8329 }
8330
8331 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8332 {
8333         int r;
8334         bool can_inject = true;
8335
8336         /* try to reinject previous events if any */
8337
8338         if (vcpu->arch.exception.injected) {
8339                 static_call(kvm_x86_queue_exception)(vcpu);
8340                 can_inject = false;
8341         }
8342         /*
8343          * Do not inject an NMI or interrupt if there is a pending
8344          * exception.  Exceptions and interrupts are recognized at
8345          * instruction boundaries, i.e. the start of an instruction.
8346          * Trap-like exceptions, e.g. #DB, have higher priority than
8347          * NMIs and interrupts, i.e. traps are recognized before an
8348          * NMI/interrupt that's pending on the same instruction.
8349          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8350          * priority, but are only generated (pended) during instruction
8351          * execution, i.e. a pending fault-like exception means the
8352          * fault occurred on the *previous* instruction and must be
8353          * serviced prior to recognizing any new events in order to
8354          * fully complete the previous instruction.
8355          */
8356         else if (!vcpu->arch.exception.pending) {
8357                 if (vcpu->arch.nmi_injected) {
8358                         static_call(kvm_x86_set_nmi)(vcpu);
8359                         can_inject = false;
8360                 } else if (vcpu->arch.interrupt.injected) {
8361                         static_call(kvm_x86_set_irq)(vcpu);
8362                         can_inject = false;
8363                 }
8364         }
8365
8366         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8367                      vcpu->arch.exception.pending);
8368
8369         /*
8370          * Call check_nested_events() even if we reinjected a previous event
8371          * in order for caller to determine if it should require immediate-exit
8372          * from L2 to L1 due to pending L1 events which require exit
8373          * from L2 to L1.
8374          */
8375         if (is_guest_mode(vcpu)) {
8376                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8377                 if (r < 0)
8378                         goto busy;
8379         }
8380
8381         /* try to inject new event if pending */
8382         if (vcpu->arch.exception.pending) {
8383                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8384                                         vcpu->arch.exception.has_error_code,
8385                                         vcpu->arch.exception.error_code);
8386
8387                 vcpu->arch.exception.pending = false;
8388                 vcpu->arch.exception.injected = true;
8389
8390                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8391                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8392                                              X86_EFLAGS_RF);
8393
8394                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8395                         kvm_deliver_exception_payload(vcpu);
8396                         if (vcpu->arch.dr7 & DR7_GD) {
8397                                 vcpu->arch.dr7 &= ~DR7_GD;
8398                                 kvm_update_dr7(vcpu);
8399                         }
8400                 }
8401
8402                 static_call(kvm_x86_queue_exception)(vcpu);
8403                 can_inject = false;
8404         }
8405
8406         /*
8407          * Finally, inject interrupt events.  If an event cannot be injected
8408          * due to architectural conditions (e.g. IF=0) a window-open exit
8409          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8410          * and can architecturally be injected, but we cannot do it right now:
8411          * an interrupt could have arrived just now and we have to inject it
8412          * as a vmexit, or there could already an event in the queue, which is
8413          * indicated by can_inject.  In that case we request an immediate exit
8414          * in order to make progress and get back here for another iteration.
8415          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8416          */
8417         if (vcpu->arch.smi_pending) {
8418                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8419                 if (r < 0)
8420                         goto busy;
8421                 if (r) {
8422                         vcpu->arch.smi_pending = false;
8423                         ++vcpu->arch.smi_count;
8424                         enter_smm(vcpu);
8425                         can_inject = false;
8426                 } else
8427                         static_call(kvm_x86_enable_smi_window)(vcpu);
8428         }
8429
8430         if (vcpu->arch.nmi_pending) {
8431                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8432                 if (r < 0)
8433                         goto busy;
8434                 if (r) {
8435                         --vcpu->arch.nmi_pending;
8436                         vcpu->arch.nmi_injected = true;
8437                         static_call(kvm_x86_set_nmi)(vcpu);
8438                         can_inject = false;
8439                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8440                 }
8441                 if (vcpu->arch.nmi_pending)
8442                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8443         }
8444
8445         if (kvm_cpu_has_injectable_intr(vcpu)) {
8446                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8447                 if (r < 0)
8448                         goto busy;
8449                 if (r) {
8450                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8451                         static_call(kvm_x86_set_irq)(vcpu);
8452                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8453                 }
8454                 if (kvm_cpu_has_injectable_intr(vcpu))
8455                         static_call(kvm_x86_enable_irq_window)(vcpu);
8456         }
8457
8458         if (is_guest_mode(vcpu) &&
8459             kvm_x86_ops.nested_ops->hv_timer_pending &&
8460             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8461                 *req_immediate_exit = true;
8462
8463         WARN_ON(vcpu->arch.exception.pending);
8464         return;
8465
8466 busy:
8467         *req_immediate_exit = true;
8468         return;
8469 }
8470
8471 static void process_nmi(struct kvm_vcpu *vcpu)
8472 {
8473         unsigned limit = 2;
8474
8475         /*
8476          * x86 is limited to one NMI running, and one NMI pending after it.
8477          * If an NMI is already in progress, limit further NMIs to just one.
8478          * Otherwise, allow two (and we'll inject the first one immediately).
8479          */
8480         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8481                 limit = 1;
8482
8483         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8484         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8485         kvm_make_request(KVM_REQ_EVENT, vcpu);
8486 }
8487
8488 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8489 {
8490         u32 flags = 0;
8491         flags |= seg->g       << 23;
8492         flags |= seg->db      << 22;
8493         flags |= seg->l       << 21;
8494         flags |= seg->avl     << 20;
8495         flags |= seg->present << 15;
8496         flags |= seg->dpl     << 13;
8497         flags |= seg->s       << 12;
8498         flags |= seg->type    << 8;
8499         return flags;
8500 }
8501
8502 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8503 {
8504         struct kvm_segment seg;
8505         int offset;
8506
8507         kvm_get_segment(vcpu, &seg, n);
8508         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8509
8510         if (n < 3)
8511                 offset = 0x7f84 + n * 12;
8512         else
8513                 offset = 0x7f2c + (n - 3) * 12;
8514
8515         put_smstate(u32, buf, offset + 8, seg.base);
8516         put_smstate(u32, buf, offset + 4, seg.limit);
8517         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8518 }
8519
8520 #ifdef CONFIG_X86_64
8521 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8522 {
8523         struct kvm_segment seg;
8524         int offset;
8525         u16 flags;
8526
8527         kvm_get_segment(vcpu, &seg, n);
8528         offset = 0x7e00 + n * 16;
8529
8530         flags = enter_smm_get_segment_flags(&seg) >> 8;
8531         put_smstate(u16, buf, offset, seg.selector);
8532         put_smstate(u16, buf, offset + 2, flags);
8533         put_smstate(u32, buf, offset + 4, seg.limit);
8534         put_smstate(u64, buf, offset + 8, seg.base);
8535 }
8536 #endif
8537
8538 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8539 {
8540         struct desc_ptr dt;
8541         struct kvm_segment seg;
8542         unsigned long val;
8543         int i;
8544
8545         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8546         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8547         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8548         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8549
8550         for (i = 0; i < 8; i++)
8551                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8552
8553         kvm_get_dr(vcpu, 6, &val);
8554         put_smstate(u32, buf, 0x7fcc, (u32)val);
8555         kvm_get_dr(vcpu, 7, &val);
8556         put_smstate(u32, buf, 0x7fc8, (u32)val);
8557
8558         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8559         put_smstate(u32, buf, 0x7fc4, seg.selector);
8560         put_smstate(u32, buf, 0x7f64, seg.base);
8561         put_smstate(u32, buf, 0x7f60, seg.limit);
8562         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8563
8564         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8565         put_smstate(u32, buf, 0x7fc0, seg.selector);
8566         put_smstate(u32, buf, 0x7f80, seg.base);
8567         put_smstate(u32, buf, 0x7f7c, seg.limit);
8568         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8569
8570         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8571         put_smstate(u32, buf, 0x7f74, dt.address);
8572         put_smstate(u32, buf, 0x7f70, dt.size);
8573
8574         static_call(kvm_x86_get_idt)(vcpu, &dt);
8575         put_smstate(u32, buf, 0x7f58, dt.address);
8576         put_smstate(u32, buf, 0x7f54, dt.size);
8577
8578         for (i = 0; i < 6; i++)
8579                 enter_smm_save_seg_32(vcpu, buf, i);
8580
8581         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8582
8583         /* revision id */
8584         put_smstate(u32, buf, 0x7efc, 0x00020000);
8585         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8586 }
8587
8588 #ifdef CONFIG_X86_64
8589 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8590 {
8591         struct desc_ptr dt;
8592         struct kvm_segment seg;
8593         unsigned long val;
8594         int i;
8595
8596         for (i = 0; i < 16; i++)
8597                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8598
8599         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8600         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8601
8602         kvm_get_dr(vcpu, 6, &val);
8603         put_smstate(u64, buf, 0x7f68, val);
8604         kvm_get_dr(vcpu, 7, &val);
8605         put_smstate(u64, buf, 0x7f60, val);
8606
8607         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8608         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8609         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8610
8611         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8612
8613         /* revision id */
8614         put_smstate(u32, buf, 0x7efc, 0x00020064);
8615
8616         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8617
8618         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8619         put_smstate(u16, buf, 0x7e90, seg.selector);
8620         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8621         put_smstate(u32, buf, 0x7e94, seg.limit);
8622         put_smstate(u64, buf, 0x7e98, seg.base);
8623
8624         static_call(kvm_x86_get_idt)(vcpu, &dt);
8625         put_smstate(u32, buf, 0x7e84, dt.size);
8626         put_smstate(u64, buf, 0x7e88, dt.address);
8627
8628         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8629         put_smstate(u16, buf, 0x7e70, seg.selector);
8630         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8631         put_smstate(u32, buf, 0x7e74, seg.limit);
8632         put_smstate(u64, buf, 0x7e78, seg.base);
8633
8634         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8635         put_smstate(u32, buf, 0x7e64, dt.size);
8636         put_smstate(u64, buf, 0x7e68, dt.address);
8637
8638         for (i = 0; i < 6; i++)
8639                 enter_smm_save_seg_64(vcpu, buf, i);
8640 }
8641 #endif
8642
8643 static void enter_smm(struct kvm_vcpu *vcpu)
8644 {
8645         struct kvm_segment cs, ds;
8646         struct desc_ptr dt;
8647         char buf[512];
8648         u32 cr0;
8649
8650         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8651         memset(buf, 0, 512);
8652 #ifdef CONFIG_X86_64
8653         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8654                 enter_smm_save_state_64(vcpu, buf);
8655         else
8656 #endif
8657                 enter_smm_save_state_32(vcpu, buf);
8658
8659         /*
8660          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8661          * vCPU state (e.g. leave guest mode) after we've saved the state into
8662          * the SMM state-save area.
8663          */
8664         static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8665
8666         vcpu->arch.hflags |= HF_SMM_MASK;
8667         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8668
8669         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8670                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8671         else
8672                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8673
8674         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8675         kvm_rip_write(vcpu, 0x8000);
8676
8677         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8678         static_call(kvm_x86_set_cr0)(vcpu, cr0);
8679         vcpu->arch.cr0 = cr0;
8680
8681         static_call(kvm_x86_set_cr4)(vcpu, 0);
8682
8683         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8684         dt.address = dt.size = 0;
8685         static_call(kvm_x86_set_idt)(vcpu, &dt);
8686
8687         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8688
8689         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8690         cs.base = vcpu->arch.smbase;
8691
8692         ds.selector = 0;
8693         ds.base = 0;
8694
8695         cs.limit    = ds.limit = 0xffffffff;
8696         cs.type     = ds.type = 0x3;
8697         cs.dpl      = ds.dpl = 0;
8698         cs.db       = ds.db = 0;
8699         cs.s        = ds.s = 1;
8700         cs.l        = ds.l = 0;
8701         cs.g        = ds.g = 1;
8702         cs.avl      = ds.avl = 0;
8703         cs.present  = ds.present = 1;
8704         cs.unusable = ds.unusable = 0;
8705         cs.padding  = ds.padding = 0;
8706
8707         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8708         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8709         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8710         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8711         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8712         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8713
8714 #ifdef CONFIG_X86_64
8715         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8716                 static_call(kvm_x86_set_efer)(vcpu, 0);
8717 #endif
8718
8719         kvm_update_cpuid_runtime(vcpu);
8720         kvm_mmu_reset_context(vcpu);
8721 }
8722
8723 static void process_smi(struct kvm_vcpu *vcpu)
8724 {
8725         vcpu->arch.smi_pending = true;
8726         kvm_make_request(KVM_REQ_EVENT, vcpu);
8727 }
8728
8729 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8730                                        unsigned long *vcpu_bitmap)
8731 {
8732         cpumask_var_t cpus;
8733
8734         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8735
8736         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8737                                     NULL, vcpu_bitmap, cpus);
8738
8739         free_cpumask_var(cpus);
8740 }
8741
8742 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8743 {
8744         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8745 }
8746
8747 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8748 {
8749         if (!lapic_in_kernel(vcpu))
8750                 return;
8751
8752         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8753         kvm_apic_update_apicv(vcpu);
8754         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8755 }
8756 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8757
8758 /*
8759  * NOTE: Do not hold any lock prior to calling this.
8760  *
8761  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8762  * locked, because it calls __x86_set_memory_region() which does
8763  * synchronize_srcu(&kvm->srcu).
8764  */
8765 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8766 {
8767         struct kvm_vcpu *except;
8768         unsigned long old, new, expected;
8769
8770         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8771             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8772                 return;
8773
8774         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8775         do {
8776                 expected = new = old;
8777                 if (activate)
8778                         __clear_bit(bit, &new);
8779                 else
8780                         __set_bit(bit, &new);
8781                 if (new == old)
8782                         break;
8783                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8784         } while (old != expected);
8785
8786         if (!!old == !!new)
8787                 return;
8788
8789         trace_kvm_apicv_update_request(activate, bit);
8790         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8791                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8792
8793         /*
8794          * Sending request to update APICV for all other vcpus,
8795          * while update the calling vcpu immediately instead of
8796          * waiting for another #VMEXIT to handle the request.
8797          */
8798         except = kvm_get_running_vcpu();
8799         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8800                                          except);
8801         if (except)
8802                 kvm_vcpu_update_apicv(except);
8803 }
8804 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8805
8806 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8807 {
8808         if (!kvm_apic_present(vcpu))
8809                 return;
8810
8811         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8812
8813         if (irqchip_split(vcpu->kvm))
8814                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8815         else {
8816                 if (vcpu->arch.apicv_active)
8817                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8818                 if (ioapic_in_kernel(vcpu->kvm))
8819                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8820         }
8821
8822         if (is_guest_mode(vcpu))
8823                 vcpu->arch.load_eoi_exitmap_pending = true;
8824         else
8825                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8826 }
8827
8828 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8829 {
8830         u64 eoi_exit_bitmap[4];
8831
8832         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8833                 return;
8834
8835         if (to_hv_vcpu(vcpu))
8836                 bitmap_or((ulong *)eoi_exit_bitmap,
8837                           vcpu->arch.ioapic_handled_vectors,
8838                           to_hv_synic(vcpu)->vec_bitmap, 256);
8839
8840         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8841 }
8842
8843 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8844                                             unsigned long start, unsigned long end)
8845 {
8846         unsigned long apic_address;
8847
8848         /*
8849          * The physical address of apic access page is stored in the VMCS.
8850          * Update it when it becomes invalid.
8851          */
8852         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8853         if (start <= apic_address && apic_address < end)
8854                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8855 }
8856
8857 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8858 {
8859         if (!lapic_in_kernel(vcpu))
8860                 return;
8861
8862         if (!kvm_x86_ops.set_apic_access_page_addr)
8863                 return;
8864
8865         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8866 }
8867
8868 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8869 {
8870         smp_send_reschedule(vcpu->cpu);
8871 }
8872 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8873
8874 /*
8875  * Returns 1 to let vcpu_run() continue the guest execution loop without
8876  * exiting to the userspace.  Otherwise, the value will be returned to the
8877  * userspace.
8878  */
8879 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8880 {
8881         int r;
8882         bool req_int_win =
8883                 dm_request_for_irq_injection(vcpu) &&
8884                 kvm_cpu_accept_dm_intr(vcpu);
8885         fastpath_t exit_fastpath;
8886
8887         bool req_immediate_exit = false;
8888
8889         /* Forbid vmenter if vcpu dirty ring is soft-full */
8890         if (unlikely(vcpu->kvm->dirty_ring_size &&
8891                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8892                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8893                 trace_kvm_dirty_ring_exit(vcpu);
8894                 r = 0;
8895                 goto out;
8896         }
8897
8898         if (kvm_request_pending(vcpu)) {
8899                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8900                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8901                                 r = 0;
8902                                 goto out;
8903                         }
8904                 }
8905                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8906                         kvm_mmu_unload(vcpu);
8907                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8908                         __kvm_migrate_timers(vcpu);
8909                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8910                         kvm_gen_update_masterclock(vcpu->kvm);
8911                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8912                         kvm_gen_kvmclock_update(vcpu);
8913                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8914                         r = kvm_guest_time_update(vcpu);
8915                         if (unlikely(r))
8916                                 goto out;
8917                 }
8918                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8919                         kvm_mmu_sync_roots(vcpu);
8920                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8921                         kvm_mmu_load_pgd(vcpu);
8922                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8923                         kvm_vcpu_flush_tlb_all(vcpu);
8924
8925                         /* Flushing all ASIDs flushes the current ASID... */
8926                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8927                 }
8928                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8929                         kvm_vcpu_flush_tlb_current(vcpu);
8930                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8931                         kvm_vcpu_flush_tlb_guest(vcpu);
8932
8933                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8934                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8935                         r = 0;
8936                         goto out;
8937                 }
8938                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8939                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8940                         vcpu->mmio_needed = 0;
8941                         r = 0;
8942                         goto out;
8943                 }
8944                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8945                         /* Page is swapped out. Do synthetic halt */
8946                         vcpu->arch.apf.halted = true;
8947                         r = 1;
8948                         goto out;
8949                 }
8950                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8951                         record_steal_time(vcpu);
8952                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8953                         process_smi(vcpu);
8954                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8955                         process_nmi(vcpu);
8956                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8957                         kvm_pmu_handle_event(vcpu);
8958                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8959                         kvm_pmu_deliver_pmi(vcpu);
8960                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8961                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8962                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8963                                      vcpu->arch.ioapic_handled_vectors)) {
8964                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8965                                 vcpu->run->eoi.vector =
8966                                                 vcpu->arch.pending_ioapic_eoi;
8967                                 r = 0;
8968                                 goto out;
8969                         }
8970                 }
8971                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8972                         vcpu_scan_ioapic(vcpu);
8973                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8974                         vcpu_load_eoi_exitmap(vcpu);
8975                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8976                         kvm_vcpu_reload_apic_access_page(vcpu);
8977                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8978                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8979                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8980                         r = 0;
8981                         goto out;
8982                 }
8983                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8984                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8985                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8986                         r = 0;
8987                         goto out;
8988                 }
8989                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8990                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
8991
8992                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8993                         vcpu->run->hyperv = hv_vcpu->exit;
8994                         r = 0;
8995                         goto out;
8996                 }
8997
8998                 /*
8999                  * KVM_REQ_HV_STIMER has to be processed after
9000                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9001                  * depend on the guest clock being up-to-date
9002                  */
9003                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9004                         kvm_hv_process_stimers(vcpu);
9005                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9006                         kvm_vcpu_update_apicv(vcpu);
9007                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9008                         kvm_check_async_pf_completion(vcpu);
9009                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9010                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9011
9012                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9013                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9014         }
9015
9016         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9017             kvm_xen_has_interrupt(vcpu)) {
9018                 ++vcpu->stat.req_event;
9019                 kvm_apic_accept_events(vcpu);
9020                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9021                         r = 1;
9022                         goto out;
9023                 }
9024
9025                 inject_pending_event(vcpu, &req_immediate_exit);
9026                 if (req_int_win)
9027                         static_call(kvm_x86_enable_irq_window)(vcpu);
9028
9029                 if (kvm_lapic_enabled(vcpu)) {
9030                         update_cr8_intercept(vcpu);
9031                         kvm_lapic_sync_to_vapic(vcpu);
9032                 }
9033         }
9034
9035         r = kvm_mmu_reload(vcpu);
9036         if (unlikely(r)) {
9037                 goto cancel_injection;
9038         }
9039
9040         preempt_disable();
9041
9042         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9043
9044         /*
9045          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9046          * IPI are then delayed after guest entry, which ensures that they
9047          * result in virtual interrupt delivery.
9048          */
9049         local_irq_disable();
9050         vcpu->mode = IN_GUEST_MODE;
9051
9052         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9053
9054         /*
9055          * 1) We should set ->mode before checking ->requests.  Please see
9056          * the comment in kvm_vcpu_exiting_guest_mode().
9057          *
9058          * 2) For APICv, we should set ->mode before checking PID.ON. This
9059          * pairs with the memory barrier implicit in pi_test_and_set_on
9060          * (see vmx_deliver_posted_interrupt).
9061          *
9062          * 3) This also orders the write to mode from any reads to the page
9063          * tables done while the VCPU is running.  Please see the comment
9064          * in kvm_flush_remote_tlbs.
9065          */
9066         smp_mb__after_srcu_read_unlock();
9067
9068         /*
9069          * This handles the case where a posted interrupt was
9070          * notified with kvm_vcpu_kick.
9071          */
9072         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9073                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9074
9075         if (kvm_vcpu_exit_request(vcpu)) {
9076                 vcpu->mode = OUTSIDE_GUEST_MODE;
9077                 smp_wmb();
9078                 local_irq_enable();
9079                 preempt_enable();
9080                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9081                 r = 1;
9082                 goto cancel_injection;
9083         }
9084
9085         if (req_immediate_exit) {
9086                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9087                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9088         }
9089
9090         fpregs_assert_state_consistent();
9091         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9092                 switch_fpu_return();
9093
9094         if (unlikely(vcpu->arch.switch_db_regs)) {
9095                 set_debugreg(0, 7);
9096                 set_debugreg(vcpu->arch.eff_db[0], 0);
9097                 set_debugreg(vcpu->arch.eff_db[1], 1);
9098                 set_debugreg(vcpu->arch.eff_db[2], 2);
9099                 set_debugreg(vcpu->arch.eff_db[3], 3);
9100                 set_debugreg(vcpu->arch.dr6, 6);
9101                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9102         }
9103
9104         for (;;) {
9105                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9106                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9107                         break;
9108
9109                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9110                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9111                         break;
9112                 }
9113
9114                 if (vcpu->arch.apicv_active)
9115                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9116         }
9117
9118         /*
9119          * Do this here before restoring debug registers on the host.  And
9120          * since we do this before handling the vmexit, a DR access vmexit
9121          * can (a) read the correct value of the debug registers, (b) set
9122          * KVM_DEBUGREG_WONT_EXIT again.
9123          */
9124         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9125                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9126                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9127                 kvm_update_dr0123(vcpu);
9128                 kvm_update_dr7(vcpu);
9129                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9130         }
9131
9132         /*
9133          * If the guest has used debug registers, at least dr7
9134          * will be disabled while returning to the host.
9135          * If we don't have active breakpoints in the host, we don't
9136          * care about the messed up debug address registers. But if
9137          * we have some of them active, restore the old state.
9138          */
9139         if (hw_breakpoint_active())
9140                 hw_breakpoint_restore();
9141
9142         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9143         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9144
9145         vcpu->mode = OUTSIDE_GUEST_MODE;
9146         smp_wmb();
9147
9148         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9149
9150         /*
9151          * Consume any pending interrupts, including the possible source of
9152          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9153          * An instruction is required after local_irq_enable() to fully unblock
9154          * interrupts on processors that implement an interrupt shadow, the
9155          * stat.exits increment will do nicely.
9156          */
9157         kvm_before_interrupt(vcpu);
9158         local_irq_enable();
9159         ++vcpu->stat.exits;
9160         local_irq_disable();
9161         kvm_after_interrupt(vcpu);
9162
9163         if (lapic_in_kernel(vcpu)) {
9164                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9165                 if (delta != S64_MIN) {
9166                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9167                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9168                 }
9169         }
9170
9171         local_irq_enable();
9172         preempt_enable();
9173
9174         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9175
9176         /*
9177          * Profile KVM exit RIPs:
9178          */
9179         if (unlikely(prof_on == KVM_PROFILING)) {
9180                 unsigned long rip = kvm_rip_read(vcpu);
9181                 profile_hit(KVM_PROFILING, (void *)rip);
9182         }
9183
9184         if (unlikely(vcpu->arch.tsc_always_catchup))
9185                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9186
9187         if (vcpu->arch.apic_attention)
9188                 kvm_lapic_sync_from_vapic(vcpu);
9189
9190         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9191         return r;
9192
9193 cancel_injection:
9194         if (req_immediate_exit)
9195                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9196         static_call(kvm_x86_cancel_injection)(vcpu);
9197         if (unlikely(vcpu->arch.apic_attention))
9198                 kvm_lapic_sync_from_vapic(vcpu);
9199 out:
9200         return r;
9201 }
9202
9203 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9204 {
9205         if (!kvm_arch_vcpu_runnable(vcpu) &&
9206             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9207                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9208                 kvm_vcpu_block(vcpu);
9209                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9210
9211                 if (kvm_x86_ops.post_block)
9212                         static_call(kvm_x86_post_block)(vcpu);
9213
9214                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9215                         return 1;
9216         }
9217
9218         kvm_apic_accept_events(vcpu);
9219         switch(vcpu->arch.mp_state) {
9220         case KVM_MP_STATE_HALTED:
9221         case KVM_MP_STATE_AP_RESET_HOLD:
9222                 vcpu->arch.pv.pv_unhalted = false;
9223                 vcpu->arch.mp_state =
9224                         KVM_MP_STATE_RUNNABLE;
9225                 fallthrough;
9226         case KVM_MP_STATE_RUNNABLE:
9227                 vcpu->arch.apf.halted = false;
9228                 break;
9229         case KVM_MP_STATE_INIT_RECEIVED:
9230                 break;
9231         default:
9232                 return -EINTR;
9233         }
9234         return 1;
9235 }
9236
9237 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9238 {
9239         if (is_guest_mode(vcpu))
9240                 kvm_x86_ops.nested_ops->check_events(vcpu);
9241
9242         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9243                 !vcpu->arch.apf.halted);
9244 }
9245
9246 static int vcpu_run(struct kvm_vcpu *vcpu)
9247 {
9248         int r;
9249         struct kvm *kvm = vcpu->kvm;
9250
9251         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9252         vcpu->arch.l1tf_flush_l1d = true;
9253
9254         for (;;) {
9255                 if (kvm_vcpu_running(vcpu)) {
9256                         r = vcpu_enter_guest(vcpu);
9257                 } else {
9258                         r = vcpu_block(kvm, vcpu);
9259                 }
9260
9261                 if (r <= 0)
9262                         break;
9263
9264                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9265                 if (kvm_cpu_has_pending_timer(vcpu))
9266                         kvm_inject_pending_timer_irqs(vcpu);
9267
9268                 if (dm_request_for_irq_injection(vcpu) &&
9269                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9270                         r = 0;
9271                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9272                         ++vcpu->stat.request_irq_exits;
9273                         break;
9274                 }
9275
9276                 if (__xfer_to_guest_mode_work_pending()) {
9277                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9278                         r = xfer_to_guest_mode_handle_work(vcpu);
9279                         if (r)
9280                                 return r;
9281                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9282                 }
9283         }
9284
9285         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9286
9287         return r;
9288 }
9289
9290 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9291 {
9292         int r;
9293
9294         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9295         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9296         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9297         return r;
9298 }
9299
9300 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9301 {
9302         BUG_ON(!vcpu->arch.pio.count);
9303
9304         return complete_emulated_io(vcpu);
9305 }
9306
9307 /*
9308  * Implements the following, as a state machine:
9309  *
9310  * read:
9311  *   for each fragment
9312  *     for each mmio piece in the fragment
9313  *       write gpa, len
9314  *       exit
9315  *       copy data
9316  *   execute insn
9317  *
9318  * write:
9319  *   for each fragment
9320  *     for each mmio piece in the fragment
9321  *       write gpa, len
9322  *       copy data
9323  *       exit
9324  */
9325 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9326 {
9327         struct kvm_run *run = vcpu->run;
9328         struct kvm_mmio_fragment *frag;
9329         unsigned len;
9330
9331         BUG_ON(!vcpu->mmio_needed);
9332
9333         /* Complete previous fragment */
9334         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9335         len = min(8u, frag->len);
9336         if (!vcpu->mmio_is_write)
9337                 memcpy(frag->data, run->mmio.data, len);
9338
9339         if (frag->len <= 8) {
9340                 /* Switch to the next fragment. */
9341                 frag++;
9342                 vcpu->mmio_cur_fragment++;
9343         } else {
9344                 /* Go forward to the next mmio piece. */
9345                 frag->data += len;
9346                 frag->gpa += len;
9347                 frag->len -= len;
9348         }
9349
9350         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9351                 vcpu->mmio_needed = 0;
9352
9353                 /* FIXME: return into emulator if single-stepping.  */
9354                 if (vcpu->mmio_is_write)
9355                         return 1;
9356                 vcpu->mmio_read_completed = 1;
9357                 return complete_emulated_io(vcpu);
9358         }
9359
9360         run->exit_reason = KVM_EXIT_MMIO;
9361         run->mmio.phys_addr = frag->gpa;
9362         if (vcpu->mmio_is_write)
9363                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9364         run->mmio.len = min(8u, frag->len);
9365         run->mmio.is_write = vcpu->mmio_is_write;
9366         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9367         return 0;
9368 }
9369
9370 static void kvm_save_current_fpu(struct fpu *fpu)
9371 {
9372         /*
9373          * If the target FPU state is not resident in the CPU registers, just
9374          * memcpy() from current, else save CPU state directly to the target.
9375          */
9376         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9377                 memcpy(&fpu->state, &current->thread.fpu.state,
9378                        fpu_kernel_xstate_size);
9379         else
9380                 copy_fpregs_to_fpstate(fpu);
9381 }
9382
9383 /* Swap (qemu) user FPU context for the guest FPU context. */
9384 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9385 {
9386         fpregs_lock();
9387
9388         kvm_save_current_fpu(vcpu->arch.user_fpu);
9389
9390         /*
9391          * Guests with protected state can't have it set by the hypervisor,
9392          * so skip trying to set it.
9393          */
9394         if (vcpu->arch.guest_fpu)
9395                 /* PKRU is separately restored in kvm_x86_ops.run. */
9396                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9397                                         ~XFEATURE_MASK_PKRU);
9398
9399         fpregs_mark_activate();
9400         fpregs_unlock();
9401
9402         trace_kvm_fpu(1);
9403 }
9404
9405 /* When vcpu_run ends, restore user space FPU context. */
9406 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9407 {
9408         fpregs_lock();
9409
9410         /*
9411          * Guests with protected state can't have it read by the hypervisor,
9412          * so skip trying to save it.
9413          */
9414         if (vcpu->arch.guest_fpu)
9415                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9416
9417         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9418
9419         fpregs_mark_activate();
9420         fpregs_unlock();
9421
9422         ++vcpu->stat.fpu_reload;
9423         trace_kvm_fpu(0);
9424 }
9425
9426 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9427 {
9428         struct kvm_run *kvm_run = vcpu->run;
9429         int r;
9430
9431         vcpu_load(vcpu);
9432         kvm_sigset_activate(vcpu);
9433         kvm_run->flags = 0;
9434         kvm_load_guest_fpu(vcpu);
9435
9436         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9437                 if (kvm_run->immediate_exit) {
9438                         r = -EINTR;
9439                         goto out;
9440                 }
9441                 kvm_vcpu_block(vcpu);
9442                 kvm_apic_accept_events(vcpu);
9443                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9444                 r = -EAGAIN;
9445                 if (signal_pending(current)) {
9446                         r = -EINTR;
9447                         kvm_run->exit_reason = KVM_EXIT_INTR;
9448                         ++vcpu->stat.signal_exits;
9449                 }
9450                 goto out;
9451         }
9452
9453         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9454                 r = -EINVAL;
9455                 goto out;
9456         }
9457
9458         if (kvm_run->kvm_dirty_regs) {
9459                 r = sync_regs(vcpu);
9460                 if (r != 0)
9461                         goto out;
9462         }
9463
9464         /* re-sync apic's tpr */
9465         if (!lapic_in_kernel(vcpu)) {
9466                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9467                         r = -EINVAL;
9468                         goto out;
9469                 }
9470         }
9471
9472         if (unlikely(vcpu->arch.complete_userspace_io)) {
9473                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9474                 vcpu->arch.complete_userspace_io = NULL;
9475                 r = cui(vcpu);
9476                 if (r <= 0)
9477                         goto out;
9478         } else
9479                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9480
9481         if (kvm_run->immediate_exit)
9482                 r = -EINTR;
9483         else
9484                 r = vcpu_run(vcpu);
9485
9486 out:
9487         kvm_put_guest_fpu(vcpu);
9488         if (kvm_run->kvm_valid_regs)
9489                 store_regs(vcpu);
9490         post_kvm_run_save(vcpu);
9491         kvm_sigset_deactivate(vcpu);
9492
9493         vcpu_put(vcpu);
9494         return r;
9495 }
9496
9497 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9498 {
9499         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9500                 /*
9501                  * We are here if userspace calls get_regs() in the middle of
9502                  * instruction emulation. Registers state needs to be copied
9503                  * back from emulation context to vcpu. Userspace shouldn't do
9504                  * that usually, but some bad designed PV devices (vmware
9505                  * backdoor interface) need this to work
9506                  */
9507                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9508                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9509         }
9510         regs->rax = kvm_rax_read(vcpu);
9511         regs->rbx = kvm_rbx_read(vcpu);
9512         regs->rcx = kvm_rcx_read(vcpu);
9513         regs->rdx = kvm_rdx_read(vcpu);
9514         regs->rsi = kvm_rsi_read(vcpu);
9515         regs->rdi = kvm_rdi_read(vcpu);
9516         regs->rsp = kvm_rsp_read(vcpu);
9517         regs->rbp = kvm_rbp_read(vcpu);
9518 #ifdef CONFIG_X86_64
9519         regs->r8 = kvm_r8_read(vcpu);
9520         regs->r9 = kvm_r9_read(vcpu);
9521         regs->r10 = kvm_r10_read(vcpu);
9522         regs->r11 = kvm_r11_read(vcpu);
9523         regs->r12 = kvm_r12_read(vcpu);
9524         regs->r13 = kvm_r13_read(vcpu);
9525         regs->r14 = kvm_r14_read(vcpu);
9526         regs->r15 = kvm_r15_read(vcpu);
9527 #endif
9528
9529         regs->rip = kvm_rip_read(vcpu);
9530         regs->rflags = kvm_get_rflags(vcpu);
9531 }
9532
9533 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9534 {
9535         vcpu_load(vcpu);
9536         __get_regs(vcpu, regs);
9537         vcpu_put(vcpu);
9538         return 0;
9539 }
9540
9541 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9542 {
9543         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9544         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9545
9546         kvm_rax_write(vcpu, regs->rax);
9547         kvm_rbx_write(vcpu, regs->rbx);
9548         kvm_rcx_write(vcpu, regs->rcx);
9549         kvm_rdx_write(vcpu, regs->rdx);
9550         kvm_rsi_write(vcpu, regs->rsi);
9551         kvm_rdi_write(vcpu, regs->rdi);
9552         kvm_rsp_write(vcpu, regs->rsp);
9553         kvm_rbp_write(vcpu, regs->rbp);
9554 #ifdef CONFIG_X86_64
9555         kvm_r8_write(vcpu, regs->r8);
9556         kvm_r9_write(vcpu, regs->r9);
9557         kvm_r10_write(vcpu, regs->r10);
9558         kvm_r11_write(vcpu, regs->r11);
9559         kvm_r12_write(vcpu, regs->r12);
9560         kvm_r13_write(vcpu, regs->r13);
9561         kvm_r14_write(vcpu, regs->r14);
9562         kvm_r15_write(vcpu, regs->r15);
9563 #endif
9564
9565         kvm_rip_write(vcpu, regs->rip);
9566         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9567
9568         vcpu->arch.exception.pending = false;
9569
9570         kvm_make_request(KVM_REQ_EVENT, vcpu);
9571 }
9572
9573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9574 {
9575         vcpu_load(vcpu);
9576         __set_regs(vcpu, regs);
9577         vcpu_put(vcpu);
9578         return 0;
9579 }
9580
9581 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9582 {
9583         struct kvm_segment cs;
9584
9585         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9586         *db = cs.db;
9587         *l = cs.l;
9588 }
9589 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9590
9591 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9592 {
9593         struct desc_ptr dt;
9594
9595         if (vcpu->arch.guest_state_protected)
9596                 goto skip_protected_regs;
9597
9598         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9599         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9600         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9601         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9602         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9603         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9604
9605         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9606         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9607
9608         static_call(kvm_x86_get_idt)(vcpu, &dt);
9609         sregs->idt.limit = dt.size;
9610         sregs->idt.base = dt.address;
9611         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9612         sregs->gdt.limit = dt.size;
9613         sregs->gdt.base = dt.address;
9614
9615         sregs->cr2 = vcpu->arch.cr2;
9616         sregs->cr3 = kvm_read_cr3(vcpu);
9617
9618 skip_protected_regs:
9619         sregs->cr0 = kvm_read_cr0(vcpu);
9620         sregs->cr4 = kvm_read_cr4(vcpu);
9621         sregs->cr8 = kvm_get_cr8(vcpu);
9622         sregs->efer = vcpu->arch.efer;
9623         sregs->apic_base = kvm_get_apic_base(vcpu);
9624
9625         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9626
9627         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9628                 set_bit(vcpu->arch.interrupt.nr,
9629                         (unsigned long *)sregs->interrupt_bitmap);
9630 }
9631
9632 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9633                                   struct kvm_sregs *sregs)
9634 {
9635         vcpu_load(vcpu);
9636         __get_sregs(vcpu, sregs);
9637         vcpu_put(vcpu);
9638         return 0;
9639 }
9640
9641 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9642                                     struct kvm_mp_state *mp_state)
9643 {
9644         vcpu_load(vcpu);
9645         if (kvm_mpx_supported())
9646                 kvm_load_guest_fpu(vcpu);
9647
9648         kvm_apic_accept_events(vcpu);
9649         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9650              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9651             vcpu->arch.pv.pv_unhalted)
9652                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9653         else
9654                 mp_state->mp_state = vcpu->arch.mp_state;
9655
9656         if (kvm_mpx_supported())
9657                 kvm_put_guest_fpu(vcpu);
9658         vcpu_put(vcpu);
9659         return 0;
9660 }
9661
9662 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9663                                     struct kvm_mp_state *mp_state)
9664 {
9665         int ret = -EINVAL;
9666
9667         vcpu_load(vcpu);
9668
9669         if (!lapic_in_kernel(vcpu) &&
9670             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9671                 goto out;
9672
9673         /*
9674          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9675          * INIT state; latched init should be reported using
9676          * KVM_SET_VCPU_EVENTS, so reject it here.
9677          */
9678         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9679             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9680              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9681                 goto out;
9682
9683         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9684                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9685                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9686         } else
9687                 vcpu->arch.mp_state = mp_state->mp_state;
9688         kvm_make_request(KVM_REQ_EVENT, vcpu);
9689
9690         ret = 0;
9691 out:
9692         vcpu_put(vcpu);
9693         return ret;
9694 }
9695
9696 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9697                     int reason, bool has_error_code, u32 error_code)
9698 {
9699         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9700         int ret;
9701
9702         init_emulate_ctxt(vcpu);
9703
9704         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9705                                    has_error_code, error_code);
9706         if (ret) {
9707                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9708                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9709                 vcpu->run->internal.ndata = 0;
9710                 return 0;
9711         }
9712
9713         kvm_rip_write(vcpu, ctxt->eip);
9714         kvm_set_rflags(vcpu, ctxt->eflags);
9715         return 1;
9716 }
9717 EXPORT_SYMBOL_GPL(kvm_task_switch);
9718
9719 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9720 {
9721         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9722                 /*
9723                  * When EFER.LME and CR0.PG are set, the processor is in
9724                  * 64-bit mode (though maybe in a 32-bit code segment).
9725                  * CR4.PAE and EFER.LMA must be set.
9726                  */
9727                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9728                         return false;
9729                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9730                         return false;
9731         } else {
9732                 /*
9733                  * Not in 64-bit mode: EFER.LMA is clear and the code
9734                  * segment cannot be 64-bit.
9735                  */
9736                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9737                         return false;
9738         }
9739
9740         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9741 }
9742
9743 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9744 {
9745         struct msr_data apic_base_msr;
9746         int mmu_reset_needed = 0;
9747         int pending_vec, max_bits, idx;
9748         struct desc_ptr dt;
9749         int ret = -EINVAL;
9750
9751         if (!kvm_is_valid_sregs(vcpu, sregs))
9752                 goto out;
9753
9754         apic_base_msr.data = sregs->apic_base;
9755         apic_base_msr.host_initiated = true;
9756         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9757                 goto out;
9758
9759         if (vcpu->arch.guest_state_protected)
9760                 goto skip_protected_regs;
9761
9762         dt.size = sregs->idt.limit;
9763         dt.address = sregs->idt.base;
9764         static_call(kvm_x86_set_idt)(vcpu, &dt);
9765         dt.size = sregs->gdt.limit;
9766         dt.address = sregs->gdt.base;
9767         static_call(kvm_x86_set_gdt)(vcpu, &dt);
9768
9769         vcpu->arch.cr2 = sregs->cr2;
9770         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9771         vcpu->arch.cr3 = sregs->cr3;
9772         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9773
9774         kvm_set_cr8(vcpu, sregs->cr8);
9775
9776         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9777         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9778
9779         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9780         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9781         vcpu->arch.cr0 = sregs->cr0;
9782
9783         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9784         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9785
9786         idx = srcu_read_lock(&vcpu->kvm->srcu);
9787         if (is_pae_paging(vcpu)) {
9788                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9789                 mmu_reset_needed = 1;
9790         }
9791         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9792
9793         if (mmu_reset_needed)
9794                 kvm_mmu_reset_context(vcpu);
9795
9796         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9797         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9798         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9799         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9800         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9801         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9802
9803         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9804         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9805
9806         update_cr8_intercept(vcpu);
9807
9808         /* Older userspace won't unhalt the vcpu on reset. */
9809         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9810             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9811             !is_protmode(vcpu))
9812                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9813
9814 skip_protected_regs:
9815         max_bits = KVM_NR_INTERRUPTS;
9816         pending_vec = find_first_bit(
9817                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9818         if (pending_vec < max_bits) {
9819                 kvm_queue_interrupt(vcpu, pending_vec, false);
9820                 pr_debug("Set back pending irq %d\n", pending_vec);
9821         }
9822
9823         kvm_make_request(KVM_REQ_EVENT, vcpu);
9824
9825         ret = 0;
9826 out:
9827         return ret;
9828 }
9829
9830 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9831                                   struct kvm_sregs *sregs)
9832 {
9833         int ret;
9834
9835         vcpu_load(vcpu);
9836         ret = __set_sregs(vcpu, sregs);
9837         vcpu_put(vcpu);
9838         return ret;
9839 }
9840
9841 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9842                                         struct kvm_guest_debug *dbg)
9843 {
9844         unsigned long rflags;
9845         int i, r;
9846
9847         if (vcpu->arch.guest_state_protected)
9848                 return -EINVAL;
9849
9850         vcpu_load(vcpu);
9851
9852         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9853                 r = -EBUSY;
9854                 if (vcpu->arch.exception.pending)
9855                         goto out;
9856                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9857                         kvm_queue_exception(vcpu, DB_VECTOR);
9858                 else
9859                         kvm_queue_exception(vcpu, BP_VECTOR);
9860         }
9861
9862         /*
9863          * Read rflags as long as potentially injected trace flags are still
9864          * filtered out.
9865          */
9866         rflags = kvm_get_rflags(vcpu);
9867
9868         vcpu->guest_debug = dbg->control;
9869         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9870                 vcpu->guest_debug = 0;
9871
9872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9873                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9874                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9875                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9876         } else {
9877                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9878                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9879         }
9880         kvm_update_dr7(vcpu);
9881
9882         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9883                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9884                         get_segment_base(vcpu, VCPU_SREG_CS);
9885
9886         /*
9887          * Trigger an rflags update that will inject or remove the trace
9888          * flags.
9889          */
9890         kvm_set_rflags(vcpu, rflags);
9891
9892         static_call(kvm_x86_update_exception_bitmap)(vcpu);
9893
9894         r = 0;
9895
9896 out:
9897         vcpu_put(vcpu);
9898         return r;
9899 }
9900
9901 /*
9902  * Translate a guest virtual address to a guest physical address.
9903  */
9904 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9905                                     struct kvm_translation *tr)
9906 {
9907         unsigned long vaddr = tr->linear_address;
9908         gpa_t gpa;
9909         int idx;
9910
9911         vcpu_load(vcpu);
9912
9913         idx = srcu_read_lock(&vcpu->kvm->srcu);
9914         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9915         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9916         tr->physical_address = gpa;
9917         tr->valid = gpa != UNMAPPED_GVA;
9918         tr->writeable = 1;
9919         tr->usermode = 0;
9920
9921         vcpu_put(vcpu);
9922         return 0;
9923 }
9924
9925 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9926 {
9927         struct fxregs_state *fxsave;
9928
9929         if (!vcpu->arch.guest_fpu)
9930                 return 0;
9931
9932         vcpu_load(vcpu);
9933
9934         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9935         memcpy(fpu->fpr, fxsave->st_space, 128);
9936         fpu->fcw = fxsave->cwd;
9937         fpu->fsw = fxsave->swd;
9938         fpu->ftwx = fxsave->twd;
9939         fpu->last_opcode = fxsave->fop;
9940         fpu->last_ip = fxsave->rip;
9941         fpu->last_dp = fxsave->rdp;
9942         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9943
9944         vcpu_put(vcpu);
9945         return 0;
9946 }
9947
9948 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9949 {
9950         struct fxregs_state *fxsave;
9951
9952         if (!vcpu->arch.guest_fpu)
9953                 return 0;
9954
9955         vcpu_load(vcpu);
9956
9957         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9958
9959         memcpy(fxsave->st_space, fpu->fpr, 128);
9960         fxsave->cwd = fpu->fcw;
9961         fxsave->swd = fpu->fsw;
9962         fxsave->twd = fpu->ftwx;
9963         fxsave->fop = fpu->last_opcode;
9964         fxsave->rip = fpu->last_ip;
9965         fxsave->rdp = fpu->last_dp;
9966         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9967
9968         vcpu_put(vcpu);
9969         return 0;
9970 }
9971
9972 static void store_regs(struct kvm_vcpu *vcpu)
9973 {
9974         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9975
9976         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9977                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9978
9979         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9980                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9981
9982         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9983                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9984                                 vcpu, &vcpu->run->s.regs.events);
9985 }
9986
9987 static int sync_regs(struct kvm_vcpu *vcpu)
9988 {
9989         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9990                 return -EINVAL;
9991
9992         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9993                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9994                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9995         }
9996         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9997                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9998                         return -EINVAL;
9999                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10000         }
10001         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10002                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10003                                 vcpu, &vcpu->run->s.regs.events))
10004                         return -EINVAL;
10005                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10006         }
10007
10008         return 0;
10009 }
10010
10011 static void fx_init(struct kvm_vcpu *vcpu)
10012 {
10013         if (!vcpu->arch.guest_fpu)
10014                 return;
10015
10016         fpstate_init(&vcpu->arch.guest_fpu->state);
10017         if (boot_cpu_has(X86_FEATURE_XSAVES))
10018                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10019                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10020
10021         /*
10022          * Ensure guest xcr0 is valid for loading
10023          */
10024         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10025
10026         vcpu->arch.cr0 |= X86_CR0_ET;
10027 }
10028
10029 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10030 {
10031         if (vcpu->arch.guest_fpu) {
10032                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10033                 vcpu->arch.guest_fpu = NULL;
10034         }
10035 }
10036 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10037
10038 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10039 {
10040         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10041                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10042                              "guest TSC will not be reliable\n");
10043
10044         return 0;
10045 }
10046
10047 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10048 {
10049         struct page *page;
10050         int r;
10051
10052         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10053                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10054         else
10055                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10056
10057         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10058
10059         r = kvm_mmu_create(vcpu);
10060         if (r < 0)
10061                 return r;
10062
10063         if (irqchip_in_kernel(vcpu->kvm)) {
10064                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10065                 if (r < 0)
10066                         goto fail_mmu_destroy;
10067                 if (kvm_apicv_activated(vcpu->kvm))
10068                         vcpu->arch.apicv_active = true;
10069         } else
10070                 static_branch_inc(&kvm_has_noapic_vcpu);
10071
10072         r = -ENOMEM;
10073
10074         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10075         if (!page)
10076                 goto fail_free_lapic;
10077         vcpu->arch.pio_data = page_address(page);
10078
10079         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10080                                        GFP_KERNEL_ACCOUNT);
10081         if (!vcpu->arch.mce_banks)
10082                 goto fail_free_pio_data;
10083         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10084
10085         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10086                                 GFP_KERNEL_ACCOUNT))
10087                 goto fail_free_mce_banks;
10088
10089         if (!alloc_emulate_ctxt(vcpu))
10090                 goto free_wbinvd_dirty_mask;
10091
10092         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10093                                                 GFP_KERNEL_ACCOUNT);
10094         if (!vcpu->arch.user_fpu) {
10095                 pr_err("kvm: failed to allocate userspace's fpu\n");
10096                 goto free_emulate_ctxt;
10097         }
10098
10099         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10100                                                  GFP_KERNEL_ACCOUNT);
10101         if (!vcpu->arch.guest_fpu) {
10102                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10103                 goto free_user_fpu;
10104         }
10105         fx_init(vcpu);
10106
10107         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10108         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10109
10110         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10111
10112         kvm_async_pf_hash_reset(vcpu);
10113         kvm_pmu_init(vcpu);
10114
10115         vcpu->arch.pending_external_vector = -1;
10116         vcpu->arch.preempted_in_kernel = false;
10117
10118         r = static_call(kvm_x86_vcpu_create)(vcpu);
10119         if (r)
10120                 goto free_guest_fpu;
10121
10122         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10123         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10124         kvm_vcpu_mtrr_init(vcpu);
10125         vcpu_load(vcpu);
10126         kvm_vcpu_reset(vcpu, false);
10127         kvm_init_mmu(vcpu, false);
10128         vcpu_put(vcpu);
10129         return 0;
10130
10131 free_guest_fpu:
10132         kvm_free_guest_fpu(vcpu);
10133 free_user_fpu:
10134         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10135 free_emulate_ctxt:
10136         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10137 free_wbinvd_dirty_mask:
10138         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10139 fail_free_mce_banks:
10140         kfree(vcpu->arch.mce_banks);
10141 fail_free_pio_data:
10142         free_page((unsigned long)vcpu->arch.pio_data);
10143 fail_free_lapic:
10144         kvm_free_lapic(vcpu);
10145 fail_mmu_destroy:
10146         kvm_mmu_destroy(vcpu);
10147         return r;
10148 }
10149
10150 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10151 {
10152         struct kvm *kvm = vcpu->kvm;
10153
10154         if (mutex_lock_killable(&vcpu->mutex))
10155                 return;
10156         vcpu_load(vcpu);
10157         kvm_synchronize_tsc(vcpu, 0);
10158         vcpu_put(vcpu);
10159
10160         /* poll control enabled by default */
10161         vcpu->arch.msr_kvm_poll_control = 1;
10162
10163         mutex_unlock(&vcpu->mutex);
10164
10165         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10166                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10167                                                 KVMCLOCK_SYNC_PERIOD);
10168 }
10169
10170 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10171 {
10172         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10173         int idx;
10174
10175         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10176
10177         kvmclock_reset(vcpu);
10178
10179         static_call(kvm_x86_vcpu_free)(vcpu);
10180
10181         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10182         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10183         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10184         kvm_free_guest_fpu(vcpu);
10185
10186         kvm_hv_vcpu_uninit(vcpu);
10187         kvm_pmu_destroy(vcpu);
10188         kfree(vcpu->arch.mce_banks);
10189         kvm_free_lapic(vcpu);
10190         idx = srcu_read_lock(&vcpu->kvm->srcu);
10191         kvm_mmu_destroy(vcpu);
10192         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10193         free_page((unsigned long)vcpu->arch.pio_data);
10194         kvfree(vcpu->arch.cpuid_entries);
10195         if (!lapic_in_kernel(vcpu))
10196                 static_branch_dec(&kvm_has_noapic_vcpu);
10197 }
10198
10199 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10200 {
10201         kvm_lapic_reset(vcpu, init_event);
10202
10203         vcpu->arch.hflags = 0;
10204
10205         vcpu->arch.smi_pending = 0;
10206         vcpu->arch.smi_count = 0;
10207         atomic_set(&vcpu->arch.nmi_queued, 0);
10208         vcpu->arch.nmi_pending = 0;
10209         vcpu->arch.nmi_injected = false;
10210         kvm_clear_interrupt_queue(vcpu);
10211         kvm_clear_exception_queue(vcpu);
10212
10213         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10214         kvm_update_dr0123(vcpu);
10215         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10216         vcpu->arch.dr7 = DR7_FIXED_1;
10217         kvm_update_dr7(vcpu);
10218
10219         vcpu->arch.cr2 = 0;
10220
10221         kvm_make_request(KVM_REQ_EVENT, vcpu);
10222         vcpu->arch.apf.msr_en_val = 0;
10223         vcpu->arch.apf.msr_int_val = 0;
10224         vcpu->arch.st.msr_val = 0;
10225
10226         kvmclock_reset(vcpu);
10227
10228         kvm_clear_async_pf_completion_queue(vcpu);
10229         kvm_async_pf_hash_reset(vcpu);
10230         vcpu->arch.apf.halted = false;
10231
10232         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10233                 void *mpx_state_buffer;
10234
10235                 /*
10236                  * To avoid have the INIT path from kvm_apic_has_events() that be
10237                  * called with loaded FPU and does not let userspace fix the state.
10238                  */
10239                 if (init_event)
10240                         kvm_put_guest_fpu(vcpu);
10241                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10242                                         XFEATURE_BNDREGS);
10243                 if (mpx_state_buffer)
10244                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10245                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10246                                         XFEATURE_BNDCSR);
10247                 if (mpx_state_buffer)
10248                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10249                 if (init_event)
10250                         kvm_load_guest_fpu(vcpu);
10251         }
10252
10253         if (!init_event) {
10254                 kvm_pmu_reset(vcpu);
10255                 vcpu->arch.smbase = 0x30000;
10256
10257                 vcpu->arch.msr_misc_features_enables = 0;
10258
10259                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10260         }
10261
10262         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10263         vcpu->arch.regs_avail = ~0;
10264         vcpu->arch.regs_dirty = ~0;
10265
10266         vcpu->arch.ia32_xss = 0;
10267
10268         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10269 }
10270
10271 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10272 {
10273         struct kvm_segment cs;
10274
10275         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10276         cs.selector = vector << 8;
10277         cs.base = vector << 12;
10278         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10279         kvm_rip_write(vcpu, 0);
10280 }
10281 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10282
10283 int kvm_arch_hardware_enable(void)
10284 {
10285         struct kvm *kvm;
10286         struct kvm_vcpu *vcpu;
10287         int i;
10288         int ret;
10289         u64 local_tsc;
10290         u64 max_tsc = 0;
10291         bool stable, backwards_tsc = false;
10292
10293         kvm_user_return_msr_cpu_online();
10294         ret = static_call(kvm_x86_hardware_enable)();
10295         if (ret != 0)
10296                 return ret;
10297
10298         local_tsc = rdtsc();
10299         stable = !kvm_check_tsc_unstable();
10300         list_for_each_entry(kvm, &vm_list, vm_list) {
10301                 kvm_for_each_vcpu(i, vcpu, kvm) {
10302                         if (!stable && vcpu->cpu == smp_processor_id())
10303                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10304                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10305                                 backwards_tsc = true;
10306                                 if (vcpu->arch.last_host_tsc > max_tsc)
10307                                         max_tsc = vcpu->arch.last_host_tsc;
10308                         }
10309                 }
10310         }
10311
10312         /*
10313          * Sometimes, even reliable TSCs go backwards.  This happens on
10314          * platforms that reset TSC during suspend or hibernate actions, but
10315          * maintain synchronization.  We must compensate.  Fortunately, we can
10316          * detect that condition here, which happens early in CPU bringup,
10317          * before any KVM threads can be running.  Unfortunately, we can't
10318          * bring the TSCs fully up to date with real time, as we aren't yet far
10319          * enough into CPU bringup that we know how much real time has actually
10320          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10321          * variables that haven't been updated yet.
10322          *
10323          * So we simply find the maximum observed TSC above, then record the
10324          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10325          * the adjustment will be applied.  Note that we accumulate
10326          * adjustments, in case multiple suspend cycles happen before some VCPU
10327          * gets a chance to run again.  In the event that no KVM threads get a
10328          * chance to run, we will miss the entire elapsed period, as we'll have
10329          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10330          * loose cycle time.  This isn't too big a deal, since the loss will be
10331          * uniform across all VCPUs (not to mention the scenario is extremely
10332          * unlikely). It is possible that a second hibernate recovery happens
10333          * much faster than a first, causing the observed TSC here to be
10334          * smaller; this would require additional padding adjustment, which is
10335          * why we set last_host_tsc to the local tsc observed here.
10336          *
10337          * N.B. - this code below runs only on platforms with reliable TSC,
10338          * as that is the only way backwards_tsc is set above.  Also note
10339          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10340          * have the same delta_cyc adjustment applied if backwards_tsc
10341          * is detected.  Note further, this adjustment is only done once,
10342          * as we reset last_host_tsc on all VCPUs to stop this from being
10343          * called multiple times (one for each physical CPU bringup).
10344          *
10345          * Platforms with unreliable TSCs don't have to deal with this, they
10346          * will be compensated by the logic in vcpu_load, which sets the TSC to
10347          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10348          * guarantee that they stay in perfect synchronization.
10349          */
10350         if (backwards_tsc) {
10351                 u64 delta_cyc = max_tsc - local_tsc;
10352                 list_for_each_entry(kvm, &vm_list, vm_list) {
10353                         kvm->arch.backwards_tsc_observed = true;
10354                         kvm_for_each_vcpu(i, vcpu, kvm) {
10355                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10356                                 vcpu->arch.last_host_tsc = local_tsc;
10357                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10358                         }
10359
10360                         /*
10361                          * We have to disable TSC offset matching.. if you were
10362                          * booting a VM while issuing an S4 host suspend....
10363                          * you may have some problem.  Solving this issue is
10364                          * left as an exercise to the reader.
10365                          */
10366                         kvm->arch.last_tsc_nsec = 0;
10367                         kvm->arch.last_tsc_write = 0;
10368                 }
10369
10370         }
10371         return 0;
10372 }
10373
10374 void kvm_arch_hardware_disable(void)
10375 {
10376         static_call(kvm_x86_hardware_disable)();
10377         drop_user_return_notifiers();
10378 }
10379
10380 int kvm_arch_hardware_setup(void *opaque)
10381 {
10382         struct kvm_x86_init_ops *ops = opaque;
10383         int r;
10384
10385         rdmsrl_safe(MSR_EFER, &host_efer);
10386
10387         if (boot_cpu_has(X86_FEATURE_XSAVES))
10388                 rdmsrl(MSR_IA32_XSS, host_xss);
10389
10390         r = ops->hardware_setup();
10391         if (r != 0)
10392                 return r;
10393
10394         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10395         kvm_ops_static_call_update();
10396
10397         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10398                 supported_xss = 0;
10399
10400 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10401         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10402 #undef __kvm_cpu_cap_has
10403
10404         if (kvm_has_tsc_control) {
10405                 /*
10406                  * Make sure the user can only configure tsc_khz values that
10407                  * fit into a signed integer.
10408                  * A min value is not calculated because it will always
10409                  * be 1 on all machines.
10410                  */
10411                 u64 max = min(0x7fffffffULL,
10412                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10413                 kvm_max_guest_tsc_khz = max;
10414
10415                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10416         }
10417
10418         kvm_init_msr_list();
10419         return 0;
10420 }
10421
10422 void kvm_arch_hardware_unsetup(void)
10423 {
10424         static_call(kvm_x86_hardware_unsetup)();
10425 }
10426
10427 int kvm_arch_check_processor_compat(void *opaque)
10428 {
10429         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10430         struct kvm_x86_init_ops *ops = opaque;
10431
10432         WARN_ON(!irqs_disabled());
10433
10434         if (__cr4_reserved_bits(cpu_has, c) !=
10435             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10436                 return -EIO;
10437
10438         return ops->check_processor_compatibility();
10439 }
10440
10441 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10442 {
10443         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10444 }
10445 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10446
10447 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10448 {
10449         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10450 }
10451
10452 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10453 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10454
10455 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10456 {
10457         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10458
10459         vcpu->arch.l1tf_flush_l1d = true;
10460         if (pmu->version && unlikely(pmu->event_count)) {
10461                 pmu->need_cleanup = true;
10462                 kvm_make_request(KVM_REQ_PMU, vcpu);
10463         }
10464         static_call(kvm_x86_sched_in)(vcpu, cpu);
10465 }
10466
10467 void kvm_arch_free_vm(struct kvm *kvm)
10468 {
10469         kfree(to_kvm_hv(kvm)->hv_pa_pg);
10470         vfree(kvm);
10471 }
10472
10473
10474 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10475 {
10476         if (type)
10477                 return -EINVAL;
10478
10479         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10480         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10481         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10482         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10483         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10484         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10485
10486         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10487         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10488         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10489         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10490                 &kvm->arch.irq_sources_bitmap);
10491
10492         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10493         mutex_init(&kvm->arch.apic_map_lock);
10494         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10495
10496         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10497         pvclock_update_vm_gtod_copy(kvm);
10498
10499         kvm->arch.guest_can_read_msr_platform_info = true;
10500
10501         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10502         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10503
10504         kvm_hv_init_vm(kvm);
10505         kvm_page_track_init(kvm);
10506         kvm_mmu_init_vm(kvm);
10507
10508         return static_call(kvm_x86_vm_init)(kvm);
10509 }
10510
10511 int kvm_arch_post_init_vm(struct kvm *kvm)
10512 {
10513         return kvm_mmu_post_init_vm(kvm);
10514 }
10515
10516 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10517 {
10518         vcpu_load(vcpu);
10519         kvm_mmu_unload(vcpu);
10520         vcpu_put(vcpu);
10521 }
10522
10523 static void kvm_free_vcpus(struct kvm *kvm)
10524 {
10525         unsigned int i;
10526         struct kvm_vcpu *vcpu;
10527
10528         /*
10529          * Unpin any mmu pages first.
10530          */
10531         kvm_for_each_vcpu(i, vcpu, kvm) {
10532                 kvm_clear_async_pf_completion_queue(vcpu);
10533                 kvm_unload_vcpu_mmu(vcpu);
10534         }
10535         kvm_for_each_vcpu(i, vcpu, kvm)
10536                 kvm_vcpu_destroy(vcpu);
10537
10538         mutex_lock(&kvm->lock);
10539         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10540                 kvm->vcpus[i] = NULL;
10541
10542         atomic_set(&kvm->online_vcpus, 0);
10543         mutex_unlock(&kvm->lock);
10544 }
10545
10546 void kvm_arch_sync_events(struct kvm *kvm)
10547 {
10548         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10549         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10550         kvm_free_pit(kvm);
10551 }
10552
10553 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10554
10555 /**
10556  * __x86_set_memory_region: Setup KVM internal memory slot
10557  *
10558  * @kvm: the kvm pointer to the VM.
10559  * @id: the slot ID to setup.
10560  * @gpa: the GPA to install the slot (unused when @size == 0).
10561  * @size: the size of the slot. Set to zero to uninstall a slot.
10562  *
10563  * This function helps to setup a KVM internal memory slot.  Specify
10564  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10565  * slot.  The return code can be one of the following:
10566  *
10567  *   HVA:           on success (uninstall will return a bogus HVA)
10568  *   -errno:        on error
10569  *
10570  * The caller should always use IS_ERR() to check the return value
10571  * before use.  Note, the KVM internal memory slots are guaranteed to
10572  * remain valid and unchanged until the VM is destroyed, i.e., the
10573  * GPA->HVA translation will not change.  However, the HVA is a user
10574  * address, i.e. its accessibility is not guaranteed, and must be
10575  * accessed via __copy_{to,from}_user().
10576  */
10577 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10578                                       u32 size)
10579 {
10580         int i, r;
10581         unsigned long hva, old_npages;
10582         struct kvm_memslots *slots = kvm_memslots(kvm);
10583         struct kvm_memory_slot *slot;
10584
10585         /* Called with kvm->slots_lock held.  */
10586         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10587                 return ERR_PTR_USR(-EINVAL);
10588
10589         slot = id_to_memslot(slots, id);
10590         if (size) {
10591                 if (slot && slot->npages)
10592                         return ERR_PTR_USR(-EEXIST);
10593
10594                 /*
10595                  * MAP_SHARED to prevent internal slot pages from being moved
10596                  * by fork()/COW.
10597                  */
10598                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10599                               MAP_SHARED | MAP_ANONYMOUS, 0);
10600                 if (IS_ERR((void *)hva))
10601                         return (void __user *)hva;
10602         } else {
10603                 if (!slot || !slot->npages)
10604                         return 0;
10605
10606                 old_npages = slot->npages;
10607                 hva = slot->userspace_addr;
10608         }
10609
10610         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10611                 struct kvm_userspace_memory_region m;
10612
10613                 m.slot = id | (i << 16);
10614                 m.flags = 0;
10615                 m.guest_phys_addr = gpa;
10616                 m.userspace_addr = hva;
10617                 m.memory_size = size;
10618                 r = __kvm_set_memory_region(kvm, &m);
10619                 if (r < 0)
10620                         return ERR_PTR_USR(r);
10621         }
10622
10623         if (!size)
10624                 vm_munmap(hva, old_npages * PAGE_SIZE);
10625
10626         return (void __user *)hva;
10627 }
10628 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10629
10630 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10631 {
10632         kvm_mmu_pre_destroy_vm(kvm);
10633 }
10634
10635 void kvm_arch_destroy_vm(struct kvm *kvm)
10636 {
10637         u32 i;
10638
10639         if (current->mm == kvm->mm) {
10640                 /*
10641                  * Free memory regions allocated on behalf of userspace,
10642                  * unless the the memory map has changed due to process exit
10643                  * or fd copying.
10644                  */
10645                 mutex_lock(&kvm->slots_lock);
10646                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10647                                         0, 0);
10648                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10649                                         0, 0);
10650                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10651                 mutex_unlock(&kvm->slots_lock);
10652         }
10653         static_call_cond(kvm_x86_vm_destroy)(kvm);
10654         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10655                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10656         kvm_pic_destroy(kvm);
10657         kvm_ioapic_destroy(kvm);
10658         kvm_free_vcpus(kvm);
10659         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10660         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10661         kvm_mmu_uninit_vm(kvm);
10662         kvm_page_track_cleanup(kvm);
10663         kvm_xen_destroy_vm(kvm);
10664         kvm_hv_destroy_vm(kvm);
10665 }
10666
10667 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10668 {
10669         int i;
10670
10671         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10672                 kvfree(slot->arch.rmap[i]);
10673                 slot->arch.rmap[i] = NULL;
10674
10675                 if (i == 0)
10676                         continue;
10677
10678                 kvfree(slot->arch.lpage_info[i - 1]);
10679                 slot->arch.lpage_info[i - 1] = NULL;
10680         }
10681
10682         kvm_page_track_free_memslot(slot);
10683 }
10684
10685 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10686                                       unsigned long npages)
10687 {
10688         int i;
10689
10690         /*
10691          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10692          * old arrays will be freed by __kvm_set_memory_region() if installing
10693          * the new memslot is successful.
10694          */
10695         memset(&slot->arch, 0, sizeof(slot->arch));
10696
10697         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10698                 struct kvm_lpage_info *linfo;
10699                 unsigned long ugfn;
10700                 int lpages;
10701                 int level = i + 1;
10702
10703                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10704                                       slot->base_gfn, level) + 1;
10705
10706                 slot->arch.rmap[i] =
10707                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10708                                  GFP_KERNEL_ACCOUNT);
10709                 if (!slot->arch.rmap[i])
10710                         goto out_free;
10711                 if (i == 0)
10712                         continue;
10713
10714                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10715                 if (!linfo)
10716                         goto out_free;
10717
10718                 slot->arch.lpage_info[i - 1] = linfo;
10719
10720                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10721                         linfo[0].disallow_lpage = 1;
10722                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10723                         linfo[lpages - 1].disallow_lpage = 1;
10724                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10725                 /*
10726                  * If the gfn and userspace address are not aligned wrt each
10727                  * other, disable large page support for this slot.
10728                  */
10729                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10730                         unsigned long j;
10731
10732                         for (j = 0; j < lpages; ++j)
10733                                 linfo[j].disallow_lpage = 1;
10734                 }
10735         }
10736
10737         if (kvm_page_track_create_memslot(slot, npages))
10738                 goto out_free;
10739
10740         return 0;
10741
10742 out_free:
10743         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10744                 kvfree(slot->arch.rmap[i]);
10745                 slot->arch.rmap[i] = NULL;
10746                 if (i == 0)
10747                         continue;
10748
10749                 kvfree(slot->arch.lpage_info[i - 1]);
10750                 slot->arch.lpage_info[i - 1] = NULL;
10751         }
10752         return -ENOMEM;
10753 }
10754
10755 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10756 {
10757         struct kvm_vcpu *vcpu;
10758         int i;
10759
10760         /*
10761          * memslots->generation has been incremented.
10762          * mmio generation may have reached its maximum value.
10763          */
10764         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10765
10766         /* Force re-initialization of steal_time cache */
10767         kvm_for_each_vcpu(i, vcpu, kvm)
10768                 kvm_vcpu_kick(vcpu);
10769 }
10770
10771 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10772                                 struct kvm_memory_slot *memslot,
10773                                 const struct kvm_userspace_memory_region *mem,
10774                                 enum kvm_mr_change change)
10775 {
10776         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10777                 return kvm_alloc_memslot_metadata(memslot,
10778                                                   mem->memory_size >> PAGE_SHIFT);
10779         return 0;
10780 }
10781
10782
10783 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10784 {
10785         struct kvm_arch *ka = &kvm->arch;
10786
10787         if (!kvm_x86_ops.cpu_dirty_log_size)
10788                 return;
10789
10790         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10791             (!enable && --ka->cpu_dirty_logging_count == 0))
10792                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10793
10794         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10795 }
10796
10797 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10798                                      struct kvm_memory_slot *old,
10799                                      struct kvm_memory_slot *new,
10800                                      enum kvm_mr_change change)
10801 {
10802         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10803
10804         /*
10805          * Update CPU dirty logging if dirty logging is being toggled.  This
10806          * applies to all operations.
10807          */
10808         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10809                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10810
10811         /*
10812          * Nothing more to do for RO slots (which can't be dirtied and can't be
10813          * made writable) or CREATE/MOVE/DELETE of a slot.
10814          *
10815          * For a memslot with dirty logging disabled:
10816          * CREATE:      No dirty mappings will already exist.
10817          * MOVE/DELETE: The old mappings will already have been cleaned up by
10818          *              kvm_arch_flush_shadow_memslot()
10819          *
10820          * For a memslot with dirty logging enabled:
10821          * CREATE:      No shadow pages exist, thus nothing to write-protect
10822          *              and no dirty bits to clear.
10823          * MOVE/DELETE: The old mappings will already have been cleaned up by
10824          *              kvm_arch_flush_shadow_memslot().
10825          */
10826         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10827                 return;
10828
10829         /*
10830          * READONLY and non-flags changes were filtered out above, and the only
10831          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10832          * logging isn't being toggled on or off.
10833          */
10834         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10835                 return;
10836
10837         if (!log_dirty_pages) {
10838                 /*
10839                  * Dirty logging tracks sptes in 4k granularity, meaning that
10840                  * large sptes have to be split.  If live migration succeeds,
10841                  * the guest in the source machine will be destroyed and large
10842                  * sptes will be created in the destination.  However, if the
10843                  * guest continues to run in the source machine (for example if
10844                  * live migration fails), small sptes will remain around and
10845                  * cause bad performance.
10846                  *
10847                  * Scan sptes if dirty logging has been stopped, dropping those
10848                  * which can be collapsed into a single large-page spte.  Later
10849                  * page faults will create the large-page sptes.
10850                  */
10851                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10852         } else {
10853                 /* By default, write-protect everything to log writes. */
10854                 int level = PG_LEVEL_4K;
10855
10856                 if (kvm_x86_ops.cpu_dirty_log_size) {
10857                         /*
10858                          * Clear all dirty bits, unless pages are treated as
10859                          * dirty from the get-go.
10860                          */
10861                         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
10862                                 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
10863
10864                         /*
10865                          * Write-protect large pages on write so that dirty
10866                          * logging happens at 4k granularity.  No need to
10867                          * write-protect small SPTEs since write accesses are
10868                          * logged by the CPU via dirty bits.
10869                          */
10870                         level = PG_LEVEL_2M;
10871                 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
10872                         /*
10873                          * If we're with initial-all-set, we don't need
10874                          * to write protect any small page because
10875                          * they're reported as dirty already.  However
10876                          * we still need to write-protect huge pages
10877                          * so that the page split can happen lazily on
10878                          * the first write to the huge page.
10879                          */
10880                         level = PG_LEVEL_2M;
10881                 }
10882                 kvm_mmu_slot_remove_write_access(kvm, new, level);
10883         }
10884 }
10885
10886 void kvm_arch_commit_memory_region(struct kvm *kvm,
10887                                 const struct kvm_userspace_memory_region *mem,
10888                                 struct kvm_memory_slot *old,
10889                                 const struct kvm_memory_slot *new,
10890                                 enum kvm_mr_change change)
10891 {
10892         if (!kvm->arch.n_requested_mmu_pages)
10893                 kvm_mmu_change_mmu_pages(kvm,
10894                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10895
10896         /*
10897          * FIXME: const-ify all uses of struct kvm_memory_slot.
10898          */
10899         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10900
10901         /* Free the arrays associated with the old memslot. */
10902         if (change == KVM_MR_MOVE)
10903                 kvm_arch_free_memslot(kvm, old);
10904 }
10905
10906 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10907 {
10908         kvm_mmu_zap_all(kvm);
10909 }
10910
10911 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10912                                    struct kvm_memory_slot *slot)
10913 {
10914         kvm_page_track_flush_slot(kvm, slot);
10915 }
10916
10917 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10918 {
10919         return (is_guest_mode(vcpu) &&
10920                         kvm_x86_ops.guest_apic_has_interrupt &&
10921                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10922 }
10923
10924 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10925 {
10926         if (!list_empty_careful(&vcpu->async_pf.done))
10927                 return true;
10928
10929         if (kvm_apic_has_events(vcpu))
10930                 return true;
10931
10932         if (vcpu->arch.pv.pv_unhalted)
10933                 return true;
10934
10935         if (vcpu->arch.exception.pending)
10936                 return true;
10937
10938         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10939             (vcpu->arch.nmi_pending &&
10940              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10941                 return true;
10942
10943         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10944             (vcpu->arch.smi_pending &&
10945              static_call(kvm_x86_smi_allowed)(vcpu, false)))
10946                 return true;
10947
10948         if (kvm_arch_interrupt_allowed(vcpu) &&
10949             (kvm_cpu_has_interrupt(vcpu) ||
10950             kvm_guest_apic_has_interrupt(vcpu)))
10951                 return true;
10952
10953         if (kvm_hv_has_stimer_pending(vcpu))
10954                 return true;
10955
10956         if (is_guest_mode(vcpu) &&
10957             kvm_x86_ops.nested_ops->hv_timer_pending &&
10958             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10959                 return true;
10960
10961         return false;
10962 }
10963
10964 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10965 {
10966         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10967 }
10968
10969 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10970 {
10971         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10972                 return true;
10973
10974         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10975                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10976                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10977                 return true;
10978
10979         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
10980                 return true;
10981
10982         return false;
10983 }
10984
10985 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10986 {
10987         return vcpu->arch.preempted_in_kernel;
10988 }
10989
10990 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10991 {
10992         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10993 }
10994
10995 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10996 {
10997         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
10998 }
10999
11000 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11001 {
11002         /* Can't read the RIP when guest state is protected, just return 0 */
11003         if (vcpu->arch.guest_state_protected)
11004                 return 0;
11005
11006         if (is_64_bit_mode(vcpu))
11007                 return kvm_rip_read(vcpu);
11008         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11009                      kvm_rip_read(vcpu));
11010 }
11011 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11012
11013 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11014 {
11015         return kvm_get_linear_rip(vcpu) == linear_rip;
11016 }
11017 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11018
11019 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11020 {
11021         unsigned long rflags;
11022
11023         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11024         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11025                 rflags &= ~X86_EFLAGS_TF;
11026         return rflags;
11027 }
11028 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11029
11030 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11031 {
11032         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11033             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11034                 rflags |= X86_EFLAGS_TF;
11035         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11036 }
11037
11038 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11039 {
11040         __kvm_set_rflags(vcpu, rflags);
11041         kvm_make_request(KVM_REQ_EVENT, vcpu);
11042 }
11043 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11044
11045 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11046 {
11047         int r;
11048
11049         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11050               work->wakeup_all)
11051                 return;
11052
11053         r = kvm_mmu_reload(vcpu);
11054         if (unlikely(r))
11055                 return;
11056
11057         if (!vcpu->arch.mmu->direct_map &&
11058               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11059                 return;
11060
11061         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11062 }
11063
11064 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11065 {
11066         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11067
11068         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11069 }
11070
11071 static inline u32 kvm_async_pf_next_probe(u32 key)
11072 {
11073         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11074 }
11075
11076 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11077 {
11078         u32 key = kvm_async_pf_hash_fn(gfn);
11079
11080         while (vcpu->arch.apf.gfns[key] != ~0)
11081                 key = kvm_async_pf_next_probe(key);
11082
11083         vcpu->arch.apf.gfns[key] = gfn;
11084 }
11085
11086 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11087 {
11088         int i;
11089         u32 key = kvm_async_pf_hash_fn(gfn);
11090
11091         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11092                      (vcpu->arch.apf.gfns[key] != gfn &&
11093                       vcpu->arch.apf.gfns[key] != ~0); i++)
11094                 key = kvm_async_pf_next_probe(key);
11095
11096         return key;
11097 }
11098
11099 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11100 {
11101         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11102 }
11103
11104 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11105 {
11106         u32 i, j, k;
11107
11108         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11109
11110         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11111                 return;
11112
11113         while (true) {
11114                 vcpu->arch.apf.gfns[i] = ~0;
11115                 do {
11116                         j = kvm_async_pf_next_probe(j);
11117                         if (vcpu->arch.apf.gfns[j] == ~0)
11118                                 return;
11119                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11120                         /*
11121                          * k lies cyclically in ]i,j]
11122                          * |    i.k.j |
11123                          * |....j i.k.| or  |.k..j i...|
11124                          */
11125                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11126                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11127                 i = j;
11128         }
11129 }
11130
11131 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11132 {
11133         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11134
11135         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11136                                       sizeof(reason));
11137 }
11138
11139 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11140 {
11141         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11142
11143         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11144                                              &token, offset, sizeof(token));
11145 }
11146
11147 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11148 {
11149         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11150         u32 val;
11151
11152         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11153                                          &val, offset, sizeof(val)))
11154                 return false;
11155
11156         return !val;
11157 }
11158
11159 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11160 {
11161         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11162                 return false;
11163
11164         if (!kvm_pv_async_pf_enabled(vcpu) ||
11165             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11166                 return false;
11167
11168         return true;
11169 }
11170
11171 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11172 {
11173         if (unlikely(!lapic_in_kernel(vcpu) ||
11174                      kvm_event_needs_reinjection(vcpu) ||
11175                      vcpu->arch.exception.pending))
11176                 return false;
11177
11178         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11179                 return false;
11180
11181         /*
11182          * If interrupts are off we cannot even use an artificial
11183          * halt state.
11184          */
11185         return kvm_arch_interrupt_allowed(vcpu);
11186 }
11187
11188 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11189                                      struct kvm_async_pf *work)
11190 {
11191         struct x86_exception fault;
11192
11193         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11194         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11195
11196         if (kvm_can_deliver_async_pf(vcpu) &&
11197             !apf_put_user_notpresent(vcpu)) {
11198                 fault.vector = PF_VECTOR;
11199                 fault.error_code_valid = true;
11200                 fault.error_code = 0;
11201                 fault.nested_page_fault = false;
11202                 fault.address = work->arch.token;
11203                 fault.async_page_fault = true;
11204                 kvm_inject_page_fault(vcpu, &fault);
11205                 return true;
11206         } else {
11207                 /*
11208                  * It is not possible to deliver a paravirtualized asynchronous
11209                  * page fault, but putting the guest in an artificial halt state
11210                  * can be beneficial nevertheless: if an interrupt arrives, we
11211                  * can deliver it timely and perhaps the guest will schedule
11212                  * another process.  When the instruction that triggered a page
11213                  * fault is retried, hopefully the page will be ready in the host.
11214                  */
11215                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11216                 return false;
11217         }
11218 }
11219
11220 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11221                                  struct kvm_async_pf *work)
11222 {
11223         struct kvm_lapic_irq irq = {
11224                 .delivery_mode = APIC_DM_FIXED,
11225                 .vector = vcpu->arch.apf.vec
11226         };
11227
11228         if (work->wakeup_all)
11229                 work->arch.token = ~0; /* broadcast wakeup */
11230         else
11231                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11232         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11233
11234         if ((work->wakeup_all || work->notpresent_injected) &&
11235             kvm_pv_async_pf_enabled(vcpu) &&
11236             !apf_put_user_ready(vcpu, work->arch.token)) {
11237                 vcpu->arch.apf.pageready_pending = true;
11238                 kvm_apic_set_irq(vcpu, &irq, NULL);
11239         }
11240
11241         vcpu->arch.apf.halted = false;
11242         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11243 }
11244
11245 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11246 {
11247         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11248         if (!vcpu->arch.apf.pageready_pending)
11249                 kvm_vcpu_kick(vcpu);
11250 }
11251
11252 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11253 {
11254         if (!kvm_pv_async_pf_enabled(vcpu))
11255                 return true;
11256         else
11257                 return apf_pageready_slot_free(vcpu);
11258 }
11259
11260 void kvm_arch_start_assignment(struct kvm *kvm)
11261 {
11262         atomic_inc(&kvm->arch.assigned_device_count);
11263 }
11264 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11265
11266 void kvm_arch_end_assignment(struct kvm *kvm)
11267 {
11268         atomic_dec(&kvm->arch.assigned_device_count);
11269 }
11270 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11271
11272 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11273 {
11274         return atomic_read(&kvm->arch.assigned_device_count);
11275 }
11276 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11277
11278 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11279 {
11280         atomic_inc(&kvm->arch.noncoherent_dma_count);
11281 }
11282 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11283
11284 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11285 {
11286         atomic_dec(&kvm->arch.noncoherent_dma_count);
11287 }
11288 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11289
11290 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11291 {
11292         return atomic_read(&kvm->arch.noncoherent_dma_count);
11293 }
11294 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11295
11296 bool kvm_arch_has_irq_bypass(void)
11297 {
11298         return true;
11299 }
11300
11301 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11302                                       struct irq_bypass_producer *prod)
11303 {
11304         struct kvm_kernel_irqfd *irqfd =
11305                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11306         int ret;
11307
11308         irqfd->producer = prod;
11309         kvm_arch_start_assignment(irqfd->kvm);
11310         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11311                                          prod->irq, irqfd->gsi, 1);
11312
11313         if (ret)
11314                 kvm_arch_end_assignment(irqfd->kvm);
11315
11316         return ret;
11317 }
11318
11319 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11320                                       struct irq_bypass_producer *prod)
11321 {
11322         int ret;
11323         struct kvm_kernel_irqfd *irqfd =
11324                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11325
11326         WARN_ON(irqfd->producer != prod);
11327         irqfd->producer = NULL;
11328
11329         /*
11330          * When producer of consumer is unregistered, we change back to
11331          * remapped mode, so we can re-use the current implementation
11332          * when the irq is masked/disabled or the consumer side (KVM
11333          * int this case doesn't want to receive the interrupts.
11334         */
11335         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11336         if (ret)
11337                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11338                        " fails: %d\n", irqfd->consumer.token, ret);
11339
11340         kvm_arch_end_assignment(irqfd->kvm);
11341 }
11342
11343 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11344                                    uint32_t guest_irq, bool set)
11345 {
11346         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11347 }
11348
11349 bool kvm_vector_hashing_enabled(void)
11350 {
11351         return vector_hashing;
11352 }
11353
11354 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11355 {
11356         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11357 }
11358 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11359
11360
11361 int kvm_spec_ctrl_test_value(u64 value)
11362 {
11363         /*
11364          * test that setting IA32_SPEC_CTRL to given value
11365          * is allowed by the host processor
11366          */
11367
11368         u64 saved_value;
11369         unsigned long flags;
11370         int ret = 0;
11371
11372         local_irq_save(flags);
11373
11374         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11375                 ret = 1;
11376         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11377                 ret = 1;
11378         else
11379                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11380
11381         local_irq_restore(flags);
11382
11383         return ret;
11384 }
11385 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11386
11387 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11388 {
11389         struct x86_exception fault;
11390         u32 access = error_code &
11391                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11392
11393         if (!(error_code & PFERR_PRESENT_MASK) ||
11394             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11395                 /*
11396                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11397                  * tables probably do not match the TLB.  Just proceed
11398                  * with the error code that the processor gave.
11399                  */
11400                 fault.vector = PF_VECTOR;
11401                 fault.error_code_valid = true;
11402                 fault.error_code = error_code;
11403                 fault.nested_page_fault = false;
11404                 fault.address = gva;
11405         }
11406         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11407 }
11408 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11409
11410 /*
11411  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11412  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11413  * indicates whether exit to userspace is needed.
11414  */
11415 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11416                               struct x86_exception *e)
11417 {
11418         if (r == X86EMUL_PROPAGATE_FAULT) {
11419                 kvm_inject_emulated_page_fault(vcpu, e);
11420                 return 1;
11421         }
11422
11423         /*
11424          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11425          * while handling a VMX instruction KVM could've handled the request
11426          * correctly by exiting to userspace and performing I/O but there
11427          * doesn't seem to be a real use-case behind such requests, just return
11428          * KVM_EXIT_INTERNAL_ERROR for now.
11429          */
11430         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11431         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11432         vcpu->run->internal.ndata = 0;
11433
11434         return 0;
11435 }
11436 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11437
11438 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11439 {
11440         bool pcid_enabled;
11441         struct x86_exception e;
11442         unsigned i;
11443         unsigned long roots_to_free = 0;
11444         struct {
11445                 u64 pcid;
11446                 u64 gla;
11447         } operand;
11448         int r;
11449
11450         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11451         if (r != X86EMUL_CONTINUE)
11452                 return kvm_handle_memory_failure(vcpu, r, &e);
11453
11454         if (operand.pcid >> 12 != 0) {
11455                 kvm_inject_gp(vcpu, 0);
11456                 return 1;
11457         }
11458
11459         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11460
11461         switch (type) {
11462         case INVPCID_TYPE_INDIV_ADDR:
11463                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11464                     is_noncanonical_address(operand.gla, vcpu)) {
11465                         kvm_inject_gp(vcpu, 0);
11466                         return 1;
11467                 }
11468                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11469                 return kvm_skip_emulated_instruction(vcpu);
11470
11471         case INVPCID_TYPE_SINGLE_CTXT:
11472                 if (!pcid_enabled && (operand.pcid != 0)) {
11473                         kvm_inject_gp(vcpu, 0);
11474                         return 1;
11475                 }
11476
11477                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11478                         kvm_mmu_sync_roots(vcpu);
11479                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11480                 }
11481
11482                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11483                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11484                             == operand.pcid)
11485                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11486
11487                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11488                 /*
11489                  * If neither the current cr3 nor any of the prev_roots use the
11490                  * given PCID, then nothing needs to be done here because a
11491                  * resync will happen anyway before switching to any other CR3.
11492                  */
11493
11494                 return kvm_skip_emulated_instruction(vcpu);
11495
11496         case INVPCID_TYPE_ALL_NON_GLOBAL:
11497                 /*
11498                  * Currently, KVM doesn't mark global entries in the shadow
11499                  * page tables, so a non-global flush just degenerates to a
11500                  * global flush. If needed, we could optimize this later by
11501                  * keeping track of global entries in shadow page tables.
11502                  */
11503
11504                 fallthrough;
11505         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11506                 kvm_mmu_unload(vcpu);
11507                 return kvm_skip_emulated_instruction(vcpu);
11508
11509         default:
11510                 BUG(); /* We have already checked above that type <= 3 */
11511         }
11512 }
11513 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11514
11515 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11516 {
11517         struct kvm_run *run = vcpu->run;
11518         struct kvm_mmio_fragment *frag;
11519         unsigned int len;
11520
11521         BUG_ON(!vcpu->mmio_needed);
11522
11523         /* Complete previous fragment */
11524         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11525         len = min(8u, frag->len);
11526         if (!vcpu->mmio_is_write)
11527                 memcpy(frag->data, run->mmio.data, len);
11528
11529         if (frag->len <= 8) {
11530                 /* Switch to the next fragment. */
11531                 frag++;
11532                 vcpu->mmio_cur_fragment++;
11533         } else {
11534                 /* Go forward to the next mmio piece. */
11535                 frag->data += len;
11536                 frag->gpa += len;
11537                 frag->len -= len;
11538         }
11539
11540         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11541                 vcpu->mmio_needed = 0;
11542
11543                 // VMG change, at this point, we're always done
11544                 // RIP has already been advanced
11545                 return 1;
11546         }
11547
11548         // More MMIO is needed
11549         run->mmio.phys_addr = frag->gpa;
11550         run->mmio.len = min(8u, frag->len);
11551         run->mmio.is_write = vcpu->mmio_is_write;
11552         if (run->mmio.is_write)
11553                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11554         run->exit_reason = KVM_EXIT_MMIO;
11555
11556         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11557
11558         return 0;
11559 }
11560
11561 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11562                           void *data)
11563 {
11564         int handled;
11565         struct kvm_mmio_fragment *frag;
11566
11567         if (!data)
11568                 return -EINVAL;
11569
11570         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11571         if (handled == bytes)
11572                 return 1;
11573
11574         bytes -= handled;
11575         gpa += handled;
11576         data += handled;
11577
11578         /*TODO: Check if need to increment number of frags */
11579         frag = vcpu->mmio_fragments;
11580         vcpu->mmio_nr_fragments = 1;
11581         frag->len = bytes;
11582         frag->gpa = gpa;
11583         frag->data = data;
11584
11585         vcpu->mmio_needed = 1;
11586         vcpu->mmio_cur_fragment = 0;
11587
11588         vcpu->run->mmio.phys_addr = gpa;
11589         vcpu->run->mmio.len = min(8u, frag->len);
11590         vcpu->run->mmio.is_write = 1;
11591         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11592         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11593
11594         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11595
11596         return 0;
11597 }
11598 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11599
11600 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11601                          void *data)
11602 {
11603         int handled;
11604         struct kvm_mmio_fragment *frag;
11605
11606         if (!data)
11607                 return -EINVAL;
11608
11609         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11610         if (handled == bytes)
11611                 return 1;
11612
11613         bytes -= handled;
11614         gpa += handled;
11615         data += handled;
11616
11617         /*TODO: Check if need to increment number of frags */
11618         frag = vcpu->mmio_fragments;
11619         vcpu->mmio_nr_fragments = 1;
11620         frag->len = bytes;
11621         frag->gpa = gpa;
11622         frag->data = data;
11623
11624         vcpu->mmio_needed = 1;
11625         vcpu->mmio_cur_fragment = 0;
11626
11627         vcpu->run->mmio.phys_addr = gpa;
11628         vcpu->run->mmio.len = min(8u, frag->len);
11629         vcpu->run->mmio.is_write = 0;
11630         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11631
11632         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11633
11634         return 0;
11635 }
11636 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11637
11638 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11639 {
11640         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11641                vcpu->arch.pio.count * vcpu->arch.pio.size);
11642         vcpu->arch.pio.count = 0;
11643
11644         return 1;
11645 }
11646
11647 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11648                            unsigned int port, void *data,  unsigned int count)
11649 {
11650         int ret;
11651
11652         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11653                                         data, count);
11654         if (ret)
11655                 return ret;
11656
11657         vcpu->arch.pio.count = 0;
11658
11659         return 0;
11660 }
11661
11662 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11663                           unsigned int port, void *data, unsigned int count)
11664 {
11665         int ret;
11666
11667         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11668                                        data, count);
11669         if (ret) {
11670                 vcpu->arch.pio.count = 0;
11671         } else {
11672                 vcpu->arch.guest_ins_data = data;
11673                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11674         }
11675
11676         return 0;
11677 }
11678
11679 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11680                          unsigned int port, void *data,  unsigned int count,
11681                          int in)
11682 {
11683         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11684                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11685 }
11686 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11687
11688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);