KVM: x86: Hoist input checks in kvm_add_msr_filter()
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <asm/sgx.h>
79 #include <clocksource/hyperv_timer.h>
80
81 #define CREATE_TRACE_POINTS
82 #include "trace.h"
83
84 #define MAX_IO_MSRS 256
85 #define KVM_MAX_MCE_BANKS 32
86 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
87 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88
89 #define emul_to_vcpu(ctxt) \
90         ((struct kvm_vcpu *)(ctxt)->vcpu)
91
92 /* EFER defaults:
93  * - enable syscall per default because its emulated by KVM
94  * - enable LME and LMA per default on 64 bit KVM
95  */
96 #ifdef CONFIG_X86_64
97 static
98 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 #else
100 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
101 #endif
102
103 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104
105 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
106                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107
108 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
109 static void process_nmi(struct kvm_vcpu *vcpu);
110 static void process_smi(struct kvm_vcpu *vcpu);
111 static void enter_smm(struct kvm_vcpu *vcpu);
112 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
113 static void store_regs(struct kvm_vcpu *vcpu);
114 static int sync_regs(struct kvm_vcpu *vcpu);
115
116 struct kvm_x86_ops kvm_x86_ops __read_mostly;
117 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118
119 #define KVM_X86_OP(func)                                             \
120         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
121                                 *(((struct kvm_x86_ops *)0)->func));
122 #define KVM_X86_OP_NULL KVM_X86_OP
123 #include <asm/kvm-x86-ops.h>
124 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127
128 static bool __read_mostly ignore_msrs = 0;
129 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130
131 bool __read_mostly report_ignored_msrs = true;
132 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
133 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134
135 unsigned int min_timer_period_us = 200;
136 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly kvmclock_periodic_sync = true;
139 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140
141 bool __read_mostly kvm_has_tsc_control;
142 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
143 u32  __read_mostly kvm_max_guest_tsc_khz;
144 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
145 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
146 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
147 u64  __read_mostly kvm_max_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
149 u64 __read_mostly kvm_default_tsc_scaling_ratio;
150 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
151 bool __read_mostly kvm_has_bus_lock_exit;
152 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153
154 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
155 static u32 __read_mostly tsc_tolerance_ppm = 250;
156 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
157
158 /*
159  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
160  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
161  * advancement entirely.  Any other value is used as-is and disables adaptive
162  * tuning, i.e. allows privileged userspace to set an exact advancement time.
163  */
164 static int __read_mostly lapic_timer_advance_ns = -1;
165 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, S_IRUGO);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, S_IRUGO);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 static bool __read_mostly force_emulation_prefix = false;
175 module_param(force_emulation_prefix, bool, S_IRUGO);
176
177 int __read_mostly pi_inject_timer = -1;
178 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
179
180 /*
181  * Restoring the host value for MSRs that are only consumed when running in
182  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
183  * returns to userspace, i.e. the kernel can run with the guest's value.
184  */
185 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186
187 struct kvm_user_return_msrs_global {
188         int nr;
189         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
190 };
191
192 struct kvm_user_return_msrs {
193         struct user_return_notifier urn;
194         bool registered;
195         struct kvm_user_return_msr_values {
196                 u64 host;
197                 u64 curr;
198         } values[KVM_MAX_NR_USER_RETURN_MSRS];
199 };
200
201 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
202 static struct kvm_user_return_msrs __percpu *user_return_msrs;
203
204 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
205                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
206                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
207                                 | XFEATURE_MASK_PKRU)
208
209 u64 __read_mostly host_efer;
210 EXPORT_SYMBOL_GPL(host_efer);
211
212 bool __read_mostly allow_smaller_maxphyaddr = 0;
213 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
214
215 u64 __read_mostly host_xss;
216 EXPORT_SYMBOL_GPL(host_xss);
217 u64 __read_mostly supported_xss;
218 EXPORT_SYMBOL_GPL(supported_xss);
219
220 struct kvm_stats_debugfs_item debugfs_entries[] = {
221         VCPU_STAT("pf_fixed", pf_fixed),
222         VCPU_STAT("pf_guest", pf_guest),
223         VCPU_STAT("tlb_flush", tlb_flush),
224         VCPU_STAT("invlpg", invlpg),
225         VCPU_STAT("exits", exits),
226         VCPU_STAT("io_exits", io_exits),
227         VCPU_STAT("mmio_exits", mmio_exits),
228         VCPU_STAT("signal_exits", signal_exits),
229         VCPU_STAT("irq_window", irq_window_exits),
230         VCPU_STAT("nmi_window", nmi_window_exits),
231         VCPU_STAT("halt_exits", halt_exits),
232         VCPU_STAT("halt_successful_poll", halt_successful_poll),
233         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
234         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
235         VCPU_STAT("halt_wakeup", halt_wakeup),
236         VCPU_STAT("hypercalls", hypercalls),
237         VCPU_STAT("request_irq", request_irq_exits),
238         VCPU_STAT("irq_exits", irq_exits),
239         VCPU_STAT("host_state_reload", host_state_reload),
240         VCPU_STAT("fpu_reload", fpu_reload),
241         VCPU_STAT("insn_emulation", insn_emulation),
242         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
243         VCPU_STAT("irq_injections", irq_injections),
244         VCPU_STAT("nmi_injections", nmi_injections),
245         VCPU_STAT("req_event", req_event),
246         VCPU_STAT("l1d_flush", l1d_flush),
247         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
248         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
249         VCPU_STAT("nested_run", nested_run),
250         VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
251         VCPU_STAT("directed_yield_successful", directed_yield_successful),
252         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
253         VM_STAT("mmu_pte_write", mmu_pte_write),
254         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
255         VM_STAT("mmu_flooded", mmu_flooded),
256         VM_STAT("mmu_recycled", mmu_recycled),
257         VM_STAT("mmu_cache_miss", mmu_cache_miss),
258         VM_STAT("mmu_unsync", mmu_unsync),
259         VM_STAT("remote_tlb_flush", remote_tlb_flush),
260         VM_STAT("largepages", lpages, .mode = 0444),
261         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
262         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
263         { NULL }
264 };
265
266 u64 __read_mostly host_xcr0;
267 u64 __read_mostly supported_xcr0;
268 EXPORT_SYMBOL_GPL(supported_xcr0);
269
270 static struct kmem_cache *x86_fpu_cache;
271
272 static struct kmem_cache *x86_emulator_cache;
273
274 /*
275  * When called, it means the previous get/set msr reached an invalid msr.
276  * Return true if we want to ignore/silent this failed msr access.
277  */
278 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
279 {
280         const char *op = write ? "wrmsr" : "rdmsr";
281
282         if (ignore_msrs) {
283                 if (report_ignored_msrs)
284                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
285                                       op, msr, data);
286                 /* Mask the error */
287                 return true;
288         } else {
289                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
290                                       op, msr, data);
291                 return false;
292         }
293 }
294
295 static struct kmem_cache *kvm_alloc_emulator_cache(void)
296 {
297         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
298         unsigned int size = sizeof(struct x86_emulate_ctxt);
299
300         return kmem_cache_create_usercopy("x86_emulator", size,
301                                           __alignof__(struct x86_emulate_ctxt),
302                                           SLAB_ACCOUNT, useroffset,
303                                           size - useroffset, NULL);
304 }
305
306 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
307
308 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
309 {
310         int i;
311         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
312                 vcpu->arch.apf.gfns[i] = ~0;
313 }
314
315 static void kvm_on_user_return(struct user_return_notifier *urn)
316 {
317         unsigned slot;
318         struct kvm_user_return_msrs *msrs
319                 = container_of(urn, struct kvm_user_return_msrs, urn);
320         struct kvm_user_return_msr_values *values;
321         unsigned long flags;
322
323         /*
324          * Disabling irqs at this point since the following code could be
325          * interrupted and executed through kvm_arch_hardware_disable()
326          */
327         local_irq_save(flags);
328         if (msrs->registered) {
329                 msrs->registered = false;
330                 user_return_notifier_unregister(urn);
331         }
332         local_irq_restore(flags);
333         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
334                 values = &msrs->values[slot];
335                 if (values->host != values->curr) {
336                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
337                         values->curr = values->host;
338                 }
339         }
340 }
341
342 void kvm_define_user_return_msr(unsigned slot, u32 msr)
343 {
344         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
345         user_return_msrs_global.msrs[slot] = msr;
346         if (slot >= user_return_msrs_global.nr)
347                 user_return_msrs_global.nr = slot + 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
350
351 static void kvm_user_return_msr_cpu_online(void)
352 {
353         unsigned int cpu = smp_processor_id();
354         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
355         u64 value;
356         int i;
357
358         for (i = 0; i < user_return_msrs_global.nr; ++i) {
359                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
360                 msrs->values[i].host = value;
361                 msrs->values[i].curr = value;
362         }
363 }
364
365 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
366 {
367         unsigned int cpu = smp_processor_id();
368         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
369         int err;
370
371         value = (value & mask) | (msrs->values[slot].host & ~mask);
372         if (value == msrs->values[slot].curr)
373                 return 0;
374         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
375         if (err)
376                 return 1;
377
378         msrs->values[slot].curr = value;
379         if (!msrs->registered) {
380                 msrs->urn.on_user_return = kvm_on_user_return;
381                 user_return_notifier_register(&msrs->urn);
382                 msrs->registered = true;
383         }
384         return 0;
385 }
386 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
387
388 static void drop_user_return_notifiers(void)
389 {
390         unsigned int cpu = smp_processor_id();
391         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
392
393         if (msrs->registered)
394                 kvm_on_user_return(&msrs->urn);
395 }
396
397 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
398 {
399         return vcpu->arch.apic_base;
400 }
401 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
402
403 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
404 {
405         return kvm_apic_mode(kvm_get_apic_base(vcpu));
406 }
407 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
408
409 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
410 {
411         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
412         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
413         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
414                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
415
416         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
417                 return 1;
418         if (!msr_info->host_initiated) {
419                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
420                         return 1;
421                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
422                         return 1;
423         }
424
425         kvm_lapic_set_base(vcpu, msr_info->data);
426         kvm_recalculate_apic_map(vcpu->kvm);
427         return 0;
428 }
429 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
430
431 asmlinkage __visible noinstr void kvm_spurious_fault(void)
432 {
433         /* Fault while not rebooting.  We want the trace. */
434         BUG_ON(!kvm_rebooting);
435 }
436 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
437
438 #define EXCPT_BENIGN            0
439 #define EXCPT_CONTRIBUTORY      1
440 #define EXCPT_PF                2
441
442 static int exception_class(int vector)
443 {
444         switch (vector) {
445         case PF_VECTOR:
446                 return EXCPT_PF;
447         case DE_VECTOR:
448         case TS_VECTOR:
449         case NP_VECTOR:
450         case SS_VECTOR:
451         case GP_VECTOR:
452                 return EXCPT_CONTRIBUTORY;
453         default:
454                 break;
455         }
456         return EXCPT_BENIGN;
457 }
458
459 #define EXCPT_FAULT             0
460 #define EXCPT_TRAP              1
461 #define EXCPT_ABORT             2
462 #define EXCPT_INTERRUPT         3
463
464 static int exception_type(int vector)
465 {
466         unsigned int mask;
467
468         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
469                 return EXCPT_INTERRUPT;
470
471         mask = 1 << vector;
472
473         /* #DB is trap, as instruction watchpoints are handled elsewhere */
474         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
475                 return EXCPT_TRAP;
476
477         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
478                 return EXCPT_ABORT;
479
480         /* Reserved exceptions will result in fault */
481         return EXCPT_FAULT;
482 }
483
484 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
485 {
486         unsigned nr = vcpu->arch.exception.nr;
487         bool has_payload = vcpu->arch.exception.has_payload;
488         unsigned long payload = vcpu->arch.exception.payload;
489
490         if (!has_payload)
491                 return;
492
493         switch (nr) {
494         case DB_VECTOR:
495                 /*
496                  * "Certain debug exceptions may clear bit 0-3.  The
497                  * remaining contents of the DR6 register are never
498                  * cleared by the processor".
499                  */
500                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
501                 /*
502                  * In order to reflect the #DB exception payload in guest
503                  * dr6, three components need to be considered: active low
504                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
505                  * DR6_BS and DR6_BT)
506                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
507                  * In the target guest dr6:
508                  * FIXED_1 bits should always be set.
509                  * Active low bits should be cleared if 1-setting in payload.
510                  * Active high bits should be set if 1-setting in payload.
511                  *
512                  * Note, the payload is compatible with the pending debug
513                  * exceptions/exit qualification under VMX, that active_low bits
514                  * are active high in payload.
515                  * So they need to be flipped for DR6.
516                  */
517                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
518                 vcpu->arch.dr6 |= payload;
519                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
520
521                 /*
522                  * The #DB payload is defined as compatible with the 'pending
523                  * debug exceptions' field under VMX, not DR6. While bit 12 is
524                  * defined in the 'pending debug exceptions' field (enabled
525                  * breakpoint), it is reserved and must be zero in DR6.
526                  */
527                 vcpu->arch.dr6 &= ~BIT(12);
528                 break;
529         case PF_VECTOR:
530                 vcpu->arch.cr2 = payload;
531                 break;
532         }
533
534         vcpu->arch.exception.has_payload = false;
535         vcpu->arch.exception.payload = 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
538
539 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
540                 unsigned nr, bool has_error, u32 error_code,
541                 bool has_payload, unsigned long payload, bool reinject)
542 {
543         u32 prev_nr;
544         int class1, class2;
545
546         kvm_make_request(KVM_REQ_EVENT, vcpu);
547
548         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
549         queue:
550                 if (reinject) {
551                         /*
552                          * On vmentry, vcpu->arch.exception.pending is only
553                          * true if an event injection was blocked by
554                          * nested_run_pending.  In that case, however,
555                          * vcpu_enter_guest requests an immediate exit,
556                          * and the guest shouldn't proceed far enough to
557                          * need reinjection.
558                          */
559                         WARN_ON_ONCE(vcpu->arch.exception.pending);
560                         vcpu->arch.exception.injected = true;
561                         if (WARN_ON_ONCE(has_payload)) {
562                                 /*
563                                  * A reinjected event has already
564                                  * delivered its payload.
565                                  */
566                                 has_payload = false;
567                                 payload = 0;
568                         }
569                 } else {
570                         vcpu->arch.exception.pending = true;
571                         vcpu->arch.exception.injected = false;
572                 }
573                 vcpu->arch.exception.has_error_code = has_error;
574                 vcpu->arch.exception.nr = nr;
575                 vcpu->arch.exception.error_code = error_code;
576                 vcpu->arch.exception.has_payload = has_payload;
577                 vcpu->arch.exception.payload = payload;
578                 if (!is_guest_mode(vcpu))
579                         kvm_deliver_exception_payload(vcpu);
580                 return;
581         }
582
583         /* to check exception */
584         prev_nr = vcpu->arch.exception.nr;
585         if (prev_nr == DF_VECTOR) {
586                 /* triple fault -> shutdown */
587                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
588                 return;
589         }
590         class1 = exception_class(prev_nr);
591         class2 = exception_class(nr);
592         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
593                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
594                 /*
595                  * Generate double fault per SDM Table 5-5.  Set
596                  * exception.pending = true so that the double fault
597                  * can trigger a nested vmexit.
598                  */
599                 vcpu->arch.exception.pending = true;
600                 vcpu->arch.exception.injected = false;
601                 vcpu->arch.exception.has_error_code = true;
602                 vcpu->arch.exception.nr = DF_VECTOR;
603                 vcpu->arch.exception.error_code = 0;
604                 vcpu->arch.exception.has_payload = false;
605                 vcpu->arch.exception.payload = 0;
606         } else
607                 /* replace previous exception with a new one in a hope
608                    that instruction re-execution will regenerate lost
609                    exception */
610                 goto queue;
611 }
612
613 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
614 {
615         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
616 }
617 EXPORT_SYMBOL_GPL(kvm_queue_exception);
618
619 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
620 {
621         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
622 }
623 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
624
625 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
626                            unsigned long payload)
627 {
628         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
629 }
630 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
631
632 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
633                                     u32 error_code, unsigned long payload)
634 {
635         kvm_multiple_exception(vcpu, nr, true, error_code,
636                                true, payload, false);
637 }
638
639 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
640 {
641         if (err)
642                 kvm_inject_gp(vcpu, 0);
643         else
644                 return kvm_skip_emulated_instruction(vcpu);
645
646         return 1;
647 }
648 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
649
650 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
651 {
652         ++vcpu->stat.pf_guest;
653         vcpu->arch.exception.nested_apf =
654                 is_guest_mode(vcpu) && fault->async_page_fault;
655         if (vcpu->arch.exception.nested_apf) {
656                 vcpu->arch.apf.nested_apf_token = fault->address;
657                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
658         } else {
659                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
660                                         fault->address);
661         }
662 }
663 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
664
665 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
666                                     struct x86_exception *fault)
667 {
668         struct kvm_mmu *fault_mmu;
669         WARN_ON_ONCE(fault->vector != PF_VECTOR);
670
671         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
672                                                vcpu->arch.walk_mmu;
673
674         /*
675          * Invalidate the TLB entry for the faulting address, if it exists,
676          * else the access will fault indefinitely (and to emulate hardware).
677          */
678         if ((fault->error_code & PFERR_PRESENT_MASK) &&
679             !(fault->error_code & PFERR_RSVD_MASK))
680                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
681                                        fault_mmu->root_hpa);
682
683         fault_mmu->inject_page_fault(vcpu, fault);
684         return fault->nested_page_fault;
685 }
686 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
687
688 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
689 {
690         atomic_inc(&vcpu->arch.nmi_queued);
691         kvm_make_request(KVM_REQ_NMI, vcpu);
692 }
693 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
694
695 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
696 {
697         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
700
701 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
702 {
703         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
706
707 /*
708  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
709  * a #GP and return false.
710  */
711 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
712 {
713         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
714                 return true;
715         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
716         return false;
717 }
718 EXPORT_SYMBOL_GPL(kvm_require_cpl);
719
720 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
721 {
722         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723                 return true;
724
725         kvm_queue_exception(vcpu, UD_VECTOR);
726         return false;
727 }
728 EXPORT_SYMBOL_GPL(kvm_require_dr);
729
730 /*
731  * This function will be used to read from the physical memory of the currently
732  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
733  * can read from guest physical or from the guest's guest physical memory.
734  */
735 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
736                             gfn_t ngfn, void *data, int offset, int len,
737                             u32 access)
738 {
739         struct x86_exception exception;
740         gfn_t real_gfn;
741         gpa_t ngpa;
742
743         ngpa     = gfn_to_gpa(ngfn);
744         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
745         if (real_gfn == UNMAPPED_GVA)
746                 return -EFAULT;
747
748         real_gfn = gpa_to_gfn(real_gfn);
749
750         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
751 }
752 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
753
754 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
755                                void *data, int offset, int len, u32 access)
756 {
757         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
758                                        data, offset, len, access);
759 }
760
761 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
762 {
763         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
764 }
765
766 /*
767  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
768  */
769 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
770 {
771         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
772         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
773         int i;
774         int ret;
775         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
776
777         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
778                                       offset * sizeof(u64), sizeof(pdpte),
779                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
780         if (ret < 0) {
781                 ret = 0;
782                 goto out;
783         }
784         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
785                 if ((pdpte[i] & PT_PRESENT_MASK) &&
786                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
787                         ret = 0;
788                         goto out;
789                 }
790         }
791         ret = 1;
792
793         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
794         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
795
796 out:
797
798         return ret;
799 }
800 EXPORT_SYMBOL_GPL(load_pdptrs);
801
802 bool pdptrs_changed(struct kvm_vcpu *vcpu)
803 {
804         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
805         int offset;
806         gfn_t gfn;
807         int r;
808
809         if (!is_pae_paging(vcpu))
810                 return false;
811
812         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
813                 return true;
814
815         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
816         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
817         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
818                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
819         if (r < 0)
820                 return true;
821
822         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
823 }
824 EXPORT_SYMBOL_GPL(pdptrs_changed);
825
826 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
827 {
828         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
829
830         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
831                 kvm_clear_async_pf_completion_queue(vcpu);
832                 kvm_async_pf_hash_reset(vcpu);
833         }
834
835         if ((cr0 ^ old_cr0) & update_bits)
836                 kvm_mmu_reset_context(vcpu);
837
838         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
839             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
840             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
841                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
842 }
843 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
844
845 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
846 {
847         unsigned long old_cr0 = kvm_read_cr0(vcpu);
848         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
849
850         cr0 |= X86_CR0_ET;
851
852 #ifdef CONFIG_X86_64
853         if (cr0 & 0xffffffff00000000UL)
854                 return 1;
855 #endif
856
857         cr0 &= ~CR0_RESERVED_BITS;
858
859         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
860                 return 1;
861
862         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
863                 return 1;
864
865 #ifdef CONFIG_X86_64
866         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
867             (cr0 & X86_CR0_PG)) {
868                 int cs_db, cs_l;
869
870                 if (!is_pae(vcpu))
871                         return 1;
872                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
873                 if (cs_l)
874                         return 1;
875         }
876 #endif
877         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
878             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
879             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
880                 return 1;
881
882         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
883                 return 1;
884
885         static_call(kvm_x86_set_cr0)(vcpu, cr0);
886
887         kvm_post_set_cr0(vcpu, old_cr0, cr0);
888
889         return 0;
890 }
891 EXPORT_SYMBOL_GPL(kvm_set_cr0);
892
893 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
894 {
895         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
896 }
897 EXPORT_SYMBOL_GPL(kvm_lmsw);
898
899 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
900 {
901         if (vcpu->arch.guest_state_protected)
902                 return;
903
904         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
905
906                 if (vcpu->arch.xcr0 != host_xcr0)
907                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
908
909                 if (vcpu->arch.xsaves_enabled &&
910                     vcpu->arch.ia32_xss != host_xss)
911                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
912         }
913
914         if (static_cpu_has(X86_FEATURE_PKU) &&
915             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
916              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
917             vcpu->arch.pkru != vcpu->arch.host_pkru)
918                 __write_pkru(vcpu->arch.pkru);
919 }
920 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
921
922 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
923 {
924         if (vcpu->arch.guest_state_protected)
925                 return;
926
927         if (static_cpu_has(X86_FEATURE_PKU) &&
928             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
929              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
930                 vcpu->arch.pkru = rdpkru();
931                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
932                         __write_pkru(vcpu->arch.host_pkru);
933         }
934
935         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937                 if (vcpu->arch.xcr0 != host_xcr0)
938                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
939
940                 if (vcpu->arch.xsaves_enabled &&
941                     vcpu->arch.ia32_xss != host_xss)
942                         wrmsrl(MSR_IA32_XSS, host_xss);
943         }
944
945 }
946 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
947
948 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
949 {
950         u64 xcr0 = xcr;
951         u64 old_xcr0 = vcpu->arch.xcr0;
952         u64 valid_bits;
953
954         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
955         if (index != XCR_XFEATURE_ENABLED_MASK)
956                 return 1;
957         if (!(xcr0 & XFEATURE_MASK_FP))
958                 return 1;
959         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
960                 return 1;
961
962         /*
963          * Do not allow the guest to set bits that we do not support
964          * saving.  However, xcr0 bit 0 is always set, even if the
965          * emulated CPU does not support XSAVE (see fx_init).
966          */
967         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
968         if (xcr0 & ~valid_bits)
969                 return 1;
970
971         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
972             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
973                 return 1;
974
975         if (xcr0 & XFEATURE_MASK_AVX512) {
976                 if (!(xcr0 & XFEATURE_MASK_YMM))
977                         return 1;
978                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
979                         return 1;
980         }
981         vcpu->arch.xcr0 = xcr0;
982
983         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
984                 kvm_update_cpuid_runtime(vcpu);
985         return 0;
986 }
987
988 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
989 {
990         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
991             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
992                 kvm_inject_gp(vcpu, 0);
993                 return 1;
994         }
995
996         return kvm_skip_emulated_instruction(vcpu);
997 }
998 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
999
1000 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1001 {
1002         if (cr4 & cr4_reserved_bits)
1003                 return false;
1004
1005         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1006                 return false;
1007
1008         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1011
1012 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1013 {
1014         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1015                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1016
1017         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1018             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1019                 kvm_mmu_reset_context(vcpu);
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1022
1023 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1024 {
1025         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1026         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1027                                    X86_CR4_SMEP;
1028
1029         if (!kvm_is_valid_cr4(vcpu, cr4))
1030                 return 1;
1031
1032         if (is_long_mode(vcpu)) {
1033                 if (!(cr4 & X86_CR4_PAE))
1034                         return 1;
1035                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1036                         return 1;
1037         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1038                    && ((cr4 ^ old_cr4) & pdptr_bits)
1039                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1040                                    kvm_read_cr3(vcpu)))
1041                 return 1;
1042
1043         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1044                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1045                         return 1;
1046
1047                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1048                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1049                         return 1;
1050         }
1051
1052         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1053
1054         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1055
1056         return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1059
1060 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1061 {
1062         bool skip_tlb_flush = false;
1063 #ifdef CONFIG_X86_64
1064         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1065
1066         if (pcid_enabled) {
1067                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1068                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1069         }
1070 #endif
1071
1072         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1073                 if (!skip_tlb_flush) {
1074                         kvm_mmu_sync_roots(vcpu);
1075                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1076                 }
1077                 return 0;
1078         }
1079
1080         /*
1081          * Do not condition the GPA check on long mode, this helper is used to
1082          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1083          * the current vCPU mode is accurate.
1084          */
1085         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1086                 return 1;
1087
1088         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1089                 return 1;
1090
1091         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1092         vcpu->arch.cr3 = cr3;
1093         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1094
1095         return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1098
1099 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1100 {
1101         if (cr8 & CR8_RESERVED_BITS)
1102                 return 1;
1103         if (lapic_in_kernel(vcpu))
1104                 kvm_lapic_set_tpr(vcpu, cr8);
1105         else
1106                 vcpu->arch.cr8 = cr8;
1107         return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1110
1111 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1112 {
1113         if (lapic_in_kernel(vcpu))
1114                 return kvm_lapic_get_cr8(vcpu);
1115         else
1116                 return vcpu->arch.cr8;
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1119
1120 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1121 {
1122         int i;
1123
1124         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1125                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1126                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1127                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1128         }
1129 }
1130
1131 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1132 {
1133         unsigned long dr7;
1134
1135         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1136                 dr7 = vcpu->arch.guest_debug_dr7;
1137         else
1138                 dr7 = vcpu->arch.dr7;
1139         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1140         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1141         if (dr7 & DR7_BP_EN_MASK)
1142                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1145
1146 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1147 {
1148         u64 fixed = DR6_FIXED_1;
1149
1150         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1151                 fixed |= DR6_RTM;
1152         return fixed;
1153 }
1154
1155 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1156 {
1157         size_t size = ARRAY_SIZE(vcpu->arch.db);
1158
1159         switch (dr) {
1160         case 0 ... 3:
1161                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1162                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1163                         vcpu->arch.eff_db[dr] = val;
1164                 break;
1165         case 4:
1166         case 6:
1167                 if (!kvm_dr6_valid(val))
1168                         return 1; /* #GP */
1169                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1170                 break;
1171         case 5:
1172         default: /* 7 */
1173                 if (!kvm_dr7_valid(val))
1174                         return 1; /* #GP */
1175                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1176                 kvm_update_dr7(vcpu);
1177                 break;
1178         }
1179
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_set_dr);
1183
1184 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1185 {
1186         size_t size = ARRAY_SIZE(vcpu->arch.db);
1187
1188         switch (dr) {
1189         case 0 ... 3:
1190                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1191                 break;
1192         case 4:
1193         case 6:
1194                 *val = vcpu->arch.dr6;
1195                 break;
1196         case 5:
1197         default: /* 7 */
1198                 *val = vcpu->arch.dr7;
1199                 break;
1200         }
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dr);
1203
1204 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1205 {
1206         u32 ecx = kvm_rcx_read(vcpu);
1207         u64 data;
1208
1209         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1210                 kvm_inject_gp(vcpu, 0);
1211                 return 1;
1212         }
1213
1214         kvm_rax_write(vcpu, (u32)data);
1215         kvm_rdx_write(vcpu, data >> 32);
1216         return kvm_skip_emulated_instruction(vcpu);
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1219
1220 /*
1221  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1222  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1223  *
1224  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1225  * extract the supported MSRs from the related const lists.
1226  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1227  * capabilities of the host cpu. This capabilities test skips MSRs that are
1228  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1229  * may depend on host virtualization features rather than host cpu features.
1230  */
1231
1232 static const u32 msrs_to_save_all[] = {
1233         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1234         MSR_STAR,
1235 #ifdef CONFIG_X86_64
1236         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1237 #endif
1238         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1239         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1240         MSR_IA32_SPEC_CTRL,
1241         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1242         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1243         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1244         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1245         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1246         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1247         MSR_IA32_UMWAIT_CONTROL,
1248
1249         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1250         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1251         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1252         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1253         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1254         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1255         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1256         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1257         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1258         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1259         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1260         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1261         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1262         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1263         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1264         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1265         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1266         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1267         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1268         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1269         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1270         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1271 };
1272
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275
1276 static const u32 emulated_msrs_all[] = {
1277         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284         HV_X64_MSR_RESET,
1285         HV_X64_MSR_VP_INDEX,
1286         HV_X64_MSR_VP_RUNTIME,
1287         HV_X64_MSR_SCONTROL,
1288         HV_X64_MSR_STIMER0_CONFIG,
1289         HV_X64_MSR_VP_ASSIST_PAGE,
1290         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291         HV_X64_MSR_TSC_EMULATION_STATUS,
1292         HV_X64_MSR_SYNDBG_OPTIONS,
1293         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296
1297         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299
1300         MSR_IA32_TSC_ADJUST,
1301         MSR_IA32_TSC_DEADLINE,
1302         MSR_IA32_ARCH_CAPABILITIES,
1303         MSR_IA32_PERF_CAPABILITIES,
1304         MSR_IA32_MISC_ENABLE,
1305         MSR_IA32_MCG_STATUS,
1306         MSR_IA32_MCG_CTL,
1307         MSR_IA32_MCG_EXT_CTL,
1308         MSR_IA32_SMBASE,
1309         MSR_SMI_COUNT,
1310         MSR_PLATFORM_INFO,
1311         MSR_MISC_FEATURES_ENABLES,
1312         MSR_AMD64_VIRT_SPEC_CTRL,
1313         MSR_IA32_POWER_CTL,
1314         MSR_IA32_UCODE_REV,
1315
1316         /*
1317          * The following list leaves out MSRs whose values are determined
1318          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319          * We always support the "true" VMX control MSRs, even if the host
1320          * processor does not, so I am putting these registers here rather
1321          * than in msrs_to_save_all.
1322          */
1323         MSR_IA32_VMX_BASIC,
1324         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328         MSR_IA32_VMX_MISC,
1329         MSR_IA32_VMX_CR0_FIXED0,
1330         MSR_IA32_VMX_CR4_FIXED0,
1331         MSR_IA32_VMX_VMCS_ENUM,
1332         MSR_IA32_VMX_PROCBASED_CTLS2,
1333         MSR_IA32_VMX_EPT_VPID_CAP,
1334         MSR_IA32_VMX_VMFUNC,
1335
1336         MSR_K7_HWCR,
1337         MSR_KVM_POLL_CONTROL,
1338 };
1339
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348         MSR_IA32_VMX_BASIC,
1349         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350         MSR_IA32_VMX_PINBASED_CTLS,
1351         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352         MSR_IA32_VMX_PROCBASED_CTLS,
1353         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354         MSR_IA32_VMX_EXIT_CTLS,
1355         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356         MSR_IA32_VMX_ENTRY_CTLS,
1357         MSR_IA32_VMX_MISC,
1358         MSR_IA32_VMX_CR0_FIXED0,
1359         MSR_IA32_VMX_CR0_FIXED1,
1360         MSR_IA32_VMX_CR4_FIXED0,
1361         MSR_IA32_VMX_CR4_FIXED1,
1362         MSR_IA32_VMX_VMCS_ENUM,
1363         MSR_IA32_VMX_PROCBASED_CTLS2,
1364         MSR_IA32_VMX_EPT_VPID_CAP,
1365         MSR_IA32_VMX_VMFUNC,
1366
1367         MSR_F10H_DECFG,
1368         MSR_IA32_UCODE_REV,
1369         MSR_IA32_ARCH_CAPABILITIES,
1370         MSR_IA32_PERF_CAPABILITIES,
1371 };
1372
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375
1376 static u64 kvm_get_arch_capabilities(void)
1377 {
1378         u64 data = 0;
1379
1380         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1381                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1382
1383         /*
1384          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1385          * the nested hypervisor runs with NX huge pages.  If it is not,
1386          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1387          * L1 guests, so it need not worry about its own (L2) guests.
1388          */
1389         data |= ARCH_CAP_PSCHANGE_MC_NO;
1390
1391         /*
1392          * If we're doing cache flushes (either "always" or "cond")
1393          * we will do one whenever the guest does a vmlaunch/vmresume.
1394          * If an outer hypervisor is doing the cache flush for us
1395          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1396          * capability to the guest too, and if EPT is disabled we're not
1397          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1398          * require a nested hypervisor to do a flush of its own.
1399          */
1400         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1401                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1402
1403         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1404                 data |= ARCH_CAP_RDCL_NO;
1405         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1406                 data |= ARCH_CAP_SSB_NO;
1407         if (!boot_cpu_has_bug(X86_BUG_MDS))
1408                 data |= ARCH_CAP_MDS_NO;
1409
1410         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1411                 /*
1412                  * If RTM=0 because the kernel has disabled TSX, the host might
1413                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1414                  * and therefore knows that there cannot be TAA) but keep
1415                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1416                  * and we want to allow migrating those guests to tsx=off hosts.
1417                  */
1418                 data &= ~ARCH_CAP_TAA_NO;
1419         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1420                 data |= ARCH_CAP_TAA_NO;
1421         } else {
1422                 /*
1423                  * Nothing to do here; we emulate TSX_CTRL if present on the
1424                  * host so the guest can choose between disabling TSX or
1425                  * using VERW to clear CPU buffers.
1426                  */
1427         }
1428
1429         return data;
1430 }
1431
1432 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1433 {
1434         switch (msr->index) {
1435         case MSR_IA32_ARCH_CAPABILITIES:
1436                 msr->data = kvm_get_arch_capabilities();
1437                 break;
1438         case MSR_IA32_UCODE_REV:
1439                 rdmsrl_safe(msr->index, &msr->data);
1440                 break;
1441         default:
1442                 return static_call(kvm_x86_get_msr_feature)(msr);
1443         }
1444         return 0;
1445 }
1446
1447 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1448 {
1449         struct kvm_msr_entry msr;
1450         int r;
1451
1452         msr.index = index;
1453         r = kvm_get_msr_feature(&msr);
1454
1455         if (r == KVM_MSR_RET_INVALID) {
1456                 /* Unconditionally clear the output for simplicity */
1457                 *data = 0;
1458                 if (kvm_msr_ignored_check(index, 0, false))
1459                         r = 0;
1460         }
1461
1462         if (r)
1463                 return r;
1464
1465         *data = msr.data;
1466
1467         return 0;
1468 }
1469
1470 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1471 {
1472         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1473                 return false;
1474
1475         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1476                 return false;
1477
1478         if (efer & (EFER_LME | EFER_LMA) &&
1479             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1480                 return false;
1481
1482         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1483                 return false;
1484
1485         return true;
1486
1487 }
1488 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1489 {
1490         if (efer & efer_reserved_bits)
1491                 return false;
1492
1493         return __kvm_valid_efer(vcpu, efer);
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1496
1497 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1498 {
1499         u64 old_efer = vcpu->arch.efer;
1500         u64 efer = msr_info->data;
1501         int r;
1502
1503         if (efer & efer_reserved_bits)
1504                 return 1;
1505
1506         if (!msr_info->host_initiated) {
1507                 if (!__kvm_valid_efer(vcpu, efer))
1508                         return 1;
1509
1510                 if (is_paging(vcpu) &&
1511                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1512                         return 1;
1513         }
1514
1515         efer &= ~EFER_LMA;
1516         efer |= vcpu->arch.efer & EFER_LMA;
1517
1518         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1519         if (r) {
1520                 WARN_ON(r > 0);
1521                 return r;
1522         }
1523
1524         /* Update reserved bits */
1525         if ((efer ^ old_efer) & EFER_NX)
1526                 kvm_mmu_reset_context(vcpu);
1527
1528         return 0;
1529 }
1530
1531 void kvm_enable_efer_bits(u64 mask)
1532 {
1533        efer_reserved_bits &= ~mask;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1536
1537 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1538 {
1539         struct kvm_x86_msr_filter *msr_filter;
1540         struct msr_bitmap_range *ranges;
1541         struct kvm *kvm = vcpu->kvm;
1542         bool allowed;
1543         int idx;
1544         u32 i;
1545
1546         /* x2APIC MSRs do not support filtering. */
1547         if (index >= 0x800 && index <= 0x8ff)
1548                 return true;
1549
1550         idx = srcu_read_lock(&kvm->srcu);
1551
1552         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1553         if (!msr_filter) {
1554                 allowed = true;
1555                 goto out;
1556         }
1557
1558         allowed = msr_filter->default_allow;
1559         ranges = msr_filter->ranges;
1560
1561         for (i = 0; i < msr_filter->count; i++) {
1562                 u32 start = ranges[i].base;
1563                 u32 end = start + ranges[i].nmsrs;
1564                 u32 flags = ranges[i].flags;
1565                 unsigned long *bitmap = ranges[i].bitmap;
1566
1567                 if ((index >= start) && (index < end) && (flags & type)) {
1568                         allowed = !!test_bit(index - start, bitmap);
1569                         break;
1570                 }
1571         }
1572
1573 out:
1574         srcu_read_unlock(&kvm->srcu, idx);
1575
1576         return allowed;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1579
1580 /*
1581  * Write @data into the MSR specified by @index.  Select MSR specific fault
1582  * checks are bypassed if @host_initiated is %true.
1583  * Returns 0 on success, non-0 otherwise.
1584  * Assumes vcpu_load() was already called.
1585  */
1586 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1587                          bool host_initiated)
1588 {
1589         struct msr_data msr;
1590
1591         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1592                 return KVM_MSR_RET_FILTERED;
1593
1594         switch (index) {
1595         case MSR_FS_BASE:
1596         case MSR_GS_BASE:
1597         case MSR_KERNEL_GS_BASE:
1598         case MSR_CSTAR:
1599         case MSR_LSTAR:
1600                 if (is_noncanonical_address(data, vcpu))
1601                         return 1;
1602                 break;
1603         case MSR_IA32_SYSENTER_EIP:
1604         case MSR_IA32_SYSENTER_ESP:
1605                 /*
1606                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1607                  * non-canonical address is written on Intel but not on
1608                  * AMD (which ignores the top 32-bits, because it does
1609                  * not implement 64-bit SYSENTER).
1610                  *
1611                  * 64-bit code should hence be able to write a non-canonical
1612                  * value on AMD.  Making the address canonical ensures that
1613                  * vmentry does not fail on Intel after writing a non-canonical
1614                  * value, and that something deterministic happens if the guest
1615                  * invokes 64-bit SYSENTER.
1616                  */
1617                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1618         }
1619
1620         msr.data = data;
1621         msr.index = index;
1622         msr.host_initiated = host_initiated;
1623
1624         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1625 }
1626
1627 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1628                                      u32 index, u64 data, bool host_initiated)
1629 {
1630         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1631
1632         if (ret == KVM_MSR_RET_INVALID)
1633                 if (kvm_msr_ignored_check(index, data, true))
1634                         ret = 0;
1635
1636         return ret;
1637 }
1638
1639 /*
1640  * Read the MSR specified by @index into @data.  Select MSR specific fault
1641  * checks are bypassed if @host_initiated is %true.
1642  * Returns 0 on success, non-0 otherwise.
1643  * Assumes vcpu_load() was already called.
1644  */
1645 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1646                   bool host_initiated)
1647 {
1648         struct msr_data msr;
1649         int ret;
1650
1651         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1652                 return KVM_MSR_RET_FILTERED;
1653
1654         msr.index = index;
1655         msr.host_initiated = host_initiated;
1656
1657         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1658         if (!ret)
1659                 *data = msr.data;
1660         return ret;
1661 }
1662
1663 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1664                                      u32 index, u64 *data, bool host_initiated)
1665 {
1666         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1667
1668         if (ret == KVM_MSR_RET_INVALID) {
1669                 /* Unconditionally clear *data for simplicity */
1670                 *data = 0;
1671                 if (kvm_msr_ignored_check(index, 0, false))
1672                         ret = 0;
1673         }
1674
1675         return ret;
1676 }
1677
1678 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1679 {
1680         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_get_msr);
1683
1684 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1685 {
1686         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_set_msr);
1689
1690 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1691 {
1692         int err = vcpu->run->msr.error;
1693         if (!err) {
1694                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1695                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1696         }
1697
1698         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1699 }
1700
1701 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1702 {
1703         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1704 }
1705
1706 static u64 kvm_msr_reason(int r)
1707 {
1708         switch (r) {
1709         case KVM_MSR_RET_INVALID:
1710                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1711         case KVM_MSR_RET_FILTERED:
1712                 return KVM_MSR_EXIT_REASON_FILTER;
1713         default:
1714                 return KVM_MSR_EXIT_REASON_INVAL;
1715         }
1716 }
1717
1718 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1719                               u32 exit_reason, u64 data,
1720                               int (*completion)(struct kvm_vcpu *vcpu),
1721                               int r)
1722 {
1723         u64 msr_reason = kvm_msr_reason(r);
1724
1725         /* Check if the user wanted to know about this MSR fault */
1726         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1727                 return 0;
1728
1729         vcpu->run->exit_reason = exit_reason;
1730         vcpu->run->msr.error = 0;
1731         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1732         vcpu->run->msr.reason = msr_reason;
1733         vcpu->run->msr.index = index;
1734         vcpu->run->msr.data = data;
1735         vcpu->arch.complete_userspace_io = completion;
1736
1737         return 1;
1738 }
1739
1740 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1741 {
1742         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1743                                    complete_emulated_rdmsr, r);
1744 }
1745
1746 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1747 {
1748         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1749                                    complete_emulated_wrmsr, r);
1750 }
1751
1752 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1753 {
1754         u32 ecx = kvm_rcx_read(vcpu);
1755         u64 data;
1756         int r;
1757
1758         r = kvm_get_msr(vcpu, ecx, &data);
1759
1760         /* MSR read failed? See if we should ask user space */
1761         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1762                 /* Bounce to user space */
1763                 return 0;
1764         }
1765
1766         if (!r) {
1767                 trace_kvm_msr_read(ecx, data);
1768
1769                 kvm_rax_write(vcpu, data & -1u);
1770                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1771         } else {
1772                 trace_kvm_msr_read_ex(ecx);
1773         }
1774
1775         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1778
1779 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1780 {
1781         u32 ecx = kvm_rcx_read(vcpu);
1782         u64 data = kvm_read_edx_eax(vcpu);
1783         int r;
1784
1785         r = kvm_set_msr(vcpu, ecx, data);
1786
1787         /* MSR write failed? See if we should ask user space */
1788         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1789                 /* Bounce to user space */
1790                 return 0;
1791
1792         /* Signal all other negative errors to userspace */
1793         if (r < 0)
1794                 return r;
1795
1796         if (!r)
1797                 trace_kvm_msr_write(ecx, data);
1798         else
1799                 trace_kvm_msr_write_ex(ecx, data);
1800
1801         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1804
1805 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1806 {
1807         return kvm_skip_emulated_instruction(vcpu);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1810
1811 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1812 {
1813         /* Treat an INVD instruction as a NOP and just skip it. */
1814         return kvm_emulate_as_nop(vcpu);
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1817
1818 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1819 {
1820         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1821         return kvm_emulate_as_nop(vcpu);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1824
1825 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1826 {
1827         kvm_queue_exception(vcpu, UD_VECTOR);
1828         return 1;
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1831
1832 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1833 {
1834         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1835         return kvm_emulate_as_nop(vcpu);
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1838
1839 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1840 {
1841         xfer_to_guest_mode_prepare();
1842         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1843                 xfer_to_guest_mode_work_pending();
1844 }
1845
1846 /*
1847  * The fast path for frequent and performance sensitive wrmsr emulation,
1848  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1849  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1850  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1851  * other cases which must be called after interrupts are enabled on the host.
1852  */
1853 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1854 {
1855         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1856                 return 1;
1857
1858         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1859                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1860                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1861                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1862
1863                 data &= ~(1 << 12);
1864                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1865                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1866                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1867                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1868                 return 0;
1869         }
1870
1871         return 1;
1872 }
1873
1874 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1875 {
1876         if (!kvm_can_use_hv_timer(vcpu))
1877                 return 1;
1878
1879         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1880         return 0;
1881 }
1882
1883 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1884 {
1885         u32 msr = kvm_rcx_read(vcpu);
1886         u64 data;
1887         fastpath_t ret = EXIT_FASTPATH_NONE;
1888
1889         switch (msr) {
1890         case APIC_BASE_MSR + (APIC_ICR >> 4):
1891                 data = kvm_read_edx_eax(vcpu);
1892                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1893                         kvm_skip_emulated_instruction(vcpu);
1894                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1895                 }
1896                 break;
1897         case MSR_IA32_TSC_DEADLINE:
1898                 data = kvm_read_edx_eax(vcpu);
1899                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1900                         kvm_skip_emulated_instruction(vcpu);
1901                         ret = EXIT_FASTPATH_REENTER_GUEST;
1902                 }
1903                 break;
1904         default:
1905                 break;
1906         }
1907
1908         if (ret != EXIT_FASTPATH_NONE)
1909                 trace_kvm_msr_write(msr, data);
1910
1911         return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1914
1915 /*
1916  * Adapt set_msr() to msr_io()'s calling convention
1917  */
1918 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1919 {
1920         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1921 }
1922
1923 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1924 {
1925         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1926 }
1927
1928 #ifdef CONFIG_X86_64
1929 struct pvclock_clock {
1930         int vclock_mode;
1931         u64 cycle_last;
1932         u64 mask;
1933         u32 mult;
1934         u32 shift;
1935         u64 base_cycles;
1936         u64 offset;
1937 };
1938
1939 struct pvclock_gtod_data {
1940         seqcount_t      seq;
1941
1942         struct pvclock_clock clock; /* extract of a clocksource struct */
1943         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1944
1945         ktime_t         offs_boot;
1946         u64             wall_time_sec;
1947 };
1948
1949 static struct pvclock_gtod_data pvclock_gtod_data;
1950
1951 static void update_pvclock_gtod(struct timekeeper *tk)
1952 {
1953         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1954
1955         write_seqcount_begin(&vdata->seq);
1956
1957         /* copy pvclock gtod data */
1958         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1959         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1960         vdata->clock.mask               = tk->tkr_mono.mask;
1961         vdata->clock.mult               = tk->tkr_mono.mult;
1962         vdata->clock.shift              = tk->tkr_mono.shift;
1963         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1964         vdata->clock.offset             = tk->tkr_mono.base;
1965
1966         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1967         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1968         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1969         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1970         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1971         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1972         vdata->raw_clock.offset         = tk->tkr_raw.base;
1973
1974         vdata->wall_time_sec            = tk->xtime_sec;
1975
1976         vdata->offs_boot                = tk->offs_boot;
1977
1978         write_seqcount_end(&vdata->seq);
1979 }
1980
1981 static s64 get_kvmclock_base_ns(void)
1982 {
1983         /* Count up from boot time, but with the frequency of the raw clock.  */
1984         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1985 }
1986 #else
1987 static s64 get_kvmclock_base_ns(void)
1988 {
1989         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1990         return ktime_get_boottime_ns();
1991 }
1992 #endif
1993
1994 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1995 {
1996         int version;
1997         int r;
1998         struct pvclock_wall_clock wc;
1999         u32 wc_sec_hi;
2000         u64 wall_nsec;
2001
2002         if (!wall_clock)
2003                 return;
2004
2005         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2006         if (r)
2007                 return;
2008
2009         if (version & 1)
2010                 ++version;  /* first time write, random junk */
2011
2012         ++version;
2013
2014         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2015                 return;
2016
2017         /*
2018          * The guest calculates current wall clock time by adding
2019          * system time (updated by kvm_guest_time_update below) to the
2020          * wall clock specified here.  We do the reverse here.
2021          */
2022         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2023
2024         wc.nsec = do_div(wall_nsec, 1000000000);
2025         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2026         wc.version = version;
2027
2028         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2029
2030         if (sec_hi_ofs) {
2031                 wc_sec_hi = wall_nsec >> 32;
2032                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2033                                 &wc_sec_hi, sizeof(wc_sec_hi));
2034         }
2035
2036         version++;
2037         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2038 }
2039
2040 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2041                                   bool old_msr, bool host_initiated)
2042 {
2043         struct kvm_arch *ka = &vcpu->kvm->arch;
2044
2045         if (vcpu->vcpu_id == 0 && !host_initiated) {
2046                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2047                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2048
2049                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2050         }
2051
2052         vcpu->arch.time = system_time;
2053         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2054
2055         /* we verify if the enable bit is set... */
2056         vcpu->arch.pv_time_enabled = false;
2057         if (!(system_time & 1))
2058                 return;
2059
2060         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2061                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2062                                        sizeof(struct pvclock_vcpu_time_info)))
2063                 vcpu->arch.pv_time_enabled = true;
2064
2065         return;
2066 }
2067
2068 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2069 {
2070         do_shl32_div32(dividend, divisor);
2071         return dividend;
2072 }
2073
2074 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2075                                s8 *pshift, u32 *pmultiplier)
2076 {
2077         uint64_t scaled64;
2078         int32_t  shift = 0;
2079         uint64_t tps64;
2080         uint32_t tps32;
2081
2082         tps64 = base_hz;
2083         scaled64 = scaled_hz;
2084         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2085                 tps64 >>= 1;
2086                 shift--;
2087         }
2088
2089         tps32 = (uint32_t)tps64;
2090         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2091                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2092                         scaled64 >>= 1;
2093                 else
2094                         tps32 <<= 1;
2095                 shift++;
2096         }
2097
2098         *pshift = shift;
2099         *pmultiplier = div_frac(scaled64, tps32);
2100 }
2101
2102 #ifdef CONFIG_X86_64
2103 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2104 #endif
2105
2106 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2107 static unsigned long max_tsc_khz;
2108
2109 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2110 {
2111         u64 v = (u64)khz * (1000000 + ppm);
2112         do_div(v, 1000000);
2113         return v;
2114 }
2115
2116 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2117 {
2118         u64 ratio;
2119
2120         /* Guest TSC same frequency as host TSC? */
2121         if (!scale) {
2122                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2123                 return 0;
2124         }
2125
2126         /* TSC scaling supported? */
2127         if (!kvm_has_tsc_control) {
2128                 if (user_tsc_khz > tsc_khz) {
2129                         vcpu->arch.tsc_catchup = 1;
2130                         vcpu->arch.tsc_always_catchup = 1;
2131                         return 0;
2132                 } else {
2133                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2134                         return -1;
2135                 }
2136         }
2137
2138         /* TSC scaling required  - calculate ratio */
2139         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2140                                 user_tsc_khz, tsc_khz);
2141
2142         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2143                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2144                                     user_tsc_khz);
2145                 return -1;
2146         }
2147
2148         vcpu->arch.tsc_scaling_ratio = ratio;
2149         return 0;
2150 }
2151
2152 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2153 {
2154         u32 thresh_lo, thresh_hi;
2155         int use_scaling = 0;
2156
2157         /* tsc_khz can be zero if TSC calibration fails */
2158         if (user_tsc_khz == 0) {
2159                 /* set tsc_scaling_ratio to a safe value */
2160                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2161                 return -1;
2162         }
2163
2164         /* Compute a scale to convert nanoseconds in TSC cycles */
2165         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2166                            &vcpu->arch.virtual_tsc_shift,
2167                            &vcpu->arch.virtual_tsc_mult);
2168         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2169
2170         /*
2171          * Compute the variation in TSC rate which is acceptable
2172          * within the range of tolerance and decide if the
2173          * rate being applied is within that bounds of the hardware
2174          * rate.  If so, no scaling or compensation need be done.
2175          */
2176         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2177         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2178         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2179                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2180                 use_scaling = 1;
2181         }
2182         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2183 }
2184
2185 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2186 {
2187         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2188                                       vcpu->arch.virtual_tsc_mult,
2189                                       vcpu->arch.virtual_tsc_shift);
2190         tsc += vcpu->arch.this_tsc_write;
2191         return tsc;
2192 }
2193
2194 static inline int gtod_is_based_on_tsc(int mode)
2195 {
2196         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2197 }
2198
2199 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2200 {
2201 #ifdef CONFIG_X86_64
2202         bool vcpus_matched;
2203         struct kvm_arch *ka = &vcpu->kvm->arch;
2204         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2205
2206         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2207                          atomic_read(&vcpu->kvm->online_vcpus));
2208
2209         /*
2210          * Once the masterclock is enabled, always perform request in
2211          * order to update it.
2212          *
2213          * In order to enable masterclock, the host clocksource must be TSC
2214          * and the vcpus need to have matched TSCs.  When that happens,
2215          * perform request to enable masterclock.
2216          */
2217         if (ka->use_master_clock ||
2218             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2219                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2220
2221         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2222                             atomic_read(&vcpu->kvm->online_vcpus),
2223                             ka->use_master_clock, gtod->clock.vclock_mode);
2224 #endif
2225 }
2226
2227 /*
2228  * Multiply tsc by a fixed point number represented by ratio.
2229  *
2230  * The most significant 64-N bits (mult) of ratio represent the
2231  * integral part of the fixed point number; the remaining N bits
2232  * (frac) represent the fractional part, ie. ratio represents a fixed
2233  * point number (mult + frac * 2^(-N)).
2234  *
2235  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2236  */
2237 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2238 {
2239         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2240 }
2241
2242 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2243 {
2244         u64 _tsc = tsc;
2245         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2246
2247         if (ratio != kvm_default_tsc_scaling_ratio)
2248                 _tsc = __scale_tsc(ratio, tsc);
2249
2250         return _tsc;
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2253
2254 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2255 {
2256         u64 tsc;
2257
2258         tsc = kvm_scale_tsc(vcpu, rdtsc());
2259
2260         return target_tsc - tsc;
2261 }
2262
2263 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2264 {
2265         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2268
2269 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2270 {
2271         vcpu->arch.l1_tsc_offset = offset;
2272         vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2273 }
2274
2275 static inline bool kvm_check_tsc_unstable(void)
2276 {
2277 #ifdef CONFIG_X86_64
2278         /*
2279          * TSC is marked unstable when we're running on Hyper-V,
2280          * 'TSC page' clocksource is good.
2281          */
2282         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2283                 return false;
2284 #endif
2285         return check_tsc_unstable();
2286 }
2287
2288 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2289 {
2290         struct kvm *kvm = vcpu->kvm;
2291         u64 offset, ns, elapsed;
2292         unsigned long flags;
2293         bool matched;
2294         bool already_matched;
2295         bool synchronizing = false;
2296
2297         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2298         offset = kvm_compute_tsc_offset(vcpu, data);
2299         ns = get_kvmclock_base_ns();
2300         elapsed = ns - kvm->arch.last_tsc_nsec;
2301
2302         if (vcpu->arch.virtual_tsc_khz) {
2303                 if (data == 0) {
2304                         /*
2305                          * detection of vcpu initialization -- need to sync
2306                          * with other vCPUs. This particularly helps to keep
2307                          * kvm_clock stable after CPU hotplug
2308                          */
2309                         synchronizing = true;
2310                 } else {
2311                         u64 tsc_exp = kvm->arch.last_tsc_write +
2312                                                 nsec_to_cycles(vcpu, elapsed);
2313                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2314                         /*
2315                          * Special case: TSC write with a small delta (1 second)
2316                          * of virtual cycle time against real time is
2317                          * interpreted as an attempt to synchronize the CPU.
2318                          */
2319                         synchronizing = data < tsc_exp + tsc_hz &&
2320                                         data + tsc_hz > tsc_exp;
2321                 }
2322         }
2323
2324         /*
2325          * For a reliable TSC, we can match TSC offsets, and for an unstable
2326          * TSC, we add elapsed time in this computation.  We could let the
2327          * compensation code attempt to catch up if we fall behind, but
2328          * it's better to try to match offsets from the beginning.
2329          */
2330         if (synchronizing &&
2331             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2332                 if (!kvm_check_tsc_unstable()) {
2333                         offset = kvm->arch.cur_tsc_offset;
2334                 } else {
2335                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2336                         data += delta;
2337                         offset = kvm_compute_tsc_offset(vcpu, data);
2338                 }
2339                 matched = true;
2340                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2341         } else {
2342                 /*
2343                  * We split periods of matched TSC writes into generations.
2344                  * For each generation, we track the original measured
2345                  * nanosecond time, offset, and write, so if TSCs are in
2346                  * sync, we can match exact offset, and if not, we can match
2347                  * exact software computation in compute_guest_tsc()
2348                  *
2349                  * These values are tracked in kvm->arch.cur_xxx variables.
2350                  */
2351                 kvm->arch.cur_tsc_generation++;
2352                 kvm->arch.cur_tsc_nsec = ns;
2353                 kvm->arch.cur_tsc_write = data;
2354                 kvm->arch.cur_tsc_offset = offset;
2355                 matched = false;
2356         }
2357
2358         /*
2359          * We also track th most recent recorded KHZ, write and time to
2360          * allow the matching interval to be extended at each write.
2361          */
2362         kvm->arch.last_tsc_nsec = ns;
2363         kvm->arch.last_tsc_write = data;
2364         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2365
2366         vcpu->arch.last_guest_tsc = data;
2367
2368         /* Keep track of which generation this VCPU has synchronized to */
2369         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2370         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2371         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2372
2373         kvm_vcpu_write_tsc_offset(vcpu, offset);
2374         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2375
2376         spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2377         if (!matched) {
2378                 kvm->arch.nr_vcpus_matched_tsc = 0;
2379         } else if (!already_matched) {
2380                 kvm->arch.nr_vcpus_matched_tsc++;
2381         }
2382
2383         kvm_track_tsc_matching(vcpu);
2384         spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2385 }
2386
2387 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2388                                            s64 adjustment)
2389 {
2390         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2391         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2392 }
2393
2394 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2395 {
2396         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2397                 WARN_ON(adjustment < 0);
2398         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2399         adjust_tsc_offset_guest(vcpu, adjustment);
2400 }
2401
2402 #ifdef CONFIG_X86_64
2403
2404 static u64 read_tsc(void)
2405 {
2406         u64 ret = (u64)rdtsc_ordered();
2407         u64 last = pvclock_gtod_data.clock.cycle_last;
2408
2409         if (likely(ret >= last))
2410                 return ret;
2411
2412         /*
2413          * GCC likes to generate cmov here, but this branch is extremely
2414          * predictable (it's just a function of time and the likely is
2415          * very likely) and there's a data dependence, so force GCC
2416          * to generate a branch instead.  I don't barrier() because
2417          * we don't actually need a barrier, and if this function
2418          * ever gets inlined it will generate worse code.
2419          */
2420         asm volatile ("");
2421         return last;
2422 }
2423
2424 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2425                           int *mode)
2426 {
2427         long v;
2428         u64 tsc_pg_val;
2429
2430         switch (clock->vclock_mode) {
2431         case VDSO_CLOCKMODE_HVCLOCK:
2432                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2433                                                   tsc_timestamp);
2434                 if (tsc_pg_val != U64_MAX) {
2435                         /* TSC page valid */
2436                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2437                         v = (tsc_pg_val - clock->cycle_last) &
2438                                 clock->mask;
2439                 } else {
2440                         /* TSC page invalid */
2441                         *mode = VDSO_CLOCKMODE_NONE;
2442                 }
2443                 break;
2444         case VDSO_CLOCKMODE_TSC:
2445                 *mode = VDSO_CLOCKMODE_TSC;
2446                 *tsc_timestamp = read_tsc();
2447                 v = (*tsc_timestamp - clock->cycle_last) &
2448                         clock->mask;
2449                 break;
2450         default:
2451                 *mode = VDSO_CLOCKMODE_NONE;
2452         }
2453
2454         if (*mode == VDSO_CLOCKMODE_NONE)
2455                 *tsc_timestamp = v = 0;
2456
2457         return v * clock->mult;
2458 }
2459
2460 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2461 {
2462         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2463         unsigned long seq;
2464         int mode;
2465         u64 ns;
2466
2467         do {
2468                 seq = read_seqcount_begin(&gtod->seq);
2469                 ns = gtod->raw_clock.base_cycles;
2470                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2471                 ns >>= gtod->raw_clock.shift;
2472                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2473         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2474         *t = ns;
2475
2476         return mode;
2477 }
2478
2479 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2480 {
2481         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2482         unsigned long seq;
2483         int mode;
2484         u64 ns;
2485
2486         do {
2487                 seq = read_seqcount_begin(&gtod->seq);
2488                 ts->tv_sec = gtod->wall_time_sec;
2489                 ns = gtod->clock.base_cycles;
2490                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2491                 ns >>= gtod->clock.shift;
2492         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2493
2494         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2495         ts->tv_nsec = ns;
2496
2497         return mode;
2498 }
2499
2500 /* returns true if host is using TSC based clocksource */
2501 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2502 {
2503         /* checked again under seqlock below */
2504         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2505                 return false;
2506
2507         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2508                                                       tsc_timestamp));
2509 }
2510
2511 /* returns true if host is using TSC based clocksource */
2512 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2513                                            u64 *tsc_timestamp)
2514 {
2515         /* checked again under seqlock below */
2516         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2517                 return false;
2518
2519         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2520 }
2521 #endif
2522
2523 /*
2524  *
2525  * Assuming a stable TSC across physical CPUS, and a stable TSC
2526  * across virtual CPUs, the following condition is possible.
2527  * Each numbered line represents an event visible to both
2528  * CPUs at the next numbered event.
2529  *
2530  * "timespecX" represents host monotonic time. "tscX" represents
2531  * RDTSC value.
2532  *
2533  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2534  *
2535  * 1.  read timespec0,tsc0
2536  * 2.                                   | timespec1 = timespec0 + N
2537  *                                      | tsc1 = tsc0 + M
2538  * 3. transition to guest               | transition to guest
2539  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2540  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2541  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2542  *
2543  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2544  *
2545  *      - ret0 < ret1
2546  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2547  *              ...
2548  *      - 0 < N - M => M < N
2549  *
2550  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2551  * always the case (the difference between two distinct xtime instances
2552  * might be smaller then the difference between corresponding TSC reads,
2553  * when updating guest vcpus pvclock areas).
2554  *
2555  * To avoid that problem, do not allow visibility of distinct
2556  * system_timestamp/tsc_timestamp values simultaneously: use a master
2557  * copy of host monotonic time values. Update that master copy
2558  * in lockstep.
2559  *
2560  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2561  *
2562  */
2563
2564 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2565 {
2566 #ifdef CONFIG_X86_64
2567         struct kvm_arch *ka = &kvm->arch;
2568         int vclock_mode;
2569         bool host_tsc_clocksource, vcpus_matched;
2570
2571         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2572                         atomic_read(&kvm->online_vcpus));
2573
2574         /*
2575          * If the host uses TSC clock, then passthrough TSC as stable
2576          * to the guest.
2577          */
2578         host_tsc_clocksource = kvm_get_time_and_clockread(
2579                                         &ka->master_kernel_ns,
2580                                         &ka->master_cycle_now);
2581
2582         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2583                                 && !ka->backwards_tsc_observed
2584                                 && !ka->boot_vcpu_runs_old_kvmclock;
2585
2586         if (ka->use_master_clock)
2587                 atomic_set(&kvm_guest_has_master_clock, 1);
2588
2589         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2590         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2591                                         vcpus_matched);
2592 #endif
2593 }
2594
2595 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2596 {
2597         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2598 }
2599
2600 static void kvm_gen_update_masterclock(struct kvm *kvm)
2601 {
2602 #ifdef CONFIG_X86_64
2603         int i;
2604         struct kvm_vcpu *vcpu;
2605         struct kvm_arch *ka = &kvm->arch;
2606         unsigned long flags;
2607
2608         kvm_hv_invalidate_tsc_page(kvm);
2609
2610         kvm_make_mclock_inprogress_request(kvm);
2611
2612         /* no guest entries from this point */
2613         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2614         pvclock_update_vm_gtod_copy(kvm);
2615         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2616
2617         kvm_for_each_vcpu(i, vcpu, kvm)
2618                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2619
2620         /* guest entries allowed */
2621         kvm_for_each_vcpu(i, vcpu, kvm)
2622                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2623 #endif
2624 }
2625
2626 u64 get_kvmclock_ns(struct kvm *kvm)
2627 {
2628         struct kvm_arch *ka = &kvm->arch;
2629         struct pvclock_vcpu_time_info hv_clock;
2630         unsigned long flags;
2631         u64 ret;
2632
2633         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2634         if (!ka->use_master_clock) {
2635                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2636                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2637         }
2638
2639         hv_clock.tsc_timestamp = ka->master_cycle_now;
2640         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2641         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2642
2643         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2644         get_cpu();
2645
2646         if (__this_cpu_read(cpu_tsc_khz)) {
2647                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2648                                    &hv_clock.tsc_shift,
2649                                    &hv_clock.tsc_to_system_mul);
2650                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2651         } else
2652                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2653
2654         put_cpu();
2655
2656         return ret;
2657 }
2658
2659 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2660                                    struct gfn_to_hva_cache *cache,
2661                                    unsigned int offset)
2662 {
2663         struct kvm_vcpu_arch *vcpu = &v->arch;
2664         struct pvclock_vcpu_time_info guest_hv_clock;
2665
2666         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2667                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2668                 return;
2669
2670         /* This VCPU is paused, but it's legal for a guest to read another
2671          * VCPU's kvmclock, so we really have to follow the specification where
2672          * it says that version is odd if data is being modified, and even after
2673          * it is consistent.
2674          *
2675          * Version field updates must be kept separate.  This is because
2676          * kvm_write_guest_cached might use a "rep movs" instruction, and
2677          * writes within a string instruction are weakly ordered.  So there
2678          * are three writes overall.
2679          *
2680          * As a small optimization, only write the version field in the first
2681          * and third write.  The vcpu->pv_time cache is still valid, because the
2682          * version field is the first in the struct.
2683          */
2684         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2685
2686         if (guest_hv_clock.version & 1)
2687                 ++guest_hv_clock.version;  /* first time write, random junk */
2688
2689         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2690         kvm_write_guest_offset_cached(v->kvm, cache,
2691                                       &vcpu->hv_clock, offset,
2692                                       sizeof(vcpu->hv_clock.version));
2693
2694         smp_wmb();
2695
2696         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2697         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2698
2699         if (vcpu->pvclock_set_guest_stopped_request) {
2700                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2701                 vcpu->pvclock_set_guest_stopped_request = false;
2702         }
2703
2704         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2705
2706         kvm_write_guest_offset_cached(v->kvm, cache,
2707                                       &vcpu->hv_clock, offset,
2708                                       sizeof(vcpu->hv_clock));
2709
2710         smp_wmb();
2711
2712         vcpu->hv_clock.version++;
2713         kvm_write_guest_offset_cached(v->kvm, cache,
2714                                      &vcpu->hv_clock, offset,
2715                                      sizeof(vcpu->hv_clock.version));
2716 }
2717
2718 static int kvm_guest_time_update(struct kvm_vcpu *v)
2719 {
2720         unsigned long flags, tgt_tsc_khz;
2721         struct kvm_vcpu_arch *vcpu = &v->arch;
2722         struct kvm_arch *ka = &v->kvm->arch;
2723         s64 kernel_ns;
2724         u64 tsc_timestamp, host_tsc;
2725         u8 pvclock_flags;
2726         bool use_master_clock;
2727
2728         kernel_ns = 0;
2729         host_tsc = 0;
2730
2731         /*
2732          * If the host uses TSC clock, then passthrough TSC as stable
2733          * to the guest.
2734          */
2735         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2736         use_master_clock = ka->use_master_clock;
2737         if (use_master_clock) {
2738                 host_tsc = ka->master_cycle_now;
2739                 kernel_ns = ka->master_kernel_ns;
2740         }
2741         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2742
2743         /* Keep irq disabled to prevent changes to the clock */
2744         local_irq_save(flags);
2745         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2746         if (unlikely(tgt_tsc_khz == 0)) {
2747                 local_irq_restore(flags);
2748                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2749                 return 1;
2750         }
2751         if (!use_master_clock) {
2752                 host_tsc = rdtsc();
2753                 kernel_ns = get_kvmclock_base_ns();
2754         }
2755
2756         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2757
2758         /*
2759          * We may have to catch up the TSC to match elapsed wall clock
2760          * time for two reasons, even if kvmclock is used.
2761          *   1) CPU could have been running below the maximum TSC rate
2762          *   2) Broken TSC compensation resets the base at each VCPU
2763          *      entry to avoid unknown leaps of TSC even when running
2764          *      again on the same CPU.  This may cause apparent elapsed
2765          *      time to disappear, and the guest to stand still or run
2766          *      very slowly.
2767          */
2768         if (vcpu->tsc_catchup) {
2769                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2770                 if (tsc > tsc_timestamp) {
2771                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2772                         tsc_timestamp = tsc;
2773                 }
2774         }
2775
2776         local_irq_restore(flags);
2777
2778         /* With all the info we got, fill in the values */
2779
2780         if (kvm_has_tsc_control)
2781                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2782
2783         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2784                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2785                                    &vcpu->hv_clock.tsc_shift,
2786                                    &vcpu->hv_clock.tsc_to_system_mul);
2787                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2788         }
2789
2790         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2791         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2792         vcpu->last_guest_tsc = tsc_timestamp;
2793
2794         /* If the host uses TSC clocksource, then it is stable */
2795         pvclock_flags = 0;
2796         if (use_master_clock)
2797                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2798
2799         vcpu->hv_clock.flags = pvclock_flags;
2800
2801         if (vcpu->pv_time_enabled)
2802                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2803         if (vcpu->xen.vcpu_info_set)
2804                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2805                                        offsetof(struct compat_vcpu_info, time));
2806         if (vcpu->xen.vcpu_time_info_set)
2807                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2808         if (v == kvm_get_vcpu(v->kvm, 0))
2809                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2810         return 0;
2811 }
2812
2813 /*
2814  * kvmclock updates which are isolated to a given vcpu, such as
2815  * vcpu->cpu migration, should not allow system_timestamp from
2816  * the rest of the vcpus to remain static. Otherwise ntp frequency
2817  * correction applies to one vcpu's system_timestamp but not
2818  * the others.
2819  *
2820  * So in those cases, request a kvmclock update for all vcpus.
2821  * We need to rate-limit these requests though, as they can
2822  * considerably slow guests that have a large number of vcpus.
2823  * The time for a remote vcpu to update its kvmclock is bound
2824  * by the delay we use to rate-limit the updates.
2825  */
2826
2827 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2828
2829 static void kvmclock_update_fn(struct work_struct *work)
2830 {
2831         int i;
2832         struct delayed_work *dwork = to_delayed_work(work);
2833         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2834                                            kvmclock_update_work);
2835         struct kvm *kvm = container_of(ka, struct kvm, arch);
2836         struct kvm_vcpu *vcpu;
2837
2838         kvm_for_each_vcpu(i, vcpu, kvm) {
2839                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2840                 kvm_vcpu_kick(vcpu);
2841         }
2842 }
2843
2844 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2845 {
2846         struct kvm *kvm = v->kvm;
2847
2848         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2849         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2850                                         KVMCLOCK_UPDATE_DELAY);
2851 }
2852
2853 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2854
2855 static void kvmclock_sync_fn(struct work_struct *work)
2856 {
2857         struct delayed_work *dwork = to_delayed_work(work);
2858         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2859                                            kvmclock_sync_work);
2860         struct kvm *kvm = container_of(ka, struct kvm, arch);
2861
2862         if (!kvmclock_periodic_sync)
2863                 return;
2864
2865         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2866         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2867                                         KVMCLOCK_SYNC_PERIOD);
2868 }
2869
2870 /*
2871  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2872  */
2873 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2874 {
2875         /* McStatusWrEn enabled? */
2876         if (guest_cpuid_is_amd_or_hygon(vcpu))
2877                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2878
2879         return false;
2880 }
2881
2882 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2883 {
2884         u64 mcg_cap = vcpu->arch.mcg_cap;
2885         unsigned bank_num = mcg_cap & 0xff;
2886         u32 msr = msr_info->index;
2887         u64 data = msr_info->data;
2888
2889         switch (msr) {
2890         case MSR_IA32_MCG_STATUS:
2891                 vcpu->arch.mcg_status = data;
2892                 break;
2893         case MSR_IA32_MCG_CTL:
2894                 if (!(mcg_cap & MCG_CTL_P) &&
2895                     (data || !msr_info->host_initiated))
2896                         return 1;
2897                 if (data != 0 && data != ~(u64)0)
2898                         return 1;
2899                 vcpu->arch.mcg_ctl = data;
2900                 break;
2901         default:
2902                 if (msr >= MSR_IA32_MC0_CTL &&
2903                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2904                         u32 offset = array_index_nospec(
2905                                 msr - MSR_IA32_MC0_CTL,
2906                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2907
2908                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2909                          * some Linux kernels though clear bit 10 in bank 4 to
2910                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2911                          * this to avoid an uncatched #GP in the guest
2912                          */
2913                         if ((offset & 0x3) == 0 &&
2914                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2915                                 return -1;
2916
2917                         /* MCi_STATUS */
2918                         if (!msr_info->host_initiated &&
2919                             (offset & 0x3) == 1 && data != 0) {
2920                                 if (!can_set_mci_status(vcpu))
2921                                         return -1;
2922                         }
2923
2924                         vcpu->arch.mce_banks[offset] = data;
2925                         break;
2926                 }
2927                 return 1;
2928         }
2929         return 0;
2930 }
2931
2932 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2933 {
2934         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2935
2936         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2937 }
2938
2939 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2940 {
2941         gpa_t gpa = data & ~0x3f;
2942
2943         /* Bits 4:5 are reserved, Should be zero */
2944         if (data & 0x30)
2945                 return 1;
2946
2947         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2948             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2949                 return 1;
2950
2951         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2952             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2953                 return 1;
2954
2955         if (!lapic_in_kernel(vcpu))
2956                 return data ? 1 : 0;
2957
2958         vcpu->arch.apf.msr_en_val = data;
2959
2960         if (!kvm_pv_async_pf_enabled(vcpu)) {
2961                 kvm_clear_async_pf_completion_queue(vcpu);
2962                 kvm_async_pf_hash_reset(vcpu);
2963                 return 0;
2964         }
2965
2966         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2967                                         sizeof(u64)))
2968                 return 1;
2969
2970         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2971         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2972
2973         kvm_async_pf_wakeup_all(vcpu);
2974
2975         return 0;
2976 }
2977
2978 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2979 {
2980         /* Bits 8-63 are reserved */
2981         if (data >> 8)
2982                 return 1;
2983
2984         if (!lapic_in_kernel(vcpu))
2985                 return 1;
2986
2987         vcpu->arch.apf.msr_int_val = data;
2988
2989         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2990
2991         return 0;
2992 }
2993
2994 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2995 {
2996         vcpu->arch.pv_time_enabled = false;
2997         vcpu->arch.time = 0;
2998 }
2999
3000 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3001 {
3002         ++vcpu->stat.tlb_flush;
3003         static_call(kvm_x86_tlb_flush_all)(vcpu);
3004 }
3005
3006 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3007 {
3008         ++vcpu->stat.tlb_flush;
3009         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3010 }
3011
3012 static void record_steal_time(struct kvm_vcpu *vcpu)
3013 {
3014         struct kvm_host_map map;
3015         struct kvm_steal_time *st;
3016
3017         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3018                 kvm_xen_runstate_set_running(vcpu);
3019                 return;
3020         }
3021
3022         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3023                 return;
3024
3025         /* -EAGAIN is returned in atomic context so we can just return. */
3026         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3027                         &map, &vcpu->arch.st.cache, false))
3028                 return;
3029
3030         st = map.hva +
3031                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3032
3033         /*
3034          * Doing a TLB flush here, on the guest's behalf, can avoid
3035          * expensive IPIs.
3036          */
3037         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3038                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3039                                        st->preempted & KVM_VCPU_FLUSH_TLB);
3040                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3041                         kvm_vcpu_flush_tlb_guest(vcpu);
3042         }
3043
3044         vcpu->arch.st.preempted = 0;
3045
3046         if (st->version & 1)
3047                 st->version += 1;  /* first time write, random junk */
3048
3049         st->version += 1;
3050
3051         smp_wmb();
3052
3053         st->steal += current->sched_info.run_delay -
3054                 vcpu->arch.st.last_steal;
3055         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3056
3057         smp_wmb();
3058
3059         st->version += 1;
3060
3061         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3062 }
3063
3064 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3065 {
3066         bool pr = false;
3067         u32 msr = msr_info->index;
3068         u64 data = msr_info->data;
3069
3070         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3071                 return kvm_xen_write_hypercall_page(vcpu, data);
3072
3073         switch (msr) {
3074         case MSR_AMD64_NB_CFG:
3075         case MSR_IA32_UCODE_WRITE:
3076         case MSR_VM_HSAVE_PA:
3077         case MSR_AMD64_PATCH_LOADER:
3078         case MSR_AMD64_BU_CFG2:
3079         case MSR_AMD64_DC_CFG:
3080         case MSR_F15H_EX_CFG:
3081                 break;
3082
3083         case MSR_IA32_UCODE_REV:
3084                 if (msr_info->host_initiated)
3085                         vcpu->arch.microcode_version = data;
3086                 break;
3087         case MSR_IA32_ARCH_CAPABILITIES:
3088                 if (!msr_info->host_initiated)
3089                         return 1;
3090                 vcpu->arch.arch_capabilities = data;
3091                 break;
3092         case MSR_IA32_PERF_CAPABILITIES: {
3093                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3094
3095                 if (!msr_info->host_initiated)
3096                         return 1;
3097                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3098                         return 1;
3099                 if (data & ~msr_ent.data)
3100                         return 1;
3101
3102                 vcpu->arch.perf_capabilities = data;
3103
3104                 return 0;
3105                 }
3106         case MSR_EFER:
3107                 return set_efer(vcpu, msr_info);
3108         case MSR_K7_HWCR:
3109                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3110                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3111                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3112
3113                 /* Handle McStatusWrEn */
3114                 if (data == BIT_ULL(18)) {
3115                         vcpu->arch.msr_hwcr = data;
3116                 } else if (data != 0) {
3117                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3118                                     data);
3119                         return 1;
3120                 }
3121                 break;
3122         case MSR_FAM10H_MMIO_CONF_BASE:
3123                 if (data != 0) {
3124                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3125                                     "0x%llx\n", data);
3126                         return 1;
3127                 }
3128                 break;
3129         case 0x200 ... 0x2ff:
3130                 return kvm_mtrr_set_msr(vcpu, msr, data);
3131         case MSR_IA32_APICBASE:
3132                 return kvm_set_apic_base(vcpu, msr_info);
3133         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3134                 return kvm_x2apic_msr_write(vcpu, msr, data);
3135         case MSR_IA32_TSC_DEADLINE:
3136                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3137                 break;
3138         case MSR_IA32_TSC_ADJUST:
3139                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3140                         if (!msr_info->host_initiated) {
3141                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3142                                 adjust_tsc_offset_guest(vcpu, adj);
3143                         }
3144                         vcpu->arch.ia32_tsc_adjust_msr = data;
3145                 }
3146                 break;
3147         case MSR_IA32_MISC_ENABLE:
3148                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3149                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3150                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3151                                 return 1;
3152                         vcpu->arch.ia32_misc_enable_msr = data;
3153                         kvm_update_cpuid_runtime(vcpu);
3154                 } else {
3155                         vcpu->arch.ia32_misc_enable_msr = data;
3156                 }
3157                 break;
3158         case MSR_IA32_SMBASE:
3159                 if (!msr_info->host_initiated)
3160                         return 1;
3161                 vcpu->arch.smbase = data;
3162                 break;
3163         case MSR_IA32_POWER_CTL:
3164                 vcpu->arch.msr_ia32_power_ctl = data;
3165                 break;
3166         case MSR_IA32_TSC:
3167                 if (msr_info->host_initiated) {
3168                         kvm_synchronize_tsc(vcpu, data);
3169                 } else {
3170                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3171                         adjust_tsc_offset_guest(vcpu, adj);
3172                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3173                 }
3174                 break;
3175         case MSR_IA32_XSS:
3176                 if (!msr_info->host_initiated &&
3177                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3178                         return 1;
3179                 /*
3180                  * KVM supports exposing PT to the guest, but does not support
3181                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3182                  * XSAVES/XRSTORS to save/restore PT MSRs.
3183                  */
3184                 if (data & ~supported_xss)
3185                         return 1;
3186                 vcpu->arch.ia32_xss = data;
3187                 break;
3188         case MSR_SMI_COUNT:
3189                 if (!msr_info->host_initiated)
3190                         return 1;
3191                 vcpu->arch.smi_count = data;
3192                 break;
3193         case MSR_KVM_WALL_CLOCK_NEW:
3194                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3195                         return 1;
3196
3197                 vcpu->kvm->arch.wall_clock = data;
3198                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3199                 break;
3200         case MSR_KVM_WALL_CLOCK:
3201                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3202                         return 1;
3203
3204                 vcpu->kvm->arch.wall_clock = data;
3205                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3206                 break;
3207         case MSR_KVM_SYSTEM_TIME_NEW:
3208                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3209                         return 1;
3210
3211                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3212                 break;
3213         case MSR_KVM_SYSTEM_TIME:
3214                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3215                         return 1;
3216
3217                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3218                 break;
3219         case MSR_KVM_ASYNC_PF_EN:
3220                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3221                         return 1;
3222
3223                 if (kvm_pv_enable_async_pf(vcpu, data))
3224                         return 1;
3225                 break;
3226         case MSR_KVM_ASYNC_PF_INT:
3227                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3228                         return 1;
3229
3230                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3231                         return 1;
3232                 break;
3233         case MSR_KVM_ASYNC_PF_ACK:
3234                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3235                         return 1;
3236                 if (data & 0x1) {
3237                         vcpu->arch.apf.pageready_pending = false;
3238                         kvm_check_async_pf_completion(vcpu);
3239                 }
3240                 break;
3241         case MSR_KVM_STEAL_TIME:
3242                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3243                         return 1;
3244
3245                 if (unlikely(!sched_info_on()))
3246                         return 1;
3247
3248                 if (data & KVM_STEAL_RESERVED_MASK)
3249                         return 1;
3250
3251                 vcpu->arch.st.msr_val = data;
3252
3253                 if (!(data & KVM_MSR_ENABLED))
3254                         break;
3255
3256                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3257
3258                 break;
3259         case MSR_KVM_PV_EOI_EN:
3260                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3261                         return 1;
3262
3263                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3264                         return 1;
3265                 break;
3266
3267         case MSR_KVM_POLL_CONTROL:
3268                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3269                         return 1;
3270
3271                 /* only enable bit supported */
3272                 if (data & (-1ULL << 1))
3273                         return 1;
3274
3275                 vcpu->arch.msr_kvm_poll_control = data;
3276                 break;
3277
3278         case MSR_IA32_MCG_CTL:
3279         case MSR_IA32_MCG_STATUS:
3280         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3281                 return set_msr_mce(vcpu, msr_info);
3282
3283         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3284         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3285                 pr = true;
3286                 fallthrough;
3287         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3288         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3289                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3290                         return kvm_pmu_set_msr(vcpu, msr_info);
3291
3292                 if (pr || data != 0)
3293                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3294                                     "0x%x data 0x%llx\n", msr, data);
3295                 break;
3296         case MSR_K7_CLK_CTL:
3297                 /*
3298                  * Ignore all writes to this no longer documented MSR.
3299                  * Writes are only relevant for old K7 processors,
3300                  * all pre-dating SVM, but a recommended workaround from
3301                  * AMD for these chips. It is possible to specify the
3302                  * affected processor models on the command line, hence
3303                  * the need to ignore the workaround.
3304                  */
3305                 break;
3306         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3307         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3308         case HV_X64_MSR_SYNDBG_OPTIONS:
3309         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3310         case HV_X64_MSR_CRASH_CTL:
3311         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3312         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3313         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3314         case HV_X64_MSR_TSC_EMULATION_STATUS:
3315                 return kvm_hv_set_msr_common(vcpu, msr, data,
3316                                              msr_info->host_initiated);
3317         case MSR_IA32_BBL_CR_CTL3:
3318                 /* Drop writes to this legacy MSR -- see rdmsr
3319                  * counterpart for further detail.
3320                  */
3321                 if (report_ignored_msrs)
3322                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3323                                 msr, data);
3324                 break;
3325         case MSR_AMD64_OSVW_ID_LENGTH:
3326                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3327                         return 1;
3328                 vcpu->arch.osvw.length = data;
3329                 break;
3330         case MSR_AMD64_OSVW_STATUS:
3331                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3332                         return 1;
3333                 vcpu->arch.osvw.status = data;
3334                 break;
3335         case MSR_PLATFORM_INFO:
3336                 if (!msr_info->host_initiated ||
3337                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3338                      cpuid_fault_enabled(vcpu)))
3339                         return 1;
3340                 vcpu->arch.msr_platform_info = data;
3341                 break;
3342         case MSR_MISC_FEATURES_ENABLES:
3343                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3344                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3345                      !supports_cpuid_fault(vcpu)))
3346                         return 1;
3347                 vcpu->arch.msr_misc_features_enables = data;
3348                 break;
3349         default:
3350                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3351                         return kvm_pmu_set_msr(vcpu, msr_info);
3352                 return KVM_MSR_RET_INVALID;
3353         }
3354         return 0;
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3357
3358 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3359 {
3360         u64 data;
3361         u64 mcg_cap = vcpu->arch.mcg_cap;
3362         unsigned bank_num = mcg_cap & 0xff;
3363
3364         switch (msr) {
3365         case MSR_IA32_P5_MC_ADDR:
3366         case MSR_IA32_P5_MC_TYPE:
3367                 data = 0;
3368                 break;
3369         case MSR_IA32_MCG_CAP:
3370                 data = vcpu->arch.mcg_cap;
3371                 break;
3372         case MSR_IA32_MCG_CTL:
3373                 if (!(mcg_cap & MCG_CTL_P) && !host)
3374                         return 1;
3375                 data = vcpu->arch.mcg_ctl;
3376                 break;
3377         case MSR_IA32_MCG_STATUS:
3378                 data = vcpu->arch.mcg_status;
3379                 break;
3380         default:
3381                 if (msr >= MSR_IA32_MC0_CTL &&
3382                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3383                         u32 offset = array_index_nospec(
3384                                 msr - MSR_IA32_MC0_CTL,
3385                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3386
3387                         data = vcpu->arch.mce_banks[offset];
3388                         break;
3389                 }
3390                 return 1;
3391         }
3392         *pdata = data;
3393         return 0;
3394 }
3395
3396 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3397 {
3398         switch (msr_info->index) {
3399         case MSR_IA32_PLATFORM_ID:
3400         case MSR_IA32_EBL_CR_POWERON:
3401         case MSR_IA32_LASTBRANCHFROMIP:
3402         case MSR_IA32_LASTBRANCHTOIP:
3403         case MSR_IA32_LASTINTFROMIP:
3404         case MSR_IA32_LASTINTTOIP:
3405         case MSR_K8_SYSCFG:
3406         case MSR_K8_TSEG_ADDR:
3407         case MSR_K8_TSEG_MASK:
3408         case MSR_VM_HSAVE_PA:
3409         case MSR_K8_INT_PENDING_MSG:
3410         case MSR_AMD64_NB_CFG:
3411         case MSR_FAM10H_MMIO_CONF_BASE:
3412         case MSR_AMD64_BU_CFG2:
3413         case MSR_IA32_PERF_CTL:
3414         case MSR_AMD64_DC_CFG:
3415         case MSR_F15H_EX_CFG:
3416         /*
3417          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3418          * limit) MSRs. Just return 0, as we do not want to expose the host
3419          * data here. Do not conditionalize this on CPUID, as KVM does not do
3420          * so for existing CPU-specific MSRs.
3421          */
3422         case MSR_RAPL_POWER_UNIT:
3423         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3424         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3425         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3426         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3427                 msr_info->data = 0;
3428                 break;
3429         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3430                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3431                         return kvm_pmu_get_msr(vcpu, msr_info);
3432                 if (!msr_info->host_initiated)
3433                         return 1;
3434                 msr_info->data = 0;
3435                 break;
3436         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3437         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3438         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3439         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3440                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3441                         return kvm_pmu_get_msr(vcpu, msr_info);
3442                 msr_info->data = 0;
3443                 break;
3444         case MSR_IA32_UCODE_REV:
3445                 msr_info->data = vcpu->arch.microcode_version;
3446                 break;
3447         case MSR_IA32_ARCH_CAPABILITIES:
3448                 if (!msr_info->host_initiated &&
3449                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3450                         return 1;
3451                 msr_info->data = vcpu->arch.arch_capabilities;
3452                 break;
3453         case MSR_IA32_PERF_CAPABILITIES:
3454                 if (!msr_info->host_initiated &&
3455                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3456                         return 1;
3457                 msr_info->data = vcpu->arch.perf_capabilities;
3458                 break;
3459         case MSR_IA32_POWER_CTL:
3460                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3461                 break;
3462         case MSR_IA32_TSC: {
3463                 /*
3464                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3465                  * even when not intercepted. AMD manual doesn't explicitly
3466                  * state this but appears to behave the same.
3467                  *
3468                  * On userspace reads and writes, however, we unconditionally
3469                  * return L1's TSC value to ensure backwards-compatible
3470                  * behavior for migration.
3471                  */
3472                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3473                                                             vcpu->arch.tsc_offset;
3474
3475                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3476                 break;
3477         }
3478         case MSR_MTRRcap:
3479         case 0x200 ... 0x2ff:
3480                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3481         case 0xcd: /* fsb frequency */
3482                 msr_info->data = 3;
3483                 break;
3484                 /*
3485                  * MSR_EBC_FREQUENCY_ID
3486                  * Conservative value valid for even the basic CPU models.
3487                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3488                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3489                  * and 266MHz for model 3, or 4. Set Core Clock
3490                  * Frequency to System Bus Frequency Ratio to 1 (bits
3491                  * 31:24) even though these are only valid for CPU
3492                  * models > 2, however guests may end up dividing or
3493                  * multiplying by zero otherwise.
3494                  */
3495         case MSR_EBC_FREQUENCY_ID:
3496                 msr_info->data = 1 << 24;
3497                 break;
3498         case MSR_IA32_APICBASE:
3499                 msr_info->data = kvm_get_apic_base(vcpu);
3500                 break;
3501         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3502                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3503         case MSR_IA32_TSC_DEADLINE:
3504                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3505                 break;
3506         case MSR_IA32_TSC_ADJUST:
3507                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3508                 break;
3509         case MSR_IA32_MISC_ENABLE:
3510                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3511                 break;
3512         case MSR_IA32_SMBASE:
3513                 if (!msr_info->host_initiated)
3514                         return 1;
3515                 msr_info->data = vcpu->arch.smbase;
3516                 break;
3517         case MSR_SMI_COUNT:
3518                 msr_info->data = vcpu->arch.smi_count;
3519                 break;
3520         case MSR_IA32_PERF_STATUS:
3521                 /* TSC increment by tick */
3522                 msr_info->data = 1000ULL;
3523                 /* CPU multiplier */
3524                 msr_info->data |= (((uint64_t)4ULL) << 40);
3525                 break;
3526         case MSR_EFER:
3527                 msr_info->data = vcpu->arch.efer;
3528                 break;
3529         case MSR_KVM_WALL_CLOCK:
3530                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3531                         return 1;
3532
3533                 msr_info->data = vcpu->kvm->arch.wall_clock;
3534                 break;
3535         case MSR_KVM_WALL_CLOCK_NEW:
3536                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3537                         return 1;
3538
3539                 msr_info->data = vcpu->kvm->arch.wall_clock;
3540                 break;
3541         case MSR_KVM_SYSTEM_TIME:
3542                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3543                         return 1;
3544
3545                 msr_info->data = vcpu->arch.time;
3546                 break;
3547         case MSR_KVM_SYSTEM_TIME_NEW:
3548                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3549                         return 1;
3550
3551                 msr_info->data = vcpu->arch.time;
3552                 break;
3553         case MSR_KVM_ASYNC_PF_EN:
3554                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3555                         return 1;
3556
3557                 msr_info->data = vcpu->arch.apf.msr_en_val;
3558                 break;
3559         case MSR_KVM_ASYNC_PF_INT:
3560                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3561                         return 1;
3562
3563                 msr_info->data = vcpu->arch.apf.msr_int_val;
3564                 break;
3565         case MSR_KVM_ASYNC_PF_ACK:
3566                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3567                         return 1;
3568
3569                 msr_info->data = 0;
3570                 break;
3571         case MSR_KVM_STEAL_TIME:
3572                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3573                         return 1;
3574
3575                 msr_info->data = vcpu->arch.st.msr_val;
3576                 break;
3577         case MSR_KVM_PV_EOI_EN:
3578                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3579                         return 1;
3580
3581                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3582                 break;
3583         case MSR_KVM_POLL_CONTROL:
3584                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3585                         return 1;
3586
3587                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3588                 break;
3589         case MSR_IA32_P5_MC_ADDR:
3590         case MSR_IA32_P5_MC_TYPE:
3591         case MSR_IA32_MCG_CAP:
3592         case MSR_IA32_MCG_CTL:
3593         case MSR_IA32_MCG_STATUS:
3594         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3595                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3596                                    msr_info->host_initiated);
3597         case MSR_IA32_XSS:
3598                 if (!msr_info->host_initiated &&
3599                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3600                         return 1;
3601                 msr_info->data = vcpu->arch.ia32_xss;
3602                 break;
3603         case MSR_K7_CLK_CTL:
3604                 /*
3605                  * Provide expected ramp-up count for K7. All other
3606                  * are set to zero, indicating minimum divisors for
3607                  * every field.
3608                  *
3609                  * This prevents guest kernels on AMD host with CPU
3610                  * type 6, model 8 and higher from exploding due to
3611                  * the rdmsr failing.
3612                  */
3613                 msr_info->data = 0x20000000;
3614                 break;
3615         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3616         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3617         case HV_X64_MSR_SYNDBG_OPTIONS:
3618         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3619         case HV_X64_MSR_CRASH_CTL:
3620         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3621         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3622         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3623         case HV_X64_MSR_TSC_EMULATION_STATUS:
3624                 return kvm_hv_get_msr_common(vcpu,
3625                                              msr_info->index, &msr_info->data,
3626                                              msr_info->host_initiated);
3627         case MSR_IA32_BBL_CR_CTL3:
3628                 /* This legacy MSR exists but isn't fully documented in current
3629                  * silicon.  It is however accessed by winxp in very narrow
3630                  * scenarios where it sets bit #19, itself documented as
3631                  * a "reserved" bit.  Best effort attempt to source coherent
3632                  * read data here should the balance of the register be
3633                  * interpreted by the guest:
3634                  *
3635                  * L2 cache control register 3: 64GB range, 256KB size,
3636                  * enabled, latency 0x1, configured
3637                  */
3638                 msr_info->data = 0xbe702111;
3639                 break;
3640         case MSR_AMD64_OSVW_ID_LENGTH:
3641                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3642                         return 1;
3643                 msr_info->data = vcpu->arch.osvw.length;
3644                 break;
3645         case MSR_AMD64_OSVW_STATUS:
3646                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3647                         return 1;
3648                 msr_info->data = vcpu->arch.osvw.status;
3649                 break;
3650         case MSR_PLATFORM_INFO:
3651                 if (!msr_info->host_initiated &&
3652                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3653                         return 1;
3654                 msr_info->data = vcpu->arch.msr_platform_info;
3655                 break;
3656         case MSR_MISC_FEATURES_ENABLES:
3657                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3658                 break;
3659         case MSR_K7_HWCR:
3660                 msr_info->data = vcpu->arch.msr_hwcr;
3661                 break;
3662         default:
3663                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3664                         return kvm_pmu_get_msr(vcpu, msr_info);
3665                 return KVM_MSR_RET_INVALID;
3666         }
3667         return 0;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3670
3671 /*
3672  * Read or write a bunch of msrs. All parameters are kernel addresses.
3673  *
3674  * @return number of msrs set successfully.
3675  */
3676 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3677                     struct kvm_msr_entry *entries,
3678                     int (*do_msr)(struct kvm_vcpu *vcpu,
3679                                   unsigned index, u64 *data))
3680 {
3681         int i;
3682
3683         for (i = 0; i < msrs->nmsrs; ++i)
3684                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3685                         break;
3686
3687         return i;
3688 }
3689
3690 /*
3691  * Read or write a bunch of msrs. Parameters are user addresses.
3692  *
3693  * @return number of msrs set successfully.
3694  */
3695 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3696                   int (*do_msr)(struct kvm_vcpu *vcpu,
3697                                 unsigned index, u64 *data),
3698                   int writeback)
3699 {
3700         struct kvm_msrs msrs;
3701         struct kvm_msr_entry *entries;
3702         int r, n;
3703         unsigned size;
3704
3705         r = -EFAULT;
3706         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3707                 goto out;
3708
3709         r = -E2BIG;
3710         if (msrs.nmsrs >= MAX_IO_MSRS)
3711                 goto out;
3712
3713         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3714         entries = memdup_user(user_msrs->entries, size);
3715         if (IS_ERR(entries)) {
3716                 r = PTR_ERR(entries);
3717                 goto out;
3718         }
3719
3720         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3721         if (r < 0)
3722                 goto out_free;
3723
3724         r = -EFAULT;
3725         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3726                 goto out_free;
3727
3728         r = n;
3729
3730 out_free:
3731         kfree(entries);
3732 out:
3733         return r;
3734 }
3735
3736 static inline bool kvm_can_mwait_in_guest(void)
3737 {
3738         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3739                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3740                 boot_cpu_has(X86_FEATURE_ARAT);
3741 }
3742
3743 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3744                                             struct kvm_cpuid2 __user *cpuid_arg)
3745 {
3746         struct kvm_cpuid2 cpuid;
3747         int r;
3748
3749         r = -EFAULT;
3750         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3751                 return r;
3752
3753         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3754         if (r)
3755                 return r;
3756
3757         r = -EFAULT;
3758         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3759                 return r;
3760
3761         return 0;
3762 }
3763
3764 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3765 {
3766         int r = 0;
3767
3768         switch (ext) {
3769         case KVM_CAP_IRQCHIP:
3770         case KVM_CAP_HLT:
3771         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3772         case KVM_CAP_SET_TSS_ADDR:
3773         case KVM_CAP_EXT_CPUID:
3774         case KVM_CAP_EXT_EMUL_CPUID:
3775         case KVM_CAP_CLOCKSOURCE:
3776         case KVM_CAP_PIT:
3777         case KVM_CAP_NOP_IO_DELAY:
3778         case KVM_CAP_MP_STATE:
3779         case KVM_CAP_SYNC_MMU:
3780         case KVM_CAP_USER_NMI:
3781         case KVM_CAP_REINJECT_CONTROL:
3782         case KVM_CAP_IRQ_INJECT_STATUS:
3783         case KVM_CAP_IOEVENTFD:
3784         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3785         case KVM_CAP_PIT2:
3786         case KVM_CAP_PIT_STATE2:
3787         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3788         case KVM_CAP_VCPU_EVENTS:
3789         case KVM_CAP_HYPERV:
3790         case KVM_CAP_HYPERV_VAPIC:
3791         case KVM_CAP_HYPERV_SPIN:
3792         case KVM_CAP_HYPERV_SYNIC:
3793         case KVM_CAP_HYPERV_SYNIC2:
3794         case KVM_CAP_HYPERV_VP_INDEX:
3795         case KVM_CAP_HYPERV_EVENTFD:
3796         case KVM_CAP_HYPERV_TLBFLUSH:
3797         case KVM_CAP_HYPERV_SEND_IPI:
3798         case KVM_CAP_HYPERV_CPUID:
3799         case KVM_CAP_SYS_HYPERV_CPUID:
3800         case KVM_CAP_PCI_SEGMENT:
3801         case KVM_CAP_DEBUGREGS:
3802         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3803         case KVM_CAP_XSAVE:
3804         case KVM_CAP_ASYNC_PF:
3805         case KVM_CAP_ASYNC_PF_INT:
3806         case KVM_CAP_GET_TSC_KHZ:
3807         case KVM_CAP_KVMCLOCK_CTRL:
3808         case KVM_CAP_READONLY_MEM:
3809         case KVM_CAP_HYPERV_TIME:
3810         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3811         case KVM_CAP_TSC_DEADLINE_TIMER:
3812         case KVM_CAP_DISABLE_QUIRKS:
3813         case KVM_CAP_SET_BOOT_CPU_ID:
3814         case KVM_CAP_SPLIT_IRQCHIP:
3815         case KVM_CAP_IMMEDIATE_EXIT:
3816         case KVM_CAP_PMU_EVENT_FILTER:
3817         case KVM_CAP_GET_MSR_FEATURES:
3818         case KVM_CAP_MSR_PLATFORM_INFO:
3819         case KVM_CAP_EXCEPTION_PAYLOAD:
3820         case KVM_CAP_SET_GUEST_DEBUG:
3821         case KVM_CAP_LAST_CPU:
3822         case KVM_CAP_X86_USER_SPACE_MSR:
3823         case KVM_CAP_X86_MSR_FILTER:
3824         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3825 #ifdef CONFIG_X86_SGX_KVM
3826         case KVM_CAP_SGX_ATTRIBUTE:
3827 #endif
3828         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3829                 r = 1;
3830                 break;
3831         case KVM_CAP_SET_GUEST_DEBUG2:
3832                 return KVM_GUESTDBG_VALID_MASK;
3833 #ifdef CONFIG_KVM_XEN
3834         case KVM_CAP_XEN_HVM:
3835                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3836                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3837                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
3838                 if (sched_info_on())
3839                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3840                 break;
3841 #endif
3842         case KVM_CAP_SYNC_REGS:
3843                 r = KVM_SYNC_X86_VALID_FIELDS;
3844                 break;
3845         case KVM_CAP_ADJUST_CLOCK:
3846                 r = KVM_CLOCK_TSC_STABLE;
3847                 break;
3848         case KVM_CAP_X86_DISABLE_EXITS:
3849                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3850                       KVM_X86_DISABLE_EXITS_CSTATE;
3851                 if(kvm_can_mwait_in_guest())
3852                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3853                 break;
3854         case KVM_CAP_X86_SMM:
3855                 /* SMBASE is usually relocated above 1M on modern chipsets,
3856                  * and SMM handlers might indeed rely on 4G segment limits,
3857                  * so do not report SMM to be available if real mode is
3858                  * emulated via vm86 mode.  Still, do not go to great lengths
3859                  * to avoid userspace's usage of the feature, because it is a
3860                  * fringe case that is not enabled except via specific settings
3861                  * of the module parameters.
3862                  */
3863                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3864                 break;
3865         case KVM_CAP_VAPIC:
3866                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3867                 break;
3868         case KVM_CAP_NR_VCPUS:
3869                 r = KVM_SOFT_MAX_VCPUS;
3870                 break;
3871         case KVM_CAP_MAX_VCPUS:
3872                 r = KVM_MAX_VCPUS;
3873                 break;
3874         case KVM_CAP_MAX_VCPU_ID:
3875                 r = KVM_MAX_VCPU_ID;
3876                 break;
3877         case KVM_CAP_PV_MMU:    /* obsolete */
3878                 r = 0;
3879                 break;
3880         case KVM_CAP_MCE:
3881                 r = KVM_MAX_MCE_BANKS;
3882                 break;
3883         case KVM_CAP_XCRS:
3884                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3885                 break;
3886         case KVM_CAP_TSC_CONTROL:
3887                 r = kvm_has_tsc_control;
3888                 break;
3889         case KVM_CAP_X2APIC_API:
3890                 r = KVM_X2APIC_API_VALID_FLAGS;
3891                 break;
3892         case KVM_CAP_NESTED_STATE:
3893                 r = kvm_x86_ops.nested_ops->get_state ?
3894                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3895                 break;
3896         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3897                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3898                 break;
3899         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3900                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3901                 break;
3902         case KVM_CAP_SMALLER_MAXPHYADDR:
3903                 r = (int) allow_smaller_maxphyaddr;
3904                 break;
3905         case KVM_CAP_STEAL_TIME:
3906                 r = sched_info_on();
3907                 break;
3908         case KVM_CAP_X86_BUS_LOCK_EXIT:
3909                 if (kvm_has_bus_lock_exit)
3910                         r = KVM_BUS_LOCK_DETECTION_OFF |
3911                             KVM_BUS_LOCK_DETECTION_EXIT;
3912                 else
3913                         r = 0;
3914                 break;
3915         default:
3916                 break;
3917         }
3918         return r;
3919
3920 }
3921
3922 long kvm_arch_dev_ioctl(struct file *filp,
3923                         unsigned int ioctl, unsigned long arg)
3924 {
3925         void __user *argp = (void __user *)arg;
3926         long r;
3927
3928         switch (ioctl) {
3929         case KVM_GET_MSR_INDEX_LIST: {
3930                 struct kvm_msr_list __user *user_msr_list = argp;
3931                 struct kvm_msr_list msr_list;
3932                 unsigned n;
3933
3934                 r = -EFAULT;
3935                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3936                         goto out;
3937                 n = msr_list.nmsrs;
3938                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3939                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3940                         goto out;
3941                 r = -E2BIG;
3942                 if (n < msr_list.nmsrs)
3943                         goto out;
3944                 r = -EFAULT;
3945                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3946                                  num_msrs_to_save * sizeof(u32)))
3947                         goto out;
3948                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3949                                  &emulated_msrs,
3950                                  num_emulated_msrs * sizeof(u32)))
3951                         goto out;
3952                 r = 0;
3953                 break;
3954         }
3955         case KVM_GET_SUPPORTED_CPUID:
3956         case KVM_GET_EMULATED_CPUID: {
3957                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3958                 struct kvm_cpuid2 cpuid;
3959
3960                 r = -EFAULT;
3961                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3962                         goto out;
3963
3964                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3965                                             ioctl);
3966                 if (r)
3967                         goto out;
3968
3969                 r = -EFAULT;
3970                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3971                         goto out;
3972                 r = 0;
3973                 break;
3974         }
3975         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3976                 r = -EFAULT;
3977                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3978                                  sizeof(kvm_mce_cap_supported)))
3979                         goto out;
3980                 r = 0;
3981                 break;
3982         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3983                 struct kvm_msr_list __user *user_msr_list = argp;
3984                 struct kvm_msr_list msr_list;
3985                 unsigned int n;
3986
3987                 r = -EFAULT;
3988                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3989                         goto out;
3990                 n = msr_list.nmsrs;
3991                 msr_list.nmsrs = num_msr_based_features;
3992                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3993                         goto out;
3994                 r = -E2BIG;
3995                 if (n < msr_list.nmsrs)
3996                         goto out;
3997                 r = -EFAULT;
3998                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3999                                  num_msr_based_features * sizeof(u32)))
4000                         goto out;
4001                 r = 0;
4002                 break;
4003         }
4004         case KVM_GET_MSRS:
4005                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4006                 break;
4007         case KVM_GET_SUPPORTED_HV_CPUID:
4008                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4009                 break;
4010         default:
4011                 r = -EINVAL;
4012                 break;
4013         }
4014 out:
4015         return r;
4016 }
4017
4018 static void wbinvd_ipi(void *garbage)
4019 {
4020         wbinvd();
4021 }
4022
4023 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4024 {
4025         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4026 }
4027
4028 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4029 {
4030         /* Address WBINVD may be executed by guest */
4031         if (need_emulate_wbinvd(vcpu)) {
4032                 if (static_call(kvm_x86_has_wbinvd_exit)())
4033                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4034                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4035                         smp_call_function_single(vcpu->cpu,
4036                                         wbinvd_ipi, NULL, 1);
4037         }
4038
4039         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4040
4041         /* Save host pkru register if supported */
4042         vcpu->arch.host_pkru = read_pkru();
4043
4044         /* Apply any externally detected TSC adjustments (due to suspend) */
4045         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4046                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4047                 vcpu->arch.tsc_offset_adjustment = 0;
4048                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4049         }
4050
4051         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4052                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4053                                 rdtsc() - vcpu->arch.last_host_tsc;
4054                 if (tsc_delta < 0)
4055                         mark_tsc_unstable("KVM discovered backwards TSC");
4056
4057                 if (kvm_check_tsc_unstable()) {
4058                         u64 offset = kvm_compute_tsc_offset(vcpu,
4059                                                 vcpu->arch.last_guest_tsc);
4060                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4061                         vcpu->arch.tsc_catchup = 1;
4062                 }
4063
4064                 if (kvm_lapic_hv_timer_in_use(vcpu))
4065                         kvm_lapic_restart_hv_timer(vcpu);
4066
4067                 /*
4068                  * On a host with synchronized TSC, there is no need to update
4069                  * kvmclock on vcpu->cpu migration
4070                  */
4071                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4072                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4073                 if (vcpu->cpu != cpu)
4074                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4075                 vcpu->cpu = cpu;
4076         }
4077
4078         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4079 }
4080
4081 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4082 {
4083         struct kvm_host_map map;
4084         struct kvm_steal_time *st;
4085
4086         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4087                 return;
4088
4089         if (vcpu->arch.st.preempted)
4090                 return;
4091
4092         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4093                         &vcpu->arch.st.cache, true))
4094                 return;
4095
4096         st = map.hva +
4097                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4098
4099         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4100
4101         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4102 }
4103
4104 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4105 {
4106         int idx;
4107
4108         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4109                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4110
4111         /*
4112          * Take the srcu lock as memslots will be accessed to check the gfn
4113          * cache generation against the memslots generation.
4114          */
4115         idx = srcu_read_lock(&vcpu->kvm->srcu);
4116         if (kvm_xen_msr_enabled(vcpu->kvm))
4117                 kvm_xen_runstate_set_preempted(vcpu);
4118         else
4119                 kvm_steal_time_set_preempted(vcpu);
4120         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4121
4122         static_call(kvm_x86_vcpu_put)(vcpu);
4123         vcpu->arch.last_host_tsc = rdtsc();
4124         /*
4125          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4126          * on every vmexit, but if not, we might have a stale dr6 from the
4127          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4128          */
4129         set_debugreg(0, 6);
4130 }
4131
4132 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4133                                     struct kvm_lapic_state *s)
4134 {
4135         if (vcpu->arch.apicv_active)
4136                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4137
4138         return kvm_apic_get_state(vcpu, s);
4139 }
4140
4141 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4142                                     struct kvm_lapic_state *s)
4143 {
4144         int r;
4145
4146         r = kvm_apic_set_state(vcpu, s);
4147         if (r)
4148                 return r;
4149         update_cr8_intercept(vcpu);
4150
4151         return 0;
4152 }
4153
4154 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4155 {
4156         /*
4157          * We can accept userspace's request for interrupt injection
4158          * as long as we have a place to store the interrupt number.
4159          * The actual injection will happen when the CPU is able to
4160          * deliver the interrupt.
4161          */
4162         if (kvm_cpu_has_extint(vcpu))
4163                 return false;
4164
4165         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4166         return (!lapic_in_kernel(vcpu) ||
4167                 kvm_apic_accept_pic_intr(vcpu));
4168 }
4169
4170 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4171 {
4172         return kvm_arch_interrupt_allowed(vcpu) &&
4173                 kvm_cpu_accept_dm_intr(vcpu);
4174 }
4175
4176 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4177                                     struct kvm_interrupt *irq)
4178 {
4179         if (irq->irq >= KVM_NR_INTERRUPTS)
4180                 return -EINVAL;
4181
4182         if (!irqchip_in_kernel(vcpu->kvm)) {
4183                 kvm_queue_interrupt(vcpu, irq->irq, false);
4184                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4185                 return 0;
4186         }
4187
4188         /*
4189          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4190          * fail for in-kernel 8259.
4191          */
4192         if (pic_in_kernel(vcpu->kvm))
4193                 return -ENXIO;
4194
4195         if (vcpu->arch.pending_external_vector != -1)
4196                 return -EEXIST;
4197
4198         vcpu->arch.pending_external_vector = irq->irq;
4199         kvm_make_request(KVM_REQ_EVENT, vcpu);
4200         return 0;
4201 }
4202
4203 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4204 {
4205         kvm_inject_nmi(vcpu);
4206
4207         return 0;
4208 }
4209
4210 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4211 {
4212         kvm_make_request(KVM_REQ_SMI, vcpu);
4213
4214         return 0;
4215 }
4216
4217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4218                                            struct kvm_tpr_access_ctl *tac)
4219 {
4220         if (tac->flags)
4221                 return -EINVAL;
4222         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4223         return 0;
4224 }
4225
4226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4227                                         u64 mcg_cap)
4228 {
4229         int r;
4230         unsigned bank_num = mcg_cap & 0xff, bank;
4231
4232         r = -EINVAL;
4233         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4234                 goto out;
4235         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4236                 goto out;
4237         r = 0;
4238         vcpu->arch.mcg_cap = mcg_cap;
4239         /* Init IA32_MCG_CTL to all 1s */
4240         if (mcg_cap & MCG_CTL_P)
4241                 vcpu->arch.mcg_ctl = ~(u64)0;
4242         /* Init IA32_MCi_CTL to all 1s */
4243         for (bank = 0; bank < bank_num; bank++)
4244                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4245
4246         static_call(kvm_x86_setup_mce)(vcpu);
4247 out:
4248         return r;
4249 }
4250
4251 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4252                                       struct kvm_x86_mce *mce)
4253 {
4254         u64 mcg_cap = vcpu->arch.mcg_cap;
4255         unsigned bank_num = mcg_cap & 0xff;
4256         u64 *banks = vcpu->arch.mce_banks;
4257
4258         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4259                 return -EINVAL;
4260         /*
4261          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4262          * reporting is disabled
4263          */
4264         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4265             vcpu->arch.mcg_ctl != ~(u64)0)
4266                 return 0;
4267         banks += 4 * mce->bank;
4268         /*
4269          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4270          * reporting is disabled for the bank
4271          */
4272         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4273                 return 0;
4274         if (mce->status & MCI_STATUS_UC) {
4275                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4276                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4277                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4278                         return 0;
4279                 }
4280                 if (banks[1] & MCI_STATUS_VAL)
4281                         mce->status |= MCI_STATUS_OVER;
4282                 banks[2] = mce->addr;
4283                 banks[3] = mce->misc;
4284                 vcpu->arch.mcg_status = mce->mcg_status;
4285                 banks[1] = mce->status;
4286                 kvm_queue_exception(vcpu, MC_VECTOR);
4287         } else if (!(banks[1] & MCI_STATUS_VAL)
4288                    || !(banks[1] & MCI_STATUS_UC)) {
4289                 if (banks[1] & MCI_STATUS_VAL)
4290                         mce->status |= MCI_STATUS_OVER;
4291                 banks[2] = mce->addr;
4292                 banks[3] = mce->misc;
4293                 banks[1] = mce->status;
4294         } else
4295                 banks[1] |= MCI_STATUS_OVER;
4296         return 0;
4297 }
4298
4299 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4300                                                struct kvm_vcpu_events *events)
4301 {
4302         process_nmi(vcpu);
4303
4304         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4305                 process_smi(vcpu);
4306
4307         /*
4308          * In guest mode, payload delivery should be deferred,
4309          * so that the L1 hypervisor can intercept #PF before
4310          * CR2 is modified (or intercept #DB before DR6 is
4311          * modified under nVMX). Unless the per-VM capability,
4312          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4313          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4314          * opportunistically defer the exception payload, deliver it if the
4315          * capability hasn't been requested before processing a
4316          * KVM_GET_VCPU_EVENTS.
4317          */
4318         if (!vcpu->kvm->arch.exception_payload_enabled &&
4319             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4320                 kvm_deliver_exception_payload(vcpu);
4321
4322         /*
4323          * The API doesn't provide the instruction length for software
4324          * exceptions, so don't report them. As long as the guest RIP
4325          * isn't advanced, we should expect to encounter the exception
4326          * again.
4327          */
4328         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4329                 events->exception.injected = 0;
4330                 events->exception.pending = 0;
4331         } else {
4332                 events->exception.injected = vcpu->arch.exception.injected;
4333                 events->exception.pending = vcpu->arch.exception.pending;
4334                 /*
4335                  * For ABI compatibility, deliberately conflate
4336                  * pending and injected exceptions when
4337                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4338                  */
4339                 if (!vcpu->kvm->arch.exception_payload_enabled)
4340                         events->exception.injected |=
4341                                 vcpu->arch.exception.pending;
4342         }
4343         events->exception.nr = vcpu->arch.exception.nr;
4344         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4345         events->exception.error_code = vcpu->arch.exception.error_code;
4346         events->exception_has_payload = vcpu->arch.exception.has_payload;
4347         events->exception_payload = vcpu->arch.exception.payload;
4348
4349         events->interrupt.injected =
4350                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4351         events->interrupt.nr = vcpu->arch.interrupt.nr;
4352         events->interrupt.soft = 0;
4353         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4354
4355         events->nmi.injected = vcpu->arch.nmi_injected;
4356         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4357         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4358         events->nmi.pad = 0;
4359
4360         events->sipi_vector = 0; /* never valid when reporting to user space */
4361
4362         events->smi.smm = is_smm(vcpu);
4363         events->smi.pending = vcpu->arch.smi_pending;
4364         events->smi.smm_inside_nmi =
4365                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4366         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4367
4368         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4369                          | KVM_VCPUEVENT_VALID_SHADOW
4370                          | KVM_VCPUEVENT_VALID_SMM);
4371         if (vcpu->kvm->arch.exception_payload_enabled)
4372                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4373
4374         memset(&events->reserved, 0, sizeof(events->reserved));
4375 }
4376
4377 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4378
4379 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4380                                               struct kvm_vcpu_events *events)
4381 {
4382         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4383                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4384                               | KVM_VCPUEVENT_VALID_SHADOW
4385                               | KVM_VCPUEVENT_VALID_SMM
4386                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4387                 return -EINVAL;
4388
4389         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4390                 if (!vcpu->kvm->arch.exception_payload_enabled)
4391                         return -EINVAL;
4392                 if (events->exception.pending)
4393                         events->exception.injected = 0;
4394                 else
4395                         events->exception_has_payload = 0;
4396         } else {
4397                 events->exception.pending = 0;
4398                 events->exception_has_payload = 0;
4399         }
4400
4401         if ((events->exception.injected || events->exception.pending) &&
4402             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4403                 return -EINVAL;
4404
4405         /* INITs are latched while in SMM */
4406         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4407             (events->smi.smm || events->smi.pending) &&
4408             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4409                 return -EINVAL;
4410
4411         process_nmi(vcpu);
4412         vcpu->arch.exception.injected = events->exception.injected;
4413         vcpu->arch.exception.pending = events->exception.pending;
4414         vcpu->arch.exception.nr = events->exception.nr;
4415         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4416         vcpu->arch.exception.error_code = events->exception.error_code;
4417         vcpu->arch.exception.has_payload = events->exception_has_payload;
4418         vcpu->arch.exception.payload = events->exception_payload;
4419
4420         vcpu->arch.interrupt.injected = events->interrupt.injected;
4421         vcpu->arch.interrupt.nr = events->interrupt.nr;
4422         vcpu->arch.interrupt.soft = events->interrupt.soft;
4423         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4424                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4425                                                 events->interrupt.shadow);
4426
4427         vcpu->arch.nmi_injected = events->nmi.injected;
4428         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4429                 vcpu->arch.nmi_pending = events->nmi.pending;
4430         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4431
4432         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4433             lapic_in_kernel(vcpu))
4434                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4435
4436         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4437                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4438                         if (events->smi.smm)
4439                                 vcpu->arch.hflags |= HF_SMM_MASK;
4440                         else
4441                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4442                         kvm_smm_changed(vcpu);
4443                 }
4444
4445                 vcpu->arch.smi_pending = events->smi.pending;
4446
4447                 if (events->smi.smm) {
4448                         if (events->smi.smm_inside_nmi)
4449                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4450                         else
4451                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4452                 }
4453
4454                 if (lapic_in_kernel(vcpu)) {
4455                         if (events->smi.latched_init)
4456                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4457                         else
4458                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4459                 }
4460         }
4461
4462         kvm_make_request(KVM_REQ_EVENT, vcpu);
4463
4464         return 0;
4465 }
4466
4467 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4468                                              struct kvm_debugregs *dbgregs)
4469 {
4470         unsigned long val;
4471
4472         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4473         kvm_get_dr(vcpu, 6, &val);
4474         dbgregs->dr6 = val;
4475         dbgregs->dr7 = vcpu->arch.dr7;
4476         dbgregs->flags = 0;
4477         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4478 }
4479
4480 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4481                                             struct kvm_debugregs *dbgregs)
4482 {
4483         if (dbgregs->flags)
4484                 return -EINVAL;
4485
4486         if (!kvm_dr6_valid(dbgregs->dr6))
4487                 return -EINVAL;
4488         if (!kvm_dr7_valid(dbgregs->dr7))
4489                 return -EINVAL;
4490
4491         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4492         kvm_update_dr0123(vcpu);
4493         vcpu->arch.dr6 = dbgregs->dr6;
4494         vcpu->arch.dr7 = dbgregs->dr7;
4495         kvm_update_dr7(vcpu);
4496
4497         return 0;
4498 }
4499
4500 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4501
4502 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4503 {
4504         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4505         u64 xstate_bv = xsave->header.xfeatures;
4506         u64 valid;
4507
4508         /*
4509          * Copy legacy XSAVE area, to avoid complications with CPUID
4510          * leaves 0 and 1 in the loop below.
4511          */
4512         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4513
4514         /* Set XSTATE_BV */
4515         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4516         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4517
4518         /*
4519          * Copy each region from the possibly compacted offset to the
4520          * non-compacted offset.
4521          */
4522         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4523         while (valid) {
4524                 u64 xfeature_mask = valid & -valid;
4525                 int xfeature_nr = fls64(xfeature_mask) - 1;
4526                 void *src = get_xsave_addr(xsave, xfeature_nr);
4527
4528                 if (src) {
4529                         u32 size, offset, ecx, edx;
4530                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4531                                     &size, &offset, &ecx, &edx);
4532                         if (xfeature_nr == XFEATURE_PKRU)
4533                                 memcpy(dest + offset, &vcpu->arch.pkru,
4534                                        sizeof(vcpu->arch.pkru));
4535                         else
4536                                 memcpy(dest + offset, src, size);
4537
4538                 }
4539
4540                 valid -= xfeature_mask;
4541         }
4542 }
4543
4544 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4545 {
4546         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4547         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4548         u64 valid;
4549
4550         /*
4551          * Copy legacy XSAVE area, to avoid complications with CPUID
4552          * leaves 0 and 1 in the loop below.
4553          */
4554         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4555
4556         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4557         xsave->header.xfeatures = xstate_bv;
4558         if (boot_cpu_has(X86_FEATURE_XSAVES))
4559                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4560
4561         /*
4562          * Copy each region from the non-compacted offset to the
4563          * possibly compacted offset.
4564          */
4565         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4566         while (valid) {
4567                 u64 xfeature_mask = valid & -valid;
4568                 int xfeature_nr = fls64(xfeature_mask) - 1;
4569                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4570
4571                 if (dest) {
4572                         u32 size, offset, ecx, edx;
4573                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4574                                     &size, &offset, &ecx, &edx);
4575                         if (xfeature_nr == XFEATURE_PKRU)
4576                                 memcpy(&vcpu->arch.pkru, src + offset,
4577                                        sizeof(vcpu->arch.pkru));
4578                         else
4579                                 memcpy(dest, src + offset, size);
4580                 }
4581
4582                 valid -= xfeature_mask;
4583         }
4584 }
4585
4586 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4587                                          struct kvm_xsave *guest_xsave)
4588 {
4589         if (!vcpu->arch.guest_fpu)
4590                 return;
4591
4592         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4593                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4594                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4595         } else {
4596                 memcpy(guest_xsave->region,
4597                         &vcpu->arch.guest_fpu->state.fxsave,
4598                         sizeof(struct fxregs_state));
4599                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4600                         XFEATURE_MASK_FPSSE;
4601         }
4602 }
4603
4604 #define XSAVE_MXCSR_OFFSET 24
4605
4606 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4607                                         struct kvm_xsave *guest_xsave)
4608 {
4609         u64 xstate_bv;
4610         u32 mxcsr;
4611
4612         if (!vcpu->arch.guest_fpu)
4613                 return 0;
4614
4615         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4616         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4617
4618         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4619                 /*
4620                  * Here we allow setting states that are not present in
4621                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4622                  * with old userspace.
4623                  */
4624                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4625                         return -EINVAL;
4626                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4627         } else {
4628                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4629                         mxcsr & ~mxcsr_feature_mask)
4630                         return -EINVAL;
4631                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4632                         guest_xsave->region, sizeof(struct fxregs_state));
4633         }
4634         return 0;
4635 }
4636
4637 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4638                                         struct kvm_xcrs *guest_xcrs)
4639 {
4640         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4641                 guest_xcrs->nr_xcrs = 0;
4642                 return;
4643         }
4644
4645         guest_xcrs->nr_xcrs = 1;
4646         guest_xcrs->flags = 0;
4647         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4648         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4649 }
4650
4651 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4652                                        struct kvm_xcrs *guest_xcrs)
4653 {
4654         int i, r = 0;
4655
4656         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4657                 return -EINVAL;
4658
4659         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4660                 return -EINVAL;
4661
4662         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4663                 /* Only support XCR0 currently */
4664                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4665                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4666                                 guest_xcrs->xcrs[i].value);
4667                         break;
4668                 }
4669         if (r)
4670                 r = -EINVAL;
4671         return r;
4672 }
4673
4674 /*
4675  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4676  * stopped by the hypervisor.  This function will be called from the host only.
4677  * EINVAL is returned when the host attempts to set the flag for a guest that
4678  * does not support pv clocks.
4679  */
4680 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4681 {
4682         if (!vcpu->arch.pv_time_enabled)
4683                 return -EINVAL;
4684         vcpu->arch.pvclock_set_guest_stopped_request = true;
4685         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4686         return 0;
4687 }
4688
4689 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4690                                      struct kvm_enable_cap *cap)
4691 {
4692         int r;
4693         uint16_t vmcs_version;
4694         void __user *user_ptr;
4695
4696         if (cap->flags)
4697                 return -EINVAL;
4698
4699         switch (cap->cap) {
4700         case KVM_CAP_HYPERV_SYNIC2:
4701                 if (cap->args[0])
4702                         return -EINVAL;
4703                 fallthrough;
4704
4705         case KVM_CAP_HYPERV_SYNIC:
4706                 if (!irqchip_in_kernel(vcpu->kvm))
4707                         return -EINVAL;
4708                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4709                                              KVM_CAP_HYPERV_SYNIC2);
4710         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4711                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4712                         return -ENOTTY;
4713                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4714                 if (!r) {
4715                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4716                         if (copy_to_user(user_ptr, &vmcs_version,
4717                                          sizeof(vmcs_version)))
4718                                 r = -EFAULT;
4719                 }
4720                 return r;
4721         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4722                 if (!kvm_x86_ops.enable_direct_tlbflush)
4723                         return -ENOTTY;
4724
4725                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4726
4727         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4728                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4729                 if (vcpu->arch.pv_cpuid.enforce)
4730                         kvm_update_pv_runtime(vcpu);
4731
4732                 return 0;
4733         default:
4734                 return -EINVAL;
4735         }
4736 }
4737
4738 long kvm_arch_vcpu_ioctl(struct file *filp,
4739                          unsigned int ioctl, unsigned long arg)
4740 {
4741         struct kvm_vcpu *vcpu = filp->private_data;
4742         void __user *argp = (void __user *)arg;
4743         int r;
4744         union {
4745                 struct kvm_lapic_state *lapic;
4746                 struct kvm_xsave *xsave;
4747                 struct kvm_xcrs *xcrs;
4748                 void *buffer;
4749         } u;
4750
4751         vcpu_load(vcpu);
4752
4753         u.buffer = NULL;
4754         switch (ioctl) {
4755         case KVM_GET_LAPIC: {
4756                 r = -EINVAL;
4757                 if (!lapic_in_kernel(vcpu))
4758                         goto out;
4759                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4760                                 GFP_KERNEL_ACCOUNT);
4761
4762                 r = -ENOMEM;
4763                 if (!u.lapic)
4764                         goto out;
4765                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4766                 if (r)
4767                         goto out;
4768                 r = -EFAULT;
4769                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4770                         goto out;
4771                 r = 0;
4772                 break;
4773         }
4774         case KVM_SET_LAPIC: {
4775                 r = -EINVAL;
4776                 if (!lapic_in_kernel(vcpu))
4777                         goto out;
4778                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4779                 if (IS_ERR(u.lapic)) {
4780                         r = PTR_ERR(u.lapic);
4781                         goto out_nofree;
4782                 }
4783
4784                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4785                 break;
4786         }
4787         case KVM_INTERRUPT: {
4788                 struct kvm_interrupt irq;
4789
4790                 r = -EFAULT;
4791                 if (copy_from_user(&irq, argp, sizeof(irq)))
4792                         goto out;
4793                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4794                 break;
4795         }
4796         case KVM_NMI: {
4797                 r = kvm_vcpu_ioctl_nmi(vcpu);
4798                 break;
4799         }
4800         case KVM_SMI: {
4801                 r = kvm_vcpu_ioctl_smi(vcpu);
4802                 break;
4803         }
4804         case KVM_SET_CPUID: {
4805                 struct kvm_cpuid __user *cpuid_arg = argp;
4806                 struct kvm_cpuid cpuid;
4807
4808                 r = -EFAULT;
4809                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4810                         goto out;
4811                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4812                 break;
4813         }
4814         case KVM_SET_CPUID2: {
4815                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4816                 struct kvm_cpuid2 cpuid;
4817
4818                 r = -EFAULT;
4819                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4820                         goto out;
4821                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4822                                               cpuid_arg->entries);
4823                 break;
4824         }
4825         case KVM_GET_CPUID2: {
4826                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4827                 struct kvm_cpuid2 cpuid;
4828
4829                 r = -EFAULT;
4830                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4831                         goto out;
4832                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4833                                               cpuid_arg->entries);
4834                 if (r)
4835                         goto out;
4836                 r = -EFAULT;
4837                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4838                         goto out;
4839                 r = 0;
4840                 break;
4841         }
4842         case KVM_GET_MSRS: {
4843                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4844                 r = msr_io(vcpu, argp, do_get_msr, 1);
4845                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4846                 break;
4847         }
4848         case KVM_SET_MSRS: {
4849                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4850                 r = msr_io(vcpu, argp, do_set_msr, 0);
4851                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4852                 break;
4853         }
4854         case KVM_TPR_ACCESS_REPORTING: {
4855                 struct kvm_tpr_access_ctl tac;
4856
4857                 r = -EFAULT;
4858                 if (copy_from_user(&tac, argp, sizeof(tac)))
4859                         goto out;
4860                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4861                 if (r)
4862                         goto out;
4863                 r = -EFAULT;
4864                 if (copy_to_user(argp, &tac, sizeof(tac)))
4865                         goto out;
4866                 r = 0;
4867                 break;
4868         };
4869         case KVM_SET_VAPIC_ADDR: {
4870                 struct kvm_vapic_addr va;
4871                 int idx;
4872
4873                 r = -EINVAL;
4874                 if (!lapic_in_kernel(vcpu))
4875                         goto out;
4876                 r = -EFAULT;
4877                 if (copy_from_user(&va, argp, sizeof(va)))
4878                         goto out;
4879                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4880                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4881                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4882                 break;
4883         }
4884         case KVM_X86_SETUP_MCE: {
4885                 u64 mcg_cap;
4886
4887                 r = -EFAULT;
4888                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4889                         goto out;
4890                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4891                 break;
4892         }
4893         case KVM_X86_SET_MCE: {
4894                 struct kvm_x86_mce mce;
4895
4896                 r = -EFAULT;
4897                 if (copy_from_user(&mce, argp, sizeof(mce)))
4898                         goto out;
4899                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4900                 break;
4901         }
4902         case KVM_GET_VCPU_EVENTS: {
4903                 struct kvm_vcpu_events events;
4904
4905                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4906
4907                 r = -EFAULT;
4908                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4909                         break;
4910                 r = 0;
4911                 break;
4912         }
4913         case KVM_SET_VCPU_EVENTS: {
4914                 struct kvm_vcpu_events events;
4915
4916                 r = -EFAULT;
4917                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4918                         break;
4919
4920                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4921                 break;
4922         }
4923         case KVM_GET_DEBUGREGS: {
4924                 struct kvm_debugregs dbgregs;
4925
4926                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4927
4928                 r = -EFAULT;
4929                 if (copy_to_user(argp, &dbgregs,
4930                                  sizeof(struct kvm_debugregs)))
4931                         break;
4932                 r = 0;
4933                 break;
4934         }
4935         case KVM_SET_DEBUGREGS: {
4936                 struct kvm_debugregs dbgregs;
4937
4938                 r = -EFAULT;
4939                 if (copy_from_user(&dbgregs, argp,
4940                                    sizeof(struct kvm_debugregs)))
4941                         break;
4942
4943                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4944                 break;
4945         }
4946         case KVM_GET_XSAVE: {
4947                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4948                 r = -ENOMEM;
4949                 if (!u.xsave)
4950                         break;
4951
4952                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4953
4954                 r = -EFAULT;
4955                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4956                         break;
4957                 r = 0;
4958                 break;
4959         }
4960         case KVM_SET_XSAVE: {
4961                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4962                 if (IS_ERR(u.xsave)) {
4963                         r = PTR_ERR(u.xsave);
4964                         goto out_nofree;
4965                 }
4966
4967                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4968                 break;
4969         }
4970         case KVM_GET_XCRS: {
4971                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4972                 r = -ENOMEM;
4973                 if (!u.xcrs)
4974                         break;
4975
4976                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4977
4978                 r = -EFAULT;
4979                 if (copy_to_user(argp, u.xcrs,
4980                                  sizeof(struct kvm_xcrs)))
4981                         break;
4982                 r = 0;
4983                 break;
4984         }
4985         case KVM_SET_XCRS: {
4986                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4987                 if (IS_ERR(u.xcrs)) {
4988                         r = PTR_ERR(u.xcrs);
4989                         goto out_nofree;
4990                 }
4991
4992                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4993                 break;
4994         }
4995         case KVM_SET_TSC_KHZ: {
4996                 u32 user_tsc_khz;
4997
4998                 r = -EINVAL;
4999                 user_tsc_khz = (u32)arg;
5000
5001                 if (kvm_has_tsc_control &&
5002                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5003                         goto out;
5004
5005                 if (user_tsc_khz == 0)
5006                         user_tsc_khz = tsc_khz;
5007
5008                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5009                         r = 0;
5010
5011                 goto out;
5012         }
5013         case KVM_GET_TSC_KHZ: {
5014                 r = vcpu->arch.virtual_tsc_khz;
5015                 goto out;
5016         }
5017         case KVM_KVMCLOCK_CTRL: {
5018                 r = kvm_set_guest_paused(vcpu);
5019                 goto out;
5020         }
5021         case KVM_ENABLE_CAP: {
5022                 struct kvm_enable_cap cap;
5023
5024                 r = -EFAULT;
5025                 if (copy_from_user(&cap, argp, sizeof(cap)))
5026                         goto out;
5027                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5028                 break;
5029         }
5030         case KVM_GET_NESTED_STATE: {
5031                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5032                 u32 user_data_size;
5033
5034                 r = -EINVAL;
5035                 if (!kvm_x86_ops.nested_ops->get_state)
5036                         break;
5037
5038                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5039                 r = -EFAULT;
5040                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5041                         break;
5042
5043                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5044                                                      user_data_size);
5045                 if (r < 0)
5046                         break;
5047
5048                 if (r > user_data_size) {
5049                         if (put_user(r, &user_kvm_nested_state->size))
5050                                 r = -EFAULT;
5051                         else
5052                                 r = -E2BIG;
5053                         break;
5054                 }
5055
5056                 r = 0;
5057                 break;
5058         }
5059         case KVM_SET_NESTED_STATE: {
5060                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5061                 struct kvm_nested_state kvm_state;
5062                 int idx;
5063
5064                 r = -EINVAL;
5065                 if (!kvm_x86_ops.nested_ops->set_state)
5066                         break;
5067
5068                 r = -EFAULT;
5069                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5070                         break;
5071
5072                 r = -EINVAL;
5073                 if (kvm_state.size < sizeof(kvm_state))
5074                         break;
5075
5076                 if (kvm_state.flags &
5077                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5078                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5079                       | KVM_STATE_NESTED_GIF_SET))
5080                         break;
5081
5082                 /* nested_run_pending implies guest_mode.  */
5083                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5084                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5085                         break;
5086
5087                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5088                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5089                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5090                 break;
5091         }
5092         case KVM_GET_SUPPORTED_HV_CPUID:
5093                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5094                 break;
5095 #ifdef CONFIG_KVM_XEN
5096         case KVM_XEN_VCPU_GET_ATTR: {
5097                 struct kvm_xen_vcpu_attr xva;
5098
5099                 r = -EFAULT;
5100                 if (copy_from_user(&xva, argp, sizeof(xva)))
5101                         goto out;
5102                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5103                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5104                         r = -EFAULT;
5105                 break;
5106         }
5107         case KVM_XEN_VCPU_SET_ATTR: {
5108                 struct kvm_xen_vcpu_attr xva;
5109
5110                 r = -EFAULT;
5111                 if (copy_from_user(&xva, argp, sizeof(xva)))
5112                         goto out;
5113                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5114                 break;
5115         }
5116 #endif
5117         default:
5118                 r = -EINVAL;
5119         }
5120 out:
5121         kfree(u.buffer);
5122 out_nofree:
5123         vcpu_put(vcpu);
5124         return r;
5125 }
5126
5127 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5128 {
5129         return VM_FAULT_SIGBUS;
5130 }
5131
5132 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5133 {
5134         int ret;
5135
5136         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5137                 return -EINVAL;
5138         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5139         return ret;
5140 }
5141
5142 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5143                                               u64 ident_addr)
5144 {
5145         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5146 }
5147
5148 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5149                                          unsigned long kvm_nr_mmu_pages)
5150 {
5151         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5152                 return -EINVAL;
5153
5154         mutex_lock(&kvm->slots_lock);
5155
5156         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5157         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5158
5159         mutex_unlock(&kvm->slots_lock);
5160         return 0;
5161 }
5162
5163 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5164 {
5165         return kvm->arch.n_max_mmu_pages;
5166 }
5167
5168 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5169 {
5170         struct kvm_pic *pic = kvm->arch.vpic;
5171         int r;
5172
5173         r = 0;
5174         switch (chip->chip_id) {
5175         case KVM_IRQCHIP_PIC_MASTER:
5176                 memcpy(&chip->chip.pic, &pic->pics[0],
5177                         sizeof(struct kvm_pic_state));
5178                 break;
5179         case KVM_IRQCHIP_PIC_SLAVE:
5180                 memcpy(&chip->chip.pic, &pic->pics[1],
5181                         sizeof(struct kvm_pic_state));
5182                 break;
5183         case KVM_IRQCHIP_IOAPIC:
5184                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5185                 break;
5186         default:
5187                 r = -EINVAL;
5188                 break;
5189         }
5190         return r;
5191 }
5192
5193 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5194 {
5195         struct kvm_pic *pic = kvm->arch.vpic;
5196         int r;
5197
5198         r = 0;
5199         switch (chip->chip_id) {
5200         case KVM_IRQCHIP_PIC_MASTER:
5201                 spin_lock(&pic->lock);
5202                 memcpy(&pic->pics[0], &chip->chip.pic,
5203                         sizeof(struct kvm_pic_state));
5204                 spin_unlock(&pic->lock);
5205                 break;
5206         case KVM_IRQCHIP_PIC_SLAVE:
5207                 spin_lock(&pic->lock);
5208                 memcpy(&pic->pics[1], &chip->chip.pic,
5209                         sizeof(struct kvm_pic_state));
5210                 spin_unlock(&pic->lock);
5211                 break;
5212         case KVM_IRQCHIP_IOAPIC:
5213                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5214                 break;
5215         default:
5216                 r = -EINVAL;
5217                 break;
5218         }
5219         kvm_pic_update_irq(pic);
5220         return r;
5221 }
5222
5223 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5224 {
5225         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5226
5227         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5228
5229         mutex_lock(&kps->lock);
5230         memcpy(ps, &kps->channels, sizeof(*ps));
5231         mutex_unlock(&kps->lock);
5232         return 0;
5233 }
5234
5235 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5236 {
5237         int i;
5238         struct kvm_pit *pit = kvm->arch.vpit;
5239
5240         mutex_lock(&pit->pit_state.lock);
5241         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5242         for (i = 0; i < 3; i++)
5243                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5244         mutex_unlock(&pit->pit_state.lock);
5245         return 0;
5246 }
5247
5248 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5249 {
5250         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5251         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5252                 sizeof(ps->channels));
5253         ps->flags = kvm->arch.vpit->pit_state.flags;
5254         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5255         memset(&ps->reserved, 0, sizeof(ps->reserved));
5256         return 0;
5257 }
5258
5259 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5260 {
5261         int start = 0;
5262         int i;
5263         u32 prev_legacy, cur_legacy;
5264         struct kvm_pit *pit = kvm->arch.vpit;
5265
5266         mutex_lock(&pit->pit_state.lock);
5267         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5268         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5269         if (!prev_legacy && cur_legacy)
5270                 start = 1;
5271         memcpy(&pit->pit_state.channels, &ps->channels,
5272                sizeof(pit->pit_state.channels));
5273         pit->pit_state.flags = ps->flags;
5274         for (i = 0; i < 3; i++)
5275                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5276                                    start && i == 0);
5277         mutex_unlock(&pit->pit_state.lock);
5278         return 0;
5279 }
5280
5281 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5282                                  struct kvm_reinject_control *control)
5283 {
5284         struct kvm_pit *pit = kvm->arch.vpit;
5285
5286         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5287          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5288          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5289          */
5290         mutex_lock(&pit->pit_state.lock);
5291         kvm_pit_set_reinject(pit, control->pit_reinject);
5292         mutex_unlock(&pit->pit_state.lock);
5293
5294         return 0;
5295 }
5296
5297 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5298 {
5299
5300         /*
5301          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5302          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5303          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5304          * VM-Exit.
5305          */
5306         struct kvm_vcpu *vcpu;
5307         int i;
5308
5309         kvm_for_each_vcpu(i, vcpu, kvm)
5310                 kvm_vcpu_kick(vcpu);
5311 }
5312
5313 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5314                         bool line_status)
5315 {
5316         if (!irqchip_in_kernel(kvm))
5317                 return -ENXIO;
5318
5319         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5320                                         irq_event->irq, irq_event->level,
5321                                         line_status);
5322         return 0;
5323 }
5324
5325 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5326                             struct kvm_enable_cap *cap)
5327 {
5328         int r;
5329
5330         if (cap->flags)
5331                 return -EINVAL;
5332
5333         switch (cap->cap) {
5334         case KVM_CAP_DISABLE_QUIRKS:
5335                 kvm->arch.disabled_quirks = cap->args[0];
5336                 r = 0;
5337                 break;
5338         case KVM_CAP_SPLIT_IRQCHIP: {
5339                 mutex_lock(&kvm->lock);
5340                 r = -EINVAL;
5341                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5342                         goto split_irqchip_unlock;
5343                 r = -EEXIST;
5344                 if (irqchip_in_kernel(kvm))
5345                         goto split_irqchip_unlock;
5346                 if (kvm->created_vcpus)
5347                         goto split_irqchip_unlock;
5348                 r = kvm_setup_empty_irq_routing(kvm);
5349                 if (r)
5350                         goto split_irqchip_unlock;
5351                 /* Pairs with irqchip_in_kernel. */
5352                 smp_wmb();
5353                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5354                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5355                 r = 0;
5356 split_irqchip_unlock:
5357                 mutex_unlock(&kvm->lock);
5358                 break;
5359         }
5360         case KVM_CAP_X2APIC_API:
5361                 r = -EINVAL;
5362                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5363                         break;
5364
5365                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5366                         kvm->arch.x2apic_format = true;
5367                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5368                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5369
5370                 r = 0;
5371                 break;
5372         case KVM_CAP_X86_DISABLE_EXITS:
5373                 r = -EINVAL;
5374                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5375                         break;
5376
5377                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5378                         kvm_can_mwait_in_guest())
5379                         kvm->arch.mwait_in_guest = true;
5380                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5381                         kvm->arch.hlt_in_guest = true;
5382                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5383                         kvm->arch.pause_in_guest = true;
5384                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5385                         kvm->arch.cstate_in_guest = true;
5386                 r = 0;
5387                 break;
5388         case KVM_CAP_MSR_PLATFORM_INFO:
5389                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5390                 r = 0;
5391                 break;
5392         case KVM_CAP_EXCEPTION_PAYLOAD:
5393                 kvm->arch.exception_payload_enabled = cap->args[0];
5394                 r = 0;
5395                 break;
5396         case KVM_CAP_X86_USER_SPACE_MSR:
5397                 kvm->arch.user_space_msr_mask = cap->args[0];
5398                 r = 0;
5399                 break;
5400         case KVM_CAP_X86_BUS_LOCK_EXIT:
5401                 r = -EINVAL;
5402                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5403                         break;
5404
5405                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5406                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5407                         break;
5408
5409                 if (kvm_has_bus_lock_exit &&
5410                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5411                         kvm->arch.bus_lock_detection_enabled = true;
5412                 r = 0;
5413                 break;
5414 #ifdef CONFIG_X86_SGX_KVM
5415         case KVM_CAP_SGX_ATTRIBUTE: {
5416                 unsigned long allowed_attributes = 0;
5417
5418                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5419                 if (r)
5420                         break;
5421
5422                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5423                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5424                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5425                         kvm->arch.sgx_provisioning_allowed = true;
5426                 else
5427                         r = -EINVAL;
5428                 break;
5429         }
5430 #endif
5431         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5432                 r = -EINVAL;
5433                 if (kvm_x86_ops.vm_copy_enc_context_from)
5434                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5435                 return r;
5436         default:
5437                 r = -EINVAL;
5438                 break;
5439         }
5440         return r;
5441 }
5442
5443 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5444 {
5445         struct kvm_x86_msr_filter *msr_filter;
5446
5447         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5448         if (!msr_filter)
5449                 return NULL;
5450
5451         msr_filter->default_allow = default_allow;
5452         return msr_filter;
5453 }
5454
5455 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5456 {
5457         u32 i;
5458
5459         if (!msr_filter)
5460                 return;
5461
5462         for (i = 0; i < msr_filter->count; i++)
5463                 kfree(msr_filter->ranges[i].bitmap);
5464
5465         kfree(msr_filter);
5466 }
5467
5468 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5469                               struct kvm_msr_filter_range *user_range)
5470 {
5471         unsigned long *bitmap = NULL;
5472         size_t bitmap_size;
5473
5474         if (!user_range->nmsrs)
5475                 return 0;
5476
5477         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5478                 return -EINVAL;
5479
5480         if (!user_range->flags)
5481                 return -EINVAL;
5482
5483         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5484         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5485                 return -EINVAL;
5486
5487         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5488         if (IS_ERR(bitmap))
5489                 return PTR_ERR(bitmap);
5490
5491         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5492                 .flags = user_range->flags,
5493                 .base = user_range->base,
5494                 .nmsrs = user_range->nmsrs,
5495                 .bitmap = bitmap,
5496         };
5497
5498         msr_filter->count++;
5499         return 0;
5500 }
5501
5502 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5503 {
5504         struct kvm_msr_filter __user *user_msr_filter = argp;
5505         struct kvm_x86_msr_filter *new_filter, *old_filter;
5506         struct kvm_msr_filter filter;
5507         bool default_allow;
5508         bool empty = true;
5509         int r = 0;
5510         u32 i;
5511
5512         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5513                 return -EFAULT;
5514
5515         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5516                 empty &= !filter.ranges[i].nmsrs;
5517
5518         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5519         if (empty && !default_allow)
5520                 return -EINVAL;
5521
5522         new_filter = kvm_alloc_msr_filter(default_allow);
5523         if (!new_filter)
5524                 return -ENOMEM;
5525
5526         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5527                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5528                 if (r) {
5529                         kvm_free_msr_filter(new_filter);
5530                         return r;
5531                 }
5532         }
5533
5534         mutex_lock(&kvm->lock);
5535
5536         /* The per-VM filter is protected by kvm->lock... */
5537         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5538
5539         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5540         synchronize_srcu(&kvm->srcu);
5541
5542         kvm_free_msr_filter(old_filter);
5543
5544         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5545         mutex_unlock(&kvm->lock);
5546
5547         return 0;
5548 }
5549
5550 long kvm_arch_vm_ioctl(struct file *filp,
5551                        unsigned int ioctl, unsigned long arg)
5552 {
5553         struct kvm *kvm = filp->private_data;
5554         void __user *argp = (void __user *)arg;
5555         int r = -ENOTTY;
5556         /*
5557          * This union makes it completely explicit to gcc-3.x
5558          * that these two variables' stack usage should be
5559          * combined, not added together.
5560          */
5561         union {
5562                 struct kvm_pit_state ps;
5563                 struct kvm_pit_state2 ps2;
5564                 struct kvm_pit_config pit_config;
5565         } u;
5566
5567         switch (ioctl) {
5568         case KVM_SET_TSS_ADDR:
5569                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5570                 break;
5571         case KVM_SET_IDENTITY_MAP_ADDR: {
5572                 u64 ident_addr;
5573
5574                 mutex_lock(&kvm->lock);
5575                 r = -EINVAL;
5576                 if (kvm->created_vcpus)
5577                         goto set_identity_unlock;
5578                 r = -EFAULT;
5579                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5580                         goto set_identity_unlock;
5581                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5582 set_identity_unlock:
5583                 mutex_unlock(&kvm->lock);
5584                 break;
5585         }
5586         case KVM_SET_NR_MMU_PAGES:
5587                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5588                 break;
5589         case KVM_GET_NR_MMU_PAGES:
5590                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5591                 break;
5592         case KVM_CREATE_IRQCHIP: {
5593                 mutex_lock(&kvm->lock);
5594
5595                 r = -EEXIST;
5596                 if (irqchip_in_kernel(kvm))
5597                         goto create_irqchip_unlock;
5598
5599                 r = -EINVAL;
5600                 if (kvm->created_vcpus)
5601                         goto create_irqchip_unlock;
5602
5603                 r = kvm_pic_init(kvm);
5604                 if (r)
5605                         goto create_irqchip_unlock;
5606
5607                 r = kvm_ioapic_init(kvm);
5608                 if (r) {
5609                         kvm_pic_destroy(kvm);
5610                         goto create_irqchip_unlock;
5611                 }
5612
5613                 r = kvm_setup_default_irq_routing(kvm);
5614                 if (r) {
5615                         kvm_ioapic_destroy(kvm);
5616                         kvm_pic_destroy(kvm);
5617                         goto create_irqchip_unlock;
5618                 }
5619                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5620                 smp_wmb();
5621                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5622         create_irqchip_unlock:
5623                 mutex_unlock(&kvm->lock);
5624                 break;
5625         }
5626         case KVM_CREATE_PIT:
5627                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5628                 goto create_pit;
5629         case KVM_CREATE_PIT2:
5630                 r = -EFAULT;
5631                 if (copy_from_user(&u.pit_config, argp,
5632                                    sizeof(struct kvm_pit_config)))
5633                         goto out;
5634         create_pit:
5635                 mutex_lock(&kvm->lock);
5636                 r = -EEXIST;
5637                 if (kvm->arch.vpit)
5638                         goto create_pit_unlock;
5639                 r = -ENOMEM;
5640                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5641                 if (kvm->arch.vpit)
5642                         r = 0;
5643         create_pit_unlock:
5644                 mutex_unlock(&kvm->lock);
5645                 break;
5646         case KVM_GET_IRQCHIP: {
5647                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5648                 struct kvm_irqchip *chip;
5649
5650                 chip = memdup_user(argp, sizeof(*chip));
5651                 if (IS_ERR(chip)) {
5652                         r = PTR_ERR(chip);
5653                         goto out;
5654                 }
5655
5656                 r = -ENXIO;
5657                 if (!irqchip_kernel(kvm))
5658                         goto get_irqchip_out;
5659                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5660                 if (r)
5661                         goto get_irqchip_out;
5662                 r = -EFAULT;
5663                 if (copy_to_user(argp, chip, sizeof(*chip)))
5664                         goto get_irqchip_out;
5665                 r = 0;
5666         get_irqchip_out:
5667                 kfree(chip);
5668                 break;
5669         }
5670         case KVM_SET_IRQCHIP: {
5671                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5672                 struct kvm_irqchip *chip;
5673
5674                 chip = memdup_user(argp, sizeof(*chip));
5675                 if (IS_ERR(chip)) {
5676                         r = PTR_ERR(chip);
5677                         goto out;
5678                 }
5679
5680                 r = -ENXIO;
5681                 if (!irqchip_kernel(kvm))
5682                         goto set_irqchip_out;
5683                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5684         set_irqchip_out:
5685                 kfree(chip);
5686                 break;
5687         }
5688         case KVM_GET_PIT: {
5689                 r = -EFAULT;
5690                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5691                         goto out;
5692                 r = -ENXIO;
5693                 if (!kvm->arch.vpit)
5694                         goto out;
5695                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5696                 if (r)
5697                         goto out;
5698                 r = -EFAULT;
5699                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5700                         goto out;
5701                 r = 0;
5702                 break;
5703         }
5704         case KVM_SET_PIT: {
5705                 r = -EFAULT;
5706                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5707                         goto out;
5708                 mutex_lock(&kvm->lock);
5709                 r = -ENXIO;
5710                 if (!kvm->arch.vpit)
5711                         goto set_pit_out;
5712                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5713 set_pit_out:
5714                 mutex_unlock(&kvm->lock);
5715                 break;
5716         }
5717         case KVM_GET_PIT2: {
5718                 r = -ENXIO;
5719                 if (!kvm->arch.vpit)
5720                         goto out;
5721                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5722                 if (r)
5723                         goto out;
5724                 r = -EFAULT;
5725                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5726                         goto out;
5727                 r = 0;
5728                 break;
5729         }
5730         case KVM_SET_PIT2: {
5731                 r = -EFAULT;
5732                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5733                         goto out;
5734                 mutex_lock(&kvm->lock);
5735                 r = -ENXIO;
5736                 if (!kvm->arch.vpit)
5737                         goto set_pit2_out;
5738                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5739 set_pit2_out:
5740                 mutex_unlock(&kvm->lock);
5741                 break;
5742         }
5743         case KVM_REINJECT_CONTROL: {
5744                 struct kvm_reinject_control control;
5745                 r =  -EFAULT;
5746                 if (copy_from_user(&control, argp, sizeof(control)))
5747                         goto out;
5748                 r = -ENXIO;
5749                 if (!kvm->arch.vpit)
5750                         goto out;
5751                 r = kvm_vm_ioctl_reinject(kvm, &control);
5752                 break;
5753         }
5754         case KVM_SET_BOOT_CPU_ID:
5755                 r = 0;
5756                 mutex_lock(&kvm->lock);
5757                 if (kvm->created_vcpus)
5758                         r = -EBUSY;
5759                 else
5760                         kvm->arch.bsp_vcpu_id = arg;
5761                 mutex_unlock(&kvm->lock);
5762                 break;
5763 #ifdef CONFIG_KVM_XEN
5764         case KVM_XEN_HVM_CONFIG: {
5765                 struct kvm_xen_hvm_config xhc;
5766                 r = -EFAULT;
5767                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5768                         goto out;
5769                 r = kvm_xen_hvm_config(kvm, &xhc);
5770                 break;
5771         }
5772         case KVM_XEN_HVM_GET_ATTR: {
5773                 struct kvm_xen_hvm_attr xha;
5774
5775                 r = -EFAULT;
5776                 if (copy_from_user(&xha, argp, sizeof(xha)))
5777                         goto out;
5778                 r = kvm_xen_hvm_get_attr(kvm, &xha);
5779                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5780                         r = -EFAULT;
5781                 break;
5782         }
5783         case KVM_XEN_HVM_SET_ATTR: {
5784                 struct kvm_xen_hvm_attr xha;
5785
5786                 r = -EFAULT;
5787                 if (copy_from_user(&xha, argp, sizeof(xha)))
5788                         goto out;
5789                 r = kvm_xen_hvm_set_attr(kvm, &xha);
5790                 break;
5791         }
5792 #endif
5793         case KVM_SET_CLOCK: {
5794                 struct kvm_arch *ka = &kvm->arch;
5795                 struct kvm_clock_data user_ns;
5796                 u64 now_ns;
5797
5798                 r = -EFAULT;
5799                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5800                         goto out;
5801
5802                 r = -EINVAL;
5803                 if (user_ns.flags)
5804                         goto out;
5805
5806                 r = 0;
5807                 /*
5808                  * TODO: userspace has to take care of races with VCPU_RUN, so
5809                  * kvm_gen_update_masterclock() can be cut down to locked
5810                  * pvclock_update_vm_gtod_copy().
5811                  */
5812                 kvm_gen_update_masterclock(kvm);
5813
5814                 /*
5815                  * This pairs with kvm_guest_time_update(): when masterclock is
5816                  * in use, we use master_kernel_ns + kvmclock_offset to set
5817                  * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5818                  * is slightly ahead) here we risk going negative on unsigned
5819                  * 'system_time' when 'user_ns.clock' is very small.
5820                  */
5821                 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5822                 if (kvm->arch.use_master_clock)
5823                         now_ns = ka->master_kernel_ns;
5824                 else
5825                         now_ns = get_kvmclock_base_ns();
5826                 ka->kvmclock_offset = user_ns.clock - now_ns;
5827                 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5828
5829                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5830                 break;
5831         }
5832         case KVM_GET_CLOCK: {
5833                 struct kvm_clock_data user_ns;
5834                 u64 now_ns;
5835
5836                 now_ns = get_kvmclock_ns(kvm);
5837                 user_ns.clock = now_ns;
5838                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5839                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5840
5841                 r = -EFAULT;
5842                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5843                         goto out;
5844                 r = 0;
5845                 break;
5846         }
5847         case KVM_MEMORY_ENCRYPT_OP: {
5848                 r = -ENOTTY;
5849                 if (kvm_x86_ops.mem_enc_op)
5850                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5851                 break;
5852         }
5853         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5854                 struct kvm_enc_region region;
5855
5856                 r = -EFAULT;
5857                 if (copy_from_user(&region, argp, sizeof(region)))
5858                         goto out;
5859
5860                 r = -ENOTTY;
5861                 if (kvm_x86_ops.mem_enc_reg_region)
5862                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5863                 break;
5864         }
5865         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5866                 struct kvm_enc_region region;
5867
5868                 r = -EFAULT;
5869                 if (copy_from_user(&region, argp, sizeof(region)))
5870                         goto out;
5871
5872                 r = -ENOTTY;
5873                 if (kvm_x86_ops.mem_enc_unreg_region)
5874                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5875                 break;
5876         }
5877         case KVM_HYPERV_EVENTFD: {
5878                 struct kvm_hyperv_eventfd hvevfd;
5879
5880                 r = -EFAULT;
5881                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5882                         goto out;
5883                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5884                 break;
5885         }
5886         case KVM_SET_PMU_EVENT_FILTER:
5887                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5888                 break;
5889         case KVM_X86_SET_MSR_FILTER:
5890                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5891                 break;
5892         default:
5893                 r = -ENOTTY;
5894         }
5895 out:
5896         return r;
5897 }
5898
5899 static void kvm_init_msr_list(void)
5900 {
5901         struct x86_pmu_capability x86_pmu;
5902         u32 dummy[2];
5903         unsigned i;
5904
5905         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5906                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5907
5908         perf_get_x86_pmu_capability(&x86_pmu);
5909
5910         num_msrs_to_save = 0;
5911         num_emulated_msrs = 0;
5912         num_msr_based_features = 0;
5913
5914         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5915                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5916                         continue;
5917
5918                 /*
5919                  * Even MSRs that are valid in the host may not be exposed
5920                  * to the guests in some cases.
5921                  */
5922                 switch (msrs_to_save_all[i]) {
5923                 case MSR_IA32_BNDCFGS:
5924                         if (!kvm_mpx_supported())
5925                                 continue;
5926                         break;
5927                 case MSR_TSC_AUX:
5928                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5929                                 continue;
5930                         break;
5931                 case MSR_IA32_UMWAIT_CONTROL:
5932                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5933                                 continue;
5934                         break;
5935                 case MSR_IA32_RTIT_CTL:
5936                 case MSR_IA32_RTIT_STATUS:
5937                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5938                                 continue;
5939                         break;
5940                 case MSR_IA32_RTIT_CR3_MATCH:
5941                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5942                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5943                                 continue;
5944                         break;
5945                 case MSR_IA32_RTIT_OUTPUT_BASE:
5946                 case MSR_IA32_RTIT_OUTPUT_MASK:
5947                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5948                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5949                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5950                                 continue;
5951                         break;
5952                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5953                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5954                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5955                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5956                                 continue;
5957                         break;
5958                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5959                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5960                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5961                                 continue;
5962                         break;
5963                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5964                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5965                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5966                                 continue;
5967                         break;
5968                 default:
5969                         break;
5970                 }
5971
5972                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5973         }
5974
5975         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5976                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5977                         continue;
5978
5979                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5980         }
5981
5982         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5983                 struct kvm_msr_entry msr;
5984
5985                 msr.index = msr_based_features_all[i];
5986                 if (kvm_get_msr_feature(&msr))
5987                         continue;
5988
5989                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5990         }
5991 }
5992
5993 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5994                            const void *v)
5995 {
5996         int handled = 0;
5997         int n;
5998
5999         do {
6000                 n = min(len, 8);
6001                 if (!(lapic_in_kernel(vcpu) &&
6002                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6003                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6004                         break;
6005                 handled += n;
6006                 addr += n;
6007                 len -= n;
6008                 v += n;
6009         } while (len);
6010
6011         return handled;
6012 }
6013
6014 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6015 {
6016         int handled = 0;
6017         int n;
6018
6019         do {
6020                 n = min(len, 8);
6021                 if (!(lapic_in_kernel(vcpu) &&
6022                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6023                                          addr, n, v))
6024                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6025                         break;
6026                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6027                 handled += n;
6028                 addr += n;
6029                 len -= n;
6030                 v += n;
6031         } while (len);
6032
6033         return handled;
6034 }
6035
6036 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6037                         struct kvm_segment *var, int seg)
6038 {
6039         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6040 }
6041
6042 void kvm_get_segment(struct kvm_vcpu *vcpu,
6043                      struct kvm_segment *var, int seg)
6044 {
6045         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6046 }
6047
6048 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6049                            struct x86_exception *exception)
6050 {
6051         gpa_t t_gpa;
6052
6053         BUG_ON(!mmu_is_nested(vcpu));
6054
6055         /* NPT walks are always user-walks */
6056         access |= PFERR_USER_MASK;
6057         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6058
6059         return t_gpa;
6060 }
6061
6062 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6063                               struct x86_exception *exception)
6064 {
6065         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6066         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6067 }
6068 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6069
6070  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6071                                 struct x86_exception *exception)
6072 {
6073         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6074         access |= PFERR_FETCH_MASK;
6075         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6076 }
6077
6078 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6079                                struct x86_exception *exception)
6080 {
6081         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6082         access |= PFERR_WRITE_MASK;
6083         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6084 }
6085 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6086
6087 /* uses this to access any guest's mapped memory without checking CPL */
6088 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6089                                 struct x86_exception *exception)
6090 {
6091         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6092 }
6093
6094 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6095                                       struct kvm_vcpu *vcpu, u32 access,
6096                                       struct x86_exception *exception)
6097 {
6098         void *data = val;
6099         int r = X86EMUL_CONTINUE;
6100
6101         while (bytes) {
6102                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6103                                                             exception);
6104                 unsigned offset = addr & (PAGE_SIZE-1);
6105                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6106                 int ret;
6107
6108                 if (gpa == UNMAPPED_GVA)
6109                         return X86EMUL_PROPAGATE_FAULT;
6110                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6111                                                offset, toread);
6112                 if (ret < 0) {
6113                         r = X86EMUL_IO_NEEDED;
6114                         goto out;
6115                 }
6116
6117                 bytes -= toread;
6118                 data += toread;
6119                 addr += toread;
6120         }
6121 out:
6122         return r;
6123 }
6124
6125 /* used for instruction fetching */
6126 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6127                                 gva_t addr, void *val, unsigned int bytes,
6128                                 struct x86_exception *exception)
6129 {
6130         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6131         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6132         unsigned offset;
6133         int ret;
6134
6135         /* Inline kvm_read_guest_virt_helper for speed.  */
6136         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6137                                                     exception);
6138         if (unlikely(gpa == UNMAPPED_GVA))
6139                 return X86EMUL_PROPAGATE_FAULT;
6140
6141         offset = addr & (PAGE_SIZE-1);
6142         if (WARN_ON(offset + bytes > PAGE_SIZE))
6143                 bytes = (unsigned)PAGE_SIZE - offset;
6144         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6145                                        offset, bytes);
6146         if (unlikely(ret < 0))
6147                 return X86EMUL_IO_NEEDED;
6148
6149         return X86EMUL_CONTINUE;
6150 }
6151
6152 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6153                                gva_t addr, void *val, unsigned int bytes,
6154                                struct x86_exception *exception)
6155 {
6156         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6157
6158         /*
6159          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6160          * is returned, but our callers are not ready for that and they blindly
6161          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6162          * uninitialized kernel stack memory into cr2 and error code.
6163          */
6164         memset(exception, 0, sizeof(*exception));
6165         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6166                                           exception);
6167 }
6168 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6169
6170 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6171                              gva_t addr, void *val, unsigned int bytes,
6172                              struct x86_exception *exception, bool system)
6173 {
6174         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6175         u32 access = 0;
6176
6177         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6178                 access |= PFERR_USER_MASK;
6179
6180         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6181 }
6182
6183 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6184                 unsigned long addr, void *val, unsigned int bytes)
6185 {
6186         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6187         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6188
6189         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6190 }
6191
6192 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6193                                       struct kvm_vcpu *vcpu, u32 access,
6194                                       struct x86_exception *exception)
6195 {
6196         void *data = val;
6197         int r = X86EMUL_CONTINUE;
6198
6199         while (bytes) {
6200                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6201                                                              access,
6202                                                              exception);
6203                 unsigned offset = addr & (PAGE_SIZE-1);
6204                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6205                 int ret;
6206
6207                 if (gpa == UNMAPPED_GVA)
6208                         return X86EMUL_PROPAGATE_FAULT;
6209                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6210                 if (ret < 0) {
6211                         r = X86EMUL_IO_NEEDED;
6212                         goto out;
6213                 }
6214
6215                 bytes -= towrite;
6216                 data += towrite;
6217                 addr += towrite;
6218         }
6219 out:
6220         return r;
6221 }
6222
6223 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6224                               unsigned int bytes, struct x86_exception *exception,
6225                               bool system)
6226 {
6227         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6228         u32 access = PFERR_WRITE_MASK;
6229
6230         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6231                 access |= PFERR_USER_MASK;
6232
6233         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6234                                            access, exception);
6235 }
6236
6237 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6238                                 unsigned int bytes, struct x86_exception *exception)
6239 {
6240         /* kvm_write_guest_virt_system can pull in tons of pages. */
6241         vcpu->arch.l1tf_flush_l1d = true;
6242
6243         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6244                                            PFERR_WRITE_MASK, exception);
6245 }
6246 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6247
6248 int handle_ud(struct kvm_vcpu *vcpu)
6249 {
6250         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6251         int emul_type = EMULTYPE_TRAP_UD;
6252         char sig[5]; /* ud2; .ascii "kvm" */
6253         struct x86_exception e;
6254
6255         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6256                 return 1;
6257
6258         if (force_emulation_prefix &&
6259             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6260                                 sig, sizeof(sig), &e) == 0 &&
6261             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6262                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6263                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6264         }
6265
6266         return kvm_emulate_instruction(vcpu, emul_type);
6267 }
6268 EXPORT_SYMBOL_GPL(handle_ud);
6269
6270 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6271                             gpa_t gpa, bool write)
6272 {
6273         /* For APIC access vmexit */
6274         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6275                 return 1;
6276
6277         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6278                 trace_vcpu_match_mmio(gva, gpa, write, true);
6279                 return 1;
6280         }
6281
6282         return 0;
6283 }
6284
6285 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6286                                 gpa_t *gpa, struct x86_exception *exception,
6287                                 bool write)
6288 {
6289         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6290                 | (write ? PFERR_WRITE_MASK : 0);
6291
6292         /*
6293          * currently PKRU is only applied to ept enabled guest so
6294          * there is no pkey in EPT page table for L1 guest or EPT
6295          * shadow page table for L2 guest.
6296          */
6297         if (vcpu_match_mmio_gva(vcpu, gva)
6298             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6299                                  vcpu->arch.mmio_access, 0, access)) {
6300                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6301                                         (gva & (PAGE_SIZE - 1));
6302                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6303                 return 1;
6304         }
6305
6306         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6307
6308         if (*gpa == UNMAPPED_GVA)
6309                 return -1;
6310
6311         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6312 }
6313
6314 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6315                         const void *val, int bytes)
6316 {
6317         int ret;
6318
6319         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6320         if (ret < 0)
6321                 return 0;
6322         kvm_page_track_write(vcpu, gpa, val, bytes);
6323         return 1;
6324 }
6325
6326 struct read_write_emulator_ops {
6327         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6328                                   int bytes);
6329         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6330                                   void *val, int bytes);
6331         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6332                                int bytes, void *val);
6333         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6334                                     void *val, int bytes);
6335         bool write;
6336 };
6337
6338 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6339 {
6340         if (vcpu->mmio_read_completed) {
6341                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6342                                vcpu->mmio_fragments[0].gpa, val);
6343                 vcpu->mmio_read_completed = 0;
6344                 return 1;
6345         }
6346
6347         return 0;
6348 }
6349
6350 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6351                         void *val, int bytes)
6352 {
6353         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6354 }
6355
6356 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6357                          void *val, int bytes)
6358 {
6359         return emulator_write_phys(vcpu, gpa, val, bytes);
6360 }
6361
6362 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6363 {
6364         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6365         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6366 }
6367
6368 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6369                           void *val, int bytes)
6370 {
6371         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6372         return X86EMUL_IO_NEEDED;
6373 }
6374
6375 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6376                            void *val, int bytes)
6377 {
6378         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6379
6380         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6381         return X86EMUL_CONTINUE;
6382 }
6383
6384 static const struct read_write_emulator_ops read_emultor = {
6385         .read_write_prepare = read_prepare,
6386         .read_write_emulate = read_emulate,
6387         .read_write_mmio = vcpu_mmio_read,
6388         .read_write_exit_mmio = read_exit_mmio,
6389 };
6390
6391 static const struct read_write_emulator_ops write_emultor = {
6392         .read_write_emulate = write_emulate,
6393         .read_write_mmio = write_mmio,
6394         .read_write_exit_mmio = write_exit_mmio,
6395         .write = true,
6396 };
6397
6398 static int emulator_read_write_onepage(unsigned long addr, void *val,
6399                                        unsigned int bytes,
6400                                        struct x86_exception *exception,
6401                                        struct kvm_vcpu *vcpu,
6402                                        const struct read_write_emulator_ops *ops)
6403 {
6404         gpa_t gpa;
6405         int handled, ret;
6406         bool write = ops->write;
6407         struct kvm_mmio_fragment *frag;
6408         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6409
6410         /*
6411          * If the exit was due to a NPF we may already have a GPA.
6412          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6413          * Note, this cannot be used on string operations since string
6414          * operation using rep will only have the initial GPA from the NPF
6415          * occurred.
6416          */
6417         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6418             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6419                 gpa = ctxt->gpa_val;
6420                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6421         } else {
6422                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6423                 if (ret < 0)
6424                         return X86EMUL_PROPAGATE_FAULT;
6425         }
6426
6427         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6428                 return X86EMUL_CONTINUE;
6429
6430         /*
6431          * Is this MMIO handled locally?
6432          */
6433         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6434         if (handled == bytes)
6435                 return X86EMUL_CONTINUE;
6436
6437         gpa += handled;
6438         bytes -= handled;
6439         val += handled;
6440
6441         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6442         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6443         frag->gpa = gpa;
6444         frag->data = val;
6445         frag->len = bytes;
6446         return X86EMUL_CONTINUE;
6447 }
6448
6449 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6450                         unsigned long addr,
6451                         void *val, unsigned int bytes,
6452                         struct x86_exception *exception,
6453                         const struct read_write_emulator_ops *ops)
6454 {
6455         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6456         gpa_t gpa;
6457         int rc;
6458
6459         if (ops->read_write_prepare &&
6460                   ops->read_write_prepare(vcpu, val, bytes))
6461                 return X86EMUL_CONTINUE;
6462
6463         vcpu->mmio_nr_fragments = 0;
6464
6465         /* Crossing a page boundary? */
6466         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6467                 int now;
6468
6469                 now = -addr & ~PAGE_MASK;
6470                 rc = emulator_read_write_onepage(addr, val, now, exception,
6471                                                  vcpu, ops);
6472
6473                 if (rc != X86EMUL_CONTINUE)
6474                         return rc;
6475                 addr += now;
6476                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6477                         addr = (u32)addr;
6478                 val += now;
6479                 bytes -= now;
6480         }
6481
6482         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6483                                          vcpu, ops);
6484         if (rc != X86EMUL_CONTINUE)
6485                 return rc;
6486
6487         if (!vcpu->mmio_nr_fragments)
6488                 return rc;
6489
6490         gpa = vcpu->mmio_fragments[0].gpa;
6491
6492         vcpu->mmio_needed = 1;
6493         vcpu->mmio_cur_fragment = 0;
6494
6495         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6496         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6497         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6498         vcpu->run->mmio.phys_addr = gpa;
6499
6500         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6501 }
6502
6503 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6504                                   unsigned long addr,
6505                                   void *val,
6506                                   unsigned int bytes,
6507                                   struct x86_exception *exception)
6508 {
6509         return emulator_read_write(ctxt, addr, val, bytes,
6510                                    exception, &read_emultor);
6511 }
6512
6513 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6514                             unsigned long addr,
6515                             const void *val,
6516                             unsigned int bytes,
6517                             struct x86_exception *exception)
6518 {
6519         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6520                                    exception, &write_emultor);
6521 }
6522
6523 #define CMPXCHG_TYPE(t, ptr, old, new) \
6524         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6525
6526 #ifdef CONFIG_X86_64
6527 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6528 #else
6529 #  define CMPXCHG64(ptr, old, new) \
6530         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6531 #endif
6532
6533 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6534                                      unsigned long addr,
6535                                      const void *old,
6536                                      const void *new,
6537                                      unsigned int bytes,
6538                                      struct x86_exception *exception)
6539 {
6540         struct kvm_host_map map;
6541         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6542         u64 page_line_mask;
6543         gpa_t gpa;
6544         char *kaddr;
6545         bool exchanged;
6546
6547         /* guests cmpxchg8b have to be emulated atomically */
6548         if (bytes > 8 || (bytes & (bytes - 1)))
6549                 goto emul_write;
6550
6551         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6552
6553         if (gpa == UNMAPPED_GVA ||
6554             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6555                 goto emul_write;
6556
6557         /*
6558          * Emulate the atomic as a straight write to avoid #AC if SLD is
6559          * enabled in the host and the access splits a cache line.
6560          */
6561         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6562                 page_line_mask = ~(cache_line_size() - 1);
6563         else
6564                 page_line_mask = PAGE_MASK;
6565
6566         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6567                 goto emul_write;
6568
6569         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6570                 goto emul_write;
6571
6572         kaddr = map.hva + offset_in_page(gpa);
6573
6574         switch (bytes) {
6575         case 1:
6576                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6577                 break;
6578         case 2:
6579                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6580                 break;
6581         case 4:
6582                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6583                 break;
6584         case 8:
6585                 exchanged = CMPXCHG64(kaddr, old, new);
6586                 break;
6587         default:
6588                 BUG();
6589         }
6590
6591         kvm_vcpu_unmap(vcpu, &map, true);
6592
6593         if (!exchanged)
6594                 return X86EMUL_CMPXCHG_FAILED;
6595
6596         kvm_page_track_write(vcpu, gpa, new, bytes);
6597
6598         return X86EMUL_CONTINUE;
6599
6600 emul_write:
6601         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6602
6603         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6604 }
6605
6606 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6607 {
6608         int r = 0, i;
6609
6610         for (i = 0; i < vcpu->arch.pio.count; i++) {
6611                 if (vcpu->arch.pio.in)
6612                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6613                                             vcpu->arch.pio.size, pd);
6614                 else
6615                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6616                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6617                                              pd);
6618                 if (r)
6619                         break;
6620                 pd += vcpu->arch.pio.size;
6621         }
6622         return r;
6623 }
6624
6625 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6626                                unsigned short port, void *val,
6627                                unsigned int count, bool in)
6628 {
6629         vcpu->arch.pio.port = port;
6630         vcpu->arch.pio.in = in;
6631         vcpu->arch.pio.count  = count;
6632         vcpu->arch.pio.size = size;
6633
6634         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6635                 vcpu->arch.pio.count = 0;
6636                 return 1;
6637         }
6638
6639         vcpu->run->exit_reason = KVM_EXIT_IO;
6640         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6641         vcpu->run->io.size = size;
6642         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6643         vcpu->run->io.count = count;
6644         vcpu->run->io.port = port;
6645
6646         return 0;
6647 }
6648
6649 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6650                            unsigned short port, void *val, unsigned int count)
6651 {
6652         int ret;
6653
6654         if (vcpu->arch.pio.count)
6655                 goto data_avail;
6656
6657         memset(vcpu->arch.pio_data, 0, size * count);
6658
6659         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6660         if (ret) {
6661 data_avail:
6662                 memcpy(val, vcpu->arch.pio_data, size * count);
6663                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6664                 vcpu->arch.pio.count = 0;
6665                 return 1;
6666         }
6667
6668         return 0;
6669 }
6670
6671 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6672                                     int size, unsigned short port, void *val,
6673                                     unsigned int count)
6674 {
6675         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6676
6677 }
6678
6679 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6680                             unsigned short port, const void *val,
6681                             unsigned int count)
6682 {
6683         memcpy(vcpu->arch.pio_data, val, size * count);
6684         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6685         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6686 }
6687
6688 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6689                                      int size, unsigned short port,
6690                                      const void *val, unsigned int count)
6691 {
6692         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6693 }
6694
6695 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6696 {
6697         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6698 }
6699
6700 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6701 {
6702         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6703 }
6704
6705 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6706 {
6707         if (!need_emulate_wbinvd(vcpu))
6708                 return X86EMUL_CONTINUE;
6709
6710         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6711                 int cpu = get_cpu();
6712
6713                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6714                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6715                                 wbinvd_ipi, NULL, 1);
6716                 put_cpu();
6717                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6718         } else
6719                 wbinvd();
6720         return X86EMUL_CONTINUE;
6721 }
6722
6723 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6724 {
6725         kvm_emulate_wbinvd_noskip(vcpu);
6726         return kvm_skip_emulated_instruction(vcpu);
6727 }
6728 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6729
6730
6731
6732 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6733 {
6734         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6735 }
6736
6737 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6738                             unsigned long *dest)
6739 {
6740         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6741 }
6742
6743 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6744                            unsigned long value)
6745 {
6746
6747         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6748 }
6749
6750 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6751 {
6752         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6753 }
6754
6755 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6756 {
6757         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758         unsigned long value;
6759
6760         switch (cr) {
6761         case 0:
6762                 value = kvm_read_cr0(vcpu);
6763                 break;
6764         case 2:
6765                 value = vcpu->arch.cr2;
6766                 break;
6767         case 3:
6768                 value = kvm_read_cr3(vcpu);
6769                 break;
6770         case 4:
6771                 value = kvm_read_cr4(vcpu);
6772                 break;
6773         case 8:
6774                 value = kvm_get_cr8(vcpu);
6775                 break;
6776         default:
6777                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6778                 return 0;
6779         }
6780
6781         return value;
6782 }
6783
6784 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6785 {
6786         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6787         int res = 0;
6788
6789         switch (cr) {
6790         case 0:
6791                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6792                 break;
6793         case 2:
6794                 vcpu->arch.cr2 = val;
6795                 break;
6796         case 3:
6797                 res = kvm_set_cr3(vcpu, val);
6798                 break;
6799         case 4:
6800                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6801                 break;
6802         case 8:
6803                 res = kvm_set_cr8(vcpu, val);
6804                 break;
6805         default:
6806                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6807                 res = -1;
6808         }
6809
6810         return res;
6811 }
6812
6813 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6814 {
6815         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6816 }
6817
6818 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6819 {
6820         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6821 }
6822
6823 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6824 {
6825         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6826 }
6827
6828 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6829 {
6830         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6831 }
6832
6833 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6834 {
6835         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6836 }
6837
6838 static unsigned long emulator_get_cached_segment_base(
6839         struct x86_emulate_ctxt *ctxt, int seg)
6840 {
6841         return get_segment_base(emul_to_vcpu(ctxt), seg);
6842 }
6843
6844 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6845                                  struct desc_struct *desc, u32 *base3,
6846                                  int seg)
6847 {
6848         struct kvm_segment var;
6849
6850         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6851         *selector = var.selector;
6852
6853         if (var.unusable) {
6854                 memset(desc, 0, sizeof(*desc));
6855                 if (base3)
6856                         *base3 = 0;
6857                 return false;
6858         }
6859
6860         if (var.g)
6861                 var.limit >>= 12;
6862         set_desc_limit(desc, var.limit);
6863         set_desc_base(desc, (unsigned long)var.base);
6864 #ifdef CONFIG_X86_64
6865         if (base3)
6866                 *base3 = var.base >> 32;
6867 #endif
6868         desc->type = var.type;
6869         desc->s = var.s;
6870         desc->dpl = var.dpl;
6871         desc->p = var.present;
6872         desc->avl = var.avl;
6873         desc->l = var.l;
6874         desc->d = var.db;
6875         desc->g = var.g;
6876
6877         return true;
6878 }
6879
6880 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6881                                  struct desc_struct *desc, u32 base3,
6882                                  int seg)
6883 {
6884         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6885         struct kvm_segment var;
6886
6887         var.selector = selector;
6888         var.base = get_desc_base(desc);
6889 #ifdef CONFIG_X86_64
6890         var.base |= ((u64)base3) << 32;
6891 #endif
6892         var.limit = get_desc_limit(desc);
6893         if (desc->g)
6894                 var.limit = (var.limit << 12) | 0xfff;
6895         var.type = desc->type;
6896         var.dpl = desc->dpl;
6897         var.db = desc->d;
6898         var.s = desc->s;
6899         var.l = desc->l;
6900         var.g = desc->g;
6901         var.avl = desc->avl;
6902         var.present = desc->p;
6903         var.unusable = !var.present;
6904         var.padding = 0;
6905
6906         kvm_set_segment(vcpu, &var, seg);
6907         return;
6908 }
6909
6910 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6911                             u32 msr_index, u64 *pdata)
6912 {
6913         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6914         int r;
6915
6916         r = kvm_get_msr(vcpu, msr_index, pdata);
6917
6918         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6919                 /* Bounce to user space */
6920                 return X86EMUL_IO_NEEDED;
6921         }
6922
6923         return r;
6924 }
6925
6926 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6927                             u32 msr_index, u64 data)
6928 {
6929         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6930         int r;
6931
6932         r = kvm_set_msr(vcpu, msr_index, data);
6933
6934         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6935                 /* Bounce to user space */
6936                 return X86EMUL_IO_NEEDED;
6937         }
6938
6939         return r;
6940 }
6941
6942 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6943 {
6944         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6945
6946         return vcpu->arch.smbase;
6947 }
6948
6949 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6950 {
6951         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6952
6953         vcpu->arch.smbase = smbase;
6954 }
6955
6956 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6957                               u32 pmc)
6958 {
6959         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6960 }
6961
6962 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6963                              u32 pmc, u64 *pdata)
6964 {
6965         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6966 }
6967
6968 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6969 {
6970         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6971 }
6972
6973 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6974                               struct x86_instruction_info *info,
6975                               enum x86_intercept_stage stage)
6976 {
6977         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6978                                             &ctxt->exception);
6979 }
6980
6981 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6982                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6983                               bool exact_only)
6984 {
6985         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6986 }
6987
6988 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6989 {
6990         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6991 }
6992
6993 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6994 {
6995         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6996 }
6997
6998 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6999 {
7000         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7001 }
7002
7003 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7004 {
7005         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7006 }
7007
7008 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7009 {
7010         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7011 }
7012
7013 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7014 {
7015         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7016 }
7017
7018 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7019 {
7020         return emul_to_vcpu(ctxt)->arch.hflags;
7021 }
7022
7023 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7024 {
7025         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
7026 }
7027
7028 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7029                                   const char *smstate)
7030 {
7031         return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7032 }
7033
7034 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7035 {
7036         kvm_smm_changed(emul_to_vcpu(ctxt));
7037 }
7038
7039 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7040 {
7041         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7042 }
7043
7044 static const struct x86_emulate_ops emulate_ops = {
7045         .read_gpr            = emulator_read_gpr,
7046         .write_gpr           = emulator_write_gpr,
7047         .read_std            = emulator_read_std,
7048         .write_std           = emulator_write_std,
7049         .read_phys           = kvm_read_guest_phys_system,
7050         .fetch               = kvm_fetch_guest_virt,
7051         .read_emulated       = emulator_read_emulated,
7052         .write_emulated      = emulator_write_emulated,
7053         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7054         .invlpg              = emulator_invlpg,
7055         .pio_in_emulated     = emulator_pio_in_emulated,
7056         .pio_out_emulated    = emulator_pio_out_emulated,
7057         .get_segment         = emulator_get_segment,
7058         .set_segment         = emulator_set_segment,
7059         .get_cached_segment_base = emulator_get_cached_segment_base,
7060         .get_gdt             = emulator_get_gdt,
7061         .get_idt             = emulator_get_idt,
7062         .set_gdt             = emulator_set_gdt,
7063         .set_idt             = emulator_set_idt,
7064         .get_cr              = emulator_get_cr,
7065         .set_cr              = emulator_set_cr,
7066         .cpl                 = emulator_get_cpl,
7067         .get_dr              = emulator_get_dr,
7068         .set_dr              = emulator_set_dr,
7069         .get_smbase          = emulator_get_smbase,
7070         .set_smbase          = emulator_set_smbase,
7071         .set_msr             = emulator_set_msr,
7072         .get_msr             = emulator_get_msr,
7073         .check_pmc           = emulator_check_pmc,
7074         .read_pmc            = emulator_read_pmc,
7075         .halt                = emulator_halt,
7076         .wbinvd              = emulator_wbinvd,
7077         .fix_hypercall       = emulator_fix_hypercall,
7078         .intercept           = emulator_intercept,
7079         .get_cpuid           = emulator_get_cpuid,
7080         .guest_has_long_mode = emulator_guest_has_long_mode,
7081         .guest_has_movbe     = emulator_guest_has_movbe,
7082         .guest_has_fxsr      = emulator_guest_has_fxsr,
7083         .set_nmi_mask        = emulator_set_nmi_mask,
7084         .get_hflags          = emulator_get_hflags,
7085         .set_hflags          = emulator_set_hflags,
7086         .pre_leave_smm       = emulator_pre_leave_smm,
7087         .post_leave_smm      = emulator_post_leave_smm,
7088         .set_xcr             = emulator_set_xcr,
7089 };
7090
7091 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7092 {
7093         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7094         /*
7095          * an sti; sti; sequence only disable interrupts for the first
7096          * instruction. So, if the last instruction, be it emulated or
7097          * not, left the system with the INT_STI flag enabled, it
7098          * means that the last instruction is an sti. We should not
7099          * leave the flag on in this case. The same goes for mov ss
7100          */
7101         if (int_shadow & mask)
7102                 mask = 0;
7103         if (unlikely(int_shadow || mask)) {
7104                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7105                 if (!mask)
7106                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7107         }
7108 }
7109
7110 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7111 {
7112         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7113         if (ctxt->exception.vector == PF_VECTOR)
7114                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7115
7116         if (ctxt->exception.error_code_valid)
7117                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7118                                       ctxt->exception.error_code);
7119         else
7120                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7121         return false;
7122 }
7123
7124 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7125 {
7126         struct x86_emulate_ctxt *ctxt;
7127
7128         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7129         if (!ctxt) {
7130                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7131                 return NULL;
7132         }
7133
7134         ctxt->vcpu = vcpu;
7135         ctxt->ops = &emulate_ops;
7136         vcpu->arch.emulate_ctxt = ctxt;
7137
7138         return ctxt;
7139 }
7140
7141 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7142 {
7143         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7144         int cs_db, cs_l;
7145
7146         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7147
7148         ctxt->gpa_available = false;
7149         ctxt->eflags = kvm_get_rflags(vcpu);
7150         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7151
7152         ctxt->eip = kvm_rip_read(vcpu);
7153         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7154                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7155                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7156                      cs_db                              ? X86EMUL_MODE_PROT32 :
7157                                                           X86EMUL_MODE_PROT16;
7158         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7159         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7160         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7161
7162         init_decode_cache(ctxt);
7163         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7164 }
7165
7166 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7167 {
7168         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7169         int ret;
7170
7171         init_emulate_ctxt(vcpu);
7172
7173         ctxt->op_bytes = 2;
7174         ctxt->ad_bytes = 2;
7175         ctxt->_eip = ctxt->eip + inc_eip;
7176         ret = emulate_int_real(ctxt, irq);
7177
7178         if (ret != X86EMUL_CONTINUE) {
7179                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7180         } else {
7181                 ctxt->eip = ctxt->_eip;
7182                 kvm_rip_write(vcpu, ctxt->eip);
7183                 kvm_set_rflags(vcpu, ctxt->eflags);
7184         }
7185 }
7186 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7187
7188 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7189 {
7190         ++vcpu->stat.insn_emulation_fail;
7191         trace_kvm_emulate_insn_failed(vcpu);
7192
7193         if (emulation_type & EMULTYPE_VMWARE_GP) {
7194                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7195                 return 1;
7196         }
7197
7198         if (emulation_type & EMULTYPE_SKIP) {
7199                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7200                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7201                 vcpu->run->internal.ndata = 0;
7202                 return 0;
7203         }
7204
7205         kvm_queue_exception(vcpu, UD_VECTOR);
7206
7207         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7208                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7209                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7210                 vcpu->run->internal.ndata = 0;
7211                 return 0;
7212         }
7213
7214         return 1;
7215 }
7216
7217 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7218                                   bool write_fault_to_shadow_pgtable,
7219                                   int emulation_type)
7220 {
7221         gpa_t gpa = cr2_or_gpa;
7222         kvm_pfn_t pfn;
7223
7224         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7225                 return false;
7226
7227         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7228             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7229                 return false;
7230
7231         if (!vcpu->arch.mmu->direct_map) {
7232                 /*
7233                  * Write permission should be allowed since only
7234                  * write access need to be emulated.
7235                  */
7236                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7237
7238                 /*
7239                  * If the mapping is invalid in guest, let cpu retry
7240                  * it to generate fault.
7241                  */
7242                 if (gpa == UNMAPPED_GVA)
7243                         return true;
7244         }
7245
7246         /*
7247          * Do not retry the unhandleable instruction if it faults on the
7248          * readonly host memory, otherwise it will goto a infinite loop:
7249          * retry instruction -> write #PF -> emulation fail -> retry
7250          * instruction -> ...
7251          */
7252         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7253
7254         /*
7255          * If the instruction failed on the error pfn, it can not be fixed,
7256          * report the error to userspace.
7257          */
7258         if (is_error_noslot_pfn(pfn))
7259                 return false;
7260
7261         kvm_release_pfn_clean(pfn);
7262
7263         /* The instructions are well-emulated on direct mmu. */
7264         if (vcpu->arch.mmu->direct_map) {
7265                 unsigned int indirect_shadow_pages;
7266
7267                 write_lock(&vcpu->kvm->mmu_lock);
7268                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7269                 write_unlock(&vcpu->kvm->mmu_lock);
7270
7271                 if (indirect_shadow_pages)
7272                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7273
7274                 return true;
7275         }
7276
7277         /*
7278          * if emulation was due to access to shadowed page table
7279          * and it failed try to unshadow page and re-enter the
7280          * guest to let CPU execute the instruction.
7281          */
7282         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7283
7284         /*
7285          * If the access faults on its page table, it can not
7286          * be fixed by unprotecting shadow page and it should
7287          * be reported to userspace.
7288          */
7289         return !write_fault_to_shadow_pgtable;
7290 }
7291
7292 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7293                               gpa_t cr2_or_gpa,  int emulation_type)
7294 {
7295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7296         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7297
7298         last_retry_eip = vcpu->arch.last_retry_eip;
7299         last_retry_addr = vcpu->arch.last_retry_addr;
7300
7301         /*
7302          * If the emulation is caused by #PF and it is non-page_table
7303          * writing instruction, it means the VM-EXIT is caused by shadow
7304          * page protected, we can zap the shadow page and retry this
7305          * instruction directly.
7306          *
7307          * Note: if the guest uses a non-page-table modifying instruction
7308          * on the PDE that points to the instruction, then we will unmap
7309          * the instruction and go to an infinite loop. So, we cache the
7310          * last retried eip and the last fault address, if we meet the eip
7311          * and the address again, we can break out of the potential infinite
7312          * loop.
7313          */
7314         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7315
7316         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7317                 return false;
7318
7319         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7320             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7321                 return false;
7322
7323         if (x86_page_table_writing_insn(ctxt))
7324                 return false;
7325
7326         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7327                 return false;
7328
7329         vcpu->arch.last_retry_eip = ctxt->eip;
7330         vcpu->arch.last_retry_addr = cr2_or_gpa;
7331
7332         if (!vcpu->arch.mmu->direct_map)
7333                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7334
7335         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7336
7337         return true;
7338 }
7339
7340 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7341 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7342
7343 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7344 {
7345         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7346                 /* This is a good place to trace that we are exiting SMM.  */
7347                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7348
7349                 /* Process a latched INIT or SMI, if any.  */
7350                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7351         }
7352
7353         kvm_mmu_reset_context(vcpu);
7354 }
7355
7356 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7357                                 unsigned long *db)
7358 {
7359         u32 dr6 = 0;
7360         int i;
7361         u32 enable, rwlen;
7362
7363         enable = dr7;
7364         rwlen = dr7 >> 16;
7365         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7366                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7367                         dr6 |= (1 << i);
7368         return dr6;
7369 }
7370
7371 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7372 {
7373         struct kvm_run *kvm_run = vcpu->run;
7374
7375         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7376                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7377                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7378                 kvm_run->debug.arch.exception = DB_VECTOR;
7379                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7380                 return 0;
7381         }
7382         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7383         return 1;
7384 }
7385
7386 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7387 {
7388         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7389         int r;
7390
7391         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7392         if (unlikely(!r))
7393                 return 0;
7394
7395         /*
7396          * rflags is the old, "raw" value of the flags.  The new value has
7397          * not been saved yet.
7398          *
7399          * This is correct even for TF set by the guest, because "the
7400          * processor will not generate this exception after the instruction
7401          * that sets the TF flag".
7402          */
7403         if (unlikely(rflags & X86_EFLAGS_TF))
7404                 r = kvm_vcpu_do_singlestep(vcpu);
7405         return r;
7406 }
7407 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7408
7409 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7410 {
7411         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7412             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7413                 struct kvm_run *kvm_run = vcpu->run;
7414                 unsigned long eip = kvm_get_linear_rip(vcpu);
7415                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7416                                            vcpu->arch.guest_debug_dr7,
7417                                            vcpu->arch.eff_db);
7418
7419                 if (dr6 != 0) {
7420                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7421                         kvm_run->debug.arch.pc = eip;
7422                         kvm_run->debug.arch.exception = DB_VECTOR;
7423                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7424                         *r = 0;
7425                         return true;
7426                 }
7427         }
7428
7429         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7430             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7431                 unsigned long eip = kvm_get_linear_rip(vcpu);
7432                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7433                                            vcpu->arch.dr7,
7434                                            vcpu->arch.db);
7435
7436                 if (dr6 != 0) {
7437                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7438                         *r = 1;
7439                         return true;
7440                 }
7441         }
7442
7443         return false;
7444 }
7445
7446 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7447 {
7448         switch (ctxt->opcode_len) {
7449         case 1:
7450                 switch (ctxt->b) {
7451                 case 0xe4:      /* IN */
7452                 case 0xe5:
7453                 case 0xec:
7454                 case 0xed:
7455                 case 0xe6:      /* OUT */
7456                 case 0xe7:
7457                 case 0xee:
7458                 case 0xef:
7459                 case 0x6c:      /* INS */
7460                 case 0x6d:
7461                 case 0x6e:      /* OUTS */
7462                 case 0x6f:
7463                         return true;
7464                 }
7465                 break;
7466         case 2:
7467                 switch (ctxt->b) {
7468                 case 0x33:      /* RDPMC */
7469                         return true;
7470                 }
7471                 break;
7472         }
7473
7474         return false;
7475 }
7476
7477 /*
7478  * Decode to be emulated instruction. Return EMULATION_OK if success.
7479  */
7480 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7481                                     void *insn, int insn_len)
7482 {
7483         int r = EMULATION_OK;
7484         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7485
7486         init_emulate_ctxt(vcpu);
7487
7488         /*
7489          * We will reenter on the same instruction since we do not set
7490          * complete_userspace_io. This does not handle watchpoints yet,
7491          * those would be handled in the emulate_ops.
7492          */
7493         if (!(emulation_type & EMULTYPE_SKIP) &&
7494             kvm_vcpu_check_breakpoint(vcpu, &r))
7495                 return r;
7496
7497         ctxt->interruptibility = 0;
7498         ctxt->have_exception = false;
7499         ctxt->exception.vector = -1;
7500         ctxt->perm_ok = false;
7501
7502         ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7503
7504         r = x86_decode_insn(ctxt, insn, insn_len);
7505
7506         trace_kvm_emulate_insn_start(vcpu);
7507         ++vcpu->stat.insn_emulation;
7508
7509         return r;
7510 }
7511 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7512
7513 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7514                             int emulation_type, void *insn, int insn_len)
7515 {
7516         int r;
7517         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7518         bool writeback = true;
7519         bool write_fault_to_spt;
7520
7521         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7522                 return 1;
7523
7524         vcpu->arch.l1tf_flush_l1d = true;
7525
7526         /*
7527          * Clear write_fault_to_shadow_pgtable here to ensure it is
7528          * never reused.
7529          */
7530         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7531         vcpu->arch.write_fault_to_shadow_pgtable = false;
7532
7533         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7534                 kvm_clear_exception_queue(vcpu);
7535
7536                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7537                                                     insn, insn_len);
7538                 if (r != EMULATION_OK)  {
7539                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7540                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7541                                 kvm_queue_exception(vcpu, UD_VECTOR);
7542                                 return 1;
7543                         }
7544                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7545                                                   write_fault_to_spt,
7546                                                   emulation_type))
7547                                 return 1;
7548                         if (ctxt->have_exception) {
7549                                 /*
7550                                  * #UD should result in just EMULATION_FAILED, and trap-like
7551                                  * exception should not be encountered during decode.
7552                                  */
7553                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7554                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7555                                 inject_emulated_exception(vcpu);
7556                                 return 1;
7557                         }
7558                         return handle_emulation_failure(vcpu, emulation_type);
7559                 }
7560         }
7561
7562         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7563             !is_vmware_backdoor_opcode(ctxt)) {
7564                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7565                 return 1;
7566         }
7567
7568         /*
7569          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7570          * for kvm_skip_emulated_instruction().  The caller is responsible for
7571          * updating interruptibility state and injecting single-step #DBs.
7572          */
7573         if (emulation_type & EMULTYPE_SKIP) {
7574                 kvm_rip_write(vcpu, ctxt->_eip);
7575                 if (ctxt->eflags & X86_EFLAGS_RF)
7576                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7577                 return 1;
7578         }
7579
7580         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7581                 return 1;
7582
7583         /* this is needed for vmware backdoor interface to work since it
7584            changes registers values  during IO operation */
7585         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7586                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7587                 emulator_invalidate_register_cache(ctxt);
7588         }
7589
7590 restart:
7591         if (emulation_type & EMULTYPE_PF) {
7592                 /* Save the faulting GPA (cr2) in the address field */
7593                 ctxt->exception.address = cr2_or_gpa;
7594
7595                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7596                 if (vcpu->arch.mmu->direct_map) {
7597                         ctxt->gpa_available = true;
7598                         ctxt->gpa_val = cr2_or_gpa;
7599                 }
7600         } else {
7601                 /* Sanitize the address out of an abundance of paranoia. */
7602                 ctxt->exception.address = 0;
7603         }
7604
7605         r = x86_emulate_insn(ctxt);
7606
7607         if (r == EMULATION_INTERCEPTED)
7608                 return 1;
7609
7610         if (r == EMULATION_FAILED) {
7611                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7612                                         emulation_type))
7613                         return 1;
7614
7615                 return handle_emulation_failure(vcpu, emulation_type);
7616         }
7617
7618         if (ctxt->have_exception) {
7619                 r = 1;
7620                 if (inject_emulated_exception(vcpu))
7621                         return r;
7622         } else if (vcpu->arch.pio.count) {
7623                 if (!vcpu->arch.pio.in) {
7624                         /* FIXME: return into emulator if single-stepping.  */
7625                         vcpu->arch.pio.count = 0;
7626                 } else {
7627                         writeback = false;
7628                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7629                 }
7630                 r = 0;
7631         } else if (vcpu->mmio_needed) {
7632                 ++vcpu->stat.mmio_exits;
7633
7634                 if (!vcpu->mmio_is_write)
7635                         writeback = false;
7636                 r = 0;
7637                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7638         } else if (r == EMULATION_RESTART)
7639                 goto restart;
7640         else
7641                 r = 1;
7642
7643         if (writeback) {
7644                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7645                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7646                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7647                 if (!ctxt->have_exception ||
7648                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7649                         kvm_rip_write(vcpu, ctxt->eip);
7650                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7651                                 r = kvm_vcpu_do_singlestep(vcpu);
7652                         if (kvm_x86_ops.update_emulated_instruction)
7653                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7654                         __kvm_set_rflags(vcpu, ctxt->eflags);
7655                 }
7656
7657                 /*
7658                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7659                  * do nothing, and it will be requested again as soon as
7660                  * the shadow expires.  But we still need to check here,
7661                  * because POPF has no interrupt shadow.
7662                  */
7663                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7664                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7665         } else
7666                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7667
7668         return r;
7669 }
7670
7671 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7672 {
7673         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7674 }
7675 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7676
7677 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7678                                         void *insn, int insn_len)
7679 {
7680         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7681 }
7682 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7683
7684 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7685 {
7686         vcpu->arch.pio.count = 0;
7687         return 1;
7688 }
7689
7690 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7691 {
7692         vcpu->arch.pio.count = 0;
7693
7694         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7695                 return 1;
7696
7697         return kvm_skip_emulated_instruction(vcpu);
7698 }
7699
7700 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7701                             unsigned short port)
7702 {
7703         unsigned long val = kvm_rax_read(vcpu);
7704         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7705
7706         if (ret)
7707                 return ret;
7708
7709         /*
7710          * Workaround userspace that relies on old KVM behavior of %rip being
7711          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7712          */
7713         if (port == 0x7e &&
7714             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7715                 vcpu->arch.complete_userspace_io =
7716                         complete_fast_pio_out_port_0x7e;
7717                 kvm_skip_emulated_instruction(vcpu);
7718         } else {
7719                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7720                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7721         }
7722         return 0;
7723 }
7724
7725 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7726 {
7727         unsigned long val;
7728
7729         /* We should only ever be called with arch.pio.count equal to 1 */
7730         BUG_ON(vcpu->arch.pio.count != 1);
7731
7732         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7733                 vcpu->arch.pio.count = 0;
7734                 return 1;
7735         }
7736
7737         /* For size less than 4 we merge, else we zero extend */
7738         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7739
7740         /*
7741          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7742          * the copy and tracing
7743          */
7744         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7745         kvm_rax_write(vcpu, val);
7746
7747         return kvm_skip_emulated_instruction(vcpu);
7748 }
7749
7750 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7751                            unsigned short port)
7752 {
7753         unsigned long val;
7754         int ret;
7755
7756         /* For size less than 4 we merge, else we zero extend */
7757         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7758
7759         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7760         if (ret) {
7761                 kvm_rax_write(vcpu, val);
7762                 return ret;
7763         }
7764
7765         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7766         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7767
7768         return 0;
7769 }
7770
7771 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7772 {
7773         int ret;
7774
7775         if (in)
7776                 ret = kvm_fast_pio_in(vcpu, size, port);
7777         else
7778                 ret = kvm_fast_pio_out(vcpu, size, port);
7779         return ret && kvm_skip_emulated_instruction(vcpu);
7780 }
7781 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7782
7783 static int kvmclock_cpu_down_prep(unsigned int cpu)
7784 {
7785         __this_cpu_write(cpu_tsc_khz, 0);
7786         return 0;
7787 }
7788
7789 static void tsc_khz_changed(void *data)
7790 {
7791         struct cpufreq_freqs *freq = data;
7792         unsigned long khz = 0;
7793
7794         if (data)
7795                 khz = freq->new;
7796         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7797                 khz = cpufreq_quick_get(raw_smp_processor_id());
7798         if (!khz)
7799                 khz = tsc_khz;
7800         __this_cpu_write(cpu_tsc_khz, khz);
7801 }
7802
7803 #ifdef CONFIG_X86_64
7804 static void kvm_hyperv_tsc_notifier(void)
7805 {
7806         struct kvm *kvm;
7807         struct kvm_vcpu *vcpu;
7808         int cpu;
7809         unsigned long flags;
7810
7811         mutex_lock(&kvm_lock);
7812         list_for_each_entry(kvm, &vm_list, vm_list)
7813                 kvm_make_mclock_inprogress_request(kvm);
7814
7815         hyperv_stop_tsc_emulation();
7816
7817         /* TSC frequency always matches when on Hyper-V */
7818         for_each_present_cpu(cpu)
7819                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7820         kvm_max_guest_tsc_khz = tsc_khz;
7821
7822         list_for_each_entry(kvm, &vm_list, vm_list) {
7823                 struct kvm_arch *ka = &kvm->arch;
7824
7825                 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7826                 pvclock_update_vm_gtod_copy(kvm);
7827                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7828
7829                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7830                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7831
7832                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7833                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7834         }
7835         mutex_unlock(&kvm_lock);
7836 }
7837 #endif
7838
7839 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7840 {
7841         struct kvm *kvm;
7842         struct kvm_vcpu *vcpu;
7843         int i, send_ipi = 0;
7844
7845         /*
7846          * We allow guests to temporarily run on slowing clocks,
7847          * provided we notify them after, or to run on accelerating
7848          * clocks, provided we notify them before.  Thus time never
7849          * goes backwards.
7850          *
7851          * However, we have a problem.  We can't atomically update
7852          * the frequency of a given CPU from this function; it is
7853          * merely a notifier, which can be called from any CPU.
7854          * Changing the TSC frequency at arbitrary points in time
7855          * requires a recomputation of local variables related to
7856          * the TSC for each VCPU.  We must flag these local variables
7857          * to be updated and be sure the update takes place with the
7858          * new frequency before any guests proceed.
7859          *
7860          * Unfortunately, the combination of hotplug CPU and frequency
7861          * change creates an intractable locking scenario; the order
7862          * of when these callouts happen is undefined with respect to
7863          * CPU hotplug, and they can race with each other.  As such,
7864          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7865          * undefined; you can actually have a CPU frequency change take
7866          * place in between the computation of X and the setting of the
7867          * variable.  To protect against this problem, all updates of
7868          * the per_cpu tsc_khz variable are done in an interrupt
7869          * protected IPI, and all callers wishing to update the value
7870          * must wait for a synchronous IPI to complete (which is trivial
7871          * if the caller is on the CPU already).  This establishes the
7872          * necessary total order on variable updates.
7873          *
7874          * Note that because a guest time update may take place
7875          * anytime after the setting of the VCPU's request bit, the
7876          * correct TSC value must be set before the request.  However,
7877          * to ensure the update actually makes it to any guest which
7878          * starts running in hardware virtualization between the set
7879          * and the acquisition of the spinlock, we must also ping the
7880          * CPU after setting the request bit.
7881          *
7882          */
7883
7884         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7885
7886         mutex_lock(&kvm_lock);
7887         list_for_each_entry(kvm, &vm_list, vm_list) {
7888                 kvm_for_each_vcpu(i, vcpu, kvm) {
7889                         if (vcpu->cpu != cpu)
7890                                 continue;
7891                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7892                         if (vcpu->cpu != raw_smp_processor_id())
7893                                 send_ipi = 1;
7894                 }
7895         }
7896         mutex_unlock(&kvm_lock);
7897
7898         if (freq->old < freq->new && send_ipi) {
7899                 /*
7900                  * We upscale the frequency.  Must make the guest
7901                  * doesn't see old kvmclock values while running with
7902                  * the new frequency, otherwise we risk the guest sees
7903                  * time go backwards.
7904                  *
7905                  * In case we update the frequency for another cpu
7906                  * (which might be in guest context) send an interrupt
7907                  * to kick the cpu out of guest context.  Next time
7908                  * guest context is entered kvmclock will be updated,
7909                  * so the guest will not see stale values.
7910                  */
7911                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7912         }
7913 }
7914
7915 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7916                                      void *data)
7917 {
7918         struct cpufreq_freqs *freq = data;
7919         int cpu;
7920
7921         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7922                 return 0;
7923         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7924                 return 0;
7925
7926         for_each_cpu(cpu, freq->policy->cpus)
7927                 __kvmclock_cpufreq_notifier(freq, cpu);
7928
7929         return 0;
7930 }
7931
7932 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7933         .notifier_call  = kvmclock_cpufreq_notifier
7934 };
7935
7936 static int kvmclock_cpu_online(unsigned int cpu)
7937 {
7938         tsc_khz_changed(NULL);
7939         return 0;
7940 }
7941
7942 static void kvm_timer_init(void)
7943 {
7944         max_tsc_khz = tsc_khz;
7945
7946         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7947 #ifdef CONFIG_CPU_FREQ
7948                 struct cpufreq_policy *policy;
7949                 int cpu;
7950
7951                 cpu = get_cpu();
7952                 policy = cpufreq_cpu_get(cpu);
7953                 if (policy) {
7954                         if (policy->cpuinfo.max_freq)
7955                                 max_tsc_khz = policy->cpuinfo.max_freq;
7956                         cpufreq_cpu_put(policy);
7957                 }
7958                 put_cpu();
7959 #endif
7960                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7961                                           CPUFREQ_TRANSITION_NOTIFIER);
7962         }
7963
7964         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7965                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7966 }
7967
7968 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7969 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7970
7971 int kvm_is_in_guest(void)
7972 {
7973         return __this_cpu_read(current_vcpu) != NULL;
7974 }
7975
7976 static int kvm_is_user_mode(void)
7977 {
7978         int user_mode = 3;
7979
7980         if (__this_cpu_read(current_vcpu))
7981                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7982
7983         return user_mode != 0;
7984 }
7985
7986 static unsigned long kvm_get_guest_ip(void)
7987 {
7988         unsigned long ip = 0;
7989
7990         if (__this_cpu_read(current_vcpu))
7991                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7992
7993         return ip;
7994 }
7995
7996 static void kvm_handle_intel_pt_intr(void)
7997 {
7998         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7999
8000         kvm_make_request(KVM_REQ_PMI, vcpu);
8001         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8002                         (unsigned long *)&vcpu->arch.pmu.global_status);
8003 }
8004
8005 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8006         .is_in_guest            = kvm_is_in_guest,
8007         .is_user_mode           = kvm_is_user_mode,
8008         .get_guest_ip           = kvm_get_guest_ip,
8009         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8010 };
8011
8012 #ifdef CONFIG_X86_64
8013 static void pvclock_gtod_update_fn(struct work_struct *work)
8014 {
8015         struct kvm *kvm;
8016
8017         struct kvm_vcpu *vcpu;
8018         int i;
8019
8020         mutex_lock(&kvm_lock);
8021         list_for_each_entry(kvm, &vm_list, vm_list)
8022                 kvm_for_each_vcpu(i, vcpu, kvm)
8023                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8024         atomic_set(&kvm_guest_has_master_clock, 0);
8025         mutex_unlock(&kvm_lock);
8026 }
8027
8028 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8029
8030 /*
8031  * Notification about pvclock gtod data update.
8032  */
8033 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8034                                void *priv)
8035 {
8036         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8037         struct timekeeper *tk = priv;
8038
8039         update_pvclock_gtod(tk);
8040
8041         /* disable master clock if host does not trust, or does not
8042          * use, TSC based clocksource.
8043          */
8044         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8045             atomic_read(&kvm_guest_has_master_clock) != 0)
8046                 queue_work(system_long_wq, &pvclock_gtod_work);
8047
8048         return 0;
8049 }
8050
8051 static struct notifier_block pvclock_gtod_notifier = {
8052         .notifier_call = pvclock_gtod_notify,
8053 };
8054 #endif
8055
8056 int kvm_arch_init(void *opaque)
8057 {
8058         struct kvm_x86_init_ops *ops = opaque;
8059         int r;
8060
8061         if (kvm_x86_ops.hardware_enable) {
8062                 printk(KERN_ERR "kvm: already loaded the other module\n");
8063                 r = -EEXIST;
8064                 goto out;
8065         }
8066
8067         if (!ops->cpu_has_kvm_support()) {
8068                 pr_err_ratelimited("kvm: no hardware support\n");
8069                 r = -EOPNOTSUPP;
8070                 goto out;
8071         }
8072         if (ops->disabled_by_bios()) {
8073                 pr_err_ratelimited("kvm: disabled by bios\n");
8074                 r = -EOPNOTSUPP;
8075                 goto out;
8076         }
8077
8078         /*
8079          * KVM explicitly assumes that the guest has an FPU and
8080          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8081          * vCPU's FPU state as a fxregs_state struct.
8082          */
8083         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8084                 printk(KERN_ERR "kvm: inadequate fpu\n");
8085                 r = -EOPNOTSUPP;
8086                 goto out;
8087         }
8088
8089         r = -ENOMEM;
8090         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8091                                           __alignof__(struct fpu), SLAB_ACCOUNT,
8092                                           NULL);
8093         if (!x86_fpu_cache) {
8094                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8095                 goto out;
8096         }
8097
8098         x86_emulator_cache = kvm_alloc_emulator_cache();
8099         if (!x86_emulator_cache) {
8100                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8101                 goto out_free_x86_fpu_cache;
8102         }
8103
8104         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8105         if (!user_return_msrs) {
8106                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8107                 goto out_free_x86_emulator_cache;
8108         }
8109
8110         r = kvm_mmu_module_init();
8111         if (r)
8112                 goto out_free_percpu;
8113
8114         kvm_timer_init();
8115
8116         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8117
8118         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8119                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8120                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8121         }
8122
8123         if (pi_inject_timer == -1)
8124                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8125 #ifdef CONFIG_X86_64
8126         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8127
8128         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8129                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8130 #endif
8131
8132         return 0;
8133
8134 out_free_percpu:
8135         free_percpu(user_return_msrs);
8136 out_free_x86_emulator_cache:
8137         kmem_cache_destroy(x86_emulator_cache);
8138 out_free_x86_fpu_cache:
8139         kmem_cache_destroy(x86_fpu_cache);
8140 out:
8141         return r;
8142 }
8143
8144 void kvm_arch_exit(void)
8145 {
8146 #ifdef CONFIG_X86_64
8147         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8148                 clear_hv_tscchange_cb();
8149 #endif
8150         kvm_lapic_exit();
8151         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8152
8153         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8154                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8155                                             CPUFREQ_TRANSITION_NOTIFIER);
8156         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8157 #ifdef CONFIG_X86_64
8158         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8159 #endif
8160         kvm_x86_ops.hardware_enable = NULL;
8161         kvm_mmu_module_exit();
8162         free_percpu(user_return_msrs);
8163         kmem_cache_destroy(x86_fpu_cache);
8164 #ifdef CONFIG_KVM_XEN
8165         static_key_deferred_flush(&kvm_xen_enabled);
8166         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8167 #endif
8168 }
8169
8170 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8171 {
8172         ++vcpu->stat.halt_exits;
8173         if (lapic_in_kernel(vcpu)) {
8174                 vcpu->arch.mp_state = state;
8175                 return 1;
8176         } else {
8177                 vcpu->run->exit_reason = reason;
8178                 return 0;
8179         }
8180 }
8181
8182 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8183 {
8184         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8185 }
8186 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8187
8188 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8189 {
8190         int ret = kvm_skip_emulated_instruction(vcpu);
8191         /*
8192          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8193          * KVM_EXIT_DEBUG here.
8194          */
8195         return kvm_vcpu_halt(vcpu) && ret;
8196 }
8197 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8198
8199 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8200 {
8201         int ret = kvm_skip_emulated_instruction(vcpu);
8202
8203         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8204 }
8205 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8206
8207 #ifdef CONFIG_X86_64
8208 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8209                                 unsigned long clock_type)
8210 {
8211         struct kvm_clock_pairing clock_pairing;
8212         struct timespec64 ts;
8213         u64 cycle;
8214         int ret;
8215
8216         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8217                 return -KVM_EOPNOTSUPP;
8218
8219         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8220                 return -KVM_EOPNOTSUPP;
8221
8222         clock_pairing.sec = ts.tv_sec;
8223         clock_pairing.nsec = ts.tv_nsec;
8224         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8225         clock_pairing.flags = 0;
8226         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8227
8228         ret = 0;
8229         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8230                             sizeof(struct kvm_clock_pairing)))
8231                 ret = -KVM_EFAULT;
8232
8233         return ret;
8234 }
8235 #endif
8236
8237 /*
8238  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8239  *
8240  * @apicid - apicid of vcpu to be kicked.
8241  */
8242 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8243 {
8244         struct kvm_lapic_irq lapic_irq;
8245
8246         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8247         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8248         lapic_irq.level = 0;
8249         lapic_irq.dest_id = apicid;
8250         lapic_irq.msi_redir_hint = false;
8251
8252         lapic_irq.delivery_mode = APIC_DM_REMRD;
8253         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8254 }
8255
8256 bool kvm_apicv_activated(struct kvm *kvm)
8257 {
8258         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8259 }
8260 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8261
8262 void kvm_apicv_init(struct kvm *kvm, bool enable)
8263 {
8264         if (enable)
8265                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8266                           &kvm->arch.apicv_inhibit_reasons);
8267         else
8268                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8269                         &kvm->arch.apicv_inhibit_reasons);
8270 }
8271 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8272
8273 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8274 {
8275         struct kvm_vcpu *target = NULL;
8276         struct kvm_apic_map *map;
8277
8278         vcpu->stat.directed_yield_attempted++;
8279
8280         rcu_read_lock();
8281         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8282
8283         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8284                 target = map->phys_map[dest_id]->vcpu;
8285
8286         rcu_read_unlock();
8287
8288         if (!target || !READ_ONCE(target->ready))
8289                 goto no_yield;
8290
8291         /* Ignore requests to yield to self */
8292         if (vcpu == target)
8293                 goto no_yield;
8294
8295         if (kvm_vcpu_yield_to(target) <= 0)
8296                 goto no_yield;
8297
8298         vcpu->stat.directed_yield_successful++;
8299
8300 no_yield:
8301         return;
8302 }
8303
8304 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8305 {
8306         unsigned long nr, a0, a1, a2, a3, ret;
8307         int op_64_bit;
8308
8309         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8310                 return kvm_xen_hypercall(vcpu);
8311
8312         if (kvm_hv_hypercall_enabled(vcpu))
8313                 return kvm_hv_hypercall(vcpu);
8314
8315         nr = kvm_rax_read(vcpu);
8316         a0 = kvm_rbx_read(vcpu);
8317         a1 = kvm_rcx_read(vcpu);
8318         a2 = kvm_rdx_read(vcpu);
8319         a3 = kvm_rsi_read(vcpu);
8320
8321         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8322
8323         op_64_bit = is_64_bit_mode(vcpu);
8324         if (!op_64_bit) {
8325                 nr &= 0xFFFFFFFF;
8326                 a0 &= 0xFFFFFFFF;
8327                 a1 &= 0xFFFFFFFF;
8328                 a2 &= 0xFFFFFFFF;
8329                 a3 &= 0xFFFFFFFF;
8330         }
8331
8332         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8333                 ret = -KVM_EPERM;
8334                 goto out;
8335         }
8336
8337         ret = -KVM_ENOSYS;
8338
8339         switch (nr) {
8340         case KVM_HC_VAPIC_POLL_IRQ:
8341                 ret = 0;
8342                 break;
8343         case KVM_HC_KICK_CPU:
8344                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8345                         break;
8346
8347                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8348                 kvm_sched_yield(vcpu, a1);
8349                 ret = 0;
8350                 break;
8351 #ifdef CONFIG_X86_64
8352         case KVM_HC_CLOCK_PAIRING:
8353                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8354                 break;
8355 #endif
8356         case KVM_HC_SEND_IPI:
8357                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8358                         break;
8359
8360                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8361                 break;
8362         case KVM_HC_SCHED_YIELD:
8363                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8364                         break;
8365
8366                 kvm_sched_yield(vcpu, a0);
8367                 ret = 0;
8368                 break;
8369         default:
8370                 ret = -KVM_ENOSYS;
8371                 break;
8372         }
8373 out:
8374         if (!op_64_bit)
8375                 ret = (u32)ret;
8376         kvm_rax_write(vcpu, ret);
8377
8378         ++vcpu->stat.hypercalls;
8379         return kvm_skip_emulated_instruction(vcpu);
8380 }
8381 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8382
8383 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8384 {
8385         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8386         char instruction[3];
8387         unsigned long rip = kvm_rip_read(vcpu);
8388
8389         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8390
8391         return emulator_write_emulated(ctxt, rip, instruction, 3,
8392                 &ctxt->exception);
8393 }
8394
8395 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8396 {
8397         return vcpu->run->request_interrupt_window &&
8398                 likely(!pic_in_kernel(vcpu->kvm));
8399 }
8400
8401 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8402 {
8403         struct kvm_run *kvm_run = vcpu->run;
8404
8405         /*
8406          * if_flag is obsolete and useless, so do not bother
8407          * setting it for SEV-ES guests.  Userspace can just
8408          * use kvm_run->ready_for_interrupt_injection.
8409          */
8410         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8411                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8412
8413         kvm_run->cr8 = kvm_get_cr8(vcpu);
8414         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8415         kvm_run->ready_for_interrupt_injection =
8416                 pic_in_kernel(vcpu->kvm) ||
8417                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8418
8419         if (is_smm(vcpu))
8420                 kvm_run->flags |= KVM_RUN_X86_SMM;
8421 }
8422
8423 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8424 {
8425         int max_irr, tpr;
8426
8427         if (!kvm_x86_ops.update_cr8_intercept)
8428                 return;
8429
8430         if (!lapic_in_kernel(vcpu))
8431                 return;
8432
8433         if (vcpu->arch.apicv_active)
8434                 return;
8435
8436         if (!vcpu->arch.apic->vapic_addr)
8437                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8438         else
8439                 max_irr = -1;
8440
8441         if (max_irr != -1)
8442                 max_irr >>= 4;
8443
8444         tpr = kvm_lapic_get_cr8(vcpu);
8445
8446         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8447 }
8448
8449
8450 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8451 {
8452         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8453                 return -EIO;
8454
8455         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8456                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8457                 return 1;
8458         }
8459
8460         return kvm_x86_ops.nested_ops->check_events(vcpu);
8461 }
8462
8463 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8464 {
8465         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8466                 vcpu->arch.exception.error_code = false;
8467         static_call(kvm_x86_queue_exception)(vcpu);
8468 }
8469
8470 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8471 {
8472         int r;
8473         bool can_inject = true;
8474
8475         /* try to reinject previous events if any */
8476
8477         if (vcpu->arch.exception.injected) {
8478                 kvm_inject_exception(vcpu);
8479                 can_inject = false;
8480         }
8481         /*
8482          * Do not inject an NMI or interrupt if there is a pending
8483          * exception.  Exceptions and interrupts are recognized at
8484          * instruction boundaries, i.e. the start of an instruction.
8485          * Trap-like exceptions, e.g. #DB, have higher priority than
8486          * NMIs and interrupts, i.e. traps are recognized before an
8487          * NMI/interrupt that's pending on the same instruction.
8488          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8489          * priority, but are only generated (pended) during instruction
8490          * execution, i.e. a pending fault-like exception means the
8491          * fault occurred on the *previous* instruction and must be
8492          * serviced prior to recognizing any new events in order to
8493          * fully complete the previous instruction.
8494          */
8495         else if (!vcpu->arch.exception.pending) {
8496                 if (vcpu->arch.nmi_injected) {
8497                         static_call(kvm_x86_set_nmi)(vcpu);
8498                         can_inject = false;
8499                 } else if (vcpu->arch.interrupt.injected) {
8500                         static_call(kvm_x86_set_irq)(vcpu);
8501                         can_inject = false;
8502                 }
8503         }
8504
8505         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8506                      vcpu->arch.exception.pending);
8507
8508         /*
8509          * Call check_nested_events() even if we reinjected a previous event
8510          * in order for caller to determine if it should require immediate-exit
8511          * from L2 to L1 due to pending L1 events which require exit
8512          * from L2 to L1.
8513          */
8514         if (is_guest_mode(vcpu)) {
8515                 r = kvm_check_nested_events(vcpu);
8516                 if (r < 0)
8517                         goto busy;
8518         }
8519
8520         /* try to inject new event if pending */
8521         if (vcpu->arch.exception.pending) {
8522                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8523                                         vcpu->arch.exception.has_error_code,
8524                                         vcpu->arch.exception.error_code);
8525
8526                 vcpu->arch.exception.pending = false;
8527                 vcpu->arch.exception.injected = true;
8528
8529                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8530                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8531                                              X86_EFLAGS_RF);
8532
8533                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8534                         kvm_deliver_exception_payload(vcpu);
8535                         if (vcpu->arch.dr7 & DR7_GD) {
8536                                 vcpu->arch.dr7 &= ~DR7_GD;
8537                                 kvm_update_dr7(vcpu);
8538                         }
8539                 }
8540
8541                 kvm_inject_exception(vcpu);
8542                 can_inject = false;
8543         }
8544
8545         /*
8546          * Finally, inject interrupt events.  If an event cannot be injected
8547          * due to architectural conditions (e.g. IF=0) a window-open exit
8548          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8549          * and can architecturally be injected, but we cannot do it right now:
8550          * an interrupt could have arrived just now and we have to inject it
8551          * as a vmexit, or there could already an event in the queue, which is
8552          * indicated by can_inject.  In that case we request an immediate exit
8553          * in order to make progress and get back here for another iteration.
8554          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8555          */
8556         if (vcpu->arch.smi_pending) {
8557                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8558                 if (r < 0)
8559                         goto busy;
8560                 if (r) {
8561                         vcpu->arch.smi_pending = false;
8562                         ++vcpu->arch.smi_count;
8563                         enter_smm(vcpu);
8564                         can_inject = false;
8565                 } else
8566                         static_call(kvm_x86_enable_smi_window)(vcpu);
8567         }
8568
8569         if (vcpu->arch.nmi_pending) {
8570                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8571                 if (r < 0)
8572                         goto busy;
8573                 if (r) {
8574                         --vcpu->arch.nmi_pending;
8575                         vcpu->arch.nmi_injected = true;
8576                         static_call(kvm_x86_set_nmi)(vcpu);
8577                         can_inject = false;
8578                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8579                 }
8580                 if (vcpu->arch.nmi_pending)
8581                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8582         }
8583
8584         if (kvm_cpu_has_injectable_intr(vcpu)) {
8585                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8586                 if (r < 0)
8587                         goto busy;
8588                 if (r) {
8589                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8590                         static_call(kvm_x86_set_irq)(vcpu);
8591                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8592                 }
8593                 if (kvm_cpu_has_injectable_intr(vcpu))
8594                         static_call(kvm_x86_enable_irq_window)(vcpu);
8595         }
8596
8597         if (is_guest_mode(vcpu) &&
8598             kvm_x86_ops.nested_ops->hv_timer_pending &&
8599             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8600                 *req_immediate_exit = true;
8601
8602         WARN_ON(vcpu->arch.exception.pending);
8603         return;
8604
8605 busy:
8606         *req_immediate_exit = true;
8607         return;
8608 }
8609
8610 static void process_nmi(struct kvm_vcpu *vcpu)
8611 {
8612         unsigned limit = 2;
8613
8614         /*
8615          * x86 is limited to one NMI running, and one NMI pending after it.
8616          * If an NMI is already in progress, limit further NMIs to just one.
8617          * Otherwise, allow two (and we'll inject the first one immediately).
8618          */
8619         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8620                 limit = 1;
8621
8622         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8623         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8624         kvm_make_request(KVM_REQ_EVENT, vcpu);
8625 }
8626
8627 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8628 {
8629         u32 flags = 0;
8630         flags |= seg->g       << 23;
8631         flags |= seg->db      << 22;
8632         flags |= seg->l       << 21;
8633         flags |= seg->avl     << 20;
8634         flags |= seg->present << 15;
8635         flags |= seg->dpl     << 13;
8636         flags |= seg->s       << 12;
8637         flags |= seg->type    << 8;
8638         return flags;
8639 }
8640
8641 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8642 {
8643         struct kvm_segment seg;
8644         int offset;
8645
8646         kvm_get_segment(vcpu, &seg, n);
8647         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8648
8649         if (n < 3)
8650                 offset = 0x7f84 + n * 12;
8651         else
8652                 offset = 0x7f2c + (n - 3) * 12;
8653
8654         put_smstate(u32, buf, offset + 8, seg.base);
8655         put_smstate(u32, buf, offset + 4, seg.limit);
8656         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8657 }
8658
8659 #ifdef CONFIG_X86_64
8660 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8661 {
8662         struct kvm_segment seg;
8663         int offset;
8664         u16 flags;
8665
8666         kvm_get_segment(vcpu, &seg, n);
8667         offset = 0x7e00 + n * 16;
8668
8669         flags = enter_smm_get_segment_flags(&seg) >> 8;
8670         put_smstate(u16, buf, offset, seg.selector);
8671         put_smstate(u16, buf, offset + 2, flags);
8672         put_smstate(u32, buf, offset + 4, seg.limit);
8673         put_smstate(u64, buf, offset + 8, seg.base);
8674 }
8675 #endif
8676
8677 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8678 {
8679         struct desc_ptr dt;
8680         struct kvm_segment seg;
8681         unsigned long val;
8682         int i;
8683
8684         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8685         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8686         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8687         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8688
8689         for (i = 0; i < 8; i++)
8690                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8691
8692         kvm_get_dr(vcpu, 6, &val);
8693         put_smstate(u32, buf, 0x7fcc, (u32)val);
8694         kvm_get_dr(vcpu, 7, &val);
8695         put_smstate(u32, buf, 0x7fc8, (u32)val);
8696
8697         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8698         put_smstate(u32, buf, 0x7fc4, seg.selector);
8699         put_smstate(u32, buf, 0x7f64, seg.base);
8700         put_smstate(u32, buf, 0x7f60, seg.limit);
8701         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8702
8703         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8704         put_smstate(u32, buf, 0x7fc0, seg.selector);
8705         put_smstate(u32, buf, 0x7f80, seg.base);
8706         put_smstate(u32, buf, 0x7f7c, seg.limit);
8707         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8708
8709         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8710         put_smstate(u32, buf, 0x7f74, dt.address);
8711         put_smstate(u32, buf, 0x7f70, dt.size);
8712
8713         static_call(kvm_x86_get_idt)(vcpu, &dt);
8714         put_smstate(u32, buf, 0x7f58, dt.address);
8715         put_smstate(u32, buf, 0x7f54, dt.size);
8716
8717         for (i = 0; i < 6; i++)
8718                 enter_smm_save_seg_32(vcpu, buf, i);
8719
8720         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8721
8722         /* revision id */
8723         put_smstate(u32, buf, 0x7efc, 0x00020000);
8724         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8725 }
8726
8727 #ifdef CONFIG_X86_64
8728 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8729 {
8730         struct desc_ptr dt;
8731         struct kvm_segment seg;
8732         unsigned long val;
8733         int i;
8734
8735         for (i = 0; i < 16; i++)
8736                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8737
8738         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8739         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8740
8741         kvm_get_dr(vcpu, 6, &val);
8742         put_smstate(u64, buf, 0x7f68, val);
8743         kvm_get_dr(vcpu, 7, &val);
8744         put_smstate(u64, buf, 0x7f60, val);
8745
8746         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8747         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8748         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8749
8750         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8751
8752         /* revision id */
8753         put_smstate(u32, buf, 0x7efc, 0x00020064);
8754
8755         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8756
8757         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8758         put_smstate(u16, buf, 0x7e90, seg.selector);
8759         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8760         put_smstate(u32, buf, 0x7e94, seg.limit);
8761         put_smstate(u64, buf, 0x7e98, seg.base);
8762
8763         static_call(kvm_x86_get_idt)(vcpu, &dt);
8764         put_smstate(u32, buf, 0x7e84, dt.size);
8765         put_smstate(u64, buf, 0x7e88, dt.address);
8766
8767         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8768         put_smstate(u16, buf, 0x7e70, seg.selector);
8769         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8770         put_smstate(u32, buf, 0x7e74, seg.limit);
8771         put_smstate(u64, buf, 0x7e78, seg.base);
8772
8773         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8774         put_smstate(u32, buf, 0x7e64, dt.size);
8775         put_smstate(u64, buf, 0x7e68, dt.address);
8776
8777         for (i = 0; i < 6; i++)
8778                 enter_smm_save_seg_64(vcpu, buf, i);
8779 }
8780 #endif
8781
8782 static void enter_smm(struct kvm_vcpu *vcpu)
8783 {
8784         struct kvm_segment cs, ds;
8785         struct desc_ptr dt;
8786         char buf[512];
8787         u32 cr0;
8788
8789         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8790         memset(buf, 0, 512);
8791 #ifdef CONFIG_X86_64
8792         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8793                 enter_smm_save_state_64(vcpu, buf);
8794         else
8795 #endif
8796                 enter_smm_save_state_32(vcpu, buf);
8797
8798         /*
8799          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8800          * vCPU state (e.g. leave guest mode) after we've saved the state into
8801          * the SMM state-save area.
8802          */
8803         static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8804
8805         vcpu->arch.hflags |= HF_SMM_MASK;
8806         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8807
8808         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8809                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8810         else
8811                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8812
8813         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8814         kvm_rip_write(vcpu, 0x8000);
8815
8816         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8817         static_call(kvm_x86_set_cr0)(vcpu, cr0);
8818         vcpu->arch.cr0 = cr0;
8819
8820         static_call(kvm_x86_set_cr4)(vcpu, 0);
8821
8822         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8823         dt.address = dt.size = 0;
8824         static_call(kvm_x86_set_idt)(vcpu, &dt);
8825
8826         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8827
8828         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8829         cs.base = vcpu->arch.smbase;
8830
8831         ds.selector = 0;
8832         ds.base = 0;
8833
8834         cs.limit    = ds.limit = 0xffffffff;
8835         cs.type     = ds.type = 0x3;
8836         cs.dpl      = ds.dpl = 0;
8837         cs.db       = ds.db = 0;
8838         cs.s        = ds.s = 1;
8839         cs.l        = ds.l = 0;
8840         cs.g        = ds.g = 1;
8841         cs.avl      = ds.avl = 0;
8842         cs.present  = ds.present = 1;
8843         cs.unusable = ds.unusable = 0;
8844         cs.padding  = ds.padding = 0;
8845
8846         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8847         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8848         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8849         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8850         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8851         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8852
8853 #ifdef CONFIG_X86_64
8854         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8855                 static_call(kvm_x86_set_efer)(vcpu, 0);
8856 #endif
8857
8858         kvm_update_cpuid_runtime(vcpu);
8859         kvm_mmu_reset_context(vcpu);
8860 }
8861
8862 static void process_smi(struct kvm_vcpu *vcpu)
8863 {
8864         vcpu->arch.smi_pending = true;
8865         kvm_make_request(KVM_REQ_EVENT, vcpu);
8866 }
8867
8868 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8869                                        unsigned long *vcpu_bitmap)
8870 {
8871         cpumask_var_t cpus;
8872
8873         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8874
8875         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8876                                     NULL, vcpu_bitmap, cpus);
8877
8878         free_cpumask_var(cpus);
8879 }
8880
8881 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8882 {
8883         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8884 }
8885
8886 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8887 {
8888         if (!lapic_in_kernel(vcpu))
8889                 return;
8890
8891         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8892         kvm_apic_update_apicv(vcpu);
8893         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8894 }
8895 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8896
8897 /*
8898  * NOTE: Do not hold any lock prior to calling this.
8899  *
8900  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8901  * locked, because it calls __x86_set_memory_region() which does
8902  * synchronize_srcu(&kvm->srcu).
8903  */
8904 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8905 {
8906         struct kvm_vcpu *except;
8907         unsigned long old, new, expected;
8908
8909         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8910             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8911                 return;
8912
8913         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8914         do {
8915                 expected = new = old;
8916                 if (activate)
8917                         __clear_bit(bit, &new);
8918                 else
8919                         __set_bit(bit, &new);
8920                 if (new == old)
8921                         break;
8922                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8923         } while (old != expected);
8924
8925         if (!!old == !!new)
8926                 return;
8927
8928         trace_kvm_apicv_update_request(activate, bit);
8929         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8930                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8931
8932         /*
8933          * Sending request to update APICV for all other vcpus,
8934          * while update the calling vcpu immediately instead of
8935          * waiting for another #VMEXIT to handle the request.
8936          */
8937         except = kvm_get_running_vcpu();
8938         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8939                                          except);
8940         if (except)
8941                 kvm_vcpu_update_apicv(except);
8942 }
8943 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8944
8945 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8946 {
8947         if (!kvm_apic_present(vcpu))
8948                 return;
8949
8950         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8951
8952         if (irqchip_split(vcpu->kvm))
8953                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8954         else {
8955                 if (vcpu->arch.apicv_active)
8956                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8957                 if (ioapic_in_kernel(vcpu->kvm))
8958                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8959         }
8960
8961         if (is_guest_mode(vcpu))
8962                 vcpu->arch.load_eoi_exitmap_pending = true;
8963         else
8964                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8965 }
8966
8967 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8968 {
8969         u64 eoi_exit_bitmap[4];
8970
8971         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8972                 return;
8973
8974         if (to_hv_vcpu(vcpu))
8975                 bitmap_or((ulong *)eoi_exit_bitmap,
8976                           vcpu->arch.ioapic_handled_vectors,
8977                           to_hv_synic(vcpu)->vec_bitmap, 256);
8978
8979         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8980 }
8981
8982 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8983                                             unsigned long start, unsigned long end)
8984 {
8985         unsigned long apic_address;
8986
8987         /*
8988          * The physical address of apic access page is stored in the VMCS.
8989          * Update it when it becomes invalid.
8990          */
8991         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8992         if (start <= apic_address && apic_address < end)
8993                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8994 }
8995
8996 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8997 {
8998         if (!lapic_in_kernel(vcpu))
8999                 return;
9000
9001         if (!kvm_x86_ops.set_apic_access_page_addr)
9002                 return;
9003
9004         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9005 }
9006
9007 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9008 {
9009         smp_send_reschedule(vcpu->cpu);
9010 }
9011 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9012
9013 /*
9014  * Returns 1 to let vcpu_run() continue the guest execution loop without
9015  * exiting to the userspace.  Otherwise, the value will be returned to the
9016  * userspace.
9017  */
9018 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9019 {
9020         int r;
9021         bool req_int_win =
9022                 dm_request_for_irq_injection(vcpu) &&
9023                 kvm_cpu_accept_dm_intr(vcpu);
9024         fastpath_t exit_fastpath;
9025
9026         bool req_immediate_exit = false;
9027
9028         /* Forbid vmenter if vcpu dirty ring is soft-full */
9029         if (unlikely(vcpu->kvm->dirty_ring_size &&
9030                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9031                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9032                 trace_kvm_dirty_ring_exit(vcpu);
9033                 r = 0;
9034                 goto out;
9035         }
9036
9037         if (kvm_request_pending(vcpu)) {
9038                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9039                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9040                                 r = 0;
9041                                 goto out;
9042                         }
9043                 }
9044                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9045                         kvm_mmu_unload(vcpu);
9046                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9047                         __kvm_migrate_timers(vcpu);
9048                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9049                         kvm_gen_update_masterclock(vcpu->kvm);
9050                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9051                         kvm_gen_kvmclock_update(vcpu);
9052                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9053                         r = kvm_guest_time_update(vcpu);
9054                         if (unlikely(r))
9055                                 goto out;
9056                 }
9057                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9058                         kvm_mmu_sync_roots(vcpu);
9059                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9060                         kvm_mmu_load_pgd(vcpu);
9061                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9062                         kvm_vcpu_flush_tlb_all(vcpu);
9063
9064                         /* Flushing all ASIDs flushes the current ASID... */
9065                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9066                 }
9067                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9068                         kvm_vcpu_flush_tlb_current(vcpu);
9069                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
9070                         kvm_vcpu_flush_tlb_guest(vcpu);
9071
9072                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9073                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9074                         r = 0;
9075                         goto out;
9076                 }
9077                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9078                         if (is_guest_mode(vcpu)) {
9079                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9080                         } else {
9081                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9082                                 vcpu->mmio_needed = 0;
9083                                 r = 0;
9084                                 goto out;
9085                         }
9086                 }
9087                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9088                         /* Page is swapped out. Do synthetic halt */
9089                         vcpu->arch.apf.halted = true;
9090                         r = 1;
9091                         goto out;
9092                 }
9093                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9094                         record_steal_time(vcpu);
9095                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9096                         process_smi(vcpu);
9097                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9098                         process_nmi(vcpu);
9099                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9100                         kvm_pmu_handle_event(vcpu);
9101                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9102                         kvm_pmu_deliver_pmi(vcpu);
9103                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9104                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9105                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9106                                      vcpu->arch.ioapic_handled_vectors)) {
9107                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9108                                 vcpu->run->eoi.vector =
9109                                                 vcpu->arch.pending_ioapic_eoi;
9110                                 r = 0;
9111                                 goto out;
9112                         }
9113                 }
9114                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9115                         vcpu_scan_ioapic(vcpu);
9116                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9117                         vcpu_load_eoi_exitmap(vcpu);
9118                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9119                         kvm_vcpu_reload_apic_access_page(vcpu);
9120                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9121                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9122                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9123                         r = 0;
9124                         goto out;
9125                 }
9126                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9127                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9128                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9129                         r = 0;
9130                         goto out;
9131                 }
9132                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9133                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9134
9135                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9136                         vcpu->run->hyperv = hv_vcpu->exit;
9137                         r = 0;
9138                         goto out;
9139                 }
9140
9141                 /*
9142                  * KVM_REQ_HV_STIMER has to be processed after
9143                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9144                  * depend on the guest clock being up-to-date
9145                  */
9146                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9147                         kvm_hv_process_stimers(vcpu);
9148                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9149                         kvm_vcpu_update_apicv(vcpu);
9150                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9151                         kvm_check_async_pf_completion(vcpu);
9152                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9153                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9154
9155                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9156                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9157         }
9158
9159         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9160             kvm_xen_has_interrupt(vcpu)) {
9161                 ++vcpu->stat.req_event;
9162                 kvm_apic_accept_events(vcpu);
9163                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9164                         r = 1;
9165                         goto out;
9166                 }
9167
9168                 inject_pending_event(vcpu, &req_immediate_exit);
9169                 if (req_int_win)
9170                         static_call(kvm_x86_enable_irq_window)(vcpu);
9171
9172                 if (kvm_lapic_enabled(vcpu)) {
9173                         update_cr8_intercept(vcpu);
9174                         kvm_lapic_sync_to_vapic(vcpu);
9175                 }
9176         }
9177
9178         r = kvm_mmu_reload(vcpu);
9179         if (unlikely(r)) {
9180                 goto cancel_injection;
9181         }
9182
9183         preempt_disable();
9184
9185         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9186
9187         /*
9188          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9189          * IPI are then delayed after guest entry, which ensures that they
9190          * result in virtual interrupt delivery.
9191          */
9192         local_irq_disable();
9193         vcpu->mode = IN_GUEST_MODE;
9194
9195         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9196
9197         /*
9198          * 1) We should set ->mode before checking ->requests.  Please see
9199          * the comment in kvm_vcpu_exiting_guest_mode().
9200          *
9201          * 2) For APICv, we should set ->mode before checking PID.ON. This
9202          * pairs with the memory barrier implicit in pi_test_and_set_on
9203          * (see vmx_deliver_posted_interrupt).
9204          *
9205          * 3) This also orders the write to mode from any reads to the page
9206          * tables done while the VCPU is running.  Please see the comment
9207          * in kvm_flush_remote_tlbs.
9208          */
9209         smp_mb__after_srcu_read_unlock();
9210
9211         /*
9212          * This handles the case where a posted interrupt was
9213          * notified with kvm_vcpu_kick.
9214          */
9215         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9216                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9217
9218         if (kvm_vcpu_exit_request(vcpu)) {
9219                 vcpu->mode = OUTSIDE_GUEST_MODE;
9220                 smp_wmb();
9221                 local_irq_enable();
9222                 preempt_enable();
9223                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9224                 r = 1;
9225                 goto cancel_injection;
9226         }
9227
9228         if (req_immediate_exit) {
9229                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9230                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9231         }
9232
9233         fpregs_assert_state_consistent();
9234         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9235                 switch_fpu_return();
9236
9237         if (unlikely(vcpu->arch.switch_db_regs)) {
9238                 set_debugreg(0, 7);
9239                 set_debugreg(vcpu->arch.eff_db[0], 0);
9240                 set_debugreg(vcpu->arch.eff_db[1], 1);
9241                 set_debugreg(vcpu->arch.eff_db[2], 2);
9242                 set_debugreg(vcpu->arch.eff_db[3], 3);
9243                 set_debugreg(vcpu->arch.dr6, 6);
9244                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9245         }
9246
9247         for (;;) {
9248                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9249                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9250                         break;
9251
9252                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9253                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9254                         break;
9255                 }
9256
9257                 if (vcpu->arch.apicv_active)
9258                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9259         }
9260
9261         /*
9262          * Do this here before restoring debug registers on the host.  And
9263          * since we do this before handling the vmexit, a DR access vmexit
9264          * can (a) read the correct value of the debug registers, (b) set
9265          * KVM_DEBUGREG_WONT_EXIT again.
9266          */
9267         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9268                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9269                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9270                 kvm_update_dr0123(vcpu);
9271                 kvm_update_dr7(vcpu);
9272                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9273         }
9274
9275         /*
9276          * If the guest has used debug registers, at least dr7
9277          * will be disabled while returning to the host.
9278          * If we don't have active breakpoints in the host, we don't
9279          * care about the messed up debug address registers. But if
9280          * we have some of them active, restore the old state.
9281          */
9282         if (hw_breakpoint_active())
9283                 hw_breakpoint_restore();
9284
9285         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9286         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9287
9288         vcpu->mode = OUTSIDE_GUEST_MODE;
9289         smp_wmb();
9290
9291         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9292
9293         /*
9294          * Consume any pending interrupts, including the possible source of
9295          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9296          * An instruction is required after local_irq_enable() to fully unblock
9297          * interrupts on processors that implement an interrupt shadow, the
9298          * stat.exits increment will do nicely.
9299          */
9300         kvm_before_interrupt(vcpu);
9301         local_irq_enable();
9302         ++vcpu->stat.exits;
9303         local_irq_disable();
9304         kvm_after_interrupt(vcpu);
9305
9306         if (lapic_in_kernel(vcpu)) {
9307                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9308                 if (delta != S64_MIN) {
9309                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9310                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9311                 }
9312         }
9313
9314         local_irq_enable();
9315         preempt_enable();
9316
9317         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9318
9319         /*
9320          * Profile KVM exit RIPs:
9321          */
9322         if (unlikely(prof_on == KVM_PROFILING)) {
9323                 unsigned long rip = kvm_rip_read(vcpu);
9324                 profile_hit(KVM_PROFILING, (void *)rip);
9325         }
9326
9327         if (unlikely(vcpu->arch.tsc_always_catchup))
9328                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9329
9330         if (vcpu->arch.apic_attention)
9331                 kvm_lapic_sync_from_vapic(vcpu);
9332
9333         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9334         return r;
9335
9336 cancel_injection:
9337         if (req_immediate_exit)
9338                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9339         static_call(kvm_x86_cancel_injection)(vcpu);
9340         if (unlikely(vcpu->arch.apic_attention))
9341                 kvm_lapic_sync_from_vapic(vcpu);
9342 out:
9343         return r;
9344 }
9345
9346 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9347 {
9348         if (!kvm_arch_vcpu_runnable(vcpu) &&
9349             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9350                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9351                 kvm_vcpu_block(vcpu);
9352                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9353
9354                 if (kvm_x86_ops.post_block)
9355                         static_call(kvm_x86_post_block)(vcpu);
9356
9357                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9358                         return 1;
9359         }
9360
9361         kvm_apic_accept_events(vcpu);
9362         switch(vcpu->arch.mp_state) {
9363         case KVM_MP_STATE_HALTED:
9364         case KVM_MP_STATE_AP_RESET_HOLD:
9365                 vcpu->arch.pv.pv_unhalted = false;
9366                 vcpu->arch.mp_state =
9367                         KVM_MP_STATE_RUNNABLE;
9368                 fallthrough;
9369         case KVM_MP_STATE_RUNNABLE:
9370                 vcpu->arch.apf.halted = false;
9371                 break;
9372         case KVM_MP_STATE_INIT_RECEIVED:
9373                 break;
9374         default:
9375                 return -EINTR;
9376         }
9377         return 1;
9378 }
9379
9380 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9381 {
9382         if (is_guest_mode(vcpu))
9383                 kvm_check_nested_events(vcpu);
9384
9385         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9386                 !vcpu->arch.apf.halted);
9387 }
9388
9389 static int vcpu_run(struct kvm_vcpu *vcpu)
9390 {
9391         int r;
9392         struct kvm *kvm = vcpu->kvm;
9393
9394         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9395         vcpu->arch.l1tf_flush_l1d = true;
9396
9397         for (;;) {
9398                 if (kvm_vcpu_running(vcpu)) {
9399                         r = vcpu_enter_guest(vcpu);
9400                 } else {
9401                         r = vcpu_block(kvm, vcpu);
9402                 }
9403
9404                 if (r <= 0)
9405                         break;
9406
9407                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9408                 if (kvm_cpu_has_pending_timer(vcpu))
9409                         kvm_inject_pending_timer_irqs(vcpu);
9410
9411                 if (dm_request_for_irq_injection(vcpu) &&
9412                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9413                         r = 0;
9414                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9415                         ++vcpu->stat.request_irq_exits;
9416                         break;
9417                 }
9418
9419                 if (__xfer_to_guest_mode_work_pending()) {
9420                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9421                         r = xfer_to_guest_mode_handle_work(vcpu);
9422                         if (r)
9423                                 return r;
9424                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9425                 }
9426         }
9427
9428         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9429
9430         return r;
9431 }
9432
9433 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9434 {
9435         int r;
9436
9437         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9438         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9439         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9440         return r;
9441 }
9442
9443 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9444 {
9445         BUG_ON(!vcpu->arch.pio.count);
9446
9447         return complete_emulated_io(vcpu);
9448 }
9449
9450 /*
9451  * Implements the following, as a state machine:
9452  *
9453  * read:
9454  *   for each fragment
9455  *     for each mmio piece in the fragment
9456  *       write gpa, len
9457  *       exit
9458  *       copy data
9459  *   execute insn
9460  *
9461  * write:
9462  *   for each fragment
9463  *     for each mmio piece in the fragment
9464  *       write gpa, len
9465  *       copy data
9466  *       exit
9467  */
9468 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9469 {
9470         struct kvm_run *run = vcpu->run;
9471         struct kvm_mmio_fragment *frag;
9472         unsigned len;
9473
9474         BUG_ON(!vcpu->mmio_needed);
9475
9476         /* Complete previous fragment */
9477         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9478         len = min(8u, frag->len);
9479         if (!vcpu->mmio_is_write)
9480                 memcpy(frag->data, run->mmio.data, len);
9481
9482         if (frag->len <= 8) {
9483                 /* Switch to the next fragment. */
9484                 frag++;
9485                 vcpu->mmio_cur_fragment++;
9486         } else {
9487                 /* Go forward to the next mmio piece. */
9488                 frag->data += len;
9489                 frag->gpa += len;
9490                 frag->len -= len;
9491         }
9492
9493         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9494                 vcpu->mmio_needed = 0;
9495
9496                 /* FIXME: return into emulator if single-stepping.  */
9497                 if (vcpu->mmio_is_write)
9498                         return 1;
9499                 vcpu->mmio_read_completed = 1;
9500                 return complete_emulated_io(vcpu);
9501         }
9502
9503         run->exit_reason = KVM_EXIT_MMIO;
9504         run->mmio.phys_addr = frag->gpa;
9505         if (vcpu->mmio_is_write)
9506                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9507         run->mmio.len = min(8u, frag->len);
9508         run->mmio.is_write = vcpu->mmio_is_write;
9509         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9510         return 0;
9511 }
9512
9513 static void kvm_save_current_fpu(struct fpu *fpu)
9514 {
9515         /*
9516          * If the target FPU state is not resident in the CPU registers, just
9517          * memcpy() from current, else save CPU state directly to the target.
9518          */
9519         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9520                 memcpy(&fpu->state, &current->thread.fpu.state,
9521                        fpu_kernel_xstate_size);
9522         else
9523                 copy_fpregs_to_fpstate(fpu);
9524 }
9525
9526 /* Swap (qemu) user FPU context for the guest FPU context. */
9527 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9528 {
9529         fpregs_lock();
9530
9531         kvm_save_current_fpu(vcpu->arch.user_fpu);
9532
9533         /*
9534          * Guests with protected state can't have it set by the hypervisor,
9535          * so skip trying to set it.
9536          */
9537         if (vcpu->arch.guest_fpu)
9538                 /* PKRU is separately restored in kvm_x86_ops.run. */
9539                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9540                                         ~XFEATURE_MASK_PKRU);
9541
9542         fpregs_mark_activate();
9543         fpregs_unlock();
9544
9545         trace_kvm_fpu(1);
9546 }
9547
9548 /* When vcpu_run ends, restore user space FPU context. */
9549 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9550 {
9551         fpregs_lock();
9552
9553         /*
9554          * Guests with protected state can't have it read by the hypervisor,
9555          * so skip trying to save it.
9556          */
9557         if (vcpu->arch.guest_fpu)
9558                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9559
9560         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9561
9562         fpregs_mark_activate();
9563         fpregs_unlock();
9564
9565         ++vcpu->stat.fpu_reload;
9566         trace_kvm_fpu(0);
9567 }
9568
9569 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9570 {
9571         struct kvm_run *kvm_run = vcpu->run;
9572         int r;
9573
9574         vcpu_load(vcpu);
9575         kvm_sigset_activate(vcpu);
9576         kvm_run->flags = 0;
9577         kvm_load_guest_fpu(vcpu);
9578
9579         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9580                 if (kvm_run->immediate_exit) {
9581                         r = -EINTR;
9582                         goto out;
9583                 }
9584                 kvm_vcpu_block(vcpu);
9585                 kvm_apic_accept_events(vcpu);
9586                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9587                 r = -EAGAIN;
9588                 if (signal_pending(current)) {
9589                         r = -EINTR;
9590                         kvm_run->exit_reason = KVM_EXIT_INTR;
9591                         ++vcpu->stat.signal_exits;
9592                 }
9593                 goto out;
9594         }
9595
9596         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9597                 r = -EINVAL;
9598                 goto out;
9599         }
9600
9601         if (kvm_run->kvm_dirty_regs) {
9602                 r = sync_regs(vcpu);
9603                 if (r != 0)
9604                         goto out;
9605         }
9606
9607         /* re-sync apic's tpr */
9608         if (!lapic_in_kernel(vcpu)) {
9609                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9610                         r = -EINVAL;
9611                         goto out;
9612                 }
9613         }
9614
9615         if (unlikely(vcpu->arch.complete_userspace_io)) {
9616                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9617                 vcpu->arch.complete_userspace_io = NULL;
9618                 r = cui(vcpu);
9619                 if (r <= 0)
9620                         goto out;
9621         } else
9622                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9623
9624         if (kvm_run->immediate_exit)
9625                 r = -EINTR;
9626         else
9627                 r = vcpu_run(vcpu);
9628
9629 out:
9630         kvm_put_guest_fpu(vcpu);
9631         if (kvm_run->kvm_valid_regs)
9632                 store_regs(vcpu);
9633         post_kvm_run_save(vcpu);
9634         kvm_sigset_deactivate(vcpu);
9635
9636         vcpu_put(vcpu);
9637         return r;
9638 }
9639
9640 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9641 {
9642         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9643                 /*
9644                  * We are here if userspace calls get_regs() in the middle of
9645                  * instruction emulation. Registers state needs to be copied
9646                  * back from emulation context to vcpu. Userspace shouldn't do
9647                  * that usually, but some bad designed PV devices (vmware
9648                  * backdoor interface) need this to work
9649                  */
9650                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9651                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9652         }
9653         regs->rax = kvm_rax_read(vcpu);
9654         regs->rbx = kvm_rbx_read(vcpu);
9655         regs->rcx = kvm_rcx_read(vcpu);
9656         regs->rdx = kvm_rdx_read(vcpu);
9657         regs->rsi = kvm_rsi_read(vcpu);
9658         regs->rdi = kvm_rdi_read(vcpu);
9659         regs->rsp = kvm_rsp_read(vcpu);
9660         regs->rbp = kvm_rbp_read(vcpu);
9661 #ifdef CONFIG_X86_64
9662         regs->r8 = kvm_r8_read(vcpu);
9663         regs->r9 = kvm_r9_read(vcpu);
9664         regs->r10 = kvm_r10_read(vcpu);
9665         regs->r11 = kvm_r11_read(vcpu);
9666         regs->r12 = kvm_r12_read(vcpu);
9667         regs->r13 = kvm_r13_read(vcpu);
9668         regs->r14 = kvm_r14_read(vcpu);
9669         regs->r15 = kvm_r15_read(vcpu);
9670 #endif
9671
9672         regs->rip = kvm_rip_read(vcpu);
9673         regs->rflags = kvm_get_rflags(vcpu);
9674 }
9675
9676 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9677 {
9678         vcpu_load(vcpu);
9679         __get_regs(vcpu, regs);
9680         vcpu_put(vcpu);
9681         return 0;
9682 }
9683
9684 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9685 {
9686         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9687         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9688
9689         kvm_rax_write(vcpu, regs->rax);
9690         kvm_rbx_write(vcpu, regs->rbx);
9691         kvm_rcx_write(vcpu, regs->rcx);
9692         kvm_rdx_write(vcpu, regs->rdx);
9693         kvm_rsi_write(vcpu, regs->rsi);
9694         kvm_rdi_write(vcpu, regs->rdi);
9695         kvm_rsp_write(vcpu, regs->rsp);
9696         kvm_rbp_write(vcpu, regs->rbp);
9697 #ifdef CONFIG_X86_64
9698         kvm_r8_write(vcpu, regs->r8);
9699         kvm_r9_write(vcpu, regs->r9);
9700         kvm_r10_write(vcpu, regs->r10);
9701         kvm_r11_write(vcpu, regs->r11);
9702         kvm_r12_write(vcpu, regs->r12);
9703         kvm_r13_write(vcpu, regs->r13);
9704         kvm_r14_write(vcpu, regs->r14);
9705         kvm_r15_write(vcpu, regs->r15);
9706 #endif
9707
9708         kvm_rip_write(vcpu, regs->rip);
9709         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9710
9711         vcpu->arch.exception.pending = false;
9712
9713         kvm_make_request(KVM_REQ_EVENT, vcpu);
9714 }
9715
9716 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9717 {
9718         vcpu_load(vcpu);
9719         __set_regs(vcpu, regs);
9720         vcpu_put(vcpu);
9721         return 0;
9722 }
9723
9724 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9725 {
9726         struct kvm_segment cs;
9727
9728         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9729         *db = cs.db;
9730         *l = cs.l;
9731 }
9732 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9733
9734 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9735 {
9736         struct desc_ptr dt;
9737
9738         if (vcpu->arch.guest_state_protected)
9739                 goto skip_protected_regs;
9740
9741         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9742         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9743         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9744         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9745         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9746         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9747
9748         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9749         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9750
9751         static_call(kvm_x86_get_idt)(vcpu, &dt);
9752         sregs->idt.limit = dt.size;
9753         sregs->idt.base = dt.address;
9754         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9755         sregs->gdt.limit = dt.size;
9756         sregs->gdt.base = dt.address;
9757
9758         sregs->cr2 = vcpu->arch.cr2;
9759         sregs->cr3 = kvm_read_cr3(vcpu);
9760
9761 skip_protected_regs:
9762         sregs->cr0 = kvm_read_cr0(vcpu);
9763         sregs->cr4 = kvm_read_cr4(vcpu);
9764         sregs->cr8 = kvm_get_cr8(vcpu);
9765         sregs->efer = vcpu->arch.efer;
9766         sregs->apic_base = kvm_get_apic_base(vcpu);
9767
9768         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9769
9770         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9771                 set_bit(vcpu->arch.interrupt.nr,
9772                         (unsigned long *)sregs->interrupt_bitmap);
9773 }
9774
9775 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9776                                   struct kvm_sregs *sregs)
9777 {
9778         vcpu_load(vcpu);
9779         __get_sregs(vcpu, sregs);
9780         vcpu_put(vcpu);
9781         return 0;
9782 }
9783
9784 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9785                                     struct kvm_mp_state *mp_state)
9786 {
9787         vcpu_load(vcpu);
9788         if (kvm_mpx_supported())
9789                 kvm_load_guest_fpu(vcpu);
9790
9791         kvm_apic_accept_events(vcpu);
9792         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9793              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9794             vcpu->arch.pv.pv_unhalted)
9795                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9796         else
9797                 mp_state->mp_state = vcpu->arch.mp_state;
9798
9799         if (kvm_mpx_supported())
9800                 kvm_put_guest_fpu(vcpu);
9801         vcpu_put(vcpu);
9802         return 0;
9803 }
9804
9805 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9806                                     struct kvm_mp_state *mp_state)
9807 {
9808         int ret = -EINVAL;
9809
9810         vcpu_load(vcpu);
9811
9812         if (!lapic_in_kernel(vcpu) &&
9813             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9814                 goto out;
9815
9816         /*
9817          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9818          * INIT state; latched init should be reported using
9819          * KVM_SET_VCPU_EVENTS, so reject it here.
9820          */
9821         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9822             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9823              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9824                 goto out;
9825
9826         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9827                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9828                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9829         } else
9830                 vcpu->arch.mp_state = mp_state->mp_state;
9831         kvm_make_request(KVM_REQ_EVENT, vcpu);
9832
9833         ret = 0;
9834 out:
9835         vcpu_put(vcpu);
9836         return ret;
9837 }
9838
9839 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9840                     int reason, bool has_error_code, u32 error_code)
9841 {
9842         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9843         int ret;
9844
9845         init_emulate_ctxt(vcpu);
9846
9847         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9848                                    has_error_code, error_code);
9849         if (ret) {
9850                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9851                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9852                 vcpu->run->internal.ndata = 0;
9853                 return 0;
9854         }
9855
9856         kvm_rip_write(vcpu, ctxt->eip);
9857         kvm_set_rflags(vcpu, ctxt->eflags);
9858         return 1;
9859 }
9860 EXPORT_SYMBOL_GPL(kvm_task_switch);
9861
9862 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9863 {
9864         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9865                 /*
9866                  * When EFER.LME and CR0.PG are set, the processor is in
9867                  * 64-bit mode (though maybe in a 32-bit code segment).
9868                  * CR4.PAE and EFER.LMA must be set.
9869                  */
9870                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9871                         return false;
9872                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9873                         return false;
9874         } else {
9875                 /*
9876                  * Not in 64-bit mode: EFER.LMA is clear and the code
9877                  * segment cannot be 64-bit.
9878                  */
9879                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9880                         return false;
9881         }
9882
9883         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9884 }
9885
9886 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9887 {
9888         struct msr_data apic_base_msr;
9889         int mmu_reset_needed = 0;
9890         int pending_vec, max_bits, idx;
9891         struct desc_ptr dt;
9892         int ret = -EINVAL;
9893
9894         if (!kvm_is_valid_sregs(vcpu, sregs))
9895                 goto out;
9896
9897         apic_base_msr.data = sregs->apic_base;
9898         apic_base_msr.host_initiated = true;
9899         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9900                 goto out;
9901
9902         if (vcpu->arch.guest_state_protected)
9903                 goto skip_protected_regs;
9904
9905         dt.size = sregs->idt.limit;
9906         dt.address = sregs->idt.base;
9907         static_call(kvm_x86_set_idt)(vcpu, &dt);
9908         dt.size = sregs->gdt.limit;
9909         dt.address = sregs->gdt.base;
9910         static_call(kvm_x86_set_gdt)(vcpu, &dt);
9911
9912         vcpu->arch.cr2 = sregs->cr2;
9913         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9914         vcpu->arch.cr3 = sregs->cr3;
9915         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9916
9917         kvm_set_cr8(vcpu, sregs->cr8);
9918
9919         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9920         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9921
9922         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9923         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9924         vcpu->arch.cr0 = sregs->cr0;
9925
9926         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9927         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9928
9929         idx = srcu_read_lock(&vcpu->kvm->srcu);
9930         if (is_pae_paging(vcpu)) {
9931                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9932                 mmu_reset_needed = 1;
9933         }
9934         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9935
9936         if (mmu_reset_needed)
9937                 kvm_mmu_reset_context(vcpu);
9938
9939         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9940         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9941         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9942         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9943         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9944         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9945
9946         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9947         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9948
9949         update_cr8_intercept(vcpu);
9950
9951         /* Older userspace won't unhalt the vcpu on reset. */
9952         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9953             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9954             !is_protmode(vcpu))
9955                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9956
9957 skip_protected_regs:
9958         max_bits = KVM_NR_INTERRUPTS;
9959         pending_vec = find_first_bit(
9960                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9961         if (pending_vec < max_bits) {
9962                 kvm_queue_interrupt(vcpu, pending_vec, false);
9963                 pr_debug("Set back pending irq %d\n", pending_vec);
9964         }
9965
9966         kvm_make_request(KVM_REQ_EVENT, vcpu);
9967
9968         ret = 0;
9969 out:
9970         return ret;
9971 }
9972
9973 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9974                                   struct kvm_sregs *sregs)
9975 {
9976         int ret;
9977
9978         vcpu_load(vcpu);
9979         ret = __set_sregs(vcpu, sregs);
9980         vcpu_put(vcpu);
9981         return ret;
9982 }
9983
9984 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9985                                         struct kvm_guest_debug *dbg)
9986 {
9987         unsigned long rflags;
9988         int i, r;
9989
9990         if (vcpu->arch.guest_state_protected)
9991                 return -EINVAL;
9992
9993         vcpu_load(vcpu);
9994
9995         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9996                 r = -EBUSY;
9997                 if (vcpu->arch.exception.pending)
9998                         goto out;
9999                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10000                         kvm_queue_exception(vcpu, DB_VECTOR);
10001                 else
10002                         kvm_queue_exception(vcpu, BP_VECTOR);
10003         }
10004
10005         /*
10006          * Read rflags as long as potentially injected trace flags are still
10007          * filtered out.
10008          */
10009         rflags = kvm_get_rflags(vcpu);
10010
10011         vcpu->guest_debug = dbg->control;
10012         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10013                 vcpu->guest_debug = 0;
10014
10015         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10016                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10017                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10018                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10019         } else {
10020                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10021                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10022         }
10023         kvm_update_dr7(vcpu);
10024
10025         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10026                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10027                         get_segment_base(vcpu, VCPU_SREG_CS);
10028
10029         /*
10030          * Trigger an rflags update that will inject or remove the trace
10031          * flags.
10032          */
10033         kvm_set_rflags(vcpu, rflags);
10034
10035         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10036
10037         r = 0;
10038
10039 out:
10040         vcpu_put(vcpu);
10041         return r;
10042 }
10043
10044 /*
10045  * Translate a guest virtual address to a guest physical address.
10046  */
10047 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10048                                     struct kvm_translation *tr)
10049 {
10050         unsigned long vaddr = tr->linear_address;
10051         gpa_t gpa;
10052         int idx;
10053
10054         vcpu_load(vcpu);
10055
10056         idx = srcu_read_lock(&vcpu->kvm->srcu);
10057         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10058         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10059         tr->physical_address = gpa;
10060         tr->valid = gpa != UNMAPPED_GVA;
10061         tr->writeable = 1;
10062         tr->usermode = 0;
10063
10064         vcpu_put(vcpu);
10065         return 0;
10066 }
10067
10068 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10069 {
10070         struct fxregs_state *fxsave;
10071
10072         if (!vcpu->arch.guest_fpu)
10073                 return 0;
10074
10075         vcpu_load(vcpu);
10076
10077         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10078         memcpy(fpu->fpr, fxsave->st_space, 128);
10079         fpu->fcw = fxsave->cwd;
10080         fpu->fsw = fxsave->swd;
10081         fpu->ftwx = fxsave->twd;
10082         fpu->last_opcode = fxsave->fop;
10083         fpu->last_ip = fxsave->rip;
10084         fpu->last_dp = fxsave->rdp;
10085         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10086
10087         vcpu_put(vcpu);
10088         return 0;
10089 }
10090
10091 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10092 {
10093         struct fxregs_state *fxsave;
10094
10095         if (!vcpu->arch.guest_fpu)
10096                 return 0;
10097
10098         vcpu_load(vcpu);
10099
10100         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10101
10102         memcpy(fxsave->st_space, fpu->fpr, 128);
10103         fxsave->cwd = fpu->fcw;
10104         fxsave->swd = fpu->fsw;
10105         fxsave->twd = fpu->ftwx;
10106         fxsave->fop = fpu->last_opcode;
10107         fxsave->rip = fpu->last_ip;
10108         fxsave->rdp = fpu->last_dp;
10109         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10110
10111         vcpu_put(vcpu);
10112         return 0;
10113 }
10114
10115 static void store_regs(struct kvm_vcpu *vcpu)
10116 {
10117         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10118
10119         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10120                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10121
10122         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10123                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10124
10125         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10126                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10127                                 vcpu, &vcpu->run->s.regs.events);
10128 }
10129
10130 static int sync_regs(struct kvm_vcpu *vcpu)
10131 {
10132         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10133                 return -EINVAL;
10134
10135         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10136                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10137                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10138         }
10139         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10140                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10141                         return -EINVAL;
10142                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10143         }
10144         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10145                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10146                                 vcpu, &vcpu->run->s.regs.events))
10147                         return -EINVAL;
10148                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10149         }
10150
10151         return 0;
10152 }
10153
10154 static void fx_init(struct kvm_vcpu *vcpu)
10155 {
10156         if (!vcpu->arch.guest_fpu)
10157                 return;
10158
10159         fpstate_init(&vcpu->arch.guest_fpu->state);
10160         if (boot_cpu_has(X86_FEATURE_XSAVES))
10161                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10162                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10163
10164         /*
10165          * Ensure guest xcr0 is valid for loading
10166          */
10167         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10168
10169         vcpu->arch.cr0 |= X86_CR0_ET;
10170 }
10171
10172 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10173 {
10174         if (vcpu->arch.guest_fpu) {
10175                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10176                 vcpu->arch.guest_fpu = NULL;
10177         }
10178 }
10179 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10180
10181 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10182 {
10183         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10184                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10185                              "guest TSC will not be reliable\n");
10186
10187         return 0;
10188 }
10189
10190 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10191 {
10192         struct page *page;
10193         int r;
10194
10195         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10196                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10197         else
10198                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10199
10200         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10201
10202         r = kvm_mmu_create(vcpu);
10203         if (r < 0)
10204                 return r;
10205
10206         if (irqchip_in_kernel(vcpu->kvm)) {
10207                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10208                 if (r < 0)
10209                         goto fail_mmu_destroy;
10210                 if (kvm_apicv_activated(vcpu->kvm))
10211                         vcpu->arch.apicv_active = true;
10212         } else
10213                 static_branch_inc(&kvm_has_noapic_vcpu);
10214
10215         r = -ENOMEM;
10216
10217         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10218         if (!page)
10219                 goto fail_free_lapic;
10220         vcpu->arch.pio_data = page_address(page);
10221
10222         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10223                                        GFP_KERNEL_ACCOUNT);
10224         if (!vcpu->arch.mce_banks)
10225                 goto fail_free_pio_data;
10226         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10227
10228         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10229                                 GFP_KERNEL_ACCOUNT))
10230                 goto fail_free_mce_banks;
10231
10232         if (!alloc_emulate_ctxt(vcpu))
10233                 goto free_wbinvd_dirty_mask;
10234
10235         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10236                                                 GFP_KERNEL_ACCOUNT);
10237         if (!vcpu->arch.user_fpu) {
10238                 pr_err("kvm: failed to allocate userspace's fpu\n");
10239                 goto free_emulate_ctxt;
10240         }
10241
10242         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10243                                                  GFP_KERNEL_ACCOUNT);
10244         if (!vcpu->arch.guest_fpu) {
10245                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10246                 goto free_user_fpu;
10247         }
10248         fx_init(vcpu);
10249
10250         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10251         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10252
10253         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10254
10255         kvm_async_pf_hash_reset(vcpu);
10256         kvm_pmu_init(vcpu);
10257
10258         vcpu->arch.pending_external_vector = -1;
10259         vcpu->arch.preempted_in_kernel = false;
10260
10261         r = static_call(kvm_x86_vcpu_create)(vcpu);
10262         if (r)
10263                 goto free_guest_fpu;
10264
10265         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10266         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10267         kvm_vcpu_mtrr_init(vcpu);
10268         vcpu_load(vcpu);
10269         kvm_vcpu_reset(vcpu, false);
10270         kvm_init_mmu(vcpu, false);
10271         vcpu_put(vcpu);
10272         return 0;
10273
10274 free_guest_fpu:
10275         kvm_free_guest_fpu(vcpu);
10276 free_user_fpu:
10277         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10278 free_emulate_ctxt:
10279         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10280 free_wbinvd_dirty_mask:
10281         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10282 fail_free_mce_banks:
10283         kfree(vcpu->arch.mce_banks);
10284 fail_free_pio_data:
10285         free_page((unsigned long)vcpu->arch.pio_data);
10286 fail_free_lapic:
10287         kvm_free_lapic(vcpu);
10288 fail_mmu_destroy:
10289         kvm_mmu_destroy(vcpu);
10290         return r;
10291 }
10292
10293 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10294 {
10295         struct kvm *kvm = vcpu->kvm;
10296
10297         if (mutex_lock_killable(&vcpu->mutex))
10298                 return;
10299         vcpu_load(vcpu);
10300         kvm_synchronize_tsc(vcpu, 0);
10301         vcpu_put(vcpu);
10302
10303         /* poll control enabled by default */
10304         vcpu->arch.msr_kvm_poll_control = 1;
10305
10306         mutex_unlock(&vcpu->mutex);
10307
10308         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10309                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10310                                                 KVMCLOCK_SYNC_PERIOD);
10311 }
10312
10313 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10314 {
10315         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10316         int idx;
10317
10318         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10319
10320         kvmclock_reset(vcpu);
10321
10322         static_call(kvm_x86_vcpu_free)(vcpu);
10323
10324         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10325         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10326         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10327         kvm_free_guest_fpu(vcpu);
10328
10329         kvm_hv_vcpu_uninit(vcpu);
10330         kvm_pmu_destroy(vcpu);
10331         kfree(vcpu->arch.mce_banks);
10332         kvm_free_lapic(vcpu);
10333         idx = srcu_read_lock(&vcpu->kvm->srcu);
10334         kvm_mmu_destroy(vcpu);
10335         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10336         free_page((unsigned long)vcpu->arch.pio_data);
10337         kvfree(vcpu->arch.cpuid_entries);
10338         if (!lapic_in_kernel(vcpu))
10339                 static_branch_dec(&kvm_has_noapic_vcpu);
10340 }
10341
10342 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10343 {
10344         kvm_lapic_reset(vcpu, init_event);
10345
10346         vcpu->arch.hflags = 0;
10347
10348         vcpu->arch.smi_pending = 0;
10349         vcpu->arch.smi_count = 0;
10350         atomic_set(&vcpu->arch.nmi_queued, 0);
10351         vcpu->arch.nmi_pending = 0;
10352         vcpu->arch.nmi_injected = false;
10353         kvm_clear_interrupt_queue(vcpu);
10354         kvm_clear_exception_queue(vcpu);
10355
10356         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10357         kvm_update_dr0123(vcpu);
10358         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10359         vcpu->arch.dr7 = DR7_FIXED_1;
10360         kvm_update_dr7(vcpu);
10361
10362         vcpu->arch.cr2 = 0;
10363
10364         kvm_make_request(KVM_REQ_EVENT, vcpu);
10365         vcpu->arch.apf.msr_en_val = 0;
10366         vcpu->arch.apf.msr_int_val = 0;
10367         vcpu->arch.st.msr_val = 0;
10368
10369         kvmclock_reset(vcpu);
10370
10371         kvm_clear_async_pf_completion_queue(vcpu);
10372         kvm_async_pf_hash_reset(vcpu);
10373         vcpu->arch.apf.halted = false;
10374
10375         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10376                 void *mpx_state_buffer;
10377
10378                 /*
10379                  * To avoid have the INIT path from kvm_apic_has_events() that be
10380                  * called with loaded FPU and does not let userspace fix the state.
10381                  */
10382                 if (init_event)
10383                         kvm_put_guest_fpu(vcpu);
10384                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10385                                         XFEATURE_BNDREGS);
10386                 if (mpx_state_buffer)
10387                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10388                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10389                                         XFEATURE_BNDCSR);
10390                 if (mpx_state_buffer)
10391                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10392                 if (init_event)
10393                         kvm_load_guest_fpu(vcpu);
10394         }
10395
10396         if (!init_event) {
10397                 kvm_pmu_reset(vcpu);
10398                 vcpu->arch.smbase = 0x30000;
10399
10400                 vcpu->arch.msr_misc_features_enables = 0;
10401
10402                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10403         }
10404
10405         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10406         vcpu->arch.regs_avail = ~0;
10407         vcpu->arch.regs_dirty = ~0;
10408
10409         vcpu->arch.ia32_xss = 0;
10410
10411         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10412 }
10413
10414 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10415 {
10416         struct kvm_segment cs;
10417
10418         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10419         cs.selector = vector << 8;
10420         cs.base = vector << 12;
10421         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10422         kvm_rip_write(vcpu, 0);
10423 }
10424 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10425
10426 int kvm_arch_hardware_enable(void)
10427 {
10428         struct kvm *kvm;
10429         struct kvm_vcpu *vcpu;
10430         int i;
10431         int ret;
10432         u64 local_tsc;
10433         u64 max_tsc = 0;
10434         bool stable, backwards_tsc = false;
10435
10436         kvm_user_return_msr_cpu_online();
10437         ret = static_call(kvm_x86_hardware_enable)();
10438         if (ret != 0)
10439                 return ret;
10440
10441         local_tsc = rdtsc();
10442         stable = !kvm_check_tsc_unstable();
10443         list_for_each_entry(kvm, &vm_list, vm_list) {
10444                 kvm_for_each_vcpu(i, vcpu, kvm) {
10445                         if (!stable && vcpu->cpu == smp_processor_id())
10446                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10447                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10448                                 backwards_tsc = true;
10449                                 if (vcpu->arch.last_host_tsc > max_tsc)
10450                                         max_tsc = vcpu->arch.last_host_tsc;
10451                         }
10452                 }
10453         }
10454
10455         /*
10456          * Sometimes, even reliable TSCs go backwards.  This happens on
10457          * platforms that reset TSC during suspend or hibernate actions, but
10458          * maintain synchronization.  We must compensate.  Fortunately, we can
10459          * detect that condition here, which happens early in CPU bringup,
10460          * before any KVM threads can be running.  Unfortunately, we can't
10461          * bring the TSCs fully up to date with real time, as we aren't yet far
10462          * enough into CPU bringup that we know how much real time has actually
10463          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10464          * variables that haven't been updated yet.
10465          *
10466          * So we simply find the maximum observed TSC above, then record the
10467          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10468          * the adjustment will be applied.  Note that we accumulate
10469          * adjustments, in case multiple suspend cycles happen before some VCPU
10470          * gets a chance to run again.  In the event that no KVM threads get a
10471          * chance to run, we will miss the entire elapsed period, as we'll have
10472          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10473          * loose cycle time.  This isn't too big a deal, since the loss will be
10474          * uniform across all VCPUs (not to mention the scenario is extremely
10475          * unlikely). It is possible that a second hibernate recovery happens
10476          * much faster than a first, causing the observed TSC here to be
10477          * smaller; this would require additional padding adjustment, which is
10478          * why we set last_host_tsc to the local tsc observed here.
10479          *
10480          * N.B. - this code below runs only on platforms with reliable TSC,
10481          * as that is the only way backwards_tsc is set above.  Also note
10482          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10483          * have the same delta_cyc adjustment applied if backwards_tsc
10484          * is detected.  Note further, this adjustment is only done once,
10485          * as we reset last_host_tsc on all VCPUs to stop this from being
10486          * called multiple times (one for each physical CPU bringup).
10487          *
10488          * Platforms with unreliable TSCs don't have to deal with this, they
10489          * will be compensated by the logic in vcpu_load, which sets the TSC to
10490          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10491          * guarantee that they stay in perfect synchronization.
10492          */
10493         if (backwards_tsc) {
10494                 u64 delta_cyc = max_tsc - local_tsc;
10495                 list_for_each_entry(kvm, &vm_list, vm_list) {
10496                         kvm->arch.backwards_tsc_observed = true;
10497                         kvm_for_each_vcpu(i, vcpu, kvm) {
10498                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10499                                 vcpu->arch.last_host_tsc = local_tsc;
10500                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10501                         }
10502
10503                         /*
10504                          * We have to disable TSC offset matching.. if you were
10505                          * booting a VM while issuing an S4 host suspend....
10506                          * you may have some problem.  Solving this issue is
10507                          * left as an exercise to the reader.
10508                          */
10509                         kvm->arch.last_tsc_nsec = 0;
10510                         kvm->arch.last_tsc_write = 0;
10511                 }
10512
10513         }
10514         return 0;
10515 }
10516
10517 void kvm_arch_hardware_disable(void)
10518 {
10519         static_call(kvm_x86_hardware_disable)();
10520         drop_user_return_notifiers();
10521 }
10522
10523 int kvm_arch_hardware_setup(void *opaque)
10524 {
10525         struct kvm_x86_init_ops *ops = opaque;
10526         int r;
10527
10528         rdmsrl_safe(MSR_EFER, &host_efer);
10529
10530         if (boot_cpu_has(X86_FEATURE_XSAVES))
10531                 rdmsrl(MSR_IA32_XSS, host_xss);
10532
10533         r = ops->hardware_setup();
10534         if (r != 0)
10535                 return r;
10536
10537         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10538         kvm_ops_static_call_update();
10539
10540         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10541                 supported_xss = 0;
10542
10543 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10544         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10545 #undef __kvm_cpu_cap_has
10546
10547         if (kvm_has_tsc_control) {
10548                 /*
10549                  * Make sure the user can only configure tsc_khz values that
10550                  * fit into a signed integer.
10551                  * A min value is not calculated because it will always
10552                  * be 1 on all machines.
10553                  */
10554                 u64 max = min(0x7fffffffULL,
10555                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10556                 kvm_max_guest_tsc_khz = max;
10557
10558                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10559         }
10560
10561         kvm_init_msr_list();
10562         return 0;
10563 }
10564
10565 void kvm_arch_hardware_unsetup(void)
10566 {
10567         static_call(kvm_x86_hardware_unsetup)();
10568 }
10569
10570 int kvm_arch_check_processor_compat(void *opaque)
10571 {
10572         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10573         struct kvm_x86_init_ops *ops = opaque;
10574
10575         WARN_ON(!irqs_disabled());
10576
10577         if (__cr4_reserved_bits(cpu_has, c) !=
10578             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10579                 return -EIO;
10580
10581         return ops->check_processor_compatibility();
10582 }
10583
10584 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10585 {
10586         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10587 }
10588 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10589
10590 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10591 {
10592         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10593 }
10594
10595 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10596 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10597
10598 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10599 {
10600         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10601
10602         vcpu->arch.l1tf_flush_l1d = true;
10603         if (pmu->version && unlikely(pmu->event_count)) {
10604                 pmu->need_cleanup = true;
10605                 kvm_make_request(KVM_REQ_PMU, vcpu);
10606         }
10607         static_call(kvm_x86_sched_in)(vcpu, cpu);
10608 }
10609
10610 void kvm_arch_free_vm(struct kvm *kvm)
10611 {
10612         kfree(to_kvm_hv(kvm)->hv_pa_pg);
10613         vfree(kvm);
10614 }
10615
10616
10617 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10618 {
10619         if (type)
10620                 return -EINVAL;
10621
10622         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10623         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10624         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10625         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10626         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10627         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10628
10629         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10630         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10631         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10632         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10633                 &kvm->arch.irq_sources_bitmap);
10634
10635         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10636         mutex_init(&kvm->arch.apic_map_lock);
10637         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10638
10639         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10640         pvclock_update_vm_gtod_copy(kvm);
10641
10642         kvm->arch.guest_can_read_msr_platform_info = true;
10643
10644         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10645         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10646
10647         kvm_hv_init_vm(kvm);
10648         kvm_page_track_init(kvm);
10649         kvm_mmu_init_vm(kvm);
10650
10651         return static_call(kvm_x86_vm_init)(kvm);
10652 }
10653
10654 int kvm_arch_post_init_vm(struct kvm *kvm)
10655 {
10656         return kvm_mmu_post_init_vm(kvm);
10657 }
10658
10659 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10660 {
10661         vcpu_load(vcpu);
10662         kvm_mmu_unload(vcpu);
10663         vcpu_put(vcpu);
10664 }
10665
10666 static void kvm_free_vcpus(struct kvm *kvm)
10667 {
10668         unsigned int i;
10669         struct kvm_vcpu *vcpu;
10670
10671         /*
10672          * Unpin any mmu pages first.
10673          */
10674         kvm_for_each_vcpu(i, vcpu, kvm) {
10675                 kvm_clear_async_pf_completion_queue(vcpu);
10676                 kvm_unload_vcpu_mmu(vcpu);
10677         }
10678         kvm_for_each_vcpu(i, vcpu, kvm)
10679                 kvm_vcpu_destroy(vcpu);
10680
10681         mutex_lock(&kvm->lock);
10682         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10683                 kvm->vcpus[i] = NULL;
10684
10685         atomic_set(&kvm->online_vcpus, 0);
10686         mutex_unlock(&kvm->lock);
10687 }
10688
10689 void kvm_arch_sync_events(struct kvm *kvm)
10690 {
10691         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10692         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10693         kvm_free_pit(kvm);
10694 }
10695
10696 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10697
10698 /**
10699  * __x86_set_memory_region: Setup KVM internal memory slot
10700  *
10701  * @kvm: the kvm pointer to the VM.
10702  * @id: the slot ID to setup.
10703  * @gpa: the GPA to install the slot (unused when @size == 0).
10704  * @size: the size of the slot. Set to zero to uninstall a slot.
10705  *
10706  * This function helps to setup a KVM internal memory slot.  Specify
10707  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10708  * slot.  The return code can be one of the following:
10709  *
10710  *   HVA:           on success (uninstall will return a bogus HVA)
10711  *   -errno:        on error
10712  *
10713  * The caller should always use IS_ERR() to check the return value
10714  * before use.  Note, the KVM internal memory slots are guaranteed to
10715  * remain valid and unchanged until the VM is destroyed, i.e., the
10716  * GPA->HVA translation will not change.  However, the HVA is a user
10717  * address, i.e. its accessibility is not guaranteed, and must be
10718  * accessed via __copy_{to,from}_user().
10719  */
10720 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10721                                       u32 size)
10722 {
10723         int i, r;
10724         unsigned long hva, old_npages;
10725         struct kvm_memslots *slots = kvm_memslots(kvm);
10726         struct kvm_memory_slot *slot;
10727
10728         /* Called with kvm->slots_lock held.  */
10729         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10730                 return ERR_PTR_USR(-EINVAL);
10731
10732         slot = id_to_memslot(slots, id);
10733         if (size) {
10734                 if (slot && slot->npages)
10735                         return ERR_PTR_USR(-EEXIST);
10736
10737                 /*
10738                  * MAP_SHARED to prevent internal slot pages from being moved
10739                  * by fork()/COW.
10740                  */
10741                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10742                               MAP_SHARED | MAP_ANONYMOUS, 0);
10743                 if (IS_ERR((void *)hva))
10744                         return (void __user *)hva;
10745         } else {
10746                 if (!slot || !slot->npages)
10747                         return NULL;
10748
10749                 old_npages = slot->npages;
10750                 hva = slot->userspace_addr;
10751         }
10752
10753         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10754                 struct kvm_userspace_memory_region m;
10755
10756                 m.slot = id | (i << 16);
10757                 m.flags = 0;
10758                 m.guest_phys_addr = gpa;
10759                 m.userspace_addr = hva;
10760                 m.memory_size = size;
10761                 r = __kvm_set_memory_region(kvm, &m);
10762                 if (r < 0)
10763                         return ERR_PTR_USR(r);
10764         }
10765
10766         if (!size)
10767                 vm_munmap(hva, old_npages * PAGE_SIZE);
10768
10769         return (void __user *)hva;
10770 }
10771 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10772
10773 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10774 {
10775         kvm_mmu_pre_destroy_vm(kvm);
10776 }
10777
10778 void kvm_arch_destroy_vm(struct kvm *kvm)
10779 {
10780         if (current->mm == kvm->mm) {
10781                 /*
10782                  * Free memory regions allocated on behalf of userspace,
10783                  * unless the the memory map has changed due to process exit
10784                  * or fd copying.
10785                  */
10786                 mutex_lock(&kvm->slots_lock);
10787                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10788                                         0, 0);
10789                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10790                                         0, 0);
10791                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10792                 mutex_unlock(&kvm->slots_lock);
10793         }
10794         static_call_cond(kvm_x86_vm_destroy)(kvm);
10795         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10796         kvm_pic_destroy(kvm);
10797         kvm_ioapic_destroy(kvm);
10798         kvm_free_vcpus(kvm);
10799         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10800         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10801         kvm_mmu_uninit_vm(kvm);
10802         kvm_page_track_cleanup(kvm);
10803         kvm_xen_destroy_vm(kvm);
10804         kvm_hv_destroy_vm(kvm);
10805 }
10806
10807 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10808 {
10809         int i;
10810
10811         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10812                 kvfree(slot->arch.rmap[i]);
10813                 slot->arch.rmap[i] = NULL;
10814
10815                 if (i == 0)
10816                         continue;
10817
10818                 kvfree(slot->arch.lpage_info[i - 1]);
10819                 slot->arch.lpage_info[i - 1] = NULL;
10820         }
10821
10822         kvm_page_track_free_memslot(slot);
10823 }
10824
10825 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10826                                       unsigned long npages)
10827 {
10828         int i;
10829
10830         /*
10831          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10832          * old arrays will be freed by __kvm_set_memory_region() if installing
10833          * the new memslot is successful.
10834          */
10835         memset(&slot->arch, 0, sizeof(slot->arch));
10836
10837         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10838                 struct kvm_lpage_info *linfo;
10839                 unsigned long ugfn;
10840                 int lpages;
10841                 int level = i + 1;
10842
10843                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10844                                       slot->base_gfn, level) + 1;
10845
10846                 slot->arch.rmap[i] =
10847                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10848                                  GFP_KERNEL_ACCOUNT);
10849                 if (!slot->arch.rmap[i])
10850                         goto out_free;
10851                 if (i == 0)
10852                         continue;
10853
10854                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10855                 if (!linfo)
10856                         goto out_free;
10857
10858                 slot->arch.lpage_info[i - 1] = linfo;
10859
10860                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10861                         linfo[0].disallow_lpage = 1;
10862                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10863                         linfo[lpages - 1].disallow_lpage = 1;
10864                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10865                 /*
10866                  * If the gfn and userspace address are not aligned wrt each
10867                  * other, disable large page support for this slot.
10868                  */
10869                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10870                         unsigned long j;
10871
10872                         for (j = 0; j < lpages; ++j)
10873                                 linfo[j].disallow_lpage = 1;
10874                 }
10875         }
10876
10877         if (kvm_page_track_create_memslot(slot, npages))
10878                 goto out_free;
10879
10880         return 0;
10881
10882 out_free:
10883         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10884                 kvfree(slot->arch.rmap[i]);
10885                 slot->arch.rmap[i] = NULL;
10886                 if (i == 0)
10887                         continue;
10888
10889                 kvfree(slot->arch.lpage_info[i - 1]);
10890                 slot->arch.lpage_info[i - 1] = NULL;
10891         }
10892         return -ENOMEM;
10893 }
10894
10895 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10896 {
10897         struct kvm_vcpu *vcpu;
10898         int i;
10899
10900         /*
10901          * memslots->generation has been incremented.
10902          * mmio generation may have reached its maximum value.
10903          */
10904         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10905
10906         /* Force re-initialization of steal_time cache */
10907         kvm_for_each_vcpu(i, vcpu, kvm)
10908                 kvm_vcpu_kick(vcpu);
10909 }
10910
10911 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10912                                 struct kvm_memory_slot *memslot,
10913                                 const struct kvm_userspace_memory_region *mem,
10914                                 enum kvm_mr_change change)
10915 {
10916         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10917                 return kvm_alloc_memslot_metadata(memslot,
10918                                                   mem->memory_size >> PAGE_SHIFT);
10919         return 0;
10920 }
10921
10922
10923 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10924 {
10925         struct kvm_arch *ka = &kvm->arch;
10926
10927         if (!kvm_x86_ops.cpu_dirty_log_size)
10928                 return;
10929
10930         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10931             (!enable && --ka->cpu_dirty_logging_count == 0))
10932                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10933
10934         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10935 }
10936
10937 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10938                                      struct kvm_memory_slot *old,
10939                                      struct kvm_memory_slot *new,
10940                                      enum kvm_mr_change change)
10941 {
10942         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10943
10944         /*
10945          * Update CPU dirty logging if dirty logging is being toggled.  This
10946          * applies to all operations.
10947          */
10948         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10949                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10950
10951         /*
10952          * Nothing more to do for RO slots (which can't be dirtied and can't be
10953          * made writable) or CREATE/MOVE/DELETE of a slot.
10954          *
10955          * For a memslot with dirty logging disabled:
10956          * CREATE:      No dirty mappings will already exist.
10957          * MOVE/DELETE: The old mappings will already have been cleaned up by
10958          *              kvm_arch_flush_shadow_memslot()
10959          *
10960          * For a memslot with dirty logging enabled:
10961          * CREATE:      No shadow pages exist, thus nothing to write-protect
10962          *              and no dirty bits to clear.
10963          * MOVE/DELETE: The old mappings will already have been cleaned up by
10964          *              kvm_arch_flush_shadow_memslot().
10965          */
10966         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10967                 return;
10968
10969         /*
10970          * READONLY and non-flags changes were filtered out above, and the only
10971          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10972          * logging isn't being toggled on or off.
10973          */
10974         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10975                 return;
10976
10977         if (!log_dirty_pages) {
10978                 /*
10979                  * Dirty logging tracks sptes in 4k granularity, meaning that
10980                  * large sptes have to be split.  If live migration succeeds,
10981                  * the guest in the source machine will be destroyed and large
10982                  * sptes will be created in the destination.  However, if the
10983                  * guest continues to run in the source machine (for example if
10984                  * live migration fails), small sptes will remain around and
10985                  * cause bad performance.
10986                  *
10987                  * Scan sptes if dirty logging has been stopped, dropping those
10988                  * which can be collapsed into a single large-page spte.  Later
10989                  * page faults will create the large-page sptes.
10990                  */
10991                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10992         } else {
10993                 /* By default, write-protect everything to log writes. */
10994                 int level = PG_LEVEL_4K;
10995
10996                 if (kvm_x86_ops.cpu_dirty_log_size) {
10997                         /*
10998                          * Clear all dirty bits, unless pages are treated as
10999                          * dirty from the get-go.
11000                          */
11001                         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
11002                                 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11003
11004                         /*
11005                          * Write-protect large pages on write so that dirty
11006                          * logging happens at 4k granularity.  No need to
11007                          * write-protect small SPTEs since write accesses are
11008                          * logged by the CPU via dirty bits.
11009                          */
11010                         level = PG_LEVEL_2M;
11011                 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
11012                         /*
11013                          * If we're with initial-all-set, we don't need
11014                          * to write protect any small page because
11015                          * they're reported as dirty already.  However
11016                          * we still need to write-protect huge pages
11017                          * so that the page split can happen lazily on
11018                          * the first write to the huge page.
11019                          */
11020                         level = PG_LEVEL_2M;
11021                 }
11022                 kvm_mmu_slot_remove_write_access(kvm, new, level);
11023         }
11024 }
11025
11026 void kvm_arch_commit_memory_region(struct kvm *kvm,
11027                                 const struct kvm_userspace_memory_region *mem,
11028                                 struct kvm_memory_slot *old,
11029                                 const struct kvm_memory_slot *new,
11030                                 enum kvm_mr_change change)
11031 {
11032         if (!kvm->arch.n_requested_mmu_pages)
11033                 kvm_mmu_change_mmu_pages(kvm,
11034                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11035
11036         /*
11037          * FIXME: const-ify all uses of struct kvm_memory_slot.
11038          */
11039         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11040
11041         /* Free the arrays associated with the old memslot. */
11042         if (change == KVM_MR_MOVE)
11043                 kvm_arch_free_memslot(kvm, old);
11044 }
11045
11046 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11047 {
11048         kvm_mmu_zap_all(kvm);
11049 }
11050
11051 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11052                                    struct kvm_memory_slot *slot)
11053 {
11054         kvm_page_track_flush_slot(kvm, slot);
11055 }
11056
11057 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11058 {
11059         return (is_guest_mode(vcpu) &&
11060                         kvm_x86_ops.guest_apic_has_interrupt &&
11061                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11062 }
11063
11064 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11065 {
11066         if (!list_empty_careful(&vcpu->async_pf.done))
11067                 return true;
11068
11069         if (kvm_apic_has_events(vcpu))
11070                 return true;
11071
11072         if (vcpu->arch.pv.pv_unhalted)
11073                 return true;
11074
11075         if (vcpu->arch.exception.pending)
11076                 return true;
11077
11078         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11079             (vcpu->arch.nmi_pending &&
11080              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11081                 return true;
11082
11083         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11084             (vcpu->arch.smi_pending &&
11085              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11086                 return true;
11087
11088         if (kvm_arch_interrupt_allowed(vcpu) &&
11089             (kvm_cpu_has_interrupt(vcpu) ||
11090             kvm_guest_apic_has_interrupt(vcpu)))
11091                 return true;
11092
11093         if (kvm_hv_has_stimer_pending(vcpu))
11094                 return true;
11095
11096         if (is_guest_mode(vcpu) &&
11097             kvm_x86_ops.nested_ops->hv_timer_pending &&
11098             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11099                 return true;
11100
11101         return false;
11102 }
11103
11104 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11105 {
11106         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11107 }
11108
11109 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11110 {
11111         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11112                 return true;
11113
11114         return false;
11115 }
11116
11117 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11118 {
11119         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11120                 return true;
11121
11122         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11123                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11124                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11125                 return true;
11126
11127         return kvm_arch_dy_has_pending_interrupt(vcpu);
11128 }
11129
11130 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11131 {
11132         if (vcpu->arch.guest_state_protected)
11133                 return true;
11134
11135         return vcpu->arch.preempted_in_kernel;
11136 }
11137
11138 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11139 {
11140         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11141 }
11142
11143 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11144 {
11145         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11146 }
11147
11148 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11149 {
11150         /* Can't read the RIP when guest state is protected, just return 0 */
11151         if (vcpu->arch.guest_state_protected)
11152                 return 0;
11153
11154         if (is_64_bit_mode(vcpu))
11155                 return kvm_rip_read(vcpu);
11156         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11157                      kvm_rip_read(vcpu));
11158 }
11159 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11160
11161 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11162 {
11163         return kvm_get_linear_rip(vcpu) == linear_rip;
11164 }
11165 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11166
11167 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11168 {
11169         unsigned long rflags;
11170
11171         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11172         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11173                 rflags &= ~X86_EFLAGS_TF;
11174         return rflags;
11175 }
11176 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11177
11178 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11179 {
11180         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11181             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11182                 rflags |= X86_EFLAGS_TF;
11183         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11184 }
11185
11186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11187 {
11188         __kvm_set_rflags(vcpu, rflags);
11189         kvm_make_request(KVM_REQ_EVENT, vcpu);
11190 }
11191 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11192
11193 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11194 {
11195         int r;
11196
11197         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11198               work->wakeup_all)
11199                 return;
11200
11201         r = kvm_mmu_reload(vcpu);
11202         if (unlikely(r))
11203                 return;
11204
11205         if (!vcpu->arch.mmu->direct_map &&
11206               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11207                 return;
11208
11209         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11210 }
11211
11212 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11213 {
11214         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11215
11216         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11217 }
11218
11219 static inline u32 kvm_async_pf_next_probe(u32 key)
11220 {
11221         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11222 }
11223
11224 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11225 {
11226         u32 key = kvm_async_pf_hash_fn(gfn);
11227
11228         while (vcpu->arch.apf.gfns[key] != ~0)
11229                 key = kvm_async_pf_next_probe(key);
11230
11231         vcpu->arch.apf.gfns[key] = gfn;
11232 }
11233
11234 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11235 {
11236         int i;
11237         u32 key = kvm_async_pf_hash_fn(gfn);
11238
11239         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11240                      (vcpu->arch.apf.gfns[key] != gfn &&
11241                       vcpu->arch.apf.gfns[key] != ~0); i++)
11242                 key = kvm_async_pf_next_probe(key);
11243
11244         return key;
11245 }
11246
11247 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11248 {
11249         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11250 }
11251
11252 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11253 {
11254         u32 i, j, k;
11255
11256         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11257
11258         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11259                 return;
11260
11261         while (true) {
11262                 vcpu->arch.apf.gfns[i] = ~0;
11263                 do {
11264                         j = kvm_async_pf_next_probe(j);
11265                         if (vcpu->arch.apf.gfns[j] == ~0)
11266                                 return;
11267                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11268                         /*
11269                          * k lies cyclically in ]i,j]
11270                          * |    i.k.j |
11271                          * |....j i.k.| or  |.k..j i...|
11272                          */
11273                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11274                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11275                 i = j;
11276         }
11277 }
11278
11279 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11280 {
11281         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11282
11283         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11284                                       sizeof(reason));
11285 }
11286
11287 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11288 {
11289         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11290
11291         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11292                                              &token, offset, sizeof(token));
11293 }
11294
11295 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11296 {
11297         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11298         u32 val;
11299
11300         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11301                                          &val, offset, sizeof(val)))
11302                 return false;
11303
11304         return !val;
11305 }
11306
11307 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11308 {
11309         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11310                 return false;
11311
11312         if (!kvm_pv_async_pf_enabled(vcpu) ||
11313             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11314                 return false;
11315
11316         return true;
11317 }
11318
11319 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11320 {
11321         if (unlikely(!lapic_in_kernel(vcpu) ||
11322                      kvm_event_needs_reinjection(vcpu) ||
11323                      vcpu->arch.exception.pending))
11324                 return false;
11325
11326         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11327                 return false;
11328
11329         /*
11330          * If interrupts are off we cannot even use an artificial
11331          * halt state.
11332          */
11333         return kvm_arch_interrupt_allowed(vcpu);
11334 }
11335
11336 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11337                                      struct kvm_async_pf *work)
11338 {
11339         struct x86_exception fault;
11340
11341         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11342         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11343
11344         if (kvm_can_deliver_async_pf(vcpu) &&
11345             !apf_put_user_notpresent(vcpu)) {
11346                 fault.vector = PF_VECTOR;
11347                 fault.error_code_valid = true;
11348                 fault.error_code = 0;
11349                 fault.nested_page_fault = false;
11350                 fault.address = work->arch.token;
11351                 fault.async_page_fault = true;
11352                 kvm_inject_page_fault(vcpu, &fault);
11353                 return true;
11354         } else {
11355                 /*
11356                  * It is not possible to deliver a paravirtualized asynchronous
11357                  * page fault, but putting the guest in an artificial halt state
11358                  * can be beneficial nevertheless: if an interrupt arrives, we
11359                  * can deliver it timely and perhaps the guest will schedule
11360                  * another process.  When the instruction that triggered a page
11361                  * fault is retried, hopefully the page will be ready in the host.
11362                  */
11363                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11364                 return false;
11365         }
11366 }
11367
11368 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11369                                  struct kvm_async_pf *work)
11370 {
11371         struct kvm_lapic_irq irq = {
11372                 .delivery_mode = APIC_DM_FIXED,
11373                 .vector = vcpu->arch.apf.vec
11374         };
11375
11376         if (work->wakeup_all)
11377                 work->arch.token = ~0; /* broadcast wakeup */
11378         else
11379                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11380         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11381
11382         if ((work->wakeup_all || work->notpresent_injected) &&
11383             kvm_pv_async_pf_enabled(vcpu) &&
11384             !apf_put_user_ready(vcpu, work->arch.token)) {
11385                 vcpu->arch.apf.pageready_pending = true;
11386                 kvm_apic_set_irq(vcpu, &irq, NULL);
11387         }
11388
11389         vcpu->arch.apf.halted = false;
11390         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11391 }
11392
11393 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11394 {
11395         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11396         if (!vcpu->arch.apf.pageready_pending)
11397                 kvm_vcpu_kick(vcpu);
11398 }
11399
11400 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11401 {
11402         if (!kvm_pv_async_pf_enabled(vcpu))
11403                 return true;
11404         else
11405                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11406 }
11407
11408 void kvm_arch_start_assignment(struct kvm *kvm)
11409 {
11410         atomic_inc(&kvm->arch.assigned_device_count);
11411 }
11412 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11413
11414 void kvm_arch_end_assignment(struct kvm *kvm)
11415 {
11416         atomic_dec(&kvm->arch.assigned_device_count);
11417 }
11418 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11419
11420 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11421 {
11422         return atomic_read(&kvm->arch.assigned_device_count);
11423 }
11424 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11425
11426 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11427 {
11428         atomic_inc(&kvm->arch.noncoherent_dma_count);
11429 }
11430 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11431
11432 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11433 {
11434         atomic_dec(&kvm->arch.noncoherent_dma_count);
11435 }
11436 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11437
11438 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11439 {
11440         return atomic_read(&kvm->arch.noncoherent_dma_count);
11441 }
11442 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11443
11444 bool kvm_arch_has_irq_bypass(void)
11445 {
11446         return true;
11447 }
11448
11449 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11450                                       struct irq_bypass_producer *prod)
11451 {
11452         struct kvm_kernel_irqfd *irqfd =
11453                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11454         int ret;
11455
11456         irqfd->producer = prod;
11457         kvm_arch_start_assignment(irqfd->kvm);
11458         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11459                                          prod->irq, irqfd->gsi, 1);
11460
11461         if (ret)
11462                 kvm_arch_end_assignment(irqfd->kvm);
11463
11464         return ret;
11465 }
11466
11467 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11468                                       struct irq_bypass_producer *prod)
11469 {
11470         int ret;
11471         struct kvm_kernel_irqfd *irqfd =
11472                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11473
11474         WARN_ON(irqfd->producer != prod);
11475         irqfd->producer = NULL;
11476
11477         /*
11478          * When producer of consumer is unregistered, we change back to
11479          * remapped mode, so we can re-use the current implementation
11480          * when the irq is masked/disabled or the consumer side (KVM
11481          * int this case doesn't want to receive the interrupts.
11482         */
11483         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11484         if (ret)
11485                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11486                        " fails: %d\n", irqfd->consumer.token, ret);
11487
11488         kvm_arch_end_assignment(irqfd->kvm);
11489 }
11490
11491 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11492                                    uint32_t guest_irq, bool set)
11493 {
11494         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11495 }
11496
11497 bool kvm_vector_hashing_enabled(void)
11498 {
11499         return vector_hashing;
11500 }
11501
11502 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11503 {
11504         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11505 }
11506 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11507
11508
11509 int kvm_spec_ctrl_test_value(u64 value)
11510 {
11511         /*
11512          * test that setting IA32_SPEC_CTRL to given value
11513          * is allowed by the host processor
11514          */
11515
11516         u64 saved_value;
11517         unsigned long flags;
11518         int ret = 0;
11519
11520         local_irq_save(flags);
11521
11522         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11523                 ret = 1;
11524         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11525                 ret = 1;
11526         else
11527                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11528
11529         local_irq_restore(flags);
11530
11531         return ret;
11532 }
11533 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11534
11535 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11536 {
11537         struct x86_exception fault;
11538         u32 access = error_code &
11539                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11540
11541         if (!(error_code & PFERR_PRESENT_MASK) ||
11542             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11543                 /*
11544                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11545                  * tables probably do not match the TLB.  Just proceed
11546                  * with the error code that the processor gave.
11547                  */
11548                 fault.vector = PF_VECTOR;
11549                 fault.error_code_valid = true;
11550                 fault.error_code = error_code;
11551                 fault.nested_page_fault = false;
11552                 fault.address = gva;
11553         }
11554         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11555 }
11556 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11557
11558 /*
11559  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11560  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11561  * indicates whether exit to userspace is needed.
11562  */
11563 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11564                               struct x86_exception *e)
11565 {
11566         if (r == X86EMUL_PROPAGATE_FAULT) {
11567                 kvm_inject_emulated_page_fault(vcpu, e);
11568                 return 1;
11569         }
11570
11571         /*
11572          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11573          * while handling a VMX instruction KVM could've handled the request
11574          * correctly by exiting to userspace and performing I/O but there
11575          * doesn't seem to be a real use-case behind such requests, just return
11576          * KVM_EXIT_INTERNAL_ERROR for now.
11577          */
11578         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11579         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11580         vcpu->run->internal.ndata = 0;
11581
11582         return 0;
11583 }
11584 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11585
11586 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11587 {
11588         bool pcid_enabled;
11589         struct x86_exception e;
11590         unsigned i;
11591         unsigned long roots_to_free = 0;
11592         struct {
11593                 u64 pcid;
11594                 u64 gla;
11595         } operand;
11596         int r;
11597
11598         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11599         if (r != X86EMUL_CONTINUE)
11600                 return kvm_handle_memory_failure(vcpu, r, &e);
11601
11602         if (operand.pcid >> 12 != 0) {
11603                 kvm_inject_gp(vcpu, 0);
11604                 return 1;
11605         }
11606
11607         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11608
11609         switch (type) {
11610         case INVPCID_TYPE_INDIV_ADDR:
11611                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11612                     is_noncanonical_address(operand.gla, vcpu)) {
11613                         kvm_inject_gp(vcpu, 0);
11614                         return 1;
11615                 }
11616                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11617                 return kvm_skip_emulated_instruction(vcpu);
11618
11619         case INVPCID_TYPE_SINGLE_CTXT:
11620                 if (!pcid_enabled && (operand.pcid != 0)) {
11621                         kvm_inject_gp(vcpu, 0);
11622                         return 1;
11623                 }
11624
11625                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11626                         kvm_mmu_sync_roots(vcpu);
11627                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11628                 }
11629
11630                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11631                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11632                             == operand.pcid)
11633                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11634
11635                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11636                 /*
11637                  * If neither the current cr3 nor any of the prev_roots use the
11638                  * given PCID, then nothing needs to be done here because a
11639                  * resync will happen anyway before switching to any other CR3.
11640                  */
11641
11642                 return kvm_skip_emulated_instruction(vcpu);
11643
11644         case INVPCID_TYPE_ALL_NON_GLOBAL:
11645                 /*
11646                  * Currently, KVM doesn't mark global entries in the shadow
11647                  * page tables, so a non-global flush just degenerates to a
11648                  * global flush. If needed, we could optimize this later by
11649                  * keeping track of global entries in shadow page tables.
11650                  */
11651
11652                 fallthrough;
11653         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11654                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11655                 return kvm_skip_emulated_instruction(vcpu);
11656
11657         default:
11658                 BUG(); /* We have already checked above that type <= 3 */
11659         }
11660 }
11661 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11662
11663 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11664 {
11665         struct kvm_run *run = vcpu->run;
11666         struct kvm_mmio_fragment *frag;
11667         unsigned int len;
11668
11669         BUG_ON(!vcpu->mmio_needed);
11670
11671         /* Complete previous fragment */
11672         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11673         len = min(8u, frag->len);
11674         if (!vcpu->mmio_is_write)
11675                 memcpy(frag->data, run->mmio.data, len);
11676
11677         if (frag->len <= 8) {
11678                 /* Switch to the next fragment. */
11679                 frag++;
11680                 vcpu->mmio_cur_fragment++;
11681         } else {
11682                 /* Go forward to the next mmio piece. */
11683                 frag->data += len;
11684                 frag->gpa += len;
11685                 frag->len -= len;
11686         }
11687
11688         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11689                 vcpu->mmio_needed = 0;
11690
11691                 // VMG change, at this point, we're always done
11692                 // RIP has already been advanced
11693                 return 1;
11694         }
11695
11696         // More MMIO is needed
11697         run->mmio.phys_addr = frag->gpa;
11698         run->mmio.len = min(8u, frag->len);
11699         run->mmio.is_write = vcpu->mmio_is_write;
11700         if (run->mmio.is_write)
11701                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11702         run->exit_reason = KVM_EXIT_MMIO;
11703
11704         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11705
11706         return 0;
11707 }
11708
11709 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11710                           void *data)
11711 {
11712         int handled;
11713         struct kvm_mmio_fragment *frag;
11714
11715         if (!data)
11716                 return -EINVAL;
11717
11718         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11719         if (handled == bytes)
11720                 return 1;
11721
11722         bytes -= handled;
11723         gpa += handled;
11724         data += handled;
11725
11726         /*TODO: Check if need to increment number of frags */
11727         frag = vcpu->mmio_fragments;
11728         vcpu->mmio_nr_fragments = 1;
11729         frag->len = bytes;
11730         frag->gpa = gpa;
11731         frag->data = data;
11732
11733         vcpu->mmio_needed = 1;
11734         vcpu->mmio_cur_fragment = 0;
11735
11736         vcpu->run->mmio.phys_addr = gpa;
11737         vcpu->run->mmio.len = min(8u, frag->len);
11738         vcpu->run->mmio.is_write = 1;
11739         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11740         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11741
11742         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11743
11744         return 0;
11745 }
11746 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11747
11748 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11749                          void *data)
11750 {
11751         int handled;
11752         struct kvm_mmio_fragment *frag;
11753
11754         if (!data)
11755                 return -EINVAL;
11756
11757         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11758         if (handled == bytes)
11759                 return 1;
11760
11761         bytes -= handled;
11762         gpa += handled;
11763         data += handled;
11764
11765         /*TODO: Check if need to increment number of frags */
11766         frag = vcpu->mmio_fragments;
11767         vcpu->mmio_nr_fragments = 1;
11768         frag->len = bytes;
11769         frag->gpa = gpa;
11770         frag->data = data;
11771
11772         vcpu->mmio_needed = 1;
11773         vcpu->mmio_cur_fragment = 0;
11774
11775         vcpu->run->mmio.phys_addr = gpa;
11776         vcpu->run->mmio.len = min(8u, frag->len);
11777         vcpu->run->mmio.is_write = 0;
11778         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11779
11780         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11781
11782         return 0;
11783 }
11784 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11785
11786 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11787 {
11788         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11789                vcpu->arch.pio.count * vcpu->arch.pio.size);
11790         vcpu->arch.pio.count = 0;
11791
11792         return 1;
11793 }
11794
11795 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11796                            unsigned int port, void *data,  unsigned int count)
11797 {
11798         int ret;
11799
11800         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11801                                         data, count);
11802         if (ret)
11803                 return ret;
11804
11805         vcpu->arch.pio.count = 0;
11806
11807         return 0;
11808 }
11809
11810 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11811                           unsigned int port, void *data, unsigned int count)
11812 {
11813         int ret;
11814
11815         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11816                                        data, count);
11817         if (ret) {
11818                 vcpu->arch.pio.count = 0;
11819         } else {
11820                 vcpu->arch.guest_ins_data = data;
11821                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11822         }
11823
11824         return 0;
11825 }
11826
11827 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11828                          unsigned int port, void *data,  unsigned int count,
11829                          int in)
11830 {
11831         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11832                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11833 }
11834 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11835
11836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);