080bbdcbf2eec3877eb123e4bbd7fb4b5a32415f
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169         int i;
170         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171                 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176         unsigned slot;
177         struct kvm_shared_msrs *locals
178                 = container_of(urn, struct kvm_shared_msrs, urn);
179         struct kvm_shared_msr_values *values;
180
181         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182                 values = &locals->values[slot];
183                 if (values->host != values->curr) {
184                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
185                         values->curr = values->host;
186                 }
187         }
188         locals->registered = false;
189         user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194         struct kvm_shared_msrs *smsr;
195         u64 value;
196
197         smsr = &__get_cpu_var(shared_msrs);
198         /* only read, and nobody should modify it at this time,
199          * so don't need lock */
200         if (slot >= shared_msrs_global.nr) {
201                 printk(KERN_ERR "kvm: invalid MSR slot!");
202                 return;
203         }
204         rdmsrl_safe(msr, &value);
205         smsr->values[slot].host = value;
206         smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211         if (slot >= shared_msrs_global.nr)
212                 shared_msrs_global.nr = slot + 1;
213         shared_msrs_global.msrs[slot] = msr;
214         /* we need ensured the shared_msr_global have been updated */
215         smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221         unsigned i;
222
223         for (i = 0; i < shared_msrs_global.nr; ++i)
224                 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
230
231         if (((value ^ smsr->values[slot].curr) & mask) == 0)
232                 return;
233         smsr->values[slot].curr = value;
234         wrmsrl(shared_msrs_global.msrs[slot], value);
235         if (!smsr->registered) {
236                 smsr->urn.on_user_return = kvm_on_user_return;
237                 user_return_notifier_register(&smsr->urn);
238                 smsr->registered = true;
239         }
240 }
241 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
242
243 static void drop_user_return_notifiers(void *ignore)
244 {
245         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 #define EXCPT_BENIGN            0
265 #define EXCPT_CONTRIBUTORY      1
266 #define EXCPT_PF                2
267
268 static int exception_class(int vector)
269 {
270         switch (vector) {
271         case PF_VECTOR:
272                 return EXCPT_PF;
273         case DE_VECTOR:
274         case TS_VECTOR:
275         case NP_VECTOR:
276         case SS_VECTOR:
277         case GP_VECTOR:
278                 return EXCPT_CONTRIBUTORY;
279         default:
280                 break;
281         }
282         return EXCPT_BENIGN;
283 }
284
285 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
286                 unsigned nr, bool has_error, u32 error_code,
287                 bool reinject)
288 {
289         u32 prev_nr;
290         int class1, class2;
291
292         kvm_make_request(KVM_REQ_EVENT, vcpu);
293
294         if (!vcpu->arch.exception.pending) {
295         queue:
296                 vcpu->arch.exception.pending = true;
297                 vcpu->arch.exception.has_error_code = has_error;
298                 vcpu->arch.exception.nr = nr;
299                 vcpu->arch.exception.error_code = error_code;
300                 vcpu->arch.exception.reinject = reinject;
301                 return;
302         }
303
304         /* to check exception */
305         prev_nr = vcpu->arch.exception.nr;
306         if (prev_nr == DF_VECTOR) {
307                 /* triple fault -> shutdown */
308                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
309                 return;
310         }
311         class1 = exception_class(prev_nr);
312         class2 = exception_class(nr);
313         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
314                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
315                 /* generate double fault per SDM Table 5-5 */
316                 vcpu->arch.exception.pending = true;
317                 vcpu->arch.exception.has_error_code = true;
318                 vcpu->arch.exception.nr = DF_VECTOR;
319                 vcpu->arch.exception.error_code = 0;
320         } else
321                 /* replace previous exception with a new one in a hope
322                    that instruction re-execution will regenerate lost
323                    exception */
324                 goto queue;
325 }
326
327 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 {
329         kvm_multiple_exception(vcpu, nr, false, 0, false);
330 }
331 EXPORT_SYMBOL_GPL(kvm_queue_exception);
332
333 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
334 {
335         kvm_multiple_exception(vcpu, nr, false, 0, true);
336 }
337 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
338
339 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
340 {
341         if (err)
342                 kvm_inject_gp(vcpu, 0);
343         else
344                 kvm_x86_ops->skip_emulated_instruction(vcpu);
345 }
346 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
347
348 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
349 {
350         ++vcpu->stat.pf_guest;
351         vcpu->arch.cr2 = fault->address;
352         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
353 }
354 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
355
356 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
357 {
358         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
359                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
360         else
361                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
362 }
363
364 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
365 {
366         atomic_inc(&vcpu->arch.nmi_queued);
367         kvm_make_request(KVM_REQ_NMI, vcpu);
368 }
369 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
370
371 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
372 {
373         kvm_multiple_exception(vcpu, nr, true, error_code, false);
374 }
375 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
376
377 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
378 {
379         kvm_multiple_exception(vcpu, nr, true, error_code, true);
380 }
381 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
382
383 /*
384  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
385  * a #GP and return false.
386  */
387 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
388 {
389         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
390                 return true;
391         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
392         return false;
393 }
394 EXPORT_SYMBOL_GPL(kvm_require_cpl);
395
396 /*
397  * This function will be used to read from the physical memory of the currently
398  * running guest. The difference to kvm_read_guest_page is that this function
399  * can read from guest physical or from the guest's guest physical memory.
400  */
401 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
402                             gfn_t ngfn, void *data, int offset, int len,
403                             u32 access)
404 {
405         gfn_t real_gfn;
406         gpa_t ngpa;
407
408         ngpa     = gfn_to_gpa(ngfn);
409         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
410         if (real_gfn == UNMAPPED_GVA)
411                 return -EFAULT;
412
413         real_gfn = gpa_to_gfn(real_gfn);
414
415         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
416 }
417 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
418
419 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
420                                void *data, int offset, int len, u32 access)
421 {
422         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
423                                        data, offset, len, access);
424 }
425
426 /*
427  * Load the pae pdptrs.  Return true is they are all valid.
428  */
429 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
430 {
431         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
432         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
433         int i;
434         int ret;
435         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
436
437         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
438                                       offset * sizeof(u64), sizeof(pdpte),
439                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
440         if (ret < 0) {
441                 ret = 0;
442                 goto out;
443         }
444         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
445                 if (is_present_gpte(pdpte[i]) &&
446                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
447                         ret = 0;
448                         goto out;
449                 }
450         }
451         ret = 1;
452
453         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
454         __set_bit(VCPU_EXREG_PDPTR,
455                   (unsigned long *)&vcpu->arch.regs_avail);
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_dirty);
458 out:
459
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(load_pdptrs);
463
464 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
465 {
466         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
467         bool changed = true;
468         int offset;
469         gfn_t gfn;
470         int r;
471
472         if (is_long_mode(vcpu) || !is_pae(vcpu))
473                 return false;
474
475         if (!test_bit(VCPU_EXREG_PDPTR,
476                       (unsigned long *)&vcpu->arch.regs_avail))
477                 return true;
478
479         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
480         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
481         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
482                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
483         if (r < 0)
484                 goto out;
485         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
486 out:
487
488         return changed;
489 }
490
491 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
492 {
493         unsigned long old_cr0 = kvm_read_cr0(vcpu);
494         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
495                                     X86_CR0_CD | X86_CR0_NW;
496
497         cr0 |= X86_CR0_ET;
498
499 #ifdef CONFIG_X86_64
500         if (cr0 & 0xffffffff00000000UL)
501                 return 1;
502 #endif
503
504         cr0 &= ~CR0_RESERVED_BITS;
505
506         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
507                 return 1;
508
509         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
510                 return 1;
511
512         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
513 #ifdef CONFIG_X86_64
514                 if ((vcpu->arch.efer & EFER_LME)) {
515                         int cs_db, cs_l;
516
517                         if (!is_pae(vcpu))
518                                 return 1;
519                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
520                         if (cs_l)
521                                 return 1;
522                 } else
523 #endif
524                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
525                                                  kvm_read_cr3(vcpu)))
526                         return 1;
527         }
528
529         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
530                 return 1;
531
532         kvm_x86_ops->set_cr0(vcpu, cr0);
533
534         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
535                 kvm_clear_async_pf_completion_queue(vcpu);
536                 kvm_async_pf_hash_reset(vcpu);
537         }
538
539         if ((cr0 ^ old_cr0) & update_bits)
540                 kvm_mmu_reset_context(vcpu);
541         return 0;
542 }
543 EXPORT_SYMBOL_GPL(kvm_set_cr0);
544
545 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
546 {
547         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
548 }
549 EXPORT_SYMBOL_GPL(kvm_lmsw);
550
551 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
552 {
553         u64 xcr0;
554
555         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
556         if (index != XCR_XFEATURE_ENABLED_MASK)
557                 return 1;
558         xcr0 = xcr;
559         if (kvm_x86_ops->get_cpl(vcpu) != 0)
560                 return 1;
561         if (!(xcr0 & XSTATE_FP))
562                 return 1;
563         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
564                 return 1;
565         if (xcr0 & ~host_xcr0)
566                 return 1;
567         vcpu->arch.xcr0 = xcr0;
568         vcpu->guest_xcr0_loaded = 0;
569         return 0;
570 }
571
572 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
573 {
574         if (__kvm_set_xcr(vcpu, index, xcr)) {
575                 kvm_inject_gp(vcpu, 0);
576                 return 1;
577         }
578         return 0;
579 }
580 EXPORT_SYMBOL_GPL(kvm_set_xcr);
581
582 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 {
584         unsigned long old_cr4 = kvm_read_cr4(vcpu);
585         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
586                                    X86_CR4_PAE | X86_CR4_SMEP;
587         if (cr4 & CR4_RESERVED_BITS)
588                 return 1;
589
590         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
591                 return 1;
592
593         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
594                 return 1;
595
596         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
597                 return 1;
598
599         if (is_long_mode(vcpu)) {
600                 if (!(cr4 & X86_CR4_PAE))
601                         return 1;
602         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
603                    && ((cr4 ^ old_cr4) & pdptr_bits)
604                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605                                    kvm_read_cr3(vcpu)))
606                 return 1;
607
608         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
609                 if (!guest_cpuid_has_pcid(vcpu))
610                         return 1;
611
612                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
613                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
614                         return 1;
615         }
616
617         if (kvm_x86_ops->set_cr4(vcpu, cr4))
618                 return 1;
619
620         if (((cr4 ^ old_cr4) & pdptr_bits) ||
621             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
622                 kvm_mmu_reset_context(vcpu);
623
624         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
625                 kvm_update_cpuid(vcpu);
626
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr4);
630
631 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
632 {
633         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
634                 kvm_mmu_sync_roots(vcpu);
635                 kvm_mmu_flush_tlb(vcpu);
636                 return 0;
637         }
638
639         if (is_long_mode(vcpu)) {
640                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
641                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
642                                 return 1;
643                 } else
644                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
645                                 return 1;
646         } else {
647                 if (is_pae(vcpu)) {
648                         if (cr3 & CR3_PAE_RESERVED_BITS)
649                                 return 1;
650                         if (is_paging(vcpu) &&
651                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
652                                 return 1;
653                 }
654                 /*
655                  * We don't check reserved bits in nonpae mode, because
656                  * this isn't enforced, and VMware depends on this.
657                  */
658         }
659
660         /*
661          * Does the new cr3 value map to physical memory? (Note, we
662          * catch an invalid cr3 even in real-mode, because it would
663          * cause trouble later on when we turn on paging anyway.)
664          *
665          * A real CPU would silently accept an invalid cr3 and would
666          * attempt to use it - with largely undefined (and often hard
667          * to debug) behavior on the guest side.
668          */
669         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
670                 return 1;
671         vcpu->arch.cr3 = cr3;
672         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
673         vcpu->arch.mmu.new_cr3(vcpu);
674         return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_cr3);
677
678 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
679 {
680         if (cr8 & CR8_RESERVED_BITS)
681                 return 1;
682         if (irqchip_in_kernel(vcpu->kvm))
683                 kvm_lapic_set_tpr(vcpu, cr8);
684         else
685                 vcpu->arch.cr8 = cr8;
686         return 0;
687 }
688 EXPORT_SYMBOL_GPL(kvm_set_cr8);
689
690 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
691 {
692         if (irqchip_in_kernel(vcpu->kvm))
693                 return kvm_lapic_get_cr8(vcpu);
694         else
695                 return vcpu->arch.cr8;
696 }
697 EXPORT_SYMBOL_GPL(kvm_get_cr8);
698
699 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
700 {
701         unsigned long dr7;
702
703         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
704                 dr7 = vcpu->arch.guest_debug_dr7;
705         else
706                 dr7 = vcpu->arch.dr7;
707         kvm_x86_ops->set_dr7(vcpu, dr7);
708         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
709 }
710
711 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
712 {
713         switch (dr) {
714         case 0 ... 3:
715                 vcpu->arch.db[dr] = val;
716                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
717                         vcpu->arch.eff_db[dr] = val;
718                 break;
719         case 4:
720                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
721                         return 1; /* #UD */
722                 /* fall through */
723         case 6:
724                 if (val & 0xffffffff00000000ULL)
725                         return -1; /* #GP */
726                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
727                 break;
728         case 5:
729                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
730                         return 1; /* #UD */
731                 /* fall through */
732         default: /* 7 */
733                 if (val & 0xffffffff00000000ULL)
734                         return -1; /* #GP */
735                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
736                 kvm_update_dr7(vcpu);
737                 break;
738         }
739
740         return 0;
741 }
742
743 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
744 {
745         int res;
746
747         res = __kvm_set_dr(vcpu, dr, val);
748         if (res > 0)
749                 kvm_queue_exception(vcpu, UD_VECTOR);
750         else if (res < 0)
751                 kvm_inject_gp(vcpu, 0);
752
753         return res;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_dr);
756
757 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         switch (dr) {
760         case 0 ... 3:
761                 *val = vcpu->arch.db[dr];
762                 break;
763         case 4:
764                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765                         return 1;
766                 /* fall through */
767         case 6:
768                 *val = vcpu->arch.dr6;
769                 break;
770         case 5:
771                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
772                         return 1;
773                 /* fall through */
774         default: /* 7 */
775                 *val = vcpu->arch.dr7;
776                 break;
777         }
778
779         return 0;
780 }
781
782 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         if (_kvm_get_dr(vcpu, dr, val)) {
785                 kvm_queue_exception(vcpu, UD_VECTOR);
786                 return 1;
787         }
788         return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_get_dr);
791
792 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
793 {
794         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
795         u64 data;
796         int err;
797
798         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
799         if (err)
800                 return err;
801         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
802         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
803         return err;
804 }
805 EXPORT_SYMBOL_GPL(kvm_rdpmc);
806
807 /*
808  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
809  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
810  *
811  * This list is modified at module load time to reflect the
812  * capabilities of the host cpu. This capabilities test skips MSRs that are
813  * kvm-specific. Those are put in the beginning of the list.
814  */
815
816 #define KVM_SAVE_MSRS_BEGIN     10
817 static u32 msrs_to_save[] = {
818         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
819         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
820         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
821         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
822         MSR_KVM_PV_EOI_EN,
823         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
824         MSR_STAR,
825 #ifdef CONFIG_X86_64
826         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
827 #endif
828         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
829 };
830
831 static unsigned num_msrs_to_save;
832
833 static const u32 emulated_msrs[] = {
834         MSR_IA32_TSC_ADJUST,
835         MSR_IA32_TSCDEADLINE,
836         MSR_IA32_MISC_ENABLE,
837         MSR_IA32_MCG_STATUS,
838         MSR_IA32_MCG_CTL,
839 };
840
841 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
842 {
843         u64 old_efer = vcpu->arch.efer;
844
845         if (efer & efer_reserved_bits)
846                 return 1;
847
848         if (is_paging(vcpu)
849             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
850                 return 1;
851
852         if (efer & EFER_FFXSR) {
853                 struct kvm_cpuid_entry2 *feat;
854
855                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
857                         return 1;
858         }
859
860         if (efer & EFER_SVME) {
861                 struct kvm_cpuid_entry2 *feat;
862
863                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
864                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
865                         return 1;
866         }
867
868         efer &= ~EFER_LMA;
869         efer |= vcpu->arch.efer & EFER_LMA;
870
871         kvm_x86_ops->set_efer(vcpu, efer);
872
873         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
874
875         /* Update reserved bits */
876         if ((efer ^ old_efer) & EFER_NX)
877                 kvm_mmu_reset_context(vcpu);
878
879         return 0;
880 }
881
882 void kvm_enable_efer_bits(u64 mask)
883 {
884        efer_reserved_bits &= ~mask;
885 }
886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
887
888
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
895 {
896         return kvm_x86_ops->set_msr(vcpu, msr);
897 }
898
899 /*
900  * Adapt set_msr() to msr_io()'s calling convention
901  */
902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
903 {
904         struct msr_data msr;
905
906         msr.data = *data;
907         msr.index = index;
908         msr.host_initiated = true;
909         return kvm_set_msr(vcpu, &msr);
910 }
911
912 #ifdef CONFIG_X86_64
913 struct pvclock_gtod_data {
914         seqcount_t      seq;
915
916         struct { /* extract of a clocksource struct */
917                 int vclock_mode;
918                 cycle_t cycle_last;
919                 cycle_t mask;
920                 u32     mult;
921                 u32     shift;
922         } clock;
923
924         /* open coded 'struct timespec' */
925         u64             monotonic_time_snsec;
926         time_t          monotonic_time_sec;
927 };
928
929 static struct pvclock_gtod_data pvclock_gtod_data;
930
931 static void update_pvclock_gtod(struct timekeeper *tk)
932 {
933         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
934
935         write_seqcount_begin(&vdata->seq);
936
937         /* copy pvclock gtod data */
938         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
939         vdata->clock.cycle_last         = tk->clock->cycle_last;
940         vdata->clock.mask               = tk->clock->mask;
941         vdata->clock.mult               = tk->mult;
942         vdata->clock.shift              = tk->shift;
943
944         vdata->monotonic_time_sec       = tk->xtime_sec
945                                         + tk->wall_to_monotonic.tv_sec;
946         vdata->monotonic_time_snsec     = tk->xtime_nsec
947                                         + (tk->wall_to_monotonic.tv_nsec
948                                                 << tk->shift);
949         while (vdata->monotonic_time_snsec >=
950                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
951                 vdata->monotonic_time_snsec -=
952                                         ((u64)NSEC_PER_SEC) << tk->shift;
953                 vdata->monotonic_time_sec++;
954         }
955
956         write_seqcount_end(&vdata->seq);
957 }
958 #endif
959
960
961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
962 {
963         int version;
964         int r;
965         struct pvclock_wall_clock wc;
966         struct timespec boot;
967
968         if (!wall_clock)
969                 return;
970
971         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
972         if (r)
973                 return;
974
975         if (version & 1)
976                 ++version;  /* first time write, random junk */
977
978         ++version;
979
980         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
981
982         /*
983          * The guest calculates current wall clock time by adding
984          * system time (updated by kvm_guest_time_update below) to the
985          * wall clock specified here.  guest system time equals host
986          * system time for us, thus we must fill in host boot time here.
987          */
988         getboottime(&boot);
989
990         if (kvm->arch.kvmclock_offset) {
991                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
992                 boot = timespec_sub(boot, ts);
993         }
994         wc.sec = boot.tv_sec;
995         wc.nsec = boot.tv_nsec;
996         wc.version = version;
997
998         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
999
1000         version++;
1001         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1002 }
1003
1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1005 {
1006         uint32_t quotient, remainder;
1007
1008         /* Don't try to replace with do_div(), this one calculates
1009          * "(dividend << 32) / divisor" */
1010         __asm__ ( "divl %4"
1011                   : "=a" (quotient), "=d" (remainder)
1012                   : "0" (0), "1" (dividend), "r" (divisor) );
1013         return quotient;
1014 }
1015
1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1017                                s8 *pshift, u32 *pmultiplier)
1018 {
1019         uint64_t scaled64;
1020         int32_t  shift = 0;
1021         uint64_t tps64;
1022         uint32_t tps32;
1023
1024         tps64 = base_khz * 1000LL;
1025         scaled64 = scaled_khz * 1000LL;
1026         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1027                 tps64 >>= 1;
1028                 shift--;
1029         }
1030
1031         tps32 = (uint32_t)tps64;
1032         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1033                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1034                         scaled64 >>= 1;
1035                 else
1036                         tps32 <<= 1;
1037                 shift++;
1038         }
1039
1040         *pshift = shift;
1041         *pmultiplier = div_frac(scaled64, tps32);
1042
1043         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1044                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1045 }
1046
1047 static inline u64 get_kernel_ns(void)
1048 {
1049         struct timespec ts;
1050
1051         WARN_ON(preemptible());
1052         ktime_get_ts(&ts);
1053         monotonic_to_bootbased(&ts);
1054         return timespec_to_ns(&ts);
1055 }
1056
1057 #ifdef CONFIG_X86_64
1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1059 #endif
1060
1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1062 unsigned long max_tsc_khz;
1063
1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1065 {
1066         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1067                                    vcpu->arch.virtual_tsc_shift);
1068 }
1069
1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1071 {
1072         u64 v = (u64)khz * (1000000 + ppm);
1073         do_div(v, 1000000);
1074         return v;
1075 }
1076
1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1078 {
1079         u32 thresh_lo, thresh_hi;
1080         int use_scaling = 0;
1081
1082         /* Compute a scale to convert nanoseconds in TSC cycles */
1083         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1084                            &vcpu->arch.virtual_tsc_shift,
1085                            &vcpu->arch.virtual_tsc_mult);
1086         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1087
1088         /*
1089          * Compute the variation in TSC rate which is acceptable
1090          * within the range of tolerance and decide if the
1091          * rate being applied is within that bounds of the hardware
1092          * rate.  If so, no scaling or compensation need be done.
1093          */
1094         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1095         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1096         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1097                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1098                 use_scaling = 1;
1099         }
1100         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1101 }
1102
1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1104 {
1105         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1106                                       vcpu->arch.virtual_tsc_mult,
1107                                       vcpu->arch.virtual_tsc_shift);
1108         tsc += vcpu->arch.this_tsc_write;
1109         return tsc;
1110 }
1111
1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115         bool vcpus_matched;
1116         bool do_request = false;
1117         struct kvm_arch *ka = &vcpu->kvm->arch;
1118         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1119
1120         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1121                          atomic_read(&vcpu->kvm->online_vcpus));
1122
1123         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1124                 if (!ka->use_master_clock)
1125                         do_request = 1;
1126
1127         if (!vcpus_matched && ka->use_master_clock)
1128                         do_request = 1;
1129
1130         if (do_request)
1131                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1132
1133         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1134                             atomic_read(&vcpu->kvm->online_vcpus),
1135                             ka->use_master_clock, gtod->clock.vclock_mode);
1136 #endif
1137 }
1138
1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1140 {
1141         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1142         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1143 }
1144
1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1146 {
1147         struct kvm *kvm = vcpu->kvm;
1148         u64 offset, ns, elapsed;
1149         unsigned long flags;
1150         s64 usdiff;
1151         bool matched;
1152         u64 data = msr->data;
1153
1154         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1155         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1156         ns = get_kernel_ns();
1157         elapsed = ns - kvm->arch.last_tsc_nsec;
1158
1159         /* n.b - signed multiplication and division required */
1160         usdiff = data - kvm->arch.last_tsc_write;
1161 #ifdef CONFIG_X86_64
1162         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1163 #else
1164         /* do_div() only does unsigned */
1165         asm("idivl %2; xor %%edx, %%edx"
1166             : "=A"(usdiff)
1167             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1168 #endif
1169         do_div(elapsed, 1000);
1170         usdiff -= elapsed;
1171         if (usdiff < 0)
1172                 usdiff = -usdiff;
1173
1174         /*
1175          * Special case: TSC write with a small delta (1 second) of virtual
1176          * cycle time against real time is interpreted as an attempt to
1177          * synchronize the CPU.
1178          *
1179          * For a reliable TSC, we can match TSC offsets, and for an unstable
1180          * TSC, we add elapsed time in this computation.  We could let the
1181          * compensation code attempt to catch up if we fall behind, but
1182          * it's better to try to match offsets from the beginning.
1183          */
1184         if (usdiff < USEC_PER_SEC &&
1185             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1186                 if (!check_tsc_unstable()) {
1187                         offset = kvm->arch.cur_tsc_offset;
1188                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1189                 } else {
1190                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1191                         data += delta;
1192                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1194                 }
1195                 matched = true;
1196         } else {
1197                 /*
1198                  * We split periods of matched TSC writes into generations.
1199                  * For each generation, we track the original measured
1200                  * nanosecond time, offset, and write, so if TSCs are in
1201                  * sync, we can match exact offset, and if not, we can match
1202                  * exact software computation in compute_guest_tsc()
1203                  *
1204                  * These values are tracked in kvm->arch.cur_xxx variables.
1205                  */
1206                 kvm->arch.cur_tsc_generation++;
1207                 kvm->arch.cur_tsc_nsec = ns;
1208                 kvm->arch.cur_tsc_write = data;
1209                 kvm->arch.cur_tsc_offset = offset;
1210                 matched = false;
1211                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1212                          kvm->arch.cur_tsc_generation, data);
1213         }
1214
1215         /*
1216          * We also track th most recent recorded KHZ, write and time to
1217          * allow the matching interval to be extended at each write.
1218          */
1219         kvm->arch.last_tsc_nsec = ns;
1220         kvm->arch.last_tsc_write = data;
1221         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1222
1223         /* Reset of TSC must disable overshoot protection below */
1224         vcpu->arch.hv_clock.tsc_timestamp = 0;
1225         vcpu->arch.last_guest_tsc = data;
1226
1227         /* Keep track of which generation this VCPU has synchronized to */
1228         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1229         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1230         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1231
1232         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1233                 update_ia32_tsc_adjust_msr(vcpu, offset);
1234         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1235         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1236
1237         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1238         if (matched)
1239                 kvm->arch.nr_vcpus_matched_tsc++;
1240         else
1241                 kvm->arch.nr_vcpus_matched_tsc = 0;
1242
1243         kvm_track_tsc_matching(vcpu);
1244         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1245 }
1246
1247 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1248
1249 #ifdef CONFIG_X86_64
1250
1251 static cycle_t read_tsc(void)
1252 {
1253         cycle_t ret;
1254         u64 last;
1255
1256         /*
1257          * Empirically, a fence (of type that depends on the CPU)
1258          * before rdtsc is enough to ensure that rdtsc is ordered
1259          * with respect to loads.  The various CPU manuals are unclear
1260          * as to whether rdtsc can be reordered with later loads,
1261          * but no one has ever seen it happen.
1262          */
1263         rdtsc_barrier();
1264         ret = (cycle_t)vget_cycles();
1265
1266         last = pvclock_gtod_data.clock.cycle_last;
1267
1268         if (likely(ret >= last))
1269                 return ret;
1270
1271         /*
1272          * GCC likes to generate cmov here, but this branch is extremely
1273          * predictable (it's just a funciton of time and the likely is
1274          * very likely) and there's a data dependence, so force GCC
1275          * to generate a branch instead.  I don't barrier() because
1276          * we don't actually need a barrier, and if this function
1277          * ever gets inlined it will generate worse code.
1278          */
1279         asm volatile ("");
1280         return last;
1281 }
1282
1283 static inline u64 vgettsc(cycle_t *cycle_now)
1284 {
1285         long v;
1286         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288         *cycle_now = read_tsc();
1289
1290         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1291         return v * gtod->clock.mult;
1292 }
1293
1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1295 {
1296         unsigned long seq;
1297         u64 ns;
1298         int mode;
1299         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1300
1301         ts->tv_nsec = 0;
1302         do {
1303                 seq = read_seqcount_begin(&gtod->seq);
1304                 mode = gtod->clock.vclock_mode;
1305                 ts->tv_sec = gtod->monotonic_time_sec;
1306                 ns = gtod->monotonic_time_snsec;
1307                 ns += vgettsc(cycle_now);
1308                 ns >>= gtod->clock.shift;
1309         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1310         timespec_add_ns(ts, ns);
1311
1312         return mode;
1313 }
1314
1315 /* returns true if host is using tsc clocksource */
1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1317 {
1318         struct timespec ts;
1319
1320         /* checked again under seqlock below */
1321         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1322                 return false;
1323
1324         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1325                 return false;
1326
1327         monotonic_to_bootbased(&ts);
1328         *kernel_ns = timespec_to_ns(&ts);
1329
1330         return true;
1331 }
1332 #endif
1333
1334 /*
1335  *
1336  * Assuming a stable TSC across physical CPUS, and a stable TSC
1337  * across virtual CPUs, the following condition is possible.
1338  * Each numbered line represents an event visible to both
1339  * CPUs at the next numbered event.
1340  *
1341  * "timespecX" represents host monotonic time. "tscX" represents
1342  * RDTSC value.
1343  *
1344  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1345  *
1346  * 1.  read timespec0,tsc0
1347  * 2.                                   | timespec1 = timespec0 + N
1348  *                                      | tsc1 = tsc0 + M
1349  * 3. transition to guest               | transition to guest
1350  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1351  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1352  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1353  *
1354  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1355  *
1356  *      - ret0 < ret1
1357  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1358  *              ...
1359  *      - 0 < N - M => M < N
1360  *
1361  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1362  * always the case (the difference between two distinct xtime instances
1363  * might be smaller then the difference between corresponding TSC reads,
1364  * when updating guest vcpus pvclock areas).
1365  *
1366  * To avoid that problem, do not allow visibility of distinct
1367  * system_timestamp/tsc_timestamp values simultaneously: use a master
1368  * copy of host monotonic time values. Update that master copy
1369  * in lockstep.
1370  *
1371  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1372  *
1373  */
1374
1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1376 {
1377 #ifdef CONFIG_X86_64
1378         struct kvm_arch *ka = &kvm->arch;
1379         int vclock_mode;
1380         bool host_tsc_clocksource, vcpus_matched;
1381
1382         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1383                         atomic_read(&kvm->online_vcpus));
1384
1385         /*
1386          * If the host uses TSC clock, then passthrough TSC as stable
1387          * to the guest.
1388          */
1389         host_tsc_clocksource = kvm_get_time_and_clockread(
1390                                         &ka->master_kernel_ns,
1391                                         &ka->master_cycle_now);
1392
1393         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1394
1395         if (ka->use_master_clock)
1396                 atomic_set(&kvm_guest_has_master_clock, 1);
1397
1398         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1399         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1400                                         vcpus_matched);
1401 #endif
1402 }
1403
1404 static int kvm_guest_time_update(struct kvm_vcpu *v)
1405 {
1406         unsigned long flags, this_tsc_khz;
1407         struct kvm_vcpu_arch *vcpu = &v->arch;
1408         struct kvm_arch *ka = &v->kvm->arch;
1409         void *shared_kaddr;
1410         s64 kernel_ns, max_kernel_ns;
1411         u64 tsc_timestamp, host_tsc;
1412         struct pvclock_vcpu_time_info *guest_hv_clock;
1413         u8 pvclock_flags;
1414         bool use_master_clock;
1415
1416         kernel_ns = 0;
1417         host_tsc = 0;
1418
1419         /* Keep irq disabled to prevent changes to the clock */
1420         local_irq_save(flags);
1421         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1422         if (unlikely(this_tsc_khz == 0)) {
1423                 local_irq_restore(flags);
1424                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1425                 return 1;
1426         }
1427
1428         /*
1429          * If the host uses TSC clock, then passthrough TSC as stable
1430          * to the guest.
1431          */
1432         spin_lock(&ka->pvclock_gtod_sync_lock);
1433         use_master_clock = ka->use_master_clock;
1434         if (use_master_clock) {
1435                 host_tsc = ka->master_cycle_now;
1436                 kernel_ns = ka->master_kernel_ns;
1437         }
1438         spin_unlock(&ka->pvclock_gtod_sync_lock);
1439         if (!use_master_clock) {
1440                 host_tsc = native_read_tsc();
1441                 kernel_ns = get_kernel_ns();
1442         }
1443
1444         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1445
1446         /*
1447          * We may have to catch up the TSC to match elapsed wall clock
1448          * time for two reasons, even if kvmclock is used.
1449          *   1) CPU could have been running below the maximum TSC rate
1450          *   2) Broken TSC compensation resets the base at each VCPU
1451          *      entry to avoid unknown leaps of TSC even when running
1452          *      again on the same CPU.  This may cause apparent elapsed
1453          *      time to disappear, and the guest to stand still or run
1454          *      very slowly.
1455          */
1456         if (vcpu->tsc_catchup) {
1457                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1458                 if (tsc > tsc_timestamp) {
1459                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1460                         tsc_timestamp = tsc;
1461                 }
1462         }
1463
1464         local_irq_restore(flags);
1465
1466         if (!vcpu->time_page)
1467                 return 0;
1468
1469         /*
1470          * Time as measured by the TSC may go backwards when resetting the base
1471          * tsc_timestamp.  The reason for this is that the TSC resolution is
1472          * higher than the resolution of the other clock scales.  Thus, many
1473          * possible measurments of the TSC correspond to one measurement of any
1474          * other clock, and so a spread of values is possible.  This is not a
1475          * problem for the computation of the nanosecond clock; with TSC rates
1476          * around 1GHZ, there can only be a few cycles which correspond to one
1477          * nanosecond value, and any path through this code will inevitably
1478          * take longer than that.  However, with the kernel_ns value itself,
1479          * the precision may be much lower, down to HZ granularity.  If the
1480          * first sampling of TSC against kernel_ns ends in the low part of the
1481          * range, and the second in the high end of the range, we can get:
1482          *
1483          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1484          *
1485          * As the sampling errors potentially range in the thousands of cycles,
1486          * it is possible such a time value has already been observed by the
1487          * guest.  To protect against this, we must compute the system time as
1488          * observed by the guest and ensure the new system time is greater.
1489          */
1490         max_kernel_ns = 0;
1491         if (vcpu->hv_clock.tsc_timestamp) {
1492                 max_kernel_ns = vcpu->last_guest_tsc -
1493                                 vcpu->hv_clock.tsc_timestamp;
1494                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1495                                     vcpu->hv_clock.tsc_to_system_mul,
1496                                     vcpu->hv_clock.tsc_shift);
1497                 max_kernel_ns += vcpu->last_kernel_ns;
1498         }
1499
1500         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1501                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1502                                    &vcpu->hv_clock.tsc_shift,
1503                                    &vcpu->hv_clock.tsc_to_system_mul);
1504                 vcpu->hw_tsc_khz = this_tsc_khz;
1505         }
1506
1507         /* with a master <monotonic time, tsc value> tuple,
1508          * pvclock clock reads always increase at the (scaled) rate
1509          * of guest TSC - no need to deal with sampling errors.
1510          */
1511         if (!use_master_clock) {
1512                 if (max_kernel_ns > kernel_ns)
1513                         kernel_ns = max_kernel_ns;
1514         }
1515         /* With all the info we got, fill in the values */
1516         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1517         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1518         vcpu->last_kernel_ns = kernel_ns;
1519         vcpu->last_guest_tsc = tsc_timestamp;
1520
1521         /*
1522          * The interface expects us to write an even number signaling that the
1523          * update is finished. Since the guest won't see the intermediate
1524          * state, we just increase by 2 at the end.
1525          */
1526         vcpu->hv_clock.version += 2;
1527
1528         shared_kaddr = kmap_atomic(vcpu->time_page);
1529
1530         guest_hv_clock = shared_kaddr + vcpu->time_offset;
1531
1532         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1533         pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1534
1535         if (vcpu->pvclock_set_guest_stopped_request) {
1536                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1537                 vcpu->pvclock_set_guest_stopped_request = false;
1538         }
1539
1540         /* If the host uses TSC clocksource, then it is stable */
1541         if (use_master_clock)
1542                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1543
1544         vcpu->hv_clock.flags = pvclock_flags;
1545
1546         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1547                sizeof(vcpu->hv_clock));
1548
1549         kunmap_atomic(shared_kaddr);
1550
1551         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1552         return 0;
1553 }
1554
1555 static bool msr_mtrr_valid(unsigned msr)
1556 {
1557         switch (msr) {
1558         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1559         case MSR_MTRRfix64K_00000:
1560         case MSR_MTRRfix16K_80000:
1561         case MSR_MTRRfix16K_A0000:
1562         case MSR_MTRRfix4K_C0000:
1563         case MSR_MTRRfix4K_C8000:
1564         case MSR_MTRRfix4K_D0000:
1565         case MSR_MTRRfix4K_D8000:
1566         case MSR_MTRRfix4K_E0000:
1567         case MSR_MTRRfix4K_E8000:
1568         case MSR_MTRRfix4K_F0000:
1569         case MSR_MTRRfix4K_F8000:
1570         case MSR_MTRRdefType:
1571         case MSR_IA32_CR_PAT:
1572                 return true;
1573         case 0x2f8:
1574                 return true;
1575         }
1576         return false;
1577 }
1578
1579 static bool valid_pat_type(unsigned t)
1580 {
1581         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1582 }
1583
1584 static bool valid_mtrr_type(unsigned t)
1585 {
1586         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1587 }
1588
1589 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1590 {
1591         int i;
1592
1593         if (!msr_mtrr_valid(msr))
1594                 return false;
1595
1596         if (msr == MSR_IA32_CR_PAT) {
1597                 for (i = 0; i < 8; i++)
1598                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1599                                 return false;
1600                 return true;
1601         } else if (msr == MSR_MTRRdefType) {
1602                 if (data & ~0xcff)
1603                         return false;
1604                 return valid_mtrr_type(data & 0xff);
1605         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1606                 for (i = 0; i < 8 ; i++)
1607                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1608                                 return false;
1609                 return true;
1610         }
1611
1612         /* variable MTRRs */
1613         return valid_mtrr_type(data & 0xff);
1614 }
1615
1616 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1617 {
1618         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1619
1620         if (!mtrr_valid(vcpu, msr, data))
1621                 return 1;
1622
1623         if (msr == MSR_MTRRdefType) {
1624                 vcpu->arch.mtrr_state.def_type = data;
1625                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1626         } else if (msr == MSR_MTRRfix64K_00000)
1627                 p[0] = data;
1628         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1629                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1630         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1631                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1632         else if (msr == MSR_IA32_CR_PAT)
1633                 vcpu->arch.pat = data;
1634         else {  /* Variable MTRRs */
1635                 int idx, is_mtrr_mask;
1636                 u64 *pt;
1637
1638                 idx = (msr - 0x200) / 2;
1639                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1640                 if (!is_mtrr_mask)
1641                         pt =
1642                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1643                 else
1644                         pt =
1645                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1646                 *pt = data;
1647         }
1648
1649         kvm_mmu_reset_context(vcpu);
1650         return 0;
1651 }
1652
1653 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1654 {
1655         u64 mcg_cap = vcpu->arch.mcg_cap;
1656         unsigned bank_num = mcg_cap & 0xff;
1657
1658         switch (msr) {
1659         case MSR_IA32_MCG_STATUS:
1660                 vcpu->arch.mcg_status = data;
1661                 break;
1662         case MSR_IA32_MCG_CTL:
1663                 if (!(mcg_cap & MCG_CTL_P))
1664                         return 1;
1665                 if (data != 0 && data != ~(u64)0)
1666                         return -1;
1667                 vcpu->arch.mcg_ctl = data;
1668                 break;
1669         default:
1670                 if (msr >= MSR_IA32_MC0_CTL &&
1671                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1672                         u32 offset = msr - MSR_IA32_MC0_CTL;
1673                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1674                          * some Linux kernels though clear bit 10 in bank 4 to
1675                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1676                          * this to avoid an uncatched #GP in the guest
1677                          */
1678                         if ((offset & 0x3) == 0 &&
1679                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1680                                 return -1;
1681                         vcpu->arch.mce_banks[offset] = data;
1682                         break;
1683                 }
1684                 return 1;
1685         }
1686         return 0;
1687 }
1688
1689 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1690 {
1691         struct kvm *kvm = vcpu->kvm;
1692         int lm = is_long_mode(vcpu);
1693         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1694                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1695         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1696                 : kvm->arch.xen_hvm_config.blob_size_32;
1697         u32 page_num = data & ~PAGE_MASK;
1698         u64 page_addr = data & PAGE_MASK;
1699         u8 *page;
1700         int r;
1701
1702         r = -E2BIG;
1703         if (page_num >= blob_size)
1704                 goto out;
1705         r = -ENOMEM;
1706         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1707         if (IS_ERR(page)) {
1708                 r = PTR_ERR(page);
1709                 goto out;
1710         }
1711         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1712                 goto out_free;
1713         r = 0;
1714 out_free:
1715         kfree(page);
1716 out:
1717         return r;
1718 }
1719
1720 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1721 {
1722         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1723 }
1724
1725 static bool kvm_hv_msr_partition_wide(u32 msr)
1726 {
1727         bool r = false;
1728         switch (msr) {
1729         case HV_X64_MSR_GUEST_OS_ID:
1730         case HV_X64_MSR_HYPERCALL:
1731                 r = true;
1732                 break;
1733         }
1734
1735         return r;
1736 }
1737
1738 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741
1742         switch (msr) {
1743         case HV_X64_MSR_GUEST_OS_ID:
1744                 kvm->arch.hv_guest_os_id = data;
1745                 /* setting guest os id to zero disables hypercall page */
1746                 if (!kvm->arch.hv_guest_os_id)
1747                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1748                 break;
1749         case HV_X64_MSR_HYPERCALL: {
1750                 u64 gfn;
1751                 unsigned long addr;
1752                 u8 instructions[4];
1753
1754                 /* if guest os id is not set hypercall should remain disabled */
1755                 if (!kvm->arch.hv_guest_os_id)
1756                         break;
1757                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1758                         kvm->arch.hv_hypercall = data;
1759                         break;
1760                 }
1761                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1762                 addr = gfn_to_hva(kvm, gfn);
1763                 if (kvm_is_error_hva(addr))
1764                         return 1;
1765                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1766                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1767                 if (__copy_to_user((void __user *)addr, instructions, 4))
1768                         return 1;
1769                 kvm->arch.hv_hypercall = data;
1770                 break;
1771         }
1772         default:
1773                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1774                             "data 0x%llx\n", msr, data);
1775                 return 1;
1776         }
1777         return 0;
1778 }
1779
1780 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1781 {
1782         switch (msr) {
1783         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1784                 unsigned long addr;
1785
1786                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1787                         vcpu->arch.hv_vapic = data;
1788                         break;
1789                 }
1790                 addr = gfn_to_hva(vcpu->kvm, data >>
1791                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1792                 if (kvm_is_error_hva(addr))
1793                         return 1;
1794                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1795                         return 1;
1796                 vcpu->arch.hv_vapic = data;
1797                 break;
1798         }
1799         case HV_X64_MSR_EOI:
1800                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1801         case HV_X64_MSR_ICR:
1802                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1803         case HV_X64_MSR_TPR:
1804                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1805         default:
1806                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1807                             "data 0x%llx\n", msr, data);
1808                 return 1;
1809         }
1810
1811         return 0;
1812 }
1813
1814 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1815 {
1816         gpa_t gpa = data & ~0x3f;
1817
1818         /* Bits 2:5 are reserved, Should be zero */
1819         if (data & 0x3c)
1820                 return 1;
1821
1822         vcpu->arch.apf.msr_val = data;
1823
1824         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1825                 kvm_clear_async_pf_completion_queue(vcpu);
1826                 kvm_async_pf_hash_reset(vcpu);
1827                 return 0;
1828         }
1829
1830         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1831                 return 1;
1832
1833         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1834         kvm_async_pf_wakeup_all(vcpu);
1835         return 0;
1836 }
1837
1838 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1839 {
1840         if (vcpu->arch.time_page) {
1841                 kvm_release_page_dirty(vcpu->arch.time_page);
1842                 vcpu->arch.time_page = NULL;
1843         }
1844 }
1845
1846 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1847 {
1848         u64 delta;
1849
1850         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1851                 return;
1852
1853         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1854         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1855         vcpu->arch.st.accum_steal = delta;
1856 }
1857
1858 static void record_steal_time(struct kvm_vcpu *vcpu)
1859 {
1860         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1861                 return;
1862
1863         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1864                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1865                 return;
1866
1867         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1868         vcpu->arch.st.steal.version += 2;
1869         vcpu->arch.st.accum_steal = 0;
1870
1871         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1872                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1873 }
1874
1875 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1876 {
1877         bool pr = false;
1878         u32 msr = msr_info->index;
1879         u64 data = msr_info->data;
1880
1881         switch (msr) {
1882         case MSR_EFER:
1883                 return set_efer(vcpu, data);
1884         case MSR_K7_HWCR:
1885                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1886                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1887                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1888                 if (data != 0) {
1889                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1890                                     data);
1891                         return 1;
1892                 }
1893                 break;
1894         case MSR_FAM10H_MMIO_CONF_BASE:
1895                 if (data != 0) {
1896                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1897                                     "0x%llx\n", data);
1898                         return 1;
1899                 }
1900                 break;
1901         case MSR_AMD64_NB_CFG:
1902                 break;
1903         case MSR_IA32_DEBUGCTLMSR:
1904                 if (!data) {
1905                         /* We support the non-activated case already */
1906                         break;
1907                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1908                         /* Values other than LBR and BTF are vendor-specific,
1909                            thus reserved and should throw a #GP */
1910                         return 1;
1911                 }
1912                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1913                             __func__, data);
1914                 break;
1915         case MSR_IA32_UCODE_REV:
1916         case MSR_IA32_UCODE_WRITE:
1917         case MSR_VM_HSAVE_PA:
1918         case MSR_AMD64_PATCH_LOADER:
1919                 break;
1920         case 0x200 ... 0x2ff:
1921                 return set_msr_mtrr(vcpu, msr, data);
1922         case MSR_IA32_APICBASE:
1923                 kvm_set_apic_base(vcpu, data);
1924                 break;
1925         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1926                 return kvm_x2apic_msr_write(vcpu, msr, data);
1927         case MSR_IA32_TSCDEADLINE:
1928                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1929                 break;
1930         case MSR_IA32_TSC_ADJUST:
1931                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1932                         if (!msr_info->host_initiated) {
1933                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1934                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1935                         }
1936                         vcpu->arch.ia32_tsc_adjust_msr = data;
1937                 }
1938                 break;
1939         case MSR_IA32_MISC_ENABLE:
1940                 vcpu->arch.ia32_misc_enable_msr = data;
1941                 break;
1942         case MSR_KVM_WALL_CLOCK_NEW:
1943         case MSR_KVM_WALL_CLOCK:
1944                 vcpu->kvm->arch.wall_clock = data;
1945                 kvm_write_wall_clock(vcpu->kvm, data);
1946                 break;
1947         case MSR_KVM_SYSTEM_TIME_NEW:
1948         case MSR_KVM_SYSTEM_TIME: {
1949                 kvmclock_reset(vcpu);
1950
1951                 vcpu->arch.time = data;
1952                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1953
1954                 /* we verify if the enable bit is set... */
1955                 if (!(data & 1))
1956                         break;
1957
1958                 /* ...but clean it before doing the actual write */
1959                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1960
1961                 vcpu->arch.time_page =
1962                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1963
1964                 if (is_error_page(vcpu->arch.time_page))
1965                         vcpu->arch.time_page = NULL;
1966
1967                 break;
1968         }
1969         case MSR_KVM_ASYNC_PF_EN:
1970                 if (kvm_pv_enable_async_pf(vcpu, data))
1971                         return 1;
1972                 break;
1973         case MSR_KVM_STEAL_TIME:
1974
1975                 if (unlikely(!sched_info_on()))
1976                         return 1;
1977
1978                 if (data & KVM_STEAL_RESERVED_MASK)
1979                         return 1;
1980
1981                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1982                                                         data & KVM_STEAL_VALID_BITS))
1983                         return 1;
1984
1985                 vcpu->arch.st.msr_val = data;
1986
1987                 if (!(data & KVM_MSR_ENABLED))
1988                         break;
1989
1990                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1991
1992                 preempt_disable();
1993                 accumulate_steal_time(vcpu);
1994                 preempt_enable();
1995
1996                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1997
1998                 break;
1999         case MSR_KVM_PV_EOI_EN:
2000                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2001                         return 1;
2002                 break;
2003
2004         case MSR_IA32_MCG_CTL:
2005         case MSR_IA32_MCG_STATUS:
2006         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2007                 return set_msr_mce(vcpu, msr, data);
2008
2009         /* Performance counters are not protected by a CPUID bit,
2010          * so we should check all of them in the generic path for the sake of
2011          * cross vendor migration.
2012          * Writing a zero into the event select MSRs disables them,
2013          * which we perfectly emulate ;-). Any other value should be at least
2014          * reported, some guests depend on them.
2015          */
2016         case MSR_K7_EVNTSEL0:
2017         case MSR_K7_EVNTSEL1:
2018         case MSR_K7_EVNTSEL2:
2019         case MSR_K7_EVNTSEL3:
2020                 if (data != 0)
2021                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2022                                     "0x%x data 0x%llx\n", msr, data);
2023                 break;
2024         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2025          * so we ignore writes to make it happy.
2026          */
2027         case MSR_K7_PERFCTR0:
2028         case MSR_K7_PERFCTR1:
2029         case MSR_K7_PERFCTR2:
2030         case MSR_K7_PERFCTR3:
2031                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2032                             "0x%x data 0x%llx\n", msr, data);
2033                 break;
2034         case MSR_P6_PERFCTR0:
2035         case MSR_P6_PERFCTR1:
2036                 pr = true;
2037         case MSR_P6_EVNTSEL0:
2038         case MSR_P6_EVNTSEL1:
2039                 if (kvm_pmu_msr(vcpu, msr))
2040                         return kvm_pmu_set_msr(vcpu, msr, data);
2041
2042                 if (pr || data != 0)
2043                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2044                                     "0x%x data 0x%llx\n", msr, data);
2045                 break;
2046         case MSR_K7_CLK_CTL:
2047                 /*
2048                  * Ignore all writes to this no longer documented MSR.
2049                  * Writes are only relevant for old K7 processors,
2050                  * all pre-dating SVM, but a recommended workaround from
2051                  * AMD for these chips. It is possible to specify the
2052                  * affected processor models on the command line, hence
2053                  * the need to ignore the workaround.
2054                  */
2055                 break;
2056         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2057                 if (kvm_hv_msr_partition_wide(msr)) {
2058                         int r;
2059                         mutex_lock(&vcpu->kvm->lock);
2060                         r = set_msr_hyperv_pw(vcpu, msr, data);
2061                         mutex_unlock(&vcpu->kvm->lock);
2062                         return r;
2063                 } else
2064                         return set_msr_hyperv(vcpu, msr, data);
2065                 break;
2066         case MSR_IA32_BBL_CR_CTL3:
2067                 /* Drop writes to this legacy MSR -- see rdmsr
2068                  * counterpart for further detail.
2069                  */
2070                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2071                 break;
2072         case MSR_AMD64_OSVW_ID_LENGTH:
2073                 if (!guest_cpuid_has_osvw(vcpu))
2074                         return 1;
2075                 vcpu->arch.osvw.length = data;
2076                 break;
2077         case MSR_AMD64_OSVW_STATUS:
2078                 if (!guest_cpuid_has_osvw(vcpu))
2079                         return 1;
2080                 vcpu->arch.osvw.status = data;
2081                 break;
2082         default:
2083                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2084                         return xen_hvm_config(vcpu, data);
2085                 if (kvm_pmu_msr(vcpu, msr))
2086                         return kvm_pmu_set_msr(vcpu, msr, data);
2087                 if (!ignore_msrs) {
2088                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2089                                     msr, data);
2090                         return 1;
2091                 } else {
2092                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2093                                     msr, data);
2094                         break;
2095                 }
2096         }
2097         return 0;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2100
2101
2102 /*
2103  * Reads an msr value (of 'msr_index') into 'pdata'.
2104  * Returns 0 on success, non-0 otherwise.
2105  * Assumes vcpu_load() was already called.
2106  */
2107 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2108 {
2109         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2110 }
2111
2112 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2113 {
2114         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2115
2116         if (!msr_mtrr_valid(msr))
2117                 return 1;
2118
2119         if (msr == MSR_MTRRdefType)
2120                 *pdata = vcpu->arch.mtrr_state.def_type +
2121                          (vcpu->arch.mtrr_state.enabled << 10);
2122         else if (msr == MSR_MTRRfix64K_00000)
2123                 *pdata = p[0];
2124         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2125                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2126         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2127                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2128         else if (msr == MSR_IA32_CR_PAT)
2129                 *pdata = vcpu->arch.pat;
2130         else {  /* Variable MTRRs */
2131                 int idx, is_mtrr_mask;
2132                 u64 *pt;
2133
2134                 idx = (msr - 0x200) / 2;
2135                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2136                 if (!is_mtrr_mask)
2137                         pt =
2138                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2139                 else
2140                         pt =
2141                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2142                 *pdata = *pt;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150         u64 data;
2151         u64 mcg_cap = vcpu->arch.mcg_cap;
2152         unsigned bank_num = mcg_cap & 0xff;
2153
2154         switch (msr) {
2155         case MSR_IA32_P5_MC_ADDR:
2156         case MSR_IA32_P5_MC_TYPE:
2157                 data = 0;
2158                 break;
2159         case MSR_IA32_MCG_CAP:
2160                 data = vcpu->arch.mcg_cap;
2161                 break;
2162         case MSR_IA32_MCG_CTL:
2163                 if (!(mcg_cap & MCG_CTL_P))
2164                         return 1;
2165                 data = vcpu->arch.mcg_ctl;
2166                 break;
2167         case MSR_IA32_MCG_STATUS:
2168                 data = vcpu->arch.mcg_status;
2169                 break;
2170         default:
2171                 if (msr >= MSR_IA32_MC0_CTL &&
2172                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2173                         u32 offset = msr - MSR_IA32_MC0_CTL;
2174                         data = vcpu->arch.mce_banks[offset];
2175                         break;
2176                 }
2177                 return 1;
2178         }
2179         *pdata = data;
2180         return 0;
2181 }
2182
2183 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2184 {
2185         u64 data = 0;
2186         struct kvm *kvm = vcpu->kvm;
2187
2188         switch (msr) {
2189         case HV_X64_MSR_GUEST_OS_ID:
2190                 data = kvm->arch.hv_guest_os_id;
2191                 break;
2192         case HV_X64_MSR_HYPERCALL:
2193                 data = kvm->arch.hv_hypercall;
2194                 break;
2195         default:
2196                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2197                 return 1;
2198         }
2199
2200         *pdata = data;
2201         return 0;
2202 }
2203
2204 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2205 {
2206         u64 data = 0;
2207
2208         switch (msr) {
2209         case HV_X64_MSR_VP_INDEX: {
2210                 int r;
2211                 struct kvm_vcpu *v;
2212                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2213                         if (v == vcpu)
2214                                 data = r;
2215                 break;
2216         }
2217         case HV_X64_MSR_EOI:
2218                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2219         case HV_X64_MSR_ICR:
2220                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2221         case HV_X64_MSR_TPR:
2222                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2223         case HV_X64_MSR_APIC_ASSIST_PAGE:
2224                 data = vcpu->arch.hv_vapic;
2225                 break;
2226         default:
2227                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2228                 return 1;
2229         }
2230         *pdata = data;
2231         return 0;
2232 }
2233
2234 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2235 {
2236         u64 data;
2237
2238         switch (msr) {
2239         case MSR_IA32_PLATFORM_ID:
2240         case MSR_IA32_EBL_CR_POWERON:
2241         case MSR_IA32_DEBUGCTLMSR:
2242         case MSR_IA32_LASTBRANCHFROMIP:
2243         case MSR_IA32_LASTBRANCHTOIP:
2244         case MSR_IA32_LASTINTFROMIP:
2245         case MSR_IA32_LASTINTTOIP:
2246         case MSR_K8_SYSCFG:
2247         case MSR_K7_HWCR:
2248         case MSR_VM_HSAVE_PA:
2249         case MSR_K7_EVNTSEL0:
2250         case MSR_K7_PERFCTR0:
2251         case MSR_K8_INT_PENDING_MSG:
2252         case MSR_AMD64_NB_CFG:
2253         case MSR_FAM10H_MMIO_CONF_BASE:
2254                 data = 0;
2255                 break;
2256         case MSR_P6_PERFCTR0:
2257         case MSR_P6_PERFCTR1:
2258         case MSR_P6_EVNTSEL0:
2259         case MSR_P6_EVNTSEL1:
2260                 if (kvm_pmu_msr(vcpu, msr))
2261                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2262                 data = 0;
2263                 break;
2264         case MSR_IA32_UCODE_REV:
2265                 data = 0x100000000ULL;
2266                 break;
2267         case MSR_MTRRcap:
2268                 data = 0x500 | KVM_NR_VAR_MTRR;
2269                 break;
2270         case 0x200 ... 0x2ff:
2271                 return get_msr_mtrr(vcpu, msr, pdata);
2272         case 0xcd: /* fsb frequency */
2273                 data = 3;
2274                 break;
2275                 /*
2276                  * MSR_EBC_FREQUENCY_ID
2277                  * Conservative value valid for even the basic CPU models.
2278                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2279                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2280                  * and 266MHz for model 3, or 4. Set Core Clock
2281                  * Frequency to System Bus Frequency Ratio to 1 (bits
2282                  * 31:24) even though these are only valid for CPU
2283                  * models > 2, however guests may end up dividing or
2284                  * multiplying by zero otherwise.
2285                  */
2286         case MSR_EBC_FREQUENCY_ID:
2287                 data = 1 << 24;
2288                 break;
2289         case MSR_IA32_APICBASE:
2290                 data = kvm_get_apic_base(vcpu);
2291                 break;
2292         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2293                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2294                 break;
2295         case MSR_IA32_TSCDEADLINE:
2296                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2297                 break;
2298         case MSR_IA32_TSC_ADJUST:
2299                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2300                 break;
2301         case MSR_IA32_MISC_ENABLE:
2302                 data = vcpu->arch.ia32_misc_enable_msr;
2303                 break;
2304         case MSR_IA32_PERF_STATUS:
2305                 /* TSC increment by tick */
2306                 data = 1000ULL;
2307                 /* CPU multiplier */
2308                 data |= (((uint64_t)4ULL) << 40);
2309                 break;
2310         case MSR_EFER:
2311                 data = vcpu->arch.efer;
2312                 break;
2313         case MSR_KVM_WALL_CLOCK:
2314         case MSR_KVM_WALL_CLOCK_NEW:
2315                 data = vcpu->kvm->arch.wall_clock;
2316                 break;
2317         case MSR_KVM_SYSTEM_TIME:
2318         case MSR_KVM_SYSTEM_TIME_NEW:
2319                 data = vcpu->arch.time;
2320                 break;
2321         case MSR_KVM_ASYNC_PF_EN:
2322                 data = vcpu->arch.apf.msr_val;
2323                 break;
2324         case MSR_KVM_STEAL_TIME:
2325                 data = vcpu->arch.st.msr_val;
2326                 break;
2327         case MSR_KVM_PV_EOI_EN:
2328                 data = vcpu->arch.pv_eoi.msr_val;
2329                 break;
2330         case MSR_IA32_P5_MC_ADDR:
2331         case MSR_IA32_P5_MC_TYPE:
2332         case MSR_IA32_MCG_CAP:
2333         case MSR_IA32_MCG_CTL:
2334         case MSR_IA32_MCG_STATUS:
2335         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2336                 return get_msr_mce(vcpu, msr, pdata);
2337         case MSR_K7_CLK_CTL:
2338                 /*
2339                  * Provide expected ramp-up count for K7. All other
2340                  * are set to zero, indicating minimum divisors for
2341                  * every field.
2342                  *
2343                  * This prevents guest kernels on AMD host with CPU
2344                  * type 6, model 8 and higher from exploding due to
2345                  * the rdmsr failing.
2346                  */
2347                 data = 0x20000000;
2348                 break;
2349         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2350                 if (kvm_hv_msr_partition_wide(msr)) {
2351                         int r;
2352                         mutex_lock(&vcpu->kvm->lock);
2353                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2354                         mutex_unlock(&vcpu->kvm->lock);
2355                         return r;
2356                 } else
2357                         return get_msr_hyperv(vcpu, msr, pdata);
2358                 break;
2359         case MSR_IA32_BBL_CR_CTL3:
2360                 /* This legacy MSR exists but isn't fully documented in current
2361                  * silicon.  It is however accessed by winxp in very narrow
2362                  * scenarios where it sets bit #19, itself documented as
2363                  * a "reserved" bit.  Best effort attempt to source coherent
2364                  * read data here should the balance of the register be
2365                  * interpreted by the guest:
2366                  *
2367                  * L2 cache control register 3: 64GB range, 256KB size,
2368                  * enabled, latency 0x1, configured
2369                  */
2370                 data = 0xbe702111;
2371                 break;
2372         case MSR_AMD64_OSVW_ID_LENGTH:
2373                 if (!guest_cpuid_has_osvw(vcpu))
2374                         return 1;
2375                 data = vcpu->arch.osvw.length;
2376                 break;
2377         case MSR_AMD64_OSVW_STATUS:
2378                 if (!guest_cpuid_has_osvw(vcpu))
2379                         return 1;
2380                 data = vcpu->arch.osvw.status;
2381                 break;
2382         default:
2383                 if (kvm_pmu_msr(vcpu, msr))
2384                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2385                 if (!ignore_msrs) {
2386                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2387                         return 1;
2388                 } else {
2389                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2390                         data = 0;
2391                 }
2392                 break;
2393         }
2394         *pdata = data;
2395         return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2398
2399 /*
2400  * Read or write a bunch of msrs. All parameters are kernel addresses.
2401  *
2402  * @return number of msrs set successfully.
2403  */
2404 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2405                     struct kvm_msr_entry *entries,
2406                     int (*do_msr)(struct kvm_vcpu *vcpu,
2407                                   unsigned index, u64 *data))
2408 {
2409         int i, idx;
2410
2411         idx = srcu_read_lock(&vcpu->kvm->srcu);
2412         for (i = 0; i < msrs->nmsrs; ++i)
2413                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2414                         break;
2415         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2416
2417         return i;
2418 }
2419
2420 /*
2421  * Read or write a bunch of msrs. Parameters are user addresses.
2422  *
2423  * @return number of msrs set successfully.
2424  */
2425 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2426                   int (*do_msr)(struct kvm_vcpu *vcpu,
2427                                 unsigned index, u64 *data),
2428                   int writeback)
2429 {
2430         struct kvm_msrs msrs;
2431         struct kvm_msr_entry *entries;
2432         int r, n;
2433         unsigned size;
2434
2435         r = -EFAULT;
2436         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2437                 goto out;
2438
2439         r = -E2BIG;
2440         if (msrs.nmsrs >= MAX_IO_MSRS)
2441                 goto out;
2442
2443         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2444         entries = memdup_user(user_msrs->entries, size);
2445         if (IS_ERR(entries)) {
2446                 r = PTR_ERR(entries);
2447                 goto out;
2448         }
2449
2450         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2451         if (r < 0)
2452                 goto out_free;
2453
2454         r = -EFAULT;
2455         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2456                 goto out_free;
2457
2458         r = n;
2459
2460 out_free:
2461         kfree(entries);
2462 out:
2463         return r;
2464 }
2465
2466 int kvm_dev_ioctl_check_extension(long ext)
2467 {
2468         int r;
2469
2470         switch (ext) {
2471         case KVM_CAP_IRQCHIP:
2472         case KVM_CAP_HLT:
2473         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2474         case KVM_CAP_SET_TSS_ADDR:
2475         case KVM_CAP_EXT_CPUID:
2476         case KVM_CAP_CLOCKSOURCE:
2477         case KVM_CAP_PIT:
2478         case KVM_CAP_NOP_IO_DELAY:
2479         case KVM_CAP_MP_STATE:
2480         case KVM_CAP_SYNC_MMU:
2481         case KVM_CAP_USER_NMI:
2482         case KVM_CAP_REINJECT_CONTROL:
2483         case KVM_CAP_IRQ_INJECT_STATUS:
2484         case KVM_CAP_ASSIGN_DEV_IRQ:
2485         case KVM_CAP_IRQFD:
2486         case KVM_CAP_IOEVENTFD:
2487         case KVM_CAP_PIT2:
2488         case KVM_CAP_PIT_STATE2:
2489         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2490         case KVM_CAP_XEN_HVM:
2491         case KVM_CAP_ADJUST_CLOCK:
2492         case KVM_CAP_VCPU_EVENTS:
2493         case KVM_CAP_HYPERV:
2494         case KVM_CAP_HYPERV_VAPIC:
2495         case KVM_CAP_HYPERV_SPIN:
2496         case KVM_CAP_PCI_SEGMENT:
2497         case KVM_CAP_DEBUGREGS:
2498         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2499         case KVM_CAP_XSAVE:
2500         case KVM_CAP_ASYNC_PF:
2501         case KVM_CAP_GET_TSC_KHZ:
2502         case KVM_CAP_PCI_2_3:
2503         case KVM_CAP_KVMCLOCK_CTRL:
2504         case KVM_CAP_READONLY_MEM:
2505         case KVM_CAP_IRQFD_RESAMPLE:
2506                 r = 1;
2507                 break;
2508         case KVM_CAP_COALESCED_MMIO:
2509                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2510                 break;
2511         case KVM_CAP_VAPIC:
2512                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2513                 break;
2514         case KVM_CAP_NR_VCPUS:
2515                 r = KVM_SOFT_MAX_VCPUS;
2516                 break;
2517         case KVM_CAP_MAX_VCPUS:
2518                 r = KVM_MAX_VCPUS;
2519                 break;
2520         case KVM_CAP_NR_MEMSLOTS:
2521                 r = KVM_USER_MEM_SLOTS;
2522                 break;
2523         case KVM_CAP_PV_MMU:    /* obsolete */
2524                 r = 0;
2525                 break;
2526         case KVM_CAP_IOMMU:
2527                 r = iommu_present(&pci_bus_type);
2528                 break;
2529         case KVM_CAP_MCE:
2530                 r = KVM_MAX_MCE_BANKS;
2531                 break;
2532         case KVM_CAP_XCRS:
2533                 r = cpu_has_xsave;
2534                 break;
2535         case KVM_CAP_TSC_CONTROL:
2536                 r = kvm_has_tsc_control;
2537                 break;
2538         case KVM_CAP_TSC_DEADLINE_TIMER:
2539                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2540                 break;
2541         default:
2542                 r = 0;
2543                 break;
2544         }
2545         return r;
2546
2547 }
2548
2549 long kvm_arch_dev_ioctl(struct file *filp,
2550                         unsigned int ioctl, unsigned long arg)
2551 {
2552         void __user *argp = (void __user *)arg;
2553         long r;
2554
2555         switch (ioctl) {
2556         case KVM_GET_MSR_INDEX_LIST: {
2557                 struct kvm_msr_list __user *user_msr_list = argp;
2558                 struct kvm_msr_list msr_list;
2559                 unsigned n;
2560
2561                 r = -EFAULT;
2562                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2563                         goto out;
2564                 n = msr_list.nmsrs;
2565                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2566                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2567                         goto out;
2568                 r = -E2BIG;
2569                 if (n < msr_list.nmsrs)
2570                         goto out;
2571                 r = -EFAULT;
2572                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2573                                  num_msrs_to_save * sizeof(u32)))
2574                         goto out;
2575                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2576                                  &emulated_msrs,
2577                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2578                         goto out;
2579                 r = 0;
2580                 break;
2581         }
2582         case KVM_GET_SUPPORTED_CPUID: {
2583                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2584                 struct kvm_cpuid2 cpuid;
2585
2586                 r = -EFAULT;
2587                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2588                         goto out;
2589                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2590                                                       cpuid_arg->entries);
2591                 if (r)
2592                         goto out;
2593
2594                 r = -EFAULT;
2595                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2601                 u64 mce_cap;
2602
2603                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2604                 r = -EFAULT;
2605                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2606                         goto out;
2607                 r = 0;
2608                 break;
2609         }
2610         default:
2611                 r = -EINVAL;
2612         }
2613 out:
2614         return r;
2615 }
2616
2617 static void wbinvd_ipi(void *garbage)
2618 {
2619         wbinvd();
2620 }
2621
2622 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2623 {
2624         return vcpu->kvm->arch.iommu_domain &&
2625                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2626 }
2627
2628 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2629 {
2630         /* Address WBINVD may be executed by guest */
2631         if (need_emulate_wbinvd(vcpu)) {
2632                 if (kvm_x86_ops->has_wbinvd_exit())
2633                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2634                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2635                         smp_call_function_single(vcpu->cpu,
2636                                         wbinvd_ipi, NULL, 1);
2637         }
2638
2639         kvm_x86_ops->vcpu_load(vcpu, cpu);
2640
2641         /* Apply any externally detected TSC adjustments (due to suspend) */
2642         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2643                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2644                 vcpu->arch.tsc_offset_adjustment = 0;
2645                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2646         }
2647
2648         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2649                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2650                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2651                 if (tsc_delta < 0)
2652                         mark_tsc_unstable("KVM discovered backwards TSC");
2653                 if (check_tsc_unstable()) {
2654                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2655                                                 vcpu->arch.last_guest_tsc);
2656                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2657                         vcpu->arch.tsc_catchup = 1;
2658                 }
2659                 /*
2660                  * On a host with synchronized TSC, there is no need to update
2661                  * kvmclock on vcpu->cpu migration
2662                  */
2663                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2664                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2665                 if (vcpu->cpu != cpu)
2666                         kvm_migrate_timers(vcpu);
2667                 vcpu->cpu = cpu;
2668         }
2669
2670         accumulate_steal_time(vcpu);
2671         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2672 }
2673
2674 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2675 {
2676         kvm_x86_ops->vcpu_put(vcpu);
2677         kvm_put_guest_fpu(vcpu);
2678         vcpu->arch.last_host_tsc = native_read_tsc();
2679 }
2680
2681 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2682                                     struct kvm_lapic_state *s)
2683 {
2684         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2685
2686         return 0;
2687 }
2688
2689 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2690                                     struct kvm_lapic_state *s)
2691 {
2692         kvm_apic_post_state_restore(vcpu, s);
2693         update_cr8_intercept(vcpu);
2694
2695         return 0;
2696 }
2697
2698 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2699                                     struct kvm_interrupt *irq)
2700 {
2701         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2702                 return -EINVAL;
2703         if (irqchip_in_kernel(vcpu->kvm))
2704                 return -ENXIO;
2705
2706         kvm_queue_interrupt(vcpu, irq->irq, false);
2707         kvm_make_request(KVM_REQ_EVENT, vcpu);
2708
2709         return 0;
2710 }
2711
2712 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2713 {
2714         kvm_inject_nmi(vcpu);
2715
2716         return 0;
2717 }
2718
2719 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2720                                            struct kvm_tpr_access_ctl *tac)
2721 {
2722         if (tac->flags)
2723                 return -EINVAL;
2724         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2725         return 0;
2726 }
2727
2728 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2729                                         u64 mcg_cap)
2730 {
2731         int r;
2732         unsigned bank_num = mcg_cap & 0xff, bank;
2733
2734         r = -EINVAL;
2735         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2736                 goto out;
2737         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2738                 goto out;
2739         r = 0;
2740         vcpu->arch.mcg_cap = mcg_cap;
2741         /* Init IA32_MCG_CTL to all 1s */
2742         if (mcg_cap & MCG_CTL_P)
2743                 vcpu->arch.mcg_ctl = ~(u64)0;
2744         /* Init IA32_MCi_CTL to all 1s */
2745         for (bank = 0; bank < bank_num; bank++)
2746                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2747 out:
2748         return r;
2749 }
2750
2751 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2752                                       struct kvm_x86_mce *mce)
2753 {
2754         u64 mcg_cap = vcpu->arch.mcg_cap;
2755         unsigned bank_num = mcg_cap & 0xff;
2756         u64 *banks = vcpu->arch.mce_banks;
2757
2758         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2759                 return -EINVAL;
2760         /*
2761          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2762          * reporting is disabled
2763          */
2764         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2765             vcpu->arch.mcg_ctl != ~(u64)0)
2766                 return 0;
2767         banks += 4 * mce->bank;
2768         /*
2769          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2770          * reporting is disabled for the bank
2771          */
2772         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2773                 return 0;
2774         if (mce->status & MCI_STATUS_UC) {
2775                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2776                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2777                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2778                         return 0;
2779                 }
2780                 if (banks[1] & MCI_STATUS_VAL)
2781                         mce->status |= MCI_STATUS_OVER;
2782                 banks[2] = mce->addr;
2783                 banks[3] = mce->misc;
2784                 vcpu->arch.mcg_status = mce->mcg_status;
2785                 banks[1] = mce->status;
2786                 kvm_queue_exception(vcpu, MC_VECTOR);
2787         } else if (!(banks[1] & MCI_STATUS_VAL)
2788                    || !(banks[1] & MCI_STATUS_UC)) {
2789                 if (banks[1] & MCI_STATUS_VAL)
2790                         mce->status |= MCI_STATUS_OVER;
2791                 banks[2] = mce->addr;
2792                 banks[3] = mce->misc;
2793                 banks[1] = mce->status;
2794         } else
2795                 banks[1] |= MCI_STATUS_OVER;
2796         return 0;
2797 }
2798
2799 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2800                                                struct kvm_vcpu_events *events)
2801 {
2802         process_nmi(vcpu);
2803         events->exception.injected =
2804                 vcpu->arch.exception.pending &&
2805                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2806         events->exception.nr = vcpu->arch.exception.nr;
2807         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2808         events->exception.pad = 0;
2809         events->exception.error_code = vcpu->arch.exception.error_code;
2810
2811         events->interrupt.injected =
2812                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2813         events->interrupt.nr = vcpu->arch.interrupt.nr;
2814         events->interrupt.soft = 0;
2815         events->interrupt.shadow =
2816                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2817                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2818
2819         events->nmi.injected = vcpu->arch.nmi_injected;
2820         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2821         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2822         events->nmi.pad = 0;
2823
2824         events->sipi_vector = vcpu->arch.sipi_vector;
2825
2826         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2827                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2828                          | KVM_VCPUEVENT_VALID_SHADOW);
2829         memset(&events->reserved, 0, sizeof(events->reserved));
2830 }
2831
2832 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2833                                               struct kvm_vcpu_events *events)
2834 {
2835         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2836                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2837                               | KVM_VCPUEVENT_VALID_SHADOW))
2838                 return -EINVAL;
2839
2840         process_nmi(vcpu);
2841         vcpu->arch.exception.pending = events->exception.injected;
2842         vcpu->arch.exception.nr = events->exception.nr;
2843         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2844         vcpu->arch.exception.error_code = events->exception.error_code;
2845
2846         vcpu->arch.interrupt.pending = events->interrupt.injected;
2847         vcpu->arch.interrupt.nr = events->interrupt.nr;
2848         vcpu->arch.interrupt.soft = events->interrupt.soft;
2849         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2850                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2851                                                   events->interrupt.shadow);
2852
2853         vcpu->arch.nmi_injected = events->nmi.injected;
2854         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2855                 vcpu->arch.nmi_pending = events->nmi.pending;
2856         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2857
2858         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2859                 vcpu->arch.sipi_vector = events->sipi_vector;
2860
2861         kvm_make_request(KVM_REQ_EVENT, vcpu);
2862
2863         return 0;
2864 }
2865
2866 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2867                                              struct kvm_debugregs *dbgregs)
2868 {
2869         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2870         dbgregs->dr6 = vcpu->arch.dr6;
2871         dbgregs->dr7 = vcpu->arch.dr7;
2872         dbgregs->flags = 0;
2873         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2874 }
2875
2876 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2877                                             struct kvm_debugregs *dbgregs)
2878 {
2879         if (dbgregs->flags)
2880                 return -EINVAL;
2881
2882         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2883         vcpu->arch.dr6 = dbgregs->dr6;
2884         vcpu->arch.dr7 = dbgregs->dr7;
2885
2886         return 0;
2887 }
2888
2889 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2890                                          struct kvm_xsave *guest_xsave)
2891 {
2892         if (cpu_has_xsave)
2893                 memcpy(guest_xsave->region,
2894                         &vcpu->arch.guest_fpu.state->xsave,
2895                         xstate_size);
2896         else {
2897                 memcpy(guest_xsave->region,
2898                         &vcpu->arch.guest_fpu.state->fxsave,
2899                         sizeof(struct i387_fxsave_struct));
2900                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2901                         XSTATE_FPSSE;
2902         }
2903 }
2904
2905 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2906                                         struct kvm_xsave *guest_xsave)
2907 {
2908         u64 xstate_bv =
2909                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2910
2911         if (cpu_has_xsave)
2912                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2913                         guest_xsave->region, xstate_size);
2914         else {
2915                 if (xstate_bv & ~XSTATE_FPSSE)
2916                         return -EINVAL;
2917                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2918                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2919         }
2920         return 0;
2921 }
2922
2923 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2924                                         struct kvm_xcrs *guest_xcrs)
2925 {
2926         if (!cpu_has_xsave) {
2927                 guest_xcrs->nr_xcrs = 0;
2928                 return;
2929         }
2930
2931         guest_xcrs->nr_xcrs = 1;
2932         guest_xcrs->flags = 0;
2933         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2934         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2935 }
2936
2937 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2938                                        struct kvm_xcrs *guest_xcrs)
2939 {
2940         int i, r = 0;
2941
2942         if (!cpu_has_xsave)
2943                 return -EINVAL;
2944
2945         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2946                 return -EINVAL;
2947
2948         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2949                 /* Only support XCR0 currently */
2950                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2951                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2952                                 guest_xcrs->xcrs[0].value);
2953                         break;
2954                 }
2955         if (r)
2956                 r = -EINVAL;
2957         return r;
2958 }
2959
2960 /*
2961  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2962  * stopped by the hypervisor.  This function will be called from the host only.
2963  * EINVAL is returned when the host attempts to set the flag for a guest that
2964  * does not support pv clocks.
2965  */
2966 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2967 {
2968         if (!vcpu->arch.time_page)
2969                 return -EINVAL;
2970         vcpu->arch.pvclock_set_guest_stopped_request = true;
2971         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2972         return 0;
2973 }
2974
2975 long kvm_arch_vcpu_ioctl(struct file *filp,
2976                          unsigned int ioctl, unsigned long arg)
2977 {
2978         struct kvm_vcpu *vcpu = filp->private_data;
2979         void __user *argp = (void __user *)arg;
2980         int r;
2981         union {
2982                 struct kvm_lapic_state *lapic;
2983                 struct kvm_xsave *xsave;
2984                 struct kvm_xcrs *xcrs;
2985                 void *buffer;
2986         } u;
2987
2988         u.buffer = NULL;
2989         switch (ioctl) {
2990         case KVM_GET_LAPIC: {
2991                 r = -EINVAL;
2992                 if (!vcpu->arch.apic)
2993                         goto out;
2994                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2995
2996                 r = -ENOMEM;
2997                 if (!u.lapic)
2998                         goto out;
2999                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3000                 if (r)
3001                         goto out;
3002                 r = -EFAULT;
3003                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3004                         goto out;
3005                 r = 0;
3006                 break;
3007         }
3008         case KVM_SET_LAPIC: {
3009                 r = -EINVAL;
3010                 if (!vcpu->arch.apic)
3011                         goto out;
3012                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3013                 if (IS_ERR(u.lapic))
3014                         return PTR_ERR(u.lapic);
3015
3016                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3017                 break;
3018         }
3019         case KVM_INTERRUPT: {
3020                 struct kvm_interrupt irq;
3021
3022                 r = -EFAULT;
3023                 if (copy_from_user(&irq, argp, sizeof irq))
3024                         goto out;
3025                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3026                 break;
3027         }
3028         case KVM_NMI: {
3029                 r = kvm_vcpu_ioctl_nmi(vcpu);
3030                 break;
3031         }
3032         case KVM_SET_CPUID: {
3033                 struct kvm_cpuid __user *cpuid_arg = argp;
3034                 struct kvm_cpuid cpuid;
3035
3036                 r = -EFAULT;
3037                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3038                         goto out;
3039                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3040                 break;
3041         }
3042         case KVM_SET_CPUID2: {
3043                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3044                 struct kvm_cpuid2 cpuid;
3045
3046                 r = -EFAULT;
3047                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3048                         goto out;
3049                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3050                                               cpuid_arg->entries);
3051                 break;
3052         }
3053         case KVM_GET_CPUID2: {
3054                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3055                 struct kvm_cpuid2 cpuid;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3059                         goto out;
3060                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3061                                               cpuid_arg->entries);
3062                 if (r)
3063                         goto out;
3064                 r = -EFAULT;
3065                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3066                         goto out;
3067                 r = 0;
3068                 break;
3069         }
3070         case KVM_GET_MSRS:
3071                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3072                 break;
3073         case KVM_SET_MSRS:
3074                 r = msr_io(vcpu, argp, do_set_msr, 0);
3075                 break;
3076         case KVM_TPR_ACCESS_REPORTING: {
3077                 struct kvm_tpr_access_ctl tac;
3078
3079                 r = -EFAULT;
3080                 if (copy_from_user(&tac, argp, sizeof tac))
3081                         goto out;
3082                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3083                 if (r)
3084                         goto out;
3085                 r = -EFAULT;
3086                 if (copy_to_user(argp, &tac, sizeof tac))
3087                         goto out;
3088                 r = 0;
3089                 break;
3090         };
3091         case KVM_SET_VAPIC_ADDR: {
3092                 struct kvm_vapic_addr va;
3093
3094                 r = -EINVAL;
3095                 if (!irqchip_in_kernel(vcpu->kvm))
3096                         goto out;
3097                 r = -EFAULT;
3098                 if (copy_from_user(&va, argp, sizeof va))
3099                         goto out;
3100                 r = 0;
3101                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3102                 break;
3103         }
3104         case KVM_X86_SETUP_MCE: {
3105                 u64 mcg_cap;
3106
3107                 r = -EFAULT;
3108                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3109                         goto out;
3110                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3111                 break;
3112         }
3113         case KVM_X86_SET_MCE: {
3114                 struct kvm_x86_mce mce;
3115
3116                 r = -EFAULT;
3117                 if (copy_from_user(&mce, argp, sizeof mce))
3118                         goto out;
3119                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3120                 break;
3121         }
3122         case KVM_GET_VCPU_EVENTS: {
3123                 struct kvm_vcpu_events events;
3124
3125                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3126
3127                 r = -EFAULT;
3128                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3129                         break;
3130                 r = 0;
3131                 break;
3132         }
3133         case KVM_SET_VCPU_EVENTS: {
3134                 struct kvm_vcpu_events events;
3135
3136                 r = -EFAULT;
3137                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3138                         break;
3139
3140                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3141                 break;
3142         }
3143         case KVM_GET_DEBUGREGS: {
3144                 struct kvm_debugregs dbgregs;
3145
3146                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3147
3148                 r = -EFAULT;
3149                 if (copy_to_user(argp, &dbgregs,
3150                                  sizeof(struct kvm_debugregs)))
3151                         break;
3152                 r = 0;
3153                 break;
3154         }
3155         case KVM_SET_DEBUGREGS: {
3156                 struct kvm_debugregs dbgregs;
3157
3158                 r = -EFAULT;
3159                 if (copy_from_user(&dbgregs, argp,
3160                                    sizeof(struct kvm_debugregs)))
3161                         break;
3162
3163                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3164                 break;
3165         }
3166         case KVM_GET_XSAVE: {
3167                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3168                 r = -ENOMEM;
3169                 if (!u.xsave)
3170                         break;
3171
3172                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3173
3174                 r = -EFAULT;
3175                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3176                         break;
3177                 r = 0;
3178                 break;
3179         }
3180         case KVM_SET_XSAVE: {
3181                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3182                 if (IS_ERR(u.xsave))
3183                         return PTR_ERR(u.xsave);
3184
3185                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3186                 break;
3187         }
3188         case KVM_GET_XCRS: {
3189                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3190                 r = -ENOMEM;
3191                 if (!u.xcrs)
3192                         break;
3193
3194                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3195
3196                 r = -EFAULT;
3197                 if (copy_to_user(argp, u.xcrs,
3198                                  sizeof(struct kvm_xcrs)))
3199                         break;
3200                 r = 0;
3201                 break;
3202         }
3203         case KVM_SET_XCRS: {
3204                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3205                 if (IS_ERR(u.xcrs))
3206                         return PTR_ERR(u.xcrs);
3207
3208                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3209                 break;
3210         }
3211         case KVM_SET_TSC_KHZ: {
3212                 u32 user_tsc_khz;
3213
3214                 r = -EINVAL;
3215                 user_tsc_khz = (u32)arg;
3216
3217                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3218                         goto out;
3219
3220                 if (user_tsc_khz == 0)
3221                         user_tsc_khz = tsc_khz;
3222
3223                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3224
3225                 r = 0;
3226                 goto out;
3227         }
3228         case KVM_GET_TSC_KHZ: {
3229                 r = vcpu->arch.virtual_tsc_khz;
3230                 goto out;
3231         }
3232         case KVM_KVMCLOCK_CTRL: {
3233                 r = kvm_set_guest_paused(vcpu);
3234                 goto out;
3235         }
3236         default:
3237                 r = -EINVAL;
3238         }
3239 out:
3240         kfree(u.buffer);
3241         return r;
3242 }
3243
3244 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3245 {
3246         return VM_FAULT_SIGBUS;
3247 }
3248
3249 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3250 {
3251         int ret;
3252
3253         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3254                 return -EINVAL;
3255         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3256         return ret;
3257 }
3258
3259 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3260                                               u64 ident_addr)
3261 {
3262         kvm->arch.ept_identity_map_addr = ident_addr;
3263         return 0;
3264 }
3265
3266 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3267                                           u32 kvm_nr_mmu_pages)
3268 {
3269         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3270                 return -EINVAL;
3271
3272         mutex_lock(&kvm->slots_lock);
3273
3274         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3275         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3276
3277         mutex_unlock(&kvm->slots_lock);
3278         return 0;
3279 }
3280
3281 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3282 {
3283         return kvm->arch.n_max_mmu_pages;
3284 }
3285
3286 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3287 {
3288         int r;
3289
3290         r = 0;
3291         switch (chip->chip_id) {
3292         case KVM_IRQCHIP_PIC_MASTER:
3293                 memcpy(&chip->chip.pic,
3294                         &pic_irqchip(kvm)->pics[0],
3295                         sizeof(struct kvm_pic_state));
3296                 break;
3297         case KVM_IRQCHIP_PIC_SLAVE:
3298                 memcpy(&chip->chip.pic,
3299                         &pic_irqchip(kvm)->pics[1],
3300                         sizeof(struct kvm_pic_state));
3301                 break;
3302         case KVM_IRQCHIP_IOAPIC:
3303                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3304                 break;
3305         default:
3306                 r = -EINVAL;
3307                 break;
3308         }
3309         return r;
3310 }
3311
3312 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3313 {
3314         int r;
3315
3316         r = 0;
3317         switch (chip->chip_id) {
3318         case KVM_IRQCHIP_PIC_MASTER:
3319                 spin_lock(&pic_irqchip(kvm)->lock);
3320                 memcpy(&pic_irqchip(kvm)->pics[0],
3321                         &chip->chip.pic,
3322                         sizeof(struct kvm_pic_state));
3323                 spin_unlock(&pic_irqchip(kvm)->lock);
3324                 break;
3325         case KVM_IRQCHIP_PIC_SLAVE:
3326                 spin_lock(&pic_irqchip(kvm)->lock);
3327                 memcpy(&pic_irqchip(kvm)->pics[1],
3328                         &chip->chip.pic,
3329                         sizeof(struct kvm_pic_state));
3330                 spin_unlock(&pic_irqchip(kvm)->lock);
3331                 break;
3332         case KVM_IRQCHIP_IOAPIC:
3333                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3334                 break;
3335         default:
3336                 r = -EINVAL;
3337                 break;
3338         }
3339         kvm_pic_update_irq(pic_irqchip(kvm));
3340         return r;
3341 }
3342
3343 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3344 {
3345         int r = 0;
3346
3347         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3348         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3349         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3350         return r;
3351 }
3352
3353 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3354 {
3355         int r = 0;
3356
3357         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3358         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3359         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3360         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3361         return r;
3362 }
3363
3364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3365 {
3366         int r = 0;
3367
3368         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3369         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3370                 sizeof(ps->channels));
3371         ps->flags = kvm->arch.vpit->pit_state.flags;
3372         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3373         memset(&ps->reserved, 0, sizeof(ps->reserved));
3374         return r;
3375 }
3376
3377 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3378 {
3379         int r = 0, start = 0;
3380         u32 prev_legacy, cur_legacy;
3381         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3382         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3383         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3384         if (!prev_legacy && cur_legacy)
3385                 start = 1;
3386         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3387                sizeof(kvm->arch.vpit->pit_state.channels));
3388         kvm->arch.vpit->pit_state.flags = ps->flags;
3389         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3390         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3391         return r;
3392 }
3393
3394 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3395                                  struct kvm_reinject_control *control)
3396 {
3397         if (!kvm->arch.vpit)
3398                 return -ENXIO;
3399         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3400         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3401         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3402         return 0;
3403 }
3404
3405 /**
3406  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3407  * @kvm: kvm instance
3408  * @log: slot id and address to which we copy the log
3409  *
3410  * We need to keep it in mind that VCPU threads can write to the bitmap
3411  * concurrently.  So, to avoid losing data, we keep the following order for
3412  * each bit:
3413  *
3414  *   1. Take a snapshot of the bit and clear it if needed.
3415  *   2. Write protect the corresponding page.
3416  *   3. Flush TLB's if needed.
3417  *   4. Copy the snapshot to the userspace.
3418  *
3419  * Between 2 and 3, the guest may write to the page using the remaining TLB
3420  * entry.  This is not a problem because the page will be reported dirty at
3421  * step 4 using the snapshot taken before and step 3 ensures that successive
3422  * writes will be logged for the next call.
3423  */
3424 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3425 {
3426         int r;
3427         struct kvm_memory_slot *memslot;
3428         unsigned long n, i;
3429         unsigned long *dirty_bitmap;
3430         unsigned long *dirty_bitmap_buffer;
3431         bool is_dirty = false;
3432
3433         mutex_lock(&kvm->slots_lock);
3434
3435         r = -EINVAL;
3436         if (log->slot >= KVM_USER_MEM_SLOTS)
3437                 goto out;
3438
3439         memslot = id_to_memslot(kvm->memslots, log->slot);
3440
3441         dirty_bitmap = memslot->dirty_bitmap;
3442         r = -ENOENT;
3443         if (!dirty_bitmap)
3444                 goto out;
3445
3446         n = kvm_dirty_bitmap_bytes(memslot);
3447
3448         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3449         memset(dirty_bitmap_buffer, 0, n);
3450
3451         spin_lock(&kvm->mmu_lock);
3452
3453         for (i = 0; i < n / sizeof(long); i++) {
3454                 unsigned long mask;
3455                 gfn_t offset;
3456
3457                 if (!dirty_bitmap[i])
3458                         continue;
3459
3460                 is_dirty = true;
3461
3462                 mask = xchg(&dirty_bitmap[i], 0);
3463                 dirty_bitmap_buffer[i] = mask;
3464
3465                 offset = i * BITS_PER_LONG;
3466                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3467         }
3468         if (is_dirty)
3469                 kvm_flush_remote_tlbs(kvm);
3470
3471         spin_unlock(&kvm->mmu_lock);
3472
3473         r = -EFAULT;
3474         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3475                 goto out;
3476
3477         r = 0;
3478 out:
3479         mutex_unlock(&kvm->slots_lock);
3480         return r;
3481 }
3482
3483 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3484 {
3485         if (!irqchip_in_kernel(kvm))
3486                 return -ENXIO;
3487
3488         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3489                                         irq_event->irq, irq_event->level);
3490         return 0;
3491 }
3492
3493 long kvm_arch_vm_ioctl(struct file *filp,
3494                        unsigned int ioctl, unsigned long arg)
3495 {
3496         struct kvm *kvm = filp->private_data;
3497         void __user *argp = (void __user *)arg;
3498         int r = -ENOTTY;
3499         /*
3500          * This union makes it completely explicit to gcc-3.x
3501          * that these two variables' stack usage should be
3502          * combined, not added together.
3503          */
3504         union {
3505                 struct kvm_pit_state ps;
3506                 struct kvm_pit_state2 ps2;
3507                 struct kvm_pit_config pit_config;
3508         } u;
3509
3510         switch (ioctl) {
3511         case KVM_SET_TSS_ADDR:
3512                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3513                 break;
3514         case KVM_SET_IDENTITY_MAP_ADDR: {
3515                 u64 ident_addr;
3516
3517                 r = -EFAULT;
3518                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3519                         goto out;
3520                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3521                 break;
3522         }
3523         case KVM_SET_NR_MMU_PAGES:
3524                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3525                 break;
3526         case KVM_GET_NR_MMU_PAGES:
3527                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3528                 break;
3529         case KVM_CREATE_IRQCHIP: {
3530                 struct kvm_pic *vpic;
3531
3532                 mutex_lock(&kvm->lock);
3533                 r = -EEXIST;
3534                 if (kvm->arch.vpic)
3535                         goto create_irqchip_unlock;
3536                 r = -EINVAL;
3537                 if (atomic_read(&kvm->online_vcpus))
3538                         goto create_irqchip_unlock;
3539                 r = -ENOMEM;
3540                 vpic = kvm_create_pic(kvm);
3541                 if (vpic) {
3542                         r = kvm_ioapic_init(kvm);
3543                         if (r) {
3544                                 mutex_lock(&kvm->slots_lock);
3545                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3546                                                           &vpic->dev_master);
3547                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3548                                                           &vpic->dev_slave);
3549                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550                                                           &vpic->dev_eclr);
3551                                 mutex_unlock(&kvm->slots_lock);
3552                                 kfree(vpic);
3553                                 goto create_irqchip_unlock;
3554                         }
3555                 } else
3556                         goto create_irqchip_unlock;
3557                 smp_wmb();
3558                 kvm->arch.vpic = vpic;
3559                 smp_wmb();
3560                 r = kvm_setup_default_irq_routing(kvm);
3561                 if (r) {
3562                         mutex_lock(&kvm->slots_lock);
3563                         mutex_lock(&kvm->irq_lock);
3564                         kvm_ioapic_destroy(kvm);
3565                         kvm_destroy_pic(kvm);
3566                         mutex_unlock(&kvm->irq_lock);
3567                         mutex_unlock(&kvm->slots_lock);
3568                 }
3569         create_irqchip_unlock:
3570                 mutex_unlock(&kvm->lock);
3571                 break;
3572         }
3573         case KVM_CREATE_PIT:
3574                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3575                 goto create_pit;
3576         case KVM_CREATE_PIT2:
3577                 r = -EFAULT;
3578                 if (copy_from_user(&u.pit_config, argp,
3579                                    sizeof(struct kvm_pit_config)))
3580                         goto out;
3581         create_pit:
3582                 mutex_lock(&kvm->slots_lock);
3583                 r = -EEXIST;
3584                 if (kvm->arch.vpit)
3585                         goto create_pit_unlock;
3586                 r = -ENOMEM;
3587                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3588                 if (kvm->arch.vpit)
3589                         r = 0;
3590         create_pit_unlock:
3591                 mutex_unlock(&kvm->slots_lock);
3592                 break;
3593         case KVM_GET_IRQCHIP: {
3594                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3595                 struct kvm_irqchip *chip;
3596
3597                 chip = memdup_user(argp, sizeof(*chip));
3598                 if (IS_ERR(chip)) {
3599                         r = PTR_ERR(chip);
3600                         goto out;
3601                 }
3602
3603                 r = -ENXIO;
3604                 if (!irqchip_in_kernel(kvm))
3605                         goto get_irqchip_out;
3606                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3607                 if (r)
3608                         goto get_irqchip_out;
3609                 r = -EFAULT;
3610                 if (copy_to_user(argp, chip, sizeof *chip))
3611                         goto get_irqchip_out;
3612                 r = 0;
3613         get_irqchip_out:
3614                 kfree(chip);
3615                 break;
3616         }
3617         case KVM_SET_IRQCHIP: {
3618                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3619                 struct kvm_irqchip *chip;
3620
3621                 chip = memdup_user(argp, sizeof(*chip));
3622                 if (IS_ERR(chip)) {
3623                         r = PTR_ERR(chip);
3624                         goto out;
3625                 }
3626
3627                 r = -ENXIO;
3628                 if (!irqchip_in_kernel(kvm))
3629                         goto set_irqchip_out;
3630                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3631                 if (r)
3632                         goto set_irqchip_out;
3633                 r = 0;
3634         set_irqchip_out:
3635                 kfree(chip);
3636                 break;
3637         }
3638         case KVM_GET_PIT: {
3639                 r = -EFAULT;
3640                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3641                         goto out;
3642                 r = -ENXIO;
3643                 if (!kvm->arch.vpit)
3644                         goto out;
3645                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3646                 if (r)
3647                         goto out;
3648                 r = -EFAULT;
3649                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3650                         goto out;
3651                 r = 0;
3652                 break;
3653         }
3654         case KVM_SET_PIT: {
3655                 r = -EFAULT;
3656                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3657                         goto out;
3658                 r = -ENXIO;
3659                 if (!kvm->arch.vpit)
3660                         goto out;
3661                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3662                 break;
3663         }
3664         case KVM_GET_PIT2: {
3665                 r = -ENXIO;
3666                 if (!kvm->arch.vpit)
3667                         goto out;
3668                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3669                 if (r)
3670                         goto out;
3671                 r = -EFAULT;
3672                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3673                         goto out;
3674                 r = 0;
3675                 break;
3676         }
3677         case KVM_SET_PIT2: {
3678                 r = -EFAULT;
3679                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3680                         goto out;
3681                 r = -ENXIO;
3682                 if (!kvm->arch.vpit)
3683                         goto out;
3684                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3685                 break;
3686         }
3687         case KVM_REINJECT_CONTROL: {
3688                 struct kvm_reinject_control control;
3689                 r =  -EFAULT;
3690                 if (copy_from_user(&control, argp, sizeof(control)))
3691                         goto out;
3692                 r = kvm_vm_ioctl_reinject(kvm, &control);
3693                 break;
3694         }
3695         case KVM_XEN_HVM_CONFIG: {
3696                 r = -EFAULT;
3697                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3698                                    sizeof(struct kvm_xen_hvm_config)))
3699                         goto out;
3700                 r = -EINVAL;
3701                 if (kvm->arch.xen_hvm_config.flags)
3702                         goto out;
3703                 r = 0;
3704                 break;
3705         }
3706         case KVM_SET_CLOCK: {
3707                 struct kvm_clock_data user_ns;
3708                 u64 now_ns;
3709                 s64 delta;
3710
3711                 r = -EFAULT;
3712                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3713                         goto out;
3714
3715                 r = -EINVAL;
3716                 if (user_ns.flags)
3717                         goto out;
3718
3719                 r = 0;
3720                 local_irq_disable();
3721                 now_ns = get_kernel_ns();
3722                 delta = user_ns.clock - now_ns;
3723                 local_irq_enable();
3724                 kvm->arch.kvmclock_offset = delta;
3725                 break;
3726         }
3727         case KVM_GET_CLOCK: {
3728                 struct kvm_clock_data user_ns;
3729                 u64 now_ns;
3730
3731                 local_irq_disable();
3732                 now_ns = get_kernel_ns();
3733                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3734                 local_irq_enable();
3735                 user_ns.flags = 0;
3736                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3737
3738                 r = -EFAULT;
3739                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3740                         goto out;
3741                 r = 0;
3742                 break;
3743         }
3744
3745         default:
3746                 ;
3747         }
3748 out:
3749         return r;
3750 }
3751
3752 static void kvm_init_msr_list(void)
3753 {
3754         u32 dummy[2];
3755         unsigned i, j;
3756
3757         /* skip the first msrs in the list. KVM-specific */
3758         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3759                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3760                         continue;
3761                 if (j < i)
3762                         msrs_to_save[j] = msrs_to_save[i];
3763                 j++;
3764         }
3765         num_msrs_to_save = j;
3766 }
3767
3768 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3769                            const void *v)
3770 {
3771         int handled = 0;
3772         int n;
3773
3774         do {
3775                 n = min(len, 8);
3776                 if (!(vcpu->arch.apic &&
3777                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3778                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3779                         break;
3780                 handled += n;
3781                 addr += n;
3782                 len -= n;
3783                 v += n;
3784         } while (len);
3785
3786         return handled;
3787 }
3788
3789 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3790 {
3791         int handled = 0;
3792         int n;
3793
3794         do {
3795                 n = min(len, 8);
3796                 if (!(vcpu->arch.apic &&
3797                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3798                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3799                         break;
3800                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3801                 handled += n;
3802                 addr += n;
3803                 len -= n;
3804                 v += n;
3805         } while (len);
3806
3807         return handled;
3808 }
3809
3810 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3811                         struct kvm_segment *var, int seg)
3812 {
3813         kvm_x86_ops->set_segment(vcpu, var, seg);
3814 }
3815
3816 void kvm_get_segment(struct kvm_vcpu *vcpu,
3817                      struct kvm_segment *var, int seg)
3818 {
3819         kvm_x86_ops->get_segment(vcpu, var, seg);
3820 }
3821
3822 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3823 {
3824         gpa_t t_gpa;
3825         struct x86_exception exception;
3826
3827         BUG_ON(!mmu_is_nested(vcpu));
3828
3829         /* NPT walks are always user-walks */
3830         access |= PFERR_USER_MASK;
3831         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3832
3833         return t_gpa;
3834 }
3835
3836 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3837                               struct x86_exception *exception)
3838 {
3839         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3840         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3841 }
3842
3843  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3844                                 struct x86_exception *exception)
3845 {
3846         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3847         access |= PFERR_FETCH_MASK;
3848         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3849 }
3850
3851 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3852                                struct x86_exception *exception)
3853 {
3854         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3855         access |= PFERR_WRITE_MASK;
3856         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3857 }
3858
3859 /* uses this to access any guest's mapped memory without checking CPL */
3860 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3861                                 struct x86_exception *exception)
3862 {
3863         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3864 }
3865
3866 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3867                                       struct kvm_vcpu *vcpu, u32 access,
3868                                       struct x86_exception *exception)
3869 {
3870         void *data = val;
3871         int r = X86EMUL_CONTINUE;
3872
3873         while (bytes) {
3874                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3875                                                             exception);
3876                 unsigned offset = addr & (PAGE_SIZE-1);
3877                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3878                 int ret;
3879
3880                 if (gpa == UNMAPPED_GVA)
3881                         return X86EMUL_PROPAGATE_FAULT;
3882                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3883                 if (ret < 0) {
3884                         r = X86EMUL_IO_NEEDED;
3885                         goto out;
3886                 }
3887
3888                 bytes -= toread;
3889                 data += toread;
3890                 addr += toread;
3891         }
3892 out:
3893         return r;
3894 }
3895
3896 /* used for instruction fetching */
3897 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3898                                 gva_t addr, void *val, unsigned int bytes,
3899                                 struct x86_exception *exception)
3900 {
3901         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3902         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3903
3904         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3905                                           access | PFERR_FETCH_MASK,
3906                                           exception);
3907 }
3908
3909 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3910                                gva_t addr, void *val, unsigned int bytes,
3911                                struct x86_exception *exception)
3912 {
3913         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3914         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3915
3916         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3917                                           exception);
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3920
3921 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3922                                       gva_t addr, void *val, unsigned int bytes,
3923                                       struct x86_exception *exception)
3924 {
3925         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3926         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3927 }
3928
3929 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3930                                        gva_t addr, void *val,
3931                                        unsigned int bytes,
3932                                        struct x86_exception *exception)
3933 {
3934         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3935         void *data = val;
3936         int r = X86EMUL_CONTINUE;
3937
3938         while (bytes) {
3939                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3940                                                              PFERR_WRITE_MASK,
3941                                                              exception);
3942                 unsigned offset = addr & (PAGE_SIZE-1);
3943                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3944                 int ret;
3945
3946                 if (gpa == UNMAPPED_GVA)
3947                         return X86EMUL_PROPAGATE_FAULT;
3948                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3949                 if (ret < 0) {
3950                         r = X86EMUL_IO_NEEDED;
3951                         goto out;
3952                 }
3953
3954                 bytes -= towrite;
3955                 data += towrite;
3956                 addr += towrite;
3957         }
3958 out:
3959         return r;
3960 }
3961 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3962
3963 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3964                                 gpa_t *gpa, struct x86_exception *exception,
3965                                 bool write)
3966 {
3967         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3968                 | (write ? PFERR_WRITE_MASK : 0);
3969
3970         if (vcpu_match_mmio_gva(vcpu, gva)
3971             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3972                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3973                                         (gva & (PAGE_SIZE - 1));
3974                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3975                 return 1;
3976         }
3977
3978         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3979
3980         if (*gpa == UNMAPPED_GVA)
3981                 return -1;
3982
3983         /* For APIC access vmexit */
3984         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3985                 return 1;
3986
3987         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3988                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3989                 return 1;
3990         }
3991
3992         return 0;
3993 }
3994
3995 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3996                         const void *val, int bytes)
3997 {
3998         int ret;
3999
4000         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4001         if (ret < 0)
4002                 return 0;
4003         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4004         return 1;
4005 }
4006
4007 struct read_write_emulator_ops {
4008         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4009                                   int bytes);
4010         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4011                                   void *val, int bytes);
4012         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4013                                int bytes, void *val);
4014         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015                                     void *val, int bytes);
4016         bool write;
4017 };
4018
4019 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4020 {
4021         if (vcpu->mmio_read_completed) {
4022                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4023                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4024                 vcpu->mmio_read_completed = 0;
4025                 return 1;
4026         }
4027
4028         return 0;
4029 }
4030
4031 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4032                         void *val, int bytes)
4033 {
4034         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4035 }
4036
4037 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4038                          void *val, int bytes)
4039 {
4040         return emulator_write_phys(vcpu, gpa, val, bytes);
4041 }
4042
4043 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4044 {
4045         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4046         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4047 }
4048
4049 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4050                           void *val, int bytes)
4051 {
4052         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4053         return X86EMUL_IO_NEEDED;
4054 }
4055
4056 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4057                            void *val, int bytes)
4058 {
4059         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4060
4061         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4062         return X86EMUL_CONTINUE;
4063 }
4064
4065 static const struct read_write_emulator_ops read_emultor = {
4066         .read_write_prepare = read_prepare,
4067         .read_write_emulate = read_emulate,
4068         .read_write_mmio = vcpu_mmio_read,
4069         .read_write_exit_mmio = read_exit_mmio,
4070 };
4071
4072 static const struct read_write_emulator_ops write_emultor = {
4073         .read_write_emulate = write_emulate,
4074         .read_write_mmio = write_mmio,
4075         .read_write_exit_mmio = write_exit_mmio,
4076         .write = true,
4077 };
4078
4079 static int emulator_read_write_onepage(unsigned long addr, void *val,
4080                                        unsigned int bytes,
4081                                        struct x86_exception *exception,
4082                                        struct kvm_vcpu *vcpu,
4083                                        const struct read_write_emulator_ops *ops)
4084 {
4085         gpa_t gpa;
4086         int handled, ret;
4087         bool write = ops->write;
4088         struct kvm_mmio_fragment *frag;
4089
4090         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4091
4092         if (ret < 0)
4093                 return X86EMUL_PROPAGATE_FAULT;
4094
4095         /* For APIC access vmexit */
4096         if (ret)
4097                 goto mmio;
4098
4099         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4100                 return X86EMUL_CONTINUE;
4101
4102 mmio:
4103         /*
4104          * Is this MMIO handled locally?
4105          */
4106         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4107         if (handled == bytes)
4108                 return X86EMUL_CONTINUE;
4109
4110         gpa += handled;
4111         bytes -= handled;
4112         val += handled;
4113
4114         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4115         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4116         frag->gpa = gpa;
4117         frag->data = val;
4118         frag->len = bytes;
4119         return X86EMUL_CONTINUE;
4120 }
4121
4122 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4123                         void *val, unsigned int bytes,
4124                         struct x86_exception *exception,
4125                         const struct read_write_emulator_ops *ops)
4126 {
4127         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4128         gpa_t gpa;
4129         int rc;
4130
4131         if (ops->read_write_prepare &&
4132                   ops->read_write_prepare(vcpu, val, bytes))
4133                 return X86EMUL_CONTINUE;
4134
4135         vcpu->mmio_nr_fragments = 0;
4136
4137         /* Crossing a page boundary? */
4138         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4139                 int now;
4140
4141                 now = -addr & ~PAGE_MASK;
4142                 rc = emulator_read_write_onepage(addr, val, now, exception,
4143                                                  vcpu, ops);
4144
4145                 if (rc != X86EMUL_CONTINUE)
4146                         return rc;
4147                 addr += now;
4148                 val += now;
4149                 bytes -= now;
4150         }
4151
4152         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4153                                          vcpu, ops);
4154         if (rc != X86EMUL_CONTINUE)
4155                 return rc;
4156
4157         if (!vcpu->mmio_nr_fragments)
4158                 return rc;
4159
4160         gpa = vcpu->mmio_fragments[0].gpa;
4161
4162         vcpu->mmio_needed = 1;
4163         vcpu->mmio_cur_fragment = 0;
4164
4165         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4166         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4167         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4168         vcpu->run->mmio.phys_addr = gpa;
4169
4170         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4171 }
4172
4173 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4174                                   unsigned long addr,
4175                                   void *val,
4176                                   unsigned int bytes,
4177                                   struct x86_exception *exception)
4178 {
4179         return emulator_read_write(ctxt, addr, val, bytes,
4180                                    exception, &read_emultor);
4181 }
4182
4183 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4184                             unsigned long addr,
4185                             const void *val,
4186                             unsigned int bytes,
4187                             struct x86_exception *exception)
4188 {
4189         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4190                                    exception, &write_emultor);
4191 }
4192
4193 #define CMPXCHG_TYPE(t, ptr, old, new) \
4194         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4195
4196 #ifdef CONFIG_X86_64
4197 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4198 #else
4199 #  define CMPXCHG64(ptr, old, new) \
4200         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4201 #endif
4202
4203 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4204                                      unsigned long addr,
4205                                      const void *old,
4206                                      const void *new,
4207                                      unsigned int bytes,
4208                                      struct x86_exception *exception)
4209 {
4210         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4211         gpa_t gpa;
4212         struct page *page;
4213         char *kaddr;
4214         bool exchanged;
4215
4216         /* guests cmpxchg8b have to be emulated atomically */
4217         if (bytes > 8 || (bytes & (bytes - 1)))
4218                 goto emul_write;
4219
4220         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4221
4222         if (gpa == UNMAPPED_GVA ||
4223             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4224                 goto emul_write;
4225
4226         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4227                 goto emul_write;
4228
4229         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4230         if (is_error_page(page))
4231                 goto emul_write;
4232
4233         kaddr = kmap_atomic(page);
4234         kaddr += offset_in_page(gpa);
4235         switch (bytes) {
4236         case 1:
4237                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4238                 break;
4239         case 2:
4240                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4241                 break;
4242         case 4:
4243                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4244                 break;
4245         case 8:
4246                 exchanged = CMPXCHG64(kaddr, old, new);
4247                 break;
4248         default:
4249                 BUG();
4250         }
4251         kunmap_atomic(kaddr);
4252         kvm_release_page_dirty(page);
4253
4254         if (!exchanged)
4255                 return X86EMUL_CMPXCHG_FAILED;
4256
4257         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4258
4259         return X86EMUL_CONTINUE;
4260
4261 emul_write:
4262         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4263
4264         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4265 }
4266
4267 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4268 {
4269         /* TODO: String I/O for in kernel device */
4270         int r;
4271
4272         if (vcpu->arch.pio.in)
4273                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4274                                     vcpu->arch.pio.size, pd);
4275         else
4276                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4277                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4278                                      pd);
4279         return r;
4280 }
4281
4282 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4283                                unsigned short port, void *val,
4284                                unsigned int count, bool in)
4285 {
4286         trace_kvm_pio(!in, port, size, count);
4287
4288         vcpu->arch.pio.port = port;
4289         vcpu->arch.pio.in = in;
4290         vcpu->arch.pio.count  = count;
4291         vcpu->arch.pio.size = size;
4292
4293         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4294                 vcpu->arch.pio.count = 0;
4295                 return 1;
4296         }
4297
4298         vcpu->run->exit_reason = KVM_EXIT_IO;
4299         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4300         vcpu->run->io.size = size;
4301         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4302         vcpu->run->io.count = count;
4303         vcpu->run->io.port = port;
4304
4305         return 0;
4306 }
4307
4308 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4309                                     int size, unsigned short port, void *val,
4310                                     unsigned int count)
4311 {
4312         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4313         int ret;
4314
4315         if (vcpu->arch.pio.count)
4316                 goto data_avail;
4317
4318         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4319         if (ret) {
4320 data_avail:
4321                 memcpy(val, vcpu->arch.pio_data, size * count);
4322                 vcpu->arch.pio.count = 0;
4323                 return 1;
4324         }
4325
4326         return 0;
4327 }
4328
4329 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4330                                      int size, unsigned short port,
4331                                      const void *val, unsigned int count)
4332 {
4333         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4334
4335         memcpy(vcpu->arch.pio_data, val, size * count);
4336         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4337 }
4338
4339 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4340 {
4341         return kvm_x86_ops->get_segment_base(vcpu, seg);
4342 }
4343
4344 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4345 {
4346         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4347 }
4348
4349 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4350 {
4351         if (!need_emulate_wbinvd(vcpu))
4352                 return X86EMUL_CONTINUE;
4353
4354         if (kvm_x86_ops->has_wbinvd_exit()) {
4355                 int cpu = get_cpu();
4356
4357                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4358                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4359                                 wbinvd_ipi, NULL, 1);
4360                 put_cpu();
4361                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4362         } else
4363                 wbinvd();
4364         return X86EMUL_CONTINUE;
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4367
4368 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4369 {
4370         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4371 }
4372
4373 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4374 {
4375         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4376 }
4377
4378 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4379 {
4380
4381         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4382 }
4383
4384 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4385 {
4386         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4387 }
4388
4389 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4390 {
4391         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4392         unsigned long value;
4393
4394         switch (cr) {
4395         case 0:
4396                 value = kvm_read_cr0(vcpu);
4397                 break;
4398         case 2:
4399                 value = vcpu->arch.cr2;
4400                 break;
4401         case 3:
4402                 value = kvm_read_cr3(vcpu);
4403                 break;
4404         case 4:
4405                 value = kvm_read_cr4(vcpu);
4406                 break;
4407         case 8:
4408                 value = kvm_get_cr8(vcpu);
4409                 break;
4410         default:
4411                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4412                 return 0;
4413         }
4414
4415         return value;
4416 }
4417
4418 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4419 {
4420         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4421         int res = 0;
4422
4423         switch (cr) {
4424         case 0:
4425                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4426                 break;
4427         case 2:
4428                 vcpu->arch.cr2 = val;
4429                 break;
4430         case 3:
4431                 res = kvm_set_cr3(vcpu, val);
4432                 break;
4433         case 4:
4434                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4435                 break;
4436         case 8:
4437                 res = kvm_set_cr8(vcpu, val);
4438                 break;
4439         default:
4440                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4441                 res = -1;
4442         }
4443
4444         return res;
4445 }
4446
4447 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4448 {
4449         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4450 }
4451
4452 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4453 {
4454         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4455 }
4456
4457 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4458 {
4459         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4460 }
4461
4462 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4463 {
4464         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4465 }
4466
4467 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4468 {
4469         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4470 }
4471
4472 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4473 {
4474         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4475 }
4476
4477 static unsigned long emulator_get_cached_segment_base(
4478         struct x86_emulate_ctxt *ctxt, int seg)
4479 {
4480         return get_segment_base(emul_to_vcpu(ctxt), seg);
4481 }
4482
4483 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4484                                  struct desc_struct *desc, u32 *base3,
4485                                  int seg)
4486 {
4487         struct kvm_segment var;
4488
4489         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4490         *selector = var.selector;
4491
4492         if (var.unusable)
4493                 return false;
4494
4495         if (var.g)
4496                 var.limit >>= 12;
4497         set_desc_limit(desc, var.limit);
4498         set_desc_base(desc, (unsigned long)var.base);
4499 #ifdef CONFIG_X86_64
4500         if (base3)
4501                 *base3 = var.base >> 32;
4502 #endif
4503         desc->type = var.type;
4504         desc->s = var.s;
4505         desc->dpl = var.dpl;
4506         desc->p = var.present;
4507         desc->avl = var.avl;
4508         desc->l = var.l;
4509         desc->d = var.db;
4510         desc->g = var.g;
4511
4512         return true;
4513 }
4514
4515 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4516                                  struct desc_struct *desc, u32 base3,
4517                                  int seg)
4518 {
4519         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4520         struct kvm_segment var;
4521
4522         var.selector = selector;
4523         var.base = get_desc_base(desc);
4524 #ifdef CONFIG_X86_64
4525         var.base |= ((u64)base3) << 32;
4526 #endif
4527         var.limit = get_desc_limit(desc);
4528         if (desc->g)
4529                 var.limit = (var.limit << 12) | 0xfff;
4530         var.type = desc->type;
4531         var.present = desc->p;
4532         var.dpl = desc->dpl;
4533         var.db = desc->d;
4534         var.s = desc->s;
4535         var.l = desc->l;
4536         var.g = desc->g;
4537         var.avl = desc->avl;
4538         var.present = desc->p;
4539         var.unusable = !var.present;
4540         var.padding = 0;
4541
4542         kvm_set_segment(vcpu, &var, seg);
4543         return;
4544 }
4545
4546 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4547                             u32 msr_index, u64 *pdata)
4548 {
4549         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4550 }
4551
4552 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4553                             u32 msr_index, u64 data)
4554 {
4555         struct msr_data msr;
4556
4557         msr.data = data;
4558         msr.index = msr_index;
4559         msr.host_initiated = false;
4560         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4561 }
4562
4563 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4564                              u32 pmc, u64 *pdata)
4565 {
4566         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4567 }
4568
4569 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4570 {
4571         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4572 }
4573
4574 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4575 {
4576         preempt_disable();
4577         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4578         /*
4579          * CR0.TS may reference the host fpu state, not the guest fpu state,
4580          * so it may be clear at this point.
4581          */
4582         clts();
4583 }
4584
4585 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4586 {
4587         preempt_enable();
4588 }
4589
4590 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4591                               struct x86_instruction_info *info,
4592                               enum x86_intercept_stage stage)
4593 {
4594         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4595 }
4596
4597 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4598                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4599 {
4600         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4601 }
4602
4603 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4604 {
4605         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4606 }
4607
4608 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4609 {
4610         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4611 }
4612
4613 static const struct x86_emulate_ops emulate_ops = {
4614         .read_gpr            = emulator_read_gpr,
4615         .write_gpr           = emulator_write_gpr,
4616         .read_std            = kvm_read_guest_virt_system,
4617         .write_std           = kvm_write_guest_virt_system,
4618         .fetch               = kvm_fetch_guest_virt,
4619         .read_emulated       = emulator_read_emulated,
4620         .write_emulated      = emulator_write_emulated,
4621         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4622         .invlpg              = emulator_invlpg,
4623         .pio_in_emulated     = emulator_pio_in_emulated,
4624         .pio_out_emulated    = emulator_pio_out_emulated,
4625         .get_segment         = emulator_get_segment,
4626         .set_segment         = emulator_set_segment,
4627         .get_cached_segment_base = emulator_get_cached_segment_base,
4628         .get_gdt             = emulator_get_gdt,
4629         .get_idt             = emulator_get_idt,
4630         .set_gdt             = emulator_set_gdt,
4631         .set_idt             = emulator_set_idt,
4632         .get_cr              = emulator_get_cr,
4633         .set_cr              = emulator_set_cr,
4634         .set_rflags          = emulator_set_rflags,
4635         .cpl                 = emulator_get_cpl,
4636         .get_dr              = emulator_get_dr,
4637         .set_dr              = emulator_set_dr,
4638         .set_msr             = emulator_set_msr,
4639         .get_msr             = emulator_get_msr,
4640         .read_pmc            = emulator_read_pmc,
4641         .halt                = emulator_halt,
4642         .wbinvd              = emulator_wbinvd,
4643         .fix_hypercall       = emulator_fix_hypercall,
4644         .get_fpu             = emulator_get_fpu,
4645         .put_fpu             = emulator_put_fpu,
4646         .intercept           = emulator_intercept,
4647         .get_cpuid           = emulator_get_cpuid,
4648 };
4649
4650 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4651 {
4652         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4653         /*
4654          * an sti; sti; sequence only disable interrupts for the first
4655          * instruction. So, if the last instruction, be it emulated or
4656          * not, left the system with the INT_STI flag enabled, it
4657          * means that the last instruction is an sti. We should not
4658          * leave the flag on in this case. The same goes for mov ss
4659          */
4660         if (!(int_shadow & mask))
4661                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4662 }
4663
4664 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4665 {
4666         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4667         if (ctxt->exception.vector == PF_VECTOR)
4668                 kvm_propagate_fault(vcpu, &ctxt->exception);
4669         else if (ctxt->exception.error_code_valid)
4670                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4671                                       ctxt->exception.error_code);
4672         else
4673                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4674 }
4675
4676 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4677 {
4678         memset(&ctxt->twobyte, 0,
4679                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4680
4681         ctxt->fetch.start = 0;
4682         ctxt->fetch.end = 0;
4683         ctxt->io_read.pos = 0;
4684         ctxt->io_read.end = 0;
4685         ctxt->mem_read.pos = 0;
4686         ctxt->mem_read.end = 0;
4687 }
4688
4689 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4690 {
4691         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4692         int cs_db, cs_l;
4693
4694         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4695
4696         ctxt->eflags = kvm_get_rflags(vcpu);
4697         ctxt->eip = kvm_rip_read(vcpu);
4698         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4699                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4700                      cs_l                               ? X86EMUL_MODE_PROT64 :
4701                      cs_db                              ? X86EMUL_MODE_PROT32 :
4702                                                           X86EMUL_MODE_PROT16;
4703         ctxt->guest_mode = is_guest_mode(vcpu);
4704
4705         init_decode_cache(ctxt);
4706         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4707 }
4708
4709 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4710 {
4711         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4712         int ret;
4713
4714         init_emulate_ctxt(vcpu);
4715
4716         ctxt->op_bytes = 2;
4717         ctxt->ad_bytes = 2;
4718         ctxt->_eip = ctxt->eip + inc_eip;
4719         ret = emulate_int_real(ctxt, irq);
4720
4721         if (ret != X86EMUL_CONTINUE)
4722                 return EMULATE_FAIL;
4723
4724         ctxt->eip = ctxt->_eip;
4725         kvm_rip_write(vcpu, ctxt->eip);
4726         kvm_set_rflags(vcpu, ctxt->eflags);
4727
4728         if (irq == NMI_VECTOR)
4729                 vcpu->arch.nmi_pending = 0;
4730         else
4731                 vcpu->arch.interrupt.pending = false;
4732
4733         return EMULATE_DONE;
4734 }
4735 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4736
4737 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4738 {
4739         int r = EMULATE_DONE;
4740
4741         ++vcpu->stat.insn_emulation_fail;
4742         trace_kvm_emulate_insn_failed(vcpu);
4743         if (!is_guest_mode(vcpu)) {
4744                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4745                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4746                 vcpu->run->internal.ndata = 0;
4747                 r = EMULATE_FAIL;
4748         }
4749         kvm_queue_exception(vcpu, UD_VECTOR);
4750
4751         return r;
4752 }
4753
4754 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4755 {
4756         gpa_t gpa;
4757         pfn_t pfn;
4758
4759         if (tdp_enabled)
4760                 return false;
4761
4762         /*
4763          * if emulation was due to access to shadowed page table
4764          * and it failed try to unshadow page and re-enter the
4765          * guest to let CPU execute the instruction.
4766          */
4767         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4768                 return true;
4769
4770         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4771
4772         if (gpa == UNMAPPED_GVA)
4773                 return true; /* let cpu generate fault */
4774
4775         /*
4776          * Do not retry the unhandleable instruction if it faults on the
4777          * readonly host memory, otherwise it will goto a infinite loop:
4778          * retry instruction -> write #PF -> emulation fail -> retry
4779          * instruction -> ...
4780          */
4781         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4782         if (!is_error_noslot_pfn(pfn)) {
4783                 kvm_release_pfn_clean(pfn);
4784                 return true;
4785         }
4786
4787         return false;
4788 }
4789
4790 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4791                               unsigned long cr2,  int emulation_type)
4792 {
4793         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4794         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4795
4796         last_retry_eip = vcpu->arch.last_retry_eip;
4797         last_retry_addr = vcpu->arch.last_retry_addr;
4798
4799         /*
4800          * If the emulation is caused by #PF and it is non-page_table
4801          * writing instruction, it means the VM-EXIT is caused by shadow
4802          * page protected, we can zap the shadow page and retry this
4803          * instruction directly.
4804          *
4805          * Note: if the guest uses a non-page-table modifying instruction
4806          * on the PDE that points to the instruction, then we will unmap
4807          * the instruction and go to an infinite loop. So, we cache the
4808          * last retried eip and the last fault address, if we meet the eip
4809          * and the address again, we can break out of the potential infinite
4810          * loop.
4811          */
4812         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4813
4814         if (!(emulation_type & EMULTYPE_RETRY))
4815                 return false;
4816
4817         if (x86_page_table_writing_insn(ctxt))
4818                 return false;
4819
4820         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4821                 return false;
4822
4823         vcpu->arch.last_retry_eip = ctxt->eip;
4824         vcpu->arch.last_retry_addr = cr2;
4825
4826         if (!vcpu->arch.mmu.direct_map)
4827                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4828
4829         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4830
4831         return true;
4832 }
4833
4834 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4835 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4836
4837 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4838                             unsigned long cr2,
4839                             int emulation_type,
4840                             void *insn,
4841                             int insn_len)
4842 {
4843         int r;
4844         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4845         bool writeback = true;
4846
4847         kvm_clear_exception_queue(vcpu);
4848
4849         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4850                 init_emulate_ctxt(vcpu);
4851                 ctxt->interruptibility = 0;
4852                 ctxt->have_exception = false;
4853                 ctxt->perm_ok = false;
4854
4855                 ctxt->only_vendor_specific_insn
4856                         = emulation_type & EMULTYPE_TRAP_UD;
4857
4858                 r = x86_decode_insn(ctxt, insn, insn_len);
4859
4860                 trace_kvm_emulate_insn_start(vcpu);
4861                 ++vcpu->stat.insn_emulation;
4862                 if (r != EMULATION_OK)  {
4863                         if (emulation_type & EMULTYPE_TRAP_UD)
4864                                 return EMULATE_FAIL;
4865                         if (reexecute_instruction(vcpu, cr2))
4866                                 return EMULATE_DONE;
4867                         if (emulation_type & EMULTYPE_SKIP)
4868                                 return EMULATE_FAIL;
4869                         return handle_emulation_failure(vcpu);
4870                 }
4871         }
4872
4873         if (emulation_type & EMULTYPE_SKIP) {
4874                 kvm_rip_write(vcpu, ctxt->_eip);
4875                 return EMULATE_DONE;
4876         }
4877
4878         if (retry_instruction(ctxt, cr2, emulation_type))
4879                 return EMULATE_DONE;
4880
4881         /* this is needed for vmware backdoor interface to work since it
4882            changes registers values  during IO operation */
4883         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4884                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4885                 emulator_invalidate_register_cache(ctxt);
4886         }
4887
4888 restart:
4889         r = x86_emulate_insn(ctxt);
4890
4891         if (r == EMULATION_INTERCEPTED)
4892                 return EMULATE_DONE;
4893
4894         if (r == EMULATION_FAILED) {
4895                 if (reexecute_instruction(vcpu, cr2))
4896                         return EMULATE_DONE;
4897
4898                 return handle_emulation_failure(vcpu);
4899         }
4900
4901         if (ctxt->have_exception) {
4902                 inject_emulated_exception(vcpu);
4903                 r = EMULATE_DONE;
4904         } else if (vcpu->arch.pio.count) {
4905                 if (!vcpu->arch.pio.in)
4906                         vcpu->arch.pio.count = 0;
4907                 else {
4908                         writeback = false;
4909                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4910                 }
4911                 r = EMULATE_DO_MMIO;
4912         } else if (vcpu->mmio_needed) {
4913                 if (!vcpu->mmio_is_write)
4914                         writeback = false;
4915                 r = EMULATE_DO_MMIO;
4916                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4917         } else if (r == EMULATION_RESTART)
4918                 goto restart;
4919         else
4920                 r = EMULATE_DONE;
4921
4922         if (writeback) {
4923                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4924                 kvm_set_rflags(vcpu, ctxt->eflags);
4925                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4926                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4927                 kvm_rip_write(vcpu, ctxt->eip);
4928         } else
4929                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4930
4931         return r;
4932 }
4933 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4934
4935 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4936 {
4937         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4938         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4939                                             size, port, &val, 1);
4940         /* do not return to emulator after return from userspace */
4941         vcpu->arch.pio.count = 0;
4942         return ret;
4943 }
4944 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4945
4946 static void tsc_bad(void *info)
4947 {
4948         __this_cpu_write(cpu_tsc_khz, 0);
4949 }
4950
4951 static void tsc_khz_changed(void *data)
4952 {
4953         struct cpufreq_freqs *freq = data;
4954         unsigned long khz = 0;
4955
4956         if (data)
4957                 khz = freq->new;
4958         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4959                 khz = cpufreq_quick_get(raw_smp_processor_id());
4960         if (!khz)
4961                 khz = tsc_khz;
4962         __this_cpu_write(cpu_tsc_khz, khz);
4963 }
4964
4965 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4966                                      void *data)
4967 {
4968         struct cpufreq_freqs *freq = data;
4969         struct kvm *kvm;
4970         struct kvm_vcpu *vcpu;
4971         int i, send_ipi = 0;
4972
4973         /*
4974          * We allow guests to temporarily run on slowing clocks,
4975          * provided we notify them after, or to run on accelerating
4976          * clocks, provided we notify them before.  Thus time never
4977          * goes backwards.
4978          *
4979          * However, we have a problem.  We can't atomically update
4980          * the frequency of a given CPU from this function; it is
4981          * merely a notifier, which can be called from any CPU.
4982          * Changing the TSC frequency at arbitrary points in time
4983          * requires a recomputation of local variables related to
4984          * the TSC for each VCPU.  We must flag these local variables
4985          * to be updated and be sure the update takes place with the
4986          * new frequency before any guests proceed.
4987          *
4988          * Unfortunately, the combination of hotplug CPU and frequency
4989          * change creates an intractable locking scenario; the order
4990          * of when these callouts happen is undefined with respect to
4991          * CPU hotplug, and they can race with each other.  As such,
4992          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4993          * undefined; you can actually have a CPU frequency change take
4994          * place in between the computation of X and the setting of the
4995          * variable.  To protect against this problem, all updates of
4996          * the per_cpu tsc_khz variable are done in an interrupt
4997          * protected IPI, and all callers wishing to update the value
4998          * must wait for a synchronous IPI to complete (which is trivial
4999          * if the caller is on the CPU already).  This establishes the
5000          * necessary total order on variable updates.
5001          *
5002          * Note that because a guest time update may take place
5003          * anytime after the setting of the VCPU's request bit, the
5004          * correct TSC value must be set before the request.  However,
5005          * to ensure the update actually makes it to any guest which
5006          * starts running in hardware virtualization between the set
5007          * and the acquisition of the spinlock, we must also ping the
5008          * CPU after setting the request bit.
5009          *
5010          */
5011
5012         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5013                 return 0;
5014         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5015                 return 0;
5016
5017         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5018
5019         raw_spin_lock(&kvm_lock);
5020         list_for_each_entry(kvm, &vm_list, vm_list) {
5021                 kvm_for_each_vcpu(i, vcpu, kvm) {
5022                         if (vcpu->cpu != freq->cpu)
5023                                 continue;
5024                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5025                         if (vcpu->cpu != smp_processor_id())
5026                                 send_ipi = 1;
5027                 }
5028         }
5029         raw_spin_unlock(&kvm_lock);
5030
5031         if (freq->old < freq->new && send_ipi) {
5032                 /*
5033                  * We upscale the frequency.  Must make the guest
5034                  * doesn't see old kvmclock values while running with
5035                  * the new frequency, otherwise we risk the guest sees
5036                  * time go backwards.
5037                  *
5038                  * In case we update the frequency for another cpu
5039                  * (which might be in guest context) send an interrupt
5040                  * to kick the cpu out of guest context.  Next time
5041                  * guest context is entered kvmclock will be updated,
5042                  * so the guest will not see stale values.
5043                  */
5044                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5045         }
5046         return 0;
5047 }
5048
5049 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5050         .notifier_call  = kvmclock_cpufreq_notifier
5051 };
5052
5053 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5054                                         unsigned long action, void *hcpu)
5055 {
5056         unsigned int cpu = (unsigned long)hcpu;
5057
5058         switch (action) {
5059                 case CPU_ONLINE:
5060                 case CPU_DOWN_FAILED:
5061                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5062                         break;
5063                 case CPU_DOWN_PREPARE:
5064                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5065                         break;
5066         }
5067         return NOTIFY_OK;
5068 }
5069
5070 static struct notifier_block kvmclock_cpu_notifier_block = {
5071         .notifier_call  = kvmclock_cpu_notifier,
5072         .priority = -INT_MAX
5073 };
5074
5075 static void kvm_timer_init(void)
5076 {
5077         int cpu;
5078
5079         max_tsc_khz = tsc_khz;
5080         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5081         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5082 #ifdef CONFIG_CPU_FREQ
5083                 struct cpufreq_policy policy;
5084                 memset(&policy, 0, sizeof(policy));
5085                 cpu = get_cpu();
5086                 cpufreq_get_policy(&policy, cpu);
5087                 if (policy.cpuinfo.max_freq)
5088                         max_tsc_khz = policy.cpuinfo.max_freq;
5089                 put_cpu();
5090 #endif
5091                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5092                                           CPUFREQ_TRANSITION_NOTIFIER);
5093         }
5094         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5095         for_each_online_cpu(cpu)
5096                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5097 }
5098
5099 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5100
5101 int kvm_is_in_guest(void)
5102 {
5103         return __this_cpu_read(current_vcpu) != NULL;
5104 }
5105
5106 static int kvm_is_user_mode(void)
5107 {
5108         int user_mode = 3;
5109
5110         if (__this_cpu_read(current_vcpu))
5111                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5112
5113         return user_mode != 0;
5114 }
5115
5116 static unsigned long kvm_get_guest_ip(void)
5117 {
5118         unsigned long ip = 0;
5119
5120         if (__this_cpu_read(current_vcpu))
5121                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5122
5123         return ip;
5124 }
5125
5126 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5127         .is_in_guest            = kvm_is_in_guest,
5128         .is_user_mode           = kvm_is_user_mode,
5129         .get_guest_ip           = kvm_get_guest_ip,
5130 };
5131
5132 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5133 {
5134         __this_cpu_write(current_vcpu, vcpu);
5135 }
5136 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5137
5138 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5139 {
5140         __this_cpu_write(current_vcpu, NULL);
5141 }
5142 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5143
5144 static void kvm_set_mmio_spte_mask(void)
5145 {
5146         u64 mask;
5147         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5148
5149         /*
5150          * Set the reserved bits and the present bit of an paging-structure
5151          * entry to generate page fault with PFER.RSV = 1.
5152          */
5153         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5154         mask |= 1ull;
5155
5156 #ifdef CONFIG_X86_64
5157         /*
5158          * If reserved bit is not supported, clear the present bit to disable
5159          * mmio page fault.
5160          */
5161         if (maxphyaddr == 52)
5162                 mask &= ~1ull;
5163 #endif
5164
5165         kvm_mmu_set_mmio_spte_mask(mask);
5166 }
5167
5168 #ifdef CONFIG_X86_64
5169 static void pvclock_gtod_update_fn(struct work_struct *work)
5170 {
5171         struct kvm *kvm;
5172
5173         struct kvm_vcpu *vcpu;
5174         int i;
5175
5176         raw_spin_lock(&kvm_lock);
5177         list_for_each_entry(kvm, &vm_list, vm_list)
5178                 kvm_for_each_vcpu(i, vcpu, kvm)
5179                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5180         atomic_set(&kvm_guest_has_master_clock, 0);
5181         raw_spin_unlock(&kvm_lock);
5182 }
5183
5184 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5185
5186 /*
5187  * Notification about pvclock gtod data update.
5188  */
5189 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5190                                void *priv)
5191 {
5192         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5193         struct timekeeper *tk = priv;
5194
5195         update_pvclock_gtod(tk);
5196
5197         /* disable master clock if host does not trust, or does not
5198          * use, TSC clocksource
5199          */
5200         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5201             atomic_read(&kvm_guest_has_master_clock) != 0)
5202                 queue_work(system_long_wq, &pvclock_gtod_work);
5203
5204         return 0;
5205 }
5206
5207 static struct notifier_block pvclock_gtod_notifier = {
5208         .notifier_call = pvclock_gtod_notify,
5209 };
5210 #endif
5211
5212 int kvm_arch_init(void *opaque)
5213 {
5214         int r;
5215         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5216
5217         if (kvm_x86_ops) {
5218                 printk(KERN_ERR "kvm: already loaded the other module\n");
5219                 r = -EEXIST;
5220                 goto out;
5221         }
5222
5223         if (!ops->cpu_has_kvm_support()) {
5224                 printk(KERN_ERR "kvm: no hardware support\n");
5225                 r = -EOPNOTSUPP;
5226                 goto out;
5227         }
5228         if (ops->disabled_by_bios()) {
5229                 printk(KERN_ERR "kvm: disabled by bios\n");
5230                 r = -EOPNOTSUPP;
5231                 goto out;
5232         }
5233
5234         r = kvm_mmu_module_init();
5235         if (r)
5236                 goto out;
5237
5238         kvm_set_mmio_spte_mask();
5239         kvm_init_msr_list();
5240
5241         kvm_x86_ops = ops;
5242         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5243                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5244
5245         kvm_timer_init();
5246
5247         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5248
5249         if (cpu_has_xsave)
5250                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5251
5252         kvm_lapic_init();
5253 #ifdef CONFIG_X86_64
5254         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5255 #endif
5256
5257         return 0;
5258
5259 out:
5260         return r;
5261 }
5262
5263 void kvm_arch_exit(void)
5264 {
5265         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5266
5267         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5268                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5269                                             CPUFREQ_TRANSITION_NOTIFIER);
5270         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5271 #ifdef CONFIG_X86_64
5272         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5273 #endif
5274         kvm_x86_ops = NULL;
5275         kvm_mmu_module_exit();
5276 }
5277
5278 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5279 {
5280         ++vcpu->stat.halt_exits;
5281         if (irqchip_in_kernel(vcpu->kvm)) {
5282                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5283                 return 1;
5284         } else {
5285                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5286                 return 0;
5287         }
5288 }
5289 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5290
5291 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5292 {
5293         u64 param, ingpa, outgpa, ret;
5294         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5295         bool fast, longmode;
5296         int cs_db, cs_l;
5297
5298         /*
5299          * hypercall generates UD from non zero cpl and real mode
5300          * per HYPER-V spec
5301          */
5302         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5303                 kvm_queue_exception(vcpu, UD_VECTOR);
5304                 return 0;
5305         }
5306
5307         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5308         longmode = is_long_mode(vcpu) && cs_l == 1;
5309
5310         if (!longmode) {
5311                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5312                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5313                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5314                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5315                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5316                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5317         }
5318 #ifdef CONFIG_X86_64
5319         else {
5320                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5321                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5322                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5323         }
5324 #endif
5325
5326         code = param & 0xffff;
5327         fast = (param >> 16) & 0x1;
5328         rep_cnt = (param >> 32) & 0xfff;
5329         rep_idx = (param >> 48) & 0xfff;
5330
5331         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5332
5333         switch (code) {
5334         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5335                 kvm_vcpu_on_spin(vcpu);
5336                 break;
5337         default:
5338                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5339                 break;
5340         }
5341
5342         ret = res | (((u64)rep_done & 0xfff) << 32);
5343         if (longmode) {
5344                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5345         } else {
5346                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5347                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5348         }
5349
5350         return 1;
5351 }
5352
5353 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5354 {
5355         unsigned long nr, a0, a1, a2, a3, ret;
5356         int r = 1;
5357
5358         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5359                 return kvm_hv_hypercall(vcpu);
5360
5361         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5362         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5363         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5364         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5365         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5366
5367         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5368
5369         if (!is_long_mode(vcpu)) {
5370                 nr &= 0xFFFFFFFF;
5371                 a0 &= 0xFFFFFFFF;
5372                 a1 &= 0xFFFFFFFF;
5373                 a2 &= 0xFFFFFFFF;
5374                 a3 &= 0xFFFFFFFF;
5375         }
5376
5377         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5378                 ret = -KVM_EPERM;
5379                 goto out;
5380         }
5381
5382         switch (nr) {
5383         case KVM_HC_VAPIC_POLL_IRQ:
5384                 ret = 0;
5385                 break;
5386         default:
5387                 ret = -KVM_ENOSYS;
5388                 break;
5389         }
5390 out:
5391         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5392         ++vcpu->stat.hypercalls;
5393         return r;
5394 }
5395 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5396
5397 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5398 {
5399         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5400         char instruction[3];
5401         unsigned long rip = kvm_rip_read(vcpu);
5402
5403         /*
5404          * Blow out the MMU to ensure that no other VCPU has an active mapping
5405          * to ensure that the updated hypercall appears atomically across all
5406          * VCPUs.
5407          */
5408         kvm_mmu_zap_all(vcpu->kvm);
5409
5410         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5411
5412         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5413 }
5414
5415 /*
5416  * Check if userspace requested an interrupt window, and that the
5417  * interrupt window is open.
5418  *
5419  * No need to exit to userspace if we already have an interrupt queued.
5420  */
5421 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5422 {
5423         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5424                 vcpu->run->request_interrupt_window &&
5425                 kvm_arch_interrupt_allowed(vcpu));
5426 }
5427
5428 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5429 {
5430         struct kvm_run *kvm_run = vcpu->run;
5431
5432         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5433         kvm_run->cr8 = kvm_get_cr8(vcpu);
5434         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5435         if (irqchip_in_kernel(vcpu->kvm))
5436                 kvm_run->ready_for_interrupt_injection = 1;
5437         else
5438                 kvm_run->ready_for_interrupt_injection =
5439                         kvm_arch_interrupt_allowed(vcpu) &&
5440                         !kvm_cpu_has_interrupt(vcpu) &&
5441                         !kvm_event_needs_reinjection(vcpu);
5442 }
5443
5444 static int vapic_enter(struct kvm_vcpu *vcpu)
5445 {
5446         struct kvm_lapic *apic = vcpu->arch.apic;
5447         struct page *page;
5448
5449         if (!apic || !apic->vapic_addr)
5450                 return 0;
5451
5452         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5453         if (is_error_page(page))
5454                 return -EFAULT;
5455
5456         vcpu->arch.apic->vapic_page = page;
5457         return 0;
5458 }
5459
5460 static void vapic_exit(struct kvm_vcpu *vcpu)
5461 {
5462         struct kvm_lapic *apic = vcpu->arch.apic;
5463         int idx;
5464
5465         if (!apic || !apic->vapic_addr)
5466                 return;
5467
5468         idx = srcu_read_lock(&vcpu->kvm->srcu);
5469         kvm_release_page_dirty(apic->vapic_page);
5470         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5471         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5472 }
5473
5474 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5475 {
5476         int max_irr, tpr;
5477
5478         if (!kvm_x86_ops->update_cr8_intercept)
5479                 return;
5480
5481         if (!vcpu->arch.apic)
5482                 return;
5483
5484         if (!vcpu->arch.apic->vapic_addr)
5485                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5486         else
5487                 max_irr = -1;
5488
5489         if (max_irr != -1)
5490                 max_irr >>= 4;
5491
5492         tpr = kvm_lapic_get_cr8(vcpu);
5493
5494         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5495 }
5496
5497 static void inject_pending_event(struct kvm_vcpu *vcpu)
5498 {
5499         /* try to reinject previous events if any */
5500         if (vcpu->arch.exception.pending) {
5501                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5502                                         vcpu->arch.exception.has_error_code,
5503                                         vcpu->arch.exception.error_code);
5504                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5505                                           vcpu->arch.exception.has_error_code,
5506                                           vcpu->arch.exception.error_code,
5507                                           vcpu->arch.exception.reinject);
5508                 return;
5509         }
5510
5511         if (vcpu->arch.nmi_injected) {
5512                 kvm_x86_ops->set_nmi(vcpu);
5513                 return;
5514         }
5515
5516         if (vcpu->arch.interrupt.pending) {
5517                 kvm_x86_ops->set_irq(vcpu);
5518                 return;
5519         }
5520
5521         /* try to inject new event if pending */
5522         if (vcpu->arch.nmi_pending) {
5523                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5524                         --vcpu->arch.nmi_pending;
5525                         vcpu->arch.nmi_injected = true;
5526                         kvm_x86_ops->set_nmi(vcpu);
5527                 }
5528         } else if (kvm_cpu_has_interrupt(vcpu)) {
5529                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5530                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5531                                             false);
5532                         kvm_x86_ops->set_irq(vcpu);
5533                 }
5534         }
5535 }
5536
5537 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5538 {
5539         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5540                         !vcpu->guest_xcr0_loaded) {
5541                 /* kvm_set_xcr() also depends on this */
5542                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5543                 vcpu->guest_xcr0_loaded = 1;
5544         }
5545 }
5546
5547 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5548 {
5549         if (vcpu->guest_xcr0_loaded) {
5550                 if (vcpu->arch.xcr0 != host_xcr0)
5551                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5552                 vcpu->guest_xcr0_loaded = 0;
5553         }
5554 }
5555
5556 static void process_nmi(struct kvm_vcpu *vcpu)
5557 {
5558         unsigned limit = 2;
5559
5560         /*
5561          * x86 is limited to one NMI running, and one NMI pending after it.
5562          * If an NMI is already in progress, limit further NMIs to just one.
5563          * Otherwise, allow two (and we'll inject the first one immediately).
5564          */
5565         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5566                 limit = 1;
5567
5568         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5569         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5570         kvm_make_request(KVM_REQ_EVENT, vcpu);
5571 }
5572
5573 static void kvm_gen_update_masterclock(struct kvm *kvm)
5574 {
5575 #ifdef CONFIG_X86_64
5576         int i;
5577         struct kvm_vcpu *vcpu;
5578         struct kvm_arch *ka = &kvm->arch;
5579
5580         spin_lock(&ka->pvclock_gtod_sync_lock);
5581         kvm_make_mclock_inprogress_request(kvm);
5582         /* no guest entries from this point */
5583         pvclock_update_vm_gtod_copy(kvm);
5584
5585         kvm_for_each_vcpu(i, vcpu, kvm)
5586                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5587
5588         /* guest entries allowed */
5589         kvm_for_each_vcpu(i, vcpu, kvm)
5590                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5591
5592         spin_unlock(&ka->pvclock_gtod_sync_lock);
5593 #endif
5594 }
5595
5596 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5597 {
5598         int r;
5599         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5600                 vcpu->run->request_interrupt_window;
5601         bool req_immediate_exit = 0;
5602
5603         if (vcpu->requests) {
5604                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5605                         kvm_mmu_unload(vcpu);
5606                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5607                         __kvm_migrate_timers(vcpu);
5608                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5609                         kvm_gen_update_masterclock(vcpu->kvm);
5610                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5611                         r = kvm_guest_time_update(vcpu);
5612                         if (unlikely(r))
5613                                 goto out;
5614                 }
5615                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5616                         kvm_mmu_sync_roots(vcpu);
5617                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5618                         kvm_x86_ops->tlb_flush(vcpu);
5619                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5620                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5621                         r = 0;
5622                         goto out;
5623                 }
5624                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5625                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5626                         r = 0;
5627                         goto out;
5628                 }
5629                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5630                         vcpu->fpu_active = 0;
5631                         kvm_x86_ops->fpu_deactivate(vcpu);
5632                 }
5633                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5634                         /* Page is swapped out. Do synthetic halt */
5635                         vcpu->arch.apf.halted = true;
5636                         r = 1;
5637                         goto out;
5638                 }
5639                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5640                         record_steal_time(vcpu);
5641                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5642                         process_nmi(vcpu);
5643                 req_immediate_exit =
5644                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5645                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5646                         kvm_handle_pmu_event(vcpu);
5647                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5648                         kvm_deliver_pmi(vcpu);
5649         }
5650
5651         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5652                 inject_pending_event(vcpu);
5653
5654                 /* enable NMI/IRQ window open exits if needed */
5655                 if (vcpu->arch.nmi_pending)
5656                         kvm_x86_ops->enable_nmi_window(vcpu);
5657                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5658                         kvm_x86_ops->enable_irq_window(vcpu);
5659
5660                 if (kvm_lapic_enabled(vcpu)) {
5661                         update_cr8_intercept(vcpu);
5662                         kvm_lapic_sync_to_vapic(vcpu);
5663                 }
5664         }
5665
5666         r = kvm_mmu_reload(vcpu);
5667         if (unlikely(r)) {
5668                 goto cancel_injection;
5669         }
5670
5671         preempt_disable();
5672
5673         kvm_x86_ops->prepare_guest_switch(vcpu);
5674         if (vcpu->fpu_active)
5675                 kvm_load_guest_fpu(vcpu);
5676         kvm_load_guest_xcr0(vcpu);
5677
5678         vcpu->mode = IN_GUEST_MODE;
5679
5680         /* We should set ->mode before check ->requests,
5681          * see the comment in make_all_cpus_request.
5682          */
5683         smp_mb();
5684
5685         local_irq_disable();
5686
5687         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5688             || need_resched() || signal_pending(current)) {
5689                 vcpu->mode = OUTSIDE_GUEST_MODE;
5690                 smp_wmb();
5691                 local_irq_enable();
5692                 preempt_enable();
5693                 r = 1;
5694                 goto cancel_injection;
5695         }
5696
5697         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5698
5699         if (req_immediate_exit)
5700                 smp_send_reschedule(vcpu->cpu);
5701
5702         kvm_guest_enter();
5703
5704         if (unlikely(vcpu->arch.switch_db_regs)) {
5705                 set_debugreg(0, 7);
5706                 set_debugreg(vcpu->arch.eff_db[0], 0);
5707                 set_debugreg(vcpu->arch.eff_db[1], 1);
5708                 set_debugreg(vcpu->arch.eff_db[2], 2);
5709                 set_debugreg(vcpu->arch.eff_db[3], 3);
5710         }
5711
5712         trace_kvm_entry(vcpu->vcpu_id);
5713         kvm_x86_ops->run(vcpu);
5714
5715         /*
5716          * If the guest has used debug registers, at least dr7
5717          * will be disabled while returning to the host.
5718          * If we don't have active breakpoints in the host, we don't
5719          * care about the messed up debug address registers. But if
5720          * we have some of them active, restore the old state.
5721          */
5722         if (hw_breakpoint_active())
5723                 hw_breakpoint_restore();
5724
5725         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5726                                                            native_read_tsc());
5727
5728         vcpu->mode = OUTSIDE_GUEST_MODE;
5729         smp_wmb();
5730         local_irq_enable();
5731
5732         ++vcpu->stat.exits;
5733
5734         /*
5735          * We must have an instruction between local_irq_enable() and
5736          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5737          * the interrupt shadow.  The stat.exits increment will do nicely.
5738          * But we need to prevent reordering, hence this barrier():
5739          */
5740         barrier();
5741
5742         kvm_guest_exit();
5743
5744         preempt_enable();
5745
5746         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5747
5748         /*
5749          * Profile KVM exit RIPs:
5750          */
5751         if (unlikely(prof_on == KVM_PROFILING)) {
5752                 unsigned long rip = kvm_rip_read(vcpu);
5753                 profile_hit(KVM_PROFILING, (void *)rip);
5754         }
5755
5756         if (unlikely(vcpu->arch.tsc_always_catchup))
5757                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5758
5759         if (vcpu->arch.apic_attention)
5760                 kvm_lapic_sync_from_vapic(vcpu);
5761
5762         r = kvm_x86_ops->handle_exit(vcpu);
5763         return r;
5764
5765 cancel_injection:
5766         kvm_x86_ops->cancel_injection(vcpu);
5767         if (unlikely(vcpu->arch.apic_attention))
5768                 kvm_lapic_sync_from_vapic(vcpu);
5769 out:
5770         return r;
5771 }
5772
5773
5774 static int __vcpu_run(struct kvm_vcpu *vcpu)
5775 {
5776         int r;
5777         struct kvm *kvm = vcpu->kvm;
5778
5779         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5780                 pr_debug("vcpu %d received sipi with vector # %x\n",
5781                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5782                 kvm_lapic_reset(vcpu);
5783                 r = kvm_vcpu_reset(vcpu);
5784                 if (r)
5785                         return r;
5786                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5787         }
5788
5789         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5790         r = vapic_enter(vcpu);
5791         if (r) {
5792                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5793                 return r;
5794         }
5795
5796         r = 1;
5797         while (r > 0) {
5798                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5799                     !vcpu->arch.apf.halted)
5800                         r = vcpu_enter_guest(vcpu);
5801                 else {
5802                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5803                         kvm_vcpu_block(vcpu);
5804                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5805                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5806                         {
5807                                 switch(vcpu->arch.mp_state) {
5808                                 case KVM_MP_STATE_HALTED:
5809                                         vcpu->arch.mp_state =
5810                                                 KVM_MP_STATE_RUNNABLE;
5811                                 case KVM_MP_STATE_RUNNABLE:
5812                                         vcpu->arch.apf.halted = false;
5813                                         break;
5814                                 case KVM_MP_STATE_SIPI_RECEIVED:
5815                                 default:
5816                                         r = -EINTR;
5817                                         break;
5818                                 }
5819                         }
5820                 }
5821
5822                 if (r <= 0)
5823                         break;
5824
5825                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5826                 if (kvm_cpu_has_pending_timer(vcpu))
5827                         kvm_inject_pending_timer_irqs(vcpu);
5828
5829                 if (dm_request_for_irq_injection(vcpu)) {
5830                         r = -EINTR;
5831                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5832                         ++vcpu->stat.request_irq_exits;
5833                 }
5834
5835                 kvm_check_async_pf_completion(vcpu);
5836
5837                 if (signal_pending(current)) {
5838                         r = -EINTR;
5839                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5840                         ++vcpu->stat.signal_exits;
5841                 }
5842                 if (need_resched()) {
5843                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5844                         kvm_resched(vcpu);
5845                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5846                 }
5847         }
5848
5849         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5850
5851         vapic_exit(vcpu);
5852
5853         return r;
5854 }
5855
5856 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5857 {
5858         int r;
5859         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5860         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5861         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5862         if (r != EMULATE_DONE)
5863                 return 0;
5864         return 1;
5865 }
5866
5867 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5868 {
5869         BUG_ON(!vcpu->arch.pio.count);
5870
5871         return complete_emulated_io(vcpu);
5872 }
5873
5874 /*
5875  * Implements the following, as a state machine:
5876  *
5877  * read:
5878  *   for each fragment
5879  *     for each mmio piece in the fragment
5880  *       write gpa, len
5881  *       exit
5882  *       copy data
5883  *   execute insn
5884  *
5885  * write:
5886  *   for each fragment
5887  *     for each mmio piece in the fragment
5888  *       write gpa, len
5889  *       copy data
5890  *       exit
5891  */
5892 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5893 {
5894         struct kvm_run *run = vcpu->run;
5895         struct kvm_mmio_fragment *frag;
5896         unsigned len;
5897
5898         BUG_ON(!vcpu->mmio_needed);
5899
5900         /* Complete previous fragment */
5901         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5902         len = min(8u, frag->len);
5903         if (!vcpu->mmio_is_write)
5904                 memcpy(frag->data, run->mmio.data, len);
5905
5906         if (frag->len <= 8) {
5907                 /* Switch to the next fragment. */
5908                 frag++;
5909                 vcpu->mmio_cur_fragment++;
5910         } else {
5911                 /* Go forward to the next mmio piece. */
5912                 frag->data += len;
5913                 frag->gpa += len;
5914                 frag->len -= len;
5915         }
5916
5917         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5918                 vcpu->mmio_needed = 0;
5919                 if (vcpu->mmio_is_write)
5920                         return 1;
5921                 vcpu->mmio_read_completed = 1;
5922                 return complete_emulated_io(vcpu);
5923         }
5924
5925         run->exit_reason = KVM_EXIT_MMIO;
5926         run->mmio.phys_addr = frag->gpa;
5927         if (vcpu->mmio_is_write)
5928                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5929         run->mmio.len = min(8u, frag->len);
5930         run->mmio.is_write = vcpu->mmio_is_write;
5931         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5932         return 0;
5933 }
5934
5935
5936 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5937 {
5938         int r;
5939         sigset_t sigsaved;
5940
5941         if (!tsk_used_math(current) && init_fpu(current))
5942                 return -ENOMEM;
5943
5944         if (vcpu->sigset_active)
5945                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5946
5947         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5948                 kvm_vcpu_block(vcpu);
5949                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5950                 r = -EAGAIN;
5951                 goto out;
5952         }
5953
5954         /* re-sync apic's tpr */
5955         if (!irqchip_in_kernel(vcpu->kvm)) {
5956                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5957                         r = -EINVAL;
5958                         goto out;
5959                 }
5960         }
5961
5962         if (unlikely(vcpu->arch.complete_userspace_io)) {
5963                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5964                 vcpu->arch.complete_userspace_io = NULL;
5965                 r = cui(vcpu);
5966                 if (r <= 0)
5967                         goto out;
5968         } else
5969                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5970
5971         r = __vcpu_run(vcpu);
5972
5973 out:
5974         post_kvm_run_save(vcpu);
5975         if (vcpu->sigset_active)
5976                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5977
5978         return r;
5979 }
5980
5981 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5982 {
5983         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5984                 /*
5985                  * We are here if userspace calls get_regs() in the middle of
5986                  * instruction emulation. Registers state needs to be copied
5987                  * back from emulation context to vcpu. Userspace shouldn't do
5988                  * that usually, but some bad designed PV devices (vmware
5989                  * backdoor interface) need this to work
5990                  */
5991                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5992                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5993         }
5994         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5995         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5996         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5997         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5998         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5999         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6000         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6001         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6002 #ifdef CONFIG_X86_64
6003         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6004         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6005         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6006         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6007         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6008         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6009         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6010         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6011 #endif
6012
6013         regs->rip = kvm_rip_read(vcpu);
6014         regs->rflags = kvm_get_rflags(vcpu);
6015
6016         return 0;
6017 }
6018
6019 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6020 {
6021         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6022         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6023
6024         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6025         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6026         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6027         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6028         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6029         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6030         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6031         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6032 #ifdef CONFIG_X86_64
6033         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6034         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6035         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6036         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6037         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6038         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6039         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6040         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6041 #endif
6042
6043         kvm_rip_write(vcpu, regs->rip);
6044         kvm_set_rflags(vcpu, regs->rflags);
6045
6046         vcpu->arch.exception.pending = false;
6047
6048         kvm_make_request(KVM_REQ_EVENT, vcpu);
6049
6050         return 0;
6051 }
6052
6053 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6054 {
6055         struct kvm_segment cs;
6056
6057         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6058         *db = cs.db;
6059         *l = cs.l;
6060 }
6061 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6062
6063 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6064                                   struct kvm_sregs *sregs)
6065 {
6066         struct desc_ptr dt;
6067
6068         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6069         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6070         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6071         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6072         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6073         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6074
6075         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6076         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6077
6078         kvm_x86_ops->get_idt(vcpu, &dt);
6079         sregs->idt.limit = dt.size;
6080         sregs->idt.base = dt.address;
6081         kvm_x86_ops->get_gdt(vcpu, &dt);
6082         sregs->gdt.limit = dt.size;
6083         sregs->gdt.base = dt.address;
6084
6085         sregs->cr0 = kvm_read_cr0(vcpu);
6086         sregs->cr2 = vcpu->arch.cr2;
6087         sregs->cr3 = kvm_read_cr3(vcpu);
6088         sregs->cr4 = kvm_read_cr4(vcpu);
6089         sregs->cr8 = kvm_get_cr8(vcpu);
6090         sregs->efer = vcpu->arch.efer;
6091         sregs->apic_base = kvm_get_apic_base(vcpu);
6092
6093         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6094
6095         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6096                 set_bit(vcpu->arch.interrupt.nr,
6097                         (unsigned long *)sregs->interrupt_bitmap);
6098
6099         return 0;
6100 }
6101
6102 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6103                                     struct kvm_mp_state *mp_state)
6104 {
6105         mp_state->mp_state = vcpu->arch.mp_state;
6106         return 0;
6107 }
6108
6109 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6110                                     struct kvm_mp_state *mp_state)
6111 {
6112         vcpu->arch.mp_state = mp_state->mp_state;
6113         kvm_make_request(KVM_REQ_EVENT, vcpu);
6114         return 0;
6115 }
6116
6117 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6118                     int reason, bool has_error_code, u32 error_code)
6119 {
6120         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6121         int ret;
6122
6123         init_emulate_ctxt(vcpu);
6124
6125         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6126                                    has_error_code, error_code);
6127
6128         if (ret)
6129                 return EMULATE_FAIL;
6130
6131         kvm_rip_write(vcpu, ctxt->eip);
6132         kvm_set_rflags(vcpu, ctxt->eflags);
6133         kvm_make_request(KVM_REQ_EVENT, vcpu);
6134         return EMULATE_DONE;
6135 }
6136 EXPORT_SYMBOL_GPL(kvm_task_switch);
6137
6138 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6139                                   struct kvm_sregs *sregs)
6140 {
6141         int mmu_reset_needed = 0;
6142         int pending_vec, max_bits, idx;
6143         struct desc_ptr dt;
6144
6145         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6146                 return -EINVAL;
6147
6148         dt.size = sregs->idt.limit;
6149         dt.address = sregs->idt.base;
6150         kvm_x86_ops->set_idt(vcpu, &dt);
6151         dt.size = sregs->gdt.limit;
6152         dt.address = sregs->gdt.base;
6153         kvm_x86_ops->set_gdt(vcpu, &dt);
6154
6155         vcpu->arch.cr2 = sregs->cr2;
6156         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6157         vcpu->arch.cr3 = sregs->cr3;
6158         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6159
6160         kvm_set_cr8(vcpu, sregs->cr8);
6161
6162         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6163         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6164         kvm_set_apic_base(vcpu, sregs->apic_base);
6165
6166         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6167         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6168         vcpu->arch.cr0 = sregs->cr0;
6169
6170         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6171         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6172         if (sregs->cr4 & X86_CR4_OSXSAVE)
6173                 kvm_update_cpuid(vcpu);
6174
6175         idx = srcu_read_lock(&vcpu->kvm->srcu);
6176         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6177                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6178                 mmu_reset_needed = 1;
6179         }
6180         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6181
6182         if (mmu_reset_needed)
6183                 kvm_mmu_reset_context(vcpu);
6184
6185         max_bits = KVM_NR_INTERRUPTS;
6186         pending_vec = find_first_bit(
6187                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6188         if (pending_vec < max_bits) {
6189                 kvm_queue_interrupt(vcpu, pending_vec, false);
6190                 pr_debug("Set back pending irq %d\n", pending_vec);
6191         }
6192
6193         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6194         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6195         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6196         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6197         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6198         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6199
6200         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6201         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6202
6203         update_cr8_intercept(vcpu);
6204
6205         /* Older userspace won't unhalt the vcpu on reset. */
6206         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6207             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6208             !is_protmode(vcpu))
6209                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6210
6211         kvm_make_request(KVM_REQ_EVENT, vcpu);
6212
6213         return 0;
6214 }
6215
6216 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6217                                         struct kvm_guest_debug *dbg)
6218 {
6219         unsigned long rflags;
6220         int i, r;
6221
6222         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6223                 r = -EBUSY;
6224                 if (vcpu->arch.exception.pending)
6225                         goto out;
6226                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6227                         kvm_queue_exception(vcpu, DB_VECTOR);
6228                 else
6229                         kvm_queue_exception(vcpu, BP_VECTOR);
6230         }
6231
6232         /*
6233          * Read rflags as long as potentially injected trace flags are still
6234          * filtered out.
6235          */
6236         rflags = kvm_get_rflags(vcpu);
6237
6238         vcpu->guest_debug = dbg->control;
6239         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6240                 vcpu->guest_debug = 0;
6241
6242         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6243                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6244                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6245                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6246         } else {
6247                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6248                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6249         }
6250         kvm_update_dr7(vcpu);
6251
6252         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6253                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6254                         get_segment_base(vcpu, VCPU_SREG_CS);
6255
6256         /*
6257          * Trigger an rflags update that will inject or remove the trace
6258          * flags.
6259          */
6260         kvm_set_rflags(vcpu, rflags);
6261
6262         kvm_x86_ops->update_db_bp_intercept(vcpu);
6263
6264         r = 0;
6265
6266 out:
6267
6268         return r;
6269 }
6270
6271 /*
6272  * Translate a guest virtual address to a guest physical address.
6273  */
6274 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6275                                     struct kvm_translation *tr)
6276 {
6277         unsigned long vaddr = tr->linear_address;
6278         gpa_t gpa;
6279         int idx;
6280
6281         idx = srcu_read_lock(&vcpu->kvm->srcu);
6282         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6283         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6284         tr->physical_address = gpa;
6285         tr->valid = gpa != UNMAPPED_GVA;
6286         tr->writeable = 1;
6287         tr->usermode = 0;
6288
6289         return 0;
6290 }
6291
6292 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6293 {
6294         struct i387_fxsave_struct *fxsave =
6295                         &vcpu->arch.guest_fpu.state->fxsave;
6296
6297         memcpy(fpu->fpr, fxsave->st_space, 128);
6298         fpu->fcw = fxsave->cwd;
6299         fpu->fsw = fxsave->swd;
6300         fpu->ftwx = fxsave->twd;
6301         fpu->last_opcode = fxsave->fop;
6302         fpu->last_ip = fxsave->rip;
6303         fpu->last_dp = fxsave->rdp;
6304         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6305
6306         return 0;
6307 }
6308
6309 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6310 {
6311         struct i387_fxsave_struct *fxsave =
6312                         &vcpu->arch.guest_fpu.state->fxsave;
6313
6314         memcpy(fxsave->st_space, fpu->fpr, 128);
6315         fxsave->cwd = fpu->fcw;
6316         fxsave->swd = fpu->fsw;
6317         fxsave->twd = fpu->ftwx;
6318         fxsave->fop = fpu->last_opcode;
6319         fxsave->rip = fpu->last_ip;
6320         fxsave->rdp = fpu->last_dp;
6321         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6322
6323         return 0;
6324 }
6325
6326 int fx_init(struct kvm_vcpu *vcpu)
6327 {
6328         int err;
6329
6330         err = fpu_alloc(&vcpu->arch.guest_fpu);
6331         if (err)
6332                 return err;
6333
6334         fpu_finit(&vcpu->arch.guest_fpu);
6335
6336         /*
6337          * Ensure guest xcr0 is valid for loading
6338          */
6339         vcpu->arch.xcr0 = XSTATE_FP;
6340
6341         vcpu->arch.cr0 |= X86_CR0_ET;
6342
6343         return 0;
6344 }
6345 EXPORT_SYMBOL_GPL(fx_init);
6346
6347 static void fx_free(struct kvm_vcpu *vcpu)
6348 {
6349         fpu_free(&vcpu->arch.guest_fpu);
6350 }
6351
6352 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6353 {
6354         if (vcpu->guest_fpu_loaded)
6355                 return;
6356
6357         /*
6358          * Restore all possible states in the guest,
6359          * and assume host would use all available bits.
6360          * Guest xcr0 would be loaded later.
6361          */
6362         kvm_put_guest_xcr0(vcpu);
6363         vcpu->guest_fpu_loaded = 1;
6364         __kernel_fpu_begin();
6365         fpu_restore_checking(&vcpu->arch.guest_fpu);
6366         trace_kvm_fpu(1);
6367 }
6368
6369 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6370 {
6371         kvm_put_guest_xcr0(vcpu);
6372
6373         if (!vcpu->guest_fpu_loaded)
6374                 return;
6375
6376         vcpu->guest_fpu_loaded = 0;
6377         fpu_save_init(&vcpu->arch.guest_fpu);
6378         __kernel_fpu_end();
6379         ++vcpu->stat.fpu_reload;
6380         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6381         trace_kvm_fpu(0);
6382 }
6383
6384 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6385 {
6386         kvmclock_reset(vcpu);
6387
6388         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6389         fx_free(vcpu);
6390         kvm_x86_ops->vcpu_free(vcpu);
6391 }
6392
6393 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6394                                                 unsigned int id)
6395 {
6396         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6397                 printk_once(KERN_WARNING
6398                 "kvm: SMP vm created on host with unstable TSC; "
6399                 "guest TSC will not be reliable\n");
6400         return kvm_x86_ops->vcpu_create(kvm, id);
6401 }
6402
6403 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6404 {
6405         int r;
6406
6407         vcpu->arch.mtrr_state.have_fixed = 1;
6408         r = vcpu_load(vcpu);
6409         if (r)
6410                 return r;
6411         r = kvm_vcpu_reset(vcpu);
6412         if (r == 0)
6413                 r = kvm_mmu_setup(vcpu);
6414         vcpu_put(vcpu);
6415
6416         return r;
6417 }
6418
6419 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6420 {
6421         int r;
6422         struct msr_data msr;
6423
6424         r = vcpu_load(vcpu);
6425         if (r)
6426                 return r;
6427         msr.data = 0x0;
6428         msr.index = MSR_IA32_TSC;
6429         msr.host_initiated = true;
6430         kvm_write_tsc(vcpu, &msr);
6431         vcpu_put(vcpu);
6432
6433         return r;
6434 }
6435
6436 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6437 {
6438         int r;
6439         vcpu->arch.apf.msr_val = 0;
6440
6441         r = vcpu_load(vcpu);
6442         BUG_ON(r);
6443         kvm_mmu_unload(vcpu);
6444         vcpu_put(vcpu);
6445
6446         fx_free(vcpu);
6447         kvm_x86_ops->vcpu_free(vcpu);
6448 }
6449
6450 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6451 {
6452         atomic_set(&vcpu->arch.nmi_queued, 0);
6453         vcpu->arch.nmi_pending = 0;
6454         vcpu->arch.nmi_injected = false;
6455
6456         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6457         vcpu->arch.dr6 = DR6_FIXED_1;
6458         vcpu->arch.dr7 = DR7_FIXED_1;
6459         kvm_update_dr7(vcpu);
6460
6461         kvm_make_request(KVM_REQ_EVENT, vcpu);
6462         vcpu->arch.apf.msr_val = 0;
6463         vcpu->arch.st.msr_val = 0;
6464
6465         kvmclock_reset(vcpu);
6466
6467         kvm_clear_async_pf_completion_queue(vcpu);
6468         kvm_async_pf_hash_reset(vcpu);
6469         vcpu->arch.apf.halted = false;
6470
6471         kvm_pmu_reset(vcpu);
6472
6473         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6474         vcpu->arch.regs_avail = ~0;
6475         vcpu->arch.regs_dirty = ~0;
6476
6477         return kvm_x86_ops->vcpu_reset(vcpu);
6478 }
6479
6480 int kvm_arch_hardware_enable(void *garbage)
6481 {
6482         struct kvm *kvm;
6483         struct kvm_vcpu *vcpu;
6484         int i;
6485         int ret;
6486         u64 local_tsc;
6487         u64 max_tsc = 0;
6488         bool stable, backwards_tsc = false;
6489
6490         kvm_shared_msr_cpu_online();
6491         ret = kvm_x86_ops->hardware_enable(garbage);
6492         if (ret != 0)
6493                 return ret;
6494
6495         local_tsc = native_read_tsc();
6496         stable = !check_tsc_unstable();
6497         list_for_each_entry(kvm, &vm_list, vm_list) {
6498                 kvm_for_each_vcpu(i, vcpu, kvm) {
6499                         if (!stable && vcpu->cpu == smp_processor_id())
6500                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6501                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6502                                 backwards_tsc = true;
6503                                 if (vcpu->arch.last_host_tsc > max_tsc)
6504                                         max_tsc = vcpu->arch.last_host_tsc;
6505                         }
6506                 }
6507         }
6508
6509         /*
6510          * Sometimes, even reliable TSCs go backwards.  This happens on
6511          * platforms that reset TSC during suspend or hibernate actions, but
6512          * maintain synchronization.  We must compensate.  Fortunately, we can
6513          * detect that condition here, which happens early in CPU bringup,
6514          * before any KVM threads can be running.  Unfortunately, we can't
6515          * bring the TSCs fully up to date with real time, as we aren't yet far
6516          * enough into CPU bringup that we know how much real time has actually
6517          * elapsed; our helper function, get_kernel_ns() will be using boot
6518          * variables that haven't been updated yet.
6519          *
6520          * So we simply find the maximum observed TSC above, then record the
6521          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6522          * the adjustment will be applied.  Note that we accumulate
6523          * adjustments, in case multiple suspend cycles happen before some VCPU
6524          * gets a chance to run again.  In the event that no KVM threads get a
6525          * chance to run, we will miss the entire elapsed period, as we'll have
6526          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6527          * loose cycle time.  This isn't too big a deal, since the loss will be
6528          * uniform across all VCPUs (not to mention the scenario is extremely
6529          * unlikely). It is possible that a second hibernate recovery happens
6530          * much faster than a first, causing the observed TSC here to be
6531          * smaller; this would require additional padding adjustment, which is
6532          * why we set last_host_tsc to the local tsc observed here.
6533          *
6534          * N.B. - this code below runs only on platforms with reliable TSC,
6535          * as that is the only way backwards_tsc is set above.  Also note
6536          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6537          * have the same delta_cyc adjustment applied if backwards_tsc
6538          * is detected.  Note further, this adjustment is only done once,
6539          * as we reset last_host_tsc on all VCPUs to stop this from being
6540          * called multiple times (one for each physical CPU bringup).
6541          *
6542          * Platforms with unreliable TSCs don't have to deal with this, they
6543          * will be compensated by the logic in vcpu_load, which sets the TSC to
6544          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6545          * guarantee that they stay in perfect synchronization.
6546          */
6547         if (backwards_tsc) {
6548                 u64 delta_cyc = max_tsc - local_tsc;
6549                 list_for_each_entry(kvm, &vm_list, vm_list) {
6550                         kvm_for_each_vcpu(i, vcpu, kvm) {
6551                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6552                                 vcpu->arch.last_host_tsc = local_tsc;
6553                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6554                                         &vcpu->requests);
6555                         }
6556
6557                         /*
6558                          * We have to disable TSC offset matching.. if you were
6559                          * booting a VM while issuing an S4 host suspend....
6560                          * you may have some problem.  Solving this issue is
6561                          * left as an exercise to the reader.
6562                          */
6563                         kvm->arch.last_tsc_nsec = 0;
6564                         kvm->arch.last_tsc_write = 0;
6565                 }
6566
6567         }
6568         return 0;
6569 }
6570
6571 void kvm_arch_hardware_disable(void *garbage)
6572 {
6573         kvm_x86_ops->hardware_disable(garbage);
6574         drop_user_return_notifiers(garbage);
6575 }
6576
6577 int kvm_arch_hardware_setup(void)
6578 {
6579         return kvm_x86_ops->hardware_setup();
6580 }
6581
6582 void kvm_arch_hardware_unsetup(void)
6583 {
6584         kvm_x86_ops->hardware_unsetup();
6585 }
6586
6587 void kvm_arch_check_processor_compat(void *rtn)
6588 {
6589         kvm_x86_ops->check_processor_compatibility(rtn);
6590 }
6591
6592 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6593 {
6594         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6595 }
6596
6597 struct static_key kvm_no_apic_vcpu __read_mostly;
6598
6599 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6600 {
6601         struct page *page;
6602         struct kvm *kvm;
6603         int r;
6604
6605         BUG_ON(vcpu->kvm == NULL);
6606         kvm = vcpu->kvm;
6607
6608         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6609         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6610                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6611         else
6612                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6613
6614         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6615         if (!page) {
6616                 r = -ENOMEM;
6617                 goto fail;
6618         }
6619         vcpu->arch.pio_data = page_address(page);
6620
6621         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6622
6623         r = kvm_mmu_create(vcpu);
6624         if (r < 0)
6625                 goto fail_free_pio_data;
6626
6627         if (irqchip_in_kernel(kvm)) {
6628                 r = kvm_create_lapic(vcpu);
6629                 if (r < 0)
6630                         goto fail_mmu_destroy;
6631         } else
6632                 static_key_slow_inc(&kvm_no_apic_vcpu);
6633
6634         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6635                                        GFP_KERNEL);
6636         if (!vcpu->arch.mce_banks) {
6637                 r = -ENOMEM;
6638                 goto fail_free_lapic;
6639         }
6640         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6641
6642         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6643                 goto fail_free_mce_banks;
6644
6645         r = fx_init(vcpu);
6646         if (r)
6647                 goto fail_free_wbinvd_dirty_mask;
6648
6649         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6650         kvm_async_pf_hash_reset(vcpu);
6651         kvm_pmu_init(vcpu);
6652
6653         return 0;
6654 fail_free_wbinvd_dirty_mask:
6655         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6656 fail_free_mce_banks:
6657         kfree(vcpu->arch.mce_banks);
6658 fail_free_lapic:
6659         kvm_free_lapic(vcpu);
6660 fail_mmu_destroy:
6661         kvm_mmu_destroy(vcpu);
6662 fail_free_pio_data:
6663         free_page((unsigned long)vcpu->arch.pio_data);
6664 fail:
6665         return r;
6666 }
6667
6668 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6669 {
6670         int idx;
6671
6672         kvm_pmu_destroy(vcpu);
6673         kfree(vcpu->arch.mce_banks);
6674         kvm_free_lapic(vcpu);
6675         idx = srcu_read_lock(&vcpu->kvm->srcu);
6676         kvm_mmu_destroy(vcpu);
6677         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6678         free_page((unsigned long)vcpu->arch.pio_data);
6679         if (!irqchip_in_kernel(vcpu->kvm))
6680                 static_key_slow_dec(&kvm_no_apic_vcpu);
6681 }
6682
6683 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6684 {
6685         if (type)
6686                 return -EINVAL;
6687
6688         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6689         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6690
6691         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6692         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6693         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6694         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6695                 &kvm->arch.irq_sources_bitmap);
6696
6697         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6698         mutex_init(&kvm->arch.apic_map_lock);
6699         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6700
6701         pvclock_update_vm_gtod_copy(kvm);
6702
6703         return 0;
6704 }
6705
6706 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6707 {
6708         int r;
6709         r = vcpu_load(vcpu);
6710         BUG_ON(r);
6711         kvm_mmu_unload(vcpu);
6712         vcpu_put(vcpu);
6713 }
6714
6715 static void kvm_free_vcpus(struct kvm *kvm)
6716 {
6717         unsigned int i;
6718         struct kvm_vcpu *vcpu;
6719
6720         /*
6721          * Unpin any mmu pages first.
6722          */
6723         kvm_for_each_vcpu(i, vcpu, kvm) {
6724                 kvm_clear_async_pf_completion_queue(vcpu);
6725                 kvm_unload_vcpu_mmu(vcpu);
6726         }
6727         kvm_for_each_vcpu(i, vcpu, kvm)
6728                 kvm_arch_vcpu_free(vcpu);
6729
6730         mutex_lock(&kvm->lock);
6731         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6732                 kvm->vcpus[i] = NULL;
6733
6734         atomic_set(&kvm->online_vcpus, 0);
6735         mutex_unlock(&kvm->lock);
6736 }
6737
6738 void kvm_arch_sync_events(struct kvm *kvm)
6739 {
6740         kvm_free_all_assigned_devices(kvm);
6741         kvm_free_pit(kvm);
6742 }
6743
6744 void kvm_arch_destroy_vm(struct kvm *kvm)
6745 {
6746         kvm_iommu_unmap_guest(kvm);
6747         kfree(kvm->arch.vpic);
6748         kfree(kvm->arch.vioapic);
6749         kvm_free_vcpus(kvm);
6750         if (kvm->arch.apic_access_page)
6751                 put_page(kvm->arch.apic_access_page);
6752         if (kvm->arch.ept_identity_pagetable)
6753                 put_page(kvm->arch.ept_identity_pagetable);
6754         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6755 }
6756
6757 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6758                            struct kvm_memory_slot *dont)
6759 {
6760         int i;
6761
6762         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6763                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6764                         kvm_kvfree(free->arch.rmap[i]);
6765                         free->arch.rmap[i] = NULL;
6766                 }
6767                 if (i == 0)
6768                         continue;
6769
6770                 if (!dont || free->arch.lpage_info[i - 1] !=
6771                              dont->arch.lpage_info[i - 1]) {
6772                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6773                         free->arch.lpage_info[i - 1] = NULL;
6774                 }
6775         }
6776 }
6777
6778 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6779 {
6780         int i;
6781
6782         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6783                 unsigned long ugfn;
6784                 int lpages;
6785                 int level = i + 1;
6786
6787                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6788                                       slot->base_gfn, level) + 1;
6789
6790                 slot->arch.rmap[i] =
6791                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6792                 if (!slot->arch.rmap[i])
6793                         goto out_free;
6794                 if (i == 0)
6795                         continue;
6796
6797                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6798                                         sizeof(*slot->arch.lpage_info[i - 1]));
6799                 if (!slot->arch.lpage_info[i - 1])
6800                         goto out_free;
6801
6802                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6803                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6804                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6805                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6806                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6807                 /*
6808                  * If the gfn and userspace address are not aligned wrt each
6809                  * other, or if explicitly asked to, disable large page
6810                  * support for this slot
6811                  */
6812                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6813                     !kvm_largepages_enabled()) {
6814                         unsigned long j;
6815
6816                         for (j = 0; j < lpages; ++j)
6817                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6818                 }
6819         }
6820
6821         return 0;
6822
6823 out_free:
6824         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6825                 kvm_kvfree(slot->arch.rmap[i]);
6826                 slot->arch.rmap[i] = NULL;
6827                 if (i == 0)
6828                         continue;
6829
6830                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6831                 slot->arch.lpage_info[i - 1] = NULL;
6832         }
6833         return -ENOMEM;
6834 }
6835
6836 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6837                                 struct kvm_memory_slot *memslot,
6838                                 struct kvm_memory_slot old,
6839                                 struct kvm_userspace_memory_region *mem,
6840                                 bool user_alloc)
6841 {
6842         int npages = memslot->npages;
6843         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6844
6845         /* Prevent internal slot pages from being moved by fork()/COW. */
6846         if (memslot->id >= KVM_USER_MEM_SLOTS)
6847                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6848
6849         /*To keep backward compatibility with older userspace,
6850          *x86 needs to handle !user_alloc case.
6851          */
6852         if (!user_alloc) {
6853                 if (npages && !old.npages) {
6854                         unsigned long userspace_addr;
6855
6856                         userspace_addr = vm_mmap(NULL, 0,
6857                                                  npages * PAGE_SIZE,
6858                                                  PROT_READ | PROT_WRITE,
6859                                                  map_flags,
6860                                                  0);
6861
6862                         if (IS_ERR((void *)userspace_addr))
6863                                 return PTR_ERR((void *)userspace_addr);
6864
6865                         memslot->userspace_addr = userspace_addr;
6866                 }
6867         }
6868
6869
6870         return 0;
6871 }
6872
6873 void kvm_arch_commit_memory_region(struct kvm *kvm,
6874                                 struct kvm_userspace_memory_region *mem,
6875                                 struct kvm_memory_slot old,
6876                                 bool user_alloc)
6877 {
6878
6879         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6880
6881         if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6882                 int ret;
6883
6884                 ret = vm_munmap(old.userspace_addr,
6885                                 old.npages * PAGE_SIZE);
6886                 if (ret < 0)
6887                         printk(KERN_WARNING
6888                                "kvm_vm_ioctl_set_memory_region: "
6889                                "failed to munmap memory\n");
6890         }
6891
6892         if (!kvm->arch.n_requested_mmu_pages)
6893                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6894
6895         if (nr_mmu_pages)
6896                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6897         /*
6898          * Write protect all pages for dirty logging.
6899          * Existing largepage mappings are destroyed here and new ones will
6900          * not be created until the end of the logging.
6901          */
6902         if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
6903                 spin_lock(&kvm->mmu_lock);
6904                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6905                 spin_unlock(&kvm->mmu_lock);
6906         }
6907         /*
6908          * If memory slot is created, or moved, we need to clear all
6909          * mmio sptes.
6910          */
6911         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6912                 kvm_mmu_zap_all(kvm);
6913                 kvm_reload_remote_mmus(kvm);
6914         }
6915 }
6916
6917 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6918 {
6919         kvm_mmu_zap_all(kvm);
6920         kvm_reload_remote_mmus(kvm);
6921 }
6922
6923 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6924                                    struct kvm_memory_slot *slot)
6925 {
6926         kvm_arch_flush_shadow_all(kvm);
6927 }
6928
6929 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6930 {
6931         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6932                 !vcpu->arch.apf.halted)
6933                 || !list_empty_careful(&vcpu->async_pf.done)
6934                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6935                 || atomic_read(&vcpu->arch.nmi_queued) ||
6936                 (kvm_arch_interrupt_allowed(vcpu) &&
6937                  kvm_cpu_has_interrupt(vcpu));
6938 }
6939
6940 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6941 {
6942         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6943 }
6944
6945 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6946 {
6947         return kvm_x86_ops->interrupt_allowed(vcpu);
6948 }
6949
6950 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6951 {
6952         unsigned long current_rip = kvm_rip_read(vcpu) +
6953                 get_segment_base(vcpu, VCPU_SREG_CS);
6954
6955         return current_rip == linear_rip;
6956 }
6957 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6958
6959 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6960 {
6961         unsigned long rflags;
6962
6963         rflags = kvm_x86_ops->get_rflags(vcpu);
6964         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6965                 rflags &= ~X86_EFLAGS_TF;
6966         return rflags;
6967 }
6968 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6969
6970 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6971 {
6972         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6973             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6974                 rflags |= X86_EFLAGS_TF;
6975         kvm_x86_ops->set_rflags(vcpu, rflags);
6976         kvm_make_request(KVM_REQ_EVENT, vcpu);
6977 }
6978 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6979
6980 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6981 {
6982         int r;
6983
6984         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6985               is_error_page(work->page))
6986                 return;
6987
6988         r = kvm_mmu_reload(vcpu);
6989         if (unlikely(r))
6990                 return;
6991
6992         if (!vcpu->arch.mmu.direct_map &&
6993               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6994                 return;
6995
6996         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6997 }
6998
6999 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7000 {
7001         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7002 }
7003
7004 static inline u32 kvm_async_pf_next_probe(u32 key)
7005 {
7006         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7007 }
7008
7009 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7010 {
7011         u32 key = kvm_async_pf_hash_fn(gfn);
7012
7013         while (vcpu->arch.apf.gfns[key] != ~0)
7014                 key = kvm_async_pf_next_probe(key);
7015
7016         vcpu->arch.apf.gfns[key] = gfn;
7017 }
7018
7019 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7020 {
7021         int i;
7022         u32 key = kvm_async_pf_hash_fn(gfn);
7023
7024         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7025                      (vcpu->arch.apf.gfns[key] != gfn &&
7026                       vcpu->arch.apf.gfns[key] != ~0); i++)
7027                 key = kvm_async_pf_next_probe(key);
7028
7029         return key;
7030 }
7031
7032 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7033 {
7034         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7035 }
7036
7037 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7038 {
7039         u32 i, j, k;
7040
7041         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7042         while (true) {
7043                 vcpu->arch.apf.gfns[i] = ~0;
7044                 do {
7045                         j = kvm_async_pf_next_probe(j);
7046                         if (vcpu->arch.apf.gfns[j] == ~0)
7047                                 return;
7048                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7049                         /*
7050                          * k lies cyclically in ]i,j]
7051                          * |    i.k.j |
7052                          * |....j i.k.| or  |.k..j i...|
7053                          */
7054                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7055                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7056                 i = j;
7057         }
7058 }
7059
7060 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7061 {
7062
7063         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7064                                       sizeof(val));
7065 }
7066
7067 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7068                                      struct kvm_async_pf *work)
7069 {
7070         struct x86_exception fault;
7071
7072         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7073         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7074
7075         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7076             (vcpu->arch.apf.send_user_only &&
7077              kvm_x86_ops->get_cpl(vcpu) == 0))
7078                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7079         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7080                 fault.vector = PF_VECTOR;
7081                 fault.error_code_valid = true;
7082                 fault.error_code = 0;
7083                 fault.nested_page_fault = false;
7084                 fault.address = work->arch.token;
7085                 kvm_inject_page_fault(vcpu, &fault);
7086         }
7087 }
7088
7089 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7090                                  struct kvm_async_pf *work)
7091 {
7092         struct x86_exception fault;
7093
7094         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7095         if (is_error_page(work->page))
7096                 work->arch.token = ~0; /* broadcast wakeup */
7097         else
7098                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7099
7100         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7101             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7102                 fault.vector = PF_VECTOR;
7103                 fault.error_code_valid = true;
7104                 fault.error_code = 0;
7105                 fault.nested_page_fault = false;
7106                 fault.address = work->arch.token;
7107                 kvm_inject_page_fault(vcpu, &fault);
7108         }
7109         vcpu->arch.apf.halted = false;
7110         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7111 }
7112
7113 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7114 {
7115         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7116                 return true;
7117         else
7118                 return !kvm_event_needs_reinjection(vcpu) &&
7119                         kvm_x86_ops->interrupt_allowed(vcpu);
7120 }
7121
7122 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7123 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7124 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7125 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7126 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7127 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7128 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);