Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59         X86_FEATURE_MATCH(X86_FEATURE_VMX),
60         {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75                         enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95  * If nested=1, nested virtualization is supported, i.e., guests may use
96  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97  * use VMX instructions.
98  */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON                                            \
105         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS                                      \
107         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
108          | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * ple_gap:    upper bound on the amount of time between two successive
120  *             executions of PAUSE in a loop. Also indicate if ple enabled.
121  *             According to test, this time is usually smaller than 128 cycles.
122  * ple_window: upper bound on the amount of time a guest is allowed to execute
123  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
124  *             less than 2^12 cycles
125  * Time is measured based on a counter that runs at the same rate as the TSC,
126  * refer SDM volume 3b section 21.6.13 & 22.1.3.
127  */
128 #define KVM_VMX_DEFAULT_PLE_GAP    128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
131 module_param(ple_gap, int, S_IRUGO);
132
133 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
134 module_param(ple_window, int, S_IRUGO);
135
136 extern const ulong vmx_return;
137
138 #define NR_AUTOLOAD_MSRS 8
139 #define VMCS02_POOL_SIZE 1
140
141 struct vmcs {
142         u32 revision_id;
143         u32 abort;
144         char data[0];
145 };
146
147 /*
148  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
149  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
150  * loaded on this CPU (so we can clear them if the CPU goes down).
151  */
152 struct loaded_vmcs {
153         struct vmcs *vmcs;
154         int cpu;
155         int launched;
156         struct list_head loaded_vmcss_on_cpu_link;
157 };
158
159 struct shared_msr_entry {
160         unsigned index;
161         u64 data;
162         u64 mask;
163 };
164
165 /*
166  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
167  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
168  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
169  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
170  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
171  * More than one of these structures may exist, if L1 runs multiple L2 guests.
172  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
173  * underlying hardware which will be used to run L2.
174  * This structure is packed to ensure that its layout is identical across
175  * machines (necessary for live migration).
176  * If there are changes in this struct, VMCS12_REVISION must be changed.
177  */
178 typedef u64 natural_width;
179 struct __packed vmcs12 {
180         /* According to the Intel spec, a VMCS region must start with the
181          * following two fields. Then follow implementation-specific data.
182          */
183         u32 revision_id;
184         u32 abort;
185
186         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
187         u32 padding[7]; /* room for future expansion */
188
189         u64 io_bitmap_a;
190         u64 io_bitmap_b;
191         u64 msr_bitmap;
192         u64 vm_exit_msr_store_addr;
193         u64 vm_exit_msr_load_addr;
194         u64 vm_entry_msr_load_addr;
195         u64 tsc_offset;
196         u64 virtual_apic_page_addr;
197         u64 apic_access_addr;
198         u64 ept_pointer;
199         u64 guest_physical_address;
200         u64 vmcs_link_pointer;
201         u64 guest_ia32_debugctl;
202         u64 guest_ia32_pat;
203         u64 guest_ia32_efer;
204         u64 guest_ia32_perf_global_ctrl;
205         u64 guest_pdptr0;
206         u64 guest_pdptr1;
207         u64 guest_pdptr2;
208         u64 guest_pdptr3;
209         u64 guest_bndcfgs;
210         u64 host_ia32_pat;
211         u64 host_ia32_efer;
212         u64 host_ia32_perf_global_ctrl;
213         u64 padding64[8]; /* room for future expansion */
214         /*
215          * To allow migration of L1 (complete with its L2 guests) between
216          * machines of different natural widths (32 or 64 bit), we cannot have
217          * unsigned long fields with no explict size. We use u64 (aliased
218          * natural_width) instead. Luckily, x86 is little-endian.
219          */
220         natural_width cr0_guest_host_mask;
221         natural_width cr4_guest_host_mask;
222         natural_width cr0_read_shadow;
223         natural_width cr4_read_shadow;
224         natural_width cr3_target_value0;
225         natural_width cr3_target_value1;
226         natural_width cr3_target_value2;
227         natural_width cr3_target_value3;
228         natural_width exit_qualification;
229         natural_width guest_linear_address;
230         natural_width guest_cr0;
231         natural_width guest_cr3;
232         natural_width guest_cr4;
233         natural_width guest_es_base;
234         natural_width guest_cs_base;
235         natural_width guest_ss_base;
236         natural_width guest_ds_base;
237         natural_width guest_fs_base;
238         natural_width guest_gs_base;
239         natural_width guest_ldtr_base;
240         natural_width guest_tr_base;
241         natural_width guest_gdtr_base;
242         natural_width guest_idtr_base;
243         natural_width guest_dr7;
244         natural_width guest_rsp;
245         natural_width guest_rip;
246         natural_width guest_rflags;
247         natural_width guest_pending_dbg_exceptions;
248         natural_width guest_sysenter_esp;
249         natural_width guest_sysenter_eip;
250         natural_width host_cr0;
251         natural_width host_cr3;
252         natural_width host_cr4;
253         natural_width host_fs_base;
254         natural_width host_gs_base;
255         natural_width host_tr_base;
256         natural_width host_gdtr_base;
257         natural_width host_idtr_base;
258         natural_width host_ia32_sysenter_esp;
259         natural_width host_ia32_sysenter_eip;
260         natural_width host_rsp;
261         natural_width host_rip;
262         natural_width paddingl[8]; /* room for future expansion */
263         u32 pin_based_vm_exec_control;
264         u32 cpu_based_vm_exec_control;
265         u32 exception_bitmap;
266         u32 page_fault_error_code_mask;
267         u32 page_fault_error_code_match;
268         u32 cr3_target_count;
269         u32 vm_exit_controls;
270         u32 vm_exit_msr_store_count;
271         u32 vm_exit_msr_load_count;
272         u32 vm_entry_controls;
273         u32 vm_entry_msr_load_count;
274         u32 vm_entry_intr_info_field;
275         u32 vm_entry_exception_error_code;
276         u32 vm_entry_instruction_len;
277         u32 tpr_threshold;
278         u32 secondary_vm_exec_control;
279         u32 vm_instruction_error;
280         u32 vm_exit_reason;
281         u32 vm_exit_intr_info;
282         u32 vm_exit_intr_error_code;
283         u32 idt_vectoring_info_field;
284         u32 idt_vectoring_error_code;
285         u32 vm_exit_instruction_len;
286         u32 vmx_instruction_info;
287         u32 guest_es_limit;
288         u32 guest_cs_limit;
289         u32 guest_ss_limit;
290         u32 guest_ds_limit;
291         u32 guest_fs_limit;
292         u32 guest_gs_limit;
293         u32 guest_ldtr_limit;
294         u32 guest_tr_limit;
295         u32 guest_gdtr_limit;
296         u32 guest_idtr_limit;
297         u32 guest_es_ar_bytes;
298         u32 guest_cs_ar_bytes;
299         u32 guest_ss_ar_bytes;
300         u32 guest_ds_ar_bytes;
301         u32 guest_fs_ar_bytes;
302         u32 guest_gs_ar_bytes;
303         u32 guest_ldtr_ar_bytes;
304         u32 guest_tr_ar_bytes;
305         u32 guest_interruptibility_info;
306         u32 guest_activity_state;
307         u32 guest_sysenter_cs;
308         u32 host_ia32_sysenter_cs;
309         u32 vmx_preemption_timer_value;
310         u32 padding32[7]; /* room for future expansion */
311         u16 virtual_processor_id;
312         u16 guest_es_selector;
313         u16 guest_cs_selector;
314         u16 guest_ss_selector;
315         u16 guest_ds_selector;
316         u16 guest_fs_selector;
317         u16 guest_gs_selector;
318         u16 guest_ldtr_selector;
319         u16 guest_tr_selector;
320         u16 host_es_selector;
321         u16 host_cs_selector;
322         u16 host_ss_selector;
323         u16 host_ds_selector;
324         u16 host_fs_selector;
325         u16 host_gs_selector;
326         u16 host_tr_selector;
327 };
328
329 /*
330  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
331  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
332  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
333  */
334 #define VMCS12_REVISION 0x11e57ed0
335
336 /*
337  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
338  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
339  * current implementation, 4K are reserved to avoid future complications.
340  */
341 #define VMCS12_SIZE 0x1000
342
343 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
344 struct vmcs02_list {
345         struct list_head list;
346         gpa_t vmptr;
347         struct loaded_vmcs vmcs02;
348 };
349
350 /*
351  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
352  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
353  */
354 struct nested_vmx {
355         /* Has the level1 guest done vmxon? */
356         bool vmxon;
357         gpa_t vmxon_ptr;
358
359         /* The guest-physical address of the current VMCS L1 keeps for L2 */
360         gpa_t current_vmptr;
361         /* The host-usable pointer to the above */
362         struct page *current_vmcs12_page;
363         struct vmcs12 *current_vmcs12;
364         struct vmcs *current_shadow_vmcs;
365         /*
366          * Indicates if the shadow vmcs must be updated with the
367          * data hold by vmcs12
368          */
369         bool sync_shadow_vmcs;
370
371         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
372         struct list_head vmcs02_pool;
373         int vmcs02_num;
374         u64 vmcs01_tsc_offset;
375         /* L2 must run next, and mustn't decide to exit to L1. */
376         bool nested_run_pending;
377         /*
378          * Guest pages referred to in vmcs02 with host-physical pointers, so
379          * we must keep them pinned while L2 runs.
380          */
381         struct page *apic_access_page;
382         u64 msr_ia32_feature_control;
383
384         struct hrtimer preemption_timer;
385         bool preemption_timer_expired;
386 };
387
388 #define POSTED_INTR_ON  0
389 /* Posted-Interrupt Descriptor */
390 struct pi_desc {
391         u32 pir[8];     /* Posted interrupt requested */
392         u32 control;    /* bit 0 of control is outstanding notification bit */
393         u32 rsvd[7];
394 } __aligned(64);
395
396 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
397 {
398         return test_and_set_bit(POSTED_INTR_ON,
399                         (unsigned long *)&pi_desc->control);
400 }
401
402 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
403 {
404         return test_and_clear_bit(POSTED_INTR_ON,
405                         (unsigned long *)&pi_desc->control);
406 }
407
408 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
409 {
410         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
411 }
412
413 struct vcpu_vmx {
414         struct kvm_vcpu       vcpu;
415         unsigned long         host_rsp;
416         u8                    fail;
417         bool                  nmi_known_unmasked;
418         u32                   exit_intr_info;
419         u32                   idt_vectoring_info;
420         ulong                 rflags;
421         struct shared_msr_entry *guest_msrs;
422         int                   nmsrs;
423         int                   save_nmsrs;
424         unsigned long         host_idt_base;
425 #ifdef CONFIG_X86_64
426         u64                   msr_host_kernel_gs_base;
427         u64                   msr_guest_kernel_gs_base;
428 #endif
429         u32 vm_entry_controls_shadow;
430         u32 vm_exit_controls_shadow;
431         /*
432          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
433          * non-nested (L1) guest, it always points to vmcs01. For a nested
434          * guest (L2), it points to a different VMCS.
435          */
436         struct loaded_vmcs    vmcs01;
437         struct loaded_vmcs   *loaded_vmcs;
438         bool                  __launched; /* temporary, used in vmx_vcpu_run */
439         struct msr_autoload {
440                 unsigned nr;
441                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
442                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
443         } msr_autoload;
444         struct {
445                 int           loaded;
446                 u16           fs_sel, gs_sel, ldt_sel;
447 #ifdef CONFIG_X86_64
448                 u16           ds_sel, es_sel;
449 #endif
450                 int           gs_ldt_reload_needed;
451                 int           fs_reload_needed;
452                 u64           msr_host_bndcfgs;
453         } host_state;
454         struct {
455                 int vm86_active;
456                 ulong save_rflags;
457                 struct kvm_segment segs[8];
458         } rmode;
459         struct {
460                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
461                 struct kvm_save_segment {
462                         u16 selector;
463                         unsigned long base;
464                         u32 limit;
465                         u32 ar;
466                 } seg[8];
467         } segment_cache;
468         int vpid;
469         bool emulation_required;
470
471         /* Support for vnmi-less CPUs */
472         int soft_vnmi_blocked;
473         ktime_t entry_time;
474         s64 vnmi_blocked_time;
475         u32 exit_reason;
476
477         bool rdtscp_enabled;
478
479         /* Posted interrupt descriptor */
480         struct pi_desc pi_desc;
481
482         /* Support for a guest hypervisor (nested VMX) */
483         struct nested_vmx nested;
484 };
485
486 enum segment_cache_field {
487         SEG_FIELD_SEL = 0,
488         SEG_FIELD_BASE = 1,
489         SEG_FIELD_LIMIT = 2,
490         SEG_FIELD_AR = 3,
491
492         SEG_FIELD_NR = 4
493 };
494
495 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
496 {
497         return container_of(vcpu, struct vcpu_vmx, vcpu);
498 }
499
500 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
501 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
502 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
503                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
504
505
506 static unsigned long shadow_read_only_fields[] = {
507         /*
508          * We do NOT shadow fields that are modified when L0
509          * traps and emulates any vmx instruction (e.g. VMPTRLD,
510          * VMXON...) executed by L1.
511          * For example, VM_INSTRUCTION_ERROR is read
512          * by L1 if a vmx instruction fails (part of the error path).
513          * Note the code assumes this logic. If for some reason
514          * we start shadowing these fields then we need to
515          * force a shadow sync when L0 emulates vmx instructions
516          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
517          * by nested_vmx_failValid)
518          */
519         VM_EXIT_REASON,
520         VM_EXIT_INTR_INFO,
521         VM_EXIT_INSTRUCTION_LEN,
522         IDT_VECTORING_INFO_FIELD,
523         IDT_VECTORING_ERROR_CODE,
524         VM_EXIT_INTR_ERROR_CODE,
525         EXIT_QUALIFICATION,
526         GUEST_LINEAR_ADDRESS,
527         GUEST_PHYSICAL_ADDRESS
528 };
529 static int max_shadow_read_only_fields =
530         ARRAY_SIZE(shadow_read_only_fields);
531
532 static unsigned long shadow_read_write_fields[] = {
533         GUEST_RIP,
534         GUEST_RSP,
535         GUEST_CR0,
536         GUEST_CR3,
537         GUEST_CR4,
538         GUEST_INTERRUPTIBILITY_INFO,
539         GUEST_RFLAGS,
540         GUEST_CS_SELECTOR,
541         GUEST_CS_AR_BYTES,
542         GUEST_CS_LIMIT,
543         GUEST_CS_BASE,
544         GUEST_ES_BASE,
545         GUEST_BNDCFGS,
546         CR0_GUEST_HOST_MASK,
547         CR0_READ_SHADOW,
548         CR4_READ_SHADOW,
549         TSC_OFFSET,
550         EXCEPTION_BITMAP,
551         CPU_BASED_VM_EXEC_CONTROL,
552         VM_ENTRY_EXCEPTION_ERROR_CODE,
553         VM_ENTRY_INTR_INFO_FIELD,
554         VM_ENTRY_INSTRUCTION_LEN,
555         VM_ENTRY_EXCEPTION_ERROR_CODE,
556         HOST_FS_BASE,
557         HOST_GS_BASE,
558         HOST_FS_SELECTOR,
559         HOST_GS_SELECTOR
560 };
561 static int max_shadow_read_write_fields =
562         ARRAY_SIZE(shadow_read_write_fields);
563
564 static const unsigned short vmcs_field_to_offset_table[] = {
565         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
566         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
567         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
568         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
569         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
570         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
571         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
572         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
573         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
574         FIELD(HOST_ES_SELECTOR, host_es_selector),
575         FIELD(HOST_CS_SELECTOR, host_cs_selector),
576         FIELD(HOST_SS_SELECTOR, host_ss_selector),
577         FIELD(HOST_DS_SELECTOR, host_ds_selector),
578         FIELD(HOST_FS_SELECTOR, host_fs_selector),
579         FIELD(HOST_GS_SELECTOR, host_gs_selector),
580         FIELD(HOST_TR_SELECTOR, host_tr_selector),
581         FIELD64(IO_BITMAP_A, io_bitmap_a),
582         FIELD64(IO_BITMAP_B, io_bitmap_b),
583         FIELD64(MSR_BITMAP, msr_bitmap),
584         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
585         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
586         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
587         FIELD64(TSC_OFFSET, tsc_offset),
588         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
589         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
590         FIELD64(EPT_POINTER, ept_pointer),
591         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
592         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
593         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
594         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
595         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
596         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
597         FIELD64(GUEST_PDPTR0, guest_pdptr0),
598         FIELD64(GUEST_PDPTR1, guest_pdptr1),
599         FIELD64(GUEST_PDPTR2, guest_pdptr2),
600         FIELD64(GUEST_PDPTR3, guest_pdptr3),
601         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
602         FIELD64(HOST_IA32_PAT, host_ia32_pat),
603         FIELD64(HOST_IA32_EFER, host_ia32_efer),
604         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
605         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
606         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
607         FIELD(EXCEPTION_BITMAP, exception_bitmap),
608         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
609         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
610         FIELD(CR3_TARGET_COUNT, cr3_target_count),
611         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
612         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
613         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
614         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
615         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
616         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
617         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
618         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
619         FIELD(TPR_THRESHOLD, tpr_threshold),
620         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
621         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
622         FIELD(VM_EXIT_REASON, vm_exit_reason),
623         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
624         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
625         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
626         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
627         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
628         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
629         FIELD(GUEST_ES_LIMIT, guest_es_limit),
630         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
631         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
632         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
633         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
634         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
635         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
636         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
637         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
638         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
639         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
640         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
641         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
642         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
643         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
644         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
645         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
646         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
647         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
648         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
649         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
650         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
651         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
652         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
653         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
654         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
655         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
656         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
657         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
658         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
659         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
660         FIELD(EXIT_QUALIFICATION, exit_qualification),
661         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
662         FIELD(GUEST_CR0, guest_cr0),
663         FIELD(GUEST_CR3, guest_cr3),
664         FIELD(GUEST_CR4, guest_cr4),
665         FIELD(GUEST_ES_BASE, guest_es_base),
666         FIELD(GUEST_CS_BASE, guest_cs_base),
667         FIELD(GUEST_SS_BASE, guest_ss_base),
668         FIELD(GUEST_DS_BASE, guest_ds_base),
669         FIELD(GUEST_FS_BASE, guest_fs_base),
670         FIELD(GUEST_GS_BASE, guest_gs_base),
671         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
672         FIELD(GUEST_TR_BASE, guest_tr_base),
673         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
674         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
675         FIELD(GUEST_DR7, guest_dr7),
676         FIELD(GUEST_RSP, guest_rsp),
677         FIELD(GUEST_RIP, guest_rip),
678         FIELD(GUEST_RFLAGS, guest_rflags),
679         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
680         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
681         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
682         FIELD(HOST_CR0, host_cr0),
683         FIELD(HOST_CR3, host_cr3),
684         FIELD(HOST_CR4, host_cr4),
685         FIELD(HOST_FS_BASE, host_fs_base),
686         FIELD(HOST_GS_BASE, host_gs_base),
687         FIELD(HOST_TR_BASE, host_tr_base),
688         FIELD(HOST_GDTR_BASE, host_gdtr_base),
689         FIELD(HOST_IDTR_BASE, host_idtr_base),
690         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
691         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
692         FIELD(HOST_RSP, host_rsp),
693         FIELD(HOST_RIP, host_rip),
694 };
695 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
696
697 static inline short vmcs_field_to_offset(unsigned long field)
698 {
699         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
700                 return -1;
701         return vmcs_field_to_offset_table[field];
702 }
703
704 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
705 {
706         return to_vmx(vcpu)->nested.current_vmcs12;
707 }
708
709 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
710 {
711         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
712         if (is_error_page(page))
713                 return NULL;
714
715         return page;
716 }
717
718 static void nested_release_page(struct page *page)
719 {
720         kvm_release_page_dirty(page);
721 }
722
723 static void nested_release_page_clean(struct page *page)
724 {
725         kvm_release_page_clean(page);
726 }
727
728 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
729 static u64 construct_eptp(unsigned long root_hpa);
730 static void kvm_cpu_vmxon(u64 addr);
731 static void kvm_cpu_vmxoff(void);
732 static bool vmx_mpx_supported(void);
733 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
734 static void vmx_set_segment(struct kvm_vcpu *vcpu,
735                             struct kvm_segment *var, int seg);
736 static void vmx_get_segment(struct kvm_vcpu *vcpu,
737                             struct kvm_segment *var, int seg);
738 static bool guest_state_valid(struct kvm_vcpu *vcpu);
739 static u32 vmx_segment_access_rights(struct kvm_segment *var);
740 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
741 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
742 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
743 static bool vmx_mpx_supported(void);
744
745 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
746 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
747 /*
748  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
749  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
750  */
751 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
752 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
753
754 static unsigned long *vmx_io_bitmap_a;
755 static unsigned long *vmx_io_bitmap_b;
756 static unsigned long *vmx_msr_bitmap_legacy;
757 static unsigned long *vmx_msr_bitmap_longmode;
758 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
759 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
760 static unsigned long *vmx_vmread_bitmap;
761 static unsigned long *vmx_vmwrite_bitmap;
762
763 static bool cpu_has_load_ia32_efer;
764 static bool cpu_has_load_perf_global_ctrl;
765
766 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
767 static DEFINE_SPINLOCK(vmx_vpid_lock);
768
769 static struct vmcs_config {
770         int size;
771         int order;
772         u32 revision_id;
773         u32 pin_based_exec_ctrl;
774         u32 cpu_based_exec_ctrl;
775         u32 cpu_based_2nd_exec_ctrl;
776         u32 vmexit_ctrl;
777         u32 vmentry_ctrl;
778 } vmcs_config;
779
780 static struct vmx_capability {
781         u32 ept;
782         u32 vpid;
783 } vmx_capability;
784
785 #define VMX_SEGMENT_FIELD(seg)                                  \
786         [VCPU_SREG_##seg] = {                                   \
787                 .selector = GUEST_##seg##_SELECTOR,             \
788                 .base = GUEST_##seg##_BASE,                     \
789                 .limit = GUEST_##seg##_LIMIT,                   \
790                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
791         }
792
793 static const struct kvm_vmx_segment_field {
794         unsigned selector;
795         unsigned base;
796         unsigned limit;
797         unsigned ar_bytes;
798 } kvm_vmx_segment_fields[] = {
799         VMX_SEGMENT_FIELD(CS),
800         VMX_SEGMENT_FIELD(DS),
801         VMX_SEGMENT_FIELD(ES),
802         VMX_SEGMENT_FIELD(FS),
803         VMX_SEGMENT_FIELD(GS),
804         VMX_SEGMENT_FIELD(SS),
805         VMX_SEGMENT_FIELD(TR),
806         VMX_SEGMENT_FIELD(LDTR),
807 };
808
809 static u64 host_efer;
810
811 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
812
813 /*
814  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
815  * away by decrementing the array size.
816  */
817 static const u32 vmx_msr_index[] = {
818 #ifdef CONFIG_X86_64
819         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
820 #endif
821         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
822 };
823 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
824
825 static inline bool is_page_fault(u32 intr_info)
826 {
827         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
828                              INTR_INFO_VALID_MASK)) ==
829                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
830 }
831
832 static inline bool is_no_device(u32 intr_info)
833 {
834         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
835                              INTR_INFO_VALID_MASK)) ==
836                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
837 }
838
839 static inline bool is_invalid_opcode(u32 intr_info)
840 {
841         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842                              INTR_INFO_VALID_MASK)) ==
843                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
844 }
845
846 static inline bool is_external_interrupt(u32 intr_info)
847 {
848         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
849                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
850 }
851
852 static inline bool is_machine_check(u32 intr_info)
853 {
854         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855                              INTR_INFO_VALID_MASK)) ==
856                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
857 }
858
859 static inline bool cpu_has_vmx_msr_bitmap(void)
860 {
861         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
862 }
863
864 static inline bool cpu_has_vmx_tpr_shadow(void)
865 {
866         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
867 }
868
869 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
870 {
871         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
872 }
873
874 static inline bool cpu_has_secondary_exec_ctrls(void)
875 {
876         return vmcs_config.cpu_based_exec_ctrl &
877                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
878 }
879
880 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
881 {
882         return vmcs_config.cpu_based_2nd_exec_ctrl &
883                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
884 }
885
886 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
887 {
888         return vmcs_config.cpu_based_2nd_exec_ctrl &
889                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
890 }
891
892 static inline bool cpu_has_vmx_apic_register_virt(void)
893 {
894         return vmcs_config.cpu_based_2nd_exec_ctrl &
895                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
896 }
897
898 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
899 {
900         return vmcs_config.cpu_based_2nd_exec_ctrl &
901                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
902 }
903
904 static inline bool cpu_has_vmx_posted_intr(void)
905 {
906         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
907 }
908
909 static inline bool cpu_has_vmx_apicv(void)
910 {
911         return cpu_has_vmx_apic_register_virt() &&
912                 cpu_has_vmx_virtual_intr_delivery() &&
913                 cpu_has_vmx_posted_intr();
914 }
915
916 static inline bool cpu_has_vmx_flexpriority(void)
917 {
918         return cpu_has_vmx_tpr_shadow() &&
919                 cpu_has_vmx_virtualize_apic_accesses();
920 }
921
922 static inline bool cpu_has_vmx_ept_execute_only(void)
923 {
924         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
925 }
926
927 static inline bool cpu_has_vmx_eptp_uncacheable(void)
928 {
929         return vmx_capability.ept & VMX_EPTP_UC_BIT;
930 }
931
932 static inline bool cpu_has_vmx_eptp_writeback(void)
933 {
934         return vmx_capability.ept & VMX_EPTP_WB_BIT;
935 }
936
937 static inline bool cpu_has_vmx_ept_2m_page(void)
938 {
939         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
940 }
941
942 static inline bool cpu_has_vmx_ept_1g_page(void)
943 {
944         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
945 }
946
947 static inline bool cpu_has_vmx_ept_4levels(void)
948 {
949         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
950 }
951
952 static inline bool cpu_has_vmx_ept_ad_bits(void)
953 {
954         return vmx_capability.ept & VMX_EPT_AD_BIT;
955 }
956
957 static inline bool cpu_has_vmx_invept_context(void)
958 {
959         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
960 }
961
962 static inline bool cpu_has_vmx_invept_global(void)
963 {
964         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
965 }
966
967 static inline bool cpu_has_vmx_invvpid_single(void)
968 {
969         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
970 }
971
972 static inline bool cpu_has_vmx_invvpid_global(void)
973 {
974         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept(void)
978 {
979         return vmcs_config.cpu_based_2nd_exec_ctrl &
980                 SECONDARY_EXEC_ENABLE_EPT;
981 }
982
983 static inline bool cpu_has_vmx_unrestricted_guest(void)
984 {
985         return vmcs_config.cpu_based_2nd_exec_ctrl &
986                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
987 }
988
989 static inline bool cpu_has_vmx_ple(void)
990 {
991         return vmcs_config.cpu_based_2nd_exec_ctrl &
992                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
993 }
994
995 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
996 {
997         return flexpriority_enabled && irqchip_in_kernel(kvm);
998 }
999
1000 static inline bool cpu_has_vmx_vpid(void)
1001 {
1002         return vmcs_config.cpu_based_2nd_exec_ctrl &
1003                 SECONDARY_EXEC_ENABLE_VPID;
1004 }
1005
1006 static inline bool cpu_has_vmx_rdtscp(void)
1007 {
1008         return vmcs_config.cpu_based_2nd_exec_ctrl &
1009                 SECONDARY_EXEC_RDTSCP;
1010 }
1011
1012 static inline bool cpu_has_vmx_invpcid(void)
1013 {
1014         return vmcs_config.cpu_based_2nd_exec_ctrl &
1015                 SECONDARY_EXEC_ENABLE_INVPCID;
1016 }
1017
1018 static inline bool cpu_has_virtual_nmis(void)
1019 {
1020         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1021 }
1022
1023 static inline bool cpu_has_vmx_wbinvd_exit(void)
1024 {
1025         return vmcs_config.cpu_based_2nd_exec_ctrl &
1026                 SECONDARY_EXEC_WBINVD_EXITING;
1027 }
1028
1029 static inline bool cpu_has_vmx_shadow_vmcs(void)
1030 {
1031         u64 vmx_msr;
1032         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1033         /* check if the cpu supports writing r/o exit information fields */
1034         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1035                 return false;
1036
1037         return vmcs_config.cpu_based_2nd_exec_ctrl &
1038                 SECONDARY_EXEC_SHADOW_VMCS;
1039 }
1040
1041 static inline bool report_flexpriority(void)
1042 {
1043         return flexpriority_enabled;
1044 }
1045
1046 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1047 {
1048         return vmcs12->cpu_based_vm_exec_control & bit;
1049 }
1050
1051 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1052 {
1053         return (vmcs12->cpu_based_vm_exec_control &
1054                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1055                 (vmcs12->secondary_vm_exec_control & bit);
1056 }
1057
1058 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1059 {
1060         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1061 }
1062
1063 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1064 {
1065         return vmcs12->pin_based_vm_exec_control &
1066                 PIN_BASED_VMX_PREEMPTION_TIMER;
1067 }
1068
1069 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1070 {
1071         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1072 }
1073
1074 static inline bool is_exception(u32 intr_info)
1075 {
1076         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1077                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1081                               u32 exit_intr_info,
1082                               unsigned long exit_qualification);
1083 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1084                         struct vmcs12 *vmcs12,
1085                         u32 reason, unsigned long qualification);
1086
1087 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1088 {
1089         int i;
1090
1091         for (i = 0; i < vmx->nmsrs; ++i)
1092                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1093                         return i;
1094         return -1;
1095 }
1096
1097 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1098 {
1099     struct {
1100         u64 vpid : 16;
1101         u64 rsvd : 48;
1102         u64 gva;
1103     } operand = { vpid, 0, gva };
1104
1105     asm volatile (__ex(ASM_VMX_INVVPID)
1106                   /* CF==1 or ZF==1 --> rc = -1 */
1107                   "; ja 1f ; ud2 ; 1:"
1108                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1109 }
1110
1111 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1112 {
1113         struct {
1114                 u64 eptp, gpa;
1115         } operand = {eptp, gpa};
1116
1117         asm volatile (__ex(ASM_VMX_INVEPT)
1118                         /* CF==1 or ZF==1 --> rc = -1 */
1119                         "; ja 1f ; ud2 ; 1:\n"
1120                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1121 }
1122
1123 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1124 {
1125         int i;
1126
1127         i = __find_msr_index(vmx, msr);
1128         if (i >= 0)
1129                 return &vmx->guest_msrs[i];
1130         return NULL;
1131 }
1132
1133 static void vmcs_clear(struct vmcs *vmcs)
1134 {
1135         u64 phys_addr = __pa(vmcs);
1136         u8 error;
1137
1138         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1139                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1140                       : "cc", "memory");
1141         if (error)
1142                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1143                        vmcs, phys_addr);
1144 }
1145
1146 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1147 {
1148         vmcs_clear(loaded_vmcs->vmcs);
1149         loaded_vmcs->cpu = -1;
1150         loaded_vmcs->launched = 0;
1151 }
1152
1153 static void vmcs_load(struct vmcs *vmcs)
1154 {
1155         u64 phys_addr = __pa(vmcs);
1156         u8 error;
1157
1158         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1159                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1160                         : "cc", "memory");
1161         if (error)
1162                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1163                        vmcs, phys_addr);
1164 }
1165
1166 #ifdef CONFIG_KEXEC
1167 /*
1168  * This bitmap is used to indicate whether the vmclear
1169  * operation is enabled on all cpus. All disabled by
1170  * default.
1171  */
1172 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1173
1174 static inline void crash_enable_local_vmclear(int cpu)
1175 {
1176         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1177 }
1178
1179 static inline void crash_disable_local_vmclear(int cpu)
1180 {
1181         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1182 }
1183
1184 static inline int crash_local_vmclear_enabled(int cpu)
1185 {
1186         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1187 }
1188
1189 static void crash_vmclear_local_loaded_vmcss(void)
1190 {
1191         int cpu = raw_smp_processor_id();
1192         struct loaded_vmcs *v;
1193
1194         if (!crash_local_vmclear_enabled(cpu))
1195                 return;
1196
1197         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1198                             loaded_vmcss_on_cpu_link)
1199                 vmcs_clear(v->vmcs);
1200 }
1201 #else
1202 static inline void crash_enable_local_vmclear(int cpu) { }
1203 static inline void crash_disable_local_vmclear(int cpu) { }
1204 #endif /* CONFIG_KEXEC */
1205
1206 static void __loaded_vmcs_clear(void *arg)
1207 {
1208         struct loaded_vmcs *loaded_vmcs = arg;
1209         int cpu = raw_smp_processor_id();
1210
1211         if (loaded_vmcs->cpu != cpu)
1212                 return; /* vcpu migration can race with cpu offline */
1213         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1214                 per_cpu(current_vmcs, cpu) = NULL;
1215         crash_disable_local_vmclear(cpu);
1216         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1217
1218         /*
1219          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1220          * is before setting loaded_vmcs->vcpu to -1 which is done in
1221          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1222          * then adds the vmcs into percpu list before it is deleted.
1223          */
1224         smp_wmb();
1225
1226         loaded_vmcs_init(loaded_vmcs);
1227         crash_enable_local_vmclear(cpu);
1228 }
1229
1230 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1231 {
1232         int cpu = loaded_vmcs->cpu;
1233
1234         if (cpu != -1)
1235                 smp_call_function_single(cpu,
1236                          __loaded_vmcs_clear, loaded_vmcs, 1);
1237 }
1238
1239 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1240 {
1241         if (vmx->vpid == 0)
1242                 return;
1243
1244         if (cpu_has_vmx_invvpid_single())
1245                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1246 }
1247
1248 static inline void vpid_sync_vcpu_global(void)
1249 {
1250         if (cpu_has_vmx_invvpid_global())
1251                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1252 }
1253
1254 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1255 {
1256         if (cpu_has_vmx_invvpid_single())
1257                 vpid_sync_vcpu_single(vmx);
1258         else
1259                 vpid_sync_vcpu_global();
1260 }
1261
1262 static inline void ept_sync_global(void)
1263 {
1264         if (cpu_has_vmx_invept_global())
1265                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1266 }
1267
1268 static inline void ept_sync_context(u64 eptp)
1269 {
1270         if (enable_ept) {
1271                 if (cpu_has_vmx_invept_context())
1272                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1273                 else
1274                         ept_sync_global();
1275         }
1276 }
1277
1278 static __always_inline unsigned long vmcs_readl(unsigned long field)
1279 {
1280         unsigned long value;
1281
1282         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1283                       : "=a"(value) : "d"(field) : "cc");
1284         return value;
1285 }
1286
1287 static __always_inline u16 vmcs_read16(unsigned long field)
1288 {
1289         return vmcs_readl(field);
1290 }
1291
1292 static __always_inline u32 vmcs_read32(unsigned long field)
1293 {
1294         return vmcs_readl(field);
1295 }
1296
1297 static __always_inline u64 vmcs_read64(unsigned long field)
1298 {
1299 #ifdef CONFIG_X86_64
1300         return vmcs_readl(field);
1301 #else
1302         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1303 #endif
1304 }
1305
1306 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1307 {
1308         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1309                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1310         dump_stack();
1311 }
1312
1313 static void vmcs_writel(unsigned long field, unsigned long value)
1314 {
1315         u8 error;
1316
1317         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1318                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1319         if (unlikely(error))
1320                 vmwrite_error(field, value);
1321 }
1322
1323 static void vmcs_write16(unsigned long field, u16 value)
1324 {
1325         vmcs_writel(field, value);
1326 }
1327
1328 static void vmcs_write32(unsigned long field, u32 value)
1329 {
1330         vmcs_writel(field, value);
1331 }
1332
1333 static void vmcs_write64(unsigned long field, u64 value)
1334 {
1335         vmcs_writel(field, value);
1336 #ifndef CONFIG_X86_64
1337         asm volatile ("");
1338         vmcs_writel(field+1, value >> 32);
1339 #endif
1340 }
1341
1342 static void vmcs_clear_bits(unsigned long field, u32 mask)
1343 {
1344         vmcs_writel(field, vmcs_readl(field) & ~mask);
1345 }
1346
1347 static void vmcs_set_bits(unsigned long field, u32 mask)
1348 {
1349         vmcs_writel(field, vmcs_readl(field) | mask);
1350 }
1351
1352 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1353 {
1354         vmcs_write32(VM_ENTRY_CONTROLS, val);
1355         vmx->vm_entry_controls_shadow = val;
1356 }
1357
1358 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1359 {
1360         if (vmx->vm_entry_controls_shadow != val)
1361                 vm_entry_controls_init(vmx, val);
1362 }
1363
1364 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1365 {
1366         return vmx->vm_entry_controls_shadow;
1367 }
1368
1369
1370 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1371 {
1372         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1373 }
1374
1375 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1376 {
1377         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1378 }
1379
1380 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1381 {
1382         vmcs_write32(VM_EXIT_CONTROLS, val);
1383         vmx->vm_exit_controls_shadow = val;
1384 }
1385
1386 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1387 {
1388         if (vmx->vm_exit_controls_shadow != val)
1389                 vm_exit_controls_init(vmx, val);
1390 }
1391
1392 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1393 {
1394         return vmx->vm_exit_controls_shadow;
1395 }
1396
1397
1398 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1399 {
1400         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1401 }
1402
1403 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1404 {
1405         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1406 }
1407
1408 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1409 {
1410         vmx->segment_cache.bitmask = 0;
1411 }
1412
1413 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1414                                        unsigned field)
1415 {
1416         bool ret;
1417         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1418
1419         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1420                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1421                 vmx->segment_cache.bitmask = 0;
1422         }
1423         ret = vmx->segment_cache.bitmask & mask;
1424         vmx->segment_cache.bitmask |= mask;
1425         return ret;
1426 }
1427
1428 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1429 {
1430         u16 *p = &vmx->segment_cache.seg[seg].selector;
1431
1432         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1433                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1434         return *p;
1435 }
1436
1437 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1438 {
1439         ulong *p = &vmx->segment_cache.seg[seg].base;
1440
1441         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1442                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1443         return *p;
1444 }
1445
1446 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1447 {
1448         u32 *p = &vmx->segment_cache.seg[seg].limit;
1449
1450         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1451                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1452         return *p;
1453 }
1454
1455 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1456 {
1457         u32 *p = &vmx->segment_cache.seg[seg].ar;
1458
1459         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1460                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1461         return *p;
1462 }
1463
1464 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1465 {
1466         u32 eb;
1467
1468         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1469              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1470         if ((vcpu->guest_debug &
1471              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1472             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1473                 eb |= 1u << BP_VECTOR;
1474         if (to_vmx(vcpu)->rmode.vm86_active)
1475                 eb = ~0;
1476         if (enable_ept)
1477                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1478         if (vcpu->fpu_active)
1479                 eb &= ~(1u << NM_VECTOR);
1480
1481         /* When we are running a nested L2 guest and L1 specified for it a
1482          * certain exception bitmap, we must trap the same exceptions and pass
1483          * them to L1. When running L2, we will only handle the exceptions
1484          * specified above if L1 did not want them.
1485          */
1486         if (is_guest_mode(vcpu))
1487                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1488
1489         vmcs_write32(EXCEPTION_BITMAP, eb);
1490 }
1491
1492 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1493                 unsigned long entry, unsigned long exit)
1494 {
1495         vm_entry_controls_clearbit(vmx, entry);
1496         vm_exit_controls_clearbit(vmx, exit);
1497 }
1498
1499 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1500 {
1501         unsigned i;
1502         struct msr_autoload *m = &vmx->msr_autoload;
1503
1504         switch (msr) {
1505         case MSR_EFER:
1506                 if (cpu_has_load_ia32_efer) {
1507                         clear_atomic_switch_msr_special(vmx,
1508                                         VM_ENTRY_LOAD_IA32_EFER,
1509                                         VM_EXIT_LOAD_IA32_EFER);
1510                         return;
1511                 }
1512                 break;
1513         case MSR_CORE_PERF_GLOBAL_CTRL:
1514                 if (cpu_has_load_perf_global_ctrl) {
1515                         clear_atomic_switch_msr_special(vmx,
1516                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1517                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1518                         return;
1519                 }
1520                 break;
1521         }
1522
1523         for (i = 0; i < m->nr; ++i)
1524                 if (m->guest[i].index == msr)
1525                         break;
1526
1527         if (i == m->nr)
1528                 return;
1529         --m->nr;
1530         m->guest[i] = m->guest[m->nr];
1531         m->host[i] = m->host[m->nr];
1532         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1533         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1534 }
1535
1536 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1537                 unsigned long entry, unsigned long exit,
1538                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1539                 u64 guest_val, u64 host_val)
1540 {
1541         vmcs_write64(guest_val_vmcs, guest_val);
1542         vmcs_write64(host_val_vmcs, host_val);
1543         vm_entry_controls_setbit(vmx, entry);
1544         vm_exit_controls_setbit(vmx, exit);
1545 }
1546
1547 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1548                                   u64 guest_val, u64 host_val)
1549 {
1550         unsigned i;
1551         struct msr_autoload *m = &vmx->msr_autoload;
1552
1553         switch (msr) {
1554         case MSR_EFER:
1555                 if (cpu_has_load_ia32_efer) {
1556                         add_atomic_switch_msr_special(vmx,
1557                                         VM_ENTRY_LOAD_IA32_EFER,
1558                                         VM_EXIT_LOAD_IA32_EFER,
1559                                         GUEST_IA32_EFER,
1560                                         HOST_IA32_EFER,
1561                                         guest_val, host_val);
1562                         return;
1563                 }
1564                 break;
1565         case MSR_CORE_PERF_GLOBAL_CTRL:
1566                 if (cpu_has_load_perf_global_ctrl) {
1567                         add_atomic_switch_msr_special(vmx,
1568                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1569                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1570                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1571                                         HOST_IA32_PERF_GLOBAL_CTRL,
1572                                         guest_val, host_val);
1573                         return;
1574                 }
1575                 break;
1576         }
1577
1578         for (i = 0; i < m->nr; ++i)
1579                 if (m->guest[i].index == msr)
1580                         break;
1581
1582         if (i == NR_AUTOLOAD_MSRS) {
1583                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1584                                 "Can't add msr %x\n", msr);
1585                 return;
1586         } else if (i == m->nr) {
1587                 ++m->nr;
1588                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1589                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1590         }
1591
1592         m->guest[i].index = msr;
1593         m->guest[i].value = guest_val;
1594         m->host[i].index = msr;
1595         m->host[i].value = host_val;
1596 }
1597
1598 static void reload_tss(void)
1599 {
1600         /*
1601          * VT restores TR but not its size.  Useless.
1602          */
1603         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1604         struct desc_struct *descs;
1605
1606         descs = (void *)gdt->address;
1607         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1608         load_TR_desc();
1609 }
1610
1611 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1612 {
1613         u64 guest_efer;
1614         u64 ignore_bits;
1615
1616         guest_efer = vmx->vcpu.arch.efer;
1617
1618         /*
1619          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1620          * outside long mode
1621          */
1622         ignore_bits = EFER_NX | EFER_SCE;
1623 #ifdef CONFIG_X86_64
1624         ignore_bits |= EFER_LMA | EFER_LME;
1625         /* SCE is meaningful only in long mode on Intel */
1626         if (guest_efer & EFER_LMA)
1627                 ignore_bits &= ~(u64)EFER_SCE;
1628 #endif
1629         guest_efer &= ~ignore_bits;
1630         guest_efer |= host_efer & ignore_bits;
1631         vmx->guest_msrs[efer_offset].data = guest_efer;
1632         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1633
1634         clear_atomic_switch_msr(vmx, MSR_EFER);
1635         /* On ept, can't emulate nx, and must switch nx atomically */
1636         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1637                 guest_efer = vmx->vcpu.arch.efer;
1638                 if (!(guest_efer & EFER_LMA))
1639                         guest_efer &= ~EFER_LME;
1640                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1641                 return false;
1642         }
1643
1644         return true;
1645 }
1646
1647 static unsigned long segment_base(u16 selector)
1648 {
1649         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1650         struct desc_struct *d;
1651         unsigned long table_base;
1652         unsigned long v;
1653
1654         if (!(selector & ~3))
1655                 return 0;
1656
1657         table_base = gdt->address;
1658
1659         if (selector & 4) {           /* from ldt */
1660                 u16 ldt_selector = kvm_read_ldt();
1661
1662                 if (!(ldt_selector & ~3))
1663                         return 0;
1664
1665                 table_base = segment_base(ldt_selector);
1666         }
1667         d = (struct desc_struct *)(table_base + (selector & ~7));
1668         v = get_desc_base(d);
1669 #ifdef CONFIG_X86_64
1670        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1671                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1672 #endif
1673         return v;
1674 }
1675
1676 static inline unsigned long kvm_read_tr_base(void)
1677 {
1678         u16 tr;
1679         asm("str %0" : "=g"(tr));
1680         return segment_base(tr);
1681 }
1682
1683 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1684 {
1685         struct vcpu_vmx *vmx = to_vmx(vcpu);
1686         int i;
1687
1688         if (vmx->host_state.loaded)
1689                 return;
1690
1691         vmx->host_state.loaded = 1;
1692         /*
1693          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1694          * allow segment selectors with cpl > 0 or ti == 1.
1695          */
1696         vmx->host_state.ldt_sel = kvm_read_ldt();
1697         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1698         savesegment(fs, vmx->host_state.fs_sel);
1699         if (!(vmx->host_state.fs_sel & 7)) {
1700                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1701                 vmx->host_state.fs_reload_needed = 0;
1702         } else {
1703                 vmcs_write16(HOST_FS_SELECTOR, 0);
1704                 vmx->host_state.fs_reload_needed = 1;
1705         }
1706         savesegment(gs, vmx->host_state.gs_sel);
1707         if (!(vmx->host_state.gs_sel & 7))
1708                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1709         else {
1710                 vmcs_write16(HOST_GS_SELECTOR, 0);
1711                 vmx->host_state.gs_ldt_reload_needed = 1;
1712         }
1713
1714 #ifdef CONFIG_X86_64
1715         savesegment(ds, vmx->host_state.ds_sel);
1716         savesegment(es, vmx->host_state.es_sel);
1717 #endif
1718
1719 #ifdef CONFIG_X86_64
1720         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1721         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1722 #else
1723         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1724         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1725 #endif
1726
1727 #ifdef CONFIG_X86_64
1728         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1729         if (is_long_mode(&vmx->vcpu))
1730                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1731 #endif
1732         if (boot_cpu_has(X86_FEATURE_MPX))
1733                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1734         for (i = 0; i < vmx->save_nmsrs; ++i)
1735                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1736                                    vmx->guest_msrs[i].data,
1737                                    vmx->guest_msrs[i].mask);
1738 }
1739
1740 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1741 {
1742         if (!vmx->host_state.loaded)
1743                 return;
1744
1745         ++vmx->vcpu.stat.host_state_reload;
1746         vmx->host_state.loaded = 0;
1747 #ifdef CONFIG_X86_64
1748         if (is_long_mode(&vmx->vcpu))
1749                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1750 #endif
1751         if (vmx->host_state.gs_ldt_reload_needed) {
1752                 kvm_load_ldt(vmx->host_state.ldt_sel);
1753 #ifdef CONFIG_X86_64
1754                 load_gs_index(vmx->host_state.gs_sel);
1755 #else
1756                 loadsegment(gs, vmx->host_state.gs_sel);
1757 #endif
1758         }
1759         if (vmx->host_state.fs_reload_needed)
1760                 loadsegment(fs, vmx->host_state.fs_sel);
1761 #ifdef CONFIG_X86_64
1762         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1763                 loadsegment(ds, vmx->host_state.ds_sel);
1764                 loadsegment(es, vmx->host_state.es_sel);
1765         }
1766 #endif
1767         reload_tss();
1768 #ifdef CONFIG_X86_64
1769         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1770 #endif
1771         if (vmx->host_state.msr_host_bndcfgs)
1772                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1773         /*
1774          * If the FPU is not active (through the host task or
1775          * the guest vcpu), then restore the cr0.TS bit.
1776          */
1777         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1778                 stts();
1779         load_gdt(&__get_cpu_var(host_gdt));
1780 }
1781
1782 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1783 {
1784         preempt_disable();
1785         __vmx_load_host_state(vmx);
1786         preempt_enable();
1787 }
1788
1789 /*
1790  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1791  * vcpu mutex is already taken.
1792  */
1793 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1794 {
1795         struct vcpu_vmx *vmx = to_vmx(vcpu);
1796         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1797
1798         if (!vmm_exclusive)
1799                 kvm_cpu_vmxon(phys_addr);
1800         else if (vmx->loaded_vmcs->cpu != cpu)
1801                 loaded_vmcs_clear(vmx->loaded_vmcs);
1802
1803         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1804                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1805                 vmcs_load(vmx->loaded_vmcs->vmcs);
1806         }
1807
1808         if (vmx->loaded_vmcs->cpu != cpu) {
1809                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1810                 unsigned long sysenter_esp;
1811
1812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1813                 local_irq_disable();
1814                 crash_disable_local_vmclear(cpu);
1815
1816                 /*
1817                  * Read loaded_vmcs->cpu should be before fetching
1818                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1819                  * See the comments in __loaded_vmcs_clear().
1820                  */
1821                 smp_rmb();
1822
1823                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1824                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1825                 crash_enable_local_vmclear(cpu);
1826                 local_irq_enable();
1827
1828                 /*
1829                  * Linux uses per-cpu TSS and GDT, so set these when switching
1830                  * processors.
1831                  */
1832                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1833                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1834
1835                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1836                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1837                 vmx->loaded_vmcs->cpu = cpu;
1838         }
1839 }
1840
1841 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1842 {
1843         __vmx_load_host_state(to_vmx(vcpu));
1844         if (!vmm_exclusive) {
1845                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1846                 vcpu->cpu = -1;
1847                 kvm_cpu_vmxoff();
1848         }
1849 }
1850
1851 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1852 {
1853         ulong cr0;
1854
1855         if (vcpu->fpu_active)
1856                 return;
1857         vcpu->fpu_active = 1;
1858         cr0 = vmcs_readl(GUEST_CR0);
1859         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1860         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1861         vmcs_writel(GUEST_CR0, cr0);
1862         update_exception_bitmap(vcpu);
1863         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1864         if (is_guest_mode(vcpu))
1865                 vcpu->arch.cr0_guest_owned_bits &=
1866                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1867         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1868 }
1869
1870 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1871
1872 /*
1873  * Return the cr0 value that a nested guest would read. This is a combination
1874  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1875  * its hypervisor (cr0_read_shadow).
1876  */
1877 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1878 {
1879         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1880                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1881 }
1882 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1883 {
1884         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1885                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1886 }
1887
1888 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1889 {
1890         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1891          * set this *before* calling this function.
1892          */
1893         vmx_decache_cr0_guest_bits(vcpu);
1894         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1895         update_exception_bitmap(vcpu);
1896         vcpu->arch.cr0_guest_owned_bits = 0;
1897         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1898         if (is_guest_mode(vcpu)) {
1899                 /*
1900                  * L1's specified read shadow might not contain the TS bit,
1901                  * so now that we turned on shadowing of this bit, we need to
1902                  * set this bit of the shadow. Like in nested_vmx_run we need
1903                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1904                  * up-to-date here because we just decached cr0.TS (and we'll
1905                  * only update vmcs12->guest_cr0 on nested exit).
1906                  */
1907                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1909                         (vcpu->arch.cr0 & X86_CR0_TS);
1910                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1911         } else
1912                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1913 }
1914
1915 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1916 {
1917         unsigned long rflags, save_rflags;
1918
1919         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1920                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1921                 rflags = vmcs_readl(GUEST_RFLAGS);
1922                 if (to_vmx(vcpu)->rmode.vm86_active) {
1923                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1924                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1925                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1926                 }
1927                 to_vmx(vcpu)->rflags = rflags;
1928         }
1929         return to_vmx(vcpu)->rflags;
1930 }
1931
1932 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1933 {
1934         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1935         to_vmx(vcpu)->rflags = rflags;
1936         if (to_vmx(vcpu)->rmode.vm86_active) {
1937                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1938                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1939         }
1940         vmcs_writel(GUEST_RFLAGS, rflags);
1941 }
1942
1943 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1944 {
1945         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1946         int ret = 0;
1947
1948         if (interruptibility & GUEST_INTR_STATE_STI)
1949                 ret |= KVM_X86_SHADOW_INT_STI;
1950         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1951                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1952
1953         return ret & mask;
1954 }
1955
1956 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1957 {
1958         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1959         u32 interruptibility = interruptibility_old;
1960
1961         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1962
1963         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1964                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1965         else if (mask & KVM_X86_SHADOW_INT_STI)
1966                 interruptibility |= GUEST_INTR_STATE_STI;
1967
1968         if ((interruptibility != interruptibility_old))
1969                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1970 }
1971
1972 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1973 {
1974         unsigned long rip;
1975
1976         rip = kvm_rip_read(vcpu);
1977         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1978         kvm_rip_write(vcpu, rip);
1979
1980         /* skipping an emulated instruction also counts */
1981         vmx_set_interrupt_shadow(vcpu, 0);
1982 }
1983
1984 /*
1985  * KVM wants to inject page-faults which it got to the guest. This function
1986  * checks whether in a nested guest, we need to inject them to L1 or L2.
1987  */
1988 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1989 {
1990         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1991
1992         if (!(vmcs12->exception_bitmap & (1u << nr)))
1993                 return 0;
1994
1995         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1996                           vmcs_read32(VM_EXIT_INTR_INFO),
1997                           vmcs_readl(EXIT_QUALIFICATION));
1998         return 1;
1999 }
2000
2001 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2002                                 bool has_error_code, u32 error_code,
2003                                 bool reinject)
2004 {
2005         struct vcpu_vmx *vmx = to_vmx(vcpu);
2006         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2007
2008         if (!reinject && is_guest_mode(vcpu) &&
2009             nested_vmx_check_exception(vcpu, nr))
2010                 return;
2011
2012         if (has_error_code) {
2013                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2014                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2015         }
2016
2017         if (vmx->rmode.vm86_active) {
2018                 int inc_eip = 0;
2019                 if (kvm_exception_is_soft(nr))
2020                         inc_eip = vcpu->arch.event_exit_inst_len;
2021                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2022                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2023                 return;
2024         }
2025
2026         if (kvm_exception_is_soft(nr)) {
2027                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2028                              vmx->vcpu.arch.event_exit_inst_len);
2029                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2030         } else
2031                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2032
2033         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2034 }
2035
2036 static bool vmx_rdtscp_supported(void)
2037 {
2038         return cpu_has_vmx_rdtscp();
2039 }
2040
2041 static bool vmx_invpcid_supported(void)
2042 {
2043         return cpu_has_vmx_invpcid() && enable_ept;
2044 }
2045
2046 /*
2047  * Swap MSR entry in host/guest MSR entry array.
2048  */
2049 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2050 {
2051         struct shared_msr_entry tmp;
2052
2053         tmp = vmx->guest_msrs[to];
2054         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2055         vmx->guest_msrs[from] = tmp;
2056 }
2057
2058 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2059 {
2060         unsigned long *msr_bitmap;
2061
2062         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2063                 if (is_long_mode(vcpu))
2064                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2065                 else
2066                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2067         } else {
2068                 if (is_long_mode(vcpu))
2069                         msr_bitmap = vmx_msr_bitmap_longmode;
2070                 else
2071                         msr_bitmap = vmx_msr_bitmap_legacy;
2072         }
2073
2074         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2075 }
2076
2077 /*
2078  * Set up the vmcs to automatically save and restore system
2079  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2080  * mode, as fiddling with msrs is very expensive.
2081  */
2082 static void setup_msrs(struct vcpu_vmx *vmx)
2083 {
2084         int save_nmsrs, index;
2085
2086         save_nmsrs = 0;
2087 #ifdef CONFIG_X86_64
2088         if (is_long_mode(&vmx->vcpu)) {
2089                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2090                 if (index >= 0)
2091                         move_msr_up(vmx, index, save_nmsrs++);
2092                 index = __find_msr_index(vmx, MSR_LSTAR);
2093                 if (index >= 0)
2094                         move_msr_up(vmx, index, save_nmsrs++);
2095                 index = __find_msr_index(vmx, MSR_CSTAR);
2096                 if (index >= 0)
2097                         move_msr_up(vmx, index, save_nmsrs++);
2098                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2099                 if (index >= 0 && vmx->rdtscp_enabled)
2100                         move_msr_up(vmx, index, save_nmsrs++);
2101                 /*
2102                  * MSR_STAR is only needed on long mode guests, and only
2103                  * if efer.sce is enabled.
2104                  */
2105                 index = __find_msr_index(vmx, MSR_STAR);
2106                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2107                         move_msr_up(vmx, index, save_nmsrs++);
2108         }
2109 #endif
2110         index = __find_msr_index(vmx, MSR_EFER);
2111         if (index >= 0 && update_transition_efer(vmx, index))
2112                 move_msr_up(vmx, index, save_nmsrs++);
2113
2114         vmx->save_nmsrs = save_nmsrs;
2115
2116         if (cpu_has_vmx_msr_bitmap())
2117                 vmx_set_msr_bitmap(&vmx->vcpu);
2118 }
2119
2120 /*
2121  * reads and returns guest's timestamp counter "register"
2122  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2123  */
2124 static u64 guest_read_tsc(void)
2125 {
2126         u64 host_tsc, tsc_offset;
2127
2128         rdtscll(host_tsc);
2129         tsc_offset = vmcs_read64(TSC_OFFSET);
2130         return host_tsc + tsc_offset;
2131 }
2132
2133 /*
2134  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2135  * counter, even if a nested guest (L2) is currently running.
2136  */
2137 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2138 {
2139         u64 tsc_offset;
2140
2141         tsc_offset = is_guest_mode(vcpu) ?
2142                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2143                 vmcs_read64(TSC_OFFSET);
2144         return host_tsc + tsc_offset;
2145 }
2146
2147 /*
2148  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2149  * software catchup for faster rates on slower CPUs.
2150  */
2151 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2152 {
2153         if (!scale)
2154                 return;
2155
2156         if (user_tsc_khz > tsc_khz) {
2157                 vcpu->arch.tsc_catchup = 1;
2158                 vcpu->arch.tsc_always_catchup = 1;
2159         } else
2160                 WARN(1, "user requested TSC rate below hardware speed\n");
2161 }
2162
2163 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2164 {
2165         return vmcs_read64(TSC_OFFSET);
2166 }
2167
2168 /*
2169  * writes 'offset' into guest's timestamp counter offset register
2170  */
2171 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2172 {
2173         if (is_guest_mode(vcpu)) {
2174                 /*
2175                  * We're here if L1 chose not to trap WRMSR to TSC. According
2176                  * to the spec, this should set L1's TSC; The offset that L1
2177                  * set for L2 remains unchanged, and still needs to be added
2178                  * to the newly set TSC to get L2's TSC.
2179                  */
2180                 struct vmcs12 *vmcs12;
2181                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2182                 /* recalculate vmcs02.TSC_OFFSET: */
2183                 vmcs12 = get_vmcs12(vcpu);
2184                 vmcs_write64(TSC_OFFSET, offset +
2185                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2186                          vmcs12->tsc_offset : 0));
2187         } else {
2188                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2189                                            vmcs_read64(TSC_OFFSET), offset);
2190                 vmcs_write64(TSC_OFFSET, offset);
2191         }
2192 }
2193
2194 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2195 {
2196         u64 offset = vmcs_read64(TSC_OFFSET);
2197
2198         vmcs_write64(TSC_OFFSET, offset + adjustment);
2199         if (is_guest_mode(vcpu)) {
2200                 /* Even when running L2, the adjustment needs to apply to L1 */
2201                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2202         } else
2203                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2204                                            offset + adjustment);
2205 }
2206
2207 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2208 {
2209         return target_tsc - native_read_tsc();
2210 }
2211
2212 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2213 {
2214         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2215         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2216 }
2217
2218 /*
2219  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2220  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2221  * all guests if the "nested" module option is off, and can also be disabled
2222  * for a single guest by disabling its VMX cpuid bit.
2223  */
2224 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2225 {
2226         return nested && guest_cpuid_has_vmx(vcpu);
2227 }
2228
2229 /*
2230  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2231  * returned for the various VMX controls MSRs when nested VMX is enabled.
2232  * The same values should also be used to verify that vmcs12 control fields are
2233  * valid during nested entry from L1 to L2.
2234  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2235  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2236  * bit in the high half is on if the corresponding bit in the control field
2237  * may be on. See also vmx_control_verify().
2238  * TODO: allow these variables to be modified (downgraded) by module options
2239  * or other means.
2240  */
2241 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2242 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2243 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2244 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2245 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2246 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2247 static u32 nested_vmx_ept_caps;
2248 static __init void nested_vmx_setup_ctls_msrs(void)
2249 {
2250         /*
2251          * Note that as a general rule, the high half of the MSRs (bits in
2252          * the control fields which may be 1) should be initialized by the
2253          * intersection of the underlying hardware's MSR (i.e., features which
2254          * can be supported) and the list of features we want to expose -
2255          * because they are known to be properly supported in our code.
2256          * Also, usually, the low half of the MSRs (bits which must be 1) can
2257          * be set to 0, meaning that L1 may turn off any of these bits. The
2258          * reason is that if one of these bits is necessary, it will appear
2259          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2260          * fields of vmcs01 and vmcs02, will turn these bits off - and
2261          * nested_vmx_exit_handled() will not pass related exits to L1.
2262          * These rules have exceptions below.
2263          */
2264
2265         /* pin-based controls */
2266         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2267               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2268         /*
2269          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2270          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2271          */
2272         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2273         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2274                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2275         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2276                 PIN_BASED_VMX_PREEMPTION_TIMER;
2277
2278         /*
2279          * Exit controls
2280          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2281          * 17 must be 1.
2282          */
2283         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2284                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2285         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2286
2287         nested_vmx_exit_ctls_high &=
2288 #ifdef CONFIG_X86_64
2289                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2290 #endif
2291                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2292         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2293                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2294                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2295
2296         if (vmx_mpx_supported())
2297                 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2298
2299         /* entry controls */
2300         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2301                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2302         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2303         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2304         nested_vmx_entry_ctls_high &=
2305 #ifdef CONFIG_X86_64
2306                 VM_ENTRY_IA32E_MODE |
2307 #endif
2308                 VM_ENTRY_LOAD_IA32_PAT;
2309         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2310                                        VM_ENTRY_LOAD_IA32_EFER);
2311         if (vmx_mpx_supported())
2312                 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2313
2314         /* cpu-based controls */
2315         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2316                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2317         nested_vmx_procbased_ctls_low = 0;
2318         nested_vmx_procbased_ctls_high &=
2319                 CPU_BASED_VIRTUAL_INTR_PENDING |
2320                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2321                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2322                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2323                 CPU_BASED_CR3_STORE_EXITING |
2324 #ifdef CONFIG_X86_64
2325                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2326 #endif
2327                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2328                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2329                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2330                 CPU_BASED_PAUSE_EXITING |
2331                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2332         /*
2333          * We can allow some features even when not supported by the
2334          * hardware. For example, L1 can specify an MSR bitmap - and we
2335          * can use it to avoid exits to L1 - even when L0 runs L2
2336          * without MSR bitmaps.
2337          */
2338         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2339
2340         /* secondary cpu-based controls */
2341         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2342                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2343         nested_vmx_secondary_ctls_low = 0;
2344         nested_vmx_secondary_ctls_high &=
2345                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2346                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2347                 SECONDARY_EXEC_WBINVD_EXITING;
2348
2349         if (enable_ept) {
2350                 /* nested EPT: emulate EPT also to L1 */
2351                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2352                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2353                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2354                          VMX_EPT_INVEPT_BIT;
2355                 nested_vmx_ept_caps &= vmx_capability.ept;
2356                 /*
2357                  * For nested guests, we don't do anything specific
2358                  * for single context invalidation. Hence, only advertise
2359                  * support for global context invalidation.
2360                  */
2361                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2362         } else
2363                 nested_vmx_ept_caps = 0;
2364
2365         /* miscellaneous data */
2366         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2367         nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2368         nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2369                 VMX_MISC_ACTIVITY_HLT;
2370         nested_vmx_misc_high = 0;
2371 }
2372
2373 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2374 {
2375         /*
2376          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2377          */
2378         return ((control & high) | low) == control;
2379 }
2380
2381 static inline u64 vmx_control_msr(u32 low, u32 high)
2382 {
2383         return low | ((u64)high << 32);
2384 }
2385
2386 /* Returns 0 on success, non-0 otherwise. */
2387 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2388 {
2389         switch (msr_index) {
2390         case MSR_IA32_VMX_BASIC:
2391                 /*
2392                  * This MSR reports some information about VMX support. We
2393                  * should return information about the VMX we emulate for the
2394                  * guest, and the VMCS structure we give it - not about the
2395                  * VMX support of the underlying hardware.
2396                  */
2397                 *pdata = VMCS12_REVISION |
2398                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2399                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2400                 break;
2401         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2402         case MSR_IA32_VMX_PINBASED_CTLS:
2403                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2404                                         nested_vmx_pinbased_ctls_high);
2405                 break;
2406         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2407         case MSR_IA32_VMX_PROCBASED_CTLS:
2408                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2409                                         nested_vmx_procbased_ctls_high);
2410                 break;
2411         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2412         case MSR_IA32_VMX_EXIT_CTLS:
2413                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2414                                         nested_vmx_exit_ctls_high);
2415                 break;
2416         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2417         case MSR_IA32_VMX_ENTRY_CTLS:
2418                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2419                                         nested_vmx_entry_ctls_high);
2420                 break;
2421         case MSR_IA32_VMX_MISC:
2422                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2423                                          nested_vmx_misc_high);
2424                 break;
2425         /*
2426          * These MSRs specify bits which the guest must keep fixed (on or off)
2427          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2428          * We picked the standard core2 setting.
2429          */
2430 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2431 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2432         case MSR_IA32_VMX_CR0_FIXED0:
2433                 *pdata = VMXON_CR0_ALWAYSON;
2434                 break;
2435         case MSR_IA32_VMX_CR0_FIXED1:
2436                 *pdata = -1ULL;
2437                 break;
2438         case MSR_IA32_VMX_CR4_FIXED0:
2439                 *pdata = VMXON_CR4_ALWAYSON;
2440                 break;
2441         case MSR_IA32_VMX_CR4_FIXED1:
2442                 *pdata = -1ULL;
2443                 break;
2444         case MSR_IA32_VMX_VMCS_ENUM:
2445                 *pdata = 0x1f;
2446                 break;
2447         case MSR_IA32_VMX_PROCBASED_CTLS2:
2448                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2449                                         nested_vmx_secondary_ctls_high);
2450                 break;
2451         case MSR_IA32_VMX_EPT_VPID_CAP:
2452                 /* Currently, no nested vpid support */
2453                 *pdata = nested_vmx_ept_caps;
2454                 break;
2455         default:
2456                 return 1;
2457         }
2458
2459         return 0;
2460 }
2461
2462 /*
2463  * Reads an msr value (of 'msr_index') into 'pdata'.
2464  * Returns 0 on success, non-0 otherwise.
2465  * Assumes vcpu_load() was already called.
2466  */
2467 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2468 {
2469         u64 data;
2470         struct shared_msr_entry *msr;
2471
2472         if (!pdata) {
2473                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2474                 return -EINVAL;
2475         }
2476
2477         switch (msr_index) {
2478 #ifdef CONFIG_X86_64
2479         case MSR_FS_BASE:
2480                 data = vmcs_readl(GUEST_FS_BASE);
2481                 break;
2482         case MSR_GS_BASE:
2483                 data = vmcs_readl(GUEST_GS_BASE);
2484                 break;
2485         case MSR_KERNEL_GS_BASE:
2486                 vmx_load_host_state(to_vmx(vcpu));
2487                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2488                 break;
2489 #endif
2490         case MSR_EFER:
2491                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2492         case MSR_IA32_TSC:
2493                 data = guest_read_tsc();
2494                 break;
2495         case MSR_IA32_SYSENTER_CS:
2496                 data = vmcs_read32(GUEST_SYSENTER_CS);
2497                 break;
2498         case MSR_IA32_SYSENTER_EIP:
2499                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2500                 break;
2501         case MSR_IA32_SYSENTER_ESP:
2502                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2503                 break;
2504         case MSR_IA32_BNDCFGS:
2505                 if (!vmx_mpx_supported())
2506                         return 1;
2507                 data = vmcs_read64(GUEST_BNDCFGS);
2508                 break;
2509         case MSR_IA32_FEATURE_CONTROL:
2510                 if (!nested_vmx_allowed(vcpu))
2511                         return 1;
2512                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2513                 break;
2514         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2515                 if (!nested_vmx_allowed(vcpu))
2516                         return 1;
2517                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2518         case MSR_TSC_AUX:
2519                 if (!to_vmx(vcpu)->rdtscp_enabled)
2520                         return 1;
2521                 /* Otherwise falls through */
2522         default:
2523                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2524                 if (msr) {
2525                         data = msr->data;
2526                         break;
2527                 }
2528                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2529         }
2530
2531         *pdata = data;
2532         return 0;
2533 }
2534
2535 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2536
2537 /*
2538  * Writes msr value into into the appropriate "register".
2539  * Returns 0 on success, non-0 otherwise.
2540  * Assumes vcpu_load() was already called.
2541  */
2542 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2543 {
2544         struct vcpu_vmx *vmx = to_vmx(vcpu);
2545         struct shared_msr_entry *msr;
2546         int ret = 0;
2547         u32 msr_index = msr_info->index;
2548         u64 data = msr_info->data;
2549
2550         switch (msr_index) {
2551         case MSR_EFER:
2552                 ret = kvm_set_msr_common(vcpu, msr_info);
2553                 break;
2554 #ifdef CONFIG_X86_64
2555         case MSR_FS_BASE:
2556                 vmx_segment_cache_clear(vmx);
2557                 vmcs_writel(GUEST_FS_BASE, data);
2558                 break;
2559         case MSR_GS_BASE:
2560                 vmx_segment_cache_clear(vmx);
2561                 vmcs_writel(GUEST_GS_BASE, data);
2562                 break;
2563         case MSR_KERNEL_GS_BASE:
2564                 vmx_load_host_state(vmx);
2565                 vmx->msr_guest_kernel_gs_base = data;
2566                 break;
2567 #endif
2568         case MSR_IA32_SYSENTER_CS:
2569                 vmcs_write32(GUEST_SYSENTER_CS, data);
2570                 break;
2571         case MSR_IA32_SYSENTER_EIP:
2572                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2573                 break;
2574         case MSR_IA32_SYSENTER_ESP:
2575                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2576                 break;
2577         case MSR_IA32_BNDCFGS:
2578                 if (!vmx_mpx_supported())
2579                         return 1;
2580                 vmcs_write64(GUEST_BNDCFGS, data);
2581                 break;
2582         case MSR_IA32_TSC:
2583                 kvm_write_tsc(vcpu, msr_info);
2584                 break;
2585         case MSR_IA32_CR_PAT:
2586                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2587                         vmcs_write64(GUEST_IA32_PAT, data);
2588                         vcpu->arch.pat = data;
2589                         break;
2590                 }
2591                 ret = kvm_set_msr_common(vcpu, msr_info);
2592                 break;
2593         case MSR_IA32_TSC_ADJUST:
2594                 ret = kvm_set_msr_common(vcpu, msr_info);
2595                 break;
2596         case MSR_IA32_FEATURE_CONTROL:
2597                 if (!nested_vmx_allowed(vcpu) ||
2598                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2599                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2600                         return 1;
2601                 vmx->nested.msr_ia32_feature_control = data;
2602                 if (msr_info->host_initiated && data == 0)
2603                         vmx_leave_nested(vcpu);
2604                 break;
2605         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2606                 return 1; /* they are read-only */
2607         case MSR_TSC_AUX:
2608                 if (!vmx->rdtscp_enabled)
2609                         return 1;
2610                 /* Check reserved bit, higher 32 bits should be zero */
2611                 if ((data >> 32) != 0)
2612                         return 1;
2613                 /* Otherwise falls through */
2614         default:
2615                 msr = find_msr_entry(vmx, msr_index);
2616                 if (msr) {
2617                         msr->data = data;
2618                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2619                                 preempt_disable();
2620                                 kvm_set_shared_msr(msr->index, msr->data,
2621                                                    msr->mask);
2622                                 preempt_enable();
2623                         }
2624                         break;
2625                 }
2626                 ret = kvm_set_msr_common(vcpu, msr_info);
2627         }
2628
2629         return ret;
2630 }
2631
2632 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2633 {
2634         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2635         switch (reg) {
2636         case VCPU_REGS_RSP:
2637                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2638                 break;
2639         case VCPU_REGS_RIP:
2640                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2641                 break;
2642         case VCPU_EXREG_PDPTR:
2643                 if (enable_ept)
2644                         ept_save_pdptrs(vcpu);
2645                 break;
2646         default:
2647                 break;
2648         }
2649 }
2650
2651 static __init int cpu_has_kvm_support(void)
2652 {
2653         return cpu_has_vmx();
2654 }
2655
2656 static __init int vmx_disabled_by_bios(void)
2657 {
2658         u64 msr;
2659
2660         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2661         if (msr & FEATURE_CONTROL_LOCKED) {
2662                 /* launched w/ TXT and VMX disabled */
2663                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2664                         && tboot_enabled())
2665                         return 1;
2666                 /* launched w/o TXT and VMX only enabled w/ TXT */
2667                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2668                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2669                         && !tboot_enabled()) {
2670                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2671                                 "activate TXT before enabling KVM\n");
2672                         return 1;
2673                 }
2674                 /* launched w/o TXT and VMX disabled */
2675                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2676                         && !tboot_enabled())
2677                         return 1;
2678         }
2679
2680         return 0;
2681 }
2682
2683 static void kvm_cpu_vmxon(u64 addr)
2684 {
2685         asm volatile (ASM_VMX_VMXON_RAX
2686                         : : "a"(&addr), "m"(addr)
2687                         : "memory", "cc");
2688 }
2689
2690 static int hardware_enable(void *garbage)
2691 {
2692         int cpu = raw_smp_processor_id();
2693         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2694         u64 old, test_bits;
2695
2696         if (read_cr4() & X86_CR4_VMXE)
2697                 return -EBUSY;
2698
2699         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2700
2701         /*
2702          * Now we can enable the vmclear operation in kdump
2703          * since the loaded_vmcss_on_cpu list on this cpu
2704          * has been initialized.
2705          *
2706          * Though the cpu is not in VMX operation now, there
2707          * is no problem to enable the vmclear operation
2708          * for the loaded_vmcss_on_cpu list is empty!
2709          */
2710         crash_enable_local_vmclear(cpu);
2711
2712         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2713
2714         test_bits = FEATURE_CONTROL_LOCKED;
2715         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2716         if (tboot_enabled())
2717                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2718
2719         if ((old & test_bits) != test_bits) {
2720                 /* enable and lock */
2721                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2722         }
2723         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2724
2725         if (vmm_exclusive) {
2726                 kvm_cpu_vmxon(phys_addr);
2727                 ept_sync_global();
2728         }
2729
2730         native_store_gdt(&__get_cpu_var(host_gdt));
2731
2732         return 0;
2733 }
2734
2735 static void vmclear_local_loaded_vmcss(void)
2736 {
2737         int cpu = raw_smp_processor_id();
2738         struct loaded_vmcs *v, *n;
2739
2740         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2741                                  loaded_vmcss_on_cpu_link)
2742                 __loaded_vmcs_clear(v);
2743 }
2744
2745
2746 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2747  * tricks.
2748  */
2749 static void kvm_cpu_vmxoff(void)
2750 {
2751         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2752 }
2753
2754 static void hardware_disable(void *garbage)
2755 {
2756         if (vmm_exclusive) {
2757                 vmclear_local_loaded_vmcss();
2758                 kvm_cpu_vmxoff();
2759         }
2760         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2761 }
2762
2763 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2764                                       u32 msr, u32 *result)
2765 {
2766         u32 vmx_msr_low, vmx_msr_high;
2767         u32 ctl = ctl_min | ctl_opt;
2768
2769         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2770
2771         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2772         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2773
2774         /* Ensure minimum (required) set of control bits are supported. */
2775         if (ctl_min & ~ctl)
2776                 return -EIO;
2777
2778         *result = ctl;
2779         return 0;
2780 }
2781
2782 static __init bool allow_1_setting(u32 msr, u32 ctl)
2783 {
2784         u32 vmx_msr_low, vmx_msr_high;
2785
2786         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2787         return vmx_msr_high & ctl;
2788 }
2789
2790 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2791 {
2792         u32 vmx_msr_low, vmx_msr_high;
2793         u32 min, opt, min2, opt2;
2794         u32 _pin_based_exec_control = 0;
2795         u32 _cpu_based_exec_control = 0;
2796         u32 _cpu_based_2nd_exec_control = 0;
2797         u32 _vmexit_control = 0;
2798         u32 _vmentry_control = 0;
2799
2800         min = CPU_BASED_HLT_EXITING |
2801 #ifdef CONFIG_X86_64
2802               CPU_BASED_CR8_LOAD_EXITING |
2803               CPU_BASED_CR8_STORE_EXITING |
2804 #endif
2805               CPU_BASED_CR3_LOAD_EXITING |
2806               CPU_BASED_CR3_STORE_EXITING |
2807               CPU_BASED_USE_IO_BITMAPS |
2808               CPU_BASED_MOV_DR_EXITING |
2809               CPU_BASED_USE_TSC_OFFSETING |
2810               CPU_BASED_MWAIT_EXITING |
2811               CPU_BASED_MONITOR_EXITING |
2812               CPU_BASED_INVLPG_EXITING |
2813               CPU_BASED_RDPMC_EXITING;
2814
2815         opt = CPU_BASED_TPR_SHADOW |
2816               CPU_BASED_USE_MSR_BITMAPS |
2817               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2818         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2819                                 &_cpu_based_exec_control) < 0)
2820                 return -EIO;
2821 #ifdef CONFIG_X86_64
2822         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2823                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2824                                            ~CPU_BASED_CR8_STORE_EXITING;
2825 #endif
2826         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2827                 min2 = 0;
2828                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2829                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2830                         SECONDARY_EXEC_WBINVD_EXITING |
2831                         SECONDARY_EXEC_ENABLE_VPID |
2832                         SECONDARY_EXEC_ENABLE_EPT |
2833                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2834                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2835                         SECONDARY_EXEC_RDTSCP |
2836                         SECONDARY_EXEC_ENABLE_INVPCID |
2837                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2838                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2839                         SECONDARY_EXEC_SHADOW_VMCS;
2840                 if (adjust_vmx_controls(min2, opt2,
2841                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2842                                         &_cpu_based_2nd_exec_control) < 0)
2843                         return -EIO;
2844         }
2845 #ifndef CONFIG_X86_64
2846         if (!(_cpu_based_2nd_exec_control &
2847                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2848                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2849 #endif
2850
2851         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2852                 _cpu_based_2nd_exec_control &= ~(
2853                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2854                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2855                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2856
2857         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2858                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2859                    enabled */
2860                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2861                                              CPU_BASED_CR3_STORE_EXITING |
2862                                              CPU_BASED_INVLPG_EXITING);
2863                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2864                       vmx_capability.ept, vmx_capability.vpid);
2865         }
2866
2867         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2868 #ifdef CONFIG_X86_64
2869         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2870 #endif
2871         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2872                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2873         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2874                                 &_vmexit_control) < 0)
2875                 return -EIO;
2876
2877         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2878         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2879         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2880                                 &_pin_based_exec_control) < 0)
2881                 return -EIO;
2882
2883         if (!(_cpu_based_2nd_exec_control &
2884                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2885                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2886                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2887
2888         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2889         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2890         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2891                                 &_vmentry_control) < 0)
2892                 return -EIO;
2893
2894         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2895
2896         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2897         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2898                 return -EIO;
2899
2900 #ifdef CONFIG_X86_64
2901         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2902         if (vmx_msr_high & (1u<<16))
2903                 return -EIO;
2904 #endif
2905
2906         /* Require Write-Back (WB) memory type for VMCS accesses. */
2907         if (((vmx_msr_high >> 18) & 15) != 6)
2908                 return -EIO;
2909
2910         vmcs_conf->size = vmx_msr_high & 0x1fff;
2911         vmcs_conf->order = get_order(vmcs_config.size);
2912         vmcs_conf->revision_id = vmx_msr_low;
2913
2914         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2915         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2916         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2917         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2918         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2919
2920         cpu_has_load_ia32_efer =
2921                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2922                                 VM_ENTRY_LOAD_IA32_EFER)
2923                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2924                                    VM_EXIT_LOAD_IA32_EFER);
2925
2926         cpu_has_load_perf_global_ctrl =
2927                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2928                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2929                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2930                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2931
2932         /*
2933          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2934          * but due to arrata below it can't be used. Workaround is to use
2935          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2936          *
2937          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2938          *
2939          * AAK155             (model 26)
2940          * AAP115             (model 30)
2941          * AAT100             (model 37)
2942          * BC86,AAY89,BD102   (model 44)
2943          * BA97               (model 46)
2944          *
2945          */
2946         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2947                 switch (boot_cpu_data.x86_model) {
2948                 case 26:
2949                 case 30:
2950                 case 37:
2951                 case 44:
2952                 case 46:
2953                         cpu_has_load_perf_global_ctrl = false;
2954                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2955                                         "does not work properly. Using workaround\n");
2956                         break;
2957                 default:
2958                         break;
2959                 }
2960         }
2961
2962         return 0;
2963 }
2964
2965 static struct vmcs *alloc_vmcs_cpu(int cpu)
2966 {
2967         int node = cpu_to_node(cpu);
2968         struct page *pages;
2969         struct vmcs *vmcs;
2970
2971         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2972         if (!pages)
2973                 return NULL;
2974         vmcs = page_address(pages);
2975         memset(vmcs, 0, vmcs_config.size);
2976         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2977         return vmcs;
2978 }
2979
2980 static struct vmcs *alloc_vmcs(void)
2981 {
2982         return alloc_vmcs_cpu(raw_smp_processor_id());
2983 }
2984
2985 static void free_vmcs(struct vmcs *vmcs)
2986 {
2987         free_pages((unsigned long)vmcs, vmcs_config.order);
2988 }
2989
2990 /*
2991  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2992  */
2993 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2994 {
2995         if (!loaded_vmcs->vmcs)
2996                 return;
2997         loaded_vmcs_clear(loaded_vmcs);
2998         free_vmcs(loaded_vmcs->vmcs);
2999         loaded_vmcs->vmcs = NULL;
3000 }
3001
3002 static void free_kvm_area(void)
3003 {
3004         int cpu;
3005
3006         for_each_possible_cpu(cpu) {
3007                 free_vmcs(per_cpu(vmxarea, cpu));
3008                 per_cpu(vmxarea, cpu) = NULL;
3009         }
3010 }
3011
3012 static void init_vmcs_shadow_fields(void)
3013 {
3014         int i, j;
3015
3016         /* No checks for read only fields yet */
3017
3018         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3019                 switch (shadow_read_write_fields[i]) {
3020                 case GUEST_BNDCFGS:
3021                         if (!vmx_mpx_supported())
3022                                 continue;
3023                         break;
3024                 default:
3025                         break;
3026                 }
3027
3028                 if (j < i)
3029                         shadow_read_write_fields[j] =
3030                                 shadow_read_write_fields[i];
3031                 j++;
3032         }
3033         max_shadow_read_write_fields = j;
3034
3035         /* shadowed fields guest access without vmexit */
3036         for (i = 0; i < max_shadow_read_write_fields; i++) {
3037                 clear_bit(shadow_read_write_fields[i],
3038                           vmx_vmwrite_bitmap);
3039                 clear_bit(shadow_read_write_fields[i],
3040                           vmx_vmread_bitmap);
3041         }
3042         for (i = 0; i < max_shadow_read_only_fields; i++)
3043                 clear_bit(shadow_read_only_fields[i],
3044                           vmx_vmread_bitmap);
3045 }
3046
3047 static __init int alloc_kvm_area(void)
3048 {
3049         int cpu;
3050
3051         for_each_possible_cpu(cpu) {
3052                 struct vmcs *vmcs;
3053
3054                 vmcs = alloc_vmcs_cpu(cpu);
3055                 if (!vmcs) {
3056                         free_kvm_area();
3057                         return -ENOMEM;
3058                 }
3059
3060                 per_cpu(vmxarea, cpu) = vmcs;
3061         }
3062         return 0;
3063 }
3064
3065 static __init int hardware_setup(void)
3066 {
3067         if (setup_vmcs_config(&vmcs_config) < 0)
3068                 return -EIO;
3069
3070         if (boot_cpu_has(X86_FEATURE_NX))
3071                 kvm_enable_efer_bits(EFER_NX);
3072
3073         if (!cpu_has_vmx_vpid())
3074                 enable_vpid = 0;
3075         if (!cpu_has_vmx_shadow_vmcs())
3076                 enable_shadow_vmcs = 0;
3077         if (enable_shadow_vmcs)
3078                 init_vmcs_shadow_fields();
3079
3080         if (!cpu_has_vmx_ept() ||
3081             !cpu_has_vmx_ept_4levels()) {
3082                 enable_ept = 0;
3083                 enable_unrestricted_guest = 0;
3084                 enable_ept_ad_bits = 0;
3085         }
3086
3087         if (!cpu_has_vmx_ept_ad_bits())
3088                 enable_ept_ad_bits = 0;
3089
3090         if (!cpu_has_vmx_unrestricted_guest())
3091                 enable_unrestricted_guest = 0;
3092
3093         if (!cpu_has_vmx_flexpriority())
3094                 flexpriority_enabled = 0;
3095
3096         if (!cpu_has_vmx_tpr_shadow())
3097                 kvm_x86_ops->update_cr8_intercept = NULL;
3098
3099         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3100                 kvm_disable_largepages();
3101
3102         if (!cpu_has_vmx_ple())
3103                 ple_gap = 0;
3104
3105         if (!cpu_has_vmx_apicv())
3106                 enable_apicv = 0;
3107
3108         if (enable_apicv)
3109                 kvm_x86_ops->update_cr8_intercept = NULL;
3110         else {
3111                 kvm_x86_ops->hwapic_irr_update = NULL;
3112                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3113                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3114         }
3115
3116         if (nested)
3117                 nested_vmx_setup_ctls_msrs();
3118
3119         return alloc_kvm_area();
3120 }
3121
3122 static __exit void hardware_unsetup(void)
3123 {
3124         free_kvm_area();
3125 }
3126
3127 static bool emulation_required(struct kvm_vcpu *vcpu)
3128 {
3129         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3130 }
3131
3132 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3133                 struct kvm_segment *save)
3134 {
3135         if (!emulate_invalid_guest_state) {
3136                 /*
3137                  * CS and SS RPL should be equal during guest entry according
3138                  * to VMX spec, but in reality it is not always so. Since vcpu
3139                  * is in the middle of the transition from real mode to
3140                  * protected mode it is safe to assume that RPL 0 is a good
3141                  * default value.
3142                  */
3143                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3144                         save->selector &= ~SELECTOR_RPL_MASK;
3145                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3146                 save->s = 1;
3147         }
3148         vmx_set_segment(vcpu, save, seg);
3149 }
3150
3151 static void enter_pmode(struct kvm_vcpu *vcpu)
3152 {
3153         unsigned long flags;
3154         struct vcpu_vmx *vmx = to_vmx(vcpu);
3155
3156         /*
3157          * Update real mode segment cache. It may be not up-to-date if sement
3158          * register was written while vcpu was in a guest mode.
3159          */
3160         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3161         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3162         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3163         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3164         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3165         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3166
3167         vmx->rmode.vm86_active = 0;
3168
3169         vmx_segment_cache_clear(vmx);
3170
3171         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3172
3173         flags = vmcs_readl(GUEST_RFLAGS);
3174         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3175         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3176         vmcs_writel(GUEST_RFLAGS, flags);
3177
3178         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3179                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3180
3181         update_exception_bitmap(vcpu);
3182
3183         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3184         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3185         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3186         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3187         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3188         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3189 }
3190
3191 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3192 {
3193         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3194         struct kvm_segment var = *save;
3195
3196         var.dpl = 0x3;
3197         if (seg == VCPU_SREG_CS)
3198                 var.type = 0x3;
3199
3200         if (!emulate_invalid_guest_state) {
3201                 var.selector = var.base >> 4;
3202                 var.base = var.base & 0xffff0;
3203                 var.limit = 0xffff;
3204                 var.g = 0;
3205                 var.db = 0;
3206                 var.present = 1;
3207                 var.s = 1;
3208                 var.l = 0;
3209                 var.unusable = 0;
3210                 var.type = 0x3;
3211                 var.avl = 0;
3212                 if (save->base & 0xf)
3213                         printk_once(KERN_WARNING "kvm: segment base is not "
3214                                         "paragraph aligned when entering "
3215                                         "protected mode (seg=%d)", seg);
3216         }
3217
3218         vmcs_write16(sf->selector, var.selector);
3219         vmcs_write32(sf->base, var.base);
3220         vmcs_write32(sf->limit, var.limit);
3221         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3222 }
3223
3224 static void enter_rmode(struct kvm_vcpu *vcpu)
3225 {
3226         unsigned long flags;
3227         struct vcpu_vmx *vmx = to_vmx(vcpu);
3228
3229         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3230         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3231         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3232         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3233         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3234         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3235         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3236
3237         vmx->rmode.vm86_active = 1;
3238
3239         /*
3240          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3241          * vcpu. Warn the user that an update is overdue.
3242          */
3243         if (!vcpu->kvm->arch.tss_addr)
3244                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3245                              "called before entering vcpu\n");
3246
3247         vmx_segment_cache_clear(vmx);
3248
3249         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3250         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3251         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3252
3253         flags = vmcs_readl(GUEST_RFLAGS);
3254         vmx->rmode.save_rflags = flags;
3255
3256         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3257
3258         vmcs_writel(GUEST_RFLAGS, flags);
3259         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3260         update_exception_bitmap(vcpu);
3261
3262         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3263         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3264         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3265         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3266         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3267         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3268
3269         kvm_mmu_reset_context(vcpu);
3270 }
3271
3272 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3273 {
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3276
3277         if (!msr)
3278                 return;
3279
3280         /*
3281          * Force kernel_gs_base reloading before EFER changes, as control
3282          * of this msr depends on is_long_mode().
3283          */
3284         vmx_load_host_state(to_vmx(vcpu));
3285         vcpu->arch.efer = efer;
3286         if (efer & EFER_LMA) {
3287                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3288                 msr->data = efer;
3289         } else {
3290                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3291
3292                 msr->data = efer & ~EFER_LME;
3293         }
3294         setup_msrs(vmx);
3295 }
3296
3297 #ifdef CONFIG_X86_64
3298
3299 static void enter_lmode(struct kvm_vcpu *vcpu)
3300 {
3301         u32 guest_tr_ar;
3302
3303         vmx_segment_cache_clear(to_vmx(vcpu));
3304
3305         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3306         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3307                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3308                                      __func__);
3309                 vmcs_write32(GUEST_TR_AR_BYTES,
3310                              (guest_tr_ar & ~AR_TYPE_MASK)
3311                              | AR_TYPE_BUSY_64_TSS);
3312         }
3313         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3314 }
3315
3316 static void exit_lmode(struct kvm_vcpu *vcpu)
3317 {
3318         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3319         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3320 }
3321
3322 #endif
3323
3324 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3325 {
3326         vpid_sync_context(to_vmx(vcpu));
3327         if (enable_ept) {
3328                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329                         return;
3330                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3331         }
3332 }
3333
3334 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3335 {
3336         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3337
3338         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3339         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3340 }
3341
3342 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3343 {
3344         if (enable_ept && is_paging(vcpu))
3345                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3346         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3347 }
3348
3349 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3350 {
3351         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3352
3353         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3354         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3355 }
3356
3357 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3358 {
3359         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3360
3361         if (!test_bit(VCPU_EXREG_PDPTR,
3362                       (unsigned long *)&vcpu->arch.regs_dirty))
3363                 return;
3364
3365         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3366                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3367                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3368                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3369                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3370         }
3371 }
3372
3373 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3374 {
3375         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3376
3377         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3378                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3379                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3380                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3381                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3382         }
3383
3384         __set_bit(VCPU_EXREG_PDPTR,
3385                   (unsigned long *)&vcpu->arch.regs_avail);
3386         __set_bit(VCPU_EXREG_PDPTR,
3387                   (unsigned long *)&vcpu->arch.regs_dirty);
3388 }
3389
3390 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3391
3392 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3393                                         unsigned long cr0,
3394                                         struct kvm_vcpu *vcpu)
3395 {
3396         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3397                 vmx_decache_cr3(vcpu);
3398         if (!(cr0 & X86_CR0_PG)) {
3399                 /* From paging/starting to nonpaging */
3400                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3401                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3402                              (CPU_BASED_CR3_LOAD_EXITING |
3403                               CPU_BASED_CR3_STORE_EXITING));
3404                 vcpu->arch.cr0 = cr0;
3405                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3406         } else if (!is_paging(vcpu)) {
3407                 /* From nonpaging to paging */
3408                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3409                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3410                              ~(CPU_BASED_CR3_LOAD_EXITING |
3411                                CPU_BASED_CR3_STORE_EXITING));
3412                 vcpu->arch.cr0 = cr0;
3413                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3414         }
3415
3416         if (!(cr0 & X86_CR0_WP))
3417                 *hw_cr0 &= ~X86_CR0_WP;
3418 }
3419
3420 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3421 {
3422         struct vcpu_vmx *vmx = to_vmx(vcpu);
3423         unsigned long hw_cr0;
3424
3425         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3426         if (enable_unrestricted_guest)
3427                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3428         else {
3429                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3430
3431                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3432                         enter_pmode(vcpu);
3433
3434                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3435                         enter_rmode(vcpu);
3436         }
3437
3438 #ifdef CONFIG_X86_64
3439         if (vcpu->arch.efer & EFER_LME) {
3440                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3441                         enter_lmode(vcpu);
3442                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3443                         exit_lmode(vcpu);
3444         }
3445 #endif
3446
3447         if (enable_ept)
3448                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3449
3450         if (!vcpu->fpu_active)
3451                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3452
3453         vmcs_writel(CR0_READ_SHADOW, cr0);
3454         vmcs_writel(GUEST_CR0, hw_cr0);
3455         vcpu->arch.cr0 = cr0;
3456
3457         /* depends on vcpu->arch.cr0 to be set to a new value */
3458         vmx->emulation_required = emulation_required(vcpu);
3459 }
3460
3461 static u64 construct_eptp(unsigned long root_hpa)
3462 {
3463         u64 eptp;
3464
3465         /* TODO write the value reading from MSR */
3466         eptp = VMX_EPT_DEFAULT_MT |
3467                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3468         if (enable_ept_ad_bits)
3469                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3470         eptp |= (root_hpa & PAGE_MASK);
3471
3472         return eptp;
3473 }
3474
3475 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3476 {
3477         unsigned long guest_cr3;
3478         u64 eptp;
3479
3480         guest_cr3 = cr3;
3481         if (enable_ept) {
3482                 eptp = construct_eptp(cr3);
3483                 vmcs_write64(EPT_POINTER, eptp);
3484                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3485                         guest_cr3 = kvm_read_cr3(vcpu);
3486                 else
3487                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3488                 ept_load_pdptrs(vcpu);
3489         }
3490
3491         vmx_flush_tlb(vcpu);
3492         vmcs_writel(GUEST_CR3, guest_cr3);
3493 }
3494
3495 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3496 {
3497         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3498                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3499
3500         if (cr4 & X86_CR4_VMXE) {
3501                 /*
3502                  * To use VMXON (and later other VMX instructions), a guest
3503                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3504                  * So basically the check on whether to allow nested VMX
3505                  * is here.
3506                  */
3507                 if (!nested_vmx_allowed(vcpu))
3508                         return 1;
3509         }
3510         if (to_vmx(vcpu)->nested.vmxon &&
3511             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3512                 return 1;
3513
3514         vcpu->arch.cr4 = cr4;
3515         if (enable_ept) {
3516                 if (!is_paging(vcpu)) {
3517                         hw_cr4 &= ~X86_CR4_PAE;
3518                         hw_cr4 |= X86_CR4_PSE;
3519                         /*
3520                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3521                          * in hardware. However KVM always uses paging mode to
3522                          * emulate guest non-paging mode with TDP.
3523                          * To emulate this behavior, SMEP/SMAP needs to be
3524                          * manually disabled when guest switches to non-paging
3525                          * mode.
3526                          */
3527                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3528                 } else if (!(cr4 & X86_CR4_PAE)) {
3529                         hw_cr4 &= ~X86_CR4_PAE;
3530                 }
3531         }
3532
3533         vmcs_writel(CR4_READ_SHADOW, cr4);
3534         vmcs_writel(GUEST_CR4, hw_cr4);
3535         return 0;
3536 }
3537
3538 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3539                             struct kvm_segment *var, int seg)
3540 {
3541         struct vcpu_vmx *vmx = to_vmx(vcpu);
3542         u32 ar;
3543
3544         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3545                 *var = vmx->rmode.segs[seg];
3546                 if (seg == VCPU_SREG_TR
3547                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3548                         return;
3549                 var->base = vmx_read_guest_seg_base(vmx, seg);
3550                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3551                 return;
3552         }
3553         var->base = vmx_read_guest_seg_base(vmx, seg);
3554         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3555         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3556         ar = vmx_read_guest_seg_ar(vmx, seg);
3557         var->unusable = (ar >> 16) & 1;
3558         var->type = ar & 15;
3559         var->s = (ar >> 4) & 1;
3560         var->dpl = (ar >> 5) & 3;
3561         /*
3562          * Some userspaces do not preserve unusable property. Since usable
3563          * segment has to be present according to VMX spec we can use present
3564          * property to amend userspace bug by making unusable segment always
3565          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3566          * segment as unusable.
3567          */
3568         var->present = !var->unusable;
3569         var->avl = (ar >> 12) & 1;
3570         var->l = (ar >> 13) & 1;
3571         var->db = (ar >> 14) & 1;
3572         var->g = (ar >> 15) & 1;
3573 }
3574
3575 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3576 {
3577         struct kvm_segment s;
3578
3579         if (to_vmx(vcpu)->rmode.vm86_active) {
3580                 vmx_get_segment(vcpu, &s, seg);
3581                 return s.base;
3582         }
3583         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3584 }
3585
3586 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3587 {
3588         struct vcpu_vmx *vmx = to_vmx(vcpu);
3589
3590         if (unlikely(vmx->rmode.vm86_active))
3591                 return 0;
3592         else {
3593                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3594                 return AR_DPL(ar);
3595         }
3596 }
3597
3598 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3599 {
3600         u32 ar;
3601
3602         if (var->unusable || !var->present)
3603                 ar = 1 << 16;
3604         else {
3605                 ar = var->type & 15;
3606                 ar |= (var->s & 1) << 4;
3607                 ar |= (var->dpl & 3) << 5;
3608                 ar |= (var->present & 1) << 7;
3609                 ar |= (var->avl & 1) << 12;
3610                 ar |= (var->l & 1) << 13;
3611                 ar |= (var->db & 1) << 14;
3612                 ar |= (var->g & 1) << 15;
3613         }
3614
3615         return ar;
3616 }
3617
3618 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3619                             struct kvm_segment *var, int seg)
3620 {
3621         struct vcpu_vmx *vmx = to_vmx(vcpu);
3622         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3623
3624         vmx_segment_cache_clear(vmx);
3625
3626         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3627                 vmx->rmode.segs[seg] = *var;
3628                 if (seg == VCPU_SREG_TR)
3629                         vmcs_write16(sf->selector, var->selector);
3630                 else if (var->s)
3631                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3632                 goto out;
3633         }
3634
3635         vmcs_writel(sf->base, var->base);
3636         vmcs_write32(sf->limit, var->limit);
3637         vmcs_write16(sf->selector, var->selector);
3638
3639         /*
3640          *   Fix the "Accessed" bit in AR field of segment registers for older
3641          * qemu binaries.
3642          *   IA32 arch specifies that at the time of processor reset the
3643          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3644          * is setting it to 0 in the userland code. This causes invalid guest
3645          * state vmexit when "unrestricted guest" mode is turned on.
3646          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3647          * tree. Newer qemu binaries with that qemu fix would not need this
3648          * kvm hack.
3649          */
3650         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3651                 var->type |= 0x1; /* Accessed */
3652
3653         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3654
3655 out:
3656         vmx->emulation_required |= emulation_required(vcpu);
3657 }
3658
3659 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3660 {
3661         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3662
3663         *db = (ar >> 14) & 1;
3664         *l = (ar >> 13) & 1;
3665 }
3666
3667 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3668 {
3669         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3670         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3671 }
3672
3673 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3674 {
3675         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3676         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3677 }
3678
3679 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3680 {
3681         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3682         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3683 }
3684
3685 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3686 {
3687         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3688         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3689 }
3690
3691 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3692 {
3693         struct kvm_segment var;
3694         u32 ar;
3695
3696         vmx_get_segment(vcpu, &var, seg);
3697         var.dpl = 0x3;
3698         if (seg == VCPU_SREG_CS)
3699                 var.type = 0x3;
3700         ar = vmx_segment_access_rights(&var);
3701
3702         if (var.base != (var.selector << 4))
3703                 return false;
3704         if (var.limit != 0xffff)
3705                 return false;
3706         if (ar != 0xf3)
3707                 return false;
3708
3709         return true;
3710 }
3711
3712 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3713 {
3714         struct kvm_segment cs;
3715         unsigned int cs_rpl;
3716
3717         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3718         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3719
3720         if (cs.unusable)
3721                 return false;
3722         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3723                 return false;
3724         if (!cs.s)
3725                 return false;
3726         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3727                 if (cs.dpl > cs_rpl)
3728                         return false;
3729         } else {
3730                 if (cs.dpl != cs_rpl)
3731                         return false;
3732         }
3733         if (!cs.present)
3734                 return false;
3735
3736         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3737         return true;
3738 }
3739
3740 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3741 {
3742         struct kvm_segment ss;
3743         unsigned int ss_rpl;
3744
3745         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3746         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3747
3748         if (ss.unusable)
3749                 return true;
3750         if (ss.type != 3 && ss.type != 7)
3751                 return false;
3752         if (!ss.s)
3753                 return false;
3754         if (ss.dpl != ss_rpl) /* DPL != RPL */
3755                 return false;
3756         if (!ss.present)
3757                 return false;
3758
3759         return true;
3760 }
3761
3762 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3763 {
3764         struct kvm_segment var;
3765         unsigned int rpl;
3766
3767         vmx_get_segment(vcpu, &var, seg);
3768         rpl = var.selector & SELECTOR_RPL_MASK;
3769
3770         if (var.unusable)
3771                 return true;
3772         if (!var.s)
3773                 return false;
3774         if (!var.present)
3775                 return false;
3776         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3777                 if (var.dpl < rpl) /* DPL < RPL */
3778                         return false;
3779         }
3780
3781         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3782          * rights flags
3783          */
3784         return true;
3785 }
3786
3787 static bool tr_valid(struct kvm_vcpu *vcpu)
3788 {
3789         struct kvm_segment tr;
3790
3791         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3792
3793         if (tr.unusable)
3794                 return false;
3795         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3796                 return false;
3797         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3798                 return false;
3799         if (!tr.present)
3800                 return false;
3801
3802         return true;
3803 }
3804
3805 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3806 {
3807         struct kvm_segment ldtr;
3808
3809         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3810
3811         if (ldtr.unusable)
3812                 return true;
3813         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3814                 return false;
3815         if (ldtr.type != 2)
3816                 return false;
3817         if (!ldtr.present)
3818                 return false;
3819
3820         return true;
3821 }
3822
3823 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3824 {
3825         struct kvm_segment cs, ss;
3826
3827         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3828         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3829
3830         return ((cs.selector & SELECTOR_RPL_MASK) ==
3831                  (ss.selector & SELECTOR_RPL_MASK));
3832 }
3833
3834 /*
3835  * Check if guest state is valid. Returns true if valid, false if
3836  * not.
3837  * We assume that registers are always usable
3838  */
3839 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3840 {
3841         if (enable_unrestricted_guest)
3842                 return true;
3843
3844         /* real mode guest state checks */
3845         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3846                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3847                         return false;
3848                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3849                         return false;
3850                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3851                         return false;
3852                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3853                         return false;
3854                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3855                         return false;
3856                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3857                         return false;
3858         } else {
3859         /* protected mode guest state checks */
3860                 if (!cs_ss_rpl_check(vcpu))
3861                         return false;
3862                 if (!code_segment_valid(vcpu))
3863                         return false;
3864                 if (!stack_segment_valid(vcpu))
3865                         return false;
3866                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3867                         return false;
3868                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3869                         return false;
3870                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3871                         return false;
3872                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3873                         return false;
3874                 if (!tr_valid(vcpu))
3875                         return false;
3876                 if (!ldtr_valid(vcpu))
3877                         return false;
3878         }
3879         /* TODO:
3880          * - Add checks on RIP
3881          * - Add checks on RFLAGS
3882          */
3883
3884         return true;
3885 }
3886
3887 static int init_rmode_tss(struct kvm *kvm)
3888 {
3889         gfn_t fn;
3890         u16 data = 0;
3891         int r, idx, ret = 0;
3892
3893         idx = srcu_read_lock(&kvm->srcu);
3894         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3895         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3896         if (r < 0)
3897                 goto out;
3898         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3899         r = kvm_write_guest_page(kvm, fn++, &data,
3900                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3901         if (r < 0)
3902                 goto out;
3903         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3904         if (r < 0)
3905                 goto out;
3906         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3907         if (r < 0)
3908                 goto out;
3909         data = ~0;
3910         r = kvm_write_guest_page(kvm, fn, &data,
3911                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3912                                  sizeof(u8));
3913         if (r < 0)
3914                 goto out;
3915
3916         ret = 1;
3917 out:
3918         srcu_read_unlock(&kvm->srcu, idx);
3919         return ret;
3920 }
3921
3922 static int init_rmode_identity_map(struct kvm *kvm)
3923 {
3924         int i, idx, r, ret;
3925         pfn_t identity_map_pfn;
3926         u32 tmp;
3927
3928         if (!enable_ept)
3929                 return 1;
3930         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3931                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3932                         "haven't been allocated!\n");
3933                 return 0;
3934         }
3935         if (likely(kvm->arch.ept_identity_pagetable_done))
3936                 return 1;
3937         ret = 0;
3938         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3939         idx = srcu_read_lock(&kvm->srcu);
3940         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3941         if (r < 0)
3942                 goto out;
3943         /* Set up identity-mapping pagetable for EPT in real mode */
3944         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3945                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3946                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3947                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3948                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3949                 if (r < 0)
3950                         goto out;
3951         }
3952         kvm->arch.ept_identity_pagetable_done = true;
3953         ret = 1;
3954 out:
3955         srcu_read_unlock(&kvm->srcu, idx);
3956         return ret;
3957 }
3958
3959 static void seg_setup(int seg)
3960 {
3961         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3962         unsigned int ar;
3963
3964         vmcs_write16(sf->selector, 0);
3965         vmcs_writel(sf->base, 0);
3966         vmcs_write32(sf->limit, 0xffff);
3967         ar = 0x93;
3968         if (seg == VCPU_SREG_CS)
3969                 ar |= 0x08; /* code segment */
3970
3971         vmcs_write32(sf->ar_bytes, ar);
3972 }
3973
3974 static int alloc_apic_access_page(struct kvm *kvm)
3975 {
3976         struct page *page;
3977         struct kvm_userspace_memory_region kvm_userspace_mem;
3978         int r = 0;
3979
3980         mutex_lock(&kvm->slots_lock);
3981         if (kvm->arch.apic_access_page)
3982                 goto out;
3983         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3984         kvm_userspace_mem.flags = 0;
3985         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3986         kvm_userspace_mem.memory_size = PAGE_SIZE;
3987         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3988         if (r)
3989                 goto out;
3990
3991         page = gfn_to_page(kvm, 0xfee00);
3992         if (is_error_page(page)) {
3993                 r = -EFAULT;
3994                 goto out;
3995         }
3996
3997         kvm->arch.apic_access_page = page;
3998 out:
3999         mutex_unlock(&kvm->slots_lock);
4000         return r;
4001 }
4002
4003 static int alloc_identity_pagetable(struct kvm *kvm)
4004 {
4005         struct page *page;
4006         struct kvm_userspace_memory_region kvm_userspace_mem;
4007         int r = 0;
4008
4009         mutex_lock(&kvm->slots_lock);
4010         if (kvm->arch.ept_identity_pagetable)
4011                 goto out;
4012         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4013         kvm_userspace_mem.flags = 0;
4014         kvm_userspace_mem.guest_phys_addr =
4015                 kvm->arch.ept_identity_map_addr;
4016         kvm_userspace_mem.memory_size = PAGE_SIZE;
4017         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4018         if (r)
4019                 goto out;
4020
4021         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
4022         if (is_error_page(page)) {
4023                 r = -EFAULT;
4024                 goto out;
4025         }
4026
4027         kvm->arch.ept_identity_pagetable = page;
4028 out:
4029         mutex_unlock(&kvm->slots_lock);
4030         return r;
4031 }
4032
4033 static void allocate_vpid(struct vcpu_vmx *vmx)
4034 {
4035         int vpid;
4036
4037         vmx->vpid = 0;
4038         if (!enable_vpid)
4039                 return;
4040         spin_lock(&vmx_vpid_lock);
4041         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4042         if (vpid < VMX_NR_VPIDS) {
4043                 vmx->vpid = vpid;
4044                 __set_bit(vpid, vmx_vpid_bitmap);
4045         }
4046         spin_unlock(&vmx_vpid_lock);
4047 }
4048
4049 static void free_vpid(struct vcpu_vmx *vmx)
4050 {
4051         if (!enable_vpid)
4052                 return;
4053         spin_lock(&vmx_vpid_lock);
4054         if (vmx->vpid != 0)
4055                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4056         spin_unlock(&vmx_vpid_lock);
4057 }
4058
4059 #define MSR_TYPE_R      1
4060 #define MSR_TYPE_W      2
4061 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4062                                                 u32 msr, int type)
4063 {
4064         int f = sizeof(unsigned long);
4065
4066         if (!cpu_has_vmx_msr_bitmap())
4067                 return;
4068
4069         /*
4070          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4071          * have the write-low and read-high bitmap offsets the wrong way round.
4072          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4073          */
4074         if (msr <= 0x1fff) {
4075                 if (type & MSR_TYPE_R)
4076                         /* read-low */
4077                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4078
4079                 if (type & MSR_TYPE_W)
4080                         /* write-low */
4081                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4082
4083         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4084                 msr &= 0x1fff;
4085                 if (type & MSR_TYPE_R)
4086                         /* read-high */
4087                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4088
4089                 if (type & MSR_TYPE_W)
4090                         /* write-high */
4091                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4092
4093         }
4094 }
4095
4096 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4097                                                 u32 msr, int type)
4098 {
4099         int f = sizeof(unsigned long);
4100
4101         if (!cpu_has_vmx_msr_bitmap())
4102                 return;
4103
4104         /*
4105          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4106          * have the write-low and read-high bitmap offsets the wrong way round.
4107          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4108          */
4109         if (msr <= 0x1fff) {
4110                 if (type & MSR_TYPE_R)
4111                         /* read-low */
4112                         __set_bit(msr, msr_bitmap + 0x000 / f);
4113
4114                 if (type & MSR_TYPE_W)
4115                         /* write-low */
4116                         __set_bit(msr, msr_bitmap + 0x800 / f);
4117
4118         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4119                 msr &= 0x1fff;
4120                 if (type & MSR_TYPE_R)
4121                         /* read-high */
4122                         __set_bit(msr, msr_bitmap + 0x400 / f);
4123
4124                 if (type & MSR_TYPE_W)
4125                         /* write-high */
4126                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4127
4128         }
4129 }
4130
4131 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4132 {
4133         if (!longmode_only)
4134                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4135                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4136         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4137                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4138 }
4139
4140 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4141 {
4142         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4143                         msr, MSR_TYPE_R);
4144         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4145                         msr, MSR_TYPE_R);
4146 }
4147
4148 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4149 {
4150         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4151                         msr, MSR_TYPE_R);
4152         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4153                         msr, MSR_TYPE_R);
4154 }
4155
4156 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4157 {
4158         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4159                         msr, MSR_TYPE_W);
4160         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4161                         msr, MSR_TYPE_W);
4162 }
4163
4164 static int vmx_vm_has_apicv(struct kvm *kvm)
4165 {
4166         return enable_apicv && irqchip_in_kernel(kvm);
4167 }
4168
4169 /*
4170  * Send interrupt to vcpu via posted interrupt way.
4171  * 1. If target vcpu is running(non-root mode), send posted interrupt
4172  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4173  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4174  * interrupt from PIR in next vmentry.
4175  */
4176 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4177 {
4178         struct vcpu_vmx *vmx = to_vmx(vcpu);
4179         int r;
4180
4181         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4182                 return;
4183
4184         r = pi_test_and_set_on(&vmx->pi_desc);
4185         kvm_make_request(KVM_REQ_EVENT, vcpu);
4186 #ifdef CONFIG_SMP
4187         if (!r && (vcpu->mode == IN_GUEST_MODE))
4188                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4189                                 POSTED_INTR_VECTOR);
4190         else
4191 #endif
4192                 kvm_vcpu_kick(vcpu);
4193 }
4194
4195 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4196 {
4197         struct vcpu_vmx *vmx = to_vmx(vcpu);
4198
4199         if (!pi_test_and_clear_on(&vmx->pi_desc))
4200                 return;
4201
4202         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4203 }
4204
4205 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4206 {
4207         return;
4208 }
4209
4210 /*
4211  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4212  * will not change in the lifetime of the guest.
4213  * Note that host-state that does change is set elsewhere. E.g., host-state
4214  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4215  */
4216 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4217 {
4218         u32 low32, high32;
4219         unsigned long tmpl;
4220         struct desc_ptr dt;
4221
4222         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4223         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4224         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4225
4226         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4227 #ifdef CONFIG_X86_64
4228         /*
4229          * Load null selectors, so we can avoid reloading them in
4230          * __vmx_load_host_state(), in case userspace uses the null selectors
4231          * too (the expected case).
4232          */
4233         vmcs_write16(HOST_DS_SELECTOR, 0);
4234         vmcs_write16(HOST_ES_SELECTOR, 0);
4235 #else
4236         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4237         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4238 #endif
4239         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4240         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4241
4242         native_store_idt(&dt);
4243         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4244         vmx->host_idt_base = dt.address;
4245
4246         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4247
4248         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4249         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4250         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4251         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4252
4253         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4254                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4255                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4256         }
4257 }
4258
4259 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4260 {
4261         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4262         if (enable_ept)
4263                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4264         if (is_guest_mode(&vmx->vcpu))
4265                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4266                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4267         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4268 }
4269
4270 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4271 {
4272         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4273
4274         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4275                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4276         return pin_based_exec_ctrl;
4277 }
4278
4279 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4280 {
4281         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4282
4283         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4284                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4285
4286         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4287                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4288 #ifdef CONFIG_X86_64
4289                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4290                                 CPU_BASED_CR8_LOAD_EXITING;
4291 #endif
4292         }
4293         if (!enable_ept)
4294                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4295                                 CPU_BASED_CR3_LOAD_EXITING  |
4296                                 CPU_BASED_INVLPG_EXITING;
4297         return exec_control;
4298 }
4299
4300 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4301 {
4302         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4303         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4304                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4305         if (vmx->vpid == 0)
4306                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4307         if (!enable_ept) {
4308                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4309                 enable_unrestricted_guest = 0;
4310                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4311                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4312         }
4313         if (!enable_unrestricted_guest)
4314                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4315         if (!ple_gap)
4316                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4317         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4318                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4319                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4320         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4321         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4322            (handle_vmptrld).
4323            We can NOT enable shadow_vmcs here because we don't have yet
4324            a current VMCS12
4325         */
4326         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4327         return exec_control;
4328 }
4329
4330 static void ept_set_mmio_spte_mask(void)
4331 {
4332         /*
4333          * EPT Misconfigurations can be generated if the value of bits 2:0
4334          * of an EPT paging-structure entry is 110b (write/execute).
4335          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4336          * spte.
4337          */
4338         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4339 }
4340
4341 /*
4342  * Sets up the vmcs for emulated real mode.
4343  */
4344 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4345 {
4346 #ifdef CONFIG_X86_64
4347         unsigned long a;
4348 #endif
4349         int i;
4350
4351         /* I/O */
4352         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4353         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4354
4355         if (enable_shadow_vmcs) {
4356                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4357                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4358         }
4359         if (cpu_has_vmx_msr_bitmap())
4360                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4361
4362         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4363
4364         /* Control */
4365         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4366
4367         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4368
4369         if (cpu_has_secondary_exec_ctrls()) {
4370                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4371                                 vmx_secondary_exec_control(vmx));
4372         }
4373
4374         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4375                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4376                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4377                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4378                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4379
4380                 vmcs_write16(GUEST_INTR_STATUS, 0);
4381
4382                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4383                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4384         }
4385
4386         if (ple_gap) {
4387                 vmcs_write32(PLE_GAP, ple_gap);
4388                 vmcs_write32(PLE_WINDOW, ple_window);
4389         }
4390
4391         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4392         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4393         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4394
4395         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4396         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4397         vmx_set_constant_host_state(vmx);
4398 #ifdef CONFIG_X86_64
4399         rdmsrl(MSR_FS_BASE, a);
4400         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4401         rdmsrl(MSR_GS_BASE, a);
4402         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4403 #else
4404         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4405         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4406 #endif
4407
4408         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4409         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4410         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4411         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4412         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4413
4414         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4415                 u32 msr_low, msr_high;
4416                 u64 host_pat;
4417                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4418                 host_pat = msr_low | ((u64) msr_high << 32);
4419                 /* Write the default value follow host pat */
4420                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4421                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4422                 vmx->vcpu.arch.pat = host_pat;
4423         }
4424
4425         for (i = 0; i < NR_VMX_MSR; ++i) {
4426                 u32 index = vmx_msr_index[i];
4427                 u32 data_low, data_high;
4428                 int j = vmx->nmsrs;
4429
4430                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4431                         continue;
4432                 if (wrmsr_safe(index, data_low, data_high) < 0)
4433                         continue;
4434                 vmx->guest_msrs[j].index = i;
4435                 vmx->guest_msrs[j].data = 0;
4436                 vmx->guest_msrs[j].mask = -1ull;
4437                 ++vmx->nmsrs;
4438         }
4439
4440
4441         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4442
4443         /* 22.2.1, 20.8.1 */
4444         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4445
4446         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4447         set_cr4_guest_host_mask(vmx);
4448
4449         return 0;
4450 }
4451
4452 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4453 {
4454         struct vcpu_vmx *vmx = to_vmx(vcpu);
4455         struct msr_data apic_base_msr;
4456
4457         vmx->rmode.vm86_active = 0;
4458
4459         vmx->soft_vnmi_blocked = 0;
4460
4461         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4462         kvm_set_cr8(&vmx->vcpu, 0);
4463         apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4464         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4465                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4466         apic_base_msr.host_initiated = true;
4467         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4468
4469         vmx_segment_cache_clear(vmx);
4470
4471         seg_setup(VCPU_SREG_CS);
4472         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4473         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4474
4475         seg_setup(VCPU_SREG_DS);
4476         seg_setup(VCPU_SREG_ES);
4477         seg_setup(VCPU_SREG_FS);
4478         seg_setup(VCPU_SREG_GS);
4479         seg_setup(VCPU_SREG_SS);
4480
4481         vmcs_write16(GUEST_TR_SELECTOR, 0);
4482         vmcs_writel(GUEST_TR_BASE, 0);
4483         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4484         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4485
4486         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4487         vmcs_writel(GUEST_LDTR_BASE, 0);
4488         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4489         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4490
4491         vmcs_write32(GUEST_SYSENTER_CS, 0);
4492         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4493         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4494
4495         vmcs_writel(GUEST_RFLAGS, 0x02);
4496         kvm_rip_write(vcpu, 0xfff0);
4497
4498         vmcs_writel(GUEST_GDTR_BASE, 0);
4499         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4500
4501         vmcs_writel(GUEST_IDTR_BASE, 0);
4502         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4503
4504         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4505         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4506         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4507
4508         /* Special registers */
4509         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4510
4511         setup_msrs(vmx);
4512
4513         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4514
4515         if (cpu_has_vmx_tpr_shadow()) {
4516                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4517                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4518                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4519                                      __pa(vmx->vcpu.arch.apic->regs));
4520                 vmcs_write32(TPR_THRESHOLD, 0);
4521         }
4522
4523         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4524                 vmcs_write64(APIC_ACCESS_ADDR,
4525                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4526
4527         if (vmx_vm_has_apicv(vcpu->kvm))
4528                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4529
4530         if (vmx->vpid != 0)
4531                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4532
4533         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4534         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4535         vmx_set_cr4(&vmx->vcpu, 0);
4536         vmx_set_efer(&vmx->vcpu, 0);
4537         vmx_fpu_activate(&vmx->vcpu);
4538         update_exception_bitmap(&vmx->vcpu);
4539
4540         vpid_sync_context(vmx);
4541 }
4542
4543 /*
4544  * In nested virtualization, check if L1 asked to exit on external interrupts.
4545  * For most existing hypervisors, this will always return true.
4546  */
4547 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4548 {
4549         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4550                 PIN_BASED_EXT_INTR_MASK;
4551 }
4552
4553 /*
4554  * In nested virtualization, check if L1 has set
4555  * VM_EXIT_ACK_INTR_ON_EXIT
4556  */
4557 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4558 {
4559         return get_vmcs12(vcpu)->vm_exit_controls &
4560                 VM_EXIT_ACK_INTR_ON_EXIT;
4561 }
4562
4563 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4564 {
4565         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4566                 PIN_BASED_NMI_EXITING;
4567 }
4568
4569 static void enable_irq_window(struct kvm_vcpu *vcpu)
4570 {
4571         u32 cpu_based_vm_exec_control;
4572
4573         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4574         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4575         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4576 }
4577
4578 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4579 {
4580         u32 cpu_based_vm_exec_control;
4581
4582         if (!cpu_has_virtual_nmis() ||
4583             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4584                 enable_irq_window(vcpu);
4585                 return;
4586         }
4587
4588         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4589         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4590         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4591 }
4592
4593 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4594 {
4595         struct vcpu_vmx *vmx = to_vmx(vcpu);
4596         uint32_t intr;
4597         int irq = vcpu->arch.interrupt.nr;
4598
4599         trace_kvm_inj_virq(irq);
4600
4601         ++vcpu->stat.irq_injections;
4602         if (vmx->rmode.vm86_active) {
4603                 int inc_eip = 0;
4604                 if (vcpu->arch.interrupt.soft)
4605                         inc_eip = vcpu->arch.event_exit_inst_len;
4606                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4607                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4608                 return;
4609         }
4610         intr = irq | INTR_INFO_VALID_MASK;
4611         if (vcpu->arch.interrupt.soft) {
4612                 intr |= INTR_TYPE_SOFT_INTR;
4613                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4614                              vmx->vcpu.arch.event_exit_inst_len);
4615         } else
4616                 intr |= INTR_TYPE_EXT_INTR;
4617         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4618 }
4619
4620 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4621 {
4622         struct vcpu_vmx *vmx = to_vmx(vcpu);
4623
4624         if (is_guest_mode(vcpu))
4625                 return;
4626
4627         if (!cpu_has_virtual_nmis()) {
4628                 /*
4629                  * Tracking the NMI-blocked state in software is built upon
4630                  * finding the next open IRQ window. This, in turn, depends on
4631                  * well-behaving guests: They have to keep IRQs disabled at
4632                  * least as long as the NMI handler runs. Otherwise we may
4633                  * cause NMI nesting, maybe breaking the guest. But as this is
4634                  * highly unlikely, we can live with the residual risk.
4635                  */
4636                 vmx->soft_vnmi_blocked = 1;
4637                 vmx->vnmi_blocked_time = 0;
4638         }
4639
4640         ++vcpu->stat.nmi_injections;
4641         vmx->nmi_known_unmasked = false;
4642         if (vmx->rmode.vm86_active) {
4643                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4644                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4645                 return;
4646         }
4647         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4648                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4649 }
4650
4651 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4652 {
4653         if (!cpu_has_virtual_nmis())
4654                 return to_vmx(vcpu)->soft_vnmi_blocked;
4655         if (to_vmx(vcpu)->nmi_known_unmasked)
4656                 return false;
4657         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4658 }
4659
4660 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4661 {
4662         struct vcpu_vmx *vmx = to_vmx(vcpu);
4663
4664         if (!cpu_has_virtual_nmis()) {
4665                 if (vmx->soft_vnmi_blocked != masked) {
4666                         vmx->soft_vnmi_blocked = masked;
4667                         vmx->vnmi_blocked_time = 0;
4668                 }
4669         } else {
4670                 vmx->nmi_known_unmasked = !masked;
4671                 if (masked)
4672                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4673                                       GUEST_INTR_STATE_NMI);
4674                 else
4675                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4676                                         GUEST_INTR_STATE_NMI);
4677         }
4678 }
4679
4680 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4681 {
4682         if (to_vmx(vcpu)->nested.nested_run_pending)
4683                 return 0;
4684
4685         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4686                 return 0;
4687
4688         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4689                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4690                    | GUEST_INTR_STATE_NMI));
4691 }
4692
4693 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4694 {
4695         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4696                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4697                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4698                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4699 }
4700
4701 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4702 {
4703         int ret;
4704         struct kvm_userspace_memory_region tss_mem = {
4705                 .slot = TSS_PRIVATE_MEMSLOT,
4706                 .guest_phys_addr = addr,
4707                 .memory_size = PAGE_SIZE * 3,
4708                 .flags = 0,
4709         };
4710
4711         ret = kvm_set_memory_region(kvm, &tss_mem);
4712         if (ret)
4713                 return ret;
4714         kvm->arch.tss_addr = addr;
4715         if (!init_rmode_tss(kvm))
4716                 return  -ENOMEM;
4717
4718         return 0;
4719 }
4720
4721 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4722 {
4723         switch (vec) {
4724         case BP_VECTOR:
4725                 /*
4726                  * Update instruction length as we may reinject the exception
4727                  * from user space while in guest debugging mode.
4728                  */
4729                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4730                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4731                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4732                         return false;
4733                 /* fall through */
4734         case DB_VECTOR:
4735                 if (vcpu->guest_debug &
4736                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4737                         return false;
4738                 /* fall through */
4739         case DE_VECTOR:
4740         case OF_VECTOR:
4741         case BR_VECTOR:
4742         case UD_VECTOR:
4743         case DF_VECTOR:
4744         case SS_VECTOR:
4745         case GP_VECTOR:
4746         case MF_VECTOR:
4747                 return true;
4748         break;
4749         }
4750         return false;
4751 }
4752
4753 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4754                                   int vec, u32 err_code)
4755 {
4756         /*
4757          * Instruction with address size override prefix opcode 0x67
4758          * Cause the #SS fault with 0 error code in VM86 mode.
4759          */
4760         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4761                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4762                         if (vcpu->arch.halt_request) {
4763                                 vcpu->arch.halt_request = 0;
4764                                 return kvm_emulate_halt(vcpu);
4765                         }
4766                         return 1;
4767                 }
4768                 return 0;
4769         }
4770
4771         /*
4772          * Forward all other exceptions that are valid in real mode.
4773          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4774          *        the required debugging infrastructure rework.
4775          */
4776         kvm_queue_exception(vcpu, vec);
4777         return 1;
4778 }
4779
4780 /*
4781  * Trigger machine check on the host. We assume all the MSRs are already set up
4782  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4783  * We pass a fake environment to the machine check handler because we want
4784  * the guest to be always treated like user space, no matter what context
4785  * it used internally.
4786  */
4787 static void kvm_machine_check(void)
4788 {
4789 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4790         struct pt_regs regs = {
4791                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4792                 .flags = X86_EFLAGS_IF,
4793         };
4794
4795         do_machine_check(&regs, 0);
4796 #endif
4797 }
4798
4799 static int handle_machine_check(struct kvm_vcpu *vcpu)
4800 {
4801         /* already handled by vcpu_run */
4802         return 1;
4803 }
4804
4805 static int handle_exception(struct kvm_vcpu *vcpu)
4806 {
4807         struct vcpu_vmx *vmx = to_vmx(vcpu);
4808         struct kvm_run *kvm_run = vcpu->run;
4809         u32 intr_info, ex_no, error_code;
4810         unsigned long cr2, rip, dr6;
4811         u32 vect_info;
4812         enum emulation_result er;
4813
4814         vect_info = vmx->idt_vectoring_info;
4815         intr_info = vmx->exit_intr_info;
4816
4817         if (is_machine_check(intr_info))
4818                 return handle_machine_check(vcpu);
4819
4820         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4821                 return 1;  /* already handled by vmx_vcpu_run() */
4822
4823         if (is_no_device(intr_info)) {
4824                 vmx_fpu_activate(vcpu);
4825                 return 1;
4826         }
4827
4828         if (is_invalid_opcode(intr_info)) {
4829                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4830                 if (er != EMULATE_DONE)
4831                         kvm_queue_exception(vcpu, UD_VECTOR);
4832                 return 1;
4833         }
4834
4835         error_code = 0;
4836         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4837                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4838
4839         /*
4840          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4841          * MMIO, it is better to report an internal error.
4842          * See the comments in vmx_handle_exit.
4843          */
4844         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4845             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4846                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4847                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4848                 vcpu->run->internal.ndata = 2;
4849                 vcpu->run->internal.data[0] = vect_info;
4850                 vcpu->run->internal.data[1] = intr_info;
4851                 return 0;
4852         }
4853
4854         if (is_page_fault(intr_info)) {
4855                 /* EPT won't cause page fault directly */
4856                 BUG_ON(enable_ept);
4857                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4858                 trace_kvm_page_fault(cr2, error_code);
4859
4860                 if (kvm_event_needs_reinjection(vcpu))
4861                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4862                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4863         }
4864
4865         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4866
4867         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4868                 return handle_rmode_exception(vcpu, ex_no, error_code);
4869
4870         switch (ex_no) {
4871         case DB_VECTOR:
4872                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4873                 if (!(vcpu->guest_debug &
4874                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4875                         vcpu->arch.dr6 &= ~15;
4876                         vcpu->arch.dr6 |= dr6;
4877                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4878                                 skip_emulated_instruction(vcpu);
4879
4880                         kvm_queue_exception(vcpu, DB_VECTOR);
4881                         return 1;
4882                 }
4883                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4884                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4885                 /* fall through */
4886         case BP_VECTOR:
4887                 /*
4888                  * Update instruction length as we may reinject #BP from
4889                  * user space while in guest debugging mode. Reading it for
4890                  * #DB as well causes no harm, it is not used in that case.
4891                  */
4892                 vmx->vcpu.arch.event_exit_inst_len =
4893                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4894                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4895                 rip = kvm_rip_read(vcpu);
4896                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4897                 kvm_run->debug.arch.exception = ex_no;
4898                 break;
4899         default:
4900                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4901                 kvm_run->ex.exception = ex_no;
4902                 kvm_run->ex.error_code = error_code;
4903                 break;
4904         }
4905         return 0;
4906 }
4907
4908 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4909 {
4910         ++vcpu->stat.irq_exits;
4911         return 1;
4912 }
4913
4914 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4915 {
4916         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4917         return 0;
4918 }
4919
4920 static int handle_io(struct kvm_vcpu *vcpu)
4921 {
4922         unsigned long exit_qualification;
4923         int size, in, string;
4924         unsigned port;
4925
4926         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4927         string = (exit_qualification & 16) != 0;
4928         in = (exit_qualification & 8) != 0;
4929
4930         ++vcpu->stat.io_exits;
4931
4932         if (string || in)
4933                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4934
4935         port = exit_qualification >> 16;
4936         size = (exit_qualification & 7) + 1;
4937         skip_emulated_instruction(vcpu);
4938
4939         return kvm_fast_pio_out(vcpu, size, port);
4940 }
4941
4942 static void
4943 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4944 {
4945         /*
4946          * Patch in the VMCALL instruction:
4947          */
4948         hypercall[0] = 0x0f;
4949         hypercall[1] = 0x01;
4950         hypercall[2] = 0xc1;
4951 }
4952
4953 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4954 {
4955         unsigned long always_on = VMXON_CR0_ALWAYSON;
4956
4957         if (nested_vmx_secondary_ctls_high &
4958                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4959             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4960                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4961         return (val & always_on) == always_on;
4962 }
4963
4964 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4965 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4966 {
4967         if (is_guest_mode(vcpu)) {
4968                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4969                 unsigned long orig_val = val;
4970
4971                 /*
4972                  * We get here when L2 changed cr0 in a way that did not change
4973                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4974                  * but did change L0 shadowed bits. So we first calculate the
4975                  * effective cr0 value that L1 would like to write into the
4976                  * hardware. It consists of the L2-owned bits from the new
4977                  * value combined with the L1-owned bits from L1's guest_cr0.
4978                  */
4979                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4980                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4981
4982                 if (!nested_cr0_valid(vmcs12, val))
4983                         return 1;
4984
4985                 if (kvm_set_cr0(vcpu, val))
4986                         return 1;
4987                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4988                 return 0;
4989         } else {
4990                 if (to_vmx(vcpu)->nested.vmxon &&
4991                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4992                         return 1;
4993                 return kvm_set_cr0(vcpu, val);
4994         }
4995 }
4996
4997 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4998 {
4999         if (is_guest_mode(vcpu)) {
5000                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5001                 unsigned long orig_val = val;
5002
5003                 /* analogously to handle_set_cr0 */
5004                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5005                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5006                 if (kvm_set_cr4(vcpu, val))
5007                         return 1;
5008                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5009                 return 0;
5010         } else
5011                 return kvm_set_cr4(vcpu, val);
5012 }
5013
5014 /* called to set cr0 as approriate for clts instruction exit. */
5015 static void handle_clts(struct kvm_vcpu *vcpu)
5016 {
5017         if (is_guest_mode(vcpu)) {
5018                 /*
5019                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5020                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5021                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5022                  */
5023                 vmcs_writel(CR0_READ_SHADOW,
5024                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5025                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5026         } else
5027                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5028 }
5029
5030 static int handle_cr(struct kvm_vcpu *vcpu)
5031 {
5032         unsigned long exit_qualification, val;
5033         int cr;
5034         int reg;
5035         int err;
5036
5037         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5038         cr = exit_qualification & 15;
5039         reg = (exit_qualification >> 8) & 15;
5040         switch ((exit_qualification >> 4) & 3) {
5041         case 0: /* mov to cr */
5042                 val = kvm_register_read(vcpu, reg);
5043                 trace_kvm_cr_write(cr, val);
5044                 switch (cr) {
5045                 case 0:
5046                         err = handle_set_cr0(vcpu, val);
5047                         kvm_complete_insn_gp(vcpu, err);
5048                         return 1;
5049                 case 3:
5050                         err = kvm_set_cr3(vcpu, val);
5051                         kvm_complete_insn_gp(vcpu, err);
5052                         return 1;
5053                 case 4:
5054                         err = handle_set_cr4(vcpu, val);
5055                         kvm_complete_insn_gp(vcpu, err);
5056                         return 1;
5057                 case 8: {
5058                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5059                                 u8 cr8 = kvm_register_read(vcpu, reg);
5060                                 err = kvm_set_cr8(vcpu, cr8);
5061                                 kvm_complete_insn_gp(vcpu, err);
5062                                 if (irqchip_in_kernel(vcpu->kvm))
5063                                         return 1;
5064                                 if (cr8_prev <= cr8)
5065                                         return 1;
5066                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5067                                 return 0;
5068                         }
5069                 }
5070                 break;
5071         case 2: /* clts */
5072                 handle_clts(vcpu);
5073                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5074                 skip_emulated_instruction(vcpu);
5075                 vmx_fpu_activate(vcpu);
5076                 return 1;
5077         case 1: /*mov from cr*/
5078                 switch (cr) {
5079                 case 3:
5080                         val = kvm_read_cr3(vcpu);
5081                         kvm_register_write(vcpu, reg, val);
5082                         trace_kvm_cr_read(cr, val);
5083                         skip_emulated_instruction(vcpu);
5084                         return 1;
5085                 case 8:
5086                         val = kvm_get_cr8(vcpu);
5087                         kvm_register_write(vcpu, reg, val);
5088                         trace_kvm_cr_read(cr, val);
5089                         skip_emulated_instruction(vcpu);
5090                         return 1;
5091                 }
5092                 break;
5093         case 3: /* lmsw */
5094                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5095                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5096                 kvm_lmsw(vcpu, val);
5097
5098                 skip_emulated_instruction(vcpu);
5099                 return 1;
5100         default:
5101                 break;
5102         }
5103         vcpu->run->exit_reason = 0;
5104         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5105                (int)(exit_qualification >> 4) & 3, cr);
5106         return 0;
5107 }
5108
5109 static int handle_dr(struct kvm_vcpu *vcpu)
5110 {
5111         unsigned long exit_qualification;
5112         int dr, reg;
5113
5114         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5115         if (!kvm_require_cpl(vcpu, 0))
5116                 return 1;
5117         dr = vmcs_readl(GUEST_DR7);
5118         if (dr & DR7_GD) {
5119                 /*
5120                  * As the vm-exit takes precedence over the debug trap, we
5121                  * need to emulate the latter, either for the host or the
5122                  * guest debugging itself.
5123                  */
5124                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5125                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5126                         vcpu->run->debug.arch.dr7 = dr;
5127                         vcpu->run->debug.arch.pc =
5128                                 vmcs_readl(GUEST_CS_BASE) +
5129                                 vmcs_readl(GUEST_RIP);
5130                         vcpu->run->debug.arch.exception = DB_VECTOR;
5131                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5132                         return 0;
5133                 } else {
5134                         vcpu->arch.dr7 &= ~DR7_GD;
5135                         vcpu->arch.dr6 |= DR6_BD;
5136                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5137                         kvm_queue_exception(vcpu, DB_VECTOR);
5138                         return 1;
5139                 }
5140         }
5141
5142         if (vcpu->guest_debug == 0) {
5143                 u32 cpu_based_vm_exec_control;
5144
5145                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5146                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5147                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5148
5149                 /*
5150                  * No more DR vmexits; force a reload of the debug registers
5151                  * and reenter on this instruction.  The next vmexit will
5152                  * retrieve the full state of the debug registers.
5153                  */
5154                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5155                 return 1;
5156         }
5157
5158         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5159         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5160         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5161         if (exit_qualification & TYPE_MOV_FROM_DR) {
5162                 unsigned long val;
5163
5164                 if (kvm_get_dr(vcpu, dr, &val))
5165                         return 1;
5166                 kvm_register_write(vcpu, reg, val);
5167         } else
5168                 if (kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)))
5169                         return 1;
5170
5171         skip_emulated_instruction(vcpu);
5172         return 1;
5173 }
5174
5175 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5176 {
5177         return vcpu->arch.dr6;
5178 }
5179
5180 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5181 {
5182 }
5183
5184 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5185 {
5186         u32 cpu_based_vm_exec_control;
5187
5188         get_debugreg(vcpu->arch.db[0], 0);
5189         get_debugreg(vcpu->arch.db[1], 1);
5190         get_debugreg(vcpu->arch.db[2], 2);
5191         get_debugreg(vcpu->arch.db[3], 3);
5192         get_debugreg(vcpu->arch.dr6, 6);
5193         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5194
5195         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5196
5197         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5198         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5199         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5200 }
5201
5202 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5203 {
5204         vmcs_writel(GUEST_DR7, val);
5205 }
5206
5207 static int handle_cpuid(struct kvm_vcpu *vcpu)
5208 {
5209         kvm_emulate_cpuid(vcpu);
5210         return 1;
5211 }
5212
5213 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5214 {
5215         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5216         u64 data;
5217
5218         if (vmx_get_msr(vcpu, ecx, &data)) {
5219                 trace_kvm_msr_read_ex(ecx);
5220                 kvm_inject_gp(vcpu, 0);
5221                 return 1;
5222         }
5223
5224         trace_kvm_msr_read(ecx, data);
5225
5226         /* FIXME: handling of bits 32:63 of rax, rdx */
5227         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5228         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5229         skip_emulated_instruction(vcpu);
5230         return 1;
5231 }
5232
5233 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5234 {
5235         struct msr_data msr;
5236         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5237         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5238                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5239
5240         msr.data = data;
5241         msr.index = ecx;
5242         msr.host_initiated = false;
5243         if (vmx_set_msr(vcpu, &msr) != 0) {
5244                 trace_kvm_msr_write_ex(ecx, data);
5245                 kvm_inject_gp(vcpu, 0);
5246                 return 1;
5247         }
5248
5249         trace_kvm_msr_write(ecx, data);
5250         skip_emulated_instruction(vcpu);
5251         return 1;
5252 }
5253
5254 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5255 {
5256         kvm_make_request(KVM_REQ_EVENT, vcpu);
5257         return 1;
5258 }
5259
5260 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5261 {
5262         u32 cpu_based_vm_exec_control;
5263
5264         /* clear pending irq */
5265         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5266         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5267         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5268
5269         kvm_make_request(KVM_REQ_EVENT, vcpu);
5270
5271         ++vcpu->stat.irq_window_exits;
5272
5273         /*
5274          * If the user space waits to inject interrupts, exit as soon as
5275          * possible
5276          */
5277         if (!irqchip_in_kernel(vcpu->kvm) &&
5278             vcpu->run->request_interrupt_window &&
5279             !kvm_cpu_has_interrupt(vcpu)) {
5280                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5281                 return 0;
5282         }
5283         return 1;
5284 }
5285
5286 static int handle_halt(struct kvm_vcpu *vcpu)
5287 {
5288         skip_emulated_instruction(vcpu);
5289         return kvm_emulate_halt(vcpu);
5290 }
5291
5292 static int handle_vmcall(struct kvm_vcpu *vcpu)
5293 {
5294         skip_emulated_instruction(vcpu);
5295         kvm_emulate_hypercall(vcpu);
5296         return 1;
5297 }
5298
5299 static int handle_invd(struct kvm_vcpu *vcpu)
5300 {
5301         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5302 }
5303
5304 static int handle_invlpg(struct kvm_vcpu *vcpu)
5305 {
5306         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5307
5308         kvm_mmu_invlpg(vcpu, exit_qualification);
5309         skip_emulated_instruction(vcpu);
5310         return 1;
5311 }
5312
5313 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5314 {
5315         int err;
5316
5317         err = kvm_rdpmc(vcpu);
5318         kvm_complete_insn_gp(vcpu, err);
5319
5320         return 1;
5321 }
5322
5323 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5324 {
5325         skip_emulated_instruction(vcpu);
5326         kvm_emulate_wbinvd(vcpu);
5327         return 1;
5328 }
5329
5330 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5331 {
5332         u64 new_bv = kvm_read_edx_eax(vcpu);
5333         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5334
5335         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5336                 skip_emulated_instruction(vcpu);
5337         return 1;
5338 }
5339
5340 static int handle_apic_access(struct kvm_vcpu *vcpu)
5341 {
5342         if (likely(fasteoi)) {
5343                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5344                 int access_type, offset;
5345
5346                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5347                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5348                 /*
5349                  * Sane guest uses MOV to write EOI, with written value
5350                  * not cared. So make a short-circuit here by avoiding
5351                  * heavy instruction emulation.
5352                  */
5353                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5354                     (offset == APIC_EOI)) {
5355                         kvm_lapic_set_eoi(vcpu);
5356                         skip_emulated_instruction(vcpu);
5357                         return 1;
5358                 }
5359         }
5360         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5361 }
5362
5363 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5364 {
5365         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5366         int vector = exit_qualification & 0xff;
5367
5368         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5369         kvm_apic_set_eoi_accelerated(vcpu, vector);
5370         return 1;
5371 }
5372
5373 static int handle_apic_write(struct kvm_vcpu *vcpu)
5374 {
5375         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5376         u32 offset = exit_qualification & 0xfff;
5377
5378         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5379         kvm_apic_write_nodecode(vcpu, offset);
5380         return 1;
5381 }
5382
5383 static int handle_task_switch(struct kvm_vcpu *vcpu)
5384 {
5385         struct vcpu_vmx *vmx = to_vmx(vcpu);
5386         unsigned long exit_qualification;
5387         bool has_error_code = false;
5388         u32 error_code = 0;
5389         u16 tss_selector;
5390         int reason, type, idt_v, idt_index;
5391
5392         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5393         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5394         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5395
5396         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5397
5398         reason = (u32)exit_qualification >> 30;
5399         if (reason == TASK_SWITCH_GATE && idt_v) {
5400                 switch (type) {
5401                 case INTR_TYPE_NMI_INTR:
5402                         vcpu->arch.nmi_injected = false;
5403                         vmx_set_nmi_mask(vcpu, true);
5404                         break;
5405                 case INTR_TYPE_EXT_INTR:
5406                 case INTR_TYPE_SOFT_INTR:
5407                         kvm_clear_interrupt_queue(vcpu);
5408                         break;
5409                 case INTR_TYPE_HARD_EXCEPTION:
5410                         if (vmx->idt_vectoring_info &
5411                             VECTORING_INFO_DELIVER_CODE_MASK) {
5412                                 has_error_code = true;
5413                                 error_code =
5414                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5415                         }
5416                         /* fall through */
5417                 case INTR_TYPE_SOFT_EXCEPTION:
5418                         kvm_clear_exception_queue(vcpu);
5419                         break;
5420                 default:
5421                         break;
5422                 }
5423         }
5424         tss_selector = exit_qualification;
5425
5426         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5427                        type != INTR_TYPE_EXT_INTR &&
5428                        type != INTR_TYPE_NMI_INTR))
5429                 skip_emulated_instruction(vcpu);
5430
5431         if (kvm_task_switch(vcpu, tss_selector,
5432                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5433                             has_error_code, error_code) == EMULATE_FAIL) {
5434                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5435                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5436                 vcpu->run->internal.ndata = 0;
5437                 return 0;
5438         }
5439
5440         /* clear all local breakpoint enable flags */
5441         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5442
5443         /*
5444          * TODO: What about debug traps on tss switch?
5445          *       Are we supposed to inject them and update dr6?
5446          */
5447
5448         return 1;
5449 }
5450
5451 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5452 {
5453         unsigned long exit_qualification;
5454         gpa_t gpa;
5455         u32 error_code;
5456         int gla_validity;
5457
5458         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5459
5460         gla_validity = (exit_qualification >> 7) & 0x3;
5461         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5462                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5463                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5464                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5465                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5466                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5467                         (long unsigned int)exit_qualification);
5468                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5469                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5470                 return 0;
5471         }
5472
5473         /*
5474          * EPT violation happened while executing iret from NMI,
5475          * "blocked by NMI" bit has to be set before next VM entry.
5476          * There are errata that may cause this bit to not be set:
5477          * AAK134, BY25.
5478          */
5479         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5480                         cpu_has_virtual_nmis() &&
5481                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5482                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5483
5484         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5485         trace_kvm_page_fault(gpa, exit_qualification);
5486
5487         /* It is a write fault? */
5488         error_code = exit_qualification & (1U << 1);
5489         /* It is a fetch fault? */
5490         error_code |= (exit_qualification & (1U << 2)) << 2;
5491         /* ept page table is present? */
5492         error_code |= (exit_qualification >> 3) & 0x1;
5493
5494         vcpu->arch.exit_qualification = exit_qualification;
5495
5496         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5497 }
5498
5499 static u64 ept_rsvd_mask(u64 spte, int level)
5500 {
5501         int i;
5502         u64 mask = 0;
5503
5504         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5505                 mask |= (1ULL << i);
5506
5507         if (level > 2)
5508                 /* bits 7:3 reserved */
5509                 mask |= 0xf8;
5510         else if (level == 2) {
5511                 if (spte & (1ULL << 7))
5512                         /* 2MB ref, bits 20:12 reserved */
5513                         mask |= 0x1ff000;
5514                 else
5515                         /* bits 6:3 reserved */
5516                         mask |= 0x78;
5517         }
5518
5519         return mask;
5520 }
5521
5522 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5523                                        int level)
5524 {
5525         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5526
5527         /* 010b (write-only) */
5528         WARN_ON((spte & 0x7) == 0x2);
5529
5530         /* 110b (write/execute) */
5531         WARN_ON((spte & 0x7) == 0x6);
5532
5533         /* 100b (execute-only) and value not supported by logical processor */
5534         if (!cpu_has_vmx_ept_execute_only())
5535                 WARN_ON((spte & 0x7) == 0x4);
5536
5537         /* not 000b */
5538         if ((spte & 0x7)) {
5539                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5540
5541                 if (rsvd_bits != 0) {
5542                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5543                                          __func__, rsvd_bits);
5544                         WARN_ON(1);
5545                 }
5546
5547                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5548                         u64 ept_mem_type = (spte & 0x38) >> 3;
5549
5550                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5551                             ept_mem_type == 7) {
5552                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5553                                                 __func__, ept_mem_type);
5554                                 WARN_ON(1);
5555                         }
5556                 }
5557         }
5558 }
5559
5560 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5561 {
5562         u64 sptes[4];
5563         int nr_sptes, i, ret;
5564         gpa_t gpa;
5565
5566         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5567         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5568                 skip_emulated_instruction(vcpu);
5569                 return 1;
5570         }
5571
5572         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5573         if (likely(ret == RET_MMIO_PF_EMULATE))
5574                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5575                                               EMULATE_DONE;
5576
5577         if (unlikely(ret == RET_MMIO_PF_INVALID))
5578                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5579
5580         if (unlikely(ret == RET_MMIO_PF_RETRY))
5581                 return 1;
5582
5583         /* It is the real ept misconfig */
5584         printk(KERN_ERR "EPT: Misconfiguration.\n");
5585         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5586
5587         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5588
5589         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5590                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5591
5592         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5593         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5594
5595         return 0;
5596 }
5597
5598 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5599 {
5600         u32 cpu_based_vm_exec_control;
5601
5602         /* clear pending NMI */
5603         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5604         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5605         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5606         ++vcpu->stat.nmi_window_exits;
5607         kvm_make_request(KVM_REQ_EVENT, vcpu);
5608
5609         return 1;
5610 }
5611
5612 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5613 {
5614         struct vcpu_vmx *vmx = to_vmx(vcpu);
5615         enum emulation_result err = EMULATE_DONE;
5616         int ret = 1;
5617         u32 cpu_exec_ctrl;
5618         bool intr_window_requested;
5619         unsigned count = 130;
5620
5621         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5622         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5623
5624         while (!guest_state_valid(vcpu) && count-- != 0) {
5625                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5626                         return handle_interrupt_window(&vmx->vcpu);
5627
5628                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5629                         return 1;
5630
5631                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5632
5633                 if (err == EMULATE_USER_EXIT) {
5634                         ++vcpu->stat.mmio_exits;
5635                         ret = 0;
5636                         goto out;
5637                 }
5638
5639                 if (err != EMULATE_DONE) {
5640                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5641                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5642                         vcpu->run->internal.ndata = 0;
5643                         return 0;
5644                 }
5645
5646                 if (vcpu->arch.halt_request) {
5647                         vcpu->arch.halt_request = 0;
5648                         ret = kvm_emulate_halt(vcpu);
5649                         goto out;
5650                 }
5651
5652                 if (signal_pending(current))
5653                         goto out;
5654                 if (need_resched())
5655                         schedule();
5656         }
5657
5658         vmx->emulation_required = emulation_required(vcpu);
5659 out:
5660         return ret;
5661 }
5662
5663 /*
5664  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5665  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5666  */
5667 static int handle_pause(struct kvm_vcpu *vcpu)
5668 {
5669         skip_emulated_instruction(vcpu);
5670         kvm_vcpu_on_spin(vcpu);
5671
5672         return 1;
5673 }
5674
5675 static int handle_nop(struct kvm_vcpu *vcpu)
5676 {
5677         skip_emulated_instruction(vcpu);
5678         return 1;
5679 }
5680
5681 static int handle_mwait(struct kvm_vcpu *vcpu)
5682 {
5683         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5684         return handle_nop(vcpu);
5685 }
5686
5687 static int handle_monitor(struct kvm_vcpu *vcpu)
5688 {
5689         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5690         return handle_nop(vcpu);
5691 }
5692
5693 /*
5694  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5695  * We could reuse a single VMCS for all the L2 guests, but we also want the
5696  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5697  * allows keeping them loaded on the processor, and in the future will allow
5698  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5699  * every entry if they never change.
5700  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5701  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5702  *
5703  * The following functions allocate and free a vmcs02 in this pool.
5704  */
5705
5706 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5707 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5708 {
5709         struct vmcs02_list *item;
5710         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5711                 if (item->vmptr == vmx->nested.current_vmptr) {
5712                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5713                         return &item->vmcs02;
5714                 }
5715
5716         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5717                 /* Recycle the least recently used VMCS. */
5718                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5719                         struct vmcs02_list, list);
5720                 item->vmptr = vmx->nested.current_vmptr;
5721                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5722                 return &item->vmcs02;
5723         }
5724
5725         /* Create a new VMCS */
5726         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5727         if (!item)
5728                 return NULL;
5729         item->vmcs02.vmcs = alloc_vmcs();
5730         if (!item->vmcs02.vmcs) {
5731                 kfree(item);
5732                 return NULL;
5733         }
5734         loaded_vmcs_init(&item->vmcs02);
5735         item->vmptr = vmx->nested.current_vmptr;
5736         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5737         vmx->nested.vmcs02_num++;
5738         return &item->vmcs02;
5739 }
5740
5741 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5742 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5743 {
5744         struct vmcs02_list *item;
5745         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5746                 if (item->vmptr == vmptr) {
5747                         free_loaded_vmcs(&item->vmcs02);
5748                         list_del(&item->list);
5749                         kfree(item);
5750                         vmx->nested.vmcs02_num--;
5751                         return;
5752                 }
5753 }
5754
5755 /*
5756  * Free all VMCSs saved for this vcpu, except the one pointed by
5757  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5758  * currently used, if running L2), and vmcs01 when running L2.
5759  */
5760 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5761 {
5762         struct vmcs02_list *item, *n;
5763         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5764                 if (vmx->loaded_vmcs != &item->vmcs02)
5765                         free_loaded_vmcs(&item->vmcs02);
5766                 list_del(&item->list);
5767                 kfree(item);
5768         }
5769         vmx->nested.vmcs02_num = 0;
5770
5771         if (vmx->loaded_vmcs != &vmx->vmcs01)
5772                 free_loaded_vmcs(&vmx->vmcs01);
5773 }
5774
5775 /*
5776  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5777  * set the success or error code of an emulated VMX instruction, as specified
5778  * by Vol 2B, VMX Instruction Reference, "Conventions".
5779  */
5780 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5781 {
5782         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5783                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5784                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5785 }
5786
5787 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5788 {
5789         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5790                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5791                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5792                         | X86_EFLAGS_CF);
5793 }
5794
5795 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5796                                         u32 vm_instruction_error)
5797 {
5798         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5799                 /*
5800                  * failValid writes the error number to the current VMCS, which
5801                  * can't be done there isn't a current VMCS.
5802                  */
5803                 nested_vmx_failInvalid(vcpu);
5804                 return;
5805         }
5806         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5807                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5808                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5809                         | X86_EFLAGS_ZF);
5810         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5811         /*
5812          * We don't need to force a shadow sync because
5813          * VM_INSTRUCTION_ERROR is not shadowed
5814          */
5815 }
5816
5817 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5818 {
5819         struct vcpu_vmx *vmx =
5820                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5821
5822         vmx->nested.preemption_timer_expired = true;
5823         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5824         kvm_vcpu_kick(&vmx->vcpu);
5825
5826         return HRTIMER_NORESTART;
5827 }
5828
5829 /*
5830  * Decode the memory-address operand of a vmx instruction, as recorded on an
5831  * exit caused by such an instruction (run by a guest hypervisor).
5832  * On success, returns 0. When the operand is invalid, returns 1 and throws
5833  * #UD or #GP.
5834  */
5835 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5836                                  unsigned long exit_qualification,
5837                                  u32 vmx_instruction_info, gva_t *ret)
5838 {
5839         /*
5840          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5841          * Execution", on an exit, vmx_instruction_info holds most of the
5842          * addressing components of the operand. Only the displacement part
5843          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5844          * For how an actual address is calculated from all these components,
5845          * refer to Vol. 1, "Operand Addressing".
5846          */
5847         int  scaling = vmx_instruction_info & 3;
5848         int  addr_size = (vmx_instruction_info >> 7) & 7;
5849         bool is_reg = vmx_instruction_info & (1u << 10);
5850         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5851         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5852         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5853         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5854         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5855
5856         if (is_reg) {
5857                 kvm_queue_exception(vcpu, UD_VECTOR);
5858                 return 1;
5859         }
5860
5861         /* Addr = segment_base + offset */
5862         /* offset = base + [index * scale] + displacement */
5863         *ret = vmx_get_segment_base(vcpu, seg_reg);
5864         if (base_is_valid)
5865                 *ret += kvm_register_read(vcpu, base_reg);
5866         if (index_is_valid)
5867                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5868         *ret += exit_qualification; /* holds the displacement */
5869
5870         if (addr_size == 1) /* 32 bit */
5871                 *ret &= 0xffffffff;
5872
5873         /*
5874          * TODO: throw #GP (and return 1) in various cases that the VM*
5875          * instructions require it - e.g., offset beyond segment limit,
5876          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5877          * address, and so on. Currently these are not checked.
5878          */
5879         return 0;
5880 }
5881
5882 /*
5883  * This function performs the various checks including
5884  * - if it's 4KB aligned
5885  * - No bits beyond the physical address width are set
5886  * - Returns 0 on success or else 1
5887  * (Intel SDM Section 30.3)
5888  */
5889 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
5890                                   gpa_t *vmpointer)
5891 {
5892         gva_t gva;
5893         gpa_t vmptr;
5894         struct x86_exception e;
5895         struct page *page;
5896         struct vcpu_vmx *vmx = to_vmx(vcpu);
5897         int maxphyaddr = cpuid_maxphyaddr(vcpu);
5898
5899         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5900                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5901                 return 1;
5902
5903         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5904                                 sizeof(vmptr), &e)) {
5905                 kvm_inject_page_fault(vcpu, &e);
5906                 return 1;
5907         }
5908
5909         switch (exit_reason) {
5910         case EXIT_REASON_VMON:
5911                 /*
5912                  * SDM 3: 24.11.5
5913                  * The first 4 bytes of VMXON region contain the supported
5914                  * VMCS revision identifier
5915                  *
5916                  * Note - IA32_VMX_BASIC[48] will never be 1
5917                  * for the nested case;
5918                  * which replaces physical address width with 32
5919                  *
5920                  */
5921                 if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5922                         nested_vmx_failInvalid(vcpu);
5923                         skip_emulated_instruction(vcpu);
5924                         return 1;
5925                 }
5926
5927                 page = nested_get_page(vcpu, vmptr);
5928                 if (page == NULL ||
5929                     *(u32 *)kmap(page) != VMCS12_REVISION) {
5930                         nested_vmx_failInvalid(vcpu);
5931                         kunmap(page);
5932                         skip_emulated_instruction(vcpu);
5933                         return 1;
5934                 }
5935                 kunmap(page);
5936                 vmx->nested.vmxon_ptr = vmptr;
5937                 break;
5938         case EXIT_REASON_VMCLEAR:
5939                 if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5940                         nested_vmx_failValid(vcpu,
5941                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
5942                         skip_emulated_instruction(vcpu);
5943                         return 1;
5944                 }
5945
5946                 if (vmptr == vmx->nested.vmxon_ptr) {
5947                         nested_vmx_failValid(vcpu,
5948                                              VMXERR_VMCLEAR_VMXON_POINTER);
5949                         skip_emulated_instruction(vcpu);
5950                         return 1;
5951                 }
5952                 break;
5953         case EXIT_REASON_VMPTRLD:
5954                 if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5955                         nested_vmx_failValid(vcpu,
5956                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
5957                         skip_emulated_instruction(vcpu);
5958                         return 1;
5959                 }
5960
5961                 if (vmptr == vmx->nested.vmxon_ptr) {
5962                         nested_vmx_failValid(vcpu,
5963                                              VMXERR_VMCLEAR_VMXON_POINTER);
5964                         skip_emulated_instruction(vcpu);
5965                         return 1;
5966                 }
5967                 break;
5968         default:
5969                 return 1; /* shouldn't happen */
5970         }
5971
5972         if (vmpointer)
5973                 *vmpointer = vmptr;
5974         return 0;
5975 }
5976
5977 /*
5978  * Emulate the VMXON instruction.
5979  * Currently, we just remember that VMX is active, and do not save or even
5980  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5981  * do not currently need to store anything in that guest-allocated memory
5982  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5983  * argument is different from the VMXON pointer (which the spec says they do).
5984  */
5985 static int handle_vmon(struct kvm_vcpu *vcpu)
5986 {
5987         struct kvm_segment cs;
5988         struct vcpu_vmx *vmx = to_vmx(vcpu);
5989         struct vmcs *shadow_vmcs;
5990         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5991                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5992
5993         /* The Intel VMX Instruction Reference lists a bunch of bits that
5994          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5995          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5996          * Otherwise, we should fail with #UD. We test these now:
5997          */
5998         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5999             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6000             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6001                 kvm_queue_exception(vcpu, UD_VECTOR);
6002                 return 1;
6003         }
6004
6005         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6006         if (is_long_mode(vcpu) && !cs.l) {
6007                 kvm_queue_exception(vcpu, UD_VECTOR);
6008                 return 1;
6009         }
6010
6011         if (vmx_get_cpl(vcpu)) {
6012                 kvm_inject_gp(vcpu, 0);
6013                 return 1;
6014         }
6015
6016         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6017                 return 1;
6018
6019         if (vmx->nested.vmxon) {
6020                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6021                 skip_emulated_instruction(vcpu);
6022                 return 1;
6023         }
6024
6025         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6026                         != VMXON_NEEDED_FEATURES) {
6027                 kvm_inject_gp(vcpu, 0);
6028                 return 1;
6029         }
6030
6031         if (enable_shadow_vmcs) {
6032                 shadow_vmcs = alloc_vmcs();
6033                 if (!shadow_vmcs)
6034                         return -ENOMEM;
6035                 /* mark vmcs as shadow */
6036                 shadow_vmcs->revision_id |= (1u << 31);
6037                 /* init shadow vmcs */
6038                 vmcs_clear(shadow_vmcs);
6039                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6040         }
6041
6042         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6043         vmx->nested.vmcs02_num = 0;
6044
6045         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6046                      HRTIMER_MODE_REL);
6047         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6048
6049         vmx->nested.vmxon = true;
6050
6051         skip_emulated_instruction(vcpu);
6052         nested_vmx_succeed(vcpu);
6053         return 1;
6054 }
6055
6056 /*
6057  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6058  * for running VMX instructions (except VMXON, whose prerequisites are
6059  * slightly different). It also specifies what exception to inject otherwise.
6060  */
6061 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6062 {
6063         struct kvm_segment cs;
6064         struct vcpu_vmx *vmx = to_vmx(vcpu);
6065
6066         if (!vmx->nested.vmxon) {
6067                 kvm_queue_exception(vcpu, UD_VECTOR);
6068                 return 0;
6069         }
6070
6071         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6073             (is_long_mode(vcpu) && !cs.l)) {
6074                 kvm_queue_exception(vcpu, UD_VECTOR);
6075                 return 0;
6076         }
6077
6078         if (vmx_get_cpl(vcpu)) {
6079                 kvm_inject_gp(vcpu, 0);
6080                 return 0;
6081         }
6082
6083         return 1;
6084 }
6085
6086 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6087 {
6088         u32 exec_control;
6089         if (enable_shadow_vmcs) {
6090                 if (vmx->nested.current_vmcs12 != NULL) {
6091                         /* copy to memory all shadowed fields in case
6092                            they were modified */
6093                         copy_shadow_to_vmcs12(vmx);
6094                         vmx->nested.sync_shadow_vmcs = false;
6095                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6096                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6097                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6098                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
6099                 }
6100         }
6101         kunmap(vmx->nested.current_vmcs12_page);
6102         nested_release_page(vmx->nested.current_vmcs12_page);
6103 }
6104
6105 /*
6106  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6107  * just stops using VMX.
6108  */
6109 static void free_nested(struct vcpu_vmx *vmx)
6110 {
6111         if (!vmx->nested.vmxon)
6112                 return;
6113         vmx->nested.vmxon = false;
6114         if (vmx->nested.current_vmptr != -1ull) {
6115                 nested_release_vmcs12(vmx);
6116                 vmx->nested.current_vmptr = -1ull;
6117                 vmx->nested.current_vmcs12 = NULL;
6118         }
6119         if (enable_shadow_vmcs)
6120                 free_vmcs(vmx->nested.current_shadow_vmcs);
6121         /* Unpin physical memory we referred to in current vmcs02 */
6122         if (vmx->nested.apic_access_page) {
6123                 nested_release_page(vmx->nested.apic_access_page);
6124                 vmx->nested.apic_access_page = 0;
6125         }
6126
6127         nested_free_all_saved_vmcss(vmx);
6128 }
6129
6130 /* Emulate the VMXOFF instruction */
6131 static int handle_vmoff(struct kvm_vcpu *vcpu)
6132 {
6133         if (!nested_vmx_check_permission(vcpu))
6134                 return 1;
6135         free_nested(to_vmx(vcpu));
6136         skip_emulated_instruction(vcpu);
6137         nested_vmx_succeed(vcpu);
6138         return 1;
6139 }
6140
6141 /* Emulate the VMCLEAR instruction */
6142 static int handle_vmclear(struct kvm_vcpu *vcpu)
6143 {
6144         struct vcpu_vmx *vmx = to_vmx(vcpu);
6145         gpa_t vmptr;
6146         struct vmcs12 *vmcs12;
6147         struct page *page;
6148
6149         if (!nested_vmx_check_permission(vcpu))
6150                 return 1;
6151
6152         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6153                 return 1;
6154
6155         if (vmptr == vmx->nested.current_vmptr) {
6156                 nested_release_vmcs12(vmx);
6157                 vmx->nested.current_vmptr = -1ull;
6158                 vmx->nested.current_vmcs12 = NULL;
6159         }
6160
6161         page = nested_get_page(vcpu, vmptr);
6162         if (page == NULL) {
6163                 /*
6164                  * For accurate processor emulation, VMCLEAR beyond available
6165                  * physical memory should do nothing at all. However, it is
6166                  * possible that a nested vmx bug, not a guest hypervisor bug,
6167                  * resulted in this case, so let's shut down before doing any
6168                  * more damage:
6169                  */
6170                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6171                 return 1;
6172         }
6173         vmcs12 = kmap(page);
6174         vmcs12->launch_state = 0;
6175         kunmap(page);
6176         nested_release_page(page);
6177
6178         nested_free_vmcs02(vmx, vmptr);
6179
6180         skip_emulated_instruction(vcpu);
6181         nested_vmx_succeed(vcpu);
6182         return 1;
6183 }
6184
6185 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6186
6187 /* Emulate the VMLAUNCH instruction */
6188 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6189 {
6190         return nested_vmx_run(vcpu, true);
6191 }
6192
6193 /* Emulate the VMRESUME instruction */
6194 static int handle_vmresume(struct kvm_vcpu *vcpu)
6195 {
6196
6197         return nested_vmx_run(vcpu, false);
6198 }
6199
6200 enum vmcs_field_type {
6201         VMCS_FIELD_TYPE_U16 = 0,
6202         VMCS_FIELD_TYPE_U64 = 1,
6203         VMCS_FIELD_TYPE_U32 = 2,
6204         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6205 };
6206
6207 static inline int vmcs_field_type(unsigned long field)
6208 {
6209         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6210                 return VMCS_FIELD_TYPE_U32;
6211         return (field >> 13) & 0x3 ;
6212 }
6213
6214 static inline int vmcs_field_readonly(unsigned long field)
6215 {
6216         return (((field >> 10) & 0x3) == 1);
6217 }
6218
6219 /*
6220  * Read a vmcs12 field. Since these can have varying lengths and we return
6221  * one type, we chose the biggest type (u64) and zero-extend the return value
6222  * to that size. Note that the caller, handle_vmread, might need to use only
6223  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6224  * 64-bit fields are to be returned).
6225  */
6226 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6227                                         unsigned long field, u64 *ret)
6228 {
6229         short offset = vmcs_field_to_offset(field);
6230         char *p;
6231
6232         if (offset < 0)
6233                 return 0;
6234
6235         p = ((char *)(get_vmcs12(vcpu))) + offset;
6236
6237         switch (vmcs_field_type(field)) {
6238         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6239                 *ret = *((natural_width *)p);
6240                 return 1;
6241         case VMCS_FIELD_TYPE_U16:
6242                 *ret = *((u16 *)p);
6243                 return 1;
6244         case VMCS_FIELD_TYPE_U32:
6245                 *ret = *((u32 *)p);
6246                 return 1;
6247         case VMCS_FIELD_TYPE_U64:
6248                 *ret = *((u64 *)p);
6249                 return 1;
6250         default:
6251                 return 0; /* can never happen. */
6252         }
6253 }
6254
6255
6256 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6257                                     unsigned long field, u64 field_value){
6258         short offset = vmcs_field_to_offset(field);
6259         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6260         if (offset < 0)
6261                 return false;
6262
6263         switch (vmcs_field_type(field)) {
6264         case VMCS_FIELD_TYPE_U16:
6265                 *(u16 *)p = field_value;
6266                 return true;
6267         case VMCS_FIELD_TYPE_U32:
6268                 *(u32 *)p = field_value;
6269                 return true;
6270         case VMCS_FIELD_TYPE_U64:
6271                 *(u64 *)p = field_value;
6272                 return true;
6273         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6274                 *(natural_width *)p = field_value;
6275                 return true;
6276         default:
6277                 return false; /* can never happen. */
6278         }
6279
6280 }
6281
6282 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6283 {
6284         int i;
6285         unsigned long field;
6286         u64 field_value;
6287         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6288         const unsigned long *fields = shadow_read_write_fields;
6289         const int num_fields = max_shadow_read_write_fields;
6290
6291         vmcs_load(shadow_vmcs);
6292
6293         for (i = 0; i < num_fields; i++) {
6294                 field = fields[i];
6295                 switch (vmcs_field_type(field)) {
6296                 case VMCS_FIELD_TYPE_U16:
6297                         field_value = vmcs_read16(field);
6298                         break;
6299                 case VMCS_FIELD_TYPE_U32:
6300                         field_value = vmcs_read32(field);
6301                         break;
6302                 case VMCS_FIELD_TYPE_U64:
6303                         field_value = vmcs_read64(field);
6304                         break;
6305                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6306                         field_value = vmcs_readl(field);
6307                         break;
6308                 }
6309                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6310         }
6311
6312         vmcs_clear(shadow_vmcs);
6313         vmcs_load(vmx->loaded_vmcs->vmcs);
6314 }
6315
6316 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6317 {
6318         const unsigned long *fields[] = {
6319                 shadow_read_write_fields,
6320                 shadow_read_only_fields
6321         };
6322         const int max_fields[] = {
6323                 max_shadow_read_write_fields,
6324                 max_shadow_read_only_fields
6325         };
6326         int i, q;
6327         unsigned long field;
6328         u64 field_value = 0;
6329         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6330
6331         vmcs_load(shadow_vmcs);
6332
6333         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6334                 for (i = 0; i < max_fields[q]; i++) {
6335                         field = fields[q][i];
6336                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6337
6338                         switch (vmcs_field_type(field)) {
6339                         case VMCS_FIELD_TYPE_U16:
6340                                 vmcs_write16(field, (u16)field_value);
6341                                 break;
6342                         case VMCS_FIELD_TYPE_U32:
6343                                 vmcs_write32(field, (u32)field_value);
6344                                 break;
6345                         case VMCS_FIELD_TYPE_U64:
6346                                 vmcs_write64(field, (u64)field_value);
6347                                 break;
6348                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6349                                 vmcs_writel(field, (long)field_value);
6350                                 break;
6351                         }
6352                 }
6353         }
6354
6355         vmcs_clear(shadow_vmcs);
6356         vmcs_load(vmx->loaded_vmcs->vmcs);
6357 }
6358
6359 /*
6360  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6361  * used before) all generate the same failure when it is missing.
6362  */
6363 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6364 {
6365         struct vcpu_vmx *vmx = to_vmx(vcpu);
6366         if (vmx->nested.current_vmptr == -1ull) {
6367                 nested_vmx_failInvalid(vcpu);
6368                 skip_emulated_instruction(vcpu);
6369                 return 0;
6370         }
6371         return 1;
6372 }
6373
6374 static int handle_vmread(struct kvm_vcpu *vcpu)
6375 {
6376         unsigned long field;
6377         u64 field_value;
6378         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6379         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6380         gva_t gva = 0;
6381
6382         if (!nested_vmx_check_permission(vcpu) ||
6383             !nested_vmx_check_vmcs12(vcpu))
6384                 return 1;
6385
6386         /* Decode instruction info and find the field to read */
6387         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6388         /* Read the field, zero-extended to a u64 field_value */
6389         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6390                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6391                 skip_emulated_instruction(vcpu);
6392                 return 1;
6393         }
6394         /*
6395          * Now copy part of this value to register or memory, as requested.
6396          * Note that the number of bits actually copied is 32 or 64 depending
6397          * on the guest's mode (32 or 64 bit), not on the given field's length.
6398          */
6399         if (vmx_instruction_info & (1u << 10)) {
6400                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6401                         field_value);
6402         } else {
6403                 if (get_vmx_mem_address(vcpu, exit_qualification,
6404                                 vmx_instruction_info, &gva))
6405                         return 1;
6406                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6407                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6408                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6409         }
6410
6411         nested_vmx_succeed(vcpu);
6412         skip_emulated_instruction(vcpu);
6413         return 1;
6414 }
6415
6416
6417 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6418 {
6419         unsigned long field;
6420         gva_t gva;
6421         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6422         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6423         /* The value to write might be 32 or 64 bits, depending on L1's long
6424          * mode, and eventually we need to write that into a field of several
6425          * possible lengths. The code below first zero-extends the value to 64
6426          * bit (field_value), and then copies only the approriate number of
6427          * bits into the vmcs12 field.
6428          */
6429         u64 field_value = 0;
6430         struct x86_exception e;
6431
6432         if (!nested_vmx_check_permission(vcpu) ||
6433             !nested_vmx_check_vmcs12(vcpu))
6434                 return 1;
6435
6436         if (vmx_instruction_info & (1u << 10))
6437                 field_value = kvm_register_read(vcpu,
6438                         (((vmx_instruction_info) >> 3) & 0xf));
6439         else {
6440                 if (get_vmx_mem_address(vcpu, exit_qualification,
6441                                 vmx_instruction_info, &gva))
6442                         return 1;
6443                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6444                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6445                         kvm_inject_page_fault(vcpu, &e);
6446                         return 1;
6447                 }
6448         }
6449
6450
6451         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6452         if (vmcs_field_readonly(field)) {
6453                 nested_vmx_failValid(vcpu,
6454                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6455                 skip_emulated_instruction(vcpu);
6456                 return 1;
6457         }
6458
6459         if (!vmcs12_write_any(vcpu, field, field_value)) {
6460                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6461                 skip_emulated_instruction(vcpu);
6462                 return 1;
6463         }
6464
6465         nested_vmx_succeed(vcpu);
6466         skip_emulated_instruction(vcpu);
6467         return 1;
6468 }
6469
6470 /* Emulate the VMPTRLD instruction */
6471 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6472 {
6473         struct vcpu_vmx *vmx = to_vmx(vcpu);
6474         gpa_t vmptr;
6475         u32 exec_control;
6476
6477         if (!nested_vmx_check_permission(vcpu))
6478                 return 1;
6479
6480         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6481                 return 1;
6482
6483         if (vmx->nested.current_vmptr != vmptr) {
6484                 struct vmcs12 *new_vmcs12;
6485                 struct page *page;
6486                 page = nested_get_page(vcpu, vmptr);
6487                 if (page == NULL) {
6488                         nested_vmx_failInvalid(vcpu);
6489                         skip_emulated_instruction(vcpu);
6490                         return 1;
6491                 }
6492                 new_vmcs12 = kmap(page);
6493                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6494                         kunmap(page);
6495                         nested_release_page_clean(page);
6496                         nested_vmx_failValid(vcpu,
6497                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6498                         skip_emulated_instruction(vcpu);
6499                         return 1;
6500                 }
6501                 if (vmx->nested.current_vmptr != -1ull)
6502                         nested_release_vmcs12(vmx);
6503
6504                 vmx->nested.current_vmptr = vmptr;
6505                 vmx->nested.current_vmcs12 = new_vmcs12;
6506                 vmx->nested.current_vmcs12_page = page;
6507                 if (enable_shadow_vmcs) {
6508                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6509                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6510                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6511                         vmcs_write64(VMCS_LINK_POINTER,
6512                                      __pa(vmx->nested.current_shadow_vmcs));
6513                         vmx->nested.sync_shadow_vmcs = true;
6514                 }
6515         }
6516
6517         nested_vmx_succeed(vcpu);
6518         skip_emulated_instruction(vcpu);
6519         return 1;
6520 }
6521
6522 /* Emulate the VMPTRST instruction */
6523 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6524 {
6525         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6526         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6527         gva_t vmcs_gva;
6528         struct x86_exception e;
6529
6530         if (!nested_vmx_check_permission(vcpu))
6531                 return 1;
6532
6533         if (get_vmx_mem_address(vcpu, exit_qualification,
6534                         vmx_instruction_info, &vmcs_gva))
6535                 return 1;
6536         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6537         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6538                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6539                                  sizeof(u64), &e)) {
6540                 kvm_inject_page_fault(vcpu, &e);
6541                 return 1;
6542         }
6543         nested_vmx_succeed(vcpu);
6544         skip_emulated_instruction(vcpu);
6545         return 1;
6546 }
6547
6548 /* Emulate the INVEPT instruction */
6549 static int handle_invept(struct kvm_vcpu *vcpu)
6550 {
6551         u32 vmx_instruction_info, types;
6552         unsigned long type;
6553         gva_t gva;
6554         struct x86_exception e;
6555         struct {
6556                 u64 eptp, gpa;
6557         } operand;
6558
6559         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6560             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6561                 kvm_queue_exception(vcpu, UD_VECTOR);
6562                 return 1;
6563         }
6564
6565         if (!nested_vmx_check_permission(vcpu))
6566                 return 1;
6567
6568         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6569                 kvm_queue_exception(vcpu, UD_VECTOR);
6570                 return 1;
6571         }
6572
6573         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6574         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6575
6576         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6577
6578         if (!(types & (1UL << type))) {
6579                 nested_vmx_failValid(vcpu,
6580                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6581                 return 1;
6582         }
6583
6584         /* According to the Intel VMX instruction reference, the memory
6585          * operand is read even if it isn't needed (e.g., for type==global)
6586          */
6587         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6588                         vmx_instruction_info, &gva))
6589                 return 1;
6590         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6591                                 sizeof(operand), &e)) {
6592                 kvm_inject_page_fault(vcpu, &e);
6593                 return 1;
6594         }
6595
6596         switch (type) {
6597         case VMX_EPT_EXTENT_GLOBAL:
6598                 kvm_mmu_sync_roots(vcpu);
6599                 kvm_mmu_flush_tlb(vcpu);
6600                 nested_vmx_succeed(vcpu);
6601                 break;
6602         default:
6603                 /* Trap single context invalidation invept calls */
6604                 BUG_ON(1);
6605                 break;
6606         }
6607
6608         skip_emulated_instruction(vcpu);
6609         return 1;
6610 }
6611
6612 /*
6613  * The exit handlers return 1 if the exit was handled fully and guest execution
6614  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6615  * to be done to userspace and return 0.
6616  */
6617 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6618         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6619         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6620         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6621         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6622         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6623         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6624         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6625         [EXIT_REASON_CPUID]                   = handle_cpuid,
6626         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6627         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6628         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6629         [EXIT_REASON_HLT]                     = handle_halt,
6630         [EXIT_REASON_INVD]                    = handle_invd,
6631         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6632         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6633         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6634         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6635         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6636         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6637         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6638         [EXIT_REASON_VMREAD]                  = handle_vmread,
6639         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6640         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6641         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6642         [EXIT_REASON_VMON]                    = handle_vmon,
6643         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6644         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6645         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6646         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6647         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6648         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6649         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6650         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6651         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6652         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6653         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6654         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
6655         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6656         [EXIT_REASON_INVEPT]                  = handle_invept,
6657 };
6658
6659 static const int kvm_vmx_max_exit_handlers =
6660         ARRAY_SIZE(kvm_vmx_exit_handlers);
6661
6662 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6663                                        struct vmcs12 *vmcs12)
6664 {
6665         unsigned long exit_qualification;
6666         gpa_t bitmap, last_bitmap;
6667         unsigned int port;
6668         int size;
6669         u8 b;
6670
6671         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6672                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6673
6674         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6675
6676         port = exit_qualification >> 16;
6677         size = (exit_qualification & 7) + 1;
6678
6679         last_bitmap = (gpa_t)-1;
6680         b = -1;
6681
6682         while (size > 0) {
6683                 if (port < 0x8000)
6684                         bitmap = vmcs12->io_bitmap_a;
6685                 else if (port < 0x10000)
6686                         bitmap = vmcs12->io_bitmap_b;
6687                 else
6688                         return 1;
6689                 bitmap += (port & 0x7fff) / 8;
6690
6691                 if (last_bitmap != bitmap)
6692                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6693                                 return 1;
6694                 if (b & (1 << (port & 7)))
6695                         return 1;
6696
6697                 port++;
6698                 size--;
6699                 last_bitmap = bitmap;
6700         }
6701
6702         return 0;
6703 }
6704
6705 /*
6706  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6707  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6708  * disinterest in the current event (read or write a specific MSR) by using an
6709  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6710  */
6711 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6712         struct vmcs12 *vmcs12, u32 exit_reason)
6713 {
6714         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6715         gpa_t bitmap;
6716
6717         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6718                 return 1;
6719
6720         /*
6721          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6722          * for the four combinations of read/write and low/high MSR numbers.
6723          * First we need to figure out which of the four to use:
6724          */
6725         bitmap = vmcs12->msr_bitmap;
6726         if (exit_reason == EXIT_REASON_MSR_WRITE)
6727                 bitmap += 2048;
6728         if (msr_index >= 0xc0000000) {
6729                 msr_index -= 0xc0000000;
6730                 bitmap += 1024;
6731         }
6732
6733         /* Then read the msr_index'th bit from this bitmap: */
6734         if (msr_index < 1024*8) {
6735                 unsigned char b;
6736                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6737                         return 1;
6738                 return 1 & (b >> (msr_index & 7));
6739         } else
6740                 return 1; /* let L1 handle the wrong parameter */
6741 }
6742
6743 /*
6744  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6745  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6746  * intercept (via guest_host_mask etc.) the current event.
6747  */
6748 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6749         struct vmcs12 *vmcs12)
6750 {
6751         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6752         int cr = exit_qualification & 15;
6753         int reg = (exit_qualification >> 8) & 15;
6754         unsigned long val = kvm_register_read(vcpu, reg);
6755
6756         switch ((exit_qualification >> 4) & 3) {
6757         case 0: /* mov to cr */
6758                 switch (cr) {
6759                 case 0:
6760                         if (vmcs12->cr0_guest_host_mask &
6761                             (val ^ vmcs12->cr0_read_shadow))
6762                                 return 1;
6763                         break;
6764                 case 3:
6765                         if ((vmcs12->cr3_target_count >= 1 &&
6766                                         vmcs12->cr3_target_value0 == val) ||
6767                                 (vmcs12->cr3_target_count >= 2 &&
6768                                         vmcs12->cr3_target_value1 == val) ||
6769                                 (vmcs12->cr3_target_count >= 3 &&
6770                                         vmcs12->cr3_target_value2 == val) ||
6771                                 (vmcs12->cr3_target_count >= 4 &&
6772                                         vmcs12->cr3_target_value3 == val))
6773                                 return 0;
6774                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6775                                 return 1;
6776                         break;
6777                 case 4:
6778                         if (vmcs12->cr4_guest_host_mask &
6779                             (vmcs12->cr4_read_shadow ^ val))
6780                                 return 1;
6781                         break;
6782                 case 8:
6783                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6784                                 return 1;
6785                         break;
6786                 }
6787                 break;
6788         case 2: /* clts */
6789                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6790                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6791                         return 1;
6792                 break;
6793         case 1: /* mov from cr */
6794                 switch (cr) {
6795                 case 3:
6796                         if (vmcs12->cpu_based_vm_exec_control &
6797                             CPU_BASED_CR3_STORE_EXITING)
6798                                 return 1;
6799                         break;
6800                 case 8:
6801                         if (vmcs12->cpu_based_vm_exec_control &
6802                             CPU_BASED_CR8_STORE_EXITING)
6803                                 return 1;
6804                         break;
6805                 }
6806                 break;
6807         case 3: /* lmsw */
6808                 /*
6809                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6810                  * cr0. Other attempted changes are ignored, with no exit.
6811                  */
6812                 if (vmcs12->cr0_guest_host_mask & 0xe &
6813                     (val ^ vmcs12->cr0_read_shadow))
6814                         return 1;
6815                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6816                     !(vmcs12->cr0_read_shadow & 0x1) &&
6817                     (val & 0x1))
6818                         return 1;
6819                 break;
6820         }
6821         return 0;
6822 }
6823
6824 /*
6825  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6826  * should handle it ourselves in L0 (and then continue L2). Only call this
6827  * when in is_guest_mode (L2).
6828  */
6829 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6830 {
6831         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6832         struct vcpu_vmx *vmx = to_vmx(vcpu);
6833         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6834         u32 exit_reason = vmx->exit_reason;
6835
6836         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6837                                 vmcs_readl(EXIT_QUALIFICATION),
6838                                 vmx->idt_vectoring_info,
6839                                 intr_info,
6840                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6841                                 KVM_ISA_VMX);
6842
6843         if (vmx->nested.nested_run_pending)
6844                 return 0;
6845
6846         if (unlikely(vmx->fail)) {
6847                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6848                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6849                 return 1;
6850         }
6851
6852         switch (exit_reason) {
6853         case EXIT_REASON_EXCEPTION_NMI:
6854                 if (!is_exception(intr_info))
6855                         return 0;
6856                 else if (is_page_fault(intr_info))
6857                         return enable_ept;
6858                 else if (is_no_device(intr_info) &&
6859                          !(vmcs12->guest_cr0 & X86_CR0_TS))
6860                         return 0;
6861                 return vmcs12->exception_bitmap &
6862                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6863         case EXIT_REASON_EXTERNAL_INTERRUPT:
6864                 return 0;
6865         case EXIT_REASON_TRIPLE_FAULT:
6866                 return 1;
6867         case EXIT_REASON_PENDING_INTERRUPT:
6868                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6869         case EXIT_REASON_NMI_WINDOW:
6870                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6871         case EXIT_REASON_TASK_SWITCH:
6872                 return 1;
6873         case EXIT_REASON_CPUID:
6874                 return 1;
6875         case EXIT_REASON_HLT:
6876                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6877         case EXIT_REASON_INVD:
6878                 return 1;
6879         case EXIT_REASON_INVLPG:
6880                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6881         case EXIT_REASON_RDPMC:
6882                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6883         case EXIT_REASON_RDTSC:
6884                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6885         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6886         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6887         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6888         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6889         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6890         case EXIT_REASON_INVEPT:
6891                 /*
6892                  * VMX instructions trap unconditionally. This allows L1 to
6893                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6894                  */
6895                 return 1;
6896         case EXIT_REASON_CR_ACCESS:
6897                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6898         case EXIT_REASON_DR_ACCESS:
6899                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6900         case EXIT_REASON_IO_INSTRUCTION:
6901                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6902         case EXIT_REASON_MSR_READ:
6903         case EXIT_REASON_MSR_WRITE:
6904                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6905         case EXIT_REASON_INVALID_STATE:
6906                 return 1;
6907         case EXIT_REASON_MWAIT_INSTRUCTION:
6908                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6909         case EXIT_REASON_MONITOR_INSTRUCTION:
6910                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6911         case EXIT_REASON_PAUSE_INSTRUCTION:
6912                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6913                         nested_cpu_has2(vmcs12,
6914                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6915         case EXIT_REASON_MCE_DURING_VMENTRY:
6916                 return 0;
6917         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6918                 return 1;
6919         case EXIT_REASON_APIC_ACCESS:
6920                 return nested_cpu_has2(vmcs12,
6921                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6922         case EXIT_REASON_EPT_VIOLATION:
6923                 /*
6924                  * L0 always deals with the EPT violation. If nested EPT is
6925                  * used, and the nested mmu code discovers that the address is
6926                  * missing in the guest EPT table (EPT12), the EPT violation
6927                  * will be injected with nested_ept_inject_page_fault()
6928                  */
6929                 return 0;
6930         case EXIT_REASON_EPT_MISCONFIG:
6931                 /*
6932                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6933                  * table (shadow on EPT) or a merged EPT table that L0 built
6934                  * (EPT on EPT). So any problems with the structure of the
6935                  * table is L0's fault.
6936                  */
6937                 return 0;
6938         case EXIT_REASON_WBINVD:
6939                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6940         case EXIT_REASON_XSETBV:
6941                 return 1;
6942         default:
6943                 return 1;
6944         }
6945 }
6946
6947 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6948 {
6949         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6950         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6951 }
6952
6953 /*
6954  * The guest has exited.  See if we can fix it or if we need userspace
6955  * assistance.
6956  */
6957 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6958 {
6959         struct vcpu_vmx *vmx = to_vmx(vcpu);
6960         u32 exit_reason = vmx->exit_reason;
6961         u32 vectoring_info = vmx->idt_vectoring_info;
6962
6963         /* If guest state is invalid, start emulating */
6964         if (vmx->emulation_required)
6965                 return handle_invalid_guest_state(vcpu);
6966
6967         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6968                 nested_vmx_vmexit(vcpu, exit_reason,
6969                                   vmcs_read32(VM_EXIT_INTR_INFO),
6970                                   vmcs_readl(EXIT_QUALIFICATION));
6971                 return 1;
6972         }
6973
6974         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6975                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6976                 vcpu->run->fail_entry.hardware_entry_failure_reason
6977                         = exit_reason;
6978                 return 0;
6979         }
6980
6981         if (unlikely(vmx->fail)) {
6982                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6983                 vcpu->run->fail_entry.hardware_entry_failure_reason
6984                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6985                 return 0;
6986         }
6987
6988         /*
6989          * Note:
6990          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6991          * delivery event since it indicates guest is accessing MMIO.
6992          * The vm-exit can be triggered again after return to guest that
6993          * will cause infinite loop.
6994          */
6995         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6996                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6997                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6998                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6999                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7000                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7001                 vcpu->run->internal.ndata = 2;
7002                 vcpu->run->internal.data[0] = vectoring_info;
7003                 vcpu->run->internal.data[1] = exit_reason;
7004                 return 0;
7005         }
7006
7007         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7008             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7009                                         get_vmcs12(vcpu))))) {
7010                 if (vmx_interrupt_allowed(vcpu)) {
7011                         vmx->soft_vnmi_blocked = 0;
7012                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7013                            vcpu->arch.nmi_pending) {
7014                         /*
7015                          * This CPU don't support us in finding the end of an
7016                          * NMI-blocked window if the guest runs with IRQs
7017                          * disabled. So we pull the trigger after 1 s of
7018                          * futile waiting, but inform the user about this.
7019                          */
7020                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7021                                "state on VCPU %d after 1 s timeout\n",
7022                                __func__, vcpu->vcpu_id);
7023                         vmx->soft_vnmi_blocked = 0;
7024                 }
7025         }
7026
7027         if (exit_reason < kvm_vmx_max_exit_handlers
7028             && kvm_vmx_exit_handlers[exit_reason])
7029                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7030         else {
7031                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7032                 vcpu->run->hw.hardware_exit_reason = exit_reason;
7033         }
7034         return 0;
7035 }
7036
7037 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7038 {
7039         if (irr == -1 || tpr < irr) {
7040                 vmcs_write32(TPR_THRESHOLD, 0);
7041                 return;
7042         }
7043
7044         vmcs_write32(TPR_THRESHOLD, irr);
7045 }
7046
7047 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7048 {
7049         u32 sec_exec_control;
7050
7051         /*
7052          * There is not point to enable virtualize x2apic without enable
7053          * apicv
7054          */
7055         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7056                                 !vmx_vm_has_apicv(vcpu->kvm))
7057                 return;
7058
7059         if (!vm_need_tpr_shadow(vcpu->kvm))
7060                 return;
7061
7062         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7063
7064         if (set) {
7065                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7066                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7067         } else {
7068                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7069                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7070         }
7071         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7072
7073         vmx_set_msr_bitmap(vcpu);
7074 }
7075
7076 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7077 {
7078         u16 status;
7079         u8 old;
7080
7081         if (!vmx_vm_has_apicv(kvm))
7082                 return;
7083
7084         if (isr == -1)
7085                 isr = 0;
7086
7087         status = vmcs_read16(GUEST_INTR_STATUS);
7088         old = status >> 8;
7089         if (isr != old) {
7090                 status &= 0xff;
7091                 status |= isr << 8;
7092                 vmcs_write16(GUEST_INTR_STATUS, status);
7093         }
7094 }
7095
7096 static void vmx_set_rvi(int vector)
7097 {
7098         u16 status;
7099         u8 old;
7100
7101         status = vmcs_read16(GUEST_INTR_STATUS);
7102         old = (u8)status & 0xff;
7103         if ((u8)vector != old) {
7104                 status &= ~0xff;
7105                 status |= (u8)vector;
7106                 vmcs_write16(GUEST_INTR_STATUS, status);
7107         }
7108 }
7109
7110 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7111 {
7112         if (max_irr == -1)
7113                 return;
7114
7115         vmx_set_rvi(max_irr);
7116 }
7117
7118 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7119 {
7120         if (!vmx_vm_has_apicv(vcpu->kvm))
7121                 return;
7122
7123         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7124         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7125         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7126         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7127 }
7128
7129 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7130 {
7131         u32 exit_intr_info;
7132
7133         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7134               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7135                 return;
7136
7137         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7138         exit_intr_info = vmx->exit_intr_info;
7139
7140         /* Handle machine checks before interrupts are enabled */
7141         if (is_machine_check(exit_intr_info))
7142                 kvm_machine_check();
7143
7144         /* We need to handle NMIs before interrupts are enabled */
7145         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7146             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7147                 kvm_before_handle_nmi(&vmx->vcpu);
7148                 asm("int $2");
7149                 kvm_after_handle_nmi(&vmx->vcpu);
7150         }
7151 }
7152
7153 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7154 {
7155         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7156
7157         /*
7158          * If external interrupt exists, IF bit is set in rflags/eflags on the
7159          * interrupt stack frame, and interrupt will be enabled on a return
7160          * from interrupt handler.
7161          */
7162         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7163                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7164                 unsigned int vector;
7165                 unsigned long entry;
7166                 gate_desc *desc;
7167                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7168 #ifdef CONFIG_X86_64
7169                 unsigned long tmp;
7170 #endif
7171
7172                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7173                 desc = (gate_desc *)vmx->host_idt_base + vector;
7174                 entry = gate_offset(*desc);
7175                 asm volatile(
7176 #ifdef CONFIG_X86_64
7177                         "mov %%" _ASM_SP ", %[sp]\n\t"
7178                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7179                         "push $%c[ss]\n\t"
7180                         "push %[sp]\n\t"
7181 #endif
7182                         "pushf\n\t"
7183                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7184                         __ASM_SIZE(push) " $%c[cs]\n\t"
7185                         "call *%[entry]\n\t"
7186                         :
7187 #ifdef CONFIG_X86_64
7188                         [sp]"=&r"(tmp)
7189 #endif
7190                         :
7191                         [entry]"r"(entry),
7192                         [ss]"i"(__KERNEL_DS),
7193                         [cs]"i"(__KERNEL_CS)
7194                         );
7195         } else
7196                 local_irq_enable();
7197 }
7198
7199 static bool vmx_mpx_supported(void)
7200 {
7201         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7202                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7203 }
7204
7205 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7206 {
7207         u32 exit_intr_info;
7208         bool unblock_nmi;
7209         u8 vector;
7210         bool idtv_info_valid;
7211
7212         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7213
7214         if (cpu_has_virtual_nmis()) {
7215                 if (vmx->nmi_known_unmasked)
7216                         return;
7217                 /*
7218                  * Can't use vmx->exit_intr_info since we're not sure what
7219                  * the exit reason is.
7220                  */
7221                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7222                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7223                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7224                 /*
7225                  * SDM 3: 27.7.1.2 (September 2008)
7226                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7227                  * a guest IRET fault.
7228                  * SDM 3: 23.2.2 (September 2008)
7229                  * Bit 12 is undefined in any of the following cases:
7230                  *  If the VM exit sets the valid bit in the IDT-vectoring
7231                  *   information field.
7232                  *  If the VM exit is due to a double fault.
7233                  */
7234                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7235                     vector != DF_VECTOR && !idtv_info_valid)
7236                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7237                                       GUEST_INTR_STATE_NMI);
7238                 else
7239                         vmx->nmi_known_unmasked =
7240                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7241                                   & GUEST_INTR_STATE_NMI);
7242         } else if (unlikely(vmx->soft_vnmi_blocked))
7243                 vmx->vnmi_blocked_time +=
7244                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7245 }
7246
7247 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7248                                       u32 idt_vectoring_info,
7249                                       int instr_len_field,
7250                                       int error_code_field)
7251 {
7252         u8 vector;
7253         int type;
7254         bool idtv_info_valid;
7255
7256         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7257
7258         vcpu->arch.nmi_injected = false;
7259         kvm_clear_exception_queue(vcpu);
7260         kvm_clear_interrupt_queue(vcpu);
7261
7262         if (!idtv_info_valid)
7263                 return;
7264
7265         kvm_make_request(KVM_REQ_EVENT, vcpu);
7266
7267         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7268         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7269
7270         switch (type) {
7271         case INTR_TYPE_NMI_INTR:
7272                 vcpu->arch.nmi_injected = true;
7273                 /*
7274                  * SDM 3: 27.7.1.2 (September 2008)
7275                  * Clear bit "block by NMI" before VM entry if a NMI
7276                  * delivery faulted.
7277                  */
7278                 vmx_set_nmi_mask(vcpu, false);
7279                 break;
7280         case INTR_TYPE_SOFT_EXCEPTION:
7281                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7282                 /* fall through */
7283         case INTR_TYPE_HARD_EXCEPTION:
7284                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7285                         u32 err = vmcs_read32(error_code_field);
7286                         kvm_requeue_exception_e(vcpu, vector, err);
7287                 } else
7288                         kvm_requeue_exception(vcpu, vector);
7289                 break;
7290         case INTR_TYPE_SOFT_INTR:
7291                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7292                 /* fall through */
7293         case INTR_TYPE_EXT_INTR:
7294                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7295                 break;
7296         default:
7297                 break;
7298         }
7299 }
7300
7301 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7302 {
7303         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7304                                   VM_EXIT_INSTRUCTION_LEN,
7305                                   IDT_VECTORING_ERROR_CODE);
7306 }
7307
7308 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7309 {
7310         __vmx_complete_interrupts(vcpu,
7311                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7312                                   VM_ENTRY_INSTRUCTION_LEN,
7313                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7314
7315         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7316 }
7317
7318 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7319 {
7320         int i, nr_msrs;
7321         struct perf_guest_switch_msr *msrs;
7322
7323         msrs = perf_guest_get_msrs(&nr_msrs);
7324
7325         if (!msrs)
7326                 return;
7327
7328         for (i = 0; i < nr_msrs; i++)
7329                 if (msrs[i].host == msrs[i].guest)
7330                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7331                 else
7332                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7333                                         msrs[i].host);
7334 }
7335
7336 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7337 {
7338         struct vcpu_vmx *vmx = to_vmx(vcpu);
7339         unsigned long debugctlmsr;
7340
7341         /* Record the guest's net vcpu time for enforced NMI injections. */
7342         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7343                 vmx->entry_time = ktime_get();
7344
7345         /* Don't enter VMX if guest state is invalid, let the exit handler
7346            start emulation until we arrive back to a valid state */
7347         if (vmx->emulation_required)
7348                 return;
7349
7350         if (vmx->nested.sync_shadow_vmcs) {
7351                 copy_vmcs12_to_shadow(vmx);
7352                 vmx->nested.sync_shadow_vmcs = false;
7353         }
7354
7355         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7356                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7357         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7358                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7359
7360         /* When single-stepping over STI and MOV SS, we must clear the
7361          * corresponding interruptibility bits in the guest state. Otherwise
7362          * vmentry fails as it then expects bit 14 (BS) in pending debug
7363          * exceptions being set, but that's not correct for the guest debugging
7364          * case. */
7365         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7366                 vmx_set_interrupt_shadow(vcpu, 0);
7367
7368         atomic_switch_perf_msrs(vmx);
7369         debugctlmsr = get_debugctlmsr();
7370
7371         vmx->__launched = vmx->loaded_vmcs->launched;
7372         asm(
7373                 /* Store host registers */
7374                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7375                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7376                 "push %%" _ASM_CX " \n\t"
7377                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7378                 "je 1f \n\t"
7379                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7380                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7381                 "1: \n\t"
7382                 /* Reload cr2 if changed */
7383                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7384                 "mov %%cr2, %%" _ASM_DX " \n\t"
7385                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7386                 "je 2f \n\t"
7387                 "mov %%" _ASM_AX", %%cr2 \n\t"
7388                 "2: \n\t"
7389                 /* Check if vmlaunch of vmresume is needed */
7390                 "cmpl $0, %c[launched](%0) \n\t"
7391                 /* Load guest registers.  Don't clobber flags. */
7392                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7393                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7394                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7395                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7396                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7397                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7398 #ifdef CONFIG_X86_64
7399                 "mov %c[r8](%0),  %%r8  \n\t"
7400                 "mov %c[r9](%0),  %%r9  \n\t"
7401                 "mov %c[r10](%0), %%r10 \n\t"
7402                 "mov %c[r11](%0), %%r11 \n\t"
7403                 "mov %c[r12](%0), %%r12 \n\t"
7404                 "mov %c[r13](%0), %%r13 \n\t"
7405                 "mov %c[r14](%0), %%r14 \n\t"
7406                 "mov %c[r15](%0), %%r15 \n\t"
7407 #endif
7408                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7409
7410                 /* Enter guest mode */
7411                 "jne 1f \n\t"
7412                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7413                 "jmp 2f \n\t"
7414                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7415                 "2: "
7416                 /* Save guest registers, load host registers, keep flags */
7417                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7418                 "pop %0 \n\t"
7419                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7420                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7421                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7422                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7423                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7424                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7425                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7426 #ifdef CONFIG_X86_64
7427                 "mov %%r8,  %c[r8](%0) \n\t"
7428                 "mov %%r9,  %c[r9](%0) \n\t"
7429                 "mov %%r10, %c[r10](%0) \n\t"
7430                 "mov %%r11, %c[r11](%0) \n\t"
7431                 "mov %%r12, %c[r12](%0) \n\t"
7432                 "mov %%r13, %c[r13](%0) \n\t"
7433                 "mov %%r14, %c[r14](%0) \n\t"
7434                 "mov %%r15, %c[r15](%0) \n\t"
7435 #endif
7436                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7437                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7438
7439                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7440                 "setbe %c[fail](%0) \n\t"
7441                 ".pushsection .rodata \n\t"
7442                 ".global vmx_return \n\t"
7443                 "vmx_return: " _ASM_PTR " 2b \n\t"
7444                 ".popsection"
7445               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7446                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7447                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7448                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7449                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7450                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7451                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7452                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7453                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7454                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7455                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7456 #ifdef CONFIG_X86_64
7457                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7458                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7459                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7460                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7461                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7462                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7463                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7464                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7465 #endif
7466                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7467                 [wordsize]"i"(sizeof(ulong))
7468               : "cc", "memory"
7469 #ifdef CONFIG_X86_64
7470                 , "rax", "rbx", "rdi", "rsi"
7471                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7472 #else
7473                 , "eax", "ebx", "edi", "esi"
7474 #endif
7475               );
7476
7477         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7478         if (debugctlmsr)
7479                 update_debugctlmsr(debugctlmsr);
7480
7481 #ifndef CONFIG_X86_64
7482         /*
7483          * The sysexit path does not restore ds/es, so we must set them to
7484          * a reasonable value ourselves.
7485          *
7486          * We can't defer this to vmx_load_host_state() since that function
7487          * may be executed in interrupt context, which saves and restore segments
7488          * around it, nullifying its effect.
7489          */
7490         loadsegment(ds, __USER_DS);
7491         loadsegment(es, __USER_DS);
7492 #endif
7493
7494         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7495                                   | (1 << VCPU_EXREG_RFLAGS)
7496                                   | (1 << VCPU_EXREG_PDPTR)
7497                                   | (1 << VCPU_EXREG_SEGMENTS)
7498                                   | (1 << VCPU_EXREG_CR3));
7499         vcpu->arch.regs_dirty = 0;
7500
7501         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7502
7503         vmx->loaded_vmcs->launched = 1;
7504
7505         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7506         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7507
7508         /*
7509          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7510          * we did not inject a still-pending event to L1 now because of
7511          * nested_run_pending, we need to re-enable this bit.
7512          */
7513         if (vmx->nested.nested_run_pending)
7514                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7515
7516         vmx->nested.nested_run_pending = 0;
7517
7518         vmx_complete_atomic_exit(vmx);
7519         vmx_recover_nmi_blocking(vmx);
7520         vmx_complete_interrupts(vmx);
7521 }
7522
7523 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7524 {
7525         struct vcpu_vmx *vmx = to_vmx(vcpu);
7526
7527         free_vpid(vmx);
7528         free_loaded_vmcs(vmx->loaded_vmcs);
7529         free_nested(vmx);
7530         kfree(vmx->guest_msrs);
7531         kvm_vcpu_uninit(vcpu);
7532         kmem_cache_free(kvm_vcpu_cache, vmx);
7533 }
7534
7535 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7536 {
7537         int err;
7538         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7539         int cpu;
7540
7541         if (!vmx)
7542                 return ERR_PTR(-ENOMEM);
7543
7544         allocate_vpid(vmx);
7545
7546         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7547         if (err)
7548                 goto free_vcpu;
7549
7550         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7551         err = -ENOMEM;
7552         if (!vmx->guest_msrs) {
7553                 goto uninit_vcpu;
7554         }
7555
7556         vmx->loaded_vmcs = &vmx->vmcs01;
7557         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7558         if (!vmx->loaded_vmcs->vmcs)
7559                 goto free_msrs;
7560         if (!vmm_exclusive)
7561                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7562         loaded_vmcs_init(vmx->loaded_vmcs);
7563         if (!vmm_exclusive)
7564                 kvm_cpu_vmxoff();
7565
7566         cpu = get_cpu();
7567         vmx_vcpu_load(&vmx->vcpu, cpu);
7568         vmx->vcpu.cpu = cpu;
7569         err = vmx_vcpu_setup(vmx);
7570         vmx_vcpu_put(&vmx->vcpu);
7571         put_cpu();
7572         if (err)
7573                 goto free_vmcs;
7574         if (vm_need_virtualize_apic_accesses(kvm)) {
7575                 err = alloc_apic_access_page(kvm);
7576                 if (err)
7577                         goto free_vmcs;
7578         }
7579
7580         if (enable_ept) {
7581                 if (!kvm->arch.ept_identity_map_addr)
7582                         kvm->arch.ept_identity_map_addr =
7583                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7584                 err = -ENOMEM;
7585                 if (alloc_identity_pagetable(kvm) != 0)
7586                         goto free_vmcs;
7587                 if (!init_rmode_identity_map(kvm))
7588                         goto free_vmcs;
7589         }
7590
7591         vmx->nested.current_vmptr = -1ull;
7592         vmx->nested.current_vmcs12 = NULL;
7593
7594         return &vmx->vcpu;
7595
7596 free_vmcs:
7597         free_loaded_vmcs(vmx->loaded_vmcs);
7598 free_msrs:
7599         kfree(vmx->guest_msrs);
7600 uninit_vcpu:
7601         kvm_vcpu_uninit(&vmx->vcpu);
7602 free_vcpu:
7603         free_vpid(vmx);
7604         kmem_cache_free(kvm_vcpu_cache, vmx);
7605         return ERR_PTR(err);
7606 }
7607
7608 static void __init vmx_check_processor_compat(void *rtn)
7609 {
7610         struct vmcs_config vmcs_conf;
7611
7612         *(int *)rtn = 0;
7613         if (setup_vmcs_config(&vmcs_conf) < 0)
7614                 *(int *)rtn = -EIO;
7615         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7616                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7617                                 smp_processor_id());
7618                 *(int *)rtn = -EIO;
7619         }
7620 }
7621
7622 static int get_ept_level(void)
7623 {
7624         return VMX_EPT_DEFAULT_GAW + 1;
7625 }
7626
7627 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7628 {
7629         u64 ret;
7630
7631         /* For VT-d and EPT combination
7632          * 1. MMIO: always map as UC
7633          * 2. EPT with VT-d:
7634          *   a. VT-d without snooping control feature: can't guarantee the
7635          *      result, try to trust guest.
7636          *   b. VT-d with snooping control feature: snooping control feature of
7637          *      VT-d engine can guarantee the cache correctness. Just set it
7638          *      to WB to keep consistent with host. So the same as item 3.
7639          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7640          *    consistent with host MTRR
7641          */
7642         if (is_mmio)
7643                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7644         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7645                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7646                       VMX_EPT_MT_EPTE_SHIFT;
7647         else
7648                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7649                         | VMX_EPT_IPAT_BIT;
7650
7651         return ret;
7652 }
7653
7654 static int vmx_get_lpage_level(void)
7655 {
7656         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7657                 return PT_DIRECTORY_LEVEL;
7658         else
7659                 /* For shadow and EPT supported 1GB page */
7660                 return PT_PDPE_LEVEL;
7661 }
7662
7663 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7664 {
7665         struct kvm_cpuid_entry2 *best;
7666         struct vcpu_vmx *vmx = to_vmx(vcpu);
7667         u32 exec_control;
7668
7669         vmx->rdtscp_enabled = false;
7670         if (vmx_rdtscp_supported()) {
7671                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7672                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7673                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7674                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7675                                 vmx->rdtscp_enabled = true;
7676                         else {
7677                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7678                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7679                                                 exec_control);
7680                         }
7681                 }
7682         }
7683
7684         /* Exposing INVPCID only when PCID is exposed */
7685         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7686         if (vmx_invpcid_supported() &&
7687             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7688             guest_cpuid_has_pcid(vcpu)) {
7689                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7690                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7691                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7692                              exec_control);
7693         } else {
7694                 if (cpu_has_secondary_exec_ctrls()) {
7695                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7696                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7697                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7698                                      exec_control);
7699                 }
7700                 if (best)
7701                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7702         }
7703 }
7704
7705 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7706 {
7707         if (func == 1 && nested)
7708                 entry->ecx |= bit(X86_FEATURE_VMX);
7709 }
7710
7711 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7712                 struct x86_exception *fault)
7713 {
7714         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7715         u32 exit_reason;
7716
7717         if (fault->error_code & PFERR_RSVD_MASK)
7718                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7719         else
7720                 exit_reason = EXIT_REASON_EPT_VIOLATION;
7721         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7722         vmcs12->guest_physical_address = fault->address;
7723 }
7724
7725 /* Callbacks for nested_ept_init_mmu_context: */
7726
7727 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7728 {
7729         /* return the page table to be shadowed - in our case, EPT12 */
7730         return get_vmcs12(vcpu)->ept_pointer;
7731 }
7732
7733 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7734 {
7735         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7736                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7737
7738         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7739         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7740         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7741
7742         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7743 }
7744
7745 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7746 {
7747         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7748 }
7749
7750 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7751                 struct x86_exception *fault)
7752 {
7753         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7754
7755         WARN_ON(!is_guest_mode(vcpu));
7756
7757         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7758         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7759                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7760                                   vmcs_read32(VM_EXIT_INTR_INFO),
7761                                   vmcs_readl(EXIT_QUALIFICATION));
7762         else
7763                 kvm_inject_page_fault(vcpu, fault);
7764 }
7765
7766 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
7767 {
7768         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
7769         struct vcpu_vmx *vmx = to_vmx(vcpu);
7770
7771         if (vcpu->arch.virtual_tsc_khz == 0)
7772                 return;
7773
7774         /* Make sure short timeouts reliably trigger an immediate vmexit.
7775          * hrtimer_start does not guarantee this. */
7776         if (preemption_timeout <= 1) {
7777                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
7778                 return;
7779         }
7780
7781         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
7782         preemption_timeout *= 1000000;
7783         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
7784         hrtimer_start(&vmx->nested.preemption_timer,
7785                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
7786 }
7787
7788 /*
7789  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7790  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7791  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7792  * guest in a way that will both be appropriate to L1's requests, and our
7793  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7794  * function also has additional necessary side-effects, like setting various
7795  * vcpu->arch fields.
7796  */
7797 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7798 {
7799         struct vcpu_vmx *vmx = to_vmx(vcpu);
7800         u32 exec_control;
7801
7802         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7803         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7804         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7805         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7806         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7807         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7808         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7809         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7810         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7811         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7812         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7813         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7814         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7815         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7816         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7817         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7818         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7819         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7820         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7821         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7822         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7823         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7824         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7825         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7826         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7827         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7828         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7829         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7830         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7831         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7832         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7833         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7834         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7835         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7836         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7837         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7838
7839         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7840         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7841                 vmcs12->vm_entry_intr_info_field);
7842         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7843                 vmcs12->vm_entry_exception_error_code);
7844         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7845                 vmcs12->vm_entry_instruction_len);
7846         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7847                 vmcs12->guest_interruptibility_info);
7848         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7849         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7850         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7851         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7852                 vmcs12->guest_pending_dbg_exceptions);
7853         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7854         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7855
7856         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7857
7858         exec_control = vmcs12->pin_based_vm_exec_control;
7859         exec_control |= vmcs_config.pin_based_exec_ctrl;
7860         exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
7861                           PIN_BASED_POSTED_INTR);
7862         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
7863
7864         vmx->nested.preemption_timer_expired = false;
7865         if (nested_cpu_has_preemption_timer(vmcs12))
7866                 vmx_start_preemption_timer(vcpu);
7867
7868         /*
7869          * Whether page-faults are trapped is determined by a combination of
7870          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7871          * If enable_ept, L0 doesn't care about page faults and we should
7872          * set all of these to L1's desires. However, if !enable_ept, L0 does
7873          * care about (at least some) page faults, and because it is not easy
7874          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7875          * to exit on each and every L2 page fault. This is done by setting
7876          * MASK=MATCH=0 and (see below) EB.PF=1.
7877          * Note that below we don't need special code to set EB.PF beyond the
7878          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7879          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7880          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7881          *
7882          * A problem with this approach (when !enable_ept) is that L1 may be
7883          * injected with more page faults than it asked for. This could have
7884          * caused problems, but in practice existing hypervisors don't care.
7885          * To fix this, we will need to emulate the PFEC checking (on the L1
7886          * page tables), using walk_addr(), when injecting PFs to L1.
7887          */
7888         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7889                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7890         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7891                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7892
7893         if (cpu_has_secondary_exec_ctrls()) {
7894                 exec_control = vmx_secondary_exec_control(vmx);
7895                 if (!vmx->rdtscp_enabled)
7896                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7897                 /* Take the following fields only from vmcs12 */
7898                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7899                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7900                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
7901                 if (nested_cpu_has(vmcs12,
7902                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7903                         exec_control |= vmcs12->secondary_vm_exec_control;
7904
7905                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7906                         /*
7907                          * Translate L1 physical address to host physical
7908                          * address for vmcs02. Keep the page pinned, so this
7909                          * physical address remains valid. We keep a reference
7910                          * to it so we can release it later.
7911                          */
7912                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7913                                 nested_release_page(vmx->nested.apic_access_page);
7914                         vmx->nested.apic_access_page =
7915                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7916                         /*
7917                          * If translation failed, no matter: This feature asks
7918                          * to exit when accessing the given address, and if it
7919                          * can never be accessed, this feature won't do
7920                          * anything anyway.
7921                          */
7922                         if (!vmx->nested.apic_access_page)
7923                                 exec_control &=
7924                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7925                         else
7926                                 vmcs_write64(APIC_ACCESS_ADDR,
7927                                   page_to_phys(vmx->nested.apic_access_page));
7928                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7929                         exec_control |=
7930                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7931                         vmcs_write64(APIC_ACCESS_ADDR,
7932                                 page_to_phys(vcpu->kvm->arch.apic_access_page));
7933                 }
7934
7935                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7936         }
7937
7938
7939         /*
7940          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7941          * Some constant fields are set here by vmx_set_constant_host_state().
7942          * Other fields are different per CPU, and will be set later when
7943          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7944          */
7945         vmx_set_constant_host_state(vmx);
7946
7947         /*
7948          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7949          * entry, but only if the current (host) sp changed from the value
7950          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7951          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7952          * here we just force the write to happen on entry.
7953          */
7954         vmx->host_rsp = 0;
7955
7956         exec_control = vmx_exec_control(vmx); /* L0's desires */
7957         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7958         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7959         exec_control &= ~CPU_BASED_TPR_SHADOW;
7960         exec_control |= vmcs12->cpu_based_vm_exec_control;
7961         /*
7962          * Merging of IO and MSR bitmaps not currently supported.
7963          * Rather, exit every time.
7964          */
7965         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7966         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7967         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7968
7969         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7970
7971         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7972          * bitwise-or of what L1 wants to trap for L2, and what we want to
7973          * trap. Note that CR0.TS also needs updating - we do this later.
7974          */
7975         update_exception_bitmap(vcpu);
7976         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7977         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7978
7979         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7980          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7981          * bits are further modified by vmx_set_efer() below.
7982          */
7983         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7984
7985         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7986          * emulated by vmx_set_efer(), below.
7987          */
7988         vm_entry_controls_init(vmx, 
7989                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7990                         ~VM_ENTRY_IA32E_MODE) |
7991                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7992
7993         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7994                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7995                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7996         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7997                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7998
7999
8000         set_cr4_guest_host_mask(vmx);
8001
8002         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8003                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8004
8005         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8006                 vmcs_write64(TSC_OFFSET,
8007                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8008         else
8009                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8010
8011         if (enable_vpid) {
8012                 /*
8013                  * Trivially support vpid by letting L2s share their parent
8014                  * L1's vpid. TODO: move to a more elaborate solution, giving
8015                  * each L2 its own vpid and exposing the vpid feature to L1.
8016                  */
8017                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8018                 vmx_flush_tlb(vcpu);
8019         }
8020
8021         if (nested_cpu_has_ept(vmcs12)) {
8022                 kvm_mmu_unload(vcpu);
8023                 nested_ept_init_mmu_context(vcpu);
8024         }
8025
8026         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8027                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8028         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8029                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8030         else
8031                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8032         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8033         vmx_set_efer(vcpu, vcpu->arch.efer);
8034
8035         /*
8036          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8037          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8038          * The CR0_READ_SHADOW is what L2 should have expected to read given
8039          * the specifications by L1; It's not enough to take
8040          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8041          * have more bits than L1 expected.
8042          */
8043         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8044         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8045
8046         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8047         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8048
8049         /* shadow page tables on either EPT or shadow page tables */
8050         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8051         kvm_mmu_reset_context(vcpu);
8052
8053         if (!enable_ept)
8054                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8055
8056         /*
8057          * L1 may access the L2's PDPTR, so save them to construct vmcs12
8058          */
8059         if (enable_ept) {
8060                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8061                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8062                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8063                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8064         }
8065
8066         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8067         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8068 }
8069
8070 /*
8071  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8072  * for running an L2 nested guest.
8073  */
8074 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8075 {
8076         struct vmcs12 *vmcs12;
8077         struct vcpu_vmx *vmx = to_vmx(vcpu);
8078         int cpu;
8079         struct loaded_vmcs *vmcs02;
8080         bool ia32e;
8081
8082         if (!nested_vmx_check_permission(vcpu) ||
8083             !nested_vmx_check_vmcs12(vcpu))
8084                 return 1;
8085
8086         skip_emulated_instruction(vcpu);
8087         vmcs12 = get_vmcs12(vcpu);
8088
8089         if (enable_shadow_vmcs)
8090                 copy_shadow_to_vmcs12(vmx);
8091
8092         /*
8093          * The nested entry process starts with enforcing various prerequisites
8094          * on vmcs12 as required by the Intel SDM, and act appropriately when
8095          * they fail: As the SDM explains, some conditions should cause the
8096          * instruction to fail, while others will cause the instruction to seem
8097          * to succeed, but return an EXIT_REASON_INVALID_STATE.
8098          * To speed up the normal (success) code path, we should avoid checking
8099          * for misconfigurations which will anyway be caught by the processor
8100          * when using the merged vmcs02.
8101          */
8102         if (vmcs12->launch_state == launch) {
8103                 nested_vmx_failValid(vcpu,
8104                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8105                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8106                 return 1;
8107         }
8108
8109         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8110             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8111                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8112                 return 1;
8113         }
8114
8115         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8116                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
8117                 /*TODO: Also verify bits beyond physical address width are 0*/
8118                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8119                 return 1;
8120         }
8121
8122         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
8123                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
8124                 /*TODO: Also verify bits beyond physical address width are 0*/
8125                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8126                 return 1;
8127         }
8128
8129         if (vmcs12->vm_entry_msr_load_count > 0 ||
8130             vmcs12->vm_exit_msr_load_count > 0 ||
8131             vmcs12->vm_exit_msr_store_count > 0) {
8132                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8133                                     __func__);
8134                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8135                 return 1;
8136         }
8137
8138         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8139               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
8140             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8141               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8142             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8143               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8144             !vmx_control_verify(vmcs12->vm_exit_controls,
8145               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
8146             !vmx_control_verify(vmcs12->vm_entry_controls,
8147               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
8148         {
8149                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8150                 return 1;
8151         }
8152
8153         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8154             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8155                 nested_vmx_failValid(vcpu,
8156                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8157                 return 1;
8158         }
8159
8160         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8161             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8162                 nested_vmx_entry_failure(vcpu, vmcs12,
8163                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8164                 return 1;
8165         }
8166         if (vmcs12->vmcs_link_pointer != -1ull) {
8167                 nested_vmx_entry_failure(vcpu, vmcs12,
8168                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8169                 return 1;
8170         }
8171
8172         /*
8173          * If the load IA32_EFER VM-entry control is 1, the following checks
8174          * are performed on the field for the IA32_EFER MSR:
8175          * - Bits reserved in the IA32_EFER MSR must be 0.
8176          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8177          *   the IA-32e mode guest VM-exit control. It must also be identical
8178          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8179          *   CR0.PG) is 1.
8180          */
8181         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8182                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8183                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8184                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8185                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8186                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8187                         nested_vmx_entry_failure(vcpu, vmcs12,
8188                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8189                         return 1;
8190                 }
8191         }
8192
8193         /*
8194          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8195          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8196          * the values of the LMA and LME bits in the field must each be that of
8197          * the host address-space size VM-exit control.
8198          */
8199         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8200                 ia32e = (vmcs12->vm_exit_controls &
8201                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8202                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8203                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8204                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8205                         nested_vmx_entry_failure(vcpu, vmcs12,
8206                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8207                         return 1;
8208                 }
8209         }
8210
8211         /*
8212          * We're finally done with prerequisite checking, and can start with
8213          * the nested entry.
8214          */
8215
8216         vmcs02 = nested_get_current_vmcs02(vmx);
8217         if (!vmcs02)
8218                 return -ENOMEM;
8219
8220         enter_guest_mode(vcpu);
8221
8222         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8223
8224         cpu = get_cpu();
8225         vmx->loaded_vmcs = vmcs02;
8226         vmx_vcpu_put(vcpu);
8227         vmx_vcpu_load(vcpu, cpu);
8228         vcpu->cpu = cpu;
8229         put_cpu();
8230
8231         vmx_segment_cache_clear(vmx);
8232
8233         vmcs12->launch_state = 1;
8234
8235         prepare_vmcs02(vcpu, vmcs12);
8236
8237         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8238                 return kvm_emulate_halt(vcpu);
8239
8240         vmx->nested.nested_run_pending = 1;
8241
8242         /*
8243          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8244          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8245          * returned as far as L1 is concerned. It will only return (and set
8246          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8247          */
8248         return 1;
8249 }
8250
8251 /*
8252  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8253  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8254  * This function returns the new value we should put in vmcs12.guest_cr0.
8255  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8256  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8257  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8258  *     didn't trap the bit, because if L1 did, so would L0).
8259  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8260  *     been modified by L2, and L1 knows it. So just leave the old value of
8261  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8262  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8263  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8264  *     changed these bits, and therefore they need to be updated, but L0
8265  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8266  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8267  */
8268 static inline unsigned long
8269 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8270 {
8271         return
8272         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8273         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8274         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8275                         vcpu->arch.cr0_guest_owned_bits));
8276 }
8277
8278 static inline unsigned long
8279 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8280 {
8281         return
8282         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8283         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8284         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8285                         vcpu->arch.cr4_guest_owned_bits));
8286 }
8287
8288 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8289                                        struct vmcs12 *vmcs12)
8290 {
8291         u32 idt_vectoring;
8292         unsigned int nr;
8293
8294         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8295                 nr = vcpu->arch.exception.nr;
8296                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8297
8298                 if (kvm_exception_is_soft(nr)) {
8299                         vmcs12->vm_exit_instruction_len =
8300                                 vcpu->arch.event_exit_inst_len;
8301                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8302                 } else
8303                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8304
8305                 if (vcpu->arch.exception.has_error_code) {
8306                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8307                         vmcs12->idt_vectoring_error_code =
8308                                 vcpu->arch.exception.error_code;
8309                 }
8310
8311                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8312         } else if (vcpu->arch.nmi_injected) {
8313                 vmcs12->idt_vectoring_info_field =
8314                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8315         } else if (vcpu->arch.interrupt.pending) {
8316                 nr = vcpu->arch.interrupt.nr;
8317                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8318
8319                 if (vcpu->arch.interrupt.soft) {
8320                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8321                         vmcs12->vm_entry_instruction_len =
8322                                 vcpu->arch.event_exit_inst_len;
8323                 } else
8324                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8325
8326                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8327         }
8328 }
8329
8330 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8331 {
8332         struct vcpu_vmx *vmx = to_vmx(vcpu);
8333
8334         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8335             vmx->nested.preemption_timer_expired) {
8336                 if (vmx->nested.nested_run_pending)
8337                         return -EBUSY;
8338                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8339                 return 0;
8340         }
8341
8342         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8343                 if (vmx->nested.nested_run_pending ||
8344                     vcpu->arch.interrupt.pending)
8345                         return -EBUSY;
8346                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8347                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
8348                                   INTR_INFO_VALID_MASK, 0);
8349                 /*
8350                  * The NMI-triggered VM exit counts as injection:
8351                  * clear this one and block further NMIs.
8352                  */
8353                 vcpu->arch.nmi_pending = 0;
8354                 vmx_set_nmi_mask(vcpu, true);
8355                 return 0;
8356         }
8357
8358         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8359             nested_exit_on_intr(vcpu)) {
8360                 if (vmx->nested.nested_run_pending)
8361                         return -EBUSY;
8362                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8363         }
8364
8365         return 0;
8366 }
8367
8368 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8369 {
8370         ktime_t remaining =
8371                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8372         u64 value;
8373
8374         if (ktime_to_ns(remaining) <= 0)
8375                 return 0;
8376
8377         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8378         do_div(value, 1000000);
8379         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8380 }
8381
8382 /*
8383  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8384  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8385  * and this function updates it to reflect the changes to the guest state while
8386  * L2 was running (and perhaps made some exits which were handled directly by L0
8387  * without going back to L1), and to reflect the exit reason.
8388  * Note that we do not have to copy here all VMCS fields, just those that
8389  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8390  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8391  * which already writes to vmcs12 directly.
8392  */
8393 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8394                            u32 exit_reason, u32 exit_intr_info,
8395                            unsigned long exit_qualification)
8396 {
8397         /* update guest state fields: */
8398         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8399         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8400
8401         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8402         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8403         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8404         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8405
8406         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8407         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8408         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8409         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8410         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8411         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8412         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8413         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8414         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8415         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8416         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8417         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8418         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8419         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8420         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8421         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8422         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8423         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8424         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8425         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8426         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8427         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8428         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8429         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8430         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8431         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8432         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8433         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8434         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8435         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8436         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8437         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8438         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8439         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8440         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8441         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8442
8443         vmcs12->guest_interruptibility_info =
8444                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8445         vmcs12->guest_pending_dbg_exceptions =
8446                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8447         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8448                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8449         else
8450                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8451
8452         if (nested_cpu_has_preemption_timer(vmcs12)) {
8453                 if (vmcs12->vm_exit_controls &
8454                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8455                         vmcs12->vmx_preemption_timer_value =
8456                                 vmx_get_preemption_timer_value(vcpu);
8457                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8458         }
8459
8460         /*
8461          * In some cases (usually, nested EPT), L2 is allowed to change its
8462          * own CR3 without exiting. If it has changed it, we must keep it.
8463          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8464          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8465          *
8466          * Additionally, restore L2's PDPTR to vmcs12.
8467          */
8468         if (enable_ept) {
8469                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8470                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8471                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8472                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8473                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8474         }
8475
8476         vmcs12->vm_entry_controls =
8477                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8478                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8479
8480         /* TODO: These cannot have changed unless we have MSR bitmaps and
8481          * the relevant bit asks not to trap the change */
8482         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8483         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8484                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8485         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8486                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8487         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8488         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8489         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8490         if (vmx_mpx_supported())
8491                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8492
8493         /* update exit information fields: */
8494
8495         vmcs12->vm_exit_reason = exit_reason;
8496         vmcs12->exit_qualification = exit_qualification;
8497
8498         vmcs12->vm_exit_intr_info = exit_intr_info;
8499         if ((vmcs12->vm_exit_intr_info &
8500              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8501             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8502                 vmcs12->vm_exit_intr_error_code =
8503                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8504         vmcs12->idt_vectoring_info_field = 0;
8505         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8506         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8507
8508         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8509                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8510                  * instead of reading the real value. */
8511                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8512
8513                 /*
8514                  * Transfer the event that L0 or L1 may wanted to inject into
8515                  * L2 to IDT_VECTORING_INFO_FIELD.
8516                  */
8517                 vmcs12_save_pending_event(vcpu, vmcs12);
8518         }
8519
8520         /*
8521          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8522          * preserved above and would only end up incorrectly in L1.
8523          */
8524         vcpu->arch.nmi_injected = false;
8525         kvm_clear_exception_queue(vcpu);
8526         kvm_clear_interrupt_queue(vcpu);
8527 }
8528
8529 /*
8530  * A part of what we need to when the nested L2 guest exits and we want to
8531  * run its L1 parent, is to reset L1's guest state to the host state specified
8532  * in vmcs12.
8533  * This function is to be called not only on normal nested exit, but also on
8534  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8535  * Failures During or After Loading Guest State").
8536  * This function should be called when the active VMCS is L1's (vmcs01).
8537  */
8538 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8539                                    struct vmcs12 *vmcs12)
8540 {
8541         struct kvm_segment seg;
8542
8543         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8544                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8545         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8546                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8547         else
8548                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8549         vmx_set_efer(vcpu, vcpu->arch.efer);
8550
8551         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8552         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8553         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8554         /*
8555          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8556          * actually changed, because it depends on the current state of
8557          * fpu_active (which may have changed).
8558          * Note that vmx_set_cr0 refers to efer set above.
8559          */
8560         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8561         /*
8562          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8563          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8564          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8565          */
8566         update_exception_bitmap(vcpu);
8567         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8568         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8569
8570         /*
8571          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8572          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8573          */
8574         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8575         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8576
8577         nested_ept_uninit_mmu_context(vcpu);
8578
8579         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8580         kvm_mmu_reset_context(vcpu);
8581
8582         if (!enable_ept)
8583                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8584
8585         if (enable_vpid) {
8586                 /*
8587                  * Trivially support vpid by letting L2s share their parent
8588                  * L1's vpid. TODO: move to a more elaborate solution, giving
8589                  * each L2 its own vpid and exposing the vpid feature to L1.
8590                  */
8591                 vmx_flush_tlb(vcpu);
8592         }
8593
8594
8595         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8596         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8597         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8598         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8599         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8600
8601         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8602         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8603                 vmcs_write64(GUEST_BNDCFGS, 0);
8604
8605         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8606                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8607                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8608         }
8609         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8610                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8611                         vmcs12->host_ia32_perf_global_ctrl);
8612
8613         /* Set L1 segment info according to Intel SDM
8614             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8615         seg = (struct kvm_segment) {
8616                 .base = 0,
8617                 .limit = 0xFFFFFFFF,
8618                 .selector = vmcs12->host_cs_selector,
8619                 .type = 11,
8620                 .present = 1,
8621                 .s = 1,
8622                 .g = 1
8623         };
8624         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8625                 seg.l = 1;
8626         else
8627                 seg.db = 1;
8628         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8629         seg = (struct kvm_segment) {
8630                 .base = 0,
8631                 .limit = 0xFFFFFFFF,
8632                 .type = 3,
8633                 .present = 1,
8634                 .s = 1,
8635                 .db = 1,
8636                 .g = 1
8637         };
8638         seg.selector = vmcs12->host_ds_selector;
8639         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8640         seg.selector = vmcs12->host_es_selector;
8641         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8642         seg.selector = vmcs12->host_ss_selector;
8643         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8644         seg.selector = vmcs12->host_fs_selector;
8645         seg.base = vmcs12->host_fs_base;
8646         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8647         seg.selector = vmcs12->host_gs_selector;
8648         seg.base = vmcs12->host_gs_base;
8649         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8650         seg = (struct kvm_segment) {
8651                 .base = vmcs12->host_tr_base,
8652                 .limit = 0x67,
8653                 .selector = vmcs12->host_tr_selector,
8654                 .type = 11,
8655                 .present = 1
8656         };
8657         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8658
8659         kvm_set_dr(vcpu, 7, 0x400);
8660         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8661 }
8662
8663 /*
8664  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8665  * and modify vmcs12 to make it see what it would expect to see there if
8666  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8667  */
8668 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8669                               u32 exit_intr_info,
8670                               unsigned long exit_qualification)
8671 {
8672         struct vcpu_vmx *vmx = to_vmx(vcpu);
8673         int cpu;
8674         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8675
8676         /* trying to cancel vmlaunch/vmresume is a bug */
8677         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8678
8679         leave_guest_mode(vcpu);
8680         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8681                        exit_qualification);
8682
8683         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8684             && nested_exit_intr_ack_set(vcpu)) {
8685                 int irq = kvm_cpu_get_interrupt(vcpu);
8686                 WARN_ON(irq < 0);
8687                 vmcs12->vm_exit_intr_info = irq |
8688                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8689         }
8690
8691         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8692                                        vmcs12->exit_qualification,
8693                                        vmcs12->idt_vectoring_info_field,
8694                                        vmcs12->vm_exit_intr_info,
8695                                        vmcs12->vm_exit_intr_error_code,
8696                                        KVM_ISA_VMX);
8697
8698         cpu = get_cpu();
8699         vmx->loaded_vmcs = &vmx->vmcs01;
8700         vmx_vcpu_put(vcpu);
8701         vmx_vcpu_load(vcpu, cpu);
8702         vcpu->cpu = cpu;
8703         put_cpu();
8704
8705         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8706         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8707         vmx_segment_cache_clear(vmx);
8708
8709         /* if no vmcs02 cache requested, remove the one we used */
8710         if (VMCS02_POOL_SIZE == 0)
8711                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8712
8713         load_vmcs12_host_state(vcpu, vmcs12);
8714
8715         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8716         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8717
8718         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8719         vmx->host_rsp = 0;
8720
8721         /* Unpin physical memory we referred to in vmcs02 */
8722         if (vmx->nested.apic_access_page) {
8723                 nested_release_page(vmx->nested.apic_access_page);
8724                 vmx->nested.apic_access_page = 0;
8725         }
8726
8727         /*
8728          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8729          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8730          * success or failure flag accordingly.
8731          */
8732         if (unlikely(vmx->fail)) {
8733                 vmx->fail = 0;
8734                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8735         } else
8736                 nested_vmx_succeed(vcpu);
8737         if (enable_shadow_vmcs)
8738                 vmx->nested.sync_shadow_vmcs = true;
8739
8740         /* in case we halted in L2 */
8741         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8742 }
8743
8744 /*
8745  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8746  */
8747 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8748 {
8749         if (is_guest_mode(vcpu))
8750                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8751         free_nested(to_vmx(vcpu));
8752 }
8753
8754 /*
8755  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8756  * 23.7 "VM-entry failures during or after loading guest state" (this also
8757  * lists the acceptable exit-reason and exit-qualification parameters).
8758  * It should only be called before L2 actually succeeded to run, and when
8759  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8760  */
8761 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8762                         struct vmcs12 *vmcs12,
8763                         u32 reason, unsigned long qualification)
8764 {
8765         load_vmcs12_host_state(vcpu, vmcs12);
8766         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8767         vmcs12->exit_qualification = qualification;
8768         nested_vmx_succeed(vcpu);
8769         if (enable_shadow_vmcs)
8770                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8771 }
8772
8773 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8774                                struct x86_instruction_info *info,
8775                                enum x86_intercept_stage stage)
8776 {
8777         return X86EMUL_CONTINUE;
8778 }
8779
8780 static struct kvm_x86_ops vmx_x86_ops = {
8781         .cpu_has_kvm_support = cpu_has_kvm_support,
8782         .disabled_by_bios = vmx_disabled_by_bios,
8783         .hardware_setup = hardware_setup,
8784         .hardware_unsetup = hardware_unsetup,
8785         .check_processor_compatibility = vmx_check_processor_compat,
8786         .hardware_enable = hardware_enable,
8787         .hardware_disable = hardware_disable,
8788         .cpu_has_accelerated_tpr = report_flexpriority,
8789
8790         .vcpu_create = vmx_create_vcpu,
8791         .vcpu_free = vmx_free_vcpu,
8792         .vcpu_reset = vmx_vcpu_reset,
8793
8794         .prepare_guest_switch = vmx_save_host_state,
8795         .vcpu_load = vmx_vcpu_load,
8796         .vcpu_put = vmx_vcpu_put,
8797
8798         .update_db_bp_intercept = update_exception_bitmap,
8799         .get_msr = vmx_get_msr,
8800         .set_msr = vmx_set_msr,
8801         .get_segment_base = vmx_get_segment_base,
8802         .get_segment = vmx_get_segment,
8803         .set_segment = vmx_set_segment,
8804         .get_cpl = vmx_get_cpl,
8805         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8806         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8807         .decache_cr3 = vmx_decache_cr3,
8808         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8809         .set_cr0 = vmx_set_cr0,
8810         .set_cr3 = vmx_set_cr3,
8811         .set_cr4 = vmx_set_cr4,
8812         .set_efer = vmx_set_efer,
8813         .get_idt = vmx_get_idt,
8814         .set_idt = vmx_set_idt,
8815         .get_gdt = vmx_get_gdt,
8816         .set_gdt = vmx_set_gdt,
8817         .get_dr6 = vmx_get_dr6,
8818         .set_dr6 = vmx_set_dr6,
8819         .set_dr7 = vmx_set_dr7,
8820         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8821         .cache_reg = vmx_cache_reg,
8822         .get_rflags = vmx_get_rflags,
8823         .set_rflags = vmx_set_rflags,
8824         .fpu_activate = vmx_fpu_activate,
8825         .fpu_deactivate = vmx_fpu_deactivate,
8826
8827         .tlb_flush = vmx_flush_tlb,
8828
8829         .run = vmx_vcpu_run,
8830         .handle_exit = vmx_handle_exit,
8831         .skip_emulated_instruction = skip_emulated_instruction,
8832         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8833         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8834         .patch_hypercall = vmx_patch_hypercall,
8835         .set_irq = vmx_inject_irq,
8836         .set_nmi = vmx_inject_nmi,
8837         .queue_exception = vmx_queue_exception,
8838         .cancel_injection = vmx_cancel_injection,
8839         .interrupt_allowed = vmx_interrupt_allowed,
8840         .nmi_allowed = vmx_nmi_allowed,
8841         .get_nmi_mask = vmx_get_nmi_mask,
8842         .set_nmi_mask = vmx_set_nmi_mask,
8843         .enable_nmi_window = enable_nmi_window,
8844         .enable_irq_window = enable_irq_window,
8845         .update_cr8_intercept = update_cr8_intercept,
8846         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8847         .vm_has_apicv = vmx_vm_has_apicv,
8848         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8849         .hwapic_irr_update = vmx_hwapic_irr_update,
8850         .hwapic_isr_update = vmx_hwapic_isr_update,
8851         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8852         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8853
8854         .set_tss_addr = vmx_set_tss_addr,
8855         .get_tdp_level = get_ept_level,
8856         .get_mt_mask = vmx_get_mt_mask,
8857
8858         .get_exit_info = vmx_get_exit_info,
8859
8860         .get_lpage_level = vmx_get_lpage_level,
8861
8862         .cpuid_update = vmx_cpuid_update,
8863
8864         .rdtscp_supported = vmx_rdtscp_supported,
8865         .invpcid_supported = vmx_invpcid_supported,
8866
8867         .set_supported_cpuid = vmx_set_supported_cpuid,
8868
8869         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8870
8871         .set_tsc_khz = vmx_set_tsc_khz,
8872         .read_tsc_offset = vmx_read_tsc_offset,
8873         .write_tsc_offset = vmx_write_tsc_offset,
8874         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8875         .compute_tsc_offset = vmx_compute_tsc_offset,
8876         .read_l1_tsc = vmx_read_l1_tsc,
8877
8878         .set_tdp_cr3 = vmx_set_cr3,
8879
8880         .check_intercept = vmx_check_intercept,
8881         .handle_external_intr = vmx_handle_external_intr,
8882         .mpx_supported = vmx_mpx_supported,
8883
8884         .check_nested_events = vmx_check_nested_events,
8885 };
8886
8887 static int __init vmx_init(void)
8888 {
8889         int r, i, msr;
8890
8891         rdmsrl_safe(MSR_EFER, &host_efer);
8892
8893         for (i = 0; i < NR_VMX_MSR; ++i)
8894                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8895
8896         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8897         if (!vmx_io_bitmap_a)
8898                 return -ENOMEM;
8899
8900         r = -ENOMEM;
8901
8902         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8903         if (!vmx_io_bitmap_b)
8904                 goto out;
8905
8906         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8907         if (!vmx_msr_bitmap_legacy)
8908                 goto out1;
8909
8910         vmx_msr_bitmap_legacy_x2apic =
8911                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8912         if (!vmx_msr_bitmap_legacy_x2apic)
8913                 goto out2;
8914
8915         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8916         if (!vmx_msr_bitmap_longmode)
8917                 goto out3;
8918
8919         vmx_msr_bitmap_longmode_x2apic =
8920                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8921         if (!vmx_msr_bitmap_longmode_x2apic)
8922                 goto out4;
8923         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8924         if (!vmx_vmread_bitmap)
8925                 goto out5;
8926
8927         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8928         if (!vmx_vmwrite_bitmap)
8929                 goto out6;
8930
8931         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8932         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8933
8934         /*
8935          * Allow direct access to the PC debug port (it is often used for I/O
8936          * delays, but the vmexits simply slow things down).
8937          */
8938         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8939         clear_bit(0x80, vmx_io_bitmap_a);
8940
8941         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8942
8943         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8944         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8945
8946         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8947
8948         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8949                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8950         if (r)
8951                 goto out7;
8952
8953 #ifdef CONFIG_KEXEC
8954         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8955                            crash_vmclear_local_loaded_vmcss);
8956 #endif
8957
8958         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8959         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8960         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8961         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8962         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8963         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8964         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
8965
8966         memcpy(vmx_msr_bitmap_legacy_x2apic,
8967                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8968         memcpy(vmx_msr_bitmap_longmode_x2apic,
8969                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8970
8971         if (enable_apicv) {
8972                 for (msr = 0x800; msr <= 0x8ff; msr++)
8973                         vmx_disable_intercept_msr_read_x2apic(msr);
8974
8975                 /* According SDM, in x2apic mode, the whole id reg is used.
8976                  * But in KVM, it only use the highest eight bits. Need to
8977                  * intercept it */
8978                 vmx_enable_intercept_msr_read_x2apic(0x802);
8979                 /* TMCCT */
8980                 vmx_enable_intercept_msr_read_x2apic(0x839);
8981                 /* TPR */
8982                 vmx_disable_intercept_msr_write_x2apic(0x808);
8983                 /* EOI */
8984                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8985                 /* SELF-IPI */
8986                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8987         }
8988
8989         if (enable_ept) {
8990                 kvm_mmu_set_mask_ptes(0ull,
8991                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8992                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8993                         0ull, VMX_EPT_EXECUTABLE_MASK);
8994                 ept_set_mmio_spte_mask();
8995                 kvm_enable_tdp();
8996         } else
8997                 kvm_disable_tdp();
8998
8999         return 0;
9000
9001 out7:
9002         free_page((unsigned long)vmx_vmwrite_bitmap);
9003 out6:
9004         free_page((unsigned long)vmx_vmread_bitmap);
9005 out5:
9006         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9007 out4:
9008         free_page((unsigned long)vmx_msr_bitmap_longmode);
9009 out3:
9010         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9011 out2:
9012         free_page((unsigned long)vmx_msr_bitmap_legacy);
9013 out1:
9014         free_page((unsigned long)vmx_io_bitmap_b);
9015 out:
9016         free_page((unsigned long)vmx_io_bitmap_a);
9017         return r;
9018 }
9019
9020 static void __exit vmx_exit(void)
9021 {
9022         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9023         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9024         free_page((unsigned long)vmx_msr_bitmap_legacy);
9025         free_page((unsigned long)vmx_msr_bitmap_longmode);
9026         free_page((unsigned long)vmx_io_bitmap_b);
9027         free_page((unsigned long)vmx_io_bitmap_a);
9028         free_page((unsigned long)vmx_vmwrite_bitmap);
9029         free_page((unsigned long)vmx_vmread_bitmap);
9030
9031 #ifdef CONFIG_KEXEC
9032         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
9033         synchronize_rcu();
9034 #endif
9035
9036         kvm_exit();
9037 }
9038
9039 module_init(vmx_init)
9040 module_exit(vmx_exit)