Merge tag 'irq-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9
10 #include "capabilities.h"
11 #include "../kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "../cpuid.h"
16 #include "run_flags.h"
17
18 #define MSR_TYPE_R      1
19 #define MSR_TYPE_W      2
20 #define MSR_TYPE_RW     3
21
22 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23
24 #ifdef CONFIG_X86_64
25 #define MAX_NR_USER_RETURN_MSRS 7
26 #else
27 #define MAX_NR_USER_RETURN_MSRS 4
28 #endif
29
30 #define MAX_NR_LOADSTORE_MSRS   8
31
32 struct vmx_msrs {
33         unsigned int            nr;
34         struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
35 };
36
37 struct vmx_uret_msr {
38         bool load_into_hardware;
39         u64 data;
40         u64 mask;
41 };
42
43 enum segment_cache_field {
44         SEG_FIELD_SEL = 0,
45         SEG_FIELD_BASE = 1,
46         SEG_FIELD_LIMIT = 2,
47         SEG_FIELD_AR = 3,
48
49         SEG_FIELD_NR = 4
50 };
51
52 #define RTIT_ADDR_RANGE         4
53
54 struct pt_ctx {
55         u64 ctl;
56         u64 status;
57         u64 output_base;
58         u64 output_mask;
59         u64 cr3_match;
60         u64 addr_a[RTIT_ADDR_RANGE];
61         u64 addr_b[RTIT_ADDR_RANGE];
62 };
63
64 struct pt_desc {
65         u64 ctl_bitmask;
66         u32 num_address_ranges;
67         u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
68         struct pt_ctx host;
69         struct pt_ctx guest;
70 };
71
72 union vmx_exit_reason {
73         struct {
74                 u32     basic                   : 16;
75                 u32     reserved16              : 1;
76                 u32     reserved17              : 1;
77                 u32     reserved18              : 1;
78                 u32     reserved19              : 1;
79                 u32     reserved20              : 1;
80                 u32     reserved21              : 1;
81                 u32     reserved22              : 1;
82                 u32     reserved23              : 1;
83                 u32     reserved24              : 1;
84                 u32     reserved25              : 1;
85                 u32     bus_lock_detected       : 1;
86                 u32     enclave_mode            : 1;
87                 u32     smi_pending_mtf         : 1;
88                 u32     smi_from_vmx_root       : 1;
89                 u32     reserved30              : 1;
90                 u32     failed_vmentry          : 1;
91         };
92         u32 full;
93 };
94
95 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
96 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
97
98 bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
99 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
100
101 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
102 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
103
104 struct lbr_desc {
105         /* Basic info about guest LBR records. */
106         struct x86_pmu_lbr records;
107
108         /*
109          * Emulate LBR feature via passthrough LBR registers when the
110          * per-vcpu guest LBR event is scheduled on the current pcpu.
111          *
112          * The records may be inaccurate if the host reclaims the LBR.
113          */
114         struct perf_event *event;
115
116         /* True if LBRs are marked as not intercepted in the MSR bitmap */
117         bool msr_passthrough;
118 };
119
120 /*
121  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
122  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
123  */
124 struct nested_vmx {
125         /* Has the level1 guest done vmxon? */
126         bool vmxon;
127         gpa_t vmxon_ptr;
128         bool pml_full;
129
130         /* The guest-physical address of the current VMCS L1 keeps for L2 */
131         gpa_t current_vmptr;
132         /*
133          * Cache of the guest's VMCS, existing outside of guest memory.
134          * Loaded from guest memory during VMPTRLD. Flushed to guest
135          * memory during VMCLEAR and VMPTRLD.
136          */
137         struct vmcs12 *cached_vmcs12;
138         /*
139          * Cache of the guest's shadow VMCS, existing outside of guest
140          * memory. Loaded from guest memory during VM entry. Flushed
141          * to guest memory during VM exit.
142          */
143         struct vmcs12 *cached_shadow_vmcs12;
144
145         /*
146          * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
147          */
148         struct gfn_to_hva_cache shadow_vmcs12_cache;
149
150         /*
151          * GPA to HVA cache for VMCS12
152          */
153         struct gfn_to_hva_cache vmcs12_cache;
154
155         /*
156          * Indicates if the shadow vmcs or enlightened vmcs must be updated
157          * with the data held by struct vmcs12.
158          */
159         bool need_vmcs12_to_shadow_sync;
160         bool dirty_vmcs12;
161
162         /*
163          * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
164          * changes in MSR bitmap for L1 or switching to a different L2. Note,
165          * this flag can only be used reliably in conjunction with a paravirt L1
166          * which informs L0 whether any changes to MSR bitmap for L2 were done
167          * on its side.
168          */
169         bool force_msr_bitmap_recalc;
170
171         /*
172          * Indicates lazily loaded guest state has not yet been decached from
173          * vmcs02.
174          */
175         bool need_sync_vmcs02_to_vmcs12_rare;
176
177         /*
178          * vmcs02 has been initialized, i.e. state that is constant for
179          * vmcs02 has been written to the backing VMCS.  Initialization
180          * is delayed until L1 actually attempts to run a nested VM.
181          */
182         bool vmcs02_initialized;
183
184         bool change_vmcs01_virtual_apic_mode;
185         bool reload_vmcs01_apic_access_page;
186         bool update_vmcs01_cpu_dirty_logging;
187         bool update_vmcs01_apicv_status;
188
189         /*
190          * Enlightened VMCS has been enabled. It does not mean that L1 has to
191          * use it. However, VMX features available to L1 will be limited based
192          * on what the enlightened VMCS supports.
193          */
194         bool enlightened_vmcs_enabled;
195
196         /* L2 must run next, and mustn't decide to exit to L1. */
197         bool nested_run_pending;
198
199         /* Pending MTF VM-exit into L1.  */
200         bool mtf_pending;
201
202         struct loaded_vmcs vmcs02;
203
204         /*
205          * Guest pages referred to in the vmcs02 with host-physical
206          * pointers, so we must keep them pinned while L2 runs.
207          */
208         struct page *apic_access_page;
209         struct kvm_host_map virtual_apic_map;
210         struct kvm_host_map pi_desc_map;
211
212         struct kvm_host_map msr_bitmap_map;
213
214         struct pi_desc *pi_desc;
215         bool pi_pending;
216         u16 posted_intr_nv;
217
218         struct hrtimer preemption_timer;
219         u64 preemption_timer_deadline;
220         bool has_preemption_timer_deadline;
221         bool preemption_timer_expired;
222
223         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
224         u64 vmcs01_debugctl;
225         u64 vmcs01_guest_bndcfgs;
226
227         /* to migrate it to L1 if L2 writes to L1's CR8 directly */
228         int l1_tpr_threshold;
229
230         u16 vpid02;
231         u16 last_vpid;
232
233         struct nested_vmx_msrs msrs;
234
235         /* SMM related state */
236         struct {
237                 /* in VMX operation on SMM entry? */
238                 bool vmxon;
239                 /* in guest mode on SMM entry? */
240                 bool guest_mode;
241         } smm;
242
243         gpa_t hv_evmcs_vmptr;
244         struct kvm_host_map hv_evmcs_map;
245         struct hv_enlightened_vmcs *hv_evmcs;
246 };
247
248 struct vcpu_vmx {
249         struct kvm_vcpu       vcpu;
250         u8                    fail;
251         u8                    x2apic_msr_bitmap_mode;
252
253         /*
254          * If true, host state has been stored in vmx->loaded_vmcs for
255          * the CPU registers that only need to be switched when transitioning
256          * to/from the kernel, and the registers have been loaded with guest
257          * values.  If false, host state is loaded in the CPU registers
258          * and vmx->loaded_vmcs->host_state is invalid.
259          */
260         bool                  guest_state_loaded;
261
262         unsigned long         exit_qualification;
263         u32                   exit_intr_info;
264         u32                   idt_vectoring_info;
265         ulong                 rflags;
266
267         /*
268          * User return MSRs are always emulated when enabled in the guest, but
269          * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
270          * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
271          * be loaded into hardware if those conditions aren't met.
272          */
273         struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
274         bool                  guest_uret_msrs_loaded;
275 #ifdef CONFIG_X86_64
276         u64                   msr_host_kernel_gs_base;
277         u64                   msr_guest_kernel_gs_base;
278 #endif
279
280         u64                   spec_ctrl;
281         u32                   msr_ia32_umwait_control;
282
283         /*
284          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
285          * non-nested (L1) guest, it always points to vmcs01. For a nested
286          * guest (L2), it points to a different VMCS.
287          */
288         struct loaded_vmcs    vmcs01;
289         struct loaded_vmcs   *loaded_vmcs;
290
291         struct msr_autoload {
292                 struct vmx_msrs guest;
293                 struct vmx_msrs host;
294         } msr_autoload;
295
296         struct msr_autostore {
297                 struct vmx_msrs guest;
298         } msr_autostore;
299
300         struct {
301                 int vm86_active;
302                 ulong save_rflags;
303                 struct kvm_segment segs[8];
304         } rmode;
305         struct {
306                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
307                 struct kvm_save_segment {
308                         u16 selector;
309                         unsigned long base;
310                         u32 limit;
311                         u32 ar;
312                 } seg[8];
313         } segment_cache;
314         int vpid;
315         bool emulation_required;
316
317         union vmx_exit_reason exit_reason;
318
319         /* Posted interrupt descriptor */
320         struct pi_desc pi_desc;
321
322         /* Used if this vCPU is waiting for PI notification wakeup. */
323         struct list_head pi_wakeup_list;
324
325         /* Support for a guest hypervisor (nested VMX) */
326         struct nested_vmx nested;
327
328         /* Dynamic PLE window. */
329         unsigned int ple_window;
330         bool ple_window_dirty;
331
332         bool req_immediate_exit;
333
334         /* Support for PML */
335 #define PML_ENTITY_NUM          512
336         struct page *pml_pg;
337
338         /* apic deadline value in host tsc */
339         u64 hv_deadline_tsc;
340
341         unsigned long host_debugctlmsr;
342
343         /*
344          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
345          * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
346          * in msr_ia32_feature_control_valid_bits.
347          */
348         u64 msr_ia32_feature_control;
349         u64 msr_ia32_feature_control_valid_bits;
350         /* SGX Launch Control public key hash */
351         u64 msr_ia32_sgxlepubkeyhash[4];
352         u64 msr_ia32_mcu_opt_ctrl;
353         bool disable_fb_clear;
354
355         struct pt_desc pt_desc;
356         struct lbr_desc lbr_desc;
357
358         /* Save desired MSR intercept (read: pass-through) state */
359 #define MAX_POSSIBLE_PASSTHROUGH_MSRS   15
360         struct {
361                 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
362                 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
363         } shadow_msr_intercept;
364 };
365
366 struct kvm_vmx {
367         struct kvm kvm;
368
369         unsigned int tss_addr;
370         bool ept_identity_pagetable_done;
371         gpa_t ept_identity_map_addr;
372 };
373
374 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
375 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
376                         struct loaded_vmcs *buddy);
377 int allocate_vpid(void);
378 void free_vpid(int vpid);
379 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
380 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
381 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
382                         unsigned long fs_base, unsigned long gs_base);
383 int vmx_get_cpl(struct kvm_vcpu *vcpu);
384 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
385 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
386 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
387 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
388 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
389 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
390 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
391 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
392 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
393 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
394 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
395 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
396 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
397
398 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
399 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
400 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
401 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
402 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
403 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
404 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
405 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
406 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
407 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
408 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
409 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
410 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
411                     unsigned int flags);
412 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
413 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
414
415 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
416 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
417
418 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
419 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
420
421 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
422                                              int type, bool value)
423 {
424         if (value)
425                 vmx_enable_intercept_for_msr(vcpu, msr, type);
426         else
427                 vmx_disable_intercept_for_msr(vcpu, msr, type);
428 }
429
430 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
431
432 /*
433  * Note, early Intel manuals have the write-low and read-high bitmap offsets
434  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
435  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
436  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
437  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
438  * VM-Exit.
439  */
440 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
441 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
442                                                        u32 msr)                \
443 {                                                                              \
444         int f = sizeof(unsigned long);                                         \
445                                                                                \
446         if (msr <= 0x1fff)                                                     \
447                 return bitop##_bit(msr, bitmap + base / f);                    \
448         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))                   \
449                 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
450         return (rtype)true;                                                    \
451 }
452 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)                  \
453         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
454         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
455
456 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
457 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
458 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
459
460 static inline u8 vmx_get_rvi(void)
461 {
462         return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
463 }
464
465 #define BUILD_CONTROLS_SHADOW(lname, uname)                                 \
466 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)      \
467 {                                                                           \
468         if (vmx->loaded_vmcs->controls_shadow.lname != val) {               \
469                 vmcs_write32(uname, val);                                   \
470                 vmx->loaded_vmcs->controls_shadow.lname = val;              \
471         }                                                                   \
472 }                                                                           \
473 static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs)        \
474 {                                                                           \
475         return vmcs->controls_shadow.lname;                                 \
476 }                                                                           \
477 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)                \
478 {                                                                           \
479         return __##lname##_controls_get(vmx->loaded_vmcs);                  \
480 }                                                                           \
481 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
482 {                                                                           \
483         lname##_controls_set(vmx, lname##_controls_get(vmx) | val);         \
484 }                                                                           \
485 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
486 {                                                                           \
487         lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);        \
488 }
489 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
490 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
491 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
492 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
493 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
494
495 /*
496  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
497  * cache on demand.  Other registers not listed here are synced to
498  * the cache immediately after VM-Exit.
499  */
500 #define VMX_REGS_LAZY_LOAD_SET  ((1 << VCPU_REGS_RIP) |         \
501                                 (1 << VCPU_REGS_RSP) |          \
502                                 (1 << VCPU_EXREG_RFLAGS) |      \
503                                 (1 << VCPU_EXREG_PDPTR) |       \
504                                 (1 << VCPU_EXREG_SEGMENTS) |    \
505                                 (1 << VCPU_EXREG_CR0) |         \
506                                 (1 << VCPU_EXREG_CR3) |         \
507                                 (1 << VCPU_EXREG_CR4) |         \
508                                 (1 << VCPU_EXREG_EXIT_INFO_1) | \
509                                 (1 << VCPU_EXREG_EXIT_INFO_2))
510
511 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
512 {
513         return container_of(kvm, struct kvm_vmx, kvm);
514 }
515
516 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
517 {
518         return container_of(vcpu, struct vcpu_vmx, vcpu);
519 }
520
521 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
522 {
523         struct vcpu_vmx *vmx = to_vmx(vcpu);
524
525         if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
526                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
527                 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
528         }
529         return vmx->exit_qualification;
530 }
531
532 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
533 {
534         struct vcpu_vmx *vmx = to_vmx(vcpu);
535
536         if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
537                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
538                 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
539         }
540         return vmx->exit_intr_info;
541 }
542
543 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
544 void free_vmcs(struct vmcs *vmcs);
545 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
546 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
547 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
548
549 static inline struct vmcs *alloc_vmcs(bool shadow)
550 {
551         return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
552                               GFP_KERNEL_ACCOUNT);
553 }
554
555 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
556 {
557         return secondary_exec_controls_get(vmx) &
558                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
559 }
560
561 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
562 {
563         if (!enable_ept)
564                 return true;
565
566         return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
567 }
568
569 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
570 {
571         return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
572             (secondary_exec_controls_get(to_vmx(vcpu)) &
573             SECONDARY_EXEC_UNRESTRICTED_GUEST));
574 }
575
576 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
577 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
578 {
579         return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
580 }
581
582 void dump_vmcs(struct kvm_vcpu *vcpu);
583
584 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
585 {
586         return (vmx_instr_info >> 28) & 0xf;
587 }
588
589 #endif /* __KVM_X86_VMX_H */