Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10
11 #include "capabilities.h"
12 #include "../kvm_cache_regs.h"
13 #include "posted_intr.h"
14 #include "vmcs.h"
15 #include "vmx_ops.h"
16 #include "../cpuid.h"
17 #include "run_flags.h"
18
19 #define MSR_TYPE_R      1
20 #define MSR_TYPE_W      2
21 #define MSR_TYPE_RW     3
22
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24
25 #ifdef CONFIG_X86_64
26 #define MAX_NR_USER_RETURN_MSRS 7
27 #else
28 #define MAX_NR_USER_RETURN_MSRS 4
29 #endif
30
31 #define MAX_NR_LOADSTORE_MSRS   8
32
33 struct vmx_msrs {
34         unsigned int            nr;
35         struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
36 };
37
38 struct vmx_uret_msr {
39         bool load_into_hardware;
40         u64 data;
41         u64 mask;
42 };
43
44 enum segment_cache_field {
45         SEG_FIELD_SEL = 0,
46         SEG_FIELD_BASE = 1,
47         SEG_FIELD_LIMIT = 2,
48         SEG_FIELD_AR = 3,
49
50         SEG_FIELD_NR = 4
51 };
52
53 #define RTIT_ADDR_RANGE         4
54
55 struct pt_ctx {
56         u64 ctl;
57         u64 status;
58         u64 output_base;
59         u64 output_mask;
60         u64 cr3_match;
61         u64 addr_a[RTIT_ADDR_RANGE];
62         u64 addr_b[RTIT_ADDR_RANGE];
63 };
64
65 struct pt_desc {
66         u64 ctl_bitmask;
67         u32 num_address_ranges;
68         u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
69         struct pt_ctx host;
70         struct pt_ctx guest;
71 };
72
73 union vmx_exit_reason {
74         struct {
75                 u32     basic                   : 16;
76                 u32     reserved16              : 1;
77                 u32     reserved17              : 1;
78                 u32     reserved18              : 1;
79                 u32     reserved19              : 1;
80                 u32     reserved20              : 1;
81                 u32     reserved21              : 1;
82                 u32     reserved22              : 1;
83                 u32     reserved23              : 1;
84                 u32     reserved24              : 1;
85                 u32     reserved25              : 1;
86                 u32     bus_lock_detected       : 1;
87                 u32     enclave_mode            : 1;
88                 u32     smi_pending_mtf         : 1;
89                 u32     smi_from_vmx_root       : 1;
90                 u32     reserved30              : 1;
91                 u32     failed_vmentry          : 1;
92         };
93         u32 full;
94 };
95
96 struct lbr_desc {
97         /* Basic info about guest LBR records. */
98         struct x86_pmu_lbr records;
99
100         /*
101          * Emulate LBR feature via passthrough LBR registers when the
102          * per-vcpu guest LBR event is scheduled on the current pcpu.
103          *
104          * The records may be inaccurate if the host reclaims the LBR.
105          */
106         struct perf_event *event;
107
108         /* True if LBRs are marked as not intercepted in the MSR bitmap */
109         bool msr_passthrough;
110 };
111
112 /*
113  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
114  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
115  */
116 struct nested_vmx {
117         /* Has the level1 guest done vmxon? */
118         bool vmxon;
119         gpa_t vmxon_ptr;
120         bool pml_full;
121
122         /* The guest-physical address of the current VMCS L1 keeps for L2 */
123         gpa_t current_vmptr;
124         /*
125          * Cache of the guest's VMCS, existing outside of guest memory.
126          * Loaded from guest memory during VMPTRLD. Flushed to guest
127          * memory during VMCLEAR and VMPTRLD.
128          */
129         struct vmcs12 *cached_vmcs12;
130         /*
131          * Cache of the guest's shadow VMCS, existing outside of guest
132          * memory. Loaded from guest memory during VM entry. Flushed
133          * to guest memory during VM exit.
134          */
135         struct vmcs12 *cached_shadow_vmcs12;
136
137         /*
138          * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
139          */
140         struct gfn_to_hva_cache shadow_vmcs12_cache;
141
142         /*
143          * GPA to HVA cache for VMCS12
144          */
145         struct gfn_to_hva_cache vmcs12_cache;
146
147         /*
148          * Indicates if the shadow vmcs or enlightened vmcs must be updated
149          * with the data held by struct vmcs12.
150          */
151         bool need_vmcs12_to_shadow_sync;
152         bool dirty_vmcs12;
153
154         /*
155          * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
156          * changes in MSR bitmap for L1 or switching to a different L2. Note,
157          * this flag can only be used reliably in conjunction with a paravirt L1
158          * which informs L0 whether any changes to MSR bitmap for L2 were done
159          * on its side.
160          */
161         bool force_msr_bitmap_recalc;
162
163         /*
164          * Indicates lazily loaded guest state has not yet been decached from
165          * vmcs02.
166          */
167         bool need_sync_vmcs02_to_vmcs12_rare;
168
169         /*
170          * vmcs02 has been initialized, i.e. state that is constant for
171          * vmcs02 has been written to the backing VMCS.  Initialization
172          * is delayed until L1 actually attempts to run a nested VM.
173          */
174         bool vmcs02_initialized;
175
176         bool change_vmcs01_virtual_apic_mode;
177         bool reload_vmcs01_apic_access_page;
178         bool update_vmcs01_cpu_dirty_logging;
179         bool update_vmcs01_apicv_status;
180
181         /*
182          * Enlightened VMCS has been enabled. It does not mean that L1 has to
183          * use it. However, VMX features available to L1 will be limited based
184          * on what the enlightened VMCS supports.
185          */
186         bool enlightened_vmcs_enabled;
187
188         /* L2 must run next, and mustn't decide to exit to L1. */
189         bool nested_run_pending;
190
191         /* Pending MTF VM-exit into L1.  */
192         bool mtf_pending;
193
194         struct loaded_vmcs vmcs02;
195
196         /*
197          * Guest pages referred to in the vmcs02 with host-physical
198          * pointers, so we must keep them pinned while L2 runs.
199          */
200         struct kvm_host_map apic_access_page_map;
201         struct kvm_host_map virtual_apic_map;
202         struct kvm_host_map pi_desc_map;
203
204         struct kvm_host_map msr_bitmap_map;
205
206         struct pi_desc *pi_desc;
207         bool pi_pending;
208         u16 posted_intr_nv;
209
210         struct hrtimer preemption_timer;
211         u64 preemption_timer_deadline;
212         bool has_preemption_timer_deadline;
213         bool preemption_timer_expired;
214
215         /*
216          * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
217          * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
218          * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
219          * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
220          * userspace restores MSRs before nested state.  If userspace restores
221          * MSRs after nested state, the snapshot holds garbage, but KVM can't
222          * detect that, and the garbage value in vmcs02 will be overwritten by
223          * MSR restoration in any case.
224          */
225         u64 pre_vmenter_debugctl;
226         u64 pre_vmenter_bndcfgs;
227
228         /* to migrate it to L1 if L2 writes to L1's CR8 directly */
229         int l1_tpr_threshold;
230
231         u16 vpid02;
232         u16 last_vpid;
233
234         struct nested_vmx_msrs msrs;
235
236         /* SMM related state */
237         struct {
238                 /* in VMX operation on SMM entry? */
239                 bool vmxon;
240                 /* in guest mode on SMM entry? */
241                 bool guest_mode;
242         } smm;
243
244 #ifdef CONFIG_KVM_HYPERV
245         gpa_t hv_evmcs_vmptr;
246         struct kvm_host_map hv_evmcs_map;
247         struct hv_enlightened_vmcs *hv_evmcs;
248 #endif
249 };
250
251 struct vcpu_vmx {
252         struct kvm_vcpu       vcpu;
253         u8                    fail;
254         u8                    x2apic_msr_bitmap_mode;
255
256         /*
257          * If true, host state has been stored in vmx->loaded_vmcs for
258          * the CPU registers that only need to be switched when transitioning
259          * to/from the kernel, and the registers have been loaded with guest
260          * values.  If false, host state is loaded in the CPU registers
261          * and vmx->loaded_vmcs->host_state is invalid.
262          */
263         bool                  guest_state_loaded;
264
265         unsigned long         exit_qualification;
266         u32                   exit_intr_info;
267         u32                   idt_vectoring_info;
268         ulong                 rflags;
269
270         /*
271          * User return MSRs are always emulated when enabled in the guest, but
272          * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
273          * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
274          * be loaded into hardware if those conditions aren't met.
275          */
276         struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
277         bool                  guest_uret_msrs_loaded;
278 #ifdef CONFIG_X86_64
279         u64                   msr_host_kernel_gs_base;
280         u64                   msr_guest_kernel_gs_base;
281 #endif
282
283         u64                   spec_ctrl;
284         u32                   msr_ia32_umwait_control;
285
286         /*
287          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
288          * non-nested (L1) guest, it always points to vmcs01. For a nested
289          * guest (L2), it points to a different VMCS.
290          */
291         struct loaded_vmcs    vmcs01;
292         struct loaded_vmcs   *loaded_vmcs;
293
294         struct msr_autoload {
295                 struct vmx_msrs guest;
296                 struct vmx_msrs host;
297         } msr_autoload;
298
299         struct msr_autostore {
300                 struct vmx_msrs guest;
301         } msr_autostore;
302
303         struct {
304                 int vm86_active;
305                 ulong save_rflags;
306                 struct kvm_segment segs[8];
307         } rmode;
308         struct {
309                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
310                 struct kvm_save_segment {
311                         u16 selector;
312                         unsigned long base;
313                         u32 limit;
314                         u32 ar;
315                 } seg[8];
316         } segment_cache;
317         int vpid;
318         bool emulation_required;
319
320         union vmx_exit_reason exit_reason;
321
322         /* Posted interrupt descriptor */
323         struct pi_desc pi_desc;
324
325         /* Used if this vCPU is waiting for PI notification wakeup. */
326         struct list_head pi_wakeup_list;
327
328         /* Support for a guest hypervisor (nested VMX) */
329         struct nested_vmx nested;
330
331         /* Dynamic PLE window. */
332         unsigned int ple_window;
333         bool ple_window_dirty;
334
335         /* Support for PML */
336 #define PML_ENTITY_NUM          512
337         struct page *pml_pg;
338
339         /* apic deadline value in host tsc */
340         u64 hv_deadline_tsc;
341
342         unsigned long host_debugctlmsr;
343
344         /*
345          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
346          * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
347          * in msr_ia32_feature_control_valid_bits.
348          */
349         u64 msr_ia32_feature_control;
350         u64 msr_ia32_feature_control_valid_bits;
351         /* SGX Launch Control public key hash */
352         u64 msr_ia32_sgxlepubkeyhash[4];
353         u64 msr_ia32_mcu_opt_ctrl;
354         bool disable_fb_clear;
355
356         struct pt_desc pt_desc;
357         struct lbr_desc lbr_desc;
358
359         /* Save desired MSR intercept (read: pass-through) state */
360 #define MAX_POSSIBLE_PASSTHROUGH_MSRS   16
361         struct {
362                 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
363                 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
364         } shadow_msr_intercept;
365 };
366
367 struct kvm_vmx {
368         struct kvm kvm;
369
370         unsigned int tss_addr;
371         bool ept_identity_pagetable_done;
372         gpa_t ept_identity_map_addr;
373         /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
374         u64 *pid_table;
375 };
376
377 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
378                         struct loaded_vmcs *buddy);
379 int allocate_vpid(void);
380 void free_vpid(int vpid);
381 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
382 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
383 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
384                         unsigned long fs_base, unsigned long gs_base);
385 int vmx_get_cpl(struct kvm_vcpu *vcpu);
386 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
387 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
388 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
389 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
390 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
391 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
392 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
393 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
394 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
395 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
396 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
397 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
398 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
399
400 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
401 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
402 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
403 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
404 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
405 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
406 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
407 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
408 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
409 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
410 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
411 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
412 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
413                     unsigned int flags);
414 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
415 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
416
417 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
418 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
419
420 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
421 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
422
423 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
424
425 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
426                                              int type, bool value)
427 {
428         if (value)
429                 vmx_enable_intercept_for_msr(vcpu, msr, type);
430         else
431                 vmx_disable_intercept_for_msr(vcpu, msr, type);
432 }
433
434 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
435
436 /*
437  * Note, early Intel manuals have the write-low and read-high bitmap offsets
438  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
439  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
440  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
441  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
442  * VM-Exit.
443  */
444 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
445 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
446                                                        u32 msr)                \
447 {                                                                              \
448         int f = sizeof(unsigned long);                                         \
449                                                                                \
450         if (msr <= 0x1fff)                                                     \
451                 return bitop##_bit(msr, bitmap + base / f);                    \
452         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))                   \
453                 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
454         return (rtype)true;                                                    \
455 }
456 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)                  \
457         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
458         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
459
460 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
461 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
462 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
463
464 static inline u8 vmx_get_rvi(void)
465 {
466         return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
467 }
468
469 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                            \
470         (VM_ENTRY_LOAD_DEBUG_CONTROLS)
471 #ifdef CONFIG_X86_64
472         #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                      \
473                 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |                 \
474                  VM_ENTRY_IA32E_MODE)
475 #else
476         #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                      \
477                 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
478 #endif
479 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS                              \
480         (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |                          \
481          VM_ENTRY_LOAD_IA32_PAT |                                       \
482          VM_ENTRY_LOAD_IA32_EFER |                                      \
483          VM_ENTRY_LOAD_BNDCFGS |                                        \
484          VM_ENTRY_PT_CONCEAL_PIP |                                      \
485          VM_ENTRY_LOAD_IA32_RTIT_CTL)
486
487 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                             \
488         (VM_EXIT_SAVE_DEBUG_CONTROLS |                                  \
489          VM_EXIT_ACK_INTR_ON_EXIT)
490 #ifdef CONFIG_X86_64
491         #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                       \
492                 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |                  \
493                  VM_EXIT_HOST_ADDR_SPACE_SIZE)
494 #else
495         #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                       \
496                 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
497 #endif
498 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS                               \
499               (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |                     \
500                VM_EXIT_SAVE_IA32_PAT |                                  \
501                VM_EXIT_LOAD_IA32_PAT |                                  \
502                VM_EXIT_SAVE_IA32_EFER |                                 \
503                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |                      \
504                VM_EXIT_LOAD_IA32_EFER |                                 \
505                VM_EXIT_CLEAR_BNDCFGS |                                  \
506                VM_EXIT_PT_CONCEAL_PIP |                                 \
507                VM_EXIT_CLEAR_IA32_RTIT_CTL)
508
509 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL                      \
510         (PIN_BASED_EXT_INTR_MASK |                                      \
511          PIN_BASED_NMI_EXITING)
512 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL                      \
513         (PIN_BASED_VIRTUAL_NMIS |                                       \
514          PIN_BASED_POSTED_INTR |                                        \
515          PIN_BASED_VMX_PREEMPTION_TIMER)
516
517 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL                    \
518         (CPU_BASED_HLT_EXITING |                                        \
519          CPU_BASED_CR3_LOAD_EXITING |                                   \
520          CPU_BASED_CR3_STORE_EXITING |                                  \
521          CPU_BASED_UNCOND_IO_EXITING |                                  \
522          CPU_BASED_MOV_DR_EXITING |                                     \
523          CPU_BASED_USE_TSC_OFFSETTING |                                 \
524          CPU_BASED_MWAIT_EXITING |                                      \
525          CPU_BASED_MONITOR_EXITING |                                    \
526          CPU_BASED_INVLPG_EXITING |                                     \
527          CPU_BASED_RDPMC_EXITING |                                      \
528          CPU_BASED_INTR_WINDOW_EXITING)
529
530 #ifdef CONFIG_X86_64
531         #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL              \
532                 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |         \
533                  CPU_BASED_CR8_LOAD_EXITING |                           \
534                  CPU_BASED_CR8_STORE_EXITING)
535 #else
536         #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL              \
537                 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
538 #endif
539
540 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL                      \
541         (CPU_BASED_RDTSC_EXITING |                                      \
542          CPU_BASED_TPR_SHADOW |                                         \
543          CPU_BASED_USE_IO_BITMAPS |                                     \
544          CPU_BASED_MONITOR_TRAP_FLAG |                                  \
545          CPU_BASED_USE_MSR_BITMAPS |                                    \
546          CPU_BASED_NMI_WINDOW_EXITING |                                 \
547          CPU_BASED_PAUSE_EXITING |                                      \
548          CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |                        \
549          CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
550
551 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
552 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL                      \
553         (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |                      \
554          SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |                        \
555          SECONDARY_EXEC_WBINVD_EXITING |                                \
556          SECONDARY_EXEC_ENABLE_VPID |                                   \
557          SECONDARY_EXEC_ENABLE_EPT |                                    \
558          SECONDARY_EXEC_UNRESTRICTED_GUEST |                            \
559          SECONDARY_EXEC_PAUSE_LOOP_EXITING |                            \
560          SECONDARY_EXEC_DESC |                                          \
561          SECONDARY_EXEC_ENABLE_RDTSCP |                                 \
562          SECONDARY_EXEC_ENABLE_INVPCID |                                \
563          SECONDARY_EXEC_APIC_REGISTER_VIRT |                            \
564          SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |                         \
565          SECONDARY_EXEC_SHADOW_VMCS |                                   \
566          SECONDARY_EXEC_ENABLE_XSAVES |                                 \
567          SECONDARY_EXEC_RDSEED_EXITING |                                \
568          SECONDARY_EXEC_RDRAND_EXITING |                                \
569          SECONDARY_EXEC_ENABLE_PML |                                    \
570          SECONDARY_EXEC_TSC_SCALING |                                   \
571          SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |                         \
572          SECONDARY_EXEC_PT_USE_GPA |                                    \
573          SECONDARY_EXEC_PT_CONCEAL_VMX |                                \
574          SECONDARY_EXEC_ENABLE_VMFUNC |                                 \
575          SECONDARY_EXEC_BUS_LOCK_DETECTION |                            \
576          SECONDARY_EXEC_NOTIFY_VM_EXITING |                             \
577          SECONDARY_EXEC_ENCLS_EXITING)
578
579 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
580 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL                       \
581         (TERTIARY_EXEC_IPI_VIRT)
582
583 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)                                               \
584 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)                      \
585 {                                                                                               \
586         if (vmx->loaded_vmcs->controls_shadow.lname != val) {                                   \
587                 vmcs_write##bits(uname, val);                                                   \
588                 vmx->loaded_vmcs->controls_shadow.lname = val;                                  \
589         }                                                                                       \
590 }                                                                                               \
591 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)                        \
592 {                                                                                               \
593         return vmcs->controls_shadow.lname;                                                     \
594 }                                                                                               \
595 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)                                \
596 {                                                                                               \
597         return __##lname##_controls_get(vmx->loaded_vmcs);                                      \
598 }                                                                                               \
599 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)          \
600 {                                                                                               \
601         BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));           \
602         lname##_controls_set(vmx, lname##_controls_get(vmx) | val);                             \
603 }                                                                                               \
604 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)        \
605 {                                                                                               \
606         BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));           \
607         lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);                            \
608 }
609 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
610 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
611 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
612 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
613 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
614 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
615
616 /*
617  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
618  * cache on demand.  Other registers not listed here are synced to
619  * the cache immediately after VM-Exit.
620  */
621 #define VMX_REGS_LAZY_LOAD_SET  ((1 << VCPU_REGS_RIP) |         \
622                                 (1 << VCPU_REGS_RSP) |          \
623                                 (1 << VCPU_EXREG_RFLAGS) |      \
624                                 (1 << VCPU_EXREG_PDPTR) |       \
625                                 (1 << VCPU_EXREG_SEGMENTS) |    \
626                                 (1 << VCPU_EXREG_CR0) |         \
627                                 (1 << VCPU_EXREG_CR3) |         \
628                                 (1 << VCPU_EXREG_CR4) |         \
629                                 (1 << VCPU_EXREG_EXIT_INFO_1) | \
630                                 (1 << VCPU_EXREG_EXIT_INFO_2))
631
632 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
633 {
634         unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
635
636         /*
637          * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
638          * in order to construct shadow PTEs with the correct protections.
639          * Note!  CR0.WP technically can be passed through to the guest if
640          * paging is disabled, but checking CR0.PG would generate a cyclical
641          * dependency of sorts due to forcing the caller to ensure CR0 holds
642          * the correct value prior to determining which CR0 bits can be owned
643          * by L1.  Keep it simple and limit the optimization to EPT.
644          */
645         if (!enable_ept)
646                 bits &= ~X86_CR0_WP;
647         return bits;
648 }
649
650 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
651 {
652         return container_of(kvm, struct kvm_vmx, kvm);
653 }
654
655 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
656 {
657         return container_of(vcpu, struct vcpu_vmx, vcpu);
658 }
659
660 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
661 {
662         return &to_vmx(vcpu)->lbr_desc;
663 }
664
665 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
666 {
667         return &vcpu_to_lbr_desc(vcpu)->records;
668 }
669
670 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
671 {
672         return !!vcpu_to_lbr_records(vcpu)->nr;
673 }
674
675 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
676 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
677 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
678
679 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
684                 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
685
686         return vmx->exit_qualification;
687 }
688
689 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
690 {
691         struct vcpu_vmx *vmx = to_vmx(vcpu);
692
693         if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
694                 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
695
696         return vmx->exit_intr_info;
697 }
698
699 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
700 void free_vmcs(struct vmcs *vmcs);
701 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
702 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
703 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
704
705 static inline struct vmcs *alloc_vmcs(bool shadow)
706 {
707         return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
708                               GFP_KERNEL_ACCOUNT);
709 }
710
711 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
712 {
713         return secondary_exec_controls_get(vmx) &
714                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
715 }
716
717 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
718 {
719         if (!enable_ept)
720                 return true;
721
722         return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
723 }
724
725 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
726 {
727         return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
728             (secondary_exec_controls_get(to_vmx(vcpu)) &
729             SECONDARY_EXEC_UNRESTRICTED_GUEST));
730 }
731
732 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
733 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
734 {
735         return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
736 }
737
738 void dump_vmcs(struct kvm_vcpu *vcpu);
739
740 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
741 {
742         return (vmx_instr_info >> 28) & 0xf;
743 }
744
745 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
746 {
747         return  lapic_in_kernel(vcpu) && enable_ipiv;
748 }
749
750 #endif /* __KVM_X86_VMX_H */