KVM: VMX: Add helper to check if the guest PMU has PERF_GLOBAL_CTRL
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9
10 #include "capabilities.h"
11 #include "kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "cpuid.h"
16
17 #define MSR_TYPE_R      1
18 #define MSR_TYPE_W      2
19 #define MSR_TYPE_RW     3
20
21 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
22
23 #ifdef CONFIG_X86_64
24 #define MAX_NR_USER_RETURN_MSRS 7
25 #else
26 #define MAX_NR_USER_RETURN_MSRS 4
27 #endif
28
29 #define MAX_NR_LOADSTORE_MSRS   8
30
31 struct vmx_msrs {
32         unsigned int            nr;
33         struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
34 };
35
36 struct vmx_uret_msr {
37         bool load_into_hardware;
38         u64 data;
39         u64 mask;
40 };
41
42 enum segment_cache_field {
43         SEG_FIELD_SEL = 0,
44         SEG_FIELD_BASE = 1,
45         SEG_FIELD_LIMIT = 2,
46         SEG_FIELD_AR = 3,
47
48         SEG_FIELD_NR = 4
49 };
50
51 #define RTIT_ADDR_RANGE         4
52
53 struct pt_ctx {
54         u64 ctl;
55         u64 status;
56         u64 output_base;
57         u64 output_mask;
58         u64 cr3_match;
59         u64 addr_a[RTIT_ADDR_RANGE];
60         u64 addr_b[RTIT_ADDR_RANGE];
61 };
62
63 struct pt_desc {
64         u64 ctl_bitmask;
65         u32 num_address_ranges;
66         u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
67         struct pt_ctx host;
68         struct pt_ctx guest;
69 };
70
71 union vmx_exit_reason {
72         struct {
73                 u32     basic                   : 16;
74                 u32     reserved16              : 1;
75                 u32     reserved17              : 1;
76                 u32     reserved18              : 1;
77                 u32     reserved19              : 1;
78                 u32     reserved20              : 1;
79                 u32     reserved21              : 1;
80                 u32     reserved22              : 1;
81                 u32     reserved23              : 1;
82                 u32     reserved24              : 1;
83                 u32     reserved25              : 1;
84                 u32     bus_lock_detected       : 1;
85                 u32     enclave_mode            : 1;
86                 u32     smi_pending_mtf         : 1;
87                 u32     smi_from_vmx_root       : 1;
88                 u32     reserved30              : 1;
89                 u32     failed_vmentry          : 1;
90         };
91         u32 full;
92 };
93
94 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
95 {
96         /*
97          * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
98          * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
99          * greater than zero.  However, KVM only exposes and emulates the MSR
100          * to/for the guest if the guest PMU supports at least "Architectural
101          * Performance Monitoring Version 2".
102          */
103         return pmu->version > 1;
104 }
105
106 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
107 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
108
109 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
110 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
111
112 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
113 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
114
115 struct lbr_desc {
116         /* Basic info about guest LBR records. */
117         struct x86_pmu_lbr records;
118
119         /*
120          * Emulate LBR feature via passthrough LBR registers when the
121          * per-vcpu guest LBR event is scheduled on the current pcpu.
122          *
123          * The records may be inaccurate if the host reclaims the LBR.
124          */
125         struct perf_event *event;
126
127         /* True if LBRs are marked as not intercepted in the MSR bitmap */
128         bool msr_passthrough;
129 };
130
131 /*
132  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
133  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
134  */
135 struct nested_vmx {
136         /* Has the level1 guest done vmxon? */
137         bool vmxon;
138         gpa_t vmxon_ptr;
139         bool pml_full;
140
141         /* The guest-physical address of the current VMCS L1 keeps for L2 */
142         gpa_t current_vmptr;
143         /*
144          * Cache of the guest's VMCS, existing outside of guest memory.
145          * Loaded from guest memory during VMPTRLD. Flushed to guest
146          * memory during VMCLEAR and VMPTRLD.
147          */
148         struct vmcs12 *cached_vmcs12;
149         /*
150          * Cache of the guest's shadow VMCS, existing outside of guest
151          * memory. Loaded from guest memory during VM entry. Flushed
152          * to guest memory during VM exit.
153          */
154         struct vmcs12 *cached_shadow_vmcs12;
155
156         /*
157          * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
158          */
159         struct gfn_to_hva_cache shadow_vmcs12_cache;
160
161         /*
162          * GPA to HVA cache for VMCS12
163          */
164         struct gfn_to_hva_cache vmcs12_cache;
165
166         /*
167          * Indicates if the shadow vmcs or enlightened vmcs must be updated
168          * with the data held by struct vmcs12.
169          */
170         bool need_vmcs12_to_shadow_sync;
171         bool dirty_vmcs12;
172
173         /*
174          * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
175          * changes in MSR bitmap for L1 or switching to a different L2. Note,
176          * this flag can only be used reliably in conjunction with a paravirt L1
177          * which informs L0 whether any changes to MSR bitmap for L2 were done
178          * on its side.
179          */
180         bool force_msr_bitmap_recalc;
181
182         /*
183          * Indicates lazily loaded guest state has not yet been decached from
184          * vmcs02.
185          */
186         bool need_sync_vmcs02_to_vmcs12_rare;
187
188         /*
189          * vmcs02 has been initialized, i.e. state that is constant for
190          * vmcs02 has been written to the backing VMCS.  Initialization
191          * is delayed until L1 actually attempts to run a nested VM.
192          */
193         bool vmcs02_initialized;
194
195         bool change_vmcs01_virtual_apic_mode;
196         bool reload_vmcs01_apic_access_page;
197         bool update_vmcs01_cpu_dirty_logging;
198         bool update_vmcs01_apicv_status;
199
200         /*
201          * Enlightened VMCS has been enabled. It does not mean that L1 has to
202          * use it. However, VMX features available to L1 will be limited based
203          * on what the enlightened VMCS supports.
204          */
205         bool enlightened_vmcs_enabled;
206
207         /* L2 must run next, and mustn't decide to exit to L1. */
208         bool nested_run_pending;
209
210         /* Pending MTF VM-exit into L1.  */
211         bool mtf_pending;
212
213         struct loaded_vmcs vmcs02;
214
215         /*
216          * Guest pages referred to in the vmcs02 with host-physical
217          * pointers, so we must keep them pinned while L2 runs.
218          */
219         struct kvm_host_map apic_access_page_map;
220         struct kvm_host_map virtual_apic_map;
221         struct kvm_host_map pi_desc_map;
222
223         struct kvm_host_map msr_bitmap_map;
224
225         struct pi_desc *pi_desc;
226         bool pi_pending;
227         u16 posted_intr_nv;
228
229         struct hrtimer preemption_timer;
230         u64 preemption_timer_deadline;
231         bool has_preemption_timer_deadline;
232         bool preemption_timer_expired;
233
234         /*
235          * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
236          * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
237          * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
238          * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
239          * userspace restores MSRs before nested state.  If userspace restores
240          * MSRs after nested state, the snapshot holds garbage, but KVM can't
241          * detect that, and the garbage value in vmcs02 will be overwritten by
242          * MSR restoration in any case.
243          */
244         u64 pre_vmenter_debugctl;
245         u64 pre_vmenter_bndcfgs;
246
247         /* to migrate it to L1 if L2 writes to L1's CR8 directly */
248         int l1_tpr_threshold;
249
250         u16 vpid02;
251         u16 last_vpid;
252
253         struct nested_vmx_msrs msrs;
254
255         /* SMM related state */
256         struct {
257                 /* in VMX operation on SMM entry? */
258                 bool vmxon;
259                 /* in guest mode on SMM entry? */
260                 bool guest_mode;
261         } smm;
262
263         gpa_t hv_evmcs_vmptr;
264         struct kvm_host_map hv_evmcs_map;
265         struct hv_enlightened_vmcs *hv_evmcs;
266 };
267
268 struct vcpu_vmx {
269         struct kvm_vcpu       vcpu;
270         u8                    fail;
271         u8                    x2apic_msr_bitmap_mode;
272
273         /*
274          * If true, host state has been stored in vmx->loaded_vmcs for
275          * the CPU registers that only need to be switched when transitioning
276          * to/from the kernel, and the registers have been loaded with guest
277          * values.  If false, host state is loaded in the CPU registers
278          * and vmx->loaded_vmcs->host_state is invalid.
279          */
280         bool                  guest_state_loaded;
281
282         unsigned long         exit_qualification;
283         u32                   exit_intr_info;
284         u32                   idt_vectoring_info;
285         ulong                 rflags;
286
287         /*
288          * User return MSRs are always emulated when enabled in the guest, but
289          * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
290          * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
291          * be loaded into hardware if those conditions aren't met.
292          */
293         struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
294         bool                  guest_uret_msrs_loaded;
295 #ifdef CONFIG_X86_64
296         u64                   msr_host_kernel_gs_base;
297         u64                   msr_guest_kernel_gs_base;
298 #endif
299
300         u64                   spec_ctrl;
301         u32                   msr_ia32_umwait_control;
302
303         /*
304          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
305          * non-nested (L1) guest, it always points to vmcs01. For a nested
306          * guest (L2), it points to a different VMCS.
307          */
308         struct loaded_vmcs    vmcs01;
309         struct loaded_vmcs   *loaded_vmcs;
310
311         struct msr_autoload {
312                 struct vmx_msrs guest;
313                 struct vmx_msrs host;
314         } msr_autoload;
315
316         struct msr_autostore {
317                 struct vmx_msrs guest;
318         } msr_autostore;
319
320         struct {
321                 int vm86_active;
322                 ulong save_rflags;
323                 struct kvm_segment segs[8];
324         } rmode;
325         struct {
326                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
327                 struct kvm_save_segment {
328                         u16 selector;
329                         unsigned long base;
330                         u32 limit;
331                         u32 ar;
332                 } seg[8];
333         } segment_cache;
334         int vpid;
335         bool emulation_required;
336
337         union vmx_exit_reason exit_reason;
338
339         /* Posted interrupt descriptor */
340         struct pi_desc pi_desc;
341
342         /* Used if this vCPU is waiting for PI notification wakeup. */
343         struct list_head pi_wakeup_list;
344
345         /* Support for a guest hypervisor (nested VMX) */
346         struct nested_vmx nested;
347
348         /* Dynamic PLE window. */
349         unsigned int ple_window;
350         bool ple_window_dirty;
351
352         bool req_immediate_exit;
353
354         /* Support for PML */
355 #define PML_ENTITY_NUM          512
356         struct page *pml_pg;
357
358         /* apic deadline value in host tsc */
359         u64 hv_deadline_tsc;
360
361         unsigned long host_debugctlmsr;
362
363         /*
364          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
365          * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
366          * in msr_ia32_feature_control_valid_bits.
367          */
368         u64 msr_ia32_feature_control;
369         u64 msr_ia32_feature_control_valid_bits;
370         /* SGX Launch Control public key hash */
371         u64 msr_ia32_sgxlepubkeyhash[4];
372
373         struct pt_desc pt_desc;
374         struct lbr_desc lbr_desc;
375
376         /* Save desired MSR intercept (read: pass-through) state */
377 #define MAX_POSSIBLE_PASSTHROUGH_MSRS   15
378         struct {
379                 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
380                 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
381         } shadow_msr_intercept;
382 };
383
384 struct kvm_vmx {
385         struct kvm kvm;
386
387         unsigned int tss_addr;
388         bool ept_identity_pagetable_done;
389         gpa_t ept_identity_map_addr;
390         /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
391         u64 *pid_table;
392 };
393
394 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
395 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
396                         struct loaded_vmcs *buddy);
397 int allocate_vpid(void);
398 void free_vpid(int vpid);
399 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
400 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
401 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
402                         unsigned long fs_base, unsigned long gs_base);
403 int vmx_get_cpl(struct kvm_vcpu *vcpu);
404 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
405 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
406 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
407 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
408 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
409 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
410 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
411 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
412 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
413 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
414 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
415 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
416 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
417
418 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
419 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
420 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
421 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
422 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
423 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
424 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
425 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
426 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
427 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
428 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
429 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
430 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
431
432 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
433 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
434
435 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
436 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
437
438 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
439                                              int type, bool value)
440 {
441         if (value)
442                 vmx_enable_intercept_for_msr(vcpu, msr, type);
443         else
444                 vmx_disable_intercept_for_msr(vcpu, msr, type);
445 }
446
447 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
448
449 /*
450  * Note, early Intel manuals have the write-low and read-high bitmap offsets
451  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
452  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
453  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
454  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
455  * VM-Exit.
456  */
457 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
458 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
459                                                        u32 msr)                \
460 {                                                                              \
461         int f = sizeof(unsigned long);                                         \
462                                                                                \
463         if (msr <= 0x1fff)                                                     \
464                 return bitop##_bit(msr, bitmap + base / f);                    \
465         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))                   \
466                 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
467         return (rtype)true;                                                    \
468 }
469 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)                  \
470         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
471         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
472
473 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
474 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
475 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
476
477 static inline u8 vmx_get_rvi(void)
478 {
479         return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
480 }
481
482 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)                               \
483 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)      \
484 {                                                                               \
485         if (vmx->loaded_vmcs->controls_shadow.lname != val) {                   \
486                 vmcs_write##bits(uname, val);                                   \
487                 vmx->loaded_vmcs->controls_shadow.lname = val;                  \
488         }                                                                       \
489 }                                                                               \
490 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)        \
491 {                                                                               \
492         return vmcs->controls_shadow.lname;                                     \
493 }                                                                               \
494 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)                \
495 {                                                                               \
496         return __##lname##_controls_get(vmx->loaded_vmcs);                      \
497 }                                                                               \
498 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)   \
499 {                                                                               \
500         lname##_controls_set(vmx, lname##_controls_get(vmx) | val);             \
501 }                                                                               \
502 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
503 {                                                                               \
504         lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);            \
505 }
506 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
507 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
508 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
509 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
510 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
511 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
512
513 /*
514  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
515  * cache on demand.  Other registers not listed here are synced to
516  * the cache immediately after VM-Exit.
517  */
518 #define VMX_REGS_LAZY_LOAD_SET  ((1 << VCPU_REGS_RIP) |         \
519                                 (1 << VCPU_REGS_RSP) |          \
520                                 (1 << VCPU_EXREG_RFLAGS) |      \
521                                 (1 << VCPU_EXREG_PDPTR) |       \
522                                 (1 << VCPU_EXREG_SEGMENTS) |    \
523                                 (1 << VCPU_EXREG_CR0) |         \
524                                 (1 << VCPU_EXREG_CR3) |         \
525                                 (1 << VCPU_EXREG_CR4) |         \
526                                 (1 << VCPU_EXREG_EXIT_INFO_1) | \
527                                 (1 << VCPU_EXREG_EXIT_INFO_2))
528
529 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
530 {
531         return container_of(kvm, struct kvm_vmx, kvm);
532 }
533
534 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
535 {
536         return container_of(vcpu, struct vcpu_vmx, vcpu);
537 }
538
539 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
540 {
541         struct vcpu_vmx *vmx = to_vmx(vcpu);
542
543         if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
544                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
545                 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
546         }
547         return vmx->exit_qualification;
548 }
549
550 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
551 {
552         struct vcpu_vmx *vmx = to_vmx(vcpu);
553
554         if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
555                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
556                 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
557         }
558         return vmx->exit_intr_info;
559 }
560
561 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
562 void free_vmcs(struct vmcs *vmcs);
563 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
564 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
565 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
566
567 static inline struct vmcs *alloc_vmcs(bool shadow)
568 {
569         return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
570                               GFP_KERNEL_ACCOUNT);
571 }
572
573 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
574 {
575         return secondary_exec_controls_get(vmx) &
576                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
577 }
578
579 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
580 {
581         if (!enable_ept)
582                 return true;
583
584         return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
585 }
586
587 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
588 {
589         return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
590             (secondary_exec_controls_get(to_vmx(vcpu)) &
591             SECONDARY_EXEC_UNRESTRICTED_GUEST));
592 }
593
594 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
595 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
596 {
597         return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
598 }
599
600 void dump_vmcs(struct kvm_vcpu *vcpu);
601
602 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
603 {
604         return (vmx_instr_info >> 28) & 0xf;
605 }
606
607 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
608 {
609         return  lapic_in_kernel(vcpu) && enable_ipiv;
610 }
611
612 #endif /* __KVM_X86_VMX_H */