Merge tag 'irqchip-fixes-5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "hyperv.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON                            \
137         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
138          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 /*
152  * List of MSRs that can be directly passed to the guest.
153  * In addition to these x2apic and PT MSRs are handled specially.
154  */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156         MSR_IA32_SPEC_CTRL,
157         MSR_IA32_PRED_CMD,
158         MSR_IA32_TSC,
159         MSR_FS_BASE,
160         MSR_GS_BASE,
161         MSR_KERNEL_GS_BASE,
162         MSR_IA32_SYSENTER_CS,
163         MSR_IA32_SYSENTER_ESP,
164         MSR_IA32_SYSENTER_EIP,
165         MSR_CORE_C1_RES,
166         MSR_CORE_C3_RESIDENCY,
167         MSR_CORE_C6_RESIDENCY,
168         MSR_CORE_C7_RESIDENCY,
169 };
170
171 /*
172  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173  * ple_gap:    upper bound on the amount of time between two successive
174  *             executions of PAUSE in a loop. Also indicate if ple enabled.
175  *             According to test, this time is usually smaller than 128 cycles.
176  * ple_window: upper bound on the amount of time a guest is allowed to execute
177  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
178  *             less than 2^12 cycles
179  * Time is measured based on a counter that runs at the same rate as the TSC,
180  * refer SDM volume 3b section 21.6.13 & 22.1.3.
181  */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210
211 static const struct {
212         const char *option;
213         bool for_parse;
214 } vmentry_l1d_param[] = {
215         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
216         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
217         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
218         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
219         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225
226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228         struct page *page;
229         unsigned int i;
230
231         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233                 return 0;
234         }
235
236         if (!enable_ept) {
237                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238                 return 0;
239         }
240
241         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242                 u64 msr;
243
244                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247                         return 0;
248                 }
249         }
250
251         /* If set to auto use the default l1tf mitigation method */
252         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253                 switch (l1tf_mitigation) {
254                 case L1TF_MITIGATION_OFF:
255                         l1tf = VMENTER_L1D_FLUSH_NEVER;
256                         break;
257                 case L1TF_MITIGATION_FLUSH_NOWARN:
258                 case L1TF_MITIGATION_FLUSH:
259                 case L1TF_MITIGATION_FLUSH_NOSMT:
260                         l1tf = VMENTER_L1D_FLUSH_COND;
261                         break;
262                 case L1TF_MITIGATION_FULL:
263                 case L1TF_MITIGATION_FULL_FORCE:
264                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265                         break;
266                 }
267         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269         }
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273                 /*
274                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
275                  * lifetime and so should not be charged to a memcg.
276                  */
277                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278                 if (!page)
279                         return -ENOMEM;
280                 vmx_l1d_flush_pages = page_address(page);
281
282                 /*
283                  * Initialize each page with a different pattern in
284                  * order to protect against KSM in the nested
285                  * virtualization case.
286                  */
287                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289                                PAGE_SIZE);
290                 }
291         }
292
293         l1tf_vmx_mitigation = l1tf;
294
295         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296                 static_branch_enable(&vmx_l1d_should_flush);
297         else
298                 static_branch_disable(&vmx_l1d_should_flush);
299
300         if (l1tf == VMENTER_L1D_FLUSH_COND)
301                 static_branch_enable(&vmx_l1d_flush_cond);
302         else
303                 static_branch_disable(&vmx_l1d_flush_cond);
304         return 0;
305 }
306
307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309         unsigned int i;
310
311         if (s) {
312                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313                         if (vmentry_l1d_param[i].for_parse &&
314                             sysfs_streq(s, vmentry_l1d_param[i].option))
315                                 return i;
316                 }
317         }
318         return -EINVAL;
319 }
320
321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323         int l1tf, ret;
324
325         l1tf = vmentry_l1d_flush_parse(s);
326         if (l1tf < 0)
327                 return l1tf;
328
329         if (!boot_cpu_has(X86_BUG_L1TF))
330                 return 0;
331
332         /*
333          * Has vmx_init() run already? If not then this is the pre init
334          * parameter parsing. In that case just store the value and let
335          * vmx_init() do the proper setup after enable_ept has been
336          * established.
337          */
338         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339                 vmentry_l1d_flush_param = l1tf;
340                 return 0;
341         }
342
343         mutex_lock(&vmx_l1d_flush_mutex);
344         ret = vmx_setup_l1d_flush(l1tf);
345         mutex_unlock(&vmx_l1d_flush_mutex);
346         return ret;
347 }
348
349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352                 return sprintf(s, "???\n");
353
354         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358         .set = vmentry_l1d_flush_set,
359         .get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365                                                           u32 msr, int type);
366
367 void vmx_vmexit(void);
368
369 #define vmx_insn_failed(fmt...)         \
370 do {                                    \
371         WARN_ONCE(1, fmt);              \
372         pr_warn_ratelimited(fmt);       \
373 } while (0)
374
375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377         if (fault)
378                 kvm_spurious_fault();
379         else
380                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382
383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388
389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393
394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398
399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402                         ext, vpid, gva);
403 }
404
405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408                         ext, eptp, gpa);
409 }
410
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416  */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424
425 #define VMX_SEGMENT_FIELD(seg)                                  \
426         [VCPU_SREG_##seg] = {                                   \
427                 .selector = GUEST_##seg##_SELECTOR,             \
428                 .base = GUEST_##seg##_BASE,                     \
429                 .limit = GUEST_##seg##_LIMIT,                   \
430                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
431         }
432
433 static const struct kvm_vmx_segment_field {
434         unsigned selector;
435         unsigned base;
436         unsigned limit;
437         unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439         VMX_SEGMENT_FIELD(CS),
440         VMX_SEGMENT_FIELD(DS),
441         VMX_SEGMENT_FIELD(ES),
442         VMX_SEGMENT_FIELD(FS),
443         VMX_SEGMENT_FIELD(GS),
444         VMX_SEGMENT_FIELD(SS),
445         VMX_SEGMENT_FIELD(TR),
446         VMX_SEGMENT_FIELD(LDTR),
447 };
448
449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451         vmx->segment_cache.bitmask = 0;
452 }
453
454 static unsigned long host_idt_base;
455
456 /*
457  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458  * will emulate SYSCALL in legacy mode if the vendor string in guest
459  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460  * support this emulation, IA32_STAR must always be included in
461  * vmx_uret_msrs_list[], even in i386 builds.
462  */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468         MSR_IA32_TSX_CTRL,
469 };
470
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478         struct kvm_vcpu *vcpu;
479         u64 tmp_eptp = INVALID_PAGE;
480         int i;
481
482         kvm_for_each_vcpu(i, vcpu, kvm) {
483                 if (!VALID_PAGE(tmp_eptp)) {
484                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
485                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486                         to_kvm_vmx(kvm)->ept_pointers_match
487                                 = EPT_POINTERS_MISMATCH;
488                         return;
489                 }
490         }
491
492         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494
495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496                 void *data)
497 {
498         struct kvm_tlb_range *range = data;
499
500         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501                         range->pages);
502 }
503
504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508
509         /*
510          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511          * of the base of EPT PML4 table, strip off EPT configuration
512          * information.
513          */
514         if (range)
515                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516                                 kvm_fill_hv_flush_list_func, (void *)range);
517         else
518                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520
521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522                 struct kvm_tlb_range *range)
523 {
524         struct kvm_vcpu *vcpu;
525         int ret = 0, i;
526
527         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528
529         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530                 check_ept_pointer_match(kvm);
531
532         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533                 kvm_for_each_vcpu(i, vcpu, kvm) {
534                         /* If ept_pointer is invalid pointer, bypass flush request. */
535                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536                                 ret |= __hv_remote_flush_tlb_with_range(
537                                         kvm, vcpu, range);
538                 }
539         } else {
540                 ret = __hv_remote_flush_tlb_with_range(kvm,
541                                 kvm_get_vcpu(kvm, 0), range);
542         }
543
544         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545         return ret;
546 }
547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549         return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551
552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554         struct hv_enlightened_vmcs *evmcs;
555         struct hv_partition_assist_pg **p_hv_pa_pg =
556                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
557         /*
558          * Synthetic VM-Exit is not enabled in current code and so All
559          * evmcs in singe VM shares same assist page.
560          */
561         if (!*p_hv_pa_pg)
562                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563
564         if (!*p_hv_pa_pg)
565                 return -ENOMEM;
566
567         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568
569         evmcs->partition_assist_page =
570                 __pa(*p_hv_pa_pg);
571         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573
574         return 0;
575 }
576
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578
579 /*
580  * Comment's format: document - errata name - stepping - processor name.
581  * Refer from
582  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583  */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
595 /*
596  * 320767.pdf - AAP86  - B1 -
597  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598  */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610  /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613
614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616         u32 eax = cpuid_eax(0x00000001), i;
617
618         /* Clear the reserved bits */
619         eax &= ~(0x3U << 14 | 0xfU << 28);
620         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621                 if (eax == vmx_preemption_cpu_tfms[i])
622                         return true;
623
624         return false;
625 }
626
627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629         return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631
632 static inline bool report_flexpriority(void)
633 {
634         return flexpriority_enabled;
635 }
636
637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639         u32 i;
640
641         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642                 if (vmx_possible_passthrough_msrs[i] == msr)
643                         return i;
644
645         return -ENOENT;
646 }
647
648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650         bool r;
651
652         switch (msr) {
653         case 0x800 ... 0x8ff:
654                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655                 return true;
656         case MSR_IA32_RTIT_STATUS:
657         case MSR_IA32_RTIT_OUTPUT_BASE:
658         case MSR_IA32_RTIT_OUTPUT_MASK:
659         case MSR_IA32_RTIT_CR3_MATCH:
660         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662         case MSR_LBR_SELECT:
663         case MSR_LBR_TOS:
664         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
665         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
666         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
667         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
668         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
669                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
670                 return true;
671         }
672
673         r = possible_passthrough_msr_slot(msr) != -ENOENT;
674
675         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
676
677         return r;
678 }
679
680 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
681 {
682         int i;
683
684         for (i = 0; i < vmx->nr_uret_msrs; ++i)
685                 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
686                         return i;
687         return -1;
688 }
689
690 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
691 {
692         int i;
693
694         i = __vmx_find_uret_msr(vmx, msr);
695         if (i >= 0)
696                 return &vmx->guest_uret_msrs[i];
697         return NULL;
698 }
699
700 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
701                                   struct vmx_uret_msr *msr, u64 data)
702 {
703         int ret = 0;
704
705         u64 old_msr_data = msr->data;
706         msr->data = data;
707         if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
708                 preempt_disable();
709                 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
710                 preempt_enable();
711                 if (ret)
712                         msr->data = old_msr_data;
713         }
714         return ret;
715 }
716
717 #ifdef CONFIG_KEXEC_CORE
718 static void crash_vmclear_local_loaded_vmcss(void)
719 {
720         int cpu = raw_smp_processor_id();
721         struct loaded_vmcs *v;
722
723         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
724                             loaded_vmcss_on_cpu_link)
725                 vmcs_clear(v->vmcs);
726 }
727 #endif /* CONFIG_KEXEC_CORE */
728
729 static void __loaded_vmcs_clear(void *arg)
730 {
731         struct loaded_vmcs *loaded_vmcs = arg;
732         int cpu = raw_smp_processor_id();
733
734         if (loaded_vmcs->cpu != cpu)
735                 return; /* vcpu migration can race with cpu offline */
736         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
737                 per_cpu(current_vmcs, cpu) = NULL;
738
739         vmcs_clear(loaded_vmcs->vmcs);
740         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
741                 vmcs_clear(loaded_vmcs->shadow_vmcs);
742
743         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
744
745         /*
746          * Ensure all writes to loaded_vmcs, including deleting it from its
747          * current percpu list, complete before setting loaded_vmcs->vcpu to
748          * -1, otherwise a different cpu can see vcpu == -1 first and add
749          * loaded_vmcs to its percpu list before it's deleted from this cpu's
750          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
751          */
752         smp_wmb();
753
754         loaded_vmcs->cpu = -1;
755         loaded_vmcs->launched = 0;
756 }
757
758 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
759 {
760         int cpu = loaded_vmcs->cpu;
761
762         if (cpu != -1)
763                 smp_call_function_single(cpu,
764                          __loaded_vmcs_clear, loaded_vmcs, 1);
765 }
766
767 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
768                                        unsigned field)
769 {
770         bool ret;
771         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
772
773         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
774                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
775                 vmx->segment_cache.bitmask = 0;
776         }
777         ret = vmx->segment_cache.bitmask & mask;
778         vmx->segment_cache.bitmask |= mask;
779         return ret;
780 }
781
782 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
783 {
784         u16 *p = &vmx->segment_cache.seg[seg].selector;
785
786         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
787                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
788         return *p;
789 }
790
791 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
792 {
793         ulong *p = &vmx->segment_cache.seg[seg].base;
794
795         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
796                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
797         return *p;
798 }
799
800 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
801 {
802         u32 *p = &vmx->segment_cache.seg[seg].limit;
803
804         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
805                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
806         return *p;
807 }
808
809 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
810 {
811         u32 *p = &vmx->segment_cache.seg[seg].ar;
812
813         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
814                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
815         return *p;
816 }
817
818 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
819 {
820         u32 eb;
821
822         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
823              (1u << DB_VECTOR) | (1u << AC_VECTOR);
824         /*
825          * Guest access to VMware backdoor ports could legitimately
826          * trigger #GP because of TSS I/O permission bitmap.
827          * We intercept those #GP and allow access to them anyway
828          * as VMware does.
829          */
830         if (enable_vmware_backdoor)
831                 eb |= (1u << GP_VECTOR);
832         if ((vcpu->guest_debug &
833              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
834             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
835                 eb |= 1u << BP_VECTOR;
836         if (to_vmx(vcpu)->rmode.vm86_active)
837                 eb = ~0;
838         if (!vmx_need_pf_intercept(vcpu))
839                 eb &= ~(1u << PF_VECTOR);
840
841         /* When we are running a nested L2 guest and L1 specified for it a
842          * certain exception bitmap, we must trap the same exceptions and pass
843          * them to L1. When running L2, we will only handle the exceptions
844          * specified above if L1 did not want them.
845          */
846         if (is_guest_mode(vcpu))
847                 eb |= get_vmcs12(vcpu)->exception_bitmap;
848         else {
849                 /*
850                  * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
851                  * between guest and host.  In that case we only care about present
852                  * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
853                  * prepare_vmcs02_rare.
854                  */
855                 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
856                 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
857                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
858                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
859         }
860
861         vmcs_write32(EXCEPTION_BITMAP, eb);
862 }
863
864 /*
865  * Check if MSR is intercepted for currently loaded MSR bitmap.
866  */
867 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
868 {
869         unsigned long *msr_bitmap;
870         int f = sizeof(unsigned long);
871
872         if (!cpu_has_vmx_msr_bitmap())
873                 return true;
874
875         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
876
877         if (msr <= 0x1fff) {
878                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
879         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
880                 msr &= 0x1fff;
881                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
882         }
883
884         return true;
885 }
886
887 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
888                 unsigned long entry, unsigned long exit)
889 {
890         vm_entry_controls_clearbit(vmx, entry);
891         vm_exit_controls_clearbit(vmx, exit);
892 }
893
894 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
895 {
896         unsigned int i;
897
898         for (i = 0; i < m->nr; ++i) {
899                 if (m->val[i].index == msr)
900                         return i;
901         }
902         return -ENOENT;
903 }
904
905 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
906 {
907         int i;
908         struct msr_autoload *m = &vmx->msr_autoload;
909
910         switch (msr) {
911         case MSR_EFER:
912                 if (cpu_has_load_ia32_efer()) {
913                         clear_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_EFER,
915                                         VM_EXIT_LOAD_IA32_EFER);
916                         return;
917                 }
918                 break;
919         case MSR_CORE_PERF_GLOBAL_CTRL:
920                 if (cpu_has_load_perf_global_ctrl()) {
921                         clear_atomic_switch_msr_special(vmx,
922                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
924                         return;
925                 }
926                 break;
927         }
928         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
929         if (i < 0)
930                 goto skip_guest;
931         --m->guest.nr;
932         m->guest.val[i] = m->guest.val[m->guest.nr];
933         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
934
935 skip_guest:
936         i = vmx_find_loadstore_msr_slot(&m->host, msr);
937         if (i < 0)
938                 return;
939
940         --m->host.nr;
941         m->host.val[i] = m->host.val[m->host.nr];
942         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
943 }
944
945 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
946                 unsigned long entry, unsigned long exit,
947                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
948                 u64 guest_val, u64 host_val)
949 {
950         vmcs_write64(guest_val_vmcs, guest_val);
951         if (host_val_vmcs != HOST_IA32_EFER)
952                 vmcs_write64(host_val_vmcs, host_val);
953         vm_entry_controls_setbit(vmx, entry);
954         vm_exit_controls_setbit(vmx, exit);
955 }
956
957 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
958                                   u64 guest_val, u64 host_val, bool entry_only)
959 {
960         int i, j = 0;
961         struct msr_autoload *m = &vmx->msr_autoload;
962
963         switch (msr) {
964         case MSR_EFER:
965                 if (cpu_has_load_ia32_efer()) {
966                         add_atomic_switch_msr_special(vmx,
967                                         VM_ENTRY_LOAD_IA32_EFER,
968                                         VM_EXIT_LOAD_IA32_EFER,
969                                         GUEST_IA32_EFER,
970                                         HOST_IA32_EFER,
971                                         guest_val, host_val);
972                         return;
973                 }
974                 break;
975         case MSR_CORE_PERF_GLOBAL_CTRL:
976                 if (cpu_has_load_perf_global_ctrl()) {
977                         add_atomic_switch_msr_special(vmx,
978                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
979                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
980                                         GUEST_IA32_PERF_GLOBAL_CTRL,
981                                         HOST_IA32_PERF_GLOBAL_CTRL,
982                                         guest_val, host_val);
983                         return;
984                 }
985                 break;
986         case MSR_IA32_PEBS_ENABLE:
987                 /* PEBS needs a quiescent period after being disabled (to write
988                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
989                  * provide that period, so a CPU could write host's record into
990                  * guest's memory.
991                  */
992                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
993         }
994
995         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
996         if (!entry_only)
997                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
998
999         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1000             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1001                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1002                                 "Can't add msr %x\n", msr);
1003                 return;
1004         }
1005         if (i < 0) {
1006                 i = m->guest.nr++;
1007                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1008         }
1009         m->guest.val[i].index = msr;
1010         m->guest.val[i].value = guest_val;
1011
1012         if (entry_only)
1013                 return;
1014
1015         if (j < 0) {
1016                 j = m->host.nr++;
1017                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018         }
1019         m->host.val[j].index = msr;
1020         m->host.val[j].value = host_val;
1021 }
1022
1023 static bool update_transition_efer(struct vcpu_vmx *vmx)
1024 {
1025         u64 guest_efer = vmx->vcpu.arch.efer;
1026         u64 ignore_bits = 0;
1027         int i;
1028
1029         /* Shadow paging assumes NX to be available.  */
1030         if (!enable_ept)
1031                 guest_efer |= EFER_NX;
1032
1033         /*
1034          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1035          */
1036         ignore_bits |= EFER_SCE;
1037 #ifdef CONFIG_X86_64
1038         ignore_bits |= EFER_LMA | EFER_LME;
1039         /* SCE is meaningful only in long mode on Intel */
1040         if (guest_efer & EFER_LMA)
1041                 ignore_bits &= ~(u64)EFER_SCE;
1042 #endif
1043
1044         /*
1045          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1046          * On CPUs that support "load IA32_EFER", always switch EFER
1047          * atomically, since it's faster than switching it manually.
1048          */
1049         if (cpu_has_load_ia32_efer() ||
1050             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1051                 if (!(guest_efer & EFER_LMA))
1052                         guest_efer &= ~EFER_LME;
1053                 if (guest_efer != host_efer)
1054                         add_atomic_switch_msr(vmx, MSR_EFER,
1055                                               guest_efer, host_efer, false);
1056                 else
1057                         clear_atomic_switch_msr(vmx, MSR_EFER);
1058                 return false;
1059         }
1060
1061         i = __vmx_find_uret_msr(vmx, MSR_EFER);
1062         if (i < 0)
1063                 return false;
1064
1065         clear_atomic_switch_msr(vmx, MSR_EFER);
1066
1067         guest_efer &= ~ignore_bits;
1068         guest_efer |= host_efer & ignore_bits;
1069
1070         vmx->guest_uret_msrs[i].data = guest_efer;
1071         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1072
1073         return true;
1074 }
1075
1076 #ifdef CONFIG_X86_32
1077 /*
1078  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1079  * VMCS rather than the segment table.  KVM uses this helper to figure
1080  * out the current bases to poke them into the VMCS before entry.
1081  */
1082 static unsigned long segment_base(u16 selector)
1083 {
1084         struct desc_struct *table;
1085         unsigned long v;
1086
1087         if (!(selector & ~SEGMENT_RPL_MASK))
1088                 return 0;
1089
1090         table = get_current_gdt_ro();
1091
1092         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1093                 u16 ldt_selector = kvm_read_ldt();
1094
1095                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1096                         return 0;
1097
1098                 table = (struct desc_struct *)segment_base(ldt_selector);
1099         }
1100         v = get_desc_base(&table[selector >> 3]);
1101         return v;
1102 }
1103 #endif
1104
1105 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1106 {
1107         return vmx_pt_mode_is_host_guest() &&
1108                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1109 }
1110
1111 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1112 {
1113         /* The base must be 128-byte aligned and a legal physical address. */
1114         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1115 }
1116
1117 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1118 {
1119         u32 i;
1120
1121         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1122         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1123         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1124         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1125         for (i = 0; i < addr_range; i++) {
1126                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1127                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1128         }
1129 }
1130
1131 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1132 {
1133         u32 i;
1134
1135         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1136         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1137         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1138         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1139         for (i = 0; i < addr_range; i++) {
1140                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1141                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1142         }
1143 }
1144
1145 static void pt_guest_enter(struct vcpu_vmx *vmx)
1146 {
1147         if (vmx_pt_mode_is_system())
1148                 return;
1149
1150         /*
1151          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1152          * Save host state before VM entry.
1153          */
1154         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1155         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1156                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1157                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1158                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1159         }
1160 }
1161
1162 static void pt_guest_exit(struct vcpu_vmx *vmx)
1163 {
1164         if (vmx_pt_mode_is_system())
1165                 return;
1166
1167         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1168                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1169                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1170         }
1171
1172         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1173         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1174 }
1175
1176 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1177                         unsigned long fs_base, unsigned long gs_base)
1178 {
1179         if (unlikely(fs_sel != host->fs_sel)) {
1180                 if (!(fs_sel & 7))
1181                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1182                 else
1183                         vmcs_write16(HOST_FS_SELECTOR, 0);
1184                 host->fs_sel = fs_sel;
1185         }
1186         if (unlikely(gs_sel != host->gs_sel)) {
1187                 if (!(gs_sel & 7))
1188                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1189                 else
1190                         vmcs_write16(HOST_GS_SELECTOR, 0);
1191                 host->gs_sel = gs_sel;
1192         }
1193         if (unlikely(fs_base != host->fs_base)) {
1194                 vmcs_writel(HOST_FS_BASE, fs_base);
1195                 host->fs_base = fs_base;
1196         }
1197         if (unlikely(gs_base != host->gs_base)) {
1198                 vmcs_writel(HOST_GS_BASE, gs_base);
1199                 host->gs_base = gs_base;
1200         }
1201 }
1202
1203 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1204 {
1205         struct vcpu_vmx *vmx = to_vmx(vcpu);
1206         struct vmcs_host_state *host_state;
1207 #ifdef CONFIG_X86_64
1208         int cpu = raw_smp_processor_id();
1209 #endif
1210         unsigned long fs_base, gs_base;
1211         u16 fs_sel, gs_sel;
1212         int i;
1213
1214         vmx->req_immediate_exit = false;
1215
1216         /*
1217          * Note that guest MSRs to be saved/restored can also be changed
1218          * when guest state is loaded. This happens when guest transitions
1219          * to/from long-mode by setting MSR_EFER.LMA.
1220          */
1221         if (!vmx->guest_uret_msrs_loaded) {
1222                 vmx->guest_uret_msrs_loaded = true;
1223                 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1224                         kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1225                                                 vmx->guest_uret_msrs[i].data,
1226                                                 vmx->guest_uret_msrs[i].mask);
1227
1228         }
1229
1230         if (vmx->nested.need_vmcs12_to_shadow_sync)
1231                 nested_sync_vmcs12_to_shadow(vcpu);
1232
1233         if (vmx->guest_state_loaded)
1234                 return;
1235
1236         host_state = &vmx->loaded_vmcs->host_state;
1237
1238         /*
1239          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1240          * allow segment selectors with cpl > 0 or ti == 1.
1241          */
1242         host_state->ldt_sel = kvm_read_ldt();
1243
1244 #ifdef CONFIG_X86_64
1245         savesegment(ds, host_state->ds_sel);
1246         savesegment(es, host_state->es_sel);
1247
1248         gs_base = cpu_kernelmode_gs_base(cpu);
1249         if (likely(is_64bit_mm(current->mm))) {
1250                 current_save_fsgs();
1251                 fs_sel = current->thread.fsindex;
1252                 gs_sel = current->thread.gsindex;
1253                 fs_base = current->thread.fsbase;
1254                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1255         } else {
1256                 savesegment(fs, fs_sel);
1257                 savesegment(gs, gs_sel);
1258                 fs_base = read_msr(MSR_FS_BASE);
1259                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1260         }
1261
1262         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1263 #else
1264         savesegment(fs, fs_sel);
1265         savesegment(gs, gs_sel);
1266         fs_base = segment_base(fs_sel);
1267         gs_base = segment_base(gs_sel);
1268 #endif
1269
1270         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1271         vmx->guest_state_loaded = true;
1272 }
1273
1274 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1275 {
1276         struct vmcs_host_state *host_state;
1277
1278         if (!vmx->guest_state_loaded)
1279                 return;
1280
1281         host_state = &vmx->loaded_vmcs->host_state;
1282
1283         ++vmx->vcpu.stat.host_state_reload;
1284
1285 #ifdef CONFIG_X86_64
1286         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1287 #endif
1288         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1289                 kvm_load_ldt(host_state->ldt_sel);
1290 #ifdef CONFIG_X86_64
1291                 load_gs_index(host_state->gs_sel);
1292 #else
1293                 loadsegment(gs, host_state->gs_sel);
1294 #endif
1295         }
1296         if (host_state->fs_sel & 7)
1297                 loadsegment(fs, host_state->fs_sel);
1298 #ifdef CONFIG_X86_64
1299         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1300                 loadsegment(ds, host_state->ds_sel);
1301                 loadsegment(es, host_state->es_sel);
1302         }
1303 #endif
1304         invalidate_tss_limit();
1305 #ifdef CONFIG_X86_64
1306         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1307 #endif
1308         load_fixmap_gdt(raw_smp_processor_id());
1309         vmx->guest_state_loaded = false;
1310         vmx->guest_uret_msrs_loaded = false;
1311 }
1312
1313 #ifdef CONFIG_X86_64
1314 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1315 {
1316         preempt_disable();
1317         if (vmx->guest_state_loaded)
1318                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319         preempt_enable();
1320         return vmx->msr_guest_kernel_gs_base;
1321 }
1322
1323 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1324 {
1325         preempt_disable();
1326         if (vmx->guest_state_loaded)
1327                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1328         preempt_enable();
1329         vmx->msr_guest_kernel_gs_base = data;
1330 }
1331 #endif
1332
1333 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1334                         struct loaded_vmcs *buddy)
1335 {
1336         struct vcpu_vmx *vmx = to_vmx(vcpu);
1337         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1338         struct vmcs *prev;
1339
1340         if (!already_loaded) {
1341                 loaded_vmcs_clear(vmx->loaded_vmcs);
1342                 local_irq_disable();
1343
1344                 /*
1345                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1346                  * this cpu's percpu list, otherwise it may not yet be deleted
1347                  * from its previous cpu's percpu list.  Pairs with the
1348                  * smb_wmb() in __loaded_vmcs_clear().
1349                  */
1350                 smp_rmb();
1351
1352                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1353                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1354                 local_irq_enable();
1355         }
1356
1357         prev = per_cpu(current_vmcs, cpu);
1358         if (prev != vmx->loaded_vmcs->vmcs) {
1359                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1360                 vmcs_load(vmx->loaded_vmcs->vmcs);
1361
1362                 /*
1363                  * No indirect branch prediction barrier needed when switching
1364                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1365                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1366                  */
1367                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1368                         indirect_branch_prediction_barrier();
1369         }
1370
1371         if (!already_loaded) {
1372                 void *gdt = get_current_gdt_ro();
1373                 unsigned long sysenter_esp;
1374
1375                 /*
1376                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1377                  * TLB entries from its previous association with the vCPU.
1378                  */
1379                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1380
1381                 /*
1382                  * Linux uses per-cpu TSS and GDT, so set these when switching
1383                  * processors.  See 22.2.4.
1384                  */
1385                 vmcs_writel(HOST_TR_BASE,
1386                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1387                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1388
1389                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1390                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1391
1392                 vmx->loaded_vmcs->cpu = cpu;
1393         }
1394
1395         /* Setup TSC multiplier */
1396         if (kvm_has_tsc_control &&
1397             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1398                 decache_tsc_multiplier(vmx);
1399 }
1400
1401 /*
1402  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1403  * vcpu mutex is already taken.
1404  */
1405 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1406 {
1407         struct vcpu_vmx *vmx = to_vmx(vcpu);
1408
1409         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1410
1411         vmx_vcpu_pi_load(vcpu, cpu);
1412
1413         vmx->host_debugctlmsr = get_debugctlmsr();
1414 }
1415
1416 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1417 {
1418         vmx_vcpu_pi_put(vcpu);
1419
1420         vmx_prepare_switch_to_host(to_vmx(vcpu));
1421 }
1422
1423 static bool emulation_required(struct kvm_vcpu *vcpu)
1424 {
1425         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1426 }
1427
1428 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1429 {
1430         struct vcpu_vmx *vmx = to_vmx(vcpu);
1431         unsigned long rflags, save_rflags;
1432
1433         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1434                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1435                 rflags = vmcs_readl(GUEST_RFLAGS);
1436                 if (vmx->rmode.vm86_active) {
1437                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1438                         save_rflags = vmx->rmode.save_rflags;
1439                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1440                 }
1441                 vmx->rflags = rflags;
1442         }
1443         return vmx->rflags;
1444 }
1445
1446 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1447 {
1448         struct vcpu_vmx *vmx = to_vmx(vcpu);
1449         unsigned long old_rflags;
1450
1451         if (is_unrestricted_guest(vcpu)) {
1452                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1453                 vmx->rflags = rflags;
1454                 vmcs_writel(GUEST_RFLAGS, rflags);
1455                 return;
1456         }
1457
1458         old_rflags = vmx_get_rflags(vcpu);
1459         vmx->rflags = rflags;
1460         if (vmx->rmode.vm86_active) {
1461                 vmx->rmode.save_rflags = rflags;
1462                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1463         }
1464         vmcs_writel(GUEST_RFLAGS, rflags);
1465
1466         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1467                 vmx->emulation_required = emulation_required(vcpu);
1468 }
1469
1470 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1471 {
1472         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1473         int ret = 0;
1474
1475         if (interruptibility & GUEST_INTR_STATE_STI)
1476                 ret |= KVM_X86_SHADOW_INT_STI;
1477         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1478                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1479
1480         return ret;
1481 }
1482
1483 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1484 {
1485         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1486         u32 interruptibility = interruptibility_old;
1487
1488         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1489
1490         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1491                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1492         else if (mask & KVM_X86_SHADOW_INT_STI)
1493                 interruptibility |= GUEST_INTR_STATE_STI;
1494
1495         if ((interruptibility != interruptibility_old))
1496                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1497 }
1498
1499 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1500 {
1501         struct vcpu_vmx *vmx = to_vmx(vcpu);
1502         unsigned long value;
1503
1504         /*
1505          * Any MSR write that attempts to change bits marked reserved will
1506          * case a #GP fault.
1507          */
1508         if (data & vmx->pt_desc.ctl_bitmask)
1509                 return 1;
1510
1511         /*
1512          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1513          * result in a #GP unless the same write also clears TraceEn.
1514          */
1515         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1516                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1517                 return 1;
1518
1519         /*
1520          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1521          * and FabricEn would cause #GP, if
1522          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1523          */
1524         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1525                 !(data & RTIT_CTL_FABRIC_EN) &&
1526                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1527                                         PT_CAP_single_range_output))
1528                 return 1;
1529
1530         /*
1531          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1532          * utilize encodings marked reserved will casue a #GP fault.
1533          */
1534         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1535         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1536                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1537                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1538                 return 1;
1539         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1540                                                 PT_CAP_cycle_thresholds);
1541         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1543                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1544                 return 1;
1545         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1546         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1547                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1548                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1549                 return 1;
1550
1551         /*
1552          * If ADDRx_CFG is reserved or the encodings is >2 will
1553          * cause a #GP fault.
1554          */
1555         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1556         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1557                 return 1;
1558         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1559         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1560                 return 1;
1561         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1562         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1563                 return 1;
1564         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1565         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1566                 return 1;
1567
1568         return 0;
1569 }
1570
1571 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1572 {
1573         return true;
1574 }
1575
1576 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1577 {
1578         unsigned long rip, orig_rip;
1579
1580         /*
1581          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1582          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1583          * set when EPT misconfig occurs.  In practice, real hardware updates
1584          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1585          * (namely Hyper-V) don't set it due to it being undefined behavior,
1586          * i.e. we end up advancing IP with some random value.
1587          */
1588         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1589             to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1590                 orig_rip = kvm_rip_read(vcpu);
1591                 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1592 #ifdef CONFIG_X86_64
1593                 /*
1594                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1595                  * mode, but just finding out that we are in 64-bit mode is
1596                  * quite expensive.  Only do it if there was a carry.
1597                  */
1598                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1599                         rip = (u32)rip;
1600 #endif
1601                 kvm_rip_write(vcpu, rip);
1602         } else {
1603                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1604                         return 0;
1605         }
1606
1607         /* skipping an emulated instruction also counts */
1608         vmx_set_interrupt_shadow(vcpu, 0);
1609
1610         return 1;
1611 }
1612
1613 /*
1614  * Recognizes a pending MTF VM-exit and records the nested state for later
1615  * delivery.
1616  */
1617 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1618 {
1619         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1620         struct vcpu_vmx *vmx = to_vmx(vcpu);
1621
1622         if (!is_guest_mode(vcpu))
1623                 return;
1624
1625         /*
1626          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1627          * T-bit traps. As instruction emulation is completed (i.e. at the
1628          * instruction boundary), any #DB exception pending delivery must be a
1629          * debug-trap. Record the pending MTF state to be delivered in
1630          * vmx_check_nested_events().
1631          */
1632         if (nested_cpu_has_mtf(vmcs12) &&
1633             (!vcpu->arch.exception.pending ||
1634              vcpu->arch.exception.nr == DB_VECTOR))
1635                 vmx->nested.mtf_pending = true;
1636         else
1637                 vmx->nested.mtf_pending = false;
1638 }
1639
1640 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1641 {
1642         vmx_update_emulated_instruction(vcpu);
1643         return skip_emulated_instruction(vcpu);
1644 }
1645
1646 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1647 {
1648         /*
1649          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1650          * explicitly skip the instruction because if the HLT state is set,
1651          * then the instruction is already executing and RIP has already been
1652          * advanced.
1653          */
1654         if (kvm_hlt_in_guest(vcpu->kvm) &&
1655                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1656                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1657 }
1658
1659 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1660 {
1661         struct vcpu_vmx *vmx = to_vmx(vcpu);
1662         unsigned nr = vcpu->arch.exception.nr;
1663         bool has_error_code = vcpu->arch.exception.has_error_code;
1664         u32 error_code = vcpu->arch.exception.error_code;
1665         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1666
1667         kvm_deliver_exception_payload(vcpu);
1668
1669         if (has_error_code) {
1670                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1671                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1672         }
1673
1674         if (vmx->rmode.vm86_active) {
1675                 int inc_eip = 0;
1676                 if (kvm_exception_is_soft(nr))
1677                         inc_eip = vcpu->arch.event_exit_inst_len;
1678                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1679                 return;
1680         }
1681
1682         WARN_ON_ONCE(vmx->emulation_required);
1683
1684         if (kvm_exception_is_soft(nr)) {
1685                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1686                              vmx->vcpu.arch.event_exit_inst_len);
1687                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1688         } else
1689                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1690
1691         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1692
1693         vmx_clear_hlt(vcpu);
1694 }
1695
1696 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1697 {
1698         struct vmx_uret_msr tmp;
1699         int from, to;
1700
1701         from = __vmx_find_uret_msr(vmx, msr);
1702         if (from < 0)
1703                 return;
1704         to = vmx->nr_active_uret_msrs++;
1705
1706         tmp = vmx->guest_uret_msrs[to];
1707         vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1708         vmx->guest_uret_msrs[from] = tmp;
1709 }
1710
1711 /*
1712  * Set up the vmcs to automatically save and restore system
1713  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1714  * mode, as fiddling with msrs is very expensive.
1715  */
1716 static void setup_msrs(struct vcpu_vmx *vmx)
1717 {
1718         vmx->guest_uret_msrs_loaded = false;
1719         vmx->nr_active_uret_msrs = 0;
1720 #ifdef CONFIG_X86_64
1721         /*
1722          * The SYSCALL MSRs are only needed on long mode guests, and only
1723          * when EFER.SCE is set.
1724          */
1725         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1726                 vmx_setup_uret_msr(vmx, MSR_STAR);
1727                 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1728                 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1729         }
1730 #endif
1731         if (update_transition_efer(vmx))
1732                 vmx_setup_uret_msr(vmx, MSR_EFER);
1733
1734         if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1735                 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1736
1737         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1738
1739         if (cpu_has_vmx_msr_bitmap())
1740                 vmx_update_msr_bitmap(&vmx->vcpu);
1741 }
1742
1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1744 {
1745         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1746         u64 g_tsc_offset = 0;
1747
1748         /*
1749          * We're here if L1 chose not to trap WRMSR to TSC. According
1750          * to the spec, this should set L1's TSC; The offset that L1
1751          * set for L2 remains unchanged, and still needs to be added
1752          * to the newly set TSC to get L2's TSC.
1753          */
1754         if (is_guest_mode(vcpu) &&
1755             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1756                 g_tsc_offset = vmcs12->tsc_offset;
1757
1758         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1759                                    vcpu->arch.tsc_offset - g_tsc_offset,
1760                                    offset);
1761         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1762         return offset + g_tsc_offset;
1763 }
1764
1765 /*
1766  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1767  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1768  * all guests if the "nested" module option is off, and can also be disabled
1769  * for a single guest by disabling its VMX cpuid bit.
1770  */
1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1772 {
1773         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1774 }
1775
1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1777                                                  uint64_t val)
1778 {
1779         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1780
1781         return !(val & ~valid_bits);
1782 }
1783
1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1785 {
1786         switch (msr->index) {
1787         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1788                 if (!nested)
1789                         return 1;
1790                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1791         case MSR_IA32_PERF_CAPABILITIES:
1792                 msr->data = vmx_get_perf_capabilities();
1793                 return 0;
1794         default:
1795                 return KVM_MSR_RET_INVALID;
1796         }
1797 }
1798
1799 /*
1800  * Reads an msr value (of 'msr_index') into 'pdata'.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
1804 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1805 {
1806         struct vcpu_vmx *vmx = to_vmx(vcpu);
1807         struct vmx_uret_msr *msr;
1808         u32 index;
1809
1810         switch (msr_info->index) {
1811 #ifdef CONFIG_X86_64
1812         case MSR_FS_BASE:
1813                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1814                 break;
1815         case MSR_GS_BASE:
1816                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1817                 break;
1818         case MSR_KERNEL_GS_BASE:
1819                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1820                 break;
1821 #endif
1822         case MSR_EFER:
1823                 return kvm_get_msr_common(vcpu, msr_info);
1824         case MSR_IA32_TSX_CTRL:
1825                 if (!msr_info->host_initiated &&
1826                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1827                         return 1;
1828                 goto find_uret_msr;
1829         case MSR_IA32_UMWAIT_CONTROL:
1830                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1831                         return 1;
1832
1833                 msr_info->data = vmx->msr_ia32_umwait_control;
1834                 break;
1835         case MSR_IA32_SPEC_CTRL:
1836                 if (!msr_info->host_initiated &&
1837                     !guest_has_spec_ctrl_msr(vcpu))
1838                         return 1;
1839
1840                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1841                 break;
1842         case MSR_IA32_SYSENTER_CS:
1843                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1844                 break;
1845         case MSR_IA32_SYSENTER_EIP:
1846                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1847                 break;
1848         case MSR_IA32_SYSENTER_ESP:
1849                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1850                 break;
1851         case MSR_IA32_BNDCFGS:
1852                 if (!kvm_mpx_supported() ||
1853                     (!msr_info->host_initiated &&
1854                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1855                         return 1;
1856                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1857                 break;
1858         case MSR_IA32_MCG_EXT_CTL:
1859                 if (!msr_info->host_initiated &&
1860                     !(vmx->msr_ia32_feature_control &
1861                       FEAT_CTL_LMCE_ENABLED))
1862                         return 1;
1863                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1864                 break;
1865         case MSR_IA32_FEAT_CTL:
1866                 msr_info->data = vmx->msr_ia32_feature_control;
1867                 break;
1868         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1869                 if (!nested_vmx_allowed(vcpu))
1870                         return 1;
1871                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1872                                     &msr_info->data))
1873                         return 1;
1874                 /*
1875                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1876                  * Hyper-V versions are still trying to use corresponding
1877                  * features when they are exposed. Filter out the essential
1878                  * minimum.
1879                  */
1880                 if (!msr_info->host_initiated &&
1881                     vmx->nested.enlightened_vmcs_enabled)
1882                         nested_evmcs_filter_control_msr(msr_info->index,
1883                                                         &msr_info->data);
1884                 break;
1885         case MSR_IA32_RTIT_CTL:
1886                 if (!vmx_pt_mode_is_host_guest())
1887                         return 1;
1888                 msr_info->data = vmx->pt_desc.guest.ctl;
1889                 break;
1890         case MSR_IA32_RTIT_STATUS:
1891                 if (!vmx_pt_mode_is_host_guest())
1892                         return 1;
1893                 msr_info->data = vmx->pt_desc.guest.status;
1894                 break;
1895         case MSR_IA32_RTIT_CR3_MATCH:
1896                 if (!vmx_pt_mode_is_host_guest() ||
1897                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1898                                                 PT_CAP_cr3_filtering))
1899                         return 1;
1900                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1901                 break;
1902         case MSR_IA32_RTIT_OUTPUT_BASE:
1903                 if (!vmx_pt_mode_is_host_guest() ||
1904                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1905                                         PT_CAP_topa_output) &&
1906                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1907                                         PT_CAP_single_range_output)))
1908                         return 1;
1909                 msr_info->data = vmx->pt_desc.guest.output_base;
1910                 break;
1911         case MSR_IA32_RTIT_OUTPUT_MASK:
1912                 if (!vmx_pt_mode_is_host_guest() ||
1913                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1914                                         PT_CAP_topa_output) &&
1915                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1916                                         PT_CAP_single_range_output)))
1917                         return 1;
1918                 msr_info->data = vmx->pt_desc.guest.output_mask;
1919                 break;
1920         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1921                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1922                 if (!vmx_pt_mode_is_host_guest() ||
1923                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1924                                         PT_CAP_num_address_ranges)))
1925                         return 1;
1926                 if (index % 2)
1927                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1928                 else
1929                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1930                 break;
1931         case MSR_TSC_AUX:
1932                 if (!msr_info->host_initiated &&
1933                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1934                         return 1;
1935                 goto find_uret_msr;
1936         case MSR_IA32_DEBUGCTLMSR:
1937                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1938                 break;
1939         default:
1940         find_uret_msr:
1941                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1942                 if (msr) {
1943                         msr_info->data = msr->data;
1944                         break;
1945                 }
1946                 return kvm_get_msr_common(vcpu, msr_info);
1947         }
1948
1949         return 0;
1950 }
1951
1952 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1953                                                     u64 data)
1954 {
1955 #ifdef CONFIG_X86_64
1956         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1957                 return (u32)data;
1958 #endif
1959         return (unsigned long)data;
1960 }
1961
1962 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1963 {
1964         u64 debugctl = vmx_supported_debugctl();
1965
1966         if (!intel_pmu_lbr_is_enabled(vcpu))
1967                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1968
1969         return debugctl;
1970 }
1971
1972 /*
1973  * Writes msr value into the appropriate "register".
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979         struct vcpu_vmx *vmx = to_vmx(vcpu);
1980         struct vmx_uret_msr *msr;
1981         int ret = 0;
1982         u32 msr_index = msr_info->index;
1983         u64 data = msr_info->data;
1984         u32 index;
1985
1986         switch (msr_index) {
1987         case MSR_EFER:
1988                 ret = kvm_set_msr_common(vcpu, msr_info);
1989                 break;
1990 #ifdef CONFIG_X86_64
1991         case MSR_FS_BASE:
1992                 vmx_segment_cache_clear(vmx);
1993                 vmcs_writel(GUEST_FS_BASE, data);
1994                 break;
1995         case MSR_GS_BASE:
1996                 vmx_segment_cache_clear(vmx);
1997                 vmcs_writel(GUEST_GS_BASE, data);
1998                 break;
1999         case MSR_KERNEL_GS_BASE:
2000                 vmx_write_guest_kernel_gs_base(vmx, data);
2001                 break;
2002 #endif
2003         case MSR_IA32_SYSENTER_CS:
2004                 if (is_guest_mode(vcpu))
2005                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006                 vmcs_write32(GUEST_SYSENTER_CS, data);
2007                 break;
2008         case MSR_IA32_SYSENTER_EIP:
2009                 if (is_guest_mode(vcpu)) {
2010                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2011                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2012                 }
2013                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2014                 break;
2015         case MSR_IA32_SYSENTER_ESP:
2016                 if (is_guest_mode(vcpu)) {
2017                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2018                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2019                 }
2020                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2021                 break;
2022         case MSR_IA32_DEBUGCTLMSR: {
2023                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2024                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2025                         if (report_ignored_msrs)
2026                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2027                                             __func__, data);
2028                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2029                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2030                 }
2031
2032                 if (invalid)
2033                         return 1;
2034
2035                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2036                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2037                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2038
2039                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2040                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2041                     (data & DEBUGCTLMSR_LBR))
2042                         intel_pmu_create_guest_lbr_event(vcpu);
2043                 return 0;
2044         }
2045         case MSR_IA32_BNDCFGS:
2046                 if (!kvm_mpx_supported() ||
2047                     (!msr_info->host_initiated &&
2048                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2049                         return 1;
2050                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2051                     (data & MSR_IA32_BNDCFGS_RSVD))
2052                         return 1;
2053                 vmcs_write64(GUEST_BNDCFGS, data);
2054                 break;
2055         case MSR_IA32_UMWAIT_CONTROL:
2056                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2057                         return 1;
2058
2059                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2060                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2061                         return 1;
2062
2063                 vmx->msr_ia32_umwait_control = data;
2064                 break;
2065         case MSR_IA32_SPEC_CTRL:
2066                 if (!msr_info->host_initiated &&
2067                     !guest_has_spec_ctrl_msr(vcpu))
2068                         return 1;
2069
2070                 if (kvm_spec_ctrl_test_value(data))
2071                         return 1;
2072
2073                 vmx->spec_ctrl = data;
2074                 if (!data)
2075                         break;
2076
2077                 /*
2078                  * For non-nested:
2079                  * When it's written (to non-zero) for the first time, pass
2080                  * it through.
2081                  *
2082                  * For nested:
2083                  * The handling of the MSR bitmap for L2 guests is done in
2084                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2085                  * vmcs02.msr_bitmap here since it gets completely overwritten
2086                  * in the merging. We update the vmcs01 here for L1 as well
2087                  * since it will end up touching the MSR anyway now.
2088                  */
2089                 vmx_disable_intercept_for_msr(vcpu,
2090                                               MSR_IA32_SPEC_CTRL,
2091                                               MSR_TYPE_RW);
2092                 break;
2093         case MSR_IA32_TSX_CTRL:
2094                 if (!msr_info->host_initiated &&
2095                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2096                         return 1;
2097                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2098                         return 1;
2099                 goto find_uret_msr;
2100         case MSR_IA32_PRED_CMD:
2101                 if (!msr_info->host_initiated &&
2102                     !guest_has_pred_cmd_msr(vcpu))
2103                         return 1;
2104
2105                 if (data & ~PRED_CMD_IBPB)
2106                         return 1;
2107                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2108                         return 1;
2109                 if (!data)
2110                         break;
2111
2112                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2113
2114                 /*
2115                  * For non-nested:
2116                  * When it's written (to non-zero) for the first time, pass
2117                  * it through.
2118                  *
2119                  * For nested:
2120                  * The handling of the MSR bitmap for L2 guests is done in
2121                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2122                  * vmcs02.msr_bitmap here since it gets completely overwritten
2123                  * in the merging.
2124                  */
2125                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2126                 break;
2127         case MSR_IA32_CR_PAT:
2128                 if (!kvm_pat_valid(data))
2129                         return 1;
2130
2131                 if (is_guest_mode(vcpu) &&
2132                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2133                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2134
2135                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2136                         vmcs_write64(GUEST_IA32_PAT, data);
2137                         vcpu->arch.pat = data;
2138                         break;
2139                 }
2140                 ret = kvm_set_msr_common(vcpu, msr_info);
2141                 break;
2142         case MSR_IA32_TSC_ADJUST:
2143                 ret = kvm_set_msr_common(vcpu, msr_info);
2144                 break;
2145         case MSR_IA32_MCG_EXT_CTL:
2146                 if ((!msr_info->host_initiated &&
2147                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2148                        FEAT_CTL_LMCE_ENABLED)) ||
2149                     (data & ~MCG_EXT_CTL_LMCE_EN))
2150                         return 1;
2151                 vcpu->arch.mcg_ext_ctl = data;
2152                 break;
2153         case MSR_IA32_FEAT_CTL:
2154                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2155                     (to_vmx(vcpu)->msr_ia32_feature_control &
2156                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2157                         return 1;
2158                 vmx->msr_ia32_feature_control = data;
2159                 if (msr_info->host_initiated && data == 0)
2160                         vmx_leave_nested(vcpu);
2161                 break;
2162         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2163                 if (!msr_info->host_initiated)
2164                         return 1; /* they are read-only */
2165                 if (!nested_vmx_allowed(vcpu))
2166                         return 1;
2167                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2168         case MSR_IA32_RTIT_CTL:
2169                 if (!vmx_pt_mode_is_host_guest() ||
2170                         vmx_rtit_ctl_check(vcpu, data) ||
2171                         vmx->nested.vmxon)
2172                         return 1;
2173                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2174                 vmx->pt_desc.guest.ctl = data;
2175                 pt_update_intercept_for_msr(vcpu);
2176                 break;
2177         case MSR_IA32_RTIT_STATUS:
2178                 if (!pt_can_write_msr(vmx))
2179                         return 1;
2180                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2181                         return 1;
2182                 vmx->pt_desc.guest.status = data;
2183                 break;
2184         case MSR_IA32_RTIT_CR3_MATCH:
2185                 if (!pt_can_write_msr(vmx))
2186                         return 1;
2187                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2188                                            PT_CAP_cr3_filtering))
2189                         return 1;
2190                 vmx->pt_desc.guest.cr3_match = data;
2191                 break;
2192         case MSR_IA32_RTIT_OUTPUT_BASE:
2193                 if (!pt_can_write_msr(vmx))
2194                         return 1;
2195                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2196                                            PT_CAP_topa_output) &&
2197                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2198                                            PT_CAP_single_range_output))
2199                         return 1;
2200                 if (!pt_output_base_valid(vcpu, data))
2201                         return 1;
2202                 vmx->pt_desc.guest.output_base = data;
2203                 break;
2204         case MSR_IA32_RTIT_OUTPUT_MASK:
2205                 if (!pt_can_write_msr(vmx))
2206                         return 1;
2207                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2208                                            PT_CAP_topa_output) &&
2209                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2210                                            PT_CAP_single_range_output))
2211                         return 1;
2212                 vmx->pt_desc.guest.output_mask = data;
2213                 break;
2214         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2215                 if (!pt_can_write_msr(vmx))
2216                         return 1;
2217                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2218                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2219                                                        PT_CAP_num_address_ranges))
2220                         return 1;
2221                 if (is_noncanonical_address(data, vcpu))
2222                         return 1;
2223                 if (index % 2)
2224                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2225                 else
2226                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2227                 break;
2228         case MSR_TSC_AUX:
2229                 if (!msr_info->host_initiated &&
2230                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2231                         return 1;
2232                 /* Check reserved bit, higher 32 bits should be zero */
2233                 if ((data >> 32) != 0)
2234                         return 1;
2235                 goto find_uret_msr;
2236         case MSR_IA32_PERF_CAPABILITIES:
2237                 if (data && !vcpu_to_pmu(vcpu)->version)
2238                         return 1;
2239                 if (data & PMU_CAP_LBR_FMT) {
2240                         if ((data & PMU_CAP_LBR_FMT) !=
2241                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2242                                 return 1;
2243                         if (!intel_pmu_lbr_is_compatible(vcpu))
2244                                 return 1;
2245                 }
2246                 ret = kvm_set_msr_common(vcpu, msr_info);
2247                 break;
2248
2249         default:
2250         find_uret_msr:
2251                 msr = vmx_find_uret_msr(vmx, msr_index);
2252                 if (msr)
2253                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2254                 else
2255                         ret = kvm_set_msr_common(vcpu, msr_info);
2256         }
2257
2258         return ret;
2259 }
2260
2261 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2262 {
2263         unsigned long guest_owned_bits;
2264
2265         kvm_register_mark_available(vcpu, reg);
2266
2267         switch (reg) {
2268         case VCPU_REGS_RSP:
2269                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2270                 break;
2271         case VCPU_REGS_RIP:
2272                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2273                 break;
2274         case VCPU_EXREG_PDPTR:
2275                 if (enable_ept)
2276                         ept_save_pdptrs(vcpu);
2277                 break;
2278         case VCPU_EXREG_CR0:
2279                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2280
2281                 vcpu->arch.cr0 &= ~guest_owned_bits;
2282                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2283                 break;
2284         case VCPU_EXREG_CR3:
2285                 if (is_unrestricted_guest(vcpu) ||
2286                     (enable_ept && is_paging(vcpu)))
2287                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2288                 break;
2289         case VCPU_EXREG_CR4:
2290                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2291
2292                 vcpu->arch.cr4 &= ~guest_owned_bits;
2293                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2294                 break;
2295         default:
2296                 WARN_ON_ONCE(1);
2297                 break;
2298         }
2299 }
2300
2301 static __init int cpu_has_kvm_support(void)
2302 {
2303         return cpu_has_vmx();
2304 }
2305
2306 static __init int vmx_disabled_by_bios(void)
2307 {
2308         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2309                !boot_cpu_has(X86_FEATURE_VMX);
2310 }
2311
2312 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2313 {
2314         u64 msr;
2315
2316         cr4_set_bits(X86_CR4_VMXE);
2317
2318         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2319                           _ASM_EXTABLE(1b, %l[fault])
2320                           : : [vmxon_pointer] "m"(vmxon_pointer)
2321                           : : fault);
2322         return 0;
2323
2324 fault:
2325         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2326                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2327         cr4_clear_bits(X86_CR4_VMXE);
2328
2329         return -EFAULT;
2330 }
2331
2332 static int hardware_enable(void)
2333 {
2334         int cpu = raw_smp_processor_id();
2335         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2336         int r;
2337
2338         if (cr4_read_shadow() & X86_CR4_VMXE)
2339                 return -EBUSY;
2340
2341         /*
2342          * This can happen if we hot-added a CPU but failed to allocate
2343          * VP assist page for it.
2344          */
2345         if (static_branch_unlikely(&enable_evmcs) &&
2346             !hv_get_vp_assist_page(cpu))
2347                 return -EFAULT;
2348
2349         intel_pt_handle_vmx(1);
2350
2351         r = kvm_cpu_vmxon(phys_addr);
2352         if (r) {
2353                 intel_pt_handle_vmx(0);
2354                 return r;
2355         }
2356
2357         if (enable_ept)
2358                 ept_sync_global();
2359
2360         return 0;
2361 }
2362
2363 static void vmclear_local_loaded_vmcss(void)
2364 {
2365         int cpu = raw_smp_processor_id();
2366         struct loaded_vmcs *v, *n;
2367
2368         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2369                                  loaded_vmcss_on_cpu_link)
2370                 __loaded_vmcs_clear(v);
2371 }
2372
2373 static void hardware_disable(void)
2374 {
2375         vmclear_local_loaded_vmcss();
2376
2377         if (cpu_vmxoff())
2378                 kvm_spurious_fault();
2379
2380         intel_pt_handle_vmx(0);
2381 }
2382
2383 /*
2384  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2385  * directly instead of going through cpu_has(), to ensure KVM is trapping
2386  * ENCLS whenever it's supported in hardware.  It does not matter whether
2387  * the host OS supports or has enabled SGX.
2388  */
2389 static bool cpu_has_sgx(void)
2390 {
2391         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2392 }
2393
2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2395                                       u32 msr, u32 *result)
2396 {
2397         u32 vmx_msr_low, vmx_msr_high;
2398         u32 ctl = ctl_min | ctl_opt;
2399
2400         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2401
2402         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2403         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2404
2405         /* Ensure minimum (required) set of control bits are supported. */
2406         if (ctl_min & ~ctl)
2407                 return -EIO;
2408
2409         *result = ctl;
2410         return 0;
2411 }
2412
2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2414                                     struct vmx_capability *vmx_cap)
2415 {
2416         u32 vmx_msr_low, vmx_msr_high;
2417         u32 min, opt, min2, opt2;
2418         u32 _pin_based_exec_control = 0;
2419         u32 _cpu_based_exec_control = 0;
2420         u32 _cpu_based_2nd_exec_control = 0;
2421         u32 _vmexit_control = 0;
2422         u32 _vmentry_control = 0;
2423
2424         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2425         min = CPU_BASED_HLT_EXITING |
2426 #ifdef CONFIG_X86_64
2427               CPU_BASED_CR8_LOAD_EXITING |
2428               CPU_BASED_CR8_STORE_EXITING |
2429 #endif
2430               CPU_BASED_CR3_LOAD_EXITING |
2431               CPU_BASED_CR3_STORE_EXITING |
2432               CPU_BASED_UNCOND_IO_EXITING |
2433               CPU_BASED_MOV_DR_EXITING |
2434               CPU_BASED_USE_TSC_OFFSETTING |
2435               CPU_BASED_MWAIT_EXITING |
2436               CPU_BASED_MONITOR_EXITING |
2437               CPU_BASED_INVLPG_EXITING |
2438               CPU_BASED_RDPMC_EXITING;
2439
2440         opt = CPU_BASED_TPR_SHADOW |
2441               CPU_BASED_USE_MSR_BITMAPS |
2442               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2443         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2444                                 &_cpu_based_exec_control) < 0)
2445                 return -EIO;
2446 #ifdef CONFIG_X86_64
2447         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2448                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2449                                            ~CPU_BASED_CR8_STORE_EXITING;
2450 #endif
2451         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2452                 min2 = 0;
2453                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2454                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2455                         SECONDARY_EXEC_WBINVD_EXITING |
2456                         SECONDARY_EXEC_ENABLE_VPID |
2457                         SECONDARY_EXEC_ENABLE_EPT |
2458                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2459                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2460                         SECONDARY_EXEC_DESC |
2461                         SECONDARY_EXEC_ENABLE_RDTSCP |
2462                         SECONDARY_EXEC_ENABLE_INVPCID |
2463                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2464                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2465                         SECONDARY_EXEC_SHADOW_VMCS |
2466                         SECONDARY_EXEC_XSAVES |
2467                         SECONDARY_EXEC_RDSEED_EXITING |
2468                         SECONDARY_EXEC_RDRAND_EXITING |
2469                         SECONDARY_EXEC_ENABLE_PML |
2470                         SECONDARY_EXEC_TSC_SCALING |
2471                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2472                         SECONDARY_EXEC_PT_USE_GPA |
2473                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2474                         SECONDARY_EXEC_ENABLE_VMFUNC |
2475                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2476                 if (cpu_has_sgx())
2477                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2478                 if (adjust_vmx_controls(min2, opt2,
2479                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2480                                         &_cpu_based_2nd_exec_control) < 0)
2481                         return -EIO;
2482         }
2483 #ifndef CONFIG_X86_64
2484         if (!(_cpu_based_2nd_exec_control &
2485                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2486                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2487 #endif
2488
2489         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2490                 _cpu_based_2nd_exec_control &= ~(
2491                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2492                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2493                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2494
2495         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2496                 &vmx_cap->ept, &vmx_cap->vpid);
2497
2498         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2499                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2500                    enabled */
2501                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2502                                              CPU_BASED_CR3_STORE_EXITING |
2503                                              CPU_BASED_INVLPG_EXITING);
2504         } else if (vmx_cap->ept) {
2505                 vmx_cap->ept = 0;
2506                 pr_warn_once("EPT CAP should not exist if not support "
2507                                 "1-setting enable EPT VM-execution control\n");
2508         }
2509         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2510                 vmx_cap->vpid) {
2511                 vmx_cap->vpid = 0;
2512                 pr_warn_once("VPID CAP should not exist if not support "
2513                                 "1-setting enable VPID VM-execution control\n");
2514         }
2515
2516         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2517 #ifdef CONFIG_X86_64
2518         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2519 #endif
2520         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2521               VM_EXIT_LOAD_IA32_PAT |
2522               VM_EXIT_LOAD_IA32_EFER |
2523               VM_EXIT_CLEAR_BNDCFGS |
2524               VM_EXIT_PT_CONCEAL_PIP |
2525               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2526         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2527                                 &_vmexit_control) < 0)
2528                 return -EIO;
2529
2530         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2531         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2532                  PIN_BASED_VMX_PREEMPTION_TIMER;
2533         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2534                                 &_pin_based_exec_control) < 0)
2535                 return -EIO;
2536
2537         if (cpu_has_broken_vmx_preemption_timer())
2538                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2539         if (!(_cpu_based_2nd_exec_control &
2540                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2541                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2542
2543         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2544         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2545               VM_ENTRY_LOAD_IA32_PAT |
2546               VM_ENTRY_LOAD_IA32_EFER |
2547               VM_ENTRY_LOAD_BNDCFGS |
2548               VM_ENTRY_PT_CONCEAL_PIP |
2549               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2550         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2551                                 &_vmentry_control) < 0)
2552                 return -EIO;
2553
2554         /*
2555          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556          * can't be used due to an errata where VM Exit may incorrectly clear
2557          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2558          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559          */
2560         if (boot_cpu_data.x86 == 0x6) {
2561                 switch (boot_cpu_data.x86_model) {
2562                 case 26: /* AAK155 */
2563                 case 30: /* AAP115 */
2564                 case 37: /* AAT100 */
2565                 case 44: /* BC86,AAY89,BD102 */
2566                 case 46: /* BA97 */
2567                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2568                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2569                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2570                                         "does not work properly. Using workaround\n");
2571                         break;
2572                 default:
2573                         break;
2574                 }
2575         }
2576
2577
2578         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2579
2580         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2582                 return -EIO;
2583
2584 #ifdef CONFIG_X86_64
2585         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586         if (vmx_msr_high & (1u<<16))
2587                 return -EIO;
2588 #endif
2589
2590         /* Require Write-Back (WB) memory type for VMCS accesses. */
2591         if (((vmx_msr_high >> 18) & 15) != 6)
2592                 return -EIO;
2593
2594         vmcs_conf->size = vmx_msr_high & 0x1fff;
2595         vmcs_conf->order = get_order(vmcs_conf->size);
2596         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2597
2598         vmcs_conf->revision_id = vmx_msr_low;
2599
2600         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2601         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2602         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2603         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2604         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2605
2606 #if IS_ENABLED(CONFIG_HYPERV)
2607         if (enlightened_vmcs)
2608                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2609 #endif
2610
2611         return 0;
2612 }
2613
2614 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2615 {
2616         int node = cpu_to_node(cpu);
2617         struct page *pages;
2618         struct vmcs *vmcs;
2619
2620         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2621         if (!pages)
2622                 return NULL;
2623         vmcs = page_address(pages);
2624         memset(vmcs, 0, vmcs_config.size);
2625
2626         /* KVM supports Enlightened VMCS v1 only */
2627         if (static_branch_unlikely(&enable_evmcs))
2628                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2629         else
2630                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2631
2632         if (shadow)
2633                 vmcs->hdr.shadow_vmcs = 1;
2634         return vmcs;
2635 }
2636
2637 void free_vmcs(struct vmcs *vmcs)
2638 {
2639         free_pages((unsigned long)vmcs, vmcs_config.order);
2640 }
2641
2642 /*
2643  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2644  */
2645 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2646 {
2647         if (!loaded_vmcs->vmcs)
2648                 return;
2649         loaded_vmcs_clear(loaded_vmcs);
2650         free_vmcs(loaded_vmcs->vmcs);
2651         loaded_vmcs->vmcs = NULL;
2652         if (loaded_vmcs->msr_bitmap)
2653                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2654         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2655 }
2656
2657 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2658 {
2659         loaded_vmcs->vmcs = alloc_vmcs(false);
2660         if (!loaded_vmcs->vmcs)
2661                 return -ENOMEM;
2662
2663         vmcs_clear(loaded_vmcs->vmcs);
2664
2665         loaded_vmcs->shadow_vmcs = NULL;
2666         loaded_vmcs->hv_timer_soft_disabled = false;
2667         loaded_vmcs->cpu = -1;
2668         loaded_vmcs->launched = 0;
2669
2670         if (cpu_has_vmx_msr_bitmap()) {
2671                 loaded_vmcs->msr_bitmap = (unsigned long *)
2672                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2673                 if (!loaded_vmcs->msr_bitmap)
2674                         goto out_vmcs;
2675                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2676
2677                 if (IS_ENABLED(CONFIG_HYPERV) &&
2678                     static_branch_unlikely(&enable_evmcs) &&
2679                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2680                         struct hv_enlightened_vmcs *evmcs =
2681                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2682
2683                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2684                 }
2685         }
2686
2687         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2688         memset(&loaded_vmcs->controls_shadow, 0,
2689                 sizeof(struct vmcs_controls_shadow));
2690
2691         return 0;
2692
2693 out_vmcs:
2694         free_loaded_vmcs(loaded_vmcs);
2695         return -ENOMEM;
2696 }
2697
2698 static void free_kvm_area(void)
2699 {
2700         int cpu;
2701
2702         for_each_possible_cpu(cpu) {
2703                 free_vmcs(per_cpu(vmxarea, cpu));
2704                 per_cpu(vmxarea, cpu) = NULL;
2705         }
2706 }
2707
2708 static __init int alloc_kvm_area(void)
2709 {
2710         int cpu;
2711
2712         for_each_possible_cpu(cpu) {
2713                 struct vmcs *vmcs;
2714
2715                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2716                 if (!vmcs) {
2717                         free_kvm_area();
2718                         return -ENOMEM;
2719                 }
2720
2721                 /*
2722                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2723                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2724                  * revision_id reported by MSR_IA32_VMX_BASIC.
2725                  *
2726                  * However, even though not explicitly documented by
2727                  * TLFS, VMXArea passed as VMXON argument should
2728                  * still be marked with revision_id reported by
2729                  * physical CPU.
2730                  */
2731                 if (static_branch_unlikely(&enable_evmcs))
2732                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2733
2734                 per_cpu(vmxarea, cpu) = vmcs;
2735         }
2736         return 0;
2737 }
2738
2739 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2740                 struct kvm_segment *save)
2741 {
2742         if (!emulate_invalid_guest_state) {
2743                 /*
2744                  * CS and SS RPL should be equal during guest entry according
2745                  * to VMX spec, but in reality it is not always so. Since vcpu
2746                  * is in the middle of the transition from real mode to
2747                  * protected mode it is safe to assume that RPL 0 is a good
2748                  * default value.
2749                  */
2750                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2751                         save->selector &= ~SEGMENT_RPL_MASK;
2752                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2753                 save->s = 1;
2754         }
2755         vmx_set_segment(vcpu, save, seg);
2756 }
2757
2758 static void enter_pmode(struct kvm_vcpu *vcpu)
2759 {
2760         unsigned long flags;
2761         struct vcpu_vmx *vmx = to_vmx(vcpu);
2762
2763         /*
2764          * Update real mode segment cache. It may be not up-to-date if sement
2765          * register was written while vcpu was in a guest mode.
2766          */
2767         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2768         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2769         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2770         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2771         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2772         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2773
2774         vmx->rmode.vm86_active = 0;
2775
2776         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2777
2778         flags = vmcs_readl(GUEST_RFLAGS);
2779         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2780         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2781         vmcs_writel(GUEST_RFLAGS, flags);
2782
2783         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2784                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2785
2786         vmx_update_exception_bitmap(vcpu);
2787
2788         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2789         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2790         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2791         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2792         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2793         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2794 }
2795
2796 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2797 {
2798         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2799         struct kvm_segment var = *save;
2800
2801         var.dpl = 0x3;
2802         if (seg == VCPU_SREG_CS)
2803                 var.type = 0x3;
2804
2805         if (!emulate_invalid_guest_state) {
2806                 var.selector = var.base >> 4;
2807                 var.base = var.base & 0xffff0;
2808                 var.limit = 0xffff;
2809                 var.g = 0;
2810                 var.db = 0;
2811                 var.present = 1;
2812                 var.s = 1;
2813                 var.l = 0;
2814                 var.unusable = 0;
2815                 var.type = 0x3;
2816                 var.avl = 0;
2817                 if (save->base & 0xf)
2818                         printk_once(KERN_WARNING "kvm: segment base is not "
2819                                         "paragraph aligned when entering "
2820                                         "protected mode (seg=%d)", seg);
2821         }
2822
2823         vmcs_write16(sf->selector, var.selector);
2824         vmcs_writel(sf->base, var.base);
2825         vmcs_write32(sf->limit, var.limit);
2826         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2827 }
2828
2829 static void enter_rmode(struct kvm_vcpu *vcpu)
2830 {
2831         unsigned long flags;
2832         struct vcpu_vmx *vmx = to_vmx(vcpu);
2833         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2834
2835         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2836         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2837         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2838         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2839         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2840         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2841         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2842
2843         vmx->rmode.vm86_active = 1;
2844
2845         /*
2846          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2847          * vcpu. Warn the user that an update is overdue.
2848          */
2849         if (!kvm_vmx->tss_addr)
2850                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2851                              "called before entering vcpu\n");
2852
2853         vmx_segment_cache_clear(vmx);
2854
2855         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2856         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2857         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2858
2859         flags = vmcs_readl(GUEST_RFLAGS);
2860         vmx->rmode.save_rflags = flags;
2861
2862         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2863
2864         vmcs_writel(GUEST_RFLAGS, flags);
2865         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2866         vmx_update_exception_bitmap(vcpu);
2867
2868         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2869         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2870         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2871         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2872         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2873         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2874
2875         kvm_mmu_reset_context(vcpu);
2876 }
2877
2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2879 {
2880         struct vcpu_vmx *vmx = to_vmx(vcpu);
2881         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2882
2883         /* Nothing to do if hardware doesn't support EFER. */
2884         if (!msr)
2885                 return 0;
2886
2887         vcpu->arch.efer = efer;
2888         if (efer & EFER_LMA) {
2889                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2890                 msr->data = efer;
2891         } else {
2892                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893
2894                 msr->data = efer & ~EFER_LME;
2895         }
2896         setup_msrs(vmx);
2897         return 0;
2898 }
2899
2900 #ifdef CONFIG_X86_64
2901
2902 static void enter_lmode(struct kvm_vcpu *vcpu)
2903 {
2904         u32 guest_tr_ar;
2905
2906         vmx_segment_cache_clear(to_vmx(vcpu));
2907
2908         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2909         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2910                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2911                                      __func__);
2912                 vmcs_write32(GUEST_TR_AR_BYTES,
2913                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2914                              | VMX_AR_TYPE_BUSY_64_TSS);
2915         }
2916         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2917 }
2918
2919 static void exit_lmode(struct kvm_vcpu *vcpu)
2920 {
2921         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2922         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2923 }
2924
2925 #endif
2926
2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2928 {
2929         struct vcpu_vmx *vmx = to_vmx(vcpu);
2930
2931         /*
2932          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2933          * the CPU is not required to invalidate guest-physical mappings on
2934          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2935          * associated with the root EPT structure and not any particular VPID
2936          * (INVVPID also isn't required to invalidate guest-physical mappings).
2937          */
2938         if (enable_ept) {
2939                 ept_sync_global();
2940         } else if (enable_vpid) {
2941                 if (cpu_has_vmx_invvpid_global()) {
2942                         vpid_sync_vcpu_global();
2943                 } else {
2944                         vpid_sync_vcpu_single(vmx->vpid);
2945                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2946                 }
2947         }
2948 }
2949
2950 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2951 {
2952         struct kvm_mmu *mmu = vcpu->arch.mmu;
2953         u64 root_hpa = mmu->root_hpa;
2954
2955         /* No flush required if the current context is invalid. */
2956         if (!VALID_PAGE(root_hpa))
2957                 return;
2958
2959         if (enable_ept)
2960                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2961                                                 mmu->shadow_root_level));
2962         else if (!is_guest_mode(vcpu))
2963                 vpid_sync_context(to_vmx(vcpu)->vpid);
2964         else
2965                 vpid_sync_context(nested_get_vpid02(vcpu));
2966 }
2967
2968 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2969 {
2970         /*
2971          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2972          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2973          */
2974         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2975 }
2976
2977 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2978 {
2979         /*
2980          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2981          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2982          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2983          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2984          * i.e. no explicit INVVPID is necessary.
2985          */
2986         vpid_sync_context(to_vmx(vcpu)->vpid);
2987 }
2988
2989 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2990 {
2991         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2992
2993         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2994                 return;
2995
2996         if (is_pae_paging(vcpu)) {
2997                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2998                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2999                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3000                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3001         }
3002 }
3003
3004 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3005 {
3006         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3007
3008         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3009                 return;
3010
3011         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3012         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3013         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3014         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3015
3016         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3017 }
3018
3019 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3020                                         unsigned long cr0,
3021                                         struct kvm_vcpu *vcpu)
3022 {
3023         struct vcpu_vmx *vmx = to_vmx(vcpu);
3024
3025         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3026                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3027         if (!(cr0 & X86_CR0_PG)) {
3028                 /* From paging/starting to nonpaging */
3029                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3030                                           CPU_BASED_CR3_STORE_EXITING);
3031                 vcpu->arch.cr0 = cr0;
3032                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3033         } else if (!is_paging(vcpu)) {
3034                 /* From nonpaging to paging */
3035                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3036                                             CPU_BASED_CR3_STORE_EXITING);
3037                 vcpu->arch.cr0 = cr0;
3038                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3039         }
3040
3041         if (!(cr0 & X86_CR0_WP))
3042                 *hw_cr0 &= ~X86_CR0_WP;
3043 }
3044
3045 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3046 {
3047         struct vcpu_vmx *vmx = to_vmx(vcpu);
3048         unsigned long hw_cr0;
3049
3050         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3051         if (is_unrestricted_guest(vcpu))
3052                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3053         else {
3054                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3055
3056                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3057                         enter_pmode(vcpu);
3058
3059                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3060                         enter_rmode(vcpu);
3061         }
3062
3063 #ifdef CONFIG_X86_64
3064         if (vcpu->arch.efer & EFER_LME) {
3065                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3066                         enter_lmode(vcpu);
3067                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3068                         exit_lmode(vcpu);
3069         }
3070 #endif
3071
3072         if (enable_ept && !is_unrestricted_guest(vcpu))
3073                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3074
3075         vmcs_writel(CR0_READ_SHADOW, cr0);
3076         vmcs_writel(GUEST_CR0, hw_cr0);
3077         vcpu->arch.cr0 = cr0;
3078         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3079
3080         /* depends on vcpu->arch.cr0 to be set to a new value */
3081         vmx->emulation_required = emulation_required(vcpu);
3082 }
3083
3084 static int vmx_get_max_tdp_level(void)
3085 {
3086         if (cpu_has_vmx_ept_5levels())
3087                 return 5;
3088         return 4;
3089 }
3090
3091 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3092                    int root_level)
3093 {
3094         u64 eptp = VMX_EPTP_MT_WB;
3095
3096         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3097
3098         if (enable_ept_ad_bits &&
3099             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3100                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3101         eptp |= (root_hpa & PAGE_MASK);
3102
3103         return eptp;
3104 }
3105
3106 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3107                              int pgd_level)
3108 {
3109         struct kvm *kvm = vcpu->kvm;
3110         bool update_guest_cr3 = true;
3111         unsigned long guest_cr3;
3112         u64 eptp;
3113
3114         if (enable_ept) {
3115                 eptp = construct_eptp(vcpu, pgd, pgd_level);
3116                 vmcs_write64(EPT_POINTER, eptp);
3117
3118                 if (kvm_x86_ops.tlb_remote_flush) {
3119                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3120                         to_vmx(vcpu)->ept_pointer = eptp;
3121                         to_kvm_vmx(kvm)->ept_pointers_match
3122                                 = EPT_POINTERS_CHECK;
3123                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3124                 }
3125
3126                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3127                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3128                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3129                         guest_cr3 = vcpu->arch.cr3;
3130                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3131                         update_guest_cr3 = false;
3132                 vmx_ept_load_pdptrs(vcpu);
3133         } else {
3134                 guest_cr3 = pgd;
3135         }
3136
3137         if (update_guest_cr3)
3138                 vmcs_writel(GUEST_CR3, guest_cr3);
3139 }
3140
3141 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3142 {
3143         /*
3144          * We operate under the default treatment of SMM, so VMX cannot be
3145          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3146          * handled by kvm_is_valid_cr4().
3147          */
3148         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3149                 return false;
3150
3151         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3152                 return false;
3153
3154         return true;
3155 }
3156
3157 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3158 {
3159         unsigned long old_cr4 = vcpu->arch.cr4;
3160         struct vcpu_vmx *vmx = to_vmx(vcpu);
3161         /*
3162          * Pass through host's Machine Check Enable value to hw_cr4, which
3163          * is in force while we are in guest mode.  Do not let guests control
3164          * this bit, even if host CR4.MCE == 0.
3165          */
3166         unsigned long hw_cr4;
3167
3168         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3169         if (is_unrestricted_guest(vcpu))
3170                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3171         else if (vmx->rmode.vm86_active)
3172                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3173         else
3174                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3175
3176         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3177                 if (cr4 & X86_CR4_UMIP) {
3178                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3179                         hw_cr4 &= ~X86_CR4_UMIP;
3180                 } else if (!is_guest_mode(vcpu) ||
3181                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3182                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3183                 }
3184         }
3185
3186         vcpu->arch.cr4 = cr4;
3187         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3188
3189         if (!is_unrestricted_guest(vcpu)) {
3190                 if (enable_ept) {
3191                         if (!is_paging(vcpu)) {
3192                                 hw_cr4 &= ~X86_CR4_PAE;
3193                                 hw_cr4 |= X86_CR4_PSE;
3194                         } else if (!(cr4 & X86_CR4_PAE)) {
3195                                 hw_cr4 &= ~X86_CR4_PAE;
3196                         }
3197                 }
3198
3199                 /*
3200                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3201                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3202                  * to be manually disabled when guest switches to non-paging
3203                  * mode.
3204                  *
3205                  * If !enable_unrestricted_guest, the CPU is always running
3206                  * with CR0.PG=1 and CR4 needs to be modified.
3207                  * If enable_unrestricted_guest, the CPU automatically
3208                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3209                  */
3210                 if (!is_paging(vcpu))
3211                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3212         }
3213
3214         vmcs_writel(CR4_READ_SHADOW, cr4);
3215         vmcs_writel(GUEST_CR4, hw_cr4);
3216
3217         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3218                 kvm_update_cpuid_runtime(vcpu);
3219 }
3220
3221 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3222 {
3223         struct vcpu_vmx *vmx = to_vmx(vcpu);
3224         u32 ar;
3225
3226         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3227                 *var = vmx->rmode.segs[seg];
3228                 if (seg == VCPU_SREG_TR
3229                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3230                         return;
3231                 var->base = vmx_read_guest_seg_base(vmx, seg);
3232                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3233                 return;
3234         }
3235         var->base = vmx_read_guest_seg_base(vmx, seg);
3236         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3237         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3238         ar = vmx_read_guest_seg_ar(vmx, seg);
3239         var->unusable = (ar >> 16) & 1;
3240         var->type = ar & 15;
3241         var->s = (ar >> 4) & 1;
3242         var->dpl = (ar >> 5) & 3;
3243         /*
3244          * Some userspaces do not preserve unusable property. Since usable
3245          * segment has to be present according to VMX spec we can use present
3246          * property to amend userspace bug by making unusable segment always
3247          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3248          * segment as unusable.
3249          */
3250         var->present = !var->unusable;
3251         var->avl = (ar >> 12) & 1;
3252         var->l = (ar >> 13) & 1;
3253         var->db = (ar >> 14) & 1;
3254         var->g = (ar >> 15) & 1;
3255 }
3256
3257 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3258 {
3259         struct kvm_segment s;
3260
3261         if (to_vmx(vcpu)->rmode.vm86_active) {
3262                 vmx_get_segment(vcpu, &s, seg);
3263                 return s.base;
3264         }
3265         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3266 }
3267
3268 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3269 {
3270         struct vcpu_vmx *vmx = to_vmx(vcpu);
3271
3272         if (unlikely(vmx->rmode.vm86_active))
3273                 return 0;
3274         else {
3275                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3276                 return VMX_AR_DPL(ar);
3277         }
3278 }
3279
3280 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3281 {
3282         u32 ar;
3283
3284         if (var->unusable || !var->present)
3285                 ar = 1 << 16;
3286         else {
3287                 ar = var->type & 15;
3288                 ar |= (var->s & 1) << 4;
3289                 ar |= (var->dpl & 3) << 5;
3290                 ar |= (var->present & 1) << 7;
3291                 ar |= (var->avl & 1) << 12;
3292                 ar |= (var->l & 1) << 13;
3293                 ar |= (var->db & 1) << 14;
3294                 ar |= (var->g & 1) << 15;
3295         }
3296
3297         return ar;
3298 }
3299
3300 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3301 {
3302         struct vcpu_vmx *vmx = to_vmx(vcpu);
3303         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3304
3305         vmx_segment_cache_clear(vmx);
3306
3307         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3308                 vmx->rmode.segs[seg] = *var;
3309                 if (seg == VCPU_SREG_TR)
3310                         vmcs_write16(sf->selector, var->selector);
3311                 else if (var->s)
3312                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3313                 goto out;
3314         }
3315
3316         vmcs_writel(sf->base, var->base);
3317         vmcs_write32(sf->limit, var->limit);
3318         vmcs_write16(sf->selector, var->selector);
3319
3320         /*
3321          *   Fix the "Accessed" bit in AR field of segment registers for older
3322          * qemu binaries.
3323          *   IA32 arch specifies that at the time of processor reset the
3324          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3325          * is setting it to 0 in the userland code. This causes invalid guest
3326          * state vmexit when "unrestricted guest" mode is turned on.
3327          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3328          * tree. Newer qemu binaries with that qemu fix would not need this
3329          * kvm hack.
3330          */
3331         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3332                 var->type |= 0x1; /* Accessed */
3333
3334         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3335
3336 out:
3337         vmx->emulation_required = emulation_required(vcpu);
3338 }
3339
3340 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3341 {
3342         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3343
3344         *db = (ar >> 14) & 1;
3345         *l = (ar >> 13) & 1;
3346 }
3347
3348 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3349 {
3350         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3351         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3352 }
3353
3354 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3355 {
3356         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3357         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3358 }
3359
3360 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3361 {
3362         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3363         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3364 }
3365
3366 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3367 {
3368         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3369         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3370 }
3371
3372 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3373 {
3374         struct kvm_segment var;
3375         u32 ar;
3376
3377         vmx_get_segment(vcpu, &var, seg);
3378         var.dpl = 0x3;
3379         if (seg == VCPU_SREG_CS)
3380                 var.type = 0x3;
3381         ar = vmx_segment_access_rights(&var);
3382
3383         if (var.base != (var.selector << 4))
3384                 return false;
3385         if (var.limit != 0xffff)
3386                 return false;
3387         if (ar != 0xf3)
3388                 return false;
3389
3390         return true;
3391 }
3392
3393 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395         struct kvm_segment cs;
3396         unsigned int cs_rpl;
3397
3398         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3399         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3400
3401         if (cs.unusable)
3402                 return false;
3403         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3404                 return false;
3405         if (!cs.s)
3406                 return false;
3407         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3408                 if (cs.dpl > cs_rpl)
3409                         return false;
3410         } else {
3411                 if (cs.dpl != cs_rpl)
3412                         return false;
3413         }
3414         if (!cs.present)
3415                 return false;
3416
3417         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3418         return true;
3419 }
3420
3421 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3422 {
3423         struct kvm_segment ss;
3424         unsigned int ss_rpl;
3425
3426         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3427         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3428
3429         if (ss.unusable)
3430                 return true;
3431         if (ss.type != 3 && ss.type != 7)
3432                 return false;
3433         if (!ss.s)
3434                 return false;
3435         if (ss.dpl != ss_rpl) /* DPL != RPL */
3436                 return false;
3437         if (!ss.present)
3438                 return false;
3439
3440         return true;
3441 }
3442
3443 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3444 {
3445         struct kvm_segment var;
3446         unsigned int rpl;
3447
3448         vmx_get_segment(vcpu, &var, seg);
3449         rpl = var.selector & SEGMENT_RPL_MASK;
3450
3451         if (var.unusable)
3452                 return true;
3453         if (!var.s)
3454                 return false;
3455         if (!var.present)
3456                 return false;
3457         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3458                 if (var.dpl < rpl) /* DPL < RPL */
3459                         return false;
3460         }
3461
3462         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3463          * rights flags
3464          */
3465         return true;
3466 }
3467
3468 static bool tr_valid(struct kvm_vcpu *vcpu)
3469 {
3470         struct kvm_segment tr;
3471
3472         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3473
3474         if (tr.unusable)
3475                 return false;
3476         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3477                 return false;
3478         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3479                 return false;
3480         if (!tr.present)
3481                 return false;
3482
3483         return true;
3484 }
3485
3486 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3487 {
3488         struct kvm_segment ldtr;
3489
3490         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3491
3492         if (ldtr.unusable)
3493                 return true;
3494         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3495                 return false;
3496         if (ldtr.type != 2)
3497                 return false;
3498         if (!ldtr.present)
3499                 return false;
3500
3501         return true;
3502 }
3503
3504 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3505 {
3506         struct kvm_segment cs, ss;
3507
3508         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3509         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3510
3511         return ((cs.selector & SEGMENT_RPL_MASK) ==
3512                  (ss.selector & SEGMENT_RPL_MASK));
3513 }
3514
3515 /*
3516  * Check if guest state is valid. Returns true if valid, false if
3517  * not.
3518  * We assume that registers are always usable
3519  */
3520 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3521 {
3522         /* real mode guest state checks */
3523         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3524                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3525                         return false;
3526                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3527                         return false;
3528                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3529                         return false;
3530                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3531                         return false;
3532                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3533                         return false;
3534                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3535                         return false;
3536         } else {
3537         /* protected mode guest state checks */
3538                 if (!cs_ss_rpl_check(vcpu))
3539                         return false;
3540                 if (!code_segment_valid(vcpu))
3541                         return false;
3542                 if (!stack_segment_valid(vcpu))
3543                         return false;
3544                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3545                         return false;
3546                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3547                         return false;
3548                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3549                         return false;
3550                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3551                         return false;
3552                 if (!tr_valid(vcpu))
3553                         return false;
3554                 if (!ldtr_valid(vcpu))
3555                         return false;
3556         }
3557         /* TODO:
3558          * - Add checks on RIP
3559          * - Add checks on RFLAGS
3560          */
3561
3562         return true;
3563 }
3564
3565 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3566 {
3567         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3568         u16 data;
3569         int i;
3570
3571         for (i = 0; i < 3; i++) {
3572                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3573                         return -EFAULT;
3574         }
3575
3576         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3577         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3578                 return -EFAULT;
3579
3580         data = ~0;
3581         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3582                 return -EFAULT;
3583
3584         return 0;
3585 }
3586
3587 static int init_rmode_identity_map(struct kvm *kvm)
3588 {
3589         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3590         int i, r = 0;
3591         void __user *uaddr;
3592         u32 tmp;
3593
3594         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3595         mutex_lock(&kvm->slots_lock);
3596
3597         if (likely(kvm_vmx->ept_identity_pagetable_done))
3598                 goto out;
3599
3600         if (!kvm_vmx->ept_identity_map_addr)
3601                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3602
3603         uaddr = __x86_set_memory_region(kvm,
3604                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3605                                         kvm_vmx->ept_identity_map_addr,
3606                                         PAGE_SIZE);
3607         if (IS_ERR(uaddr)) {
3608                 r = PTR_ERR(uaddr);
3609                 goto out;
3610         }
3611
3612         /* Set up identity-mapping pagetable for EPT in real mode */
3613         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3614                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3615                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3616                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3617                         r = -EFAULT;
3618                         goto out;
3619                 }
3620         }
3621         kvm_vmx->ept_identity_pagetable_done = true;
3622
3623 out:
3624         mutex_unlock(&kvm->slots_lock);
3625         return r;
3626 }
3627
3628 static void seg_setup(int seg)
3629 {
3630         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3631         unsigned int ar;
3632
3633         vmcs_write16(sf->selector, 0);
3634         vmcs_writel(sf->base, 0);
3635         vmcs_write32(sf->limit, 0xffff);
3636         ar = 0x93;
3637         if (seg == VCPU_SREG_CS)
3638                 ar |= 0x08; /* code segment */
3639
3640         vmcs_write32(sf->ar_bytes, ar);
3641 }
3642
3643 static int alloc_apic_access_page(struct kvm *kvm)
3644 {
3645         struct page *page;
3646         void __user *hva;
3647         int ret = 0;
3648
3649         mutex_lock(&kvm->slots_lock);
3650         if (kvm->arch.apic_access_page_done)
3651                 goto out;
3652         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3653                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3654         if (IS_ERR(hva)) {
3655                 ret = PTR_ERR(hva);
3656                 goto out;
3657         }
3658
3659         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3660         if (is_error_page(page)) {
3661                 ret = -EFAULT;
3662                 goto out;
3663         }
3664
3665         /*
3666          * Do not pin the page in memory, so that memory hot-unplug
3667          * is able to migrate it.
3668          */
3669         put_page(page);
3670         kvm->arch.apic_access_page_done = true;
3671 out:
3672         mutex_unlock(&kvm->slots_lock);
3673         return ret;
3674 }
3675
3676 int allocate_vpid(void)
3677 {
3678         int vpid;
3679
3680         if (!enable_vpid)
3681                 return 0;
3682         spin_lock(&vmx_vpid_lock);
3683         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3684         if (vpid < VMX_NR_VPIDS)
3685                 __set_bit(vpid, vmx_vpid_bitmap);
3686         else
3687                 vpid = 0;
3688         spin_unlock(&vmx_vpid_lock);
3689         return vpid;
3690 }
3691
3692 void free_vpid(int vpid)
3693 {
3694         if (!enable_vpid || vpid == 0)
3695                 return;
3696         spin_lock(&vmx_vpid_lock);
3697         __clear_bit(vpid, vmx_vpid_bitmap);
3698         spin_unlock(&vmx_vpid_lock);
3699 }
3700
3701 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3702 {
3703         int f = sizeof(unsigned long);
3704
3705         if (msr <= 0x1fff)
3706                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3707         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3708                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3709 }
3710
3711 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3712 {
3713         int f = sizeof(unsigned long);
3714
3715         if (msr <= 0x1fff)
3716                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3717         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3718                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3719 }
3720
3721 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3722 {
3723         int f = sizeof(unsigned long);
3724
3725         if (msr <= 0x1fff)
3726                 __set_bit(msr, msr_bitmap + 0x000 / f);
3727         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3728                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3729 }
3730
3731 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3732 {
3733         int f = sizeof(unsigned long);
3734
3735         if (msr <= 0x1fff)
3736                 __set_bit(msr, msr_bitmap + 0x800 / f);
3737         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3738                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3739 }
3740
3741 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3742                                                           u32 msr, int type)
3743 {
3744         struct vcpu_vmx *vmx = to_vmx(vcpu);
3745         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3746
3747         if (!cpu_has_vmx_msr_bitmap())
3748                 return;
3749
3750         if (static_branch_unlikely(&enable_evmcs))
3751                 evmcs_touch_msr_bitmap();
3752
3753         /*
3754          * Mark the desired intercept state in shadow bitmap, this is needed
3755          * for resync when the MSR filters change.
3756         */
3757         if (is_valid_passthrough_msr(msr)) {
3758                 int idx = possible_passthrough_msr_slot(msr);
3759
3760                 if (idx != -ENOENT) {
3761                         if (type & MSR_TYPE_R)
3762                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3763                         if (type & MSR_TYPE_W)
3764                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3765                 }
3766         }
3767
3768         if ((type & MSR_TYPE_R) &&
3769             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3770                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3771                 type &= ~MSR_TYPE_R;
3772         }
3773
3774         if ((type & MSR_TYPE_W) &&
3775             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3776                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3777                 type &= ~MSR_TYPE_W;
3778         }
3779
3780         if (type & MSR_TYPE_R)
3781                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3782
3783         if (type & MSR_TYPE_W)
3784                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3785 }
3786
3787 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3788                                                          u32 msr, int type)
3789 {
3790         struct vcpu_vmx *vmx = to_vmx(vcpu);
3791         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792
3793         if (!cpu_has_vmx_msr_bitmap())
3794                 return;
3795
3796         if (static_branch_unlikely(&enable_evmcs))
3797                 evmcs_touch_msr_bitmap();
3798
3799         /*
3800          * Mark the desired intercept state in shadow bitmap, this is needed
3801          * for resync when the MSR filter changes.
3802         */
3803         if (is_valid_passthrough_msr(msr)) {
3804                 int idx = possible_passthrough_msr_slot(msr);
3805
3806                 if (idx != -ENOENT) {
3807                         if (type & MSR_TYPE_R)
3808                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3809                         if (type & MSR_TYPE_W)
3810                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3811                 }
3812         }
3813
3814         if (type & MSR_TYPE_R)
3815                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3816
3817         if (type & MSR_TYPE_W)
3818                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3819 }
3820
3821 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3822                                                       u32 msr, int type, bool value)
3823 {
3824         if (value)
3825                 vmx_enable_intercept_for_msr(vcpu, msr, type);
3826         else
3827                 vmx_disable_intercept_for_msr(vcpu, msr, type);
3828 }
3829
3830 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3831 {
3832         u8 mode = 0;
3833
3834         if (cpu_has_secondary_exec_ctrls() &&
3835             (secondary_exec_controls_get(to_vmx(vcpu)) &
3836              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3837                 mode |= MSR_BITMAP_MODE_X2APIC;
3838                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3839                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3840         }
3841
3842         return mode;
3843 }
3844
3845 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3846 {
3847         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3848         unsigned long read_intercept;
3849         int msr;
3850
3851         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3852
3853         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3854                 unsigned int read_idx = msr / BITS_PER_LONG;
3855                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3856
3857                 msr_bitmap[read_idx] = read_intercept;
3858                 msr_bitmap[write_idx] = ~0ul;
3859         }
3860 }
3861
3862 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3863 {
3864         if (!cpu_has_vmx_msr_bitmap())
3865                 return;
3866
3867         vmx_reset_x2apic_msrs(vcpu, mode);
3868
3869         /*
3870          * TPR reads and writes can be virtualized even if virtual interrupt
3871          * delivery is not in use.
3872          */
3873         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3874                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3875
3876         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3877                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3878                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3879                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3880         }
3881 }
3882
3883 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3884 {
3885         struct vcpu_vmx *vmx = to_vmx(vcpu);
3886         u8 mode = vmx_msr_bitmap_mode(vcpu);
3887         u8 changed = mode ^ vmx->msr_bitmap_mode;
3888
3889         if (!changed)
3890                 return;
3891
3892         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3893                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3894
3895         vmx->msr_bitmap_mode = mode;
3896 }
3897
3898 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3899 {
3900         struct vcpu_vmx *vmx = to_vmx(vcpu);
3901         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3902         u32 i;
3903
3904         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3905         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3906         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3907         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3908         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3909                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3910                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3911         }
3912 }
3913
3914 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3915 {
3916         struct vcpu_vmx *vmx = to_vmx(vcpu);
3917         void *vapic_page;
3918         u32 vppr;
3919         int rvi;
3920
3921         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3922                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3923                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3924                 return false;
3925
3926         rvi = vmx_get_rvi();
3927
3928         vapic_page = vmx->nested.virtual_apic_map.hva;
3929         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3930
3931         return ((rvi & 0xf0) > (vppr & 0xf0));
3932 }
3933
3934 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3935 {
3936         struct vcpu_vmx *vmx = to_vmx(vcpu);
3937         u32 i;
3938
3939         /*
3940          * Set intercept permissions for all potentially passed through MSRs
3941          * again. They will automatically get filtered through the MSR filter,
3942          * so we are back in sync after this.
3943          */
3944         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3945                 u32 msr = vmx_possible_passthrough_msrs[i];
3946                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3947                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3948
3949                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3950                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3951         }
3952
3953         pt_update_intercept_for_msr(vcpu);
3954         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3955 }
3956
3957 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3958                                                      bool nested)
3959 {
3960 #ifdef CONFIG_SMP
3961         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3962
3963         if (vcpu->mode == IN_GUEST_MODE) {
3964                 /*
3965                  * The vector of interrupt to be delivered to vcpu had
3966                  * been set in PIR before this function.
3967                  *
3968                  * Following cases will be reached in this block, and
3969                  * we always send a notification event in all cases as
3970                  * explained below.
3971                  *
3972                  * Case 1: vcpu keeps in non-root mode. Sending a
3973                  * notification event posts the interrupt to vcpu.
3974                  *
3975                  * Case 2: vcpu exits to root mode and is still
3976                  * runnable. PIR will be synced to vIRR before the
3977                  * next vcpu entry. Sending a notification event in
3978                  * this case has no effect, as vcpu is not in root
3979                  * mode.
3980                  *
3981                  * Case 3: vcpu exits to root mode and is blocked.
3982                  * vcpu_block() has already synced PIR to vIRR and
3983                  * never blocks vcpu if vIRR is not cleared. Therefore,
3984                  * a blocked vcpu here does not wait for any requested
3985                  * interrupts in PIR, and sending a notification event
3986                  * which has no effect is safe here.
3987                  */
3988
3989                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3990                 return true;
3991         }
3992 #endif
3993         return false;
3994 }
3995
3996 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3997                                                 int vector)
3998 {
3999         struct vcpu_vmx *vmx = to_vmx(vcpu);
4000
4001         if (is_guest_mode(vcpu) &&
4002             vector == vmx->nested.posted_intr_nv) {
4003                 /*
4004                  * If a posted intr is not recognized by hardware,
4005                  * we will accomplish it in the next vmentry.
4006                  */
4007                 vmx->nested.pi_pending = true;
4008                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4009                 /* the PIR and ON have been set by L1. */
4010                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4011                         kvm_vcpu_kick(vcpu);
4012                 return 0;
4013         }
4014         return -1;
4015 }
4016 /*
4017  * Send interrupt to vcpu via posted interrupt way.
4018  * 1. If target vcpu is running(non-root mode), send posted interrupt
4019  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4020  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4021  * interrupt from PIR in next vmentry.
4022  */
4023 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4024 {
4025         struct vcpu_vmx *vmx = to_vmx(vcpu);
4026         int r;
4027
4028         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4029         if (!r)
4030                 return 0;
4031
4032         if (!vcpu->arch.apicv_active)
4033                 return -1;
4034
4035         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4036                 return 0;
4037
4038         /* If a previous notification has sent the IPI, nothing to do.  */
4039         if (pi_test_and_set_on(&vmx->pi_desc))
4040                 return 0;
4041
4042         if (vcpu != kvm_get_running_vcpu() &&
4043             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4044                 kvm_vcpu_kick(vcpu);
4045
4046         return 0;
4047 }
4048
4049 /*
4050  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4051  * will not change in the lifetime of the guest.
4052  * Note that host-state that does change is set elsewhere. E.g., host-state
4053  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4054  */
4055 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4056 {
4057         u32 low32, high32;
4058         unsigned long tmpl;
4059         unsigned long cr0, cr3, cr4;
4060
4061         cr0 = read_cr0();
4062         WARN_ON(cr0 & X86_CR0_TS);
4063         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4064
4065         /*
4066          * Save the most likely value for this task's CR3 in the VMCS.
4067          * We can't use __get_current_cr3_fast() because we're not atomic.
4068          */
4069         cr3 = __read_cr3();
4070         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4071         vmx->loaded_vmcs->host_state.cr3 = cr3;
4072
4073         /* Save the most likely value for this task's CR4 in the VMCS. */
4074         cr4 = cr4_read_shadow();
4075         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4076         vmx->loaded_vmcs->host_state.cr4 = cr4;
4077
4078         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4079 #ifdef CONFIG_X86_64
4080         /*
4081          * Load null selectors, so we can avoid reloading them in
4082          * vmx_prepare_switch_to_host(), in case userspace uses
4083          * the null selectors too (the expected case).
4084          */
4085         vmcs_write16(HOST_DS_SELECTOR, 0);
4086         vmcs_write16(HOST_ES_SELECTOR, 0);
4087 #else
4088         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4089         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4090 #endif
4091         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4092         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4093
4094         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4095
4096         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4097
4098         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4099         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4100         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4101         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4102
4103         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4104                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4105                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4106         }
4107
4108         if (cpu_has_load_ia32_efer())
4109                 vmcs_write64(HOST_IA32_EFER, host_efer);
4110 }
4111
4112 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4113 {
4114         struct kvm_vcpu *vcpu = &vmx->vcpu;
4115
4116         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4117                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4118         if (!enable_ept)
4119                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4120         if (is_guest_mode(&vmx->vcpu))
4121                 vcpu->arch.cr4_guest_owned_bits &=
4122                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4123         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4124 }
4125
4126 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4127 {
4128         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4129
4130         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4131                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4132
4133         if (!enable_vnmi)
4134                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4135
4136         if (!enable_preemption_timer)
4137                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4138
4139         return pin_based_exec_ctrl;
4140 }
4141
4142 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4143 {
4144         struct vcpu_vmx *vmx = to_vmx(vcpu);
4145
4146         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4147         if (cpu_has_secondary_exec_ctrls()) {
4148                 if (kvm_vcpu_apicv_active(vcpu))
4149                         secondary_exec_controls_setbit(vmx,
4150                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4151                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4152                 else
4153                         secondary_exec_controls_clearbit(vmx,
4154                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4155                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4156         }
4157
4158         if (cpu_has_vmx_msr_bitmap())
4159                 vmx_update_msr_bitmap(vcpu);
4160 }
4161
4162 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4163 {
4164         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4165
4166         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4167                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4168
4169         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4170                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4171 #ifdef CONFIG_X86_64
4172                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4173                                 CPU_BASED_CR8_LOAD_EXITING;
4174 #endif
4175         }
4176         if (!enable_ept)
4177                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4178                                 CPU_BASED_CR3_LOAD_EXITING  |
4179                                 CPU_BASED_INVLPG_EXITING;
4180         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4181                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4182                                 CPU_BASED_MONITOR_EXITING);
4183         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4184                 exec_control &= ~CPU_BASED_HLT_EXITING;
4185         return exec_control;
4186 }
4187
4188 /*
4189  * Adjust a single secondary execution control bit to intercept/allow an
4190  * instruction in the guest.  This is usually done based on whether or not a
4191  * feature has been exposed to the guest in order to correctly emulate faults.
4192  */
4193 static inline void
4194 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4195                                   u32 control, bool enabled, bool exiting)
4196 {
4197         /*
4198          * If the control is for an opt-in feature, clear the control if the
4199          * feature is not exposed to the guest, i.e. not enabled.  If the
4200          * control is opt-out, i.e. an exiting control, clear the control if
4201          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4202          * disabled for the associated instruction.  Note, the caller is
4203          * responsible presetting exec_control to set all supported bits.
4204          */
4205         if (enabled == exiting)
4206                 *exec_control &= ~control;
4207
4208         /*
4209          * Update the nested MSR settings so that a nested VMM can/can't set
4210          * controls for features that are/aren't exposed to the guest.
4211          */
4212         if (nested) {
4213                 if (enabled)
4214                         vmx->nested.msrs.secondary_ctls_high |= control;
4215                 else
4216                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4217         }
4218 }
4219
4220 /*
4221  * Wrapper macro for the common case of adjusting a secondary execution control
4222  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4223  * verifies that the control is actually supported by KVM and hardware.
4224  */
4225 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4226 ({                                                                       \
4227         bool __enabled;                                                  \
4228                                                                          \
4229         if (cpu_has_vmx_##name()) {                                      \
4230                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4231                                             X86_FEATURE_##feat_name);    \
4232                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4233                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4234         }                                                                \
4235 })
4236
4237 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4238 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4239         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4240
4241 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4242         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4243
4244 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4245 {
4246         struct kvm_vcpu *vcpu = &vmx->vcpu;
4247
4248         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4249
4250         if (vmx_pt_mode_is_system())
4251                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4252         if (!cpu_need_virtualize_apic_accesses(vcpu))
4253                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4254         if (vmx->vpid == 0)
4255                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4256         if (!enable_ept) {
4257                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4258                 enable_unrestricted_guest = 0;
4259         }
4260         if (!enable_unrestricted_guest)
4261                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4262         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4263                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4264         if (!kvm_vcpu_apicv_active(vcpu))
4265                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4266                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4267         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4268
4269         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4270          * in vmx_set_cr4.  */
4271         exec_control &= ~SECONDARY_EXEC_DESC;
4272
4273         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4274            (handle_vmptrld).
4275            We can NOT enable shadow_vmcs here because we don't have yet
4276            a current VMCS12
4277         */
4278         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4279
4280         /*
4281          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4282          * it needs to be set here when dirty logging is already active, e.g.
4283          * if this vCPU was created after dirty logging was enabled.
4284          */
4285         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4286                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4287
4288         if (cpu_has_vmx_xsaves()) {
4289                 /* Exposing XSAVES only when XSAVE is exposed */
4290                 bool xsaves_enabled =
4291                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4292                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4293                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4294
4295                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4296
4297                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4298                                                   SECONDARY_EXEC_XSAVES,
4299                                                   xsaves_enabled, false);
4300         }
4301
4302         vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4303         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4304
4305         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4306         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4307
4308         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4309                                     ENABLE_USR_WAIT_PAUSE, false);
4310
4311         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4312                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4313
4314         vmx->secondary_exec_control = exec_control;
4315 }
4316
4317 static void ept_set_mmio_spte_mask(void)
4318 {
4319         /*
4320          * EPT Misconfigurations can be generated if the value of bits 2:0
4321          * of an EPT paging-structure entry is 110b (write/execute).
4322          */
4323         kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4324 }
4325
4326 #define VMX_XSS_EXIT_BITMAP 0
4327
4328 /*
4329  * Noting that the initialization of Guest-state Area of VMCS is in
4330  * vmx_vcpu_reset().
4331  */
4332 static void init_vmcs(struct vcpu_vmx *vmx)
4333 {
4334         if (nested)
4335                 nested_vmx_set_vmcs_shadowing_bitmap();
4336
4337         if (cpu_has_vmx_msr_bitmap())
4338                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4339
4340         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4341
4342         /* Control */
4343         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4344
4345         exec_controls_set(vmx, vmx_exec_control(vmx));
4346
4347         if (cpu_has_secondary_exec_ctrls()) {
4348                 vmx_compute_secondary_exec_control(vmx);
4349                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4350         }
4351
4352         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4353                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4354                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4355                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4356                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4357
4358                 vmcs_write16(GUEST_INTR_STATUS, 0);
4359
4360                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4361                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4362         }
4363
4364         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4365                 vmcs_write32(PLE_GAP, ple_gap);
4366                 vmx->ple_window = ple_window;
4367                 vmx->ple_window_dirty = true;
4368         }
4369
4370         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4371         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4372         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4373
4374         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4375         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4376         vmx_set_constant_host_state(vmx);
4377         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4378         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4379
4380         if (cpu_has_vmx_vmfunc())
4381                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4382
4383         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4384         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4385         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4386         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4387         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4388
4389         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4390                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4391
4392         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4393
4394         /* 22.2.1, 20.8.1 */
4395         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4396
4397         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4398         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4399
4400         set_cr4_guest_host_mask(vmx);
4401
4402         if (vmx->vpid != 0)
4403                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4404
4405         if (cpu_has_vmx_xsaves())
4406                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4407
4408         if (enable_pml) {
4409                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4410                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4411         }
4412
4413         if (cpu_has_vmx_encls_vmexit())
4414                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4415
4416         if (vmx_pt_mode_is_host_guest()) {
4417                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4418                 /* Bit[6~0] are forced to 1, writes are ignored. */
4419                 vmx->pt_desc.guest.output_mask = 0x7F;
4420                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4421         }
4422 }
4423
4424 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4425 {
4426         struct vcpu_vmx *vmx = to_vmx(vcpu);
4427         struct msr_data apic_base_msr;
4428         u64 cr0;
4429
4430         vmx->rmode.vm86_active = 0;
4431         vmx->spec_ctrl = 0;
4432
4433         vmx->msr_ia32_umwait_control = 0;
4434
4435         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4436         vmx->hv_deadline_tsc = -1;
4437         kvm_set_cr8(vcpu, 0);
4438
4439         if (!init_event) {
4440                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4441                                      MSR_IA32_APICBASE_ENABLE;
4442                 if (kvm_vcpu_is_reset_bsp(vcpu))
4443                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4444                 apic_base_msr.host_initiated = true;
4445                 kvm_set_apic_base(vcpu, &apic_base_msr);
4446         }
4447
4448         vmx_segment_cache_clear(vmx);
4449
4450         seg_setup(VCPU_SREG_CS);
4451         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4452         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4453
4454         seg_setup(VCPU_SREG_DS);
4455         seg_setup(VCPU_SREG_ES);
4456         seg_setup(VCPU_SREG_FS);
4457         seg_setup(VCPU_SREG_GS);
4458         seg_setup(VCPU_SREG_SS);
4459
4460         vmcs_write16(GUEST_TR_SELECTOR, 0);
4461         vmcs_writel(GUEST_TR_BASE, 0);
4462         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4463         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4464
4465         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4466         vmcs_writel(GUEST_LDTR_BASE, 0);
4467         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4468         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4469
4470         if (!init_event) {
4471                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4472                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4473                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4474                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4475         }
4476
4477         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4478         kvm_rip_write(vcpu, 0xfff0);
4479
4480         vmcs_writel(GUEST_GDTR_BASE, 0);
4481         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4482
4483         vmcs_writel(GUEST_IDTR_BASE, 0);
4484         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4485
4486         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4487         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4488         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4489         if (kvm_mpx_supported())
4490                 vmcs_write64(GUEST_BNDCFGS, 0);
4491
4492         setup_msrs(vmx);
4493
4494         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4495
4496         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4497                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4498                 if (cpu_need_tpr_shadow(vcpu))
4499                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4500                                      __pa(vcpu->arch.apic->regs));
4501                 vmcs_write32(TPR_THRESHOLD, 0);
4502         }
4503
4504         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4505
4506         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4507         vmx->vcpu.arch.cr0 = cr0;
4508         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4509         vmx_set_cr4(vcpu, 0);
4510         vmx_set_efer(vcpu, 0);
4511
4512         vmx_update_exception_bitmap(vcpu);
4513
4514         vpid_sync_context(vmx->vpid);
4515         if (init_event)
4516                 vmx_clear_hlt(vcpu);
4517 }
4518
4519 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4520 {
4521         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4522 }
4523
4524 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4525 {
4526         if (!enable_vnmi ||
4527             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4528                 vmx_enable_irq_window(vcpu);
4529                 return;
4530         }
4531
4532         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4533 }
4534
4535 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4536 {
4537         struct vcpu_vmx *vmx = to_vmx(vcpu);
4538         uint32_t intr;
4539         int irq = vcpu->arch.interrupt.nr;
4540
4541         trace_kvm_inj_virq(irq);
4542
4543         ++vcpu->stat.irq_injections;
4544         if (vmx->rmode.vm86_active) {
4545                 int inc_eip = 0;
4546                 if (vcpu->arch.interrupt.soft)
4547                         inc_eip = vcpu->arch.event_exit_inst_len;
4548                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4549                 return;
4550         }
4551         intr = irq | INTR_INFO_VALID_MASK;
4552         if (vcpu->arch.interrupt.soft) {
4553                 intr |= INTR_TYPE_SOFT_INTR;
4554                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4555                              vmx->vcpu.arch.event_exit_inst_len);
4556         } else
4557                 intr |= INTR_TYPE_EXT_INTR;
4558         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4559
4560         vmx_clear_hlt(vcpu);
4561 }
4562
4563 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4564 {
4565         struct vcpu_vmx *vmx = to_vmx(vcpu);
4566
4567         if (!enable_vnmi) {
4568                 /*
4569                  * Tracking the NMI-blocked state in software is built upon
4570                  * finding the next open IRQ window. This, in turn, depends on
4571                  * well-behaving guests: They have to keep IRQs disabled at
4572                  * least as long as the NMI handler runs. Otherwise we may
4573                  * cause NMI nesting, maybe breaking the guest. But as this is
4574                  * highly unlikely, we can live with the residual risk.
4575                  */
4576                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4577                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4578         }
4579
4580         ++vcpu->stat.nmi_injections;
4581         vmx->loaded_vmcs->nmi_known_unmasked = false;
4582
4583         if (vmx->rmode.vm86_active) {
4584                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4585                 return;
4586         }
4587
4588         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4589                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4590
4591         vmx_clear_hlt(vcpu);
4592 }
4593
4594 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4595 {
4596         struct vcpu_vmx *vmx = to_vmx(vcpu);
4597         bool masked;
4598
4599         if (!enable_vnmi)
4600                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4601         if (vmx->loaded_vmcs->nmi_known_unmasked)
4602                 return false;
4603         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4604         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4605         return masked;
4606 }
4607
4608 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4609 {
4610         struct vcpu_vmx *vmx = to_vmx(vcpu);
4611
4612         if (!enable_vnmi) {
4613                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4614                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4615                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4616                 }
4617         } else {
4618                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4619                 if (masked)
4620                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4621                                       GUEST_INTR_STATE_NMI);
4622                 else
4623                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4624                                         GUEST_INTR_STATE_NMI);
4625         }
4626 }
4627
4628 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4629 {
4630         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4631                 return false;
4632
4633         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4634                 return true;
4635
4636         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4637                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4638                  GUEST_INTR_STATE_NMI));
4639 }
4640
4641 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4642 {
4643         if (to_vmx(vcpu)->nested.nested_run_pending)
4644                 return -EBUSY;
4645
4646         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4647         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4648                 return -EBUSY;
4649
4650         return !vmx_nmi_blocked(vcpu);
4651 }
4652
4653 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4654 {
4655         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4656                 return false;
4657
4658         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4659                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4660                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4661 }
4662
4663 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4664 {
4665         if (to_vmx(vcpu)->nested.nested_run_pending)
4666                 return -EBUSY;
4667
4668        /*
4669         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4670         * e.g. if the IRQ arrived asynchronously after checking nested events.
4671         */
4672         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4673                 return -EBUSY;
4674
4675         return !vmx_interrupt_blocked(vcpu);
4676 }
4677
4678 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4679 {
4680         void __user *ret;
4681
4682         if (enable_unrestricted_guest)
4683                 return 0;
4684
4685         mutex_lock(&kvm->slots_lock);
4686         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4687                                       PAGE_SIZE * 3);
4688         mutex_unlock(&kvm->slots_lock);
4689
4690         if (IS_ERR(ret))
4691                 return PTR_ERR(ret);
4692
4693         to_kvm_vmx(kvm)->tss_addr = addr;
4694
4695         return init_rmode_tss(kvm, ret);
4696 }
4697
4698 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4699 {
4700         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4701         return 0;
4702 }
4703
4704 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4705 {
4706         switch (vec) {
4707         case BP_VECTOR:
4708                 /*
4709                  * Update instruction length as we may reinject the exception
4710                  * from user space while in guest debugging mode.
4711                  */
4712                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4713                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4714                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4715                         return false;
4716                 fallthrough;
4717         case DB_VECTOR:
4718                 return !(vcpu->guest_debug &
4719                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4720         case DE_VECTOR:
4721         case OF_VECTOR:
4722         case BR_VECTOR:
4723         case UD_VECTOR:
4724         case DF_VECTOR:
4725         case SS_VECTOR:
4726         case GP_VECTOR:
4727         case MF_VECTOR:
4728                 return true;
4729         }
4730         return false;
4731 }
4732
4733 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4734                                   int vec, u32 err_code)
4735 {
4736         /*
4737          * Instruction with address size override prefix opcode 0x67
4738          * Cause the #SS fault with 0 error code in VM86 mode.
4739          */
4740         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4741                 if (kvm_emulate_instruction(vcpu, 0)) {
4742                         if (vcpu->arch.halt_request) {
4743                                 vcpu->arch.halt_request = 0;
4744                                 return kvm_vcpu_halt(vcpu);
4745                         }
4746                         return 1;
4747                 }
4748                 return 0;
4749         }
4750
4751         /*
4752          * Forward all other exceptions that are valid in real mode.
4753          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4754          *        the required debugging infrastructure rework.
4755          */
4756         kvm_queue_exception(vcpu, vec);
4757         return 1;
4758 }
4759
4760 static int handle_machine_check(struct kvm_vcpu *vcpu)
4761 {
4762         /* handled by vmx_vcpu_run() */
4763         return 1;
4764 }
4765
4766 /*
4767  * If the host has split lock detection disabled, then #AC is
4768  * unconditionally injected into the guest, which is the pre split lock
4769  * detection behaviour.
4770  *
4771  * If the host has split lock detection enabled then #AC is
4772  * only injected into the guest when:
4773  *  - Guest CPL == 3 (user mode)
4774  *  - Guest has #AC detection enabled in CR0
4775  *  - Guest EFLAGS has AC bit set
4776  */
4777 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4778 {
4779         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4780                 return true;
4781
4782         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4783                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4784 }
4785
4786 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4787 {
4788         struct vcpu_vmx *vmx = to_vmx(vcpu);
4789         struct kvm_run *kvm_run = vcpu->run;
4790         u32 intr_info, ex_no, error_code;
4791         unsigned long cr2, rip, dr6;
4792         u32 vect_info;
4793
4794         vect_info = vmx->idt_vectoring_info;
4795         intr_info = vmx_get_intr_info(vcpu);
4796
4797         if (is_machine_check(intr_info) || is_nmi(intr_info))
4798                 return 1; /* handled by handle_exception_nmi_irqoff() */
4799
4800         if (is_invalid_opcode(intr_info))
4801                 return handle_ud(vcpu);
4802
4803         error_code = 0;
4804         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4805                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4806
4807         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4808                 WARN_ON_ONCE(!enable_vmware_backdoor);
4809
4810                 /*
4811                  * VMware backdoor emulation on #GP interception only handles
4812                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4813                  * error code on #GP.
4814                  */
4815                 if (error_code) {
4816                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4817                         return 1;
4818                 }
4819                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4820         }
4821
4822         /*
4823          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4824          * MMIO, it is better to report an internal error.
4825          * See the comments in vmx_handle_exit.
4826          */
4827         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4828             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4829                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4830                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4831                 vcpu->run->internal.ndata = 4;
4832                 vcpu->run->internal.data[0] = vect_info;
4833                 vcpu->run->internal.data[1] = intr_info;
4834                 vcpu->run->internal.data[2] = error_code;
4835                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4836                 return 0;
4837         }
4838
4839         if (is_page_fault(intr_info)) {
4840                 cr2 = vmx_get_exit_qual(vcpu);
4841                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4842                         /*
4843                          * EPT will cause page fault only if we need to
4844                          * detect illegal GPAs.
4845                          */
4846                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4847                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4848                         return 1;
4849                 } else
4850                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4851         }
4852
4853         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4854
4855         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4856                 return handle_rmode_exception(vcpu, ex_no, error_code);
4857
4858         switch (ex_no) {
4859         case DB_VECTOR:
4860                 dr6 = vmx_get_exit_qual(vcpu);
4861                 if (!(vcpu->guest_debug &
4862                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4863                         if (is_icebp(intr_info))
4864                                 WARN_ON(!skip_emulated_instruction(vcpu));
4865
4866                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4867                         return 1;
4868                 }
4869                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4870                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4871                 fallthrough;
4872         case BP_VECTOR:
4873                 /*
4874                  * Update instruction length as we may reinject #BP from
4875                  * user space while in guest debugging mode. Reading it for
4876                  * #DB as well causes no harm, it is not used in that case.
4877                  */
4878                 vmx->vcpu.arch.event_exit_inst_len =
4879                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4880                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4881                 rip = kvm_rip_read(vcpu);
4882                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4883                 kvm_run->debug.arch.exception = ex_no;
4884                 break;
4885         case AC_VECTOR:
4886                 if (guest_inject_ac(vcpu)) {
4887                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4888                         return 1;
4889                 }
4890
4891                 /*
4892                  * Handle split lock. Depending on detection mode this will
4893                  * either warn and disable split lock detection for this
4894                  * task or force SIGBUS on it.
4895                  */
4896                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4897                         return 1;
4898                 fallthrough;
4899         default:
4900                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4901                 kvm_run->ex.exception = ex_no;
4902                 kvm_run->ex.error_code = error_code;
4903                 break;
4904         }
4905         return 0;
4906 }
4907
4908 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4909 {
4910         ++vcpu->stat.irq_exits;
4911         return 1;
4912 }
4913
4914 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4915 {
4916         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4917         vcpu->mmio_needed = 0;
4918         return 0;
4919 }
4920
4921 static int handle_io(struct kvm_vcpu *vcpu)
4922 {
4923         unsigned long exit_qualification;
4924         int size, in, string;
4925         unsigned port;
4926
4927         exit_qualification = vmx_get_exit_qual(vcpu);
4928         string = (exit_qualification & 16) != 0;
4929
4930         ++vcpu->stat.io_exits;
4931
4932         if (string)
4933                 return kvm_emulate_instruction(vcpu, 0);
4934
4935         port = exit_qualification >> 16;
4936         size = (exit_qualification & 7) + 1;
4937         in = (exit_qualification & 8) != 0;
4938
4939         return kvm_fast_pio(vcpu, size, port, in);
4940 }
4941
4942 static void
4943 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4944 {
4945         /*
4946          * Patch in the VMCALL instruction:
4947          */
4948         hypercall[0] = 0x0f;
4949         hypercall[1] = 0x01;
4950         hypercall[2] = 0xc1;
4951 }
4952
4953 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4954 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4955 {
4956         if (is_guest_mode(vcpu)) {
4957                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4958                 unsigned long orig_val = val;
4959
4960                 /*
4961                  * We get here when L2 changed cr0 in a way that did not change
4962                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4963                  * but did change L0 shadowed bits. So we first calculate the
4964                  * effective cr0 value that L1 would like to write into the
4965                  * hardware. It consists of the L2-owned bits from the new
4966                  * value combined with the L1-owned bits from L1's guest_cr0.
4967                  */
4968                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4969                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4970
4971                 if (!nested_guest_cr0_valid(vcpu, val))
4972                         return 1;
4973
4974                 if (kvm_set_cr0(vcpu, val))
4975                         return 1;
4976                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4977                 return 0;
4978         } else {
4979                 if (to_vmx(vcpu)->nested.vmxon &&
4980                     !nested_host_cr0_valid(vcpu, val))
4981                         return 1;
4982
4983                 return kvm_set_cr0(vcpu, val);
4984         }
4985 }
4986
4987 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4988 {
4989         if (is_guest_mode(vcpu)) {
4990                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4991                 unsigned long orig_val = val;
4992
4993                 /* analogously to handle_set_cr0 */
4994                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4995                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4996                 if (kvm_set_cr4(vcpu, val))
4997                         return 1;
4998                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4999                 return 0;
5000         } else
5001                 return kvm_set_cr4(vcpu, val);
5002 }
5003
5004 static int handle_desc(struct kvm_vcpu *vcpu)
5005 {
5006         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5007         return kvm_emulate_instruction(vcpu, 0);
5008 }
5009
5010 static int handle_cr(struct kvm_vcpu *vcpu)
5011 {
5012         unsigned long exit_qualification, val;
5013         int cr;
5014         int reg;
5015         int err;
5016         int ret;
5017
5018         exit_qualification = vmx_get_exit_qual(vcpu);
5019         cr = exit_qualification & 15;
5020         reg = (exit_qualification >> 8) & 15;
5021         switch ((exit_qualification >> 4) & 3) {
5022         case 0: /* mov to cr */
5023                 val = kvm_register_readl(vcpu, reg);
5024                 trace_kvm_cr_write(cr, val);
5025                 switch (cr) {
5026                 case 0:
5027                         err = handle_set_cr0(vcpu, val);
5028                         return kvm_complete_insn_gp(vcpu, err);
5029                 case 3:
5030                         WARN_ON_ONCE(enable_unrestricted_guest);
5031                         err = kvm_set_cr3(vcpu, val);
5032                         return kvm_complete_insn_gp(vcpu, err);
5033                 case 4:
5034                         err = handle_set_cr4(vcpu, val);
5035                         return kvm_complete_insn_gp(vcpu, err);
5036                 case 8: {
5037                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5038                                 u8 cr8 = (u8)val;
5039                                 err = kvm_set_cr8(vcpu, cr8);
5040                                 ret = kvm_complete_insn_gp(vcpu, err);
5041                                 if (lapic_in_kernel(vcpu))
5042                                         return ret;
5043                                 if (cr8_prev <= cr8)
5044                                         return ret;
5045                                 /*
5046                                  * TODO: we might be squashing a
5047                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5048                                  * KVM_EXIT_DEBUG here.
5049                                  */
5050                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5051                                 return 0;
5052                         }
5053                 }
5054                 break;
5055         case 2: /* clts */
5056                 WARN_ONCE(1, "Guest should always own CR0.TS");
5057                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5058                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5059                 return kvm_skip_emulated_instruction(vcpu);
5060         case 1: /*mov from cr*/
5061                 switch (cr) {
5062                 case 3:
5063                         WARN_ON_ONCE(enable_unrestricted_guest);
5064                         val = kvm_read_cr3(vcpu);
5065                         kvm_register_write(vcpu, reg, val);
5066                         trace_kvm_cr_read(cr, val);
5067                         return kvm_skip_emulated_instruction(vcpu);
5068                 case 8:
5069                         val = kvm_get_cr8(vcpu);
5070                         kvm_register_write(vcpu, reg, val);
5071                         trace_kvm_cr_read(cr, val);
5072                         return kvm_skip_emulated_instruction(vcpu);
5073                 }
5074                 break;
5075         case 3: /* lmsw */
5076                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5077                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5078                 kvm_lmsw(vcpu, val);
5079
5080                 return kvm_skip_emulated_instruction(vcpu);
5081         default:
5082                 break;
5083         }
5084         vcpu->run->exit_reason = 0;
5085         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5086                (int)(exit_qualification >> 4) & 3, cr);
5087         return 0;
5088 }
5089
5090 static int handle_dr(struct kvm_vcpu *vcpu)
5091 {
5092         unsigned long exit_qualification;
5093         int dr, dr7, reg;
5094         int err = 1;
5095
5096         exit_qualification = vmx_get_exit_qual(vcpu);
5097         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5098
5099         /* First, if DR does not exist, trigger UD */
5100         if (!kvm_require_dr(vcpu, dr))
5101                 return 1;
5102
5103         if (kvm_x86_ops.get_cpl(vcpu) > 0)
5104                 goto out;
5105
5106         dr7 = vmcs_readl(GUEST_DR7);
5107         if (dr7 & DR7_GD) {
5108                 /*
5109                  * As the vm-exit takes precedence over the debug trap, we
5110                  * need to emulate the latter, either for the host or the
5111                  * guest debugging itself.
5112                  */
5113                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5114                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5115                         vcpu->run->debug.arch.dr7 = dr7;
5116                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5117                         vcpu->run->debug.arch.exception = DB_VECTOR;
5118                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5119                         return 0;
5120                 } else {
5121                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5122                         return 1;
5123                 }
5124         }
5125
5126         if (vcpu->guest_debug == 0) {
5127                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5128
5129                 /*
5130                  * No more DR vmexits; force a reload of the debug registers
5131                  * and reenter on this instruction.  The next vmexit will
5132                  * retrieve the full state of the debug registers.
5133                  */
5134                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5135                 return 1;
5136         }
5137
5138         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5139         if (exit_qualification & TYPE_MOV_FROM_DR) {
5140                 unsigned long val;
5141
5142                 kvm_get_dr(vcpu, dr, &val);
5143                 kvm_register_write(vcpu, reg, val);
5144                 err = 0;
5145         } else {
5146                 err = kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg));
5147         }
5148
5149 out:
5150         return kvm_complete_insn_gp(vcpu, err);
5151 }
5152
5153 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5154 {
5155         get_debugreg(vcpu->arch.db[0], 0);
5156         get_debugreg(vcpu->arch.db[1], 1);
5157         get_debugreg(vcpu->arch.db[2], 2);
5158         get_debugreg(vcpu->arch.db[3], 3);
5159         get_debugreg(vcpu->arch.dr6, 6);
5160         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5161
5162         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5163         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5164 }
5165
5166 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5167 {
5168         vmcs_writel(GUEST_DR7, val);
5169 }
5170
5171 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5172 {
5173         kvm_apic_update_ppr(vcpu);
5174         return 1;
5175 }
5176
5177 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5178 {
5179         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5180
5181         kvm_make_request(KVM_REQ_EVENT, vcpu);
5182
5183         ++vcpu->stat.irq_window_exits;
5184         return 1;
5185 }
5186
5187 static int handle_vmcall(struct kvm_vcpu *vcpu)
5188 {
5189         return kvm_emulate_hypercall(vcpu);
5190 }
5191
5192 static int handle_invd(struct kvm_vcpu *vcpu)
5193 {
5194         /* Treat an INVD instruction as a NOP and just skip it. */
5195         return kvm_skip_emulated_instruction(vcpu);
5196 }
5197
5198 static int handle_invlpg(struct kvm_vcpu *vcpu)
5199 {
5200         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5201
5202         kvm_mmu_invlpg(vcpu, exit_qualification);
5203         return kvm_skip_emulated_instruction(vcpu);
5204 }
5205
5206 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5207 {
5208         int err;
5209
5210         err = kvm_rdpmc(vcpu);
5211         return kvm_complete_insn_gp(vcpu, err);
5212 }
5213
5214 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5215 {
5216         return kvm_emulate_wbinvd(vcpu);
5217 }
5218
5219 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5220 {
5221         u64 new_bv = kvm_read_edx_eax(vcpu);
5222         u32 index = kvm_rcx_read(vcpu);
5223
5224         int err = kvm_set_xcr(vcpu, index, new_bv);
5225         return kvm_complete_insn_gp(vcpu, err);
5226 }
5227
5228 static int handle_apic_access(struct kvm_vcpu *vcpu)
5229 {
5230         if (likely(fasteoi)) {
5231                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5232                 int access_type, offset;
5233
5234                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5235                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5236                 /*
5237                  * Sane guest uses MOV to write EOI, with written value
5238                  * not cared. So make a short-circuit here by avoiding
5239                  * heavy instruction emulation.
5240                  */
5241                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5242                     (offset == APIC_EOI)) {
5243                         kvm_lapic_set_eoi(vcpu);
5244                         return kvm_skip_emulated_instruction(vcpu);
5245                 }
5246         }
5247         return kvm_emulate_instruction(vcpu, 0);
5248 }
5249
5250 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5251 {
5252         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5253         int vector = exit_qualification & 0xff;
5254
5255         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5256         kvm_apic_set_eoi_accelerated(vcpu, vector);
5257         return 1;
5258 }
5259
5260 static int handle_apic_write(struct kvm_vcpu *vcpu)
5261 {
5262         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5263         u32 offset = exit_qualification & 0xfff;
5264
5265         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5266         kvm_apic_write_nodecode(vcpu, offset);
5267         return 1;
5268 }
5269
5270 static int handle_task_switch(struct kvm_vcpu *vcpu)
5271 {
5272         struct vcpu_vmx *vmx = to_vmx(vcpu);
5273         unsigned long exit_qualification;
5274         bool has_error_code = false;
5275         u32 error_code = 0;
5276         u16 tss_selector;
5277         int reason, type, idt_v, idt_index;
5278
5279         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5280         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5281         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5282
5283         exit_qualification = vmx_get_exit_qual(vcpu);
5284
5285         reason = (u32)exit_qualification >> 30;
5286         if (reason == TASK_SWITCH_GATE && idt_v) {
5287                 switch (type) {
5288                 case INTR_TYPE_NMI_INTR:
5289                         vcpu->arch.nmi_injected = false;
5290                         vmx_set_nmi_mask(vcpu, true);
5291                         break;
5292                 case INTR_TYPE_EXT_INTR:
5293                 case INTR_TYPE_SOFT_INTR:
5294                         kvm_clear_interrupt_queue(vcpu);
5295                         break;
5296                 case INTR_TYPE_HARD_EXCEPTION:
5297                         if (vmx->idt_vectoring_info &
5298                             VECTORING_INFO_DELIVER_CODE_MASK) {
5299                                 has_error_code = true;
5300                                 error_code =
5301                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5302                         }
5303                         fallthrough;
5304                 case INTR_TYPE_SOFT_EXCEPTION:
5305                         kvm_clear_exception_queue(vcpu);
5306                         break;
5307                 default:
5308                         break;
5309                 }
5310         }
5311         tss_selector = exit_qualification;
5312
5313         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5314                        type != INTR_TYPE_EXT_INTR &&
5315                        type != INTR_TYPE_NMI_INTR))
5316                 WARN_ON(!skip_emulated_instruction(vcpu));
5317
5318         /*
5319          * TODO: What about debug traps on tss switch?
5320          *       Are we supposed to inject them and update dr6?
5321          */
5322         return kvm_task_switch(vcpu, tss_selector,
5323                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5324                                reason, has_error_code, error_code);
5325 }
5326
5327 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5328 {
5329         unsigned long exit_qualification;
5330         gpa_t gpa;
5331         u64 error_code;
5332
5333         exit_qualification = vmx_get_exit_qual(vcpu);
5334
5335         /*
5336          * EPT violation happened while executing iret from NMI,
5337          * "blocked by NMI" bit has to be set before next VM entry.
5338          * There are errata that may cause this bit to not be set:
5339          * AAK134, BY25.
5340          */
5341         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5342                         enable_vnmi &&
5343                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5344                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5345
5346         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5347         trace_kvm_page_fault(gpa, exit_qualification);
5348
5349         /* Is it a read fault? */
5350         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5351                      ? PFERR_USER_MASK : 0;
5352         /* Is it a write fault? */
5353         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5354                       ? PFERR_WRITE_MASK : 0;
5355         /* Is it a fetch fault? */
5356         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5357                       ? PFERR_FETCH_MASK : 0;
5358         /* ept page table entry is present? */
5359         error_code |= (exit_qualification &
5360                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5361                         EPT_VIOLATION_EXECUTABLE))
5362                       ? PFERR_PRESENT_MASK : 0;
5363
5364         error_code |= (exit_qualification & 0x100) != 0 ?
5365                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5366
5367         vcpu->arch.exit_qualification = exit_qualification;
5368
5369         /*
5370          * Check that the GPA doesn't exceed physical memory limits, as that is
5371          * a guest page fault.  We have to emulate the instruction here, because
5372          * if the illegal address is that of a paging structure, then
5373          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5374          * would also use advanced VM-exit information for EPT violations to
5375          * reconstruct the page fault error code.
5376          */
5377         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5378                 return kvm_emulate_instruction(vcpu, 0);
5379
5380         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5381 }
5382
5383 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5384 {
5385         gpa_t gpa;
5386
5387         /*
5388          * A nested guest cannot optimize MMIO vmexits, because we have an
5389          * nGPA here instead of the required GPA.
5390          */
5391         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5392         if (!is_guest_mode(vcpu) &&
5393             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5394                 trace_kvm_fast_mmio(gpa);
5395                 return kvm_skip_emulated_instruction(vcpu);
5396         }
5397
5398         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5399 }
5400
5401 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5402 {
5403         WARN_ON_ONCE(!enable_vnmi);
5404         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5405         ++vcpu->stat.nmi_window_exits;
5406         kvm_make_request(KVM_REQ_EVENT, vcpu);
5407
5408         return 1;
5409 }
5410
5411 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5412 {
5413         struct vcpu_vmx *vmx = to_vmx(vcpu);
5414         bool intr_window_requested;
5415         unsigned count = 130;
5416
5417         intr_window_requested = exec_controls_get(vmx) &
5418                                 CPU_BASED_INTR_WINDOW_EXITING;
5419
5420         while (vmx->emulation_required && count-- != 0) {
5421                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5422                         return handle_interrupt_window(&vmx->vcpu);
5423
5424                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5425                         return 1;
5426
5427                 if (!kvm_emulate_instruction(vcpu, 0))
5428                         return 0;
5429
5430                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5431                     vcpu->arch.exception.pending) {
5432                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5433                         vcpu->run->internal.suberror =
5434                                                 KVM_INTERNAL_ERROR_EMULATION;
5435                         vcpu->run->internal.ndata = 0;
5436                         return 0;
5437                 }
5438
5439                 if (vcpu->arch.halt_request) {
5440                         vcpu->arch.halt_request = 0;
5441                         return kvm_vcpu_halt(vcpu);
5442                 }
5443
5444                 /*
5445                  * Note, return 1 and not 0, vcpu_run() will invoke
5446                  * xfer_to_guest_mode() which will create a proper return
5447                  * code.
5448                  */
5449                 if (__xfer_to_guest_mode_work_pending())
5450                         return 1;
5451         }
5452
5453         return 1;
5454 }
5455
5456 static void grow_ple_window(struct kvm_vcpu *vcpu)
5457 {
5458         struct vcpu_vmx *vmx = to_vmx(vcpu);
5459         unsigned int old = vmx->ple_window;
5460
5461         vmx->ple_window = __grow_ple_window(old, ple_window,
5462                                             ple_window_grow,
5463                                             ple_window_max);
5464
5465         if (vmx->ple_window != old) {
5466                 vmx->ple_window_dirty = true;
5467                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5468                                             vmx->ple_window, old);
5469         }
5470 }
5471
5472 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5473 {
5474         struct vcpu_vmx *vmx = to_vmx(vcpu);
5475         unsigned int old = vmx->ple_window;
5476
5477         vmx->ple_window = __shrink_ple_window(old, ple_window,
5478                                               ple_window_shrink,
5479                                               ple_window);
5480
5481         if (vmx->ple_window != old) {
5482                 vmx->ple_window_dirty = true;
5483                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5484                                             vmx->ple_window, old);
5485         }
5486 }
5487
5488 static void vmx_enable_tdp(void)
5489 {
5490         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5491                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5492                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5493                 0ull, VMX_EPT_EXECUTABLE_MASK,
5494                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5495                 VMX_EPT_RWX_MASK, 0ull);
5496
5497         ept_set_mmio_spte_mask();
5498 }
5499
5500 /*
5501  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5502  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5503  */
5504 static int handle_pause(struct kvm_vcpu *vcpu)
5505 {
5506         if (!kvm_pause_in_guest(vcpu->kvm))
5507                 grow_ple_window(vcpu);
5508
5509         /*
5510          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5511          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5512          * never set PAUSE_EXITING and just set PLE if supported,
5513          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5514          */
5515         kvm_vcpu_on_spin(vcpu, true);
5516         return kvm_skip_emulated_instruction(vcpu);
5517 }
5518
5519 static int handle_nop(struct kvm_vcpu *vcpu)
5520 {
5521         return kvm_skip_emulated_instruction(vcpu);
5522 }
5523
5524 static int handle_mwait(struct kvm_vcpu *vcpu)
5525 {
5526         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5527         return handle_nop(vcpu);
5528 }
5529
5530 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5531 {
5532         kvm_queue_exception(vcpu, UD_VECTOR);
5533         return 1;
5534 }
5535
5536 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5537 {
5538         return 1;
5539 }
5540
5541 static int handle_monitor(struct kvm_vcpu *vcpu)
5542 {
5543         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5544         return handle_nop(vcpu);
5545 }
5546
5547 static int handle_invpcid(struct kvm_vcpu *vcpu)
5548 {
5549         u32 vmx_instruction_info;
5550         unsigned long type;
5551         gva_t gva;
5552         struct {
5553                 u64 pcid;
5554                 u64 gla;
5555         } operand;
5556
5557         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5558                 kvm_queue_exception(vcpu, UD_VECTOR);
5559                 return 1;
5560         }
5561
5562         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5563         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5564
5565         if (type > 3) {
5566                 kvm_inject_gp(vcpu, 0);
5567                 return 1;
5568         }
5569
5570         /* According to the Intel instruction reference, the memory operand
5571          * is read even if it isn't needed (e.g., for type==all)
5572          */
5573         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5574                                 vmx_instruction_info, false,
5575                                 sizeof(operand), &gva))
5576                 return 1;
5577
5578         return kvm_handle_invpcid(vcpu, type, gva);
5579 }
5580
5581 static int handle_pml_full(struct kvm_vcpu *vcpu)
5582 {
5583         unsigned long exit_qualification;
5584
5585         trace_kvm_pml_full(vcpu->vcpu_id);
5586
5587         exit_qualification = vmx_get_exit_qual(vcpu);
5588
5589         /*
5590          * PML buffer FULL happened while executing iret from NMI,
5591          * "blocked by NMI" bit has to be set before next VM entry.
5592          */
5593         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5594                         enable_vnmi &&
5595                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5596                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5597                                 GUEST_INTR_STATE_NMI);
5598
5599         /*
5600          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5601          * here.., and there's no userspace involvement needed for PML.
5602          */
5603         return 1;
5604 }
5605
5606 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5607 {
5608         struct vcpu_vmx *vmx = to_vmx(vcpu);
5609
5610         if (!vmx->req_immediate_exit &&
5611             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5612                 kvm_lapic_expired_hv_timer(vcpu);
5613                 return EXIT_FASTPATH_REENTER_GUEST;
5614         }
5615
5616         return EXIT_FASTPATH_NONE;
5617 }
5618
5619 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5620 {
5621         handle_fastpath_preemption_timer(vcpu);
5622         return 1;
5623 }
5624
5625 /*
5626  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5627  * are overwritten by nested_vmx_setup() when nested=1.
5628  */
5629 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5630 {
5631         kvm_queue_exception(vcpu, UD_VECTOR);
5632         return 1;
5633 }
5634
5635 static int handle_encls(struct kvm_vcpu *vcpu)
5636 {
5637         /*
5638          * SGX virtualization is not yet supported.  There is no software
5639          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5640          * to prevent the guest from executing ENCLS.
5641          */
5642         kvm_queue_exception(vcpu, UD_VECTOR);
5643         return 1;
5644 }
5645
5646 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5647 {
5648         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5649         vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5650         return 0;
5651 }
5652
5653 /*
5654  * The exit handlers return 1 if the exit was handled fully and guest execution
5655  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5656  * to be done to userspace and return 0.
5657  */
5658 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5659         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5660         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5661         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5662         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5663         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5664         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5665         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5666         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5667         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5668         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5669         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5670         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5671         [EXIT_REASON_INVD]                    = handle_invd,
5672         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5673         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5674         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5675         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5676         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5677         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5678         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5679         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5680         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5681         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5682         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5683         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5684         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5685         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5686         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5687         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5688         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5689         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5690         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5691         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5692         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5693         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5694         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5695         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5696         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5697         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5698         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5699         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5700         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5701         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5702         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5703         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5704         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5705         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5706         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5707         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5708         [EXIT_REASON_ENCLS]                   = handle_encls,
5709         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5710 };
5711
5712 static const int kvm_vmx_max_exit_handlers =
5713         ARRAY_SIZE(kvm_vmx_exit_handlers);
5714
5715 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5716                               u32 *intr_info, u32 *error_code)
5717 {
5718         struct vcpu_vmx *vmx = to_vmx(vcpu);
5719
5720         *info1 = vmx_get_exit_qual(vcpu);
5721         if (!(vmx->exit_reason.failed_vmentry)) {
5722                 *info2 = vmx->idt_vectoring_info;
5723                 *intr_info = vmx_get_intr_info(vcpu);
5724                 if (is_exception_with_error_code(*intr_info))
5725                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5726                 else
5727                         *error_code = 0;
5728         } else {
5729                 *info2 = 0;
5730                 *intr_info = 0;
5731                 *error_code = 0;
5732         }
5733 }
5734
5735 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5736 {
5737         if (vmx->pml_pg) {
5738                 __free_page(vmx->pml_pg);
5739                 vmx->pml_pg = NULL;
5740         }
5741 }
5742
5743 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5744 {
5745         struct vcpu_vmx *vmx = to_vmx(vcpu);
5746         u64 *pml_buf;
5747         u16 pml_idx;
5748
5749         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5750
5751         /* Do nothing if PML buffer is empty */
5752         if (pml_idx == (PML_ENTITY_NUM - 1))
5753                 return;
5754
5755         /* PML index always points to next available PML buffer entity */
5756         if (pml_idx >= PML_ENTITY_NUM)
5757                 pml_idx = 0;
5758         else
5759                 pml_idx++;
5760
5761         pml_buf = page_address(vmx->pml_pg);
5762         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5763                 u64 gpa;
5764
5765                 gpa = pml_buf[pml_idx];
5766                 WARN_ON(gpa & (PAGE_SIZE - 1));
5767                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5768         }
5769
5770         /* reset PML index */
5771         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5772 }
5773
5774 static void vmx_dump_sel(char *name, uint32_t sel)
5775 {
5776         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5777                name, vmcs_read16(sel),
5778                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5779                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5780                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5781 }
5782
5783 static void vmx_dump_dtsel(char *name, uint32_t limit)
5784 {
5785         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5786                name, vmcs_read32(limit),
5787                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5788 }
5789
5790 void dump_vmcs(void)
5791 {
5792         u32 vmentry_ctl, vmexit_ctl;
5793         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5794         unsigned long cr4;
5795         u64 efer;
5796
5797         if (!dump_invalid_vmcs) {
5798                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5799                 return;
5800         }
5801
5802         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5803         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5804         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5805         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5806         cr4 = vmcs_readl(GUEST_CR4);
5807         efer = vmcs_read64(GUEST_IA32_EFER);
5808         secondary_exec_control = 0;
5809         if (cpu_has_secondary_exec_ctrls())
5810                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5811
5812         pr_err("*** Guest State ***\n");
5813         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5814                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5815                vmcs_readl(CR0_GUEST_HOST_MASK));
5816         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5817                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5818         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5819         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5820             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5821         {
5822                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5823                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5824                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5825                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5826         }
5827         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5828                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5829         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5830                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5831         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5832                vmcs_readl(GUEST_SYSENTER_ESP),
5833                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5834         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5835         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5836         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5837         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5838         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5839         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5840         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5841         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5842         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5843         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5844         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5845             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5846                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5847                        efer, vmcs_read64(GUEST_IA32_PAT));
5848         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5849                vmcs_read64(GUEST_IA32_DEBUGCTL),
5850                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5851         if (cpu_has_load_perf_global_ctrl() &&
5852             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5853                 pr_err("PerfGlobCtl = 0x%016llx\n",
5854                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5855         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5856                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5857         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5858                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5859                vmcs_read32(GUEST_ACTIVITY_STATE));
5860         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5861                 pr_err("InterruptStatus = %04x\n",
5862                        vmcs_read16(GUEST_INTR_STATUS));
5863
5864         pr_err("*** Host State ***\n");
5865         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5866                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5867         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5868                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5869                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5870                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5871                vmcs_read16(HOST_TR_SELECTOR));
5872         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5873                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5874                vmcs_readl(HOST_TR_BASE));
5875         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5876                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5877         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5878                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5879                vmcs_readl(HOST_CR4));
5880         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5881                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5882                vmcs_read32(HOST_IA32_SYSENTER_CS),
5883                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5884         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5885                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5886                        vmcs_read64(HOST_IA32_EFER),
5887                        vmcs_read64(HOST_IA32_PAT));
5888         if (cpu_has_load_perf_global_ctrl() &&
5889             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5890                 pr_err("PerfGlobCtl = 0x%016llx\n",
5891                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5892
5893         pr_err("*** Control State ***\n");
5894         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5895                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5896         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5897         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5898                vmcs_read32(EXCEPTION_BITMAP),
5899                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5900                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5901         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5902                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5903                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5904                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5905         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5906                vmcs_read32(VM_EXIT_INTR_INFO),
5907                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5908                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5909         pr_err("        reason=%08x qualification=%016lx\n",
5910                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5911         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5912                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5913                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5914         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5915         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5916                 pr_err("TSC Multiplier = 0x%016llx\n",
5917                        vmcs_read64(TSC_MULTIPLIER));
5918         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5919                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5920                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5921                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5922                 }
5923                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5924                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5925                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5926                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5927         }
5928         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5929                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5930         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5931                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5932         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5933                 pr_err("PLE Gap=%08x Window=%08x\n",
5934                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5935         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5936                 pr_err("Virtual processor ID = 0x%04x\n",
5937                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5938 }
5939
5940 /*
5941  * The guest has exited.  See if we can fix it or if we need userspace
5942  * assistance.
5943  */
5944 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5945 {
5946         struct vcpu_vmx *vmx = to_vmx(vcpu);
5947         union vmx_exit_reason exit_reason = vmx->exit_reason;
5948         u32 vectoring_info = vmx->idt_vectoring_info;
5949         u16 exit_handler_index;
5950
5951         /*
5952          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5953          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5954          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5955          * mode as if vcpus is in root mode, the PML buffer must has been
5956          * flushed already.  Note, PML is never enabled in hardware while
5957          * running L2.
5958          */
5959         if (enable_pml && !is_guest_mode(vcpu))
5960                 vmx_flush_pml_buffer(vcpu);
5961
5962         /*
5963          * We should never reach this point with a pending nested VM-Enter, and
5964          * more specifically emulation of L2 due to invalid guest state (see
5965          * below) should never happen as that means we incorrectly allowed a
5966          * nested VM-Enter with an invalid vmcs12.
5967          */
5968         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5969
5970         /* If guest state is invalid, start emulating */
5971         if (vmx->emulation_required)
5972                 return handle_invalid_guest_state(vcpu);
5973
5974         if (is_guest_mode(vcpu)) {
5975                 /*
5976                  * PML is never enabled when running L2, bail immediately if a
5977                  * PML full exit occurs as something is horribly wrong.
5978                  */
5979                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5980                         goto unexpected_vmexit;
5981
5982                 /*
5983                  * The host physical addresses of some pages of guest memory
5984                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5985                  * Page). The CPU may write to these pages via their host
5986                  * physical address while L2 is running, bypassing any
5987                  * address-translation-based dirty tracking (e.g. EPT write
5988                  * protection).
5989                  *
5990                  * Mark them dirty on every exit from L2 to prevent them from
5991                  * getting out of sync with dirty tracking.
5992                  */
5993                 nested_mark_vmcs12_pages_dirty(vcpu);
5994
5995                 if (nested_vmx_reflect_vmexit(vcpu))
5996                         return 1;
5997         }
5998
5999         if (exit_reason.failed_vmentry) {
6000                 dump_vmcs();
6001                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6002                 vcpu->run->fail_entry.hardware_entry_failure_reason
6003                         = exit_reason.full;
6004                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6005                 return 0;
6006         }
6007
6008         if (unlikely(vmx->fail)) {
6009                 dump_vmcs();
6010                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6011                 vcpu->run->fail_entry.hardware_entry_failure_reason
6012                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6013                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6014                 return 0;
6015         }
6016
6017         /*
6018          * Note:
6019          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6020          * delivery event since it indicates guest is accessing MMIO.
6021          * The vm-exit can be triggered again after return to guest that
6022          * will cause infinite loop.
6023          */
6024         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6025             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6026              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6027              exit_reason.basic != EXIT_REASON_PML_FULL &&
6028              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6029              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6030                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6031                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6032                 vcpu->run->internal.ndata = 3;
6033                 vcpu->run->internal.data[0] = vectoring_info;
6034                 vcpu->run->internal.data[1] = exit_reason.full;
6035                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6036                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6037                         vcpu->run->internal.ndata++;
6038                         vcpu->run->internal.data[3] =
6039                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6040                 }
6041                 vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6042                         vcpu->arch.last_vmentry_cpu;
6043                 return 0;
6044         }
6045
6046         if (unlikely(!enable_vnmi &&
6047                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6048                 if (!vmx_interrupt_blocked(vcpu)) {
6049                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6050                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6051                            vcpu->arch.nmi_pending) {
6052                         /*
6053                          * This CPU don't support us in finding the end of an
6054                          * NMI-blocked window if the guest runs with IRQs
6055                          * disabled. So we pull the trigger after 1 s of
6056                          * futile waiting, but inform the user about this.
6057                          */
6058                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6059                                "state on VCPU %d after 1 s timeout\n",
6060                                __func__, vcpu->vcpu_id);
6061                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6062                 }
6063         }
6064
6065         if (exit_fastpath != EXIT_FASTPATH_NONE)
6066                 return 1;
6067
6068         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6069                 goto unexpected_vmexit;
6070 #ifdef CONFIG_RETPOLINE
6071         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6072                 return kvm_emulate_wrmsr(vcpu);
6073         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6074                 return handle_preemption_timer(vcpu);
6075         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6076                 return handle_interrupt_window(vcpu);
6077         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6078                 return handle_external_interrupt(vcpu);
6079         else if (exit_reason.basic == EXIT_REASON_HLT)
6080                 return kvm_emulate_halt(vcpu);
6081         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6082                 return handle_ept_misconfig(vcpu);
6083 #endif
6084
6085         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6086                                                 kvm_vmx_max_exit_handlers);
6087         if (!kvm_vmx_exit_handlers[exit_handler_index])
6088                 goto unexpected_vmexit;
6089
6090         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6091
6092 unexpected_vmexit:
6093         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6094                     exit_reason.full);
6095         dump_vmcs();
6096         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6097         vcpu->run->internal.suberror =
6098                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6099         vcpu->run->internal.ndata = 2;
6100         vcpu->run->internal.data[0] = exit_reason.full;
6101         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6102         return 0;
6103 }
6104
6105 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6106 {
6107         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6108
6109         /*
6110          * Even when current exit reason is handled by KVM internally, we
6111          * still need to exit to user space when bus lock detected to inform
6112          * that there is a bus lock in guest.
6113          */
6114         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6115                 if (ret > 0)
6116                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6117
6118                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6119                 return 0;
6120         }
6121         return ret;
6122 }
6123
6124 /*
6125  * Software based L1D cache flush which is used when microcode providing
6126  * the cache control MSR is not loaded.
6127  *
6128  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6129  * flush it is required to read in 64 KiB because the replacement algorithm
6130  * is not exactly LRU. This could be sized at runtime via topology
6131  * information but as all relevant affected CPUs have 32KiB L1D cache size
6132  * there is no point in doing so.
6133  */
6134 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6135 {
6136         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6137
6138         /*
6139          * This code is only executed when the the flush mode is 'cond' or
6140          * 'always'
6141          */
6142         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6143                 bool flush_l1d;
6144
6145                 /*
6146                  * Clear the per-vcpu flush bit, it gets set again
6147                  * either from vcpu_run() or from one of the unsafe
6148                  * VMEXIT handlers.
6149                  */
6150                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6151                 vcpu->arch.l1tf_flush_l1d = false;
6152
6153                 /*
6154                  * Clear the per-cpu flush bit, it gets set again from
6155                  * the interrupt handlers.
6156                  */
6157                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6158                 kvm_clear_cpu_l1tf_flush_l1d();
6159
6160                 if (!flush_l1d)
6161                         return;
6162         }
6163
6164         vcpu->stat.l1d_flush++;
6165
6166         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6167                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6168                 return;
6169         }
6170
6171         asm volatile(
6172                 /* First ensure the pages are in the TLB */
6173                 "xorl   %%eax, %%eax\n"
6174                 ".Lpopulate_tlb:\n\t"
6175                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6176                 "addl   $4096, %%eax\n\t"
6177                 "cmpl   %%eax, %[size]\n\t"
6178                 "jne    .Lpopulate_tlb\n\t"
6179                 "xorl   %%eax, %%eax\n\t"
6180                 "cpuid\n\t"
6181                 /* Now fill the cache */
6182                 "xorl   %%eax, %%eax\n"
6183                 ".Lfill_cache:\n"
6184                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6185                 "addl   $64, %%eax\n\t"
6186                 "cmpl   %%eax, %[size]\n\t"
6187                 "jne    .Lfill_cache\n\t"
6188                 "lfence\n"
6189                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6190                     [size] "r" (size)
6191                 : "eax", "ebx", "ecx", "edx");
6192 }
6193
6194 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6195 {
6196         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6197         int tpr_threshold;
6198
6199         if (is_guest_mode(vcpu) &&
6200                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6201                 return;
6202
6203         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6204         if (is_guest_mode(vcpu))
6205                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6206         else
6207                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6208 }
6209
6210 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6211 {
6212         struct vcpu_vmx *vmx = to_vmx(vcpu);
6213         u32 sec_exec_control;
6214
6215         if (!lapic_in_kernel(vcpu))
6216                 return;
6217
6218         if (!flexpriority_enabled &&
6219             !cpu_has_vmx_virtualize_x2apic_mode())
6220                 return;
6221
6222         /* Postpone execution until vmcs01 is the current VMCS. */
6223         if (is_guest_mode(vcpu)) {
6224                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6225                 return;
6226         }
6227
6228         sec_exec_control = secondary_exec_controls_get(vmx);
6229         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6230                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6231
6232         switch (kvm_get_apic_mode(vcpu)) {
6233         case LAPIC_MODE_INVALID:
6234                 WARN_ONCE(true, "Invalid local APIC state");
6235         case LAPIC_MODE_DISABLED:
6236                 break;
6237         case LAPIC_MODE_XAPIC:
6238                 if (flexpriority_enabled) {
6239                         sec_exec_control |=
6240                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6241                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6242
6243                         /*
6244                          * Flush the TLB, reloading the APIC access page will
6245                          * only do so if its physical address has changed, but
6246                          * the guest may have inserted a non-APIC mapping into
6247                          * the TLB while the APIC access page was disabled.
6248                          */
6249                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6250                 }
6251                 break;
6252         case LAPIC_MODE_X2APIC:
6253                 if (cpu_has_vmx_virtualize_x2apic_mode())
6254                         sec_exec_control |=
6255                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6256                 break;
6257         }
6258         secondary_exec_controls_set(vmx, sec_exec_control);
6259
6260         vmx_update_msr_bitmap(vcpu);
6261 }
6262
6263 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6264 {
6265         struct page *page;
6266
6267         /* Defer reload until vmcs01 is the current VMCS. */
6268         if (is_guest_mode(vcpu)) {
6269                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6270                 return;
6271         }
6272
6273         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6274             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6275                 return;
6276
6277         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6278         if (is_error_page(page))
6279                 return;
6280
6281         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6282         vmx_flush_tlb_current(vcpu);
6283
6284         /*
6285          * Do not pin apic access page in memory, the MMU notifier
6286          * will call us again if it is migrated or swapped out.
6287          */
6288         put_page(page);
6289 }
6290
6291 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6292 {
6293         u16 status;
6294         u8 old;
6295
6296         if (max_isr == -1)
6297                 max_isr = 0;
6298
6299         status = vmcs_read16(GUEST_INTR_STATUS);
6300         old = status >> 8;
6301         if (max_isr != old) {
6302                 status &= 0xff;
6303                 status |= max_isr << 8;
6304                 vmcs_write16(GUEST_INTR_STATUS, status);
6305         }
6306 }
6307
6308 static void vmx_set_rvi(int vector)
6309 {
6310         u16 status;
6311         u8 old;
6312
6313         if (vector == -1)
6314                 vector = 0;
6315
6316         status = vmcs_read16(GUEST_INTR_STATUS);
6317         old = (u8)status & 0xff;
6318         if ((u8)vector != old) {
6319                 status &= ~0xff;
6320                 status |= (u8)vector;
6321                 vmcs_write16(GUEST_INTR_STATUS, status);
6322         }
6323 }
6324
6325 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6326 {
6327         /*
6328          * When running L2, updating RVI is only relevant when
6329          * vmcs12 virtual-interrupt-delivery enabled.
6330          * However, it can be enabled only when L1 also
6331          * intercepts external-interrupts and in that case
6332          * we should not update vmcs02 RVI but instead intercept
6333          * interrupt. Therefore, do nothing when running L2.
6334          */
6335         if (!is_guest_mode(vcpu))
6336                 vmx_set_rvi(max_irr);
6337 }
6338
6339 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6340 {
6341         struct vcpu_vmx *vmx = to_vmx(vcpu);
6342         int max_irr;
6343         bool max_irr_updated;
6344
6345         WARN_ON(!vcpu->arch.apicv_active);
6346         if (pi_test_on(&vmx->pi_desc)) {
6347                 pi_clear_on(&vmx->pi_desc);
6348                 /*
6349                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6350                  * But on x86 this is just a compiler barrier anyway.
6351                  */
6352                 smp_mb__after_atomic();
6353                 max_irr_updated =
6354                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6355
6356                 /*
6357                  * If we are running L2 and L1 has a new pending interrupt
6358                  * which can be injected, we should re-evaluate
6359                  * what should be done with this new L1 interrupt.
6360                  * If L1 intercepts external-interrupts, we should
6361                  * exit from L2 to L1. Otherwise, interrupt should be
6362                  * delivered directly to L2.
6363                  */
6364                 if (is_guest_mode(vcpu) && max_irr_updated) {
6365                         if (nested_exit_on_intr(vcpu))
6366                                 kvm_vcpu_exiting_guest_mode(vcpu);
6367                         else
6368                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6369                 }
6370         } else {
6371                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6372         }
6373         vmx_hwapic_irr_update(vcpu, max_irr);
6374         return max_irr;
6375 }
6376
6377 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6378 {
6379         if (!kvm_vcpu_apicv_active(vcpu))
6380                 return;
6381
6382         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6383         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6384         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6385         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6386 }
6387
6388 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6389 {
6390         struct vcpu_vmx *vmx = to_vmx(vcpu);
6391
6392         pi_clear_on(&vmx->pi_desc);
6393         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6394 }
6395
6396 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6397
6398 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6399 {
6400         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6401         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6402
6403         kvm_before_interrupt(vcpu);
6404         vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6405         kvm_after_interrupt(vcpu);
6406 }
6407
6408 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6409 {
6410         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6411
6412         /* if exit due to PF check for async PF */
6413         if (is_page_fault(intr_info))
6414                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6415         /* Handle machine checks before interrupts are enabled */
6416         else if (is_machine_check(intr_info))
6417                 kvm_machine_check();
6418         /* We need to handle NMIs before interrupts are enabled */
6419         else if (is_nmi(intr_info))
6420                 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6421 }
6422
6423 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6424 {
6425         u32 intr_info = vmx_get_intr_info(vcpu);
6426
6427         if (WARN_ONCE(!is_external_intr(intr_info),
6428             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6429                 return;
6430
6431         handle_interrupt_nmi_irqoff(vcpu, intr_info);
6432 }
6433
6434 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6435 {
6436         struct vcpu_vmx *vmx = to_vmx(vcpu);
6437
6438         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6439                 handle_external_interrupt_irqoff(vcpu);
6440         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6441                 handle_exception_nmi_irqoff(vmx);
6442 }
6443
6444 /*
6445  * The kvm parameter can be NULL (module initialization, or invocation before
6446  * VM creation). Be sure to check the kvm parameter before using it.
6447  */
6448 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6449 {
6450         switch (index) {
6451         case MSR_IA32_SMBASE:
6452                 /*
6453                  * We cannot do SMM unless we can run the guest in big
6454                  * real mode.
6455                  */
6456                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6457         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6458                 return nested;
6459         case MSR_AMD64_VIRT_SPEC_CTRL:
6460                 /* This is AMD only.  */
6461                 return false;
6462         default:
6463                 return true;
6464         }
6465 }
6466
6467 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6468 {
6469         u32 exit_intr_info;
6470         bool unblock_nmi;
6471         u8 vector;
6472         bool idtv_info_valid;
6473
6474         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6475
6476         if (enable_vnmi) {
6477                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6478                         return;
6479
6480                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6481                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6482                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6483                 /*
6484                  * SDM 3: 27.7.1.2 (September 2008)
6485                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6486                  * a guest IRET fault.
6487                  * SDM 3: 23.2.2 (September 2008)
6488                  * Bit 12 is undefined in any of the following cases:
6489                  *  If the VM exit sets the valid bit in the IDT-vectoring
6490                  *   information field.
6491                  *  If the VM exit is due to a double fault.
6492                  */
6493                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6494                     vector != DF_VECTOR && !idtv_info_valid)
6495                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6496                                       GUEST_INTR_STATE_NMI);
6497                 else
6498                         vmx->loaded_vmcs->nmi_known_unmasked =
6499                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6500                                   & GUEST_INTR_STATE_NMI);
6501         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6502                 vmx->loaded_vmcs->vnmi_blocked_time +=
6503                         ktime_to_ns(ktime_sub(ktime_get(),
6504                                               vmx->loaded_vmcs->entry_time));
6505 }
6506
6507 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6508                                       u32 idt_vectoring_info,
6509                                       int instr_len_field,
6510                                       int error_code_field)
6511 {
6512         u8 vector;
6513         int type;
6514         bool idtv_info_valid;
6515
6516         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6517
6518         vcpu->arch.nmi_injected = false;
6519         kvm_clear_exception_queue(vcpu);
6520         kvm_clear_interrupt_queue(vcpu);
6521
6522         if (!idtv_info_valid)
6523                 return;
6524
6525         kvm_make_request(KVM_REQ_EVENT, vcpu);
6526
6527         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6528         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6529
6530         switch (type) {
6531         case INTR_TYPE_NMI_INTR:
6532                 vcpu->arch.nmi_injected = true;
6533                 /*
6534                  * SDM 3: 27.7.1.2 (September 2008)
6535                  * Clear bit "block by NMI" before VM entry if a NMI
6536                  * delivery faulted.
6537                  */
6538                 vmx_set_nmi_mask(vcpu, false);
6539                 break;
6540         case INTR_TYPE_SOFT_EXCEPTION:
6541                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6542                 fallthrough;
6543         case INTR_TYPE_HARD_EXCEPTION:
6544                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6545                         u32 err = vmcs_read32(error_code_field);
6546                         kvm_requeue_exception_e(vcpu, vector, err);
6547                 } else
6548                         kvm_requeue_exception(vcpu, vector);
6549                 break;
6550         case INTR_TYPE_SOFT_INTR:
6551                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6552                 fallthrough;
6553         case INTR_TYPE_EXT_INTR:
6554                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6555                 break;
6556         default:
6557                 break;
6558         }
6559 }
6560
6561 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6562 {
6563         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6564                                   VM_EXIT_INSTRUCTION_LEN,
6565                                   IDT_VECTORING_ERROR_CODE);
6566 }
6567
6568 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6569 {
6570         __vmx_complete_interrupts(vcpu,
6571                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6572                                   VM_ENTRY_INSTRUCTION_LEN,
6573                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6574
6575         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6576 }
6577
6578 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6579 {
6580         int i, nr_msrs;
6581         struct perf_guest_switch_msr *msrs;
6582
6583         msrs = perf_guest_get_msrs(&nr_msrs);
6584
6585         if (!msrs)
6586                 return;
6587
6588         for (i = 0; i < nr_msrs; i++)
6589                 if (msrs[i].host == msrs[i].guest)
6590                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6591                 else
6592                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6593                                         msrs[i].host, false);
6594 }
6595
6596 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6597 {
6598         struct vcpu_vmx *vmx = to_vmx(vcpu);
6599         u64 tscl;
6600         u32 delta_tsc;
6601
6602         if (vmx->req_immediate_exit) {
6603                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6604                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6605         } else if (vmx->hv_deadline_tsc != -1) {
6606                 tscl = rdtsc();
6607                 if (vmx->hv_deadline_tsc > tscl)
6608                         /* set_hv_timer ensures the delta fits in 32-bits */
6609                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6610                                 cpu_preemption_timer_multi);
6611                 else
6612                         delta_tsc = 0;
6613
6614                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6615                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6616         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6617                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6618                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6619         }
6620 }
6621
6622 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6623 {
6624         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6625                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6626                 vmcs_writel(HOST_RSP, host_rsp);
6627         }
6628 }
6629
6630 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6631 {
6632         switch (to_vmx(vcpu)->exit_reason.basic) {
6633         case EXIT_REASON_MSR_WRITE:
6634                 return handle_fastpath_set_msr_irqoff(vcpu);
6635         case EXIT_REASON_PREEMPTION_TIMER:
6636                 return handle_fastpath_preemption_timer(vcpu);
6637         default:
6638                 return EXIT_FASTPATH_NONE;
6639         }
6640 }
6641
6642 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6643                                         struct vcpu_vmx *vmx)
6644 {
6645         /*
6646          * VMENTER enables interrupts (host state), but the kernel state is
6647          * interrupts disabled when this is invoked. Also tell RCU about
6648          * it. This is the same logic as for exit_to_user_mode().
6649          *
6650          * This ensures that e.g. latency analysis on the host observes
6651          * guest mode as interrupt enabled.
6652          *
6653          * guest_enter_irqoff() informs context tracking about the
6654          * transition to guest mode and if enabled adjusts RCU state
6655          * accordingly.
6656          */
6657         instrumentation_begin();
6658         trace_hardirqs_on_prepare();
6659         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6660         instrumentation_end();
6661
6662         guest_enter_irqoff();
6663         lockdep_hardirqs_on(CALLER_ADDR0);
6664
6665         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6666         if (static_branch_unlikely(&vmx_l1d_should_flush))
6667                 vmx_l1d_flush(vcpu);
6668         else if (static_branch_unlikely(&mds_user_clear))
6669                 mds_clear_cpu_buffers();
6670
6671         if (vcpu->arch.cr2 != native_read_cr2())
6672                 native_write_cr2(vcpu->arch.cr2);
6673
6674         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6675                                    vmx->loaded_vmcs->launched);
6676
6677         vcpu->arch.cr2 = native_read_cr2();
6678
6679         /*
6680          * VMEXIT disables interrupts (host state), but tracing and lockdep
6681          * have them in state 'on' as recorded before entering guest mode.
6682          * Same as enter_from_user_mode().
6683          *
6684          * guest_exit_irqoff() restores host context and reinstates RCU if
6685          * enabled and required.
6686          *
6687          * This needs to be done before the below as native_read_msr()
6688          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6689          * into world and some more.
6690          */
6691         lockdep_hardirqs_off(CALLER_ADDR0);
6692         guest_exit_irqoff();
6693
6694         instrumentation_begin();
6695         trace_hardirqs_off_finish();
6696         instrumentation_end();
6697 }
6698
6699 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6700 {
6701         struct vcpu_vmx *vmx = to_vmx(vcpu);
6702         unsigned long cr3, cr4;
6703
6704         /* Record the guest's net vcpu time for enforced NMI injections. */
6705         if (unlikely(!enable_vnmi &&
6706                      vmx->loaded_vmcs->soft_vnmi_blocked))
6707                 vmx->loaded_vmcs->entry_time = ktime_get();
6708
6709         /* Don't enter VMX if guest state is invalid, let the exit handler
6710            start emulation until we arrive back to a valid state */
6711         if (vmx->emulation_required)
6712                 return EXIT_FASTPATH_NONE;
6713
6714         trace_kvm_entry(vcpu);
6715
6716         if (vmx->ple_window_dirty) {
6717                 vmx->ple_window_dirty = false;
6718                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6719         }
6720
6721         /*
6722          * We did this in prepare_switch_to_guest, because it needs to
6723          * be within srcu_read_lock.
6724          */
6725         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6726
6727         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6728                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6729         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6730                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6731
6732         cr3 = __get_current_cr3_fast();
6733         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6734                 vmcs_writel(HOST_CR3, cr3);
6735                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6736         }
6737
6738         cr4 = cr4_read_shadow();
6739         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6740                 vmcs_writel(HOST_CR4, cr4);
6741                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6742         }
6743
6744         /* When single-stepping over STI and MOV SS, we must clear the
6745          * corresponding interruptibility bits in the guest state. Otherwise
6746          * vmentry fails as it then expects bit 14 (BS) in pending debug
6747          * exceptions being set, but that's not correct for the guest debugging
6748          * case. */
6749         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6750                 vmx_set_interrupt_shadow(vcpu, 0);
6751
6752         kvm_load_guest_xsave_state(vcpu);
6753
6754         pt_guest_enter(vmx);
6755
6756         atomic_switch_perf_msrs(vmx);
6757         if (intel_pmu_lbr_is_enabled(vcpu))
6758                 vmx_passthrough_lbr_msrs(vcpu);
6759
6760         if (enable_preemption_timer)
6761                 vmx_update_hv_timer(vcpu);
6762
6763         kvm_wait_lapic_expire(vcpu);
6764
6765         /*
6766          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6767          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6768          * is no need to worry about the conditional branch over the wrmsr
6769          * being speculatively taken.
6770          */
6771         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6772
6773         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6774         vmx_vcpu_enter_exit(vcpu, vmx);
6775
6776         /*
6777          * We do not use IBRS in the kernel. If this vCPU has used the
6778          * SPEC_CTRL MSR it may have left it on; save the value and
6779          * turn it off. This is much more efficient than blindly adding
6780          * it to the atomic save/restore list. Especially as the former
6781          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6782          *
6783          * For non-nested case:
6784          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6785          * save it.
6786          *
6787          * For nested case:
6788          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6789          * save it.
6790          */
6791         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6792                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6793
6794         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6795
6796         /* All fields are clean at this point */
6797         if (static_branch_unlikely(&enable_evmcs)) {
6798                 current_evmcs->hv_clean_fields |=
6799                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6800
6801                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6802         }
6803
6804         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6805         if (vmx->host_debugctlmsr)
6806                 update_debugctlmsr(vmx->host_debugctlmsr);
6807
6808 #ifndef CONFIG_X86_64
6809         /*
6810          * The sysexit path does not restore ds/es, so we must set them to
6811          * a reasonable value ourselves.
6812          *
6813          * We can't defer this to vmx_prepare_switch_to_host() since that
6814          * function may be executed in interrupt context, which saves and
6815          * restore segments around it, nullifying its effect.
6816          */
6817         loadsegment(ds, __USER_DS);
6818         loadsegment(es, __USER_DS);
6819 #endif
6820
6821         vmx_register_cache_reset(vcpu);
6822
6823         pt_guest_exit(vmx);
6824
6825         kvm_load_host_xsave_state(vcpu);
6826
6827         vmx->nested.nested_run_pending = 0;
6828         vmx->idt_vectoring_info = 0;
6829
6830         if (unlikely(vmx->fail)) {
6831                 vmx->exit_reason.full = 0xdead;
6832                 return EXIT_FASTPATH_NONE;
6833         }
6834
6835         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6836         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6837                 kvm_machine_check();
6838
6839         if (likely(!vmx->exit_reason.failed_vmentry))
6840                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6841
6842         trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6843
6844         if (unlikely(vmx->exit_reason.failed_vmentry))
6845                 return EXIT_FASTPATH_NONE;
6846
6847         vmx->loaded_vmcs->launched = 1;
6848
6849         vmx_recover_nmi_blocking(vmx);
6850         vmx_complete_interrupts(vmx);
6851
6852         if (is_guest_mode(vcpu))
6853                 return EXIT_FASTPATH_NONE;
6854
6855         return vmx_exit_handlers_fastpath(vcpu);
6856 }
6857
6858 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6859 {
6860         struct vcpu_vmx *vmx = to_vmx(vcpu);
6861
6862         if (enable_pml)
6863                 vmx_destroy_pml_buffer(vmx);
6864         free_vpid(vmx->vpid);
6865         nested_vmx_free_vcpu(vcpu);
6866         free_loaded_vmcs(vmx->loaded_vmcs);
6867 }
6868
6869 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6870 {
6871         struct vcpu_vmx *vmx;
6872         int i, cpu, err;
6873
6874         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6875         vmx = to_vmx(vcpu);
6876
6877         err = -ENOMEM;
6878
6879         vmx->vpid = allocate_vpid();
6880
6881         /*
6882          * If PML is turned on, failure on enabling PML just results in failure
6883          * of creating the vcpu, therefore we can simplify PML logic (by
6884          * avoiding dealing with cases, such as enabling PML partially on vcpus
6885          * for the guest), etc.
6886          */
6887         if (enable_pml) {
6888                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6889                 if (!vmx->pml_pg)
6890                         goto free_vpid;
6891         }
6892
6893         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6894
6895         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6896                 u32 index = vmx_uret_msrs_list[i];
6897                 u32 data_low, data_high;
6898                 int j = vmx->nr_uret_msrs;
6899
6900                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6901                         continue;
6902                 if (wrmsr_safe(index, data_low, data_high) < 0)
6903                         continue;
6904
6905                 vmx->guest_uret_msrs[j].slot = i;
6906                 vmx->guest_uret_msrs[j].data = 0;
6907                 switch (index) {
6908                 case MSR_IA32_TSX_CTRL:
6909                         /*
6910                          * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6911                          * interception.  Keep the host value unchanged to avoid
6912                          * changing CPUID bits under the host kernel's feet.
6913                          *
6914                          * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6915                          * combinations of new kernel and old userspace.  If
6916                          * those guests run on a tsx=off host, do allow guests
6917                          * to use TSX_CTRL, but do not change the value on the
6918                          * host so that TSX remains always disabled.
6919                          */
6920                         if (boot_cpu_has(X86_FEATURE_RTM))
6921                                 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6922                         else
6923                                 vmx->guest_uret_msrs[j].mask = 0;
6924                         break;
6925                 default:
6926                         vmx->guest_uret_msrs[j].mask = -1ull;
6927                         break;
6928                 }
6929                 ++vmx->nr_uret_msrs;
6930         }
6931
6932         err = alloc_loaded_vmcs(&vmx->vmcs01);
6933         if (err < 0)
6934                 goto free_pml;
6935
6936         /* The MSR bitmap starts with all ones */
6937         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6938         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6939
6940         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6941         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6942         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6943         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6944         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6945         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6946         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6947         if (kvm_cstate_in_guest(vcpu->kvm)) {
6948                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6949                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6950                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6951                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6952         }
6953         vmx->msr_bitmap_mode = 0;
6954
6955         vmx->loaded_vmcs = &vmx->vmcs01;
6956         cpu = get_cpu();
6957         vmx_vcpu_load(vcpu, cpu);
6958         vcpu->cpu = cpu;
6959         init_vmcs(vmx);
6960         vmx_vcpu_put(vcpu);
6961         put_cpu();
6962         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6963                 err = alloc_apic_access_page(vcpu->kvm);
6964                 if (err)
6965                         goto free_vmcs;
6966         }
6967
6968         if (enable_ept && !enable_unrestricted_guest) {
6969                 err = init_rmode_identity_map(vcpu->kvm);
6970                 if (err)
6971                         goto free_vmcs;
6972         }
6973
6974         if (nested)
6975                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6976         else
6977                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6978
6979         vmx->nested.posted_intr_nv = -1;
6980         vmx->nested.current_vmptr = -1ull;
6981
6982         vcpu->arch.microcode_version = 0x100000000ULL;
6983         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6984
6985         /*
6986          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6987          * or POSTED_INTR_WAKEUP_VECTOR.
6988          */
6989         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6990         vmx->pi_desc.sn = 1;
6991
6992         vmx->ept_pointer = INVALID_PAGE;
6993
6994         return 0;
6995
6996 free_vmcs:
6997         free_loaded_vmcs(vmx->loaded_vmcs);
6998 free_pml:
6999         vmx_destroy_pml_buffer(vmx);
7000 free_vpid:
7001         free_vpid(vmx->vpid);
7002         return err;
7003 }
7004
7005 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7006 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7007
7008 static int vmx_vm_init(struct kvm *kvm)
7009 {
7010         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7011
7012         if (!ple_gap)
7013                 kvm->arch.pause_in_guest = true;
7014
7015         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7016                 switch (l1tf_mitigation) {
7017                 case L1TF_MITIGATION_OFF:
7018                 case L1TF_MITIGATION_FLUSH_NOWARN:
7019                         /* 'I explicitly don't care' is set */
7020                         break;
7021                 case L1TF_MITIGATION_FLUSH:
7022                 case L1TF_MITIGATION_FLUSH_NOSMT:
7023                 case L1TF_MITIGATION_FULL:
7024                         /*
7025                          * Warn upon starting the first VM in a potentially
7026                          * insecure environment.
7027                          */
7028                         if (sched_smt_active())
7029                                 pr_warn_once(L1TF_MSG_SMT);
7030                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7031                                 pr_warn_once(L1TF_MSG_L1D);
7032                         break;
7033                 case L1TF_MITIGATION_FULL_FORCE:
7034                         /* Flush is enforced */
7035                         break;
7036                 }
7037         }
7038         kvm_apicv_init(kvm, enable_apicv);
7039         return 0;
7040 }
7041
7042 static int __init vmx_check_processor_compat(void)
7043 {
7044         struct vmcs_config vmcs_conf;
7045         struct vmx_capability vmx_cap;
7046
7047         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7048             !this_cpu_has(X86_FEATURE_VMX)) {
7049                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7050                 return -EIO;
7051         }
7052
7053         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7054                 return -EIO;
7055         if (nested)
7056                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7057         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7058                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7059                                 smp_processor_id());
7060                 return -EIO;
7061         }
7062         return 0;
7063 }
7064
7065 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7066 {
7067         u8 cache;
7068         u64 ipat = 0;
7069
7070         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7071          * memory aliases with conflicting memory types and sometimes MCEs.
7072          * We have to be careful as to what are honored and when.
7073          *
7074          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7075          * UC.  The effective memory type is UC or WC depending on guest PAT.
7076          * This was historically the source of MCEs and we want to be
7077          * conservative.
7078          *
7079          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7080          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7081          * EPT memory type is set to WB.  The effective memory type is forced
7082          * WB.
7083          *
7084          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7085          * EPT memory type is used to emulate guest CD/MTRR.
7086          */
7087
7088         if (is_mmio) {
7089                 cache = MTRR_TYPE_UNCACHABLE;
7090                 goto exit;
7091         }
7092
7093         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7094                 ipat = VMX_EPT_IPAT_BIT;
7095                 cache = MTRR_TYPE_WRBACK;
7096                 goto exit;
7097         }
7098
7099         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7100                 ipat = VMX_EPT_IPAT_BIT;
7101                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7102                         cache = MTRR_TYPE_WRBACK;
7103                 else
7104                         cache = MTRR_TYPE_UNCACHABLE;
7105                 goto exit;
7106         }
7107
7108         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7109
7110 exit:
7111         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7112 }
7113
7114 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7115 {
7116         /*
7117          * These bits in the secondary execution controls field
7118          * are dynamic, the others are mostly based on the hypervisor
7119          * architecture and the guest's CPUID.  Do not touch the
7120          * dynamic bits.
7121          */
7122         u32 mask =
7123                 SECONDARY_EXEC_SHADOW_VMCS |
7124                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7125                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7126                 SECONDARY_EXEC_DESC;
7127
7128         u32 new_ctl = vmx->secondary_exec_control;
7129         u32 cur_ctl = secondary_exec_controls_get(vmx);
7130
7131         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7132 }
7133
7134 /*
7135  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7136  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7137  */
7138 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7139 {
7140         struct vcpu_vmx *vmx = to_vmx(vcpu);
7141         struct kvm_cpuid_entry2 *entry;
7142
7143         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7144         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7145
7146 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7147         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7148                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7149 } while (0)
7150
7151         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7152         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7153         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7154         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7155         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7156         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7157         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7158         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7159         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7160         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7161         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7162         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7163         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7164         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7165         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7166
7167         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7168         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7169         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7170         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7171         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7172         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7173         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7174
7175 #undef cr4_fixed1_update
7176 }
7177
7178 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7179 {
7180         struct vcpu_vmx *vmx = to_vmx(vcpu);
7181
7182         if (kvm_mpx_supported()) {
7183                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7184
7185                 if (mpx_enabled) {
7186                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7187                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7188                 } else {
7189                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7190                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7191                 }
7192         }
7193 }
7194
7195 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7196 {
7197         struct vcpu_vmx *vmx = to_vmx(vcpu);
7198         struct kvm_cpuid_entry2 *best = NULL;
7199         int i;
7200
7201         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7202                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7203                 if (!best)
7204                         return;
7205                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7206                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7207                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7208                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7209         }
7210
7211         /* Get the number of configurable Address Ranges for filtering */
7212         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7213                                                 PT_CAP_num_address_ranges);
7214
7215         /* Initialize and clear the no dependency bits */
7216         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7217                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7218
7219         /*
7220          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7221          * will inject an #GP
7222          */
7223         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7224                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7225
7226         /*
7227          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7228          * PSBFreq can be set
7229          */
7230         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7231                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7232                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7233
7234         /*
7235          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7236          * MTCFreq can be set
7237          */
7238         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7239                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7240                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7241
7242         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7243         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7244                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7245                                                         RTIT_CTL_PTW_EN);
7246
7247         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7248         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7249                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7250
7251         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7252         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7253                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7254
7255         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7256         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7257                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7258
7259         /* unmask address range configure area */
7260         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7261                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7262 }
7263
7264 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7265 {
7266         struct vcpu_vmx *vmx = to_vmx(vcpu);
7267
7268         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7269         vcpu->arch.xsaves_enabled = false;
7270
7271         if (cpu_has_secondary_exec_ctrls()) {
7272                 vmx_compute_secondary_exec_control(vmx);
7273                 vmcs_set_secondary_exec_control(vmx);
7274         }
7275
7276         if (nested_vmx_allowed(vcpu))
7277                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7278                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7279                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7280         else
7281                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7282                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7283                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7284
7285         if (nested_vmx_allowed(vcpu)) {
7286                 nested_vmx_cr_fixed1_bits_update(vcpu);
7287                 nested_vmx_entry_exit_ctls_update(vcpu);
7288         }
7289
7290         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7291                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7292                 update_intel_pt_cfg(vcpu);
7293
7294         if (boot_cpu_has(X86_FEATURE_RTM)) {
7295                 struct vmx_uret_msr *msr;
7296                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7297                 if (msr) {
7298                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7299                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7300                 }
7301         }
7302
7303         set_cr4_guest_host_mask(vmx);
7304
7305         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7306         vmx_update_exception_bitmap(vcpu);
7307 }
7308
7309 static __init void vmx_set_cpu_caps(void)
7310 {
7311         kvm_set_cpu_caps();
7312
7313         /* CPUID 0x1 */
7314         if (nested)
7315                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7316
7317         /* CPUID 0x7 */
7318         if (kvm_mpx_supported())
7319                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7320         if (!cpu_has_vmx_invpcid())
7321                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7322         if (vmx_pt_mode_is_host_guest())
7323                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7324
7325         if (vmx_umip_emulated())
7326                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7327
7328         /* CPUID 0xD.1 */
7329         supported_xss = 0;
7330         if (!cpu_has_vmx_xsaves())
7331                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7332
7333         /* CPUID 0x80000001 */
7334         if (!cpu_has_vmx_rdtscp())
7335                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7336
7337         if (cpu_has_vmx_waitpkg())
7338                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7339 }
7340
7341 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7342 {
7343         to_vmx(vcpu)->req_immediate_exit = true;
7344 }
7345
7346 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7347                                   struct x86_instruction_info *info)
7348 {
7349         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7350         unsigned short port;
7351         bool intercept;
7352         int size;
7353
7354         if (info->intercept == x86_intercept_in ||
7355             info->intercept == x86_intercept_ins) {
7356                 port = info->src_val;
7357                 size = info->dst_bytes;
7358         } else {
7359                 port = info->dst_val;
7360                 size = info->src_bytes;
7361         }
7362
7363         /*
7364          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7365          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7366          * control.
7367          *
7368          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7369          */
7370         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7371                 intercept = nested_cpu_has(vmcs12,
7372                                            CPU_BASED_UNCOND_IO_EXITING);
7373         else
7374                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7375
7376         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7377         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7378 }
7379
7380 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7381                                struct x86_instruction_info *info,
7382                                enum x86_intercept_stage stage,
7383                                struct x86_exception *exception)
7384 {
7385         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7386
7387         switch (info->intercept) {
7388         /*
7389          * RDPID causes #UD if disabled through secondary execution controls.
7390          * Because it is marked as EmulateOnUD, we need to intercept it here.
7391          */
7392         case x86_intercept_rdtscp:
7393                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7394                         exception->vector = UD_VECTOR;
7395                         exception->error_code_valid = false;
7396                         return X86EMUL_PROPAGATE_FAULT;
7397                 }
7398                 break;
7399
7400         case x86_intercept_in:
7401         case x86_intercept_ins:
7402         case x86_intercept_out:
7403         case x86_intercept_outs:
7404                 return vmx_check_intercept_io(vcpu, info);
7405
7406         case x86_intercept_lgdt:
7407         case x86_intercept_lidt:
7408         case x86_intercept_lldt:
7409         case x86_intercept_ltr:
7410         case x86_intercept_sgdt:
7411         case x86_intercept_sidt:
7412         case x86_intercept_sldt:
7413         case x86_intercept_str:
7414                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7415                         return X86EMUL_CONTINUE;
7416
7417                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7418                 break;
7419
7420         /* TODO: check more intercepts... */
7421         default:
7422                 break;
7423         }
7424
7425         return X86EMUL_UNHANDLEABLE;
7426 }
7427
7428 #ifdef CONFIG_X86_64
7429 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7430 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7431                                   u64 divisor, u64 *result)
7432 {
7433         u64 low = a << shift, high = a >> (64 - shift);
7434
7435         /* To avoid the overflow on divq */
7436         if (high >= divisor)
7437                 return 1;
7438
7439         /* Low hold the result, high hold rem which is discarded */
7440         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7441             "rm" (divisor), "0" (low), "1" (high));
7442         *result = low;
7443
7444         return 0;
7445 }
7446
7447 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7448                             bool *expired)
7449 {
7450         struct vcpu_vmx *vmx;
7451         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7452         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7453
7454         vmx = to_vmx(vcpu);
7455         tscl = rdtsc();
7456         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7457         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7458         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7459                                                     ktimer->timer_advance_ns);
7460
7461         if (delta_tsc > lapic_timer_advance_cycles)
7462                 delta_tsc -= lapic_timer_advance_cycles;
7463         else
7464                 delta_tsc = 0;
7465
7466         /* Convert to host delta tsc if tsc scaling is enabled */
7467         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7468             delta_tsc && u64_shl_div_u64(delta_tsc,
7469                                 kvm_tsc_scaling_ratio_frac_bits,
7470                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7471                 return -ERANGE;
7472
7473         /*
7474          * If the delta tsc can't fit in the 32 bit after the multi shift,
7475          * we can't use the preemption timer.
7476          * It's possible that it fits on later vmentries, but checking
7477          * on every vmentry is costly so we just use an hrtimer.
7478          */
7479         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7480                 return -ERANGE;
7481
7482         vmx->hv_deadline_tsc = tscl + delta_tsc;
7483         *expired = !delta_tsc;
7484         return 0;
7485 }
7486
7487 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7488 {
7489         to_vmx(vcpu)->hv_deadline_tsc = -1;
7490 }
7491 #endif
7492
7493 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7494 {
7495         if (!kvm_pause_in_guest(vcpu->kvm))
7496                 shrink_ple_window(vcpu);
7497 }
7498
7499 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7500 {
7501         struct vcpu_vmx *vmx = to_vmx(vcpu);
7502
7503         if (is_guest_mode(vcpu)) {
7504                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7505                 return;
7506         }
7507
7508         /*
7509          * Note, cpu_dirty_logging_count can be changed concurrent with this
7510          * code, but in that case another update request will be made and so
7511          * the guest will never run with a stale PML value.
7512          */
7513         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7514                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7515         else
7516                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7517 }
7518
7519 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7520 {
7521         if (pi_pre_block(vcpu))
7522                 return 1;
7523
7524         if (kvm_lapic_hv_timer_in_use(vcpu))
7525                 kvm_lapic_switch_to_sw_timer(vcpu);
7526
7527         return 0;
7528 }
7529
7530 static void vmx_post_block(struct kvm_vcpu *vcpu)
7531 {
7532         if (kvm_x86_ops.set_hv_timer)
7533                 kvm_lapic_switch_to_hv_timer(vcpu);
7534
7535         pi_post_block(vcpu);
7536 }
7537
7538 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7539 {
7540         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7541                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7542                         FEAT_CTL_LMCE_ENABLED;
7543         else
7544                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7545                         ~FEAT_CTL_LMCE_ENABLED;
7546 }
7547
7548 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7549 {
7550         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7551         if (to_vmx(vcpu)->nested.nested_run_pending)
7552                 return -EBUSY;
7553         return !is_smm(vcpu);
7554 }
7555
7556 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7557 {
7558         struct vcpu_vmx *vmx = to_vmx(vcpu);
7559
7560         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7561         if (vmx->nested.smm.guest_mode)
7562                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7563
7564         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7565         vmx->nested.vmxon = false;
7566         vmx_clear_hlt(vcpu);
7567         return 0;
7568 }
7569
7570 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7571 {
7572         struct vcpu_vmx *vmx = to_vmx(vcpu);
7573         int ret;
7574
7575         if (vmx->nested.smm.vmxon) {
7576                 vmx->nested.vmxon = true;
7577                 vmx->nested.smm.vmxon = false;
7578         }
7579
7580         if (vmx->nested.smm.guest_mode) {
7581                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7582                 if (ret)
7583                         return ret;
7584
7585                 vmx->nested.smm.guest_mode = false;
7586         }
7587         return 0;
7588 }
7589
7590 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7591 {
7592         /* RSM will cause a vmexit anyway.  */
7593 }
7594
7595 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7596 {
7597         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7598 }
7599
7600 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7601 {
7602         if (is_guest_mode(vcpu)) {
7603                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7604
7605                 if (hrtimer_try_to_cancel(timer) == 1)
7606                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7607         }
7608 }
7609
7610 static void hardware_unsetup(void)
7611 {
7612         if (nested)
7613                 nested_vmx_hardware_unsetup();
7614
7615         free_kvm_area();
7616 }
7617
7618 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7619 {
7620         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7621                           BIT(APICV_INHIBIT_REASON_HYPERV);
7622
7623         return supported & BIT(bit);
7624 }
7625
7626 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7627         .hardware_unsetup = hardware_unsetup,
7628
7629         .hardware_enable = hardware_enable,
7630         .hardware_disable = hardware_disable,
7631         .cpu_has_accelerated_tpr = report_flexpriority,
7632         .has_emulated_msr = vmx_has_emulated_msr,
7633
7634         .vm_size = sizeof(struct kvm_vmx),
7635         .vm_init = vmx_vm_init,
7636
7637         .vcpu_create = vmx_create_vcpu,
7638         .vcpu_free = vmx_free_vcpu,
7639         .vcpu_reset = vmx_vcpu_reset,
7640
7641         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7642         .vcpu_load = vmx_vcpu_load,
7643         .vcpu_put = vmx_vcpu_put,
7644
7645         .update_exception_bitmap = vmx_update_exception_bitmap,
7646         .get_msr_feature = vmx_get_msr_feature,
7647         .get_msr = vmx_get_msr,
7648         .set_msr = vmx_set_msr,
7649         .get_segment_base = vmx_get_segment_base,
7650         .get_segment = vmx_get_segment,
7651         .set_segment = vmx_set_segment,
7652         .get_cpl = vmx_get_cpl,
7653         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7654         .set_cr0 = vmx_set_cr0,
7655         .is_valid_cr4 = vmx_is_valid_cr4,
7656         .set_cr4 = vmx_set_cr4,
7657         .set_efer = vmx_set_efer,
7658         .get_idt = vmx_get_idt,
7659         .set_idt = vmx_set_idt,
7660         .get_gdt = vmx_get_gdt,
7661         .set_gdt = vmx_set_gdt,
7662         .set_dr7 = vmx_set_dr7,
7663         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7664         .cache_reg = vmx_cache_reg,
7665         .get_rflags = vmx_get_rflags,
7666         .set_rflags = vmx_set_rflags,
7667
7668         .tlb_flush_all = vmx_flush_tlb_all,
7669         .tlb_flush_current = vmx_flush_tlb_current,
7670         .tlb_flush_gva = vmx_flush_tlb_gva,
7671         .tlb_flush_guest = vmx_flush_tlb_guest,
7672
7673         .run = vmx_vcpu_run,
7674         .handle_exit = vmx_handle_exit,
7675         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7676         .update_emulated_instruction = vmx_update_emulated_instruction,
7677         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7678         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7679         .patch_hypercall = vmx_patch_hypercall,
7680         .set_irq = vmx_inject_irq,
7681         .set_nmi = vmx_inject_nmi,
7682         .queue_exception = vmx_queue_exception,
7683         .cancel_injection = vmx_cancel_injection,
7684         .interrupt_allowed = vmx_interrupt_allowed,
7685         .nmi_allowed = vmx_nmi_allowed,
7686         .get_nmi_mask = vmx_get_nmi_mask,
7687         .set_nmi_mask = vmx_set_nmi_mask,
7688         .enable_nmi_window = vmx_enable_nmi_window,
7689         .enable_irq_window = vmx_enable_irq_window,
7690         .update_cr8_intercept = vmx_update_cr8_intercept,
7691         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7692         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7693         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7694         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7695         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7696         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7697         .hwapic_irr_update = vmx_hwapic_irr_update,
7698         .hwapic_isr_update = vmx_hwapic_isr_update,
7699         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7700         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7701         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7702         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7703
7704         .set_tss_addr = vmx_set_tss_addr,
7705         .set_identity_map_addr = vmx_set_identity_map_addr,
7706         .get_mt_mask = vmx_get_mt_mask,
7707
7708         .get_exit_info = vmx_get_exit_info,
7709
7710         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7711
7712         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7713
7714         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7715
7716         .load_mmu_pgd = vmx_load_mmu_pgd,
7717
7718         .check_intercept = vmx_check_intercept,
7719         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7720
7721         .request_immediate_exit = vmx_request_immediate_exit,
7722
7723         .sched_in = vmx_sched_in,
7724
7725         .cpu_dirty_log_size = PML_ENTITY_NUM,
7726         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7727
7728         .pre_block = vmx_pre_block,
7729         .post_block = vmx_post_block,
7730
7731         .pmu_ops = &intel_pmu_ops,
7732         .nested_ops = &vmx_nested_ops,
7733
7734         .update_pi_irte = pi_update_irte,
7735
7736 #ifdef CONFIG_X86_64
7737         .set_hv_timer = vmx_set_hv_timer,
7738         .cancel_hv_timer = vmx_cancel_hv_timer,
7739 #endif
7740
7741         .setup_mce = vmx_setup_mce,
7742
7743         .smi_allowed = vmx_smi_allowed,
7744         .pre_enter_smm = vmx_pre_enter_smm,
7745         .pre_leave_smm = vmx_pre_leave_smm,
7746         .enable_smi_window = vmx_enable_smi_window,
7747
7748         .can_emulate_instruction = vmx_can_emulate_instruction,
7749         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7750         .migrate_timers = vmx_migrate_timers,
7751
7752         .msr_filter_changed = vmx_msr_filter_changed,
7753         .complete_emulated_msr = kvm_complete_insn_gp,
7754
7755         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7756 };
7757
7758 static __init int hardware_setup(void)
7759 {
7760         unsigned long host_bndcfgs;
7761         struct desc_ptr dt;
7762         int r, i, ept_lpage_level;
7763
7764         store_idt(&dt);
7765         host_idt_base = dt.address;
7766
7767         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7768                 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7769
7770         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7771                 return -EIO;
7772
7773         if (boot_cpu_has(X86_FEATURE_NX))
7774                 kvm_enable_efer_bits(EFER_NX);
7775
7776         if (boot_cpu_has(X86_FEATURE_MPX)) {
7777                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7778                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7779         }
7780
7781         if (!cpu_has_vmx_mpx())
7782                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7783                                     XFEATURE_MASK_BNDCSR);
7784
7785         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7786             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7787                 enable_vpid = 0;
7788
7789         if (!cpu_has_vmx_ept() ||
7790             !cpu_has_vmx_ept_4levels() ||
7791             !cpu_has_vmx_ept_mt_wb() ||
7792             !cpu_has_vmx_invept_global())
7793                 enable_ept = 0;
7794
7795         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7796                 enable_ept_ad_bits = 0;
7797
7798         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7799                 enable_unrestricted_guest = 0;
7800
7801         if (!cpu_has_vmx_flexpriority())
7802                 flexpriority_enabled = 0;
7803
7804         if (!cpu_has_virtual_nmis())
7805                 enable_vnmi = 0;
7806
7807         /*
7808          * set_apic_access_page_addr() is used to reload apic access
7809          * page upon invalidation.  No need to do anything if not
7810          * using the APIC_ACCESS_ADDR VMCS field.
7811          */
7812         if (!flexpriority_enabled)
7813                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7814
7815         if (!cpu_has_vmx_tpr_shadow())
7816                 vmx_x86_ops.update_cr8_intercept = NULL;
7817
7818 #if IS_ENABLED(CONFIG_HYPERV)
7819         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7820             && enable_ept) {
7821                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7822                 vmx_x86_ops.tlb_remote_flush_with_range =
7823                                 hv_remote_flush_tlb_with_range;
7824         }
7825 #endif
7826
7827         if (!cpu_has_vmx_ple()) {
7828                 ple_gap = 0;
7829                 ple_window = 0;
7830                 ple_window_grow = 0;
7831                 ple_window_max = 0;
7832                 ple_window_shrink = 0;
7833         }
7834
7835         if (!cpu_has_vmx_apicv()) {
7836                 enable_apicv = 0;
7837                 vmx_x86_ops.sync_pir_to_irr = NULL;
7838         }
7839
7840         if (cpu_has_vmx_tsc_scaling()) {
7841                 kvm_has_tsc_control = true;
7842                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7843                 kvm_tsc_scaling_ratio_frac_bits = 48;
7844         }
7845
7846         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7847
7848         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7849
7850         if (enable_ept)
7851                 vmx_enable_tdp();
7852
7853         if (!enable_ept)
7854                 ept_lpage_level = 0;
7855         else if (cpu_has_vmx_ept_1g_page())
7856                 ept_lpage_level = PG_LEVEL_1G;
7857         else if (cpu_has_vmx_ept_2m_page())
7858                 ept_lpage_level = PG_LEVEL_2M;
7859         else
7860                 ept_lpage_level = PG_LEVEL_4K;
7861         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7862
7863         /*
7864          * Only enable PML when hardware supports PML feature, and both EPT
7865          * and EPT A/D bit features are enabled -- PML depends on them to work.
7866          */
7867         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7868                 enable_pml = 0;
7869
7870         if (!enable_pml)
7871                 vmx_x86_ops.cpu_dirty_log_size = 0;
7872
7873         if (!cpu_has_vmx_preemption_timer())
7874                 enable_preemption_timer = false;
7875
7876         if (enable_preemption_timer) {
7877                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7878                 u64 vmx_msr;
7879
7880                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7881                 cpu_preemption_timer_multi =
7882                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7883
7884                 if (tsc_khz)
7885                         use_timer_freq = (u64)tsc_khz * 1000;
7886                 use_timer_freq >>= cpu_preemption_timer_multi;
7887
7888                 /*
7889                  * KVM "disables" the preemption timer by setting it to its max
7890                  * value.  Don't use the timer if it might cause spurious exits
7891                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7892                  */
7893                 if (use_timer_freq > 0xffffffffu / 10)
7894                         enable_preemption_timer = false;
7895         }
7896
7897         if (!enable_preemption_timer) {
7898                 vmx_x86_ops.set_hv_timer = NULL;
7899                 vmx_x86_ops.cancel_hv_timer = NULL;
7900                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7901         }
7902
7903         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7904
7905         kvm_mce_cap_supported |= MCG_LMCE_P;
7906
7907         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7908                 return -EINVAL;
7909         if (!enable_ept || !cpu_has_vmx_intel_pt())
7910                 pt_mode = PT_MODE_SYSTEM;
7911
7912         if (nested) {
7913                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7914                                            vmx_capability.ept);
7915
7916                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7917                 if (r)
7918                         return r;
7919         }
7920
7921         vmx_set_cpu_caps();
7922
7923         r = alloc_kvm_area();
7924         if (r)
7925                 nested_vmx_hardware_unsetup();
7926         return r;
7927 }
7928
7929 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7930         .cpu_has_kvm_support = cpu_has_kvm_support,
7931         .disabled_by_bios = vmx_disabled_by_bios,
7932         .check_processor_compatibility = vmx_check_processor_compat,
7933         .hardware_setup = hardware_setup,
7934
7935         .runtime_ops = &vmx_x86_ops,
7936 };
7937
7938 static void vmx_cleanup_l1d_flush(void)
7939 {
7940         if (vmx_l1d_flush_pages) {
7941                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7942                 vmx_l1d_flush_pages = NULL;
7943         }
7944         /* Restore state so sysfs ignores VMX */
7945         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7946 }
7947
7948 static void vmx_exit(void)
7949 {
7950 #ifdef CONFIG_KEXEC_CORE
7951         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7952         synchronize_rcu();
7953 #endif
7954
7955         kvm_exit();
7956
7957 #if IS_ENABLED(CONFIG_HYPERV)
7958         if (static_branch_unlikely(&enable_evmcs)) {
7959                 int cpu;
7960                 struct hv_vp_assist_page *vp_ap;
7961                 /*
7962                  * Reset everything to support using non-enlightened VMCS
7963                  * access later (e.g. when we reload the module with
7964                  * enlightened_vmcs=0)
7965                  */
7966                 for_each_online_cpu(cpu) {
7967                         vp_ap = hv_get_vp_assist_page(cpu);
7968
7969                         if (!vp_ap)
7970                                 continue;
7971
7972                         vp_ap->nested_control.features.directhypercall = 0;
7973                         vp_ap->current_nested_vmcs = 0;
7974                         vp_ap->enlighten_vmentry = 0;
7975                 }
7976
7977                 static_branch_disable(&enable_evmcs);
7978         }
7979 #endif
7980         vmx_cleanup_l1d_flush();
7981 }
7982 module_exit(vmx_exit);
7983
7984 static int __init vmx_init(void)
7985 {
7986         int r, cpu;
7987
7988 #if IS_ENABLED(CONFIG_HYPERV)
7989         /*
7990          * Enlightened VMCS usage should be recommended and the host needs
7991          * to support eVMCS v1 or above. We can also disable eVMCS support
7992          * with module parameter.
7993          */
7994         if (enlightened_vmcs &&
7995             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7996             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7997             KVM_EVMCS_VERSION) {
7998                 int cpu;
7999
8000                 /* Check that we have assist pages on all online CPUs */
8001                 for_each_online_cpu(cpu) {
8002                         if (!hv_get_vp_assist_page(cpu)) {
8003                                 enlightened_vmcs = false;
8004                                 break;
8005                         }
8006                 }
8007
8008                 if (enlightened_vmcs) {
8009                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8010                         static_branch_enable(&enable_evmcs);
8011                 }
8012
8013                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8014                         vmx_x86_ops.enable_direct_tlbflush
8015                                 = hv_enable_direct_tlbflush;
8016
8017         } else {
8018                 enlightened_vmcs = false;
8019         }
8020 #endif
8021
8022         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8023                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8024         if (r)
8025                 return r;
8026
8027         /*
8028          * Must be called after kvm_init() so enable_ept is properly set
8029          * up. Hand the parameter mitigation value in which was stored in
8030          * the pre module init parser. If no parameter was given, it will
8031          * contain 'auto' which will be turned into the default 'cond'
8032          * mitigation mode.
8033          */
8034         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8035         if (r) {
8036                 vmx_exit();
8037                 return r;
8038         }
8039
8040         for_each_possible_cpu(cpu) {
8041                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8042
8043                 pi_init_cpu(cpu);
8044         }
8045
8046 #ifdef CONFIG_KEXEC_CORE
8047         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8048                            crash_vmclear_local_loaded_vmcss);
8049 #endif
8050         vmx_check_vmcs12_offsets();
8051
8052         /*
8053          * Shadow paging doesn't have a (further) performance penalty
8054          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8055          * by default
8056          */
8057         if (!enable_ept)
8058                 allow_smaller_maxphyaddr = true;
8059
8060         return 0;
8061 }
8062 module_init(vmx_init);