1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
51 #include "capabilities.h"
55 #include "kvm_onhyperv.h"
57 #include "kvm_cache_regs.h"
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 enable_unrestricted_guest, bool, S_IRUGO);
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
105 module_param(enable_apicv, bool, S_IRUGO);
108 * If nested=1, nested virtualization is supported, i.e., guests may use
109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110 * use VMX instructions.
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
121 #define MSR_BITMAP_MODE_X2APIC 1
122 #define MSR_BITMAP_MODE_X2APIC_APICV 2
124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON \
139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214 static const struct {
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
254 /* If set to auto use the default l1tf mitigation method */
255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 switch (l1tf_mitigation) {
257 case L1TF_MITIGATION_OFF:
258 l1tf = VMENTER_L1D_FLUSH_NEVER;
260 case L1TF_MITIGATION_FLUSH_NOWARN:
261 case L1TF_MITIGATION_FLUSH:
262 case L1TF_MITIGATION_FLUSH_NOSMT:
263 l1tf = VMENTER_L1D_FLUSH_COND;
265 case L1TF_MITIGATION_FULL:
266 case L1TF_MITIGATION_FULL_FORCE:
267 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 * lifetime and so should not be charged to a memcg.
280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
283 vmx_l1d_flush_pages = page_address(page);
286 * Initialize each page with a different pattern in
287 * order to protect against KSM in the nested
288 * virtualization case.
290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
296 l1tf_vmx_mitigation = l1tf;
298 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 static_branch_enable(&vmx_l1d_should_flush);
301 static_branch_disable(&vmx_l1d_should_flush);
303 if (l1tf == VMENTER_L1D_FLUSH_COND)
304 static_branch_enable(&vmx_l1d_flush_cond);
306 static_branch_disable(&vmx_l1d_flush_cond);
310 static int vmentry_l1d_flush_parse(const char *s)
315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 if (vmentry_l1d_param[i].for_parse &&
317 sysfs_streq(s, vmentry_l1d_param[i].option))
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 l1tf = vmentry_l1d_flush_parse(s);
332 if (!boot_cpu_has(X86_BUG_L1TF))
336 * Has vmx_init() run already? If not then this is the pre init
337 * parameter parsing. In that case just store the value and let
338 * vmx_init() do the proper setup after enable_ept has been
341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 vmentry_l1d_flush_param = l1tf;
346 mutex_lock(&vmx_l1d_flush_mutex);
347 ret = vmx_setup_l1d_flush(l1tf);
348 mutex_unlock(&vmx_l1d_flush_mutex);
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 return sprintf(s, "???\n");
357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 .set = vmentry_l1d_flush_set,
362 .get = vmentry_l1d_flush_get,
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368 void vmx_vmexit(void);
370 #define vmx_insn_failed(fmt...) \
373 pr_warn_ratelimited(fmt); \
376 asmlinkage void vmread_error(unsigned long field, bool fault)
379 kvm_spurious_fault();
381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
426 #define VMX_SEGMENT_FIELD(seg) \
427 [VCPU_SREG_##seg] = { \
428 .selector = GUEST_##seg##_SELECTOR, \
429 .base = GUEST_##seg##_BASE, \
430 .limit = GUEST_##seg##_LIMIT, \
431 .ar_bytes = GUEST_##seg##_AR_BYTES, \
434 static const struct kvm_vmx_segment_field {
439 } kvm_vmx_segment_fields[] = {
440 VMX_SEGMENT_FIELD(CS),
441 VMX_SEGMENT_FIELD(DS),
442 VMX_SEGMENT_FIELD(ES),
443 VMX_SEGMENT_FIELD(FS),
444 VMX_SEGMENT_FIELD(GS),
445 VMX_SEGMENT_FIELD(SS),
446 VMX_SEGMENT_FIELD(TR),
447 VMX_SEGMENT_FIELD(LDTR),
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 vmx->segment_cache.bitmask = 0;
455 static unsigned long host_idt_base;
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
463 struct hv_enlightened_vmcs *evmcs;
464 struct hv_partition_assist_pg **p_hv_pa_pg =
465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
467 * Synthetic VM-Exit is not enabled in current code and so All
468 * evmcs in singe VM shares same assist page.
471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
478 evmcs->partition_assist_page =
480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
489 * Comment's format: document - errata name - stepping - processor name.
491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
505 * 320767.pdf - AAP86 - B1 -
506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
519 /* Xeon E3-1220 V2 */
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
525 u32 eax = cpuid_eax(0x00000001), i;
527 /* Clear the reserved bits */
528 eax &= ~(0x3U << 14 | 0xfU << 28);
529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 if (eax == vmx_preemption_cpu_tfms[i])
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
538 return flexpriority_enabled && lapic_in_kernel(vcpu);
541 static inline bool report_flexpriority(void)
543 return flexpriority_enabled;
546 static int possible_passthrough_msr_slot(u32 msr)
550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 if (vmx_possible_passthrough_msrs[i] == msr)
557 static bool is_valid_passthrough_msr(u32 msr)
562 case 0x800 ... 0x8ff:
563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
565 case MSR_IA32_RTIT_STATUS:
566 case MSR_IA32_RTIT_OUTPUT_BASE:
567 case MSR_IA32_RTIT_OUTPUT_MASK:
568 case MSR_IA32_RTIT_CR3_MATCH:
569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
582 r = possible_passthrough_msr_slot(msr) != -ENOENT;
584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
593 i = kvm_find_user_return_msr(msr);
595 return &vmx->guest_uret_msrs[i];
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 struct vmx_uret_msr *msr, u64 data)
602 unsigned int slot = msr - vmx->guest_uret_msrs;
605 u64 old_msr_data = msr->data;
607 if (msr->load_into_hardware) {
609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
612 msr->data = old_msr_data;
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
620 int cpu = raw_smp_processor_id();
621 struct loaded_vmcs *v;
623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 loaded_vmcss_on_cpu_link)
627 #endif /* CONFIG_KEXEC_CORE */
629 static void __loaded_vmcs_clear(void *arg)
631 struct loaded_vmcs *loaded_vmcs = arg;
632 int cpu = raw_smp_processor_id();
634 if (loaded_vmcs->cpu != cpu)
635 return; /* vcpu migration can race with cpu offline */
636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 per_cpu(current_vmcs, cpu) = NULL;
639 vmcs_clear(loaded_vmcs->vmcs);
640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 vmcs_clear(loaded_vmcs->shadow_vmcs);
643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
646 * Ensure all writes to loaded_vmcs, including deleting it from its
647 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
654 loaded_vmcs->cpu = -1;
655 loaded_vmcs->launched = 0;
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 int cpu = loaded_vmcs->cpu;
663 smp_call_function_single(cpu,
664 __loaded_vmcs_clear, loaded_vmcs, 1);
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 vmx->segment_cache.bitmask = 0;
677 ret = vmx->segment_cache.bitmask & mask;
678 vmx->segment_cache.bitmask |= mask;
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 u16 *p = &vmx->segment_cache.seg[seg].selector;
686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 ulong *p = &vmx->segment_cache.seg[seg].base;
695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 u32 *p = &vmx->segment_cache.seg[seg].limit;
704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 u32 *p = &vmx->segment_cache.seg[seg].ar;
713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 (1u << DB_VECTOR) | (1u << AC_VECTOR);
725 * Guest access to VMware backdoor ports could legitimately
726 * trigger #GP because of TSS I/O permission bitmap.
727 * We intercept those #GP and allow access to them anyway
730 if (enable_vmware_backdoor)
731 eb |= (1u << GP_VECTOR);
732 if ((vcpu->guest_debug &
733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 eb |= 1u << BP_VECTOR;
736 if (to_vmx(vcpu)->rmode.vm86_active)
738 if (!vmx_need_pf_intercept(vcpu))
739 eb &= ~(1u << PF_VECTOR);
741 /* When we are running a nested L2 guest and L1 specified for it a
742 * certain exception bitmap, we must trap the same exceptions and pass
743 * them to L1. When running L2, we will only handle the exceptions
744 * specified above if L1 did not want them.
746 if (is_guest_mode(vcpu))
747 eb |= get_vmcs12(vcpu)->exception_bitmap;
749 int mask = 0, match = 0;
751 if (enable_ept && (eb & (1u << PF_VECTOR))) {
753 * If EPT is enabled, #PF is currently only intercepted
754 * if MAXPHYADDR is smaller on the guest than on the
755 * host. In that case we only care about present,
756 * non-reserved faults. For vmcs02, however, PFEC_MASK
757 * and PFEC_MATCH are set in prepare_vmcs02_rare.
759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 match = PFERR_PRESENT_MASK;
762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
766 vmcs_write32(EXCEPTION_BITMAP, eb);
770 * Check if MSR is intercepted for currently loaded MSR bitmap.
772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
774 unsigned long *msr_bitmap;
775 int f = sizeof(unsigned long);
777 if (!cpu_has_vmx_msr_bitmap())
780 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
783 return !!test_bit(msr, msr_bitmap + 0x800 / f);
784 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
786 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
793 unsigned long entry, unsigned long exit)
795 vm_entry_controls_clearbit(vmx, entry);
796 vm_exit_controls_clearbit(vmx, exit);
799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
803 for (i = 0; i < m->nr; ++i) {
804 if (m->val[i].index == msr)
810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
813 struct msr_autoload *m = &vmx->msr_autoload;
817 if (cpu_has_load_ia32_efer()) {
818 clear_atomic_switch_msr_special(vmx,
819 VM_ENTRY_LOAD_IA32_EFER,
820 VM_EXIT_LOAD_IA32_EFER);
824 case MSR_CORE_PERF_GLOBAL_CTRL:
825 if (cpu_has_load_perf_global_ctrl()) {
826 clear_atomic_switch_msr_special(vmx,
827 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
833 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
837 m->guest.val[i] = m->guest.val[m->guest.nr];
838 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
841 i = vmx_find_loadstore_msr_slot(&m->host, msr);
846 m->host.val[i] = m->host.val[m->host.nr];
847 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
851 unsigned long entry, unsigned long exit,
852 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
853 u64 guest_val, u64 host_val)
855 vmcs_write64(guest_val_vmcs, guest_val);
856 if (host_val_vmcs != HOST_IA32_EFER)
857 vmcs_write64(host_val_vmcs, host_val);
858 vm_entry_controls_setbit(vmx, entry);
859 vm_exit_controls_setbit(vmx, exit);
862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
863 u64 guest_val, u64 host_val, bool entry_only)
866 struct msr_autoload *m = &vmx->msr_autoload;
870 if (cpu_has_load_ia32_efer()) {
871 add_atomic_switch_msr_special(vmx,
872 VM_ENTRY_LOAD_IA32_EFER,
873 VM_EXIT_LOAD_IA32_EFER,
876 guest_val, host_val);
880 case MSR_CORE_PERF_GLOBAL_CTRL:
881 if (cpu_has_load_perf_global_ctrl()) {
882 add_atomic_switch_msr_special(vmx,
883 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
884 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
885 GUEST_IA32_PERF_GLOBAL_CTRL,
886 HOST_IA32_PERF_GLOBAL_CTRL,
887 guest_val, host_val);
891 case MSR_IA32_PEBS_ENABLE:
892 /* PEBS needs a quiescent period after being disabled (to write
893 * a record). Disabling PEBS through VMX MSR swapping doesn't
894 * provide that period, so a CPU could write host's record into
897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
900 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
902 j = vmx_find_loadstore_msr_slot(&m->host, msr);
904 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
905 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
906 printk_once(KERN_WARNING "Not enough msr switch entries. "
907 "Can't add msr %x\n", msr);
912 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 m->guest.val[i].index = msr;
915 m->guest.val[i].value = guest_val;
922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
924 m->host.val[j].index = msr;
925 m->host.val[j].value = host_val;
928 static bool update_transition_efer(struct vcpu_vmx *vmx)
930 u64 guest_efer = vmx->vcpu.arch.efer;
934 /* Shadow paging assumes NX to be available. */
936 guest_efer |= EFER_NX;
939 * LMA and LME handled by hardware; SCE meaningless outside long mode.
941 ignore_bits |= EFER_SCE;
943 ignore_bits |= EFER_LMA | EFER_LME;
944 /* SCE is meaningful only in long mode on Intel */
945 if (guest_efer & EFER_LMA)
946 ignore_bits &= ~(u64)EFER_SCE;
950 * On EPT, we can't emulate NX, so we must switch EFER atomically.
951 * On CPUs that support "load IA32_EFER", always switch EFER
952 * atomically, since it's faster than switching it manually.
954 if (cpu_has_load_ia32_efer() ||
955 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
956 if (!(guest_efer & EFER_LMA))
957 guest_efer &= ~EFER_LME;
958 if (guest_efer != host_efer)
959 add_atomic_switch_msr(vmx, MSR_EFER,
960 guest_efer, host_efer, false);
962 clear_atomic_switch_msr(vmx, MSR_EFER);
966 i = kvm_find_user_return_msr(MSR_EFER);
970 clear_atomic_switch_msr(vmx, MSR_EFER);
972 guest_efer &= ~ignore_bits;
973 guest_efer |= host_efer & ignore_bits;
975 vmx->guest_uret_msrs[i].data = guest_efer;
976 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
983 * On 32-bit kernels, VM exits still load the FS and GS bases from the
984 * VMCS rather than the segment table. KVM uses this helper to figure
985 * out the current bases to poke them into the VMCS before entry.
987 static unsigned long segment_base(u16 selector)
989 struct desc_struct *table;
992 if (!(selector & ~SEGMENT_RPL_MASK))
995 table = get_current_gdt_ro();
997 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
998 u16 ldt_selector = kvm_read_ldt();
1000 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1003 table = (struct desc_struct *)segment_base(ldt_selector);
1005 v = get_desc_base(&table[selector >> 3]);
1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1012 return vmx_pt_mode_is_host_guest() &&
1013 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1018 /* The base must be 128-byte aligned and a legal physical address. */
1019 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1026 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1027 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1029 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1030 for (i = 0; i < addr_range; i++) {
1031 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1032 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1040 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1041 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1043 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1044 for (i = 0; i < addr_range; i++) {
1045 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1046 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1050 static void pt_guest_enter(struct vcpu_vmx *vmx)
1052 if (vmx_pt_mode_is_system())
1056 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1057 * Save host state before VM entry.
1059 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1060 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1061 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1062 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1063 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1067 static void pt_guest_exit(struct vcpu_vmx *vmx)
1069 if (vmx_pt_mode_is_system())
1072 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1073 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1074 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1077 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1078 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1082 unsigned long fs_base, unsigned long gs_base)
1084 if (unlikely(fs_sel != host->fs_sel)) {
1086 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1088 vmcs_write16(HOST_FS_SELECTOR, 0);
1089 host->fs_sel = fs_sel;
1091 if (unlikely(gs_sel != host->gs_sel)) {
1093 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1095 vmcs_write16(HOST_GS_SELECTOR, 0);
1096 host->gs_sel = gs_sel;
1098 if (unlikely(fs_base != host->fs_base)) {
1099 vmcs_writel(HOST_FS_BASE, fs_base);
1100 host->fs_base = fs_base;
1102 if (unlikely(gs_base != host->gs_base)) {
1103 vmcs_writel(HOST_GS_BASE, gs_base);
1104 host->gs_base = gs_base;
1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1110 struct vcpu_vmx *vmx = to_vmx(vcpu);
1111 struct vmcs_host_state *host_state;
1112 #ifdef CONFIG_X86_64
1113 int cpu = raw_smp_processor_id();
1115 unsigned long fs_base, gs_base;
1119 vmx->req_immediate_exit = false;
1122 * Note that guest MSRs to be saved/restored can also be changed
1123 * when guest state is loaded. This happens when guest transitions
1124 * to/from long-mode by setting MSR_EFER.LMA.
1126 if (!vmx->guest_uret_msrs_loaded) {
1127 vmx->guest_uret_msrs_loaded = true;
1128 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1129 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1132 kvm_set_user_return_msr(i,
1133 vmx->guest_uret_msrs[i].data,
1134 vmx->guest_uret_msrs[i].mask);
1138 if (vmx->nested.need_vmcs12_to_shadow_sync)
1139 nested_sync_vmcs12_to_shadow(vcpu);
1141 if (vmx->guest_state_loaded)
1144 host_state = &vmx->loaded_vmcs->host_state;
1147 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1148 * allow segment selectors with cpl > 0 or ti == 1.
1150 host_state->ldt_sel = kvm_read_ldt();
1152 #ifdef CONFIG_X86_64
1153 savesegment(ds, host_state->ds_sel);
1154 savesegment(es, host_state->es_sel);
1156 gs_base = cpu_kernelmode_gs_base(cpu);
1157 if (likely(is_64bit_mm(current->mm))) {
1158 current_save_fsgs();
1159 fs_sel = current->thread.fsindex;
1160 gs_sel = current->thread.gsindex;
1161 fs_base = current->thread.fsbase;
1162 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1164 savesegment(fs, fs_sel);
1165 savesegment(gs, gs_sel);
1166 fs_base = read_msr(MSR_FS_BASE);
1167 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1170 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 savesegment(fs, fs_sel);
1173 savesegment(gs, gs_sel);
1174 fs_base = segment_base(fs_sel);
1175 gs_base = segment_base(gs_sel);
1178 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1179 vmx->guest_state_loaded = true;
1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1184 struct vmcs_host_state *host_state;
1186 if (!vmx->guest_state_loaded)
1189 host_state = &vmx->loaded_vmcs->host_state;
1191 ++vmx->vcpu.stat.host_state_reload;
1193 #ifdef CONFIG_X86_64
1194 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1196 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1197 kvm_load_ldt(host_state->ldt_sel);
1198 #ifdef CONFIG_X86_64
1199 load_gs_index(host_state->gs_sel);
1201 loadsegment(gs, host_state->gs_sel);
1204 if (host_state->fs_sel & 7)
1205 loadsegment(fs, host_state->fs_sel);
1206 #ifdef CONFIG_X86_64
1207 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1208 loadsegment(ds, host_state->ds_sel);
1209 loadsegment(es, host_state->es_sel);
1212 invalidate_tss_limit();
1213 #ifdef CONFIG_X86_64
1214 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1216 load_fixmap_gdt(raw_smp_processor_id());
1217 vmx->guest_state_loaded = false;
1218 vmx->guest_uret_msrs_loaded = false;
1221 #ifdef CONFIG_X86_64
1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1225 if (vmx->guest_state_loaded)
1226 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1228 return vmx->msr_guest_kernel_gs_base;
1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1234 if (vmx->guest_state_loaded)
1235 wrmsrl(MSR_KERNEL_GS_BASE, data);
1237 vmx->msr_guest_kernel_gs_base = data;
1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1242 struct loaded_vmcs *buddy)
1244 struct vcpu_vmx *vmx = to_vmx(vcpu);
1245 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1248 if (!already_loaded) {
1249 loaded_vmcs_clear(vmx->loaded_vmcs);
1250 local_irq_disable();
1253 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1254 * this cpu's percpu list, otherwise it may not yet be deleted
1255 * from its previous cpu's percpu list. Pairs with the
1256 * smb_wmb() in __loaded_vmcs_clear().
1260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1261 &per_cpu(loaded_vmcss_on_cpu, cpu));
1265 prev = per_cpu(current_vmcs, cpu);
1266 if (prev != vmx->loaded_vmcs->vmcs) {
1267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1268 vmcs_load(vmx->loaded_vmcs->vmcs);
1271 * No indirect branch prediction barrier needed when switching
1272 * the active VMCS within a guest, e.g. on nested VM-Enter.
1273 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1275 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1276 indirect_branch_prediction_barrier();
1279 if (!already_loaded) {
1280 void *gdt = get_current_gdt_ro();
1281 unsigned long sysenter_esp;
1284 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1285 * TLB entries from its previous association with the vCPU.
1287 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1290 * Linux uses per-cpu TSS and GDT, so set these when switching
1291 * processors. See 22.2.4.
1293 vmcs_writel(HOST_TR_BASE,
1294 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1295 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1297 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1298 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1300 vmx->loaded_vmcs->cpu = cpu;
1305 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1306 * vcpu mutex is already taken.
1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 struct vcpu_vmx *vmx = to_vmx(vcpu);
1312 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1314 vmx_vcpu_pi_load(vcpu, cpu);
1316 vmx->host_debugctlmsr = get_debugctlmsr();
1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1321 vmx_vcpu_pi_put(vcpu);
1323 vmx_prepare_switch_to_host(to_vmx(vcpu));
1326 static bool emulation_required(struct kvm_vcpu *vcpu)
1328 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1333 struct vcpu_vmx *vmx = to_vmx(vcpu);
1334 unsigned long rflags, save_rflags;
1336 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1337 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1338 rflags = vmcs_readl(GUEST_RFLAGS);
1339 if (vmx->rmode.vm86_active) {
1340 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1341 save_rflags = vmx->rmode.save_rflags;
1342 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1344 vmx->rflags = rflags;
1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 unsigned long old_rflags;
1354 if (is_unrestricted_guest(vcpu)) {
1355 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1356 vmx->rflags = rflags;
1357 vmcs_writel(GUEST_RFLAGS, rflags);
1361 old_rflags = vmx_get_rflags(vcpu);
1362 vmx->rflags = rflags;
1363 if (vmx->rmode.vm86_active) {
1364 vmx->rmode.save_rflags = rflags;
1365 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367 vmcs_writel(GUEST_RFLAGS, rflags);
1369 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1370 vmx->emulation_required = emulation_required(vcpu);
1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1378 if (interruptibility & GUEST_INTR_STATE_STI)
1379 ret |= KVM_X86_SHADOW_INT_STI;
1380 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1381 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1389 u32 interruptibility = interruptibility_old;
1391 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1394 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1395 else if (mask & KVM_X86_SHADOW_INT_STI)
1396 interruptibility |= GUEST_INTR_STATE_STI;
1398 if ((interruptibility != interruptibility_old))
1399 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 struct vcpu_vmx *vmx = to_vmx(vcpu);
1405 unsigned long value;
1408 * Any MSR write that attempts to change bits marked reserved will
1411 if (data & vmx->pt_desc.ctl_bitmask)
1415 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1416 * result in a #GP unless the same write also clears TraceEn.
1418 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1419 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1423 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1424 * and FabricEn would cause #GP, if
1425 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1428 !(data & RTIT_CTL_FABRIC_EN) &&
1429 !intel_pt_validate_cap(vmx->pt_desc.caps,
1430 PT_CAP_single_range_output))
1434 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1435 * utilize encodings marked reserved will cause a #GP fault.
1437 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1438 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1439 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1440 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1443 PT_CAP_cycle_thresholds);
1444 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1445 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1446 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1449 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1450 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1451 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1455 * If ADDRx_CFG is reserved or the encodings is >2 will
1456 * cause a #GP fault.
1458 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1459 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1462 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1465 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1468 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1477 * Emulation of instructions in SGX enclaves is impossible as RIP does
1478 * not point tthe failing instruction, and even if it did, the code
1479 * stream is inaccessible. Inject #UD instead of exiting to userspace
1480 * so that guest userspace can't DoS the guest simply by triggering
1481 * emulation (enclaves are CPL3 only).
1483 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1484 kvm_queue_exception(vcpu, UD_VECTOR);
1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1492 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1493 unsigned long rip, orig_rip;
1497 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1498 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1499 * set when EPT misconfig occurs. In practice, real hardware updates
1500 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1501 * (namely Hyper-V) don't set it due to it being undefined behavior,
1502 * i.e. we end up advancing IP with some random value.
1504 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1505 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1506 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1509 * Emulating an enclave's instructions isn't supported as KVM
1510 * cannot access the enclave's memory or its true RIP, e.g. the
1511 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1512 * the RIP that actually triggered the VM-Exit. But, because
1513 * most instructions that cause VM-Exit will #UD in an enclave,
1514 * most instruction-based VM-Exits simply do not occur.
1516 * There are a few exceptions, notably the debug instructions
1517 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1518 * and generate #DB/#BP as expected, which KVM might intercept.
1519 * But again, the CPU does the dirty work and saves an instr
1520 * length of zero so VMMs don't shoot themselves in the foot.
1521 * WARN if KVM tries to skip a non-zero length instruction on
1522 * a VM-Exit from an enclave.
1527 WARN(exit_reason.enclave_mode,
1528 "KVM: skipping instruction after SGX enclave VM-Exit");
1530 orig_rip = kvm_rip_read(vcpu);
1531 rip = orig_rip + instr_len;
1532 #ifdef CONFIG_X86_64
1534 * We need to mask out the high 32 bits of RIP if not in 64-bit
1535 * mode, but just finding out that we are in 64-bit mode is
1536 * quite expensive. Only do it if there was a carry.
1538 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1541 kvm_rip_write(vcpu, rip);
1543 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1548 /* skipping an emulated instruction also counts */
1549 vmx_set_interrupt_shadow(vcpu, 0);
1555 * Recognizes a pending MTF VM-exit and records the nested state for later
1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1560 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1561 struct vcpu_vmx *vmx = to_vmx(vcpu);
1563 if (!is_guest_mode(vcpu))
1567 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1568 * T-bit traps. As instruction emulation is completed (i.e. at the
1569 * instruction boundary), any #DB exception pending delivery must be a
1570 * debug-trap. Record the pending MTF state to be delivered in
1571 * vmx_check_nested_events().
1573 if (nested_cpu_has_mtf(vmcs12) &&
1574 (!vcpu->arch.exception.pending ||
1575 vcpu->arch.exception.nr == DB_VECTOR))
1576 vmx->nested.mtf_pending = true;
1578 vmx->nested.mtf_pending = false;
1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1583 vmx_update_emulated_instruction(vcpu);
1584 return skip_emulated_instruction(vcpu);
1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1590 * Ensure that we clear the HLT state in the VMCS. We don't need to
1591 * explicitly skip the instruction because if the HLT state is set,
1592 * then the instruction is already executing and RIP has already been
1595 if (kvm_hlt_in_guest(vcpu->kvm) &&
1596 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1597 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1602 struct vcpu_vmx *vmx = to_vmx(vcpu);
1603 unsigned nr = vcpu->arch.exception.nr;
1604 bool has_error_code = vcpu->arch.exception.has_error_code;
1605 u32 error_code = vcpu->arch.exception.error_code;
1606 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1608 kvm_deliver_exception_payload(vcpu);
1610 if (has_error_code) {
1611 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1612 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1615 if (vmx->rmode.vm86_active) {
1617 if (kvm_exception_is_soft(nr))
1618 inc_eip = vcpu->arch.event_exit_inst_len;
1619 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1623 WARN_ON_ONCE(vmx->emulation_required);
1625 if (kvm_exception_is_soft(nr)) {
1626 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1627 vmx->vcpu.arch.event_exit_inst_len);
1628 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1630 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1632 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1634 vmx_clear_hlt(vcpu);
1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1638 bool load_into_hardware)
1640 struct vmx_uret_msr *uret_msr;
1642 uret_msr = vmx_find_uret_msr(vmx, msr);
1646 uret_msr->load_into_hardware = load_into_hardware;
1650 * Configuring user return MSRs to automatically save, load, and restore MSRs
1651 * that need to be shoved into hardware when running the guest. Note, omitting
1652 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1653 * loaded into hardware when running the guest.
1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1657 #ifdef CONFIG_X86_64
1658 bool load_syscall_msrs;
1661 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 * when EFER.SCE is set.
1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 (vmx->vcpu.arch.efer & EFER_SCE);
1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 * kernel and old userspace. If those guests run on a tsx=off host, do
1680 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 * so that TSX remains always disabled.
1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1686 * The set of MSRs to load may have changed, reload MSRs before the
1689 vmx->guest_uret_msrs_loaded = false;
1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1696 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1697 return vmcs12->tsc_offset;
1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1704 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1706 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1707 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1708 return vmcs12->tsc_multiplier;
1710 return kvm_default_tsc_scaling_ratio;
1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1715 vmcs_write64(TSC_OFFSET, offset);
1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1720 vmcs_write64(TSC_MULTIPLIER, multiplier);
1724 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1725 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1726 * all guests if the "nested" module option is off, and can also be disabled
1727 * for a single guest by disabling its VMX cpuid bit.
1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1731 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1737 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1739 return !(val & ~valid_bits);
1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1744 switch (msr->index) {
1745 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1748 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1749 case MSR_IA32_PERF_CAPABILITIES:
1750 msr->data = vmx_get_perf_capabilities();
1753 return KVM_MSR_RET_INVALID;
1758 * Reads an msr value (of 'msr_index') into 'pdata'.
1759 * Returns 0 on success, non-0 otherwise.
1760 * Assumes vcpu_load() was already called.
1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1764 struct vcpu_vmx *vmx = to_vmx(vcpu);
1765 struct vmx_uret_msr *msr;
1768 switch (msr_info->index) {
1769 #ifdef CONFIG_X86_64
1771 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1774 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1776 case MSR_KERNEL_GS_BASE:
1777 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 return kvm_get_msr_common(vcpu, msr_info);
1782 case MSR_IA32_TSX_CTRL:
1783 if (!msr_info->host_initiated &&
1784 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1787 case MSR_IA32_UMWAIT_CONTROL:
1788 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1791 msr_info->data = vmx->msr_ia32_umwait_control;
1793 case MSR_IA32_SPEC_CTRL:
1794 if (!msr_info->host_initiated &&
1795 !guest_has_spec_ctrl_msr(vcpu))
1798 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1800 case MSR_IA32_SYSENTER_CS:
1801 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1803 case MSR_IA32_SYSENTER_EIP:
1804 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1806 case MSR_IA32_SYSENTER_ESP:
1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1809 case MSR_IA32_BNDCFGS:
1810 if (!kvm_mpx_supported() ||
1811 (!msr_info->host_initiated &&
1812 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1814 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1816 case MSR_IA32_MCG_EXT_CTL:
1817 if (!msr_info->host_initiated &&
1818 !(vmx->msr_ia32_feature_control &
1819 FEAT_CTL_LMCE_ENABLED))
1821 msr_info->data = vcpu->arch.mcg_ext_ctl;
1823 case MSR_IA32_FEAT_CTL:
1824 msr_info->data = vmx->msr_ia32_feature_control;
1826 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1827 if (!msr_info->host_initiated &&
1828 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1830 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1831 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1833 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1834 if (!nested_vmx_allowed(vcpu))
1836 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1840 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1841 * Hyper-V versions are still trying to use corresponding
1842 * features when they are exposed. Filter out the essential
1845 if (!msr_info->host_initiated &&
1846 vmx->nested.enlightened_vmcs_enabled)
1847 nested_evmcs_filter_control_msr(msr_info->index,
1850 case MSR_IA32_RTIT_CTL:
1851 if (!vmx_pt_mode_is_host_guest())
1853 msr_info->data = vmx->pt_desc.guest.ctl;
1855 case MSR_IA32_RTIT_STATUS:
1856 if (!vmx_pt_mode_is_host_guest())
1858 msr_info->data = vmx->pt_desc.guest.status;
1860 case MSR_IA32_RTIT_CR3_MATCH:
1861 if (!vmx_pt_mode_is_host_guest() ||
1862 !intel_pt_validate_cap(vmx->pt_desc.caps,
1863 PT_CAP_cr3_filtering))
1865 msr_info->data = vmx->pt_desc.guest.cr3_match;
1867 case MSR_IA32_RTIT_OUTPUT_BASE:
1868 if (!vmx_pt_mode_is_host_guest() ||
1869 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1870 PT_CAP_topa_output) &&
1871 !intel_pt_validate_cap(vmx->pt_desc.caps,
1872 PT_CAP_single_range_output)))
1874 msr_info->data = vmx->pt_desc.guest.output_base;
1876 case MSR_IA32_RTIT_OUTPUT_MASK:
1877 if (!vmx_pt_mode_is_host_guest() ||
1878 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1879 PT_CAP_topa_output) &&
1880 !intel_pt_validate_cap(vmx->pt_desc.caps,
1881 PT_CAP_single_range_output)))
1883 msr_info->data = vmx->pt_desc.guest.output_mask;
1885 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1886 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1887 if (!vmx_pt_mode_is_host_guest() ||
1888 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1889 PT_CAP_num_address_ranges)))
1892 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1894 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1896 case MSR_IA32_DEBUGCTLMSR:
1897 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1901 msr = vmx_find_uret_msr(vmx, msr_info->index);
1903 msr_info->data = msr->data;
1906 return kvm_get_msr_common(vcpu, msr_info);
1912 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1915 #ifdef CONFIG_X86_64
1916 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1919 return (unsigned long)data;
1922 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1924 u64 debugctl = vmx_supported_debugctl();
1926 if (!intel_pmu_lbr_is_enabled(vcpu))
1927 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1929 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1930 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1936 * Writes msr value into the appropriate "register".
1937 * Returns 0 on success, non-0 otherwise.
1938 * Assumes vcpu_load() was already called.
1940 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1942 struct vcpu_vmx *vmx = to_vmx(vcpu);
1943 struct vmx_uret_msr *msr;
1945 u32 msr_index = msr_info->index;
1946 u64 data = msr_info->data;
1949 switch (msr_index) {
1951 ret = kvm_set_msr_common(vcpu, msr_info);
1953 #ifdef CONFIG_X86_64
1955 vmx_segment_cache_clear(vmx);
1956 vmcs_writel(GUEST_FS_BASE, data);
1959 vmx_segment_cache_clear(vmx);
1960 vmcs_writel(GUEST_GS_BASE, data);
1962 case MSR_KERNEL_GS_BASE:
1963 vmx_write_guest_kernel_gs_base(vmx, data);
1966 case MSR_IA32_SYSENTER_CS:
1967 if (is_guest_mode(vcpu))
1968 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1969 vmcs_write32(GUEST_SYSENTER_CS, data);
1971 case MSR_IA32_SYSENTER_EIP:
1972 if (is_guest_mode(vcpu)) {
1973 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1974 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1976 vmcs_writel(GUEST_SYSENTER_EIP, data);
1978 case MSR_IA32_SYSENTER_ESP:
1979 if (is_guest_mode(vcpu)) {
1980 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1981 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1983 vmcs_writel(GUEST_SYSENTER_ESP, data);
1985 case MSR_IA32_DEBUGCTLMSR: {
1986 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1987 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1988 if (report_ignored_msrs)
1989 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1991 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1992 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1998 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1999 VM_EXIT_SAVE_DEBUG_CONTROLS)
2000 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2002 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2003 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2004 (data & DEBUGCTLMSR_LBR))
2005 intel_pmu_create_guest_lbr_event(vcpu);
2008 case MSR_IA32_BNDCFGS:
2009 if (!kvm_mpx_supported() ||
2010 (!msr_info->host_initiated &&
2011 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2014 (data & MSR_IA32_BNDCFGS_RSVD))
2016 vmcs_write64(GUEST_BNDCFGS, data);
2018 case MSR_IA32_UMWAIT_CONTROL:
2019 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2022 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2023 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2026 vmx->msr_ia32_umwait_control = data;
2028 case MSR_IA32_SPEC_CTRL:
2029 if (!msr_info->host_initiated &&
2030 !guest_has_spec_ctrl_msr(vcpu))
2033 if (kvm_spec_ctrl_test_value(data))
2036 vmx->spec_ctrl = data;
2042 * When it's written (to non-zero) for the first time, pass
2046 * The handling of the MSR bitmap for L2 guests is done in
2047 * nested_vmx_prepare_msr_bitmap. We should not touch the
2048 * vmcs02.msr_bitmap here since it gets completely overwritten
2049 * in the merging. We update the vmcs01 here for L1 as well
2050 * since it will end up touching the MSR anyway now.
2052 vmx_disable_intercept_for_msr(vcpu,
2056 case MSR_IA32_TSX_CTRL:
2057 if (!msr_info->host_initiated &&
2058 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2063 case MSR_IA32_PRED_CMD:
2064 if (!msr_info->host_initiated &&
2065 !guest_has_pred_cmd_msr(vcpu))
2068 if (data & ~PRED_CMD_IBPB)
2070 if (!boot_cpu_has(X86_FEATURE_IBPB))
2075 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2079 * When it's written (to non-zero) for the first time, pass
2083 * The handling of the MSR bitmap for L2 guests is done in
2084 * nested_vmx_prepare_msr_bitmap. We should not touch the
2085 * vmcs02.msr_bitmap here since it gets completely overwritten
2088 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090 case MSR_IA32_CR_PAT:
2091 if (!kvm_pat_valid(data))
2094 if (is_guest_mode(vcpu) &&
2095 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2096 get_vmcs12(vcpu)->guest_ia32_pat = data;
2098 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2099 vmcs_write64(GUEST_IA32_PAT, data);
2100 vcpu->arch.pat = data;
2103 ret = kvm_set_msr_common(vcpu, msr_info);
2105 case MSR_IA32_TSC_ADJUST:
2106 ret = kvm_set_msr_common(vcpu, msr_info);
2108 case MSR_IA32_MCG_EXT_CTL:
2109 if ((!msr_info->host_initiated &&
2110 !(to_vmx(vcpu)->msr_ia32_feature_control &
2111 FEAT_CTL_LMCE_ENABLED)) ||
2112 (data & ~MCG_EXT_CTL_LMCE_EN))
2114 vcpu->arch.mcg_ext_ctl = data;
2116 case MSR_IA32_FEAT_CTL:
2117 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2118 (to_vmx(vcpu)->msr_ia32_feature_control &
2119 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121 vmx->msr_ia32_feature_control = data;
2122 if (msr_info->host_initiated && data == 0)
2123 vmx_leave_nested(vcpu);
2125 /* SGX may be enabled/disabled by guest's firmware */
2126 vmx_write_encls_bitmap(vcpu, NULL);
2128 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2130 * On real hardware, the LE hash MSRs are writable before
2131 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2132 * at which point SGX related bits in IA32_FEATURE_CONTROL
2135 * KVM does not emulate SGX activation for simplicity, so
2136 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2137 * is unlocked. This is technically not architectural
2138 * behavior, but it's close enough.
2140 if (!msr_info->host_initiated &&
2141 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2142 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2143 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2145 vmx->msr_ia32_sgxlepubkeyhash
2146 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2148 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2149 if (!msr_info->host_initiated)
2150 return 1; /* they are read-only */
2151 if (!nested_vmx_allowed(vcpu))
2153 return vmx_set_vmx_msr(vcpu, msr_index, data);
2154 case MSR_IA32_RTIT_CTL:
2155 if (!vmx_pt_mode_is_host_guest() ||
2156 vmx_rtit_ctl_check(vcpu, data) ||
2159 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2160 vmx->pt_desc.guest.ctl = data;
2161 pt_update_intercept_for_msr(vcpu);
2163 case MSR_IA32_RTIT_STATUS:
2164 if (!pt_can_write_msr(vmx))
2166 if (data & MSR_IA32_RTIT_STATUS_MASK)
2168 vmx->pt_desc.guest.status = data;
2170 case MSR_IA32_RTIT_CR3_MATCH:
2171 if (!pt_can_write_msr(vmx))
2173 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2174 PT_CAP_cr3_filtering))
2176 vmx->pt_desc.guest.cr3_match = data;
2178 case MSR_IA32_RTIT_OUTPUT_BASE:
2179 if (!pt_can_write_msr(vmx))
2181 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2182 PT_CAP_topa_output) &&
2183 !intel_pt_validate_cap(vmx->pt_desc.caps,
2184 PT_CAP_single_range_output))
2186 if (!pt_output_base_valid(vcpu, data))
2188 vmx->pt_desc.guest.output_base = data;
2190 case MSR_IA32_RTIT_OUTPUT_MASK:
2191 if (!pt_can_write_msr(vmx))
2193 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2194 PT_CAP_topa_output) &&
2195 !intel_pt_validate_cap(vmx->pt_desc.caps,
2196 PT_CAP_single_range_output))
2198 vmx->pt_desc.guest.output_mask = data;
2200 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2201 if (!pt_can_write_msr(vmx))
2203 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2204 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2205 PT_CAP_num_address_ranges))
2207 if (is_noncanonical_address(data, vcpu))
2210 vmx->pt_desc.guest.addr_b[index / 2] = data;
2212 vmx->pt_desc.guest.addr_a[index / 2] = data;
2214 case MSR_IA32_PERF_CAPABILITIES:
2215 if (data && !vcpu_to_pmu(vcpu)->version)
2217 if (data & PMU_CAP_LBR_FMT) {
2218 if ((data & PMU_CAP_LBR_FMT) !=
2219 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2221 if (!intel_pmu_lbr_is_compatible(vcpu))
2224 ret = kvm_set_msr_common(vcpu, msr_info);
2229 msr = vmx_find_uret_msr(vmx, msr_index);
2231 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2233 ret = kvm_set_msr_common(vcpu, msr_info);
2239 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2241 unsigned long guest_owned_bits;
2243 kvm_register_mark_available(vcpu, reg);
2247 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2250 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2252 case VCPU_EXREG_PDPTR:
2254 ept_save_pdptrs(vcpu);
2256 case VCPU_EXREG_CR0:
2257 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2259 vcpu->arch.cr0 &= ~guest_owned_bits;
2260 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2262 case VCPU_EXREG_CR3:
2264 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2265 * CR3 is loaded into hardware, not the guest's CR3.
2267 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2268 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2270 case VCPU_EXREG_CR4:
2271 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2273 vcpu->arch.cr4 &= ~guest_owned_bits;
2274 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2277 KVM_BUG_ON(1, vcpu->kvm);
2282 static __init int cpu_has_kvm_support(void)
2284 return cpu_has_vmx();
2287 static __init int vmx_disabled_by_bios(void)
2289 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2290 !boot_cpu_has(X86_FEATURE_VMX);
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2297 cr4_set_bits(X86_CR4_VMXE);
2299 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2300 _ASM_EXTABLE(1b, %l[fault])
2301 : : [vmxon_pointer] "m"(vmxon_pointer)
2306 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2307 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2308 cr4_clear_bits(X86_CR4_VMXE);
2313 static int hardware_enable(void)
2315 int cpu = raw_smp_processor_id();
2316 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2319 if (cr4_read_shadow() & X86_CR4_VMXE)
2323 * This can happen if we hot-added a CPU but failed to allocate
2324 * VP assist page for it.
2326 if (static_branch_unlikely(&enable_evmcs) &&
2327 !hv_get_vp_assist_page(cpu))
2330 intel_pt_handle_vmx(1);
2332 r = kvm_cpu_vmxon(phys_addr);
2334 intel_pt_handle_vmx(0);
2344 static void vmclear_local_loaded_vmcss(void)
2346 int cpu = raw_smp_processor_id();
2347 struct loaded_vmcs *v, *n;
2349 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350 loaded_vmcss_on_cpu_link)
2351 __loaded_vmcs_clear(v);
2354 static void hardware_disable(void)
2356 vmclear_local_loaded_vmcss();
2359 kvm_spurious_fault();
2361 intel_pt_handle_vmx(0);
2365 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2366 * directly instead of going through cpu_has(), to ensure KVM is trapping
2367 * ENCLS whenever it's supported in hardware. It does not matter whether
2368 * the host OS supports or has enabled SGX.
2370 static bool cpu_has_sgx(void)
2372 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2376 u32 msr, u32 *result)
2378 u32 vmx_msr_low, vmx_msr_high;
2379 u32 ctl = ctl_min | ctl_opt;
2381 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2383 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2384 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2386 /* Ensure minimum (required) set of control bits are supported. */
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2395 struct vmx_capability *vmx_cap)
2397 u32 vmx_msr_low, vmx_msr_high;
2398 u32 min, opt, min2, opt2;
2399 u32 _pin_based_exec_control = 0;
2400 u32 _cpu_based_exec_control = 0;
2401 u32 _cpu_based_2nd_exec_control = 0;
2402 u32 _vmexit_control = 0;
2403 u32 _vmentry_control = 0;
2405 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2406 min = CPU_BASED_HLT_EXITING |
2407 #ifdef CONFIG_X86_64
2408 CPU_BASED_CR8_LOAD_EXITING |
2409 CPU_BASED_CR8_STORE_EXITING |
2411 CPU_BASED_CR3_LOAD_EXITING |
2412 CPU_BASED_CR3_STORE_EXITING |
2413 CPU_BASED_UNCOND_IO_EXITING |
2414 CPU_BASED_MOV_DR_EXITING |
2415 CPU_BASED_USE_TSC_OFFSETTING |
2416 CPU_BASED_MWAIT_EXITING |
2417 CPU_BASED_MONITOR_EXITING |
2418 CPU_BASED_INVLPG_EXITING |
2419 CPU_BASED_RDPMC_EXITING;
2421 opt = CPU_BASED_TPR_SHADOW |
2422 CPU_BASED_USE_MSR_BITMAPS |
2423 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425 &_cpu_based_exec_control) < 0)
2427 #ifdef CONFIG_X86_64
2428 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430 ~CPU_BASED_CR8_STORE_EXITING;
2432 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2434 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2435 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2436 SECONDARY_EXEC_WBINVD_EXITING |
2437 SECONDARY_EXEC_ENABLE_VPID |
2438 SECONDARY_EXEC_ENABLE_EPT |
2439 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2441 SECONDARY_EXEC_DESC |
2442 SECONDARY_EXEC_ENABLE_RDTSCP |
2443 SECONDARY_EXEC_ENABLE_INVPCID |
2444 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2445 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446 SECONDARY_EXEC_SHADOW_VMCS |
2447 SECONDARY_EXEC_XSAVES |
2448 SECONDARY_EXEC_RDSEED_EXITING |
2449 SECONDARY_EXEC_RDRAND_EXITING |
2450 SECONDARY_EXEC_ENABLE_PML |
2451 SECONDARY_EXEC_TSC_SCALING |
2452 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2453 SECONDARY_EXEC_PT_USE_GPA |
2454 SECONDARY_EXEC_PT_CONCEAL_VMX |
2455 SECONDARY_EXEC_ENABLE_VMFUNC |
2456 SECONDARY_EXEC_BUS_LOCK_DETECTION;
2458 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2459 if (adjust_vmx_controls(min2, opt2,
2460 MSR_IA32_VMX_PROCBASED_CTLS2,
2461 &_cpu_based_2nd_exec_control) < 0)
2464 #ifndef CONFIG_X86_64
2465 if (!(_cpu_based_2nd_exec_control &
2466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2470 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2471 _cpu_based_2nd_exec_control &= ~(
2472 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2476 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2477 &vmx_cap->ept, &vmx_cap->vpid);
2479 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2480 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2482 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2483 CPU_BASED_CR3_STORE_EXITING |
2484 CPU_BASED_INVLPG_EXITING);
2485 } else if (vmx_cap->ept) {
2487 pr_warn_once("EPT CAP should not exist if not support "
2488 "1-setting enable EPT VM-execution control\n");
2490 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2493 pr_warn_once("VPID CAP should not exist if not support "
2494 "1-setting enable VPID VM-execution control\n");
2497 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2498 #ifdef CONFIG_X86_64
2499 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2501 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 VM_EXIT_LOAD_IA32_PAT |
2503 VM_EXIT_LOAD_IA32_EFER |
2504 VM_EXIT_CLEAR_BNDCFGS |
2505 VM_EXIT_PT_CONCEAL_PIP |
2506 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2507 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2508 &_vmexit_control) < 0)
2511 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2512 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2513 PIN_BASED_VMX_PREEMPTION_TIMER;
2514 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2515 &_pin_based_exec_control) < 0)
2518 if (cpu_has_broken_vmx_preemption_timer())
2519 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2520 if (!(_cpu_based_2nd_exec_control &
2521 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2522 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2524 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2525 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2526 VM_ENTRY_LOAD_IA32_PAT |
2527 VM_ENTRY_LOAD_IA32_EFER |
2528 VM_ENTRY_LOAD_BNDCFGS |
2529 VM_ENTRY_PT_CONCEAL_PIP |
2530 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2532 &_vmentry_control) < 0)
2536 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2537 * can't be used due to an errata where VM Exit may incorrectly clear
2538 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2539 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2541 if (boot_cpu_data.x86 == 0x6) {
2542 switch (boot_cpu_data.x86_model) {
2543 case 26: /* AAK155 */
2544 case 30: /* AAP115 */
2545 case 37: /* AAT100 */
2546 case 44: /* BC86,AAY89,BD102 */
2548 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2549 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2551 "does not work properly. Using workaround\n");
2559 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2561 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2562 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2565 #ifdef CONFIG_X86_64
2566 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2567 if (vmx_msr_high & (1u<<16))
2571 /* Require Write-Back (WB) memory type for VMCS accesses. */
2572 if (((vmx_msr_high >> 18) & 15) != 6)
2575 vmcs_conf->size = vmx_msr_high & 0x1fff;
2576 vmcs_conf->order = get_order(vmcs_conf->size);
2577 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2579 vmcs_conf->revision_id = vmx_msr_low;
2581 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2582 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2583 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2584 vmcs_conf->vmexit_ctrl = _vmexit_control;
2585 vmcs_conf->vmentry_ctrl = _vmentry_control;
2587 #if IS_ENABLED(CONFIG_HYPERV)
2588 if (enlightened_vmcs)
2589 evmcs_sanitize_exec_ctrls(vmcs_conf);
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2597 int node = cpu_to_node(cpu);
2601 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2604 vmcs = page_address(pages);
2605 memset(vmcs, 0, vmcs_config.size);
2607 /* KVM supports Enlightened VMCS v1 only */
2608 if (static_branch_unlikely(&enable_evmcs))
2609 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2611 vmcs->hdr.revision_id = vmcs_config.revision_id;
2614 vmcs->hdr.shadow_vmcs = 1;
2618 void free_vmcs(struct vmcs *vmcs)
2620 free_pages((unsigned long)vmcs, vmcs_config.order);
2624 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2628 if (!loaded_vmcs->vmcs)
2630 loaded_vmcs_clear(loaded_vmcs);
2631 free_vmcs(loaded_vmcs->vmcs);
2632 loaded_vmcs->vmcs = NULL;
2633 if (loaded_vmcs->msr_bitmap)
2634 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2635 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2640 loaded_vmcs->vmcs = alloc_vmcs(false);
2641 if (!loaded_vmcs->vmcs)
2644 vmcs_clear(loaded_vmcs->vmcs);
2646 loaded_vmcs->shadow_vmcs = NULL;
2647 loaded_vmcs->hv_timer_soft_disabled = false;
2648 loaded_vmcs->cpu = -1;
2649 loaded_vmcs->launched = 0;
2651 if (cpu_has_vmx_msr_bitmap()) {
2652 loaded_vmcs->msr_bitmap = (unsigned long *)
2653 __get_free_page(GFP_KERNEL_ACCOUNT);
2654 if (!loaded_vmcs->msr_bitmap)
2656 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2658 if (IS_ENABLED(CONFIG_HYPERV) &&
2659 static_branch_unlikely(&enable_evmcs) &&
2660 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2661 struct hv_enlightened_vmcs *evmcs =
2662 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2664 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2668 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2669 memset(&loaded_vmcs->controls_shadow, 0,
2670 sizeof(struct vmcs_controls_shadow));
2675 free_loaded_vmcs(loaded_vmcs);
2679 static void free_kvm_area(void)
2683 for_each_possible_cpu(cpu) {
2684 free_vmcs(per_cpu(vmxarea, cpu));
2685 per_cpu(vmxarea, cpu) = NULL;
2689 static __init int alloc_kvm_area(void)
2693 for_each_possible_cpu(cpu) {
2696 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2703 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2704 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2705 * revision_id reported by MSR_IA32_VMX_BASIC.
2707 * However, even though not explicitly documented by
2708 * TLFS, VMXArea passed as VMXON argument should
2709 * still be marked with revision_id reported by
2712 if (static_branch_unlikely(&enable_evmcs))
2713 vmcs->hdr.revision_id = vmcs_config.revision_id;
2715 per_cpu(vmxarea, cpu) = vmcs;
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2721 struct kvm_segment *save)
2723 if (!emulate_invalid_guest_state) {
2725 * CS and SS RPL should be equal during guest entry according
2726 * to VMX spec, but in reality it is not always so. Since vcpu
2727 * is in the middle of the transition from real mode to
2728 * protected mode it is safe to assume that RPL 0 is a good
2731 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2732 save->selector &= ~SEGMENT_RPL_MASK;
2733 save->dpl = save->selector & SEGMENT_RPL_MASK;
2736 __vmx_set_segment(vcpu, save, seg);
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
2741 unsigned long flags;
2742 struct vcpu_vmx *vmx = to_vmx(vcpu);
2745 * Update real mode segment cache. It may be not up-to-date if segment
2746 * register was written while vcpu was in a guest mode.
2748 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2755 vmx->rmode.vm86_active = 0;
2757 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2759 flags = vmcs_readl(GUEST_RFLAGS);
2760 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2761 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 vmcs_writel(GUEST_RFLAGS, flags);
2764 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2765 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2767 vmx_update_exception_bitmap(vcpu);
2769 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2770 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2771 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2774 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2779 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2780 struct kvm_segment var = *save;
2783 if (seg == VCPU_SREG_CS)
2786 if (!emulate_invalid_guest_state) {
2787 var.selector = var.base >> 4;
2788 var.base = var.base & 0xffff0;
2798 if (save->base & 0xf)
2799 printk_once(KERN_WARNING "kvm: segment base is not "
2800 "paragraph aligned when entering "
2801 "protected mode (seg=%d)", seg);
2804 vmcs_write16(sf->selector, var.selector);
2805 vmcs_writel(sf->base, var.base);
2806 vmcs_write32(sf->limit, var.limit);
2807 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
2812 unsigned long flags;
2813 struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2816 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2824 vmx->rmode.vm86_active = 1;
2827 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2828 * vcpu. Warn the user that an update is overdue.
2830 if (!kvm_vmx->tss_addr)
2831 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2832 "called before entering vcpu\n");
2834 vmx_segment_cache_clear(vmx);
2836 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2837 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2838 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2840 flags = vmcs_readl(GUEST_RFLAGS);
2841 vmx->rmode.save_rflags = flags;
2843 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2845 vmcs_writel(GUEST_RFLAGS, flags);
2846 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2847 vmx_update_exception_bitmap(vcpu);
2849 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2850 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2851 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2852 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2853 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2854 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2859 struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2862 /* Nothing to do if hardware doesn't support EFER. */
2866 vcpu->arch.efer = efer;
2867 if (efer & EFER_LMA) {
2868 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2871 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2873 msr->data = efer & ~EFER_LME;
2875 vmx_setup_uret_msrs(vmx);
2879 #ifdef CONFIG_X86_64
2881 static void enter_lmode(struct kvm_vcpu *vcpu)
2885 vmx_segment_cache_clear(to_vmx(vcpu));
2887 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2888 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2889 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2891 vmcs_write32(GUEST_TR_AR_BYTES,
2892 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2893 | VMX_AR_TYPE_BUSY_64_TSS);
2895 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2898 static void exit_lmode(struct kvm_vcpu *vcpu)
2900 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2901 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2908 struct vcpu_vmx *vmx = to_vmx(vcpu);
2911 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2912 * the CPU is not required to invalidate guest-physical mappings on
2913 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2914 * associated with the root EPT structure and not any particular VPID
2915 * (INVVPID also isn't required to invalidate guest-physical mappings).
2919 } else if (enable_vpid) {
2920 if (cpu_has_vmx_invvpid_global()) {
2921 vpid_sync_vcpu_global();
2923 vpid_sync_vcpu_single(vmx->vpid);
2924 vpid_sync_vcpu_single(vmx->nested.vpid02);
2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2931 struct kvm_mmu *mmu = vcpu->arch.mmu;
2932 u64 root_hpa = mmu->root_hpa;
2934 /* No flush required if the current context is invalid. */
2935 if (!VALID_PAGE(root_hpa))
2939 ept_sync_context(construct_eptp(vcpu, root_hpa,
2940 mmu->shadow_root_level));
2941 else if (!is_guest_mode(vcpu))
2942 vpid_sync_context(to_vmx(vcpu)->vpid);
2944 vpid_sync_context(nested_get_vpid02(vcpu));
2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2950 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2951 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2953 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2959 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2960 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
2961 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2962 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2963 * i.e. no explicit INVVPID is necessary.
2965 vpid_sync_context(to_vmx(vcpu)->vpid);
2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2970 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2972 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2975 if (is_pae_paging(vcpu)) {
2976 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2977 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2978 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2979 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2985 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2987 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2990 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2991 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2992 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2993 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2995 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2998 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2999 CPU_BASED_CR3_STORE_EXITING)
3001 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3003 struct vcpu_vmx *vmx = to_vmx(vcpu);
3004 unsigned long hw_cr0, old_cr0_pg;
3007 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3009 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3010 if (is_unrestricted_guest(vcpu))
3011 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3013 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3015 hw_cr0 |= X86_CR0_WP;
3017 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3020 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3024 vmcs_writel(CR0_READ_SHADOW, cr0);
3025 vmcs_writel(GUEST_CR0, hw_cr0);
3026 vcpu->arch.cr0 = cr0;
3027 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3029 #ifdef CONFIG_X86_64
3030 if (vcpu->arch.efer & EFER_LME) {
3031 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3033 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3038 if (enable_ept && !is_unrestricted_guest(vcpu)) {
3040 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3041 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3042 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3043 * KVM's CR3 is installed.
3045 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3046 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3049 * When running with EPT but not unrestricted guest, KVM must
3050 * intercept CR3 accesses when paging is _disabled_. This is
3051 * necessary because restricted guests can't actually run with
3052 * paging disabled, and so KVM stuffs its own CR3 in order to
3053 * run the guest when identity mapped page tables.
3055 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3056 * update, it may be stale with respect to CR3 interception,
3057 * e.g. after nested VM-Enter.
3059 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3060 * stores to forward them to L1, even if KVM does not need to
3061 * intercept them to preserve its identity mapped page tables.
3063 if (!(cr0 & X86_CR0_PG)) {
3064 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3065 } else if (!is_guest_mode(vcpu)) {
3066 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3068 tmp = exec_controls_get(vmx);
3069 tmp &= ~CR3_EXITING_BITS;
3070 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3071 exec_controls_set(vmx, tmp);
3074 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3075 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3076 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3079 /* depends on vcpu->arch.cr0 to be set to a new value */
3080 vmx->emulation_required = emulation_required(vcpu);
3083 static int vmx_get_max_tdp_level(void)
3085 if (cpu_has_vmx_ept_5levels())
3090 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3092 u64 eptp = VMX_EPTP_MT_WB;
3094 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3096 if (enable_ept_ad_bits &&
3097 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3098 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3104 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3107 struct kvm *kvm = vcpu->kvm;
3108 bool update_guest_cr3 = true;
3109 unsigned long guest_cr3;
3113 eptp = construct_eptp(vcpu, root_hpa, root_level);
3114 vmcs_write64(EPT_POINTER, eptp);
3116 hv_track_root_tdp(vcpu, root_hpa);
3118 if (!enable_unrestricted_guest && !is_paging(vcpu))
3119 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3120 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3121 guest_cr3 = vcpu->arch.cr3;
3122 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3123 update_guest_cr3 = false;
3124 vmx_ept_load_pdptrs(vcpu);
3126 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3129 if (update_guest_cr3)
3130 vmcs_writel(GUEST_CR3, guest_cr3);
3133 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3136 * We operate under the default treatment of SMM, so VMX cannot be
3137 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3138 * handled by kvm_is_valid_cr4().
3140 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3143 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3149 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3151 unsigned long old_cr4 = vcpu->arch.cr4;
3152 struct vcpu_vmx *vmx = to_vmx(vcpu);
3154 * Pass through host's Machine Check Enable value to hw_cr4, which
3155 * is in force while we are in guest mode. Do not let guests control
3156 * this bit, even if host CR4.MCE == 0.
3158 unsigned long hw_cr4;
3160 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3161 if (is_unrestricted_guest(vcpu))
3162 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3163 else if (vmx->rmode.vm86_active)
3164 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3166 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3168 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3169 if (cr4 & X86_CR4_UMIP) {
3170 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3171 hw_cr4 &= ~X86_CR4_UMIP;
3172 } else if (!is_guest_mode(vcpu) ||
3173 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3174 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3178 vcpu->arch.cr4 = cr4;
3179 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3181 if (!is_unrestricted_guest(vcpu)) {
3183 if (!is_paging(vcpu)) {
3184 hw_cr4 &= ~X86_CR4_PAE;
3185 hw_cr4 |= X86_CR4_PSE;
3186 } else if (!(cr4 & X86_CR4_PAE)) {
3187 hw_cr4 &= ~X86_CR4_PAE;
3192 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3193 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3194 * to be manually disabled when guest switches to non-paging
3197 * If !enable_unrestricted_guest, the CPU is always running
3198 * with CR0.PG=1 and CR4 needs to be modified.
3199 * If enable_unrestricted_guest, the CPU automatically
3200 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3202 if (!is_paging(vcpu))
3203 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3206 vmcs_writel(CR4_READ_SHADOW, cr4);
3207 vmcs_writel(GUEST_CR4, hw_cr4);
3209 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3210 kvm_update_cpuid_runtime(vcpu);
3213 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3215 struct vcpu_vmx *vmx = to_vmx(vcpu);
3218 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3219 *var = vmx->rmode.segs[seg];
3220 if (seg == VCPU_SREG_TR
3221 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3223 var->base = vmx_read_guest_seg_base(vmx, seg);
3224 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3227 var->base = vmx_read_guest_seg_base(vmx, seg);
3228 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3229 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3230 ar = vmx_read_guest_seg_ar(vmx, seg);
3231 var->unusable = (ar >> 16) & 1;
3232 var->type = ar & 15;
3233 var->s = (ar >> 4) & 1;
3234 var->dpl = (ar >> 5) & 3;
3236 * Some userspaces do not preserve unusable property. Since usable
3237 * segment has to be present according to VMX spec we can use present
3238 * property to amend userspace bug by making unusable segment always
3239 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3240 * segment as unusable.
3242 var->present = !var->unusable;
3243 var->avl = (ar >> 12) & 1;
3244 var->l = (ar >> 13) & 1;
3245 var->db = (ar >> 14) & 1;
3246 var->g = (ar >> 15) & 1;
3249 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3251 struct kvm_segment s;
3253 if (to_vmx(vcpu)->rmode.vm86_active) {
3254 vmx_get_segment(vcpu, &s, seg);
3257 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3260 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3262 struct vcpu_vmx *vmx = to_vmx(vcpu);
3264 if (unlikely(vmx->rmode.vm86_active))
3267 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3268 return VMX_AR_DPL(ar);
3272 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3276 if (var->unusable || !var->present)
3279 ar = var->type & 15;
3280 ar |= (var->s & 1) << 4;
3281 ar |= (var->dpl & 3) << 5;
3282 ar |= (var->present & 1) << 7;
3283 ar |= (var->avl & 1) << 12;
3284 ar |= (var->l & 1) << 13;
3285 ar |= (var->db & 1) << 14;
3286 ar |= (var->g & 1) << 15;
3292 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3294 struct vcpu_vmx *vmx = to_vmx(vcpu);
3295 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3297 vmx_segment_cache_clear(vmx);
3299 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3300 vmx->rmode.segs[seg] = *var;
3301 if (seg == VCPU_SREG_TR)
3302 vmcs_write16(sf->selector, var->selector);
3304 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3308 vmcs_writel(sf->base, var->base);
3309 vmcs_write32(sf->limit, var->limit);
3310 vmcs_write16(sf->selector, var->selector);
3313 * Fix the "Accessed" bit in AR field of segment registers for older
3315 * IA32 arch specifies that at the time of processor reset the
3316 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3317 * is setting it to 0 in the userland code. This causes invalid guest
3318 * state vmexit when "unrestricted guest" mode is turned on.
3319 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3320 * tree. Newer qemu binaries with that qemu fix would not need this
3323 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3324 var->type |= 0x1; /* Accessed */
3326 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3329 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3331 __vmx_set_segment(vcpu, var, seg);
3333 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
3336 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3338 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3340 *db = (ar >> 14) & 1;
3341 *l = (ar >> 13) & 1;
3344 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3346 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3347 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3350 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3352 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3353 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3356 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3358 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3359 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3362 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3364 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3365 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3368 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3370 struct kvm_segment var;
3373 vmx_get_segment(vcpu, &var, seg);
3375 if (seg == VCPU_SREG_CS)
3377 ar = vmx_segment_access_rights(&var);
3379 if (var.base != (var.selector << 4))
3381 if (var.limit != 0xffff)
3389 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3391 struct kvm_segment cs;
3392 unsigned int cs_rpl;
3394 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3395 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3399 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3403 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3404 if (cs.dpl > cs_rpl)
3407 if (cs.dpl != cs_rpl)
3413 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3417 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3419 struct kvm_segment ss;
3420 unsigned int ss_rpl;
3422 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3423 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3427 if (ss.type != 3 && ss.type != 7)
3431 if (ss.dpl != ss_rpl) /* DPL != RPL */
3439 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3441 struct kvm_segment var;
3444 vmx_get_segment(vcpu, &var, seg);
3445 rpl = var.selector & SEGMENT_RPL_MASK;
3453 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3454 if (var.dpl < rpl) /* DPL < RPL */
3458 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3464 static bool tr_valid(struct kvm_vcpu *vcpu)
3466 struct kvm_segment tr;
3468 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3472 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3474 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3482 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3484 struct kvm_segment ldtr;
3486 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3490 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3500 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3502 struct kvm_segment cs, ss;
3504 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3505 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3507 return ((cs.selector & SEGMENT_RPL_MASK) ==
3508 (ss.selector & SEGMENT_RPL_MASK));
3512 * Check if guest state is valid. Returns true if valid, false if
3514 * We assume that registers are always usable
3516 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3518 /* real mode guest state checks */
3519 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3520 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3522 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3524 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3526 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3528 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3530 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3533 /* protected mode guest state checks */
3534 if (!cs_ss_rpl_check(vcpu))
3536 if (!code_segment_valid(vcpu))
3538 if (!stack_segment_valid(vcpu))
3540 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3542 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3544 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3546 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3548 if (!tr_valid(vcpu))
3550 if (!ldtr_valid(vcpu))
3554 * - Add checks on RIP
3555 * - Add checks on RFLAGS
3561 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3563 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3567 for (i = 0; i < 3; i++) {
3568 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3572 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3573 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3577 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3583 static int init_rmode_identity_map(struct kvm *kvm)
3585 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3590 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3591 mutex_lock(&kvm->slots_lock);
3593 if (likely(kvm_vmx->ept_identity_pagetable_done))
3596 if (!kvm_vmx->ept_identity_map_addr)
3597 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3599 uaddr = __x86_set_memory_region(kvm,
3600 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3601 kvm_vmx->ept_identity_map_addr,
3603 if (IS_ERR(uaddr)) {
3608 /* Set up identity-mapping pagetable for EPT in real mode */
3609 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3610 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3611 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3612 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3617 kvm_vmx->ept_identity_pagetable_done = true;
3620 mutex_unlock(&kvm->slots_lock);
3624 static void seg_setup(int seg)
3626 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3629 vmcs_write16(sf->selector, 0);
3630 vmcs_writel(sf->base, 0);
3631 vmcs_write32(sf->limit, 0xffff);
3633 if (seg == VCPU_SREG_CS)
3634 ar |= 0x08; /* code segment */
3636 vmcs_write32(sf->ar_bytes, ar);
3639 static int alloc_apic_access_page(struct kvm *kvm)
3645 mutex_lock(&kvm->slots_lock);
3646 if (kvm->arch.apic_access_memslot_enabled)
3648 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3649 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3655 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3656 if (is_error_page(page)) {
3662 * Do not pin the page in memory, so that memory hot-unplug
3663 * is able to migrate it.
3666 kvm->arch.apic_access_memslot_enabled = true;
3668 mutex_unlock(&kvm->slots_lock);
3672 int allocate_vpid(void)
3678 spin_lock(&vmx_vpid_lock);
3679 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3680 if (vpid < VMX_NR_VPIDS)
3681 __set_bit(vpid, vmx_vpid_bitmap);
3684 spin_unlock(&vmx_vpid_lock);
3688 void free_vpid(int vpid)
3690 if (!enable_vpid || vpid == 0)
3692 spin_lock(&vmx_vpid_lock);
3693 __clear_bit(vpid, vmx_vpid_bitmap);
3694 spin_unlock(&vmx_vpid_lock);
3697 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3699 int f = sizeof(unsigned long);
3702 __clear_bit(msr, msr_bitmap + 0x000 / f);
3703 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3704 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3707 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3709 int f = sizeof(unsigned long);
3712 __clear_bit(msr, msr_bitmap + 0x800 / f);
3713 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3714 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3717 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3719 int f = sizeof(unsigned long);
3722 __set_bit(msr, msr_bitmap + 0x000 / f);
3723 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3724 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3727 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3729 int f = sizeof(unsigned long);
3732 __set_bit(msr, msr_bitmap + 0x800 / f);
3733 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3734 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3737 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3739 struct vcpu_vmx *vmx = to_vmx(vcpu);
3740 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3742 if (!cpu_has_vmx_msr_bitmap())
3745 if (static_branch_unlikely(&enable_evmcs))
3746 evmcs_touch_msr_bitmap();
3749 * Mark the desired intercept state in shadow bitmap, this is needed
3750 * for resync when the MSR filters change.
3752 if (is_valid_passthrough_msr(msr)) {
3753 int idx = possible_passthrough_msr_slot(msr);
3755 if (idx != -ENOENT) {
3756 if (type & MSR_TYPE_R)
3757 clear_bit(idx, vmx->shadow_msr_intercept.read);
3758 if (type & MSR_TYPE_W)
3759 clear_bit(idx, vmx->shadow_msr_intercept.write);
3763 if ((type & MSR_TYPE_R) &&
3764 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3765 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3766 type &= ~MSR_TYPE_R;
3769 if ((type & MSR_TYPE_W) &&
3770 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3771 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3772 type &= ~MSR_TYPE_W;
3775 if (type & MSR_TYPE_R)
3776 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3778 if (type & MSR_TYPE_W)
3779 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3782 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3784 struct vcpu_vmx *vmx = to_vmx(vcpu);
3785 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3787 if (!cpu_has_vmx_msr_bitmap())
3790 if (static_branch_unlikely(&enable_evmcs))
3791 evmcs_touch_msr_bitmap();
3794 * Mark the desired intercept state in shadow bitmap, this is needed
3795 * for resync when the MSR filter changes.
3797 if (is_valid_passthrough_msr(msr)) {
3798 int idx = possible_passthrough_msr_slot(msr);
3800 if (idx != -ENOENT) {
3801 if (type & MSR_TYPE_R)
3802 set_bit(idx, vmx->shadow_msr_intercept.read);
3803 if (type & MSR_TYPE_W)
3804 set_bit(idx, vmx->shadow_msr_intercept.write);
3808 if (type & MSR_TYPE_R)
3809 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3811 if (type & MSR_TYPE_W)
3812 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3815 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3817 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3818 unsigned long read_intercept;
3821 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3823 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3824 unsigned int read_idx = msr / BITS_PER_LONG;
3825 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3827 msr_bitmap[read_idx] = read_intercept;
3828 msr_bitmap[write_idx] = ~0ul;
3832 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3834 struct vcpu_vmx *vmx = to_vmx(vcpu);
3837 if (!cpu_has_vmx_msr_bitmap())
3840 if (cpu_has_secondary_exec_ctrls() &&
3841 (secondary_exec_controls_get(vmx) &
3842 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3843 mode = MSR_BITMAP_MODE_X2APIC;
3844 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3845 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3850 if (mode == vmx->x2apic_msr_bitmap_mode)
3853 vmx->x2apic_msr_bitmap_mode = mode;
3855 vmx_reset_x2apic_msrs(vcpu, mode);
3858 * TPR reads and writes can be virtualized even if virtual interrupt
3859 * delivery is not in use.
3861 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3862 !(mode & MSR_BITMAP_MODE_X2APIC));
3864 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3865 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3866 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3867 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3871 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3873 struct vcpu_vmx *vmx = to_vmx(vcpu);
3874 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3877 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3879 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3881 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3887 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3889 struct vcpu_vmx *vmx = to_vmx(vcpu);
3894 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3895 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3896 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3899 rvi = vmx_get_rvi();
3901 vapic_page = vmx->nested.virtual_apic_map.hva;
3902 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3904 return ((rvi & 0xf0) > (vppr & 0xf0));
3907 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3909 struct vcpu_vmx *vmx = to_vmx(vcpu);
3913 * Set intercept permissions for all potentially passed through MSRs
3914 * again. They will automatically get filtered through the MSR filter,
3915 * so we are back in sync after this.
3917 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3918 u32 msr = vmx_possible_passthrough_msrs[i];
3919 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3920 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3922 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3923 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3926 pt_update_intercept_for_msr(vcpu);
3929 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3933 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3935 if (vcpu->mode == IN_GUEST_MODE) {
3937 * The vector of interrupt to be delivered to vcpu had
3938 * been set in PIR before this function.
3940 * Following cases will be reached in this block, and
3941 * we always send a notification event in all cases as
3944 * Case 1: vcpu keeps in non-root mode. Sending a
3945 * notification event posts the interrupt to vcpu.
3947 * Case 2: vcpu exits to root mode and is still
3948 * runnable. PIR will be synced to vIRR before the
3949 * next vcpu entry. Sending a notification event in
3950 * this case has no effect, as vcpu is not in root
3953 * Case 3: vcpu exits to root mode and is blocked.
3954 * vcpu_block() has already synced PIR to vIRR and
3955 * never blocks vcpu if vIRR is not cleared. Therefore,
3956 * a blocked vcpu here does not wait for any requested
3957 * interrupts in PIR, and sending a notification event
3958 * which has no effect is safe here.
3961 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3968 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3971 struct vcpu_vmx *vmx = to_vmx(vcpu);
3973 if (is_guest_mode(vcpu) &&
3974 vector == vmx->nested.posted_intr_nv) {
3976 * If a posted intr is not recognized by hardware,
3977 * we will accomplish it in the next vmentry.
3979 vmx->nested.pi_pending = true;
3980 kvm_make_request(KVM_REQ_EVENT, vcpu);
3981 /* the PIR and ON have been set by L1. */
3982 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3983 kvm_vcpu_kick(vcpu);
3989 * Send interrupt to vcpu via posted interrupt way.
3990 * 1. If target vcpu is running(non-root mode), send posted interrupt
3991 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3992 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3993 * interrupt from PIR in next vmentry.
3995 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3997 struct vcpu_vmx *vmx = to_vmx(vcpu);
4000 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4004 if (!vcpu->arch.apicv_active)
4007 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4010 /* If a previous notification has sent the IPI, nothing to do. */
4011 if (pi_test_and_set_on(&vmx->pi_desc))
4014 if (vcpu != kvm_get_running_vcpu() &&
4015 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4016 kvm_vcpu_kick(vcpu);
4022 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4023 * will not change in the lifetime of the guest.
4024 * Note that host-state that does change is set elsewhere. E.g., host-state
4025 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4027 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4031 unsigned long cr0, cr3, cr4;
4034 WARN_ON(cr0 & X86_CR0_TS);
4035 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4038 * Save the most likely value for this task's CR3 in the VMCS.
4039 * We can't use __get_current_cr3_fast() because we're not atomic.
4042 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4043 vmx->loaded_vmcs->host_state.cr3 = cr3;
4045 /* Save the most likely value for this task's CR4 in the VMCS. */
4046 cr4 = cr4_read_shadow();
4047 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4048 vmx->loaded_vmcs->host_state.cr4 = cr4;
4050 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4051 #ifdef CONFIG_X86_64
4053 * Load null selectors, so we can avoid reloading them in
4054 * vmx_prepare_switch_to_host(), in case userspace uses
4055 * the null selectors too (the expected case).
4057 vmcs_write16(HOST_DS_SELECTOR, 0);
4058 vmcs_write16(HOST_ES_SELECTOR, 0);
4060 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4061 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4063 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4064 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4066 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4068 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4070 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4071 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4072 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4073 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4075 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4076 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4077 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4080 if (cpu_has_load_ia32_efer())
4081 vmcs_write64(HOST_IA32_EFER, host_efer);
4084 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4086 struct kvm_vcpu *vcpu = &vmx->vcpu;
4088 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4089 ~vcpu->arch.cr4_guest_rsvd_bits;
4091 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4092 if (is_guest_mode(&vmx->vcpu))
4093 vcpu->arch.cr4_guest_owned_bits &=
4094 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4095 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4098 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4100 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4102 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4103 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4106 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4108 if (!enable_preemption_timer)
4109 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4111 return pin_based_exec_ctrl;
4114 static u32 vmx_vmentry_ctrl(void)
4116 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4118 if (vmx_pt_mode_is_system())
4119 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4120 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4121 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4122 return vmentry_ctrl &
4123 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4126 static u32 vmx_vmexit_ctrl(void)
4128 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4130 if (vmx_pt_mode_is_system())
4131 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4132 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4133 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4134 return vmexit_ctrl &
4135 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4138 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4140 struct vcpu_vmx *vmx = to_vmx(vcpu);
4142 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4143 if (cpu_has_secondary_exec_ctrls()) {
4144 if (kvm_vcpu_apicv_active(vcpu))
4145 secondary_exec_controls_setbit(vmx,
4146 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4147 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4149 secondary_exec_controls_clearbit(vmx,
4150 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4151 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4154 vmx_update_msr_bitmap_x2apic(vcpu);
4157 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4159 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4161 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4162 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4164 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4165 exec_control &= ~CPU_BASED_TPR_SHADOW;
4166 #ifdef CONFIG_X86_64
4167 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4168 CPU_BASED_CR8_LOAD_EXITING;
4172 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4173 CPU_BASED_CR3_LOAD_EXITING |
4174 CPU_BASED_INVLPG_EXITING;
4175 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4176 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4177 CPU_BASED_MONITOR_EXITING);
4178 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4179 exec_control &= ~CPU_BASED_HLT_EXITING;
4180 return exec_control;
4184 * Adjust a single secondary execution control bit to intercept/allow an
4185 * instruction in the guest. This is usually done based on whether or not a
4186 * feature has been exposed to the guest in order to correctly emulate faults.
4189 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4190 u32 control, bool enabled, bool exiting)
4193 * If the control is for an opt-in feature, clear the control if the
4194 * feature is not exposed to the guest, i.e. not enabled. If the
4195 * control is opt-out, i.e. an exiting control, clear the control if
4196 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4197 * disabled for the associated instruction. Note, the caller is
4198 * responsible presetting exec_control to set all supported bits.
4200 if (enabled == exiting)
4201 *exec_control &= ~control;
4204 * Update the nested MSR settings so that a nested VMM can/can't set
4205 * controls for features that are/aren't exposed to the guest.
4209 vmx->nested.msrs.secondary_ctls_high |= control;
4211 vmx->nested.msrs.secondary_ctls_high &= ~control;
4216 * Wrapper macro for the common case of adjusting a secondary execution control
4217 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4218 * verifies that the control is actually supported by KVM and hardware.
4220 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4224 if (cpu_has_vmx_##name()) { \
4225 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4226 X86_FEATURE_##feat_name); \
4227 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4228 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4232 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4233 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4234 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4236 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4237 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4239 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4241 struct kvm_vcpu *vcpu = &vmx->vcpu;
4243 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4245 if (vmx_pt_mode_is_system())
4246 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4247 if (!cpu_need_virtualize_apic_accesses(vcpu))
4248 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4250 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4252 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4253 enable_unrestricted_guest = 0;
4255 if (!enable_unrestricted_guest)
4256 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4257 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4258 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4259 if (!kvm_vcpu_apicv_active(vcpu))
4260 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4261 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4262 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4264 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4265 * in vmx_set_cr4. */
4266 exec_control &= ~SECONDARY_EXEC_DESC;
4268 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4270 We can NOT enable shadow_vmcs here because we don't have yet
4273 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4276 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4277 * it needs to be set here when dirty logging is already active, e.g.
4278 * if this vCPU was created after dirty logging was enabled.
4280 if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4281 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4283 if (cpu_has_vmx_xsaves()) {
4284 /* Exposing XSAVES only when XSAVE is exposed */
4285 bool xsaves_enabled =
4286 boot_cpu_has(X86_FEATURE_XSAVE) &&
4287 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4288 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4290 vcpu->arch.xsaves_enabled = xsaves_enabled;
4292 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4293 SECONDARY_EXEC_XSAVES,
4294 xsaves_enabled, false);
4298 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4299 * feature is exposed to the guest. This creates a virtualization hole
4300 * if both are supported in hardware but only one is exposed to the
4301 * guest, but letting the guest execute RDTSCP or RDPID when either one
4302 * is advertised is preferable to emulating the advertised instruction
4303 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4305 if (cpu_has_vmx_rdtscp()) {
4306 bool rdpid_or_rdtscp_enabled =
4307 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4308 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4310 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4311 SECONDARY_EXEC_ENABLE_RDTSCP,
4312 rdpid_or_rdtscp_enabled, false);
4314 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4316 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4317 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4319 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4320 ENABLE_USR_WAIT_PAUSE, false);
4322 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4323 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4325 return exec_control;
4328 #define VMX_XSS_EXIT_BITMAP 0
4331 * Noting that the initialization of Guest-state Area of VMCS is in
4334 static void init_vmcs(struct vcpu_vmx *vmx)
4337 nested_vmx_set_vmcs_shadowing_bitmap();
4339 if (cpu_has_vmx_msr_bitmap())
4340 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4342 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4345 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4347 exec_controls_set(vmx, vmx_exec_control(vmx));
4349 if (cpu_has_secondary_exec_ctrls())
4350 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4352 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4353 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4354 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4355 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4356 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4358 vmcs_write16(GUEST_INTR_STATUS, 0);
4360 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4361 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4364 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4365 vmcs_write32(PLE_GAP, ple_gap);
4366 vmx->ple_window = ple_window;
4367 vmx->ple_window_dirty = true;
4370 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4371 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4372 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4374 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4375 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4376 vmx_set_constant_host_state(vmx);
4377 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4378 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4380 if (cpu_has_vmx_vmfunc())
4381 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4383 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4384 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4385 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4386 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4387 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4389 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4390 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4392 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4394 /* 22.2.1, 20.8.1 */
4395 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4397 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4398 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4400 set_cr4_guest_host_mask(vmx);
4403 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4405 if (cpu_has_vmx_xsaves())
4406 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4409 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4410 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4413 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4415 if (vmx_pt_mode_is_host_guest()) {
4416 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4417 /* Bit[6~0] are forced to 1, writes are ignored. */
4418 vmx->pt_desc.guest.output_mask = 0x7F;
4419 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4422 vmcs_write32(GUEST_SYSENTER_CS, 0);
4423 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4424 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4425 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4427 if (cpu_has_vmx_tpr_shadow()) {
4428 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4429 if (cpu_need_tpr_shadow(&vmx->vcpu))
4430 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4431 __pa(vmx->vcpu.arch.apic->regs));
4432 vmcs_write32(TPR_THRESHOLD, 0);
4435 vmx_setup_uret_msrs(vmx);
4438 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4440 struct vcpu_vmx *vmx = to_vmx(vcpu);
4442 vmx->rmode.vm86_active = 0;
4445 vmx->msr_ia32_umwait_control = 0;
4447 vmx->hv_deadline_tsc = -1;
4448 kvm_set_cr8(vcpu, 0);
4450 vmx_segment_cache_clear(vmx);
4452 seg_setup(VCPU_SREG_CS);
4453 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4454 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4456 seg_setup(VCPU_SREG_DS);
4457 seg_setup(VCPU_SREG_ES);
4458 seg_setup(VCPU_SREG_FS);
4459 seg_setup(VCPU_SREG_GS);
4460 seg_setup(VCPU_SREG_SS);
4462 vmcs_write16(GUEST_TR_SELECTOR, 0);
4463 vmcs_writel(GUEST_TR_BASE, 0);
4464 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4465 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4467 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4468 vmcs_writel(GUEST_LDTR_BASE, 0);
4469 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4470 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4472 vmcs_writel(GUEST_GDTR_BASE, 0);
4473 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4475 vmcs_writel(GUEST_IDTR_BASE, 0);
4476 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4478 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4479 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4480 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4481 if (kvm_mpx_supported())
4482 vmcs_write64(GUEST_BNDCFGS, 0);
4484 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4486 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4488 vpid_sync_context(vmx->vpid);
4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4493 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4499 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4500 vmx_enable_irq_window(vcpu);
4504 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4509 struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 int irq = vcpu->arch.interrupt.nr;
4513 trace_kvm_inj_virq(irq);
4515 ++vcpu->stat.irq_injections;
4516 if (vmx->rmode.vm86_active) {
4518 if (vcpu->arch.interrupt.soft)
4519 inc_eip = vcpu->arch.event_exit_inst_len;
4520 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4523 intr = irq | INTR_INFO_VALID_MASK;
4524 if (vcpu->arch.interrupt.soft) {
4525 intr |= INTR_TYPE_SOFT_INTR;
4526 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4527 vmx->vcpu.arch.event_exit_inst_len);
4529 intr |= INTR_TYPE_EXT_INTR;
4530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4532 vmx_clear_hlt(vcpu);
4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4537 struct vcpu_vmx *vmx = to_vmx(vcpu);
4541 * Tracking the NMI-blocked state in software is built upon
4542 * finding the next open IRQ window. This, in turn, depends on
4543 * well-behaving guests: They have to keep IRQs disabled at
4544 * least as long as the NMI handler runs. Otherwise we may
4545 * cause NMI nesting, maybe breaking the guest. But as this is
4546 * highly unlikely, we can live with the residual risk.
4548 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4549 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4552 ++vcpu->stat.nmi_injections;
4553 vmx->loaded_vmcs->nmi_known_unmasked = false;
4555 if (vmx->rmode.vm86_active) {
4556 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4561 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4563 vmx_clear_hlt(vcpu);
4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4568 struct vcpu_vmx *vmx = to_vmx(vcpu);
4572 return vmx->loaded_vmcs->soft_vnmi_blocked;
4573 if (vmx->loaded_vmcs->nmi_known_unmasked)
4575 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4576 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4582 struct vcpu_vmx *vmx = to_vmx(vcpu);
4585 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4586 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4587 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4590 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4592 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4593 GUEST_INTR_STATE_NMI);
4595 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4596 GUEST_INTR_STATE_NMI);
4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4602 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4605 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4608 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4609 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4610 GUEST_INTR_STATE_NMI));
4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 if (to_vmx(vcpu)->nested.nested_run_pending)
4618 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4619 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4622 return !vmx_nmi_blocked(vcpu);
4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4627 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4630 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4631 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4632 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4637 if (to_vmx(vcpu)->nested.nested_run_pending)
4641 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4642 * e.g. if the IRQ arrived asynchronously after checking nested events.
4644 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4647 return !vmx_interrupt_blocked(vcpu);
4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4654 if (enable_unrestricted_guest)
4657 mutex_lock(&kvm->slots_lock);
4658 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4660 mutex_unlock(&kvm->slots_lock);
4663 return PTR_ERR(ret);
4665 to_kvm_vmx(kvm)->tss_addr = addr;
4667 return init_rmode_tss(kvm, ret);
4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4672 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4681 * Update instruction length as we may reinject the exception
4682 * from user space while in guest debugging mode.
4684 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4685 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4686 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4690 return !(vcpu->guest_debug &
4691 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4706 int vec, u32 err_code)
4709 * Instruction with address size override prefix opcode 0x67
4710 * Cause the #SS fault with 0 error code in VM86 mode.
4712 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4713 if (kvm_emulate_instruction(vcpu, 0)) {
4714 if (vcpu->arch.halt_request) {
4715 vcpu->arch.halt_request = 0;
4716 return kvm_vcpu_halt(vcpu);
4724 * Forward all other exceptions that are valid in real mode.
4725 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4726 * the required debugging infrastructure rework.
4728 kvm_queue_exception(vcpu, vec);
4732 static int handle_machine_check(struct kvm_vcpu *vcpu)
4734 /* handled by vmx_vcpu_run() */
4739 * If the host has split lock detection disabled, then #AC is
4740 * unconditionally injected into the guest, which is the pre split lock
4741 * detection behaviour.
4743 * If the host has split lock detection enabled then #AC is
4744 * only injected into the guest when:
4745 * - Guest CPL == 3 (user mode)
4746 * - Guest has #AC detection enabled in CR0
4747 * - Guest EFLAGS has AC bit set
4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4751 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4754 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4755 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4760 struct vcpu_vmx *vmx = to_vmx(vcpu);
4761 struct kvm_run *kvm_run = vcpu->run;
4762 u32 intr_info, ex_no, error_code;
4763 unsigned long cr2, dr6;
4766 vect_info = vmx->idt_vectoring_info;
4767 intr_info = vmx_get_intr_info(vcpu);
4769 if (is_machine_check(intr_info) || is_nmi(intr_info))
4770 return 1; /* handled by handle_exception_nmi_irqoff() */
4772 if (is_invalid_opcode(intr_info))
4773 return handle_ud(vcpu);
4776 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4777 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4779 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4780 WARN_ON_ONCE(!enable_vmware_backdoor);
4783 * VMware backdoor emulation on #GP interception only handles
4784 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4785 * error code on #GP.
4788 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4791 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4795 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4796 * MMIO, it is better to report an internal error.
4797 * See the comments in vmx_handle_exit.
4799 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4800 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4801 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4802 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4803 vcpu->run->internal.ndata = 4;
4804 vcpu->run->internal.data[0] = vect_info;
4805 vcpu->run->internal.data[1] = intr_info;
4806 vcpu->run->internal.data[2] = error_code;
4807 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4811 if (is_page_fault(intr_info)) {
4812 cr2 = vmx_get_exit_qual(vcpu);
4813 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4815 * EPT will cause page fault only if we need to
4816 * detect illegal GPAs.
4818 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4819 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4822 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4825 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4827 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4828 return handle_rmode_exception(vcpu, ex_no, error_code);
4832 dr6 = vmx_get_exit_qual(vcpu);
4833 if (!(vcpu->guest_debug &
4834 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4835 if (is_icebp(intr_info))
4836 WARN_ON(!skip_emulated_instruction(vcpu));
4838 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4841 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4842 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4846 * Update instruction length as we may reinject #BP from
4847 * user space while in guest debugging mode. Reading it for
4848 * #DB as well causes no harm, it is not used in that case.
4850 vmx->vcpu.arch.event_exit_inst_len =
4851 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4852 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4853 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4854 kvm_run->debug.arch.exception = ex_no;
4857 if (vmx_guest_inject_ac(vcpu)) {
4858 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4863 * Handle split lock. Depending on detection mode this will
4864 * either warn and disable split lock detection for this
4865 * task or force SIGBUS on it.
4867 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4871 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4872 kvm_run->ex.exception = ex_no;
4873 kvm_run->ex.error_code = error_code;
4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4881 ++vcpu->stat.irq_exits;
4885 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4887 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4888 vcpu->mmio_needed = 0;
4892 static int handle_io(struct kvm_vcpu *vcpu)
4894 unsigned long exit_qualification;
4895 int size, in, string;
4898 exit_qualification = vmx_get_exit_qual(vcpu);
4899 string = (exit_qualification & 16) != 0;
4901 ++vcpu->stat.io_exits;
4904 return kvm_emulate_instruction(vcpu, 0);
4906 port = exit_qualification >> 16;
4907 size = (exit_qualification & 7) + 1;
4908 in = (exit_qualification & 8) != 0;
4910 return kvm_fast_pio(vcpu, size, port, in);
4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4917 * Patch in the VMCALL instruction:
4919 hypercall[0] = 0x0f;
4920 hypercall[1] = 0x01;
4921 hypercall[2] = 0xc1;
4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4927 if (is_guest_mode(vcpu)) {
4928 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4929 unsigned long orig_val = val;
4932 * We get here when L2 changed cr0 in a way that did not change
4933 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4934 * but did change L0 shadowed bits. So we first calculate the
4935 * effective cr0 value that L1 would like to write into the
4936 * hardware. It consists of the L2-owned bits from the new
4937 * value combined with the L1-owned bits from L1's guest_cr0.
4939 val = (val & ~vmcs12->cr0_guest_host_mask) |
4940 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4942 if (!nested_guest_cr0_valid(vcpu, val))
4945 if (kvm_set_cr0(vcpu, val))
4947 vmcs_writel(CR0_READ_SHADOW, orig_val);
4950 if (to_vmx(vcpu)->nested.vmxon &&
4951 !nested_host_cr0_valid(vcpu, val))
4954 return kvm_set_cr0(vcpu, val);
4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4960 if (is_guest_mode(vcpu)) {
4961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4962 unsigned long orig_val = val;
4964 /* analogously to handle_set_cr0 */
4965 val = (val & ~vmcs12->cr4_guest_host_mask) |
4966 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4967 if (kvm_set_cr4(vcpu, val))
4969 vmcs_writel(CR4_READ_SHADOW, orig_val);
4972 return kvm_set_cr4(vcpu, val);
4975 static int handle_desc(struct kvm_vcpu *vcpu)
4977 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4978 return kvm_emulate_instruction(vcpu, 0);
4981 static int handle_cr(struct kvm_vcpu *vcpu)
4983 unsigned long exit_qualification, val;
4989 exit_qualification = vmx_get_exit_qual(vcpu);
4990 cr = exit_qualification & 15;
4991 reg = (exit_qualification >> 8) & 15;
4992 switch ((exit_qualification >> 4) & 3) {
4993 case 0: /* mov to cr */
4994 val = kvm_register_read(vcpu, reg);
4995 trace_kvm_cr_write(cr, val);
4998 err = handle_set_cr0(vcpu, val);
4999 return kvm_complete_insn_gp(vcpu, err);
5001 WARN_ON_ONCE(enable_unrestricted_guest);
5003 err = kvm_set_cr3(vcpu, val);
5004 return kvm_complete_insn_gp(vcpu, err);
5006 err = handle_set_cr4(vcpu, val);
5007 return kvm_complete_insn_gp(vcpu, err);
5009 u8 cr8_prev = kvm_get_cr8(vcpu);
5011 err = kvm_set_cr8(vcpu, cr8);
5012 ret = kvm_complete_insn_gp(vcpu, err);
5013 if (lapic_in_kernel(vcpu))
5015 if (cr8_prev <= cr8)
5018 * TODO: we might be squashing a
5019 * KVM_GUESTDBG_SINGLESTEP-triggered
5020 * KVM_EXIT_DEBUG here.
5022 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5028 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5030 case 1: /*mov from cr*/
5033 WARN_ON_ONCE(enable_unrestricted_guest);
5035 val = kvm_read_cr3(vcpu);
5036 kvm_register_write(vcpu, reg, val);
5037 trace_kvm_cr_read(cr, val);
5038 return kvm_skip_emulated_instruction(vcpu);
5040 val = kvm_get_cr8(vcpu);
5041 kvm_register_write(vcpu, reg, val);
5042 trace_kvm_cr_read(cr, val);
5043 return kvm_skip_emulated_instruction(vcpu);
5047 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5048 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5049 kvm_lmsw(vcpu, val);
5051 return kvm_skip_emulated_instruction(vcpu);
5055 vcpu->run->exit_reason = 0;
5056 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5057 (int)(exit_qualification >> 4) & 3, cr);
5061 static int handle_dr(struct kvm_vcpu *vcpu)
5063 unsigned long exit_qualification;
5067 exit_qualification = vmx_get_exit_qual(vcpu);
5068 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5070 /* First, if DR does not exist, trigger UD */
5071 if (!kvm_require_dr(vcpu, dr))
5074 if (kvm_x86_ops.get_cpl(vcpu) > 0)
5077 dr7 = vmcs_readl(GUEST_DR7);
5080 * As the vm-exit takes precedence over the debug trap, we
5081 * need to emulate the latter, either for the host or the
5082 * guest debugging itself.
5084 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5085 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5086 vcpu->run->debug.arch.dr7 = dr7;
5087 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5088 vcpu->run->debug.arch.exception = DB_VECTOR;
5089 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5092 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5097 if (vcpu->guest_debug == 0) {
5098 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5101 * No more DR vmexits; force a reload of the debug registers
5102 * and reenter on this instruction. The next vmexit will
5103 * retrieve the full state of the debug registers.
5105 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5109 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5110 if (exit_qualification & TYPE_MOV_FROM_DR) {
5113 kvm_get_dr(vcpu, dr, &val);
5114 kvm_register_write(vcpu, reg, val);
5117 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5121 return kvm_complete_insn_gp(vcpu, err);
5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5126 get_debugreg(vcpu->arch.db[0], 0);
5127 get_debugreg(vcpu->arch.db[1], 1);
5128 get_debugreg(vcpu->arch.db[2], 2);
5129 get_debugreg(vcpu->arch.db[3], 3);
5130 get_debugreg(vcpu->arch.dr6, 6);
5131 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5133 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5134 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5137 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5138 * a stale dr6 from the guest.
5140 set_debugreg(DR6_RESERVED, 6);
5143 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5145 vmcs_writel(GUEST_DR7, val);
5148 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5150 kvm_apic_update_ppr(vcpu);
5154 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5156 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5158 kvm_make_request(KVM_REQ_EVENT, vcpu);
5160 ++vcpu->stat.irq_window_exits;
5164 static int handle_invlpg(struct kvm_vcpu *vcpu)
5166 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5168 kvm_mmu_invlpg(vcpu, exit_qualification);
5169 return kvm_skip_emulated_instruction(vcpu);
5172 static int handle_apic_access(struct kvm_vcpu *vcpu)
5174 if (likely(fasteoi)) {
5175 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5176 int access_type, offset;
5178 access_type = exit_qualification & APIC_ACCESS_TYPE;
5179 offset = exit_qualification & APIC_ACCESS_OFFSET;
5181 * Sane guest uses MOV to write EOI, with written value
5182 * not cared. So make a short-circuit here by avoiding
5183 * heavy instruction emulation.
5185 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5186 (offset == APIC_EOI)) {
5187 kvm_lapic_set_eoi(vcpu);
5188 return kvm_skip_emulated_instruction(vcpu);
5191 return kvm_emulate_instruction(vcpu, 0);
5194 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5196 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5197 int vector = exit_qualification & 0xff;
5199 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5200 kvm_apic_set_eoi_accelerated(vcpu, vector);
5204 static int handle_apic_write(struct kvm_vcpu *vcpu)
5206 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5207 u32 offset = exit_qualification & 0xfff;
5209 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5210 kvm_apic_write_nodecode(vcpu, offset);
5214 static int handle_task_switch(struct kvm_vcpu *vcpu)
5216 struct vcpu_vmx *vmx = to_vmx(vcpu);
5217 unsigned long exit_qualification;
5218 bool has_error_code = false;
5221 int reason, type, idt_v, idt_index;
5223 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5224 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5225 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5227 exit_qualification = vmx_get_exit_qual(vcpu);
5229 reason = (u32)exit_qualification >> 30;
5230 if (reason == TASK_SWITCH_GATE && idt_v) {
5232 case INTR_TYPE_NMI_INTR:
5233 vcpu->arch.nmi_injected = false;
5234 vmx_set_nmi_mask(vcpu, true);
5236 case INTR_TYPE_EXT_INTR:
5237 case INTR_TYPE_SOFT_INTR:
5238 kvm_clear_interrupt_queue(vcpu);
5240 case INTR_TYPE_HARD_EXCEPTION:
5241 if (vmx->idt_vectoring_info &
5242 VECTORING_INFO_DELIVER_CODE_MASK) {
5243 has_error_code = true;
5245 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5248 case INTR_TYPE_SOFT_EXCEPTION:
5249 kvm_clear_exception_queue(vcpu);
5255 tss_selector = exit_qualification;
5257 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5258 type != INTR_TYPE_EXT_INTR &&
5259 type != INTR_TYPE_NMI_INTR))
5260 WARN_ON(!skip_emulated_instruction(vcpu));
5263 * TODO: What about debug traps on tss switch?
5264 * Are we supposed to inject them and update dr6?
5266 return kvm_task_switch(vcpu, tss_selector,
5267 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5268 reason, has_error_code, error_code);
5271 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5273 unsigned long exit_qualification;
5277 exit_qualification = vmx_get_exit_qual(vcpu);
5280 * EPT violation happened while executing iret from NMI,
5281 * "blocked by NMI" bit has to be set before next VM entry.
5282 * There are errata that may cause this bit to not be set:
5285 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5287 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5288 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5290 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5291 trace_kvm_page_fault(gpa, exit_qualification);
5293 /* Is it a read fault? */
5294 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5295 ? PFERR_USER_MASK : 0;
5296 /* Is it a write fault? */
5297 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5298 ? PFERR_WRITE_MASK : 0;
5299 /* Is it a fetch fault? */
5300 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5301 ? PFERR_FETCH_MASK : 0;
5302 /* ept page table entry is present? */
5303 error_code |= (exit_qualification &
5304 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5305 EPT_VIOLATION_EXECUTABLE))
5306 ? PFERR_PRESENT_MASK : 0;
5308 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5309 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5311 vcpu->arch.exit_qualification = exit_qualification;
5314 * Check that the GPA doesn't exceed physical memory limits, as that is
5315 * a guest page fault. We have to emulate the instruction here, because
5316 * if the illegal address is that of a paging structure, then
5317 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5318 * would also use advanced VM-exit information for EPT violations to
5319 * reconstruct the page fault error code.
5321 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5322 return kvm_emulate_instruction(vcpu, 0);
5324 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5327 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5331 if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5335 * A nested guest cannot optimize MMIO vmexits, because we have an
5336 * nGPA here instead of the required GPA.
5338 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5339 if (!is_guest_mode(vcpu) &&
5340 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5341 trace_kvm_fast_mmio(gpa);
5342 return kvm_skip_emulated_instruction(vcpu);
5345 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5348 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5350 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5353 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5354 ++vcpu->stat.nmi_window_exits;
5355 kvm_make_request(KVM_REQ_EVENT, vcpu);
5360 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5362 struct vcpu_vmx *vmx = to_vmx(vcpu);
5363 bool intr_window_requested;
5364 unsigned count = 130;
5366 intr_window_requested = exec_controls_get(vmx) &
5367 CPU_BASED_INTR_WINDOW_EXITING;
5369 while (vmx->emulation_required && count-- != 0) {
5370 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5371 return handle_interrupt_window(&vmx->vcpu);
5373 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5376 if (!kvm_emulate_instruction(vcpu, 0))
5379 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5380 vcpu->arch.exception.pending) {
5381 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5382 vcpu->run->internal.suberror =
5383 KVM_INTERNAL_ERROR_EMULATION;
5384 vcpu->run->internal.ndata = 0;
5388 if (vcpu->arch.halt_request) {
5389 vcpu->arch.halt_request = 0;
5390 return kvm_vcpu_halt(vcpu);
5394 * Note, return 1 and not 0, vcpu_run() will invoke
5395 * xfer_to_guest_mode() which will create a proper return
5398 if (__xfer_to_guest_mode_work_pending())
5405 static void grow_ple_window(struct kvm_vcpu *vcpu)
5407 struct vcpu_vmx *vmx = to_vmx(vcpu);
5408 unsigned int old = vmx->ple_window;
5410 vmx->ple_window = __grow_ple_window(old, ple_window,
5414 if (vmx->ple_window != old) {
5415 vmx->ple_window_dirty = true;
5416 trace_kvm_ple_window_update(vcpu->vcpu_id,
5417 vmx->ple_window, old);
5421 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5423 struct vcpu_vmx *vmx = to_vmx(vcpu);
5424 unsigned int old = vmx->ple_window;
5426 vmx->ple_window = __shrink_ple_window(old, ple_window,
5430 if (vmx->ple_window != old) {
5431 vmx->ple_window_dirty = true;
5432 trace_kvm_ple_window_update(vcpu->vcpu_id,
5433 vmx->ple_window, old);
5438 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5439 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5441 static int handle_pause(struct kvm_vcpu *vcpu)
5443 if (!kvm_pause_in_guest(vcpu->kvm))
5444 grow_ple_window(vcpu);
5447 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5448 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5449 * never set PAUSE_EXITING and just set PLE if supported,
5450 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5452 kvm_vcpu_on_spin(vcpu, true);
5453 return kvm_skip_emulated_instruction(vcpu);
5456 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5461 static int handle_invpcid(struct kvm_vcpu *vcpu)
5463 u32 vmx_instruction_info;
5471 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5472 kvm_queue_exception(vcpu, UD_VECTOR);
5476 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5477 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5480 kvm_inject_gp(vcpu, 0);
5484 /* According to the Intel instruction reference, the memory operand
5485 * is read even if it isn't needed (e.g., for type==all)
5487 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5488 vmx_instruction_info, false,
5489 sizeof(operand), &gva))
5492 return kvm_handle_invpcid(vcpu, type, gva);
5495 static int handle_pml_full(struct kvm_vcpu *vcpu)
5497 unsigned long exit_qualification;
5499 trace_kvm_pml_full(vcpu->vcpu_id);
5501 exit_qualification = vmx_get_exit_qual(vcpu);
5504 * PML buffer FULL happened while executing iret from NMI,
5505 * "blocked by NMI" bit has to be set before next VM entry.
5507 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5509 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5511 GUEST_INTR_STATE_NMI);
5514 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5515 * here.., and there's no userspace involvement needed for PML.
5520 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5522 struct vcpu_vmx *vmx = to_vmx(vcpu);
5524 if (!vmx->req_immediate_exit &&
5525 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5526 kvm_lapic_expired_hv_timer(vcpu);
5527 return EXIT_FASTPATH_REENTER_GUEST;
5530 return EXIT_FASTPATH_NONE;
5533 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5535 handle_fastpath_preemption_timer(vcpu);
5540 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5541 * are overwritten by nested_vmx_setup() when nested=1.
5543 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5545 kvm_queue_exception(vcpu, UD_VECTOR);
5549 #ifndef CONFIG_X86_SGX_KVM
5550 static int handle_encls(struct kvm_vcpu *vcpu)
5553 * SGX virtualization is disabled. There is no software enable bit for
5554 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5555 * the guest from executing ENCLS (when SGX is supported by hardware).
5557 kvm_queue_exception(vcpu, UD_VECTOR);
5560 #endif /* CONFIG_X86_SGX_KVM */
5562 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5564 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5565 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5570 * The exit handlers return 1 if the exit was handled fully and guest execution
5571 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5572 * to be done to userspace and return 0.
5574 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5575 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5576 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5577 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5578 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5579 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5580 [EXIT_REASON_CR_ACCESS] = handle_cr,
5581 [EXIT_REASON_DR_ACCESS] = handle_dr,
5582 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5583 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5584 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5585 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5586 [EXIT_REASON_HLT] = kvm_emulate_halt,
5587 [EXIT_REASON_INVD] = kvm_emulate_invd,
5588 [EXIT_REASON_INVLPG] = handle_invlpg,
5589 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
5590 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
5591 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5592 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5593 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5594 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5595 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5596 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5597 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5598 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5599 [EXIT_REASON_VMON] = handle_vmx_instruction,
5600 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5601 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5602 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5603 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5604 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
5605 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
5606 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5607 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5608 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5609 [EXIT_REASON_LDTR_TR] = handle_desc,
5610 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5611 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5612 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5613 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
5614 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5615 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
5616 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5617 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5618 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
5619 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
5620 [EXIT_REASON_PML_FULL] = handle_pml_full,
5621 [EXIT_REASON_INVPCID] = handle_invpcid,
5622 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5623 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5624 [EXIT_REASON_ENCLS] = handle_encls,
5625 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
5628 static const int kvm_vmx_max_exit_handlers =
5629 ARRAY_SIZE(kvm_vmx_exit_handlers);
5631 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5632 u32 *intr_info, u32 *error_code)
5634 struct vcpu_vmx *vmx = to_vmx(vcpu);
5636 *info1 = vmx_get_exit_qual(vcpu);
5637 if (!(vmx->exit_reason.failed_vmentry)) {
5638 *info2 = vmx->idt_vectoring_info;
5639 *intr_info = vmx_get_intr_info(vcpu);
5640 if (is_exception_with_error_code(*intr_info))
5641 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5651 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5654 __free_page(vmx->pml_pg);
5659 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5661 struct vcpu_vmx *vmx = to_vmx(vcpu);
5665 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5667 /* Do nothing if PML buffer is empty */
5668 if (pml_idx == (PML_ENTITY_NUM - 1))
5671 /* PML index always points to next available PML buffer entity */
5672 if (pml_idx >= PML_ENTITY_NUM)
5677 pml_buf = page_address(vmx->pml_pg);
5678 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5681 gpa = pml_buf[pml_idx];
5682 WARN_ON(gpa & (PAGE_SIZE - 1));
5683 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5686 /* reset PML index */
5687 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5690 static void vmx_dump_sel(char *name, uint32_t sel)
5692 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5693 name, vmcs_read16(sel),
5694 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5695 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5696 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5699 static void vmx_dump_dtsel(char *name, uint32_t limit)
5701 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5702 name, vmcs_read32(limit),
5703 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5706 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5709 struct vmx_msr_entry *e;
5711 pr_err("MSR %s:\n", name);
5712 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5713 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5716 void dump_vmcs(struct kvm_vcpu *vcpu)
5718 struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 u32 vmentry_ctl, vmexit_ctl;
5720 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5724 if (!dump_invalid_vmcs) {
5725 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5729 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5730 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5731 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5732 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5733 cr4 = vmcs_readl(GUEST_CR4);
5734 secondary_exec_control = 0;
5735 if (cpu_has_secondary_exec_ctrls())
5736 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5738 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5739 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5740 pr_err("*** Guest State ***\n");
5741 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5742 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5743 vmcs_readl(CR0_GUEST_HOST_MASK));
5744 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5745 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5746 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5747 if (cpu_has_vmx_ept()) {
5748 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5749 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5750 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5751 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5753 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5754 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5755 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5756 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5757 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5758 vmcs_readl(GUEST_SYSENTER_ESP),
5759 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5760 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5761 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5762 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5763 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5764 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5765 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5766 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5767 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5768 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5769 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5770 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5771 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5772 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5773 else if (efer_slot >= 0)
5774 pr_err("EFER= 0x%016llx (autoload)\n",
5775 vmx->msr_autoload.guest.val[efer_slot].value);
5776 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5777 pr_err("EFER= 0x%016llx (effective)\n",
5778 vcpu->arch.efer | (EFER_LMA | EFER_LME));
5780 pr_err("EFER= 0x%016llx (effective)\n",
5781 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5782 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5783 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5784 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5785 vmcs_read64(GUEST_IA32_DEBUGCTL),
5786 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5787 if (cpu_has_load_perf_global_ctrl() &&
5788 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5789 pr_err("PerfGlobCtl = 0x%016llx\n",
5790 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5791 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5792 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5793 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5794 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5795 vmcs_read32(GUEST_ACTIVITY_STATE));
5796 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5797 pr_err("InterruptStatus = %04x\n",
5798 vmcs_read16(GUEST_INTR_STATUS));
5799 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5800 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5801 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5802 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5804 pr_err("*** Host State ***\n");
5805 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5806 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5807 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5808 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5809 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5810 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5811 vmcs_read16(HOST_TR_SELECTOR));
5812 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5813 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5814 vmcs_readl(HOST_TR_BASE));
5815 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5816 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5817 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5818 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5819 vmcs_readl(HOST_CR4));
5820 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5821 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5822 vmcs_read32(HOST_IA32_SYSENTER_CS),
5823 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5824 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5825 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5826 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5827 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5828 if (cpu_has_load_perf_global_ctrl() &&
5829 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5830 pr_err("PerfGlobCtl = 0x%016llx\n",
5831 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5832 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5833 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5835 pr_err("*** Control State ***\n");
5836 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5837 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5838 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5839 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5840 vmcs_read32(EXCEPTION_BITMAP),
5841 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5842 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5843 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5844 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5845 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5846 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5847 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5848 vmcs_read32(VM_EXIT_INTR_INFO),
5849 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5850 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5851 pr_err(" reason=%08x qualification=%016lx\n",
5852 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5853 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5854 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5855 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5856 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5857 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5858 pr_err("TSC Multiplier = 0x%016llx\n",
5859 vmcs_read64(TSC_MULTIPLIER));
5860 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5861 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5862 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5863 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5865 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5866 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5867 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5868 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5870 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5871 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5872 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5873 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5874 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5875 pr_err("PLE Gap=%08x Window=%08x\n",
5876 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5877 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5878 pr_err("Virtual processor ID = 0x%04x\n",
5879 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5883 * The guest has exited. See if we can fix it or if we need userspace
5886 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5888 struct vcpu_vmx *vmx = to_vmx(vcpu);
5889 union vmx_exit_reason exit_reason = vmx->exit_reason;
5890 u32 vectoring_info = vmx->idt_vectoring_info;
5891 u16 exit_handler_index;
5894 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5895 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5896 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5897 * mode as if vcpus is in root mode, the PML buffer must has been
5898 * flushed already. Note, PML is never enabled in hardware while
5901 if (enable_pml && !is_guest_mode(vcpu))
5902 vmx_flush_pml_buffer(vcpu);
5905 * We should never reach this point with a pending nested VM-Enter, and
5906 * more specifically emulation of L2 due to invalid guest state (see
5907 * below) should never happen as that means we incorrectly allowed a
5908 * nested VM-Enter with an invalid vmcs12.
5910 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5913 /* If guest state is invalid, start emulating */
5914 if (vmx->emulation_required)
5915 return handle_invalid_guest_state(vcpu);
5917 if (is_guest_mode(vcpu)) {
5919 * PML is never enabled when running L2, bail immediately if a
5920 * PML full exit occurs as something is horribly wrong.
5922 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5923 goto unexpected_vmexit;
5926 * The host physical addresses of some pages of guest memory
5927 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5928 * Page). The CPU may write to these pages via their host
5929 * physical address while L2 is running, bypassing any
5930 * address-translation-based dirty tracking (e.g. EPT write
5933 * Mark them dirty on every exit from L2 to prevent them from
5934 * getting out of sync with dirty tracking.
5936 nested_mark_vmcs12_pages_dirty(vcpu);
5938 if (nested_vmx_reflect_vmexit(vcpu))
5942 if (exit_reason.failed_vmentry) {
5944 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5945 vcpu->run->fail_entry.hardware_entry_failure_reason
5947 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5951 if (unlikely(vmx->fail)) {
5953 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5954 vcpu->run->fail_entry.hardware_entry_failure_reason
5955 = vmcs_read32(VM_INSTRUCTION_ERROR);
5956 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5962 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5963 * delivery event since it indicates guest is accessing MMIO.
5964 * The vm-exit can be triggered again after return to guest that
5965 * will cause infinite loop.
5967 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5968 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5969 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5970 exit_reason.basic != EXIT_REASON_PML_FULL &&
5971 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5972 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5975 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5976 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5977 vcpu->run->internal.data[0] = vectoring_info;
5978 vcpu->run->internal.data[1] = exit_reason.full;
5979 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5980 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5981 vcpu->run->internal.data[ndata++] =
5982 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5984 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5985 vcpu->run->internal.ndata = ndata;
5989 if (unlikely(!enable_vnmi &&
5990 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5991 if (!vmx_interrupt_blocked(vcpu)) {
5992 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5993 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5994 vcpu->arch.nmi_pending) {
5996 * This CPU don't support us in finding the end of an
5997 * NMI-blocked window if the guest runs with IRQs
5998 * disabled. So we pull the trigger after 1 s of
5999 * futile waiting, but inform the user about this.
6001 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6002 "state on VCPU %d after 1 s timeout\n",
6003 __func__, vcpu->vcpu_id);
6004 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6008 if (exit_fastpath != EXIT_FASTPATH_NONE)
6011 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6012 goto unexpected_vmexit;
6013 #ifdef CONFIG_RETPOLINE
6014 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6015 return kvm_emulate_wrmsr(vcpu);
6016 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6017 return handle_preemption_timer(vcpu);
6018 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6019 return handle_interrupt_window(vcpu);
6020 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6021 return handle_external_interrupt(vcpu);
6022 else if (exit_reason.basic == EXIT_REASON_HLT)
6023 return kvm_emulate_halt(vcpu);
6024 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6025 return handle_ept_misconfig(vcpu);
6028 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6029 kvm_vmx_max_exit_handlers);
6030 if (!kvm_vmx_exit_handlers[exit_handler_index])
6031 goto unexpected_vmexit;
6033 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6036 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6039 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6040 vcpu->run->internal.suberror =
6041 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6042 vcpu->run->internal.ndata = 2;
6043 vcpu->run->internal.data[0] = exit_reason.full;
6044 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6048 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6050 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6053 * Even when current exit reason is handled by KVM internally, we
6054 * still need to exit to user space when bus lock detected to inform
6055 * that there is a bus lock in guest.
6057 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6059 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6061 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6068 * Software based L1D cache flush which is used when microcode providing
6069 * the cache control MSR is not loaded.
6071 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6072 * flush it is required to read in 64 KiB because the replacement algorithm
6073 * is not exactly LRU. This could be sized at runtime via topology
6074 * information but as all relevant affected CPUs have 32KiB L1D cache size
6075 * there is no point in doing so.
6077 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6079 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6082 * This code is only executed when the the flush mode is 'cond' or
6085 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6089 * Clear the per-vcpu flush bit, it gets set again
6090 * either from vcpu_run() or from one of the unsafe
6093 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6094 vcpu->arch.l1tf_flush_l1d = false;
6097 * Clear the per-cpu flush bit, it gets set again from
6098 * the interrupt handlers.
6100 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6101 kvm_clear_cpu_l1tf_flush_l1d();
6107 vcpu->stat.l1d_flush++;
6109 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6110 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6115 /* First ensure the pages are in the TLB */
6116 "xorl %%eax, %%eax\n"
6117 ".Lpopulate_tlb:\n\t"
6118 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6119 "addl $4096, %%eax\n\t"
6120 "cmpl %%eax, %[size]\n\t"
6121 "jne .Lpopulate_tlb\n\t"
6122 "xorl %%eax, %%eax\n\t"
6124 /* Now fill the cache */
6125 "xorl %%eax, %%eax\n"
6127 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6128 "addl $64, %%eax\n\t"
6129 "cmpl %%eax, %[size]\n\t"
6130 "jne .Lfill_cache\n\t"
6132 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6134 : "eax", "ebx", "ecx", "edx");
6137 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6139 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6142 if (is_guest_mode(vcpu) &&
6143 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6146 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6147 if (is_guest_mode(vcpu))
6148 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6150 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6153 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6155 struct vcpu_vmx *vmx = to_vmx(vcpu);
6156 u32 sec_exec_control;
6158 if (!lapic_in_kernel(vcpu))
6161 if (!flexpriority_enabled &&
6162 !cpu_has_vmx_virtualize_x2apic_mode())
6165 /* Postpone execution until vmcs01 is the current VMCS. */
6166 if (is_guest_mode(vcpu)) {
6167 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6171 sec_exec_control = secondary_exec_controls_get(vmx);
6172 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6173 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6175 switch (kvm_get_apic_mode(vcpu)) {
6176 case LAPIC_MODE_INVALID:
6177 WARN_ONCE(true, "Invalid local APIC state");
6179 case LAPIC_MODE_DISABLED:
6181 case LAPIC_MODE_XAPIC:
6182 if (flexpriority_enabled) {
6184 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6185 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6188 * Flush the TLB, reloading the APIC access page will
6189 * only do so if its physical address has changed, but
6190 * the guest may have inserted a non-APIC mapping into
6191 * the TLB while the APIC access page was disabled.
6193 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6196 case LAPIC_MODE_X2APIC:
6197 if (cpu_has_vmx_virtualize_x2apic_mode())
6199 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6202 secondary_exec_controls_set(vmx, sec_exec_control);
6204 vmx_update_msr_bitmap_x2apic(vcpu);
6207 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6211 /* Defer reload until vmcs01 is the current VMCS. */
6212 if (is_guest_mode(vcpu)) {
6213 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6217 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6218 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6221 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6222 if (is_error_page(page))
6225 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6226 vmx_flush_tlb_current(vcpu);
6229 * Do not pin apic access page in memory, the MMU notifier
6230 * will call us again if it is migrated or swapped out.
6235 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6243 status = vmcs_read16(GUEST_INTR_STATUS);
6245 if (max_isr != old) {
6247 status |= max_isr << 8;
6248 vmcs_write16(GUEST_INTR_STATUS, status);
6252 static void vmx_set_rvi(int vector)
6260 status = vmcs_read16(GUEST_INTR_STATUS);
6261 old = (u8)status & 0xff;
6262 if ((u8)vector != old) {
6264 status |= (u8)vector;
6265 vmcs_write16(GUEST_INTR_STATUS, status);
6269 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6272 * When running L2, updating RVI is only relevant when
6273 * vmcs12 virtual-interrupt-delivery enabled.
6274 * However, it can be enabled only when L1 also
6275 * intercepts external-interrupts and in that case
6276 * we should not update vmcs02 RVI but instead intercept
6277 * interrupt. Therefore, do nothing when running L2.
6279 if (!is_guest_mode(vcpu))
6280 vmx_set_rvi(max_irr);
6283 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6285 struct vcpu_vmx *vmx = to_vmx(vcpu);
6287 bool max_irr_updated;
6289 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6292 if (pi_test_on(&vmx->pi_desc)) {
6293 pi_clear_on(&vmx->pi_desc);
6295 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6296 * But on x86 this is just a compiler barrier anyway.
6298 smp_mb__after_atomic();
6300 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6303 * If we are running L2 and L1 has a new pending interrupt
6304 * which can be injected, we should re-evaluate
6305 * what should be done with this new L1 interrupt.
6306 * If L1 intercepts external-interrupts, we should
6307 * exit from L2 to L1. Otherwise, interrupt should be
6308 * delivered directly to L2.
6310 if (is_guest_mode(vcpu) && max_irr_updated) {
6311 if (nested_exit_on_intr(vcpu))
6312 kvm_vcpu_exiting_guest_mode(vcpu);
6314 kvm_make_request(KVM_REQ_EVENT, vcpu);
6317 max_irr = kvm_lapic_find_highest_irr(vcpu);
6319 vmx_hwapic_irr_update(vcpu, max_irr);
6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6325 if (!kvm_vcpu_apicv_active(vcpu))
6328 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6329 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6330 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6331 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6336 struct vcpu_vmx *vmx = to_vmx(vcpu);
6338 pi_clear_on(&vmx->pi_desc);
6339 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6345 unsigned long entry)
6347 kvm_before_interrupt(vcpu);
6348 vmx_do_interrupt_nmi_irqoff(entry);
6349 kvm_after_interrupt(vcpu);
6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6354 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6355 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6357 /* if exit due to PF check for async PF */
6358 if (is_page_fault(intr_info))
6359 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6360 /* Handle machine checks before interrupts are enabled */
6361 else if (is_machine_check(intr_info))
6362 kvm_machine_check();
6363 /* We need to handle NMIs before interrupts are enabled */
6364 else if (is_nmi(intr_info))
6365 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6370 u32 intr_info = vmx_get_intr_info(vcpu);
6371 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6372 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6374 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6375 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6378 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6383 struct vcpu_vmx *vmx = to_vmx(vcpu);
6385 if (vmx->emulation_required)
6388 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6389 handle_external_interrupt_irqoff(vcpu);
6390 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6391 handle_exception_nmi_irqoff(vmx);
6395 * The kvm parameter can be NULL (module initialization, or invocation before
6396 * VM creation). Be sure to check the kvm parameter before using it.
6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6401 case MSR_IA32_SMBASE:
6403 * We cannot do SMM unless we can run the guest in big
6406 return enable_unrestricted_guest || emulate_invalid_guest_state;
6407 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6409 case MSR_AMD64_VIRT_SPEC_CTRL:
6410 /* This is AMD only. */
6417 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6422 bool idtv_info_valid;
6424 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6427 if (vmx->loaded_vmcs->nmi_known_unmasked)
6430 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6431 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6432 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6434 * SDM 3: 27.7.1.2 (September 2008)
6435 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6436 * a guest IRET fault.
6437 * SDM 3: 23.2.2 (September 2008)
6438 * Bit 12 is undefined in any of the following cases:
6439 * If the VM exit sets the valid bit in the IDT-vectoring
6440 * information field.
6441 * If the VM exit is due to a double fault.
6443 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6444 vector != DF_VECTOR && !idtv_info_valid)
6445 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6446 GUEST_INTR_STATE_NMI);
6448 vmx->loaded_vmcs->nmi_known_unmasked =
6449 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6450 & GUEST_INTR_STATE_NMI);
6451 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6452 vmx->loaded_vmcs->vnmi_blocked_time +=
6453 ktime_to_ns(ktime_sub(ktime_get(),
6454 vmx->loaded_vmcs->entry_time));
6457 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6458 u32 idt_vectoring_info,
6459 int instr_len_field,
6460 int error_code_field)
6464 bool idtv_info_valid;
6466 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6468 vcpu->arch.nmi_injected = false;
6469 kvm_clear_exception_queue(vcpu);
6470 kvm_clear_interrupt_queue(vcpu);
6472 if (!idtv_info_valid)
6475 kvm_make_request(KVM_REQ_EVENT, vcpu);
6477 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6478 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6481 case INTR_TYPE_NMI_INTR:
6482 vcpu->arch.nmi_injected = true;
6484 * SDM 3: 27.7.1.2 (September 2008)
6485 * Clear bit "block by NMI" before VM entry if a NMI
6488 vmx_set_nmi_mask(vcpu, false);
6490 case INTR_TYPE_SOFT_EXCEPTION:
6491 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6493 case INTR_TYPE_HARD_EXCEPTION:
6494 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6495 u32 err = vmcs_read32(error_code_field);
6496 kvm_requeue_exception_e(vcpu, vector, err);
6498 kvm_requeue_exception(vcpu, vector);
6500 case INTR_TYPE_SOFT_INTR:
6501 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6503 case INTR_TYPE_EXT_INTR:
6504 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6511 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6513 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6514 VM_EXIT_INSTRUCTION_LEN,
6515 IDT_VECTORING_ERROR_CODE);
6518 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6520 __vmx_complete_interrupts(vcpu,
6521 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6522 VM_ENTRY_INSTRUCTION_LEN,
6523 VM_ENTRY_EXCEPTION_ERROR_CODE);
6525 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6528 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6531 struct perf_guest_switch_msr *msrs;
6533 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6534 msrs = perf_guest_get_msrs(&nr_msrs);
6538 for (i = 0; i < nr_msrs; i++)
6539 if (msrs[i].host == msrs[i].guest)
6540 clear_atomic_switch_msr(vmx, msrs[i].msr);
6542 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6543 msrs[i].host, false);
6546 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6548 struct vcpu_vmx *vmx = to_vmx(vcpu);
6552 if (vmx->req_immediate_exit) {
6553 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6554 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6555 } else if (vmx->hv_deadline_tsc != -1) {
6557 if (vmx->hv_deadline_tsc > tscl)
6558 /* set_hv_timer ensures the delta fits in 32-bits */
6559 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6560 cpu_preemption_timer_multi);
6564 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6565 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6566 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6567 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6568 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6572 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6574 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6575 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6576 vmcs_writel(HOST_RSP, host_rsp);
6580 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6582 switch (to_vmx(vcpu)->exit_reason.basic) {
6583 case EXIT_REASON_MSR_WRITE:
6584 return handle_fastpath_set_msr_irqoff(vcpu);
6585 case EXIT_REASON_PREEMPTION_TIMER:
6586 return handle_fastpath_preemption_timer(vcpu);
6588 return EXIT_FASTPATH_NONE;
6592 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6593 struct vcpu_vmx *vmx)
6595 kvm_guest_enter_irqoff();
6597 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6598 if (static_branch_unlikely(&vmx_l1d_should_flush))
6599 vmx_l1d_flush(vcpu);
6600 else if (static_branch_unlikely(&mds_user_clear))
6601 mds_clear_cpu_buffers();
6603 if (vcpu->arch.cr2 != native_read_cr2())
6604 native_write_cr2(vcpu->arch.cr2);
6606 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6607 vmx->loaded_vmcs->launched);
6609 vcpu->arch.cr2 = native_read_cr2();
6611 kvm_guest_exit_irqoff();
6614 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6616 struct vcpu_vmx *vmx = to_vmx(vcpu);
6617 unsigned long cr3, cr4;
6619 /* Record the guest's net vcpu time for enforced NMI injections. */
6620 if (unlikely(!enable_vnmi &&
6621 vmx->loaded_vmcs->soft_vnmi_blocked))
6622 vmx->loaded_vmcs->entry_time = ktime_get();
6624 /* Don't enter VMX if guest state is invalid, let the exit handler
6625 start emulation until we arrive back to a valid state */
6626 if (vmx->emulation_required)
6627 return EXIT_FASTPATH_NONE;
6629 trace_kvm_entry(vcpu);
6631 if (vmx->ple_window_dirty) {
6632 vmx->ple_window_dirty = false;
6633 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6637 * We did this in prepare_switch_to_guest, because it needs to
6638 * be within srcu_read_lock.
6640 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6642 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6643 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6644 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6645 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6647 cr3 = __get_current_cr3_fast();
6648 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6649 vmcs_writel(HOST_CR3, cr3);
6650 vmx->loaded_vmcs->host_state.cr3 = cr3;
6653 cr4 = cr4_read_shadow();
6654 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6655 vmcs_writel(HOST_CR4, cr4);
6656 vmx->loaded_vmcs->host_state.cr4 = cr4;
6659 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6660 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6661 set_debugreg(vcpu->arch.dr6, 6);
6663 /* When single-stepping over STI and MOV SS, we must clear the
6664 * corresponding interruptibility bits in the guest state. Otherwise
6665 * vmentry fails as it then expects bit 14 (BS) in pending debug
6666 * exceptions being set, but that's not correct for the guest debugging
6668 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6669 vmx_set_interrupt_shadow(vcpu, 0);
6671 kvm_load_guest_xsave_state(vcpu);
6673 pt_guest_enter(vmx);
6675 atomic_switch_perf_msrs(vmx);
6676 if (intel_pmu_lbr_is_enabled(vcpu))
6677 vmx_passthrough_lbr_msrs(vcpu);
6679 if (enable_preemption_timer)
6680 vmx_update_hv_timer(vcpu);
6682 kvm_wait_lapic_expire(vcpu);
6685 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6686 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6687 * is no need to worry about the conditional branch over the wrmsr
6688 * being speculatively taken.
6690 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6692 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6693 vmx_vcpu_enter_exit(vcpu, vmx);
6696 * We do not use IBRS in the kernel. If this vCPU has used the
6697 * SPEC_CTRL MSR it may have left it on; save the value and
6698 * turn it off. This is much more efficient than blindly adding
6699 * it to the atomic save/restore list. Especially as the former
6700 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6702 * For non-nested case:
6703 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6707 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6710 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6711 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6713 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6715 /* All fields are clean at this point */
6716 if (static_branch_unlikely(&enable_evmcs)) {
6717 current_evmcs->hv_clean_fields |=
6718 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6720 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6723 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6724 if (vmx->host_debugctlmsr)
6725 update_debugctlmsr(vmx->host_debugctlmsr);
6727 #ifndef CONFIG_X86_64
6729 * The sysexit path does not restore ds/es, so we must set them to
6730 * a reasonable value ourselves.
6732 * We can't defer this to vmx_prepare_switch_to_host() since that
6733 * function may be executed in interrupt context, which saves and
6734 * restore segments around it, nullifying its effect.
6736 loadsegment(ds, __USER_DS);
6737 loadsegment(es, __USER_DS);
6740 vmx_register_cache_reset(vcpu);
6744 kvm_load_host_xsave_state(vcpu);
6746 if (is_guest_mode(vcpu)) {
6748 * Track VMLAUNCH/VMRESUME that have made past guest state
6751 if (vmx->nested.nested_run_pending &&
6752 !vmx->exit_reason.failed_vmentry)
6753 ++vcpu->stat.nested_run;
6755 vmx->nested.nested_run_pending = 0;
6758 vmx->idt_vectoring_info = 0;
6760 if (unlikely(vmx->fail)) {
6761 vmx->exit_reason.full = 0xdead;
6762 return EXIT_FASTPATH_NONE;
6765 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6766 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6767 kvm_machine_check();
6769 if (likely(!vmx->exit_reason.failed_vmentry))
6770 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6772 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6774 if (unlikely(vmx->exit_reason.failed_vmentry))
6775 return EXIT_FASTPATH_NONE;
6777 vmx->loaded_vmcs->launched = 1;
6779 vmx_recover_nmi_blocking(vmx);
6780 vmx_complete_interrupts(vmx);
6782 if (is_guest_mode(vcpu))
6783 return EXIT_FASTPATH_NONE;
6785 return vmx_exit_handlers_fastpath(vcpu);
6788 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6790 struct vcpu_vmx *vmx = to_vmx(vcpu);
6793 vmx_destroy_pml_buffer(vmx);
6794 free_vpid(vmx->vpid);
6795 nested_vmx_free_vcpu(vcpu);
6796 free_loaded_vmcs(vmx->loaded_vmcs);
6799 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6801 struct vmx_uret_msr *tsx_ctrl;
6802 struct vcpu_vmx *vmx;
6805 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6810 vmx->vpid = allocate_vpid();
6813 * If PML is turned on, failure on enabling PML just results in failure
6814 * of creating the vcpu, therefore we can simplify PML logic (by
6815 * avoiding dealing with cases, such as enabling PML partially on vcpus
6816 * for the guest), etc.
6819 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6824 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6825 vmx->guest_uret_msrs[i].data = 0;
6826 vmx->guest_uret_msrs[i].mask = -1ull;
6828 if (boot_cpu_has(X86_FEATURE_RTM)) {
6830 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6831 * Keep the host value unchanged to avoid changing CPUID bits
6832 * under the host kernel's feet.
6834 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6836 vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6839 err = alloc_loaded_vmcs(&vmx->vmcs01);
6843 /* The MSR bitmap starts with all ones */
6844 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6845 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6847 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6848 #ifdef CONFIG_X86_64
6849 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6850 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6851 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6853 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6854 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6855 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6856 if (kvm_cstate_in_guest(vcpu->kvm)) {
6857 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6858 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6859 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6860 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6863 vmx->loaded_vmcs = &vmx->vmcs01;
6865 vmx_vcpu_load(vcpu, cpu);
6870 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6871 err = alloc_apic_access_page(vcpu->kvm);
6876 if (enable_ept && !enable_unrestricted_guest) {
6877 err = init_rmode_identity_map(vcpu->kvm);
6883 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6885 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6887 vcpu_setup_sgx_lepubkeyhash(vcpu);
6889 vmx->nested.posted_intr_nv = -1;
6890 vmx->nested.current_vmptr = -1ull;
6891 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6893 vcpu->arch.microcode_version = 0x100000000ULL;
6894 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6897 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6898 * or POSTED_INTR_WAKEUP_VECTOR.
6900 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6901 vmx->pi_desc.sn = 1;
6906 free_loaded_vmcs(vmx->loaded_vmcs);
6908 vmx_destroy_pml_buffer(vmx);
6910 free_vpid(vmx->vpid);
6914 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6915 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6917 static int vmx_vm_init(struct kvm *kvm)
6920 kvm->arch.pause_in_guest = true;
6922 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6923 switch (l1tf_mitigation) {
6924 case L1TF_MITIGATION_OFF:
6925 case L1TF_MITIGATION_FLUSH_NOWARN:
6926 /* 'I explicitly don't care' is set */
6928 case L1TF_MITIGATION_FLUSH:
6929 case L1TF_MITIGATION_FLUSH_NOSMT:
6930 case L1TF_MITIGATION_FULL:
6932 * Warn upon starting the first VM in a potentially
6933 * insecure environment.
6935 if (sched_smt_active())
6936 pr_warn_once(L1TF_MSG_SMT);
6937 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6938 pr_warn_once(L1TF_MSG_L1D);
6940 case L1TF_MITIGATION_FULL_FORCE:
6941 /* Flush is enforced */
6948 static int __init vmx_check_processor_compat(void)
6950 struct vmcs_config vmcs_conf;
6951 struct vmx_capability vmx_cap;
6953 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6954 !this_cpu_has(X86_FEATURE_VMX)) {
6955 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6959 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6962 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6963 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6964 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6965 smp_processor_id());
6971 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6976 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6977 * memory aliases with conflicting memory types and sometimes MCEs.
6978 * We have to be careful as to what are honored and when.
6980 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
6981 * UC. The effective memory type is UC or WC depending on guest PAT.
6982 * This was historically the source of MCEs and we want to be
6985 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6986 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
6987 * EPT memory type is set to WB. The effective memory type is forced
6990 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
6991 * EPT memory type is used to emulate guest CD/MTRR.
6995 cache = MTRR_TYPE_UNCACHABLE;
6999 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7000 ipat = VMX_EPT_IPAT_BIT;
7001 cache = MTRR_TYPE_WRBACK;
7005 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7006 ipat = VMX_EPT_IPAT_BIT;
7007 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7008 cache = MTRR_TYPE_WRBACK;
7010 cache = MTRR_TYPE_UNCACHABLE;
7014 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7017 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7020 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7023 * These bits in the secondary execution controls field
7024 * are dynamic, the others are mostly based on the hypervisor
7025 * architecture and the guest's CPUID. Do not touch the
7029 SECONDARY_EXEC_SHADOW_VMCS |
7030 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7031 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7032 SECONDARY_EXEC_DESC;
7034 u32 cur_ctl = secondary_exec_controls_get(vmx);
7036 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7040 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7041 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7043 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7045 struct vcpu_vmx *vmx = to_vmx(vcpu);
7046 struct kvm_cpuid_entry2 *entry;
7048 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7049 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7051 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7052 if (entry && (entry->_reg & (_cpuid_mask))) \
7053 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7056 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7057 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7058 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7059 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7060 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7061 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7062 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7063 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7064 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7065 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7066 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7067 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7068 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7069 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7070 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7072 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7073 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7074 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7075 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7076 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7077 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7078 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7080 #undef cr4_fixed1_update
7083 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7085 struct vcpu_vmx *vmx = to_vmx(vcpu);
7087 if (kvm_mpx_supported()) {
7088 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7091 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7092 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7094 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7095 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7100 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7102 struct vcpu_vmx *vmx = to_vmx(vcpu);
7103 struct kvm_cpuid_entry2 *best = NULL;
7106 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7107 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7110 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7111 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7112 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7113 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7116 /* Get the number of configurable Address Ranges for filtering */
7117 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7118 PT_CAP_num_address_ranges);
7120 /* Initialize and clear the no dependency bits */
7121 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7122 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7125 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7126 * will inject an #GP
7128 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7129 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7132 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7133 * PSBFreq can be set
7135 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7136 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7137 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7140 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7141 * MTCFreq can be set
7143 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7144 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7145 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7147 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7148 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7149 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7152 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7153 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7154 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7156 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7157 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7158 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7160 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7161 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7162 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7164 /* unmask address range configure area */
7165 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7166 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7169 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7171 struct vcpu_vmx *vmx = to_vmx(vcpu);
7173 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7174 vcpu->arch.xsaves_enabled = false;
7176 vmx_setup_uret_msrs(vmx);
7178 if (cpu_has_secondary_exec_ctrls())
7179 vmcs_set_secondary_exec_control(vmx,
7180 vmx_secondary_exec_control(vmx));
7182 if (nested_vmx_allowed(vcpu))
7183 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7184 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7185 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7187 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7188 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7189 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7191 if (nested_vmx_allowed(vcpu)) {
7192 nested_vmx_cr_fixed1_bits_update(vcpu);
7193 nested_vmx_entry_exit_ctls_update(vcpu);
7196 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7197 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7198 update_intel_pt_cfg(vcpu);
7200 if (boot_cpu_has(X86_FEATURE_RTM)) {
7201 struct vmx_uret_msr *msr;
7202 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7204 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7205 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7209 set_cr4_guest_host_mask(vmx);
7211 vmx_write_encls_bitmap(vcpu, NULL);
7212 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7213 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7215 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7217 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7218 vmx->msr_ia32_feature_control_valid_bits |=
7219 FEAT_CTL_SGX_LC_ENABLED;
7221 vmx->msr_ia32_feature_control_valid_bits &=
7222 ~FEAT_CTL_SGX_LC_ENABLED;
7224 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7225 vmx_update_exception_bitmap(vcpu);
7228 static __init void vmx_set_cpu_caps(void)
7234 kvm_cpu_cap_set(X86_FEATURE_VMX);
7237 if (kvm_mpx_supported())
7238 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7239 if (!cpu_has_vmx_invpcid())
7240 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7241 if (vmx_pt_mode_is_host_guest())
7242 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7245 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7246 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7247 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7248 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7251 if (vmx_umip_emulated())
7252 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7256 if (!cpu_has_vmx_xsaves())
7257 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7259 /* CPUID 0x80000001 and 0x7 (RDPID) */
7260 if (!cpu_has_vmx_rdtscp()) {
7261 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7262 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7265 if (cpu_has_vmx_waitpkg())
7266 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7269 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7271 to_vmx(vcpu)->req_immediate_exit = true;
7274 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7275 struct x86_instruction_info *info)
7277 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7278 unsigned short port;
7282 if (info->intercept == x86_intercept_in ||
7283 info->intercept == x86_intercept_ins) {
7284 port = info->src_val;
7285 size = info->dst_bytes;
7287 port = info->dst_val;
7288 size = info->src_bytes;
7292 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7293 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7296 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7298 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7299 intercept = nested_cpu_has(vmcs12,
7300 CPU_BASED_UNCOND_IO_EXITING);
7302 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7304 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7305 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7308 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7309 struct x86_instruction_info *info,
7310 enum x86_intercept_stage stage,
7311 struct x86_exception *exception)
7313 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7315 switch (info->intercept) {
7317 * RDPID causes #UD if disabled through secondary execution controls.
7318 * Because it is marked as EmulateOnUD, we need to intercept it here.
7319 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7321 case x86_intercept_rdpid:
7322 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7323 exception->vector = UD_VECTOR;
7324 exception->error_code_valid = false;
7325 return X86EMUL_PROPAGATE_FAULT;
7329 case x86_intercept_in:
7330 case x86_intercept_ins:
7331 case x86_intercept_out:
7332 case x86_intercept_outs:
7333 return vmx_check_intercept_io(vcpu, info);
7335 case x86_intercept_lgdt:
7336 case x86_intercept_lidt:
7337 case x86_intercept_lldt:
7338 case x86_intercept_ltr:
7339 case x86_intercept_sgdt:
7340 case x86_intercept_sidt:
7341 case x86_intercept_sldt:
7342 case x86_intercept_str:
7343 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7344 return X86EMUL_CONTINUE;
7346 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7349 /* TODO: check more intercepts... */
7354 return X86EMUL_UNHANDLEABLE;
7357 #ifdef CONFIG_X86_64
7358 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7359 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7360 u64 divisor, u64 *result)
7362 u64 low = a << shift, high = a >> (64 - shift);
7364 /* To avoid the overflow on divq */
7365 if (high >= divisor)
7368 /* Low hold the result, high hold rem which is discarded */
7369 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7370 "rm" (divisor), "0" (low), "1" (high));
7376 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7379 struct vcpu_vmx *vmx;
7380 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7381 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7385 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7386 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7387 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7388 ktimer->timer_advance_ns);
7390 if (delta_tsc > lapic_timer_advance_cycles)
7391 delta_tsc -= lapic_timer_advance_cycles;
7395 /* Convert to host delta tsc if tsc scaling is enabled */
7396 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7397 delta_tsc && u64_shl_div_u64(delta_tsc,
7398 kvm_tsc_scaling_ratio_frac_bits,
7399 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7403 * If the delta tsc can't fit in the 32 bit after the multi shift,
7404 * we can't use the preemption timer.
7405 * It's possible that it fits on later vmentries, but checking
7406 * on every vmentry is costly so we just use an hrtimer.
7408 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7411 vmx->hv_deadline_tsc = tscl + delta_tsc;
7412 *expired = !delta_tsc;
7416 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7418 to_vmx(vcpu)->hv_deadline_tsc = -1;
7422 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7424 if (!kvm_pause_in_guest(vcpu->kvm))
7425 shrink_ple_window(vcpu);
7428 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7430 struct vcpu_vmx *vmx = to_vmx(vcpu);
7432 if (is_guest_mode(vcpu)) {
7433 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7438 * Note, cpu_dirty_logging_count can be changed concurrent with this
7439 * code, but in that case another update request will be made and so
7440 * the guest will never run with a stale PML value.
7442 if (vcpu->kvm->arch.cpu_dirty_logging_count)
7443 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7445 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7448 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7450 if (pi_pre_block(vcpu))
7453 if (kvm_lapic_hv_timer_in_use(vcpu))
7454 kvm_lapic_switch_to_sw_timer(vcpu);
7459 static void vmx_post_block(struct kvm_vcpu *vcpu)
7461 if (kvm_x86_ops.set_hv_timer)
7462 kvm_lapic_switch_to_hv_timer(vcpu);
7464 pi_post_block(vcpu);
7467 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7469 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7470 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7471 FEAT_CTL_LMCE_ENABLED;
7473 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7474 ~FEAT_CTL_LMCE_ENABLED;
7477 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7479 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7480 if (to_vmx(vcpu)->nested.nested_run_pending)
7482 return !is_smm(vcpu);
7485 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7487 struct vcpu_vmx *vmx = to_vmx(vcpu);
7489 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7490 if (vmx->nested.smm.guest_mode)
7491 nested_vmx_vmexit(vcpu, -1, 0, 0);
7493 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7494 vmx->nested.vmxon = false;
7495 vmx_clear_hlt(vcpu);
7499 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7501 struct vcpu_vmx *vmx = to_vmx(vcpu);
7504 if (vmx->nested.smm.vmxon) {
7505 vmx->nested.vmxon = true;
7506 vmx->nested.smm.vmxon = false;
7509 if (vmx->nested.smm.guest_mode) {
7510 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7514 vmx->nested.smm.guest_mode = false;
7519 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7521 /* RSM will cause a vmexit anyway. */
7524 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7526 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7529 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7531 if (is_guest_mode(vcpu)) {
7532 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7534 if (hrtimer_try_to_cancel(timer) == 1)
7535 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7539 static void hardware_unsetup(void)
7542 nested_vmx_hardware_unsetup();
7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7549 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7550 BIT(APICV_INHIBIT_REASON_HYPERV);
7552 return supported & BIT(bit);
7555 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7556 .hardware_unsetup = hardware_unsetup,
7558 .hardware_enable = hardware_enable,
7559 .hardware_disable = hardware_disable,
7560 .cpu_has_accelerated_tpr = report_flexpriority,
7561 .has_emulated_msr = vmx_has_emulated_msr,
7563 .vm_size = sizeof(struct kvm_vmx),
7564 .vm_init = vmx_vm_init,
7566 .vcpu_create = vmx_create_vcpu,
7567 .vcpu_free = vmx_free_vcpu,
7568 .vcpu_reset = vmx_vcpu_reset,
7570 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7571 .vcpu_load = vmx_vcpu_load,
7572 .vcpu_put = vmx_vcpu_put,
7574 .update_exception_bitmap = vmx_update_exception_bitmap,
7575 .get_msr_feature = vmx_get_msr_feature,
7576 .get_msr = vmx_get_msr,
7577 .set_msr = vmx_set_msr,
7578 .get_segment_base = vmx_get_segment_base,
7579 .get_segment = vmx_get_segment,
7580 .set_segment = vmx_set_segment,
7581 .get_cpl = vmx_get_cpl,
7582 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7583 .set_cr0 = vmx_set_cr0,
7584 .is_valid_cr4 = vmx_is_valid_cr4,
7585 .set_cr4 = vmx_set_cr4,
7586 .set_efer = vmx_set_efer,
7587 .get_idt = vmx_get_idt,
7588 .set_idt = vmx_set_idt,
7589 .get_gdt = vmx_get_gdt,
7590 .set_gdt = vmx_set_gdt,
7591 .set_dr7 = vmx_set_dr7,
7592 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7593 .cache_reg = vmx_cache_reg,
7594 .get_rflags = vmx_get_rflags,
7595 .set_rflags = vmx_set_rflags,
7597 .tlb_flush_all = vmx_flush_tlb_all,
7598 .tlb_flush_current = vmx_flush_tlb_current,
7599 .tlb_flush_gva = vmx_flush_tlb_gva,
7600 .tlb_flush_guest = vmx_flush_tlb_guest,
7602 .run = vmx_vcpu_run,
7603 .handle_exit = vmx_handle_exit,
7604 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7605 .update_emulated_instruction = vmx_update_emulated_instruction,
7606 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7607 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7608 .patch_hypercall = vmx_patch_hypercall,
7609 .set_irq = vmx_inject_irq,
7610 .set_nmi = vmx_inject_nmi,
7611 .queue_exception = vmx_queue_exception,
7612 .cancel_injection = vmx_cancel_injection,
7613 .interrupt_allowed = vmx_interrupt_allowed,
7614 .nmi_allowed = vmx_nmi_allowed,
7615 .get_nmi_mask = vmx_get_nmi_mask,
7616 .set_nmi_mask = vmx_set_nmi_mask,
7617 .enable_nmi_window = vmx_enable_nmi_window,
7618 .enable_irq_window = vmx_enable_irq_window,
7619 .update_cr8_intercept = vmx_update_cr8_intercept,
7620 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7621 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7622 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7623 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7624 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7625 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7626 .hwapic_irr_update = vmx_hwapic_irr_update,
7627 .hwapic_isr_update = vmx_hwapic_isr_update,
7628 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7629 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7630 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7631 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7633 .set_tss_addr = vmx_set_tss_addr,
7634 .set_identity_map_addr = vmx_set_identity_map_addr,
7635 .get_mt_mask = vmx_get_mt_mask,
7637 .get_exit_info = vmx_get_exit_info,
7639 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7641 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7643 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7644 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7645 .write_tsc_offset = vmx_write_tsc_offset,
7646 .write_tsc_multiplier = vmx_write_tsc_multiplier,
7648 .load_mmu_pgd = vmx_load_mmu_pgd,
7650 .check_intercept = vmx_check_intercept,
7651 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7653 .request_immediate_exit = vmx_request_immediate_exit,
7655 .sched_in = vmx_sched_in,
7657 .cpu_dirty_log_size = PML_ENTITY_NUM,
7658 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7660 .pre_block = vmx_pre_block,
7661 .post_block = vmx_post_block,
7663 .pmu_ops = &intel_pmu_ops,
7664 .nested_ops = &vmx_nested_ops,
7666 .update_pi_irte = pi_update_irte,
7667 .start_assignment = vmx_pi_start_assignment,
7669 #ifdef CONFIG_X86_64
7670 .set_hv_timer = vmx_set_hv_timer,
7671 .cancel_hv_timer = vmx_cancel_hv_timer,
7674 .setup_mce = vmx_setup_mce,
7676 .smi_allowed = vmx_smi_allowed,
7677 .enter_smm = vmx_enter_smm,
7678 .leave_smm = vmx_leave_smm,
7679 .enable_smi_window = vmx_enable_smi_window,
7681 .can_emulate_instruction = vmx_can_emulate_instruction,
7682 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7683 .migrate_timers = vmx_migrate_timers,
7685 .msr_filter_changed = vmx_msr_filter_changed,
7686 .complete_emulated_msr = kvm_complete_insn_gp,
7688 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7691 static __init void vmx_setup_user_return_msrs(void)
7695 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7696 * will emulate SYSCALL in legacy mode if the vendor string in guest
7697 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7698 * support this emulation, MSR_STAR is included in the list for i386,
7699 * but is never loaded into hardware. MSR_CSTAR is also never loaded
7700 * into hardware and is here purely for emulation purposes.
7702 const u32 vmx_uret_msrs_list[] = {
7703 #ifdef CONFIG_X86_64
7704 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7706 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7711 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7713 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7714 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7717 static __init int hardware_setup(void)
7719 unsigned long host_bndcfgs;
7721 int r, ept_lpage_level;
7724 host_idt_base = dt.address;
7726 vmx_setup_user_return_msrs();
7728 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7731 if (boot_cpu_has(X86_FEATURE_NX))
7732 kvm_enable_efer_bits(EFER_NX);
7734 if (boot_cpu_has(X86_FEATURE_MPX)) {
7735 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7736 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7739 if (!cpu_has_vmx_mpx())
7740 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7741 XFEATURE_MASK_BNDCSR);
7743 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7744 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7747 if (!cpu_has_vmx_ept() ||
7748 !cpu_has_vmx_ept_4levels() ||
7749 !cpu_has_vmx_ept_mt_wb() ||
7750 !cpu_has_vmx_invept_global())
7753 /* NX support is required for shadow paging. */
7754 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7755 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7759 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7760 enable_ept_ad_bits = 0;
7762 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7763 enable_unrestricted_guest = 0;
7765 if (!cpu_has_vmx_flexpriority())
7766 flexpriority_enabled = 0;
7768 if (!cpu_has_virtual_nmis())
7772 * set_apic_access_page_addr() is used to reload apic access
7773 * page upon invalidation. No need to do anything if not
7774 * using the APIC_ACCESS_ADDR VMCS field.
7776 if (!flexpriority_enabled)
7777 vmx_x86_ops.set_apic_access_page_addr = NULL;
7779 if (!cpu_has_vmx_tpr_shadow())
7780 vmx_x86_ops.update_cr8_intercept = NULL;
7782 #if IS_ENABLED(CONFIG_HYPERV)
7783 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7785 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7786 vmx_x86_ops.tlb_remote_flush_with_range =
7787 hv_remote_flush_tlb_with_range;
7791 if (!cpu_has_vmx_ple()) {
7794 ple_window_grow = 0;
7796 ple_window_shrink = 0;
7799 if (!cpu_has_vmx_apicv()) {
7801 vmx_x86_ops.sync_pir_to_irr = NULL;
7804 if (cpu_has_vmx_tsc_scaling()) {
7805 kvm_has_tsc_control = true;
7806 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7807 kvm_tsc_scaling_ratio_frac_bits = 48;
7810 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7812 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7815 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7816 cpu_has_vmx_ept_execute_only());
7819 ept_lpage_level = 0;
7820 else if (cpu_has_vmx_ept_1g_page())
7821 ept_lpage_level = PG_LEVEL_1G;
7822 else if (cpu_has_vmx_ept_2m_page())
7823 ept_lpage_level = PG_LEVEL_2M;
7825 ept_lpage_level = PG_LEVEL_4K;
7826 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7830 * Only enable PML when hardware supports PML feature, and both EPT
7831 * and EPT A/D bit features are enabled -- PML depends on them to work.
7833 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7837 vmx_x86_ops.cpu_dirty_log_size = 0;
7839 if (!cpu_has_vmx_preemption_timer())
7840 enable_preemption_timer = false;
7842 if (enable_preemption_timer) {
7843 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7846 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7847 cpu_preemption_timer_multi =
7848 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7851 use_timer_freq = (u64)tsc_khz * 1000;
7852 use_timer_freq >>= cpu_preemption_timer_multi;
7855 * KVM "disables" the preemption timer by setting it to its max
7856 * value. Don't use the timer if it might cause spurious exits
7857 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7859 if (use_timer_freq > 0xffffffffu / 10)
7860 enable_preemption_timer = false;
7863 if (!enable_preemption_timer) {
7864 vmx_x86_ops.set_hv_timer = NULL;
7865 vmx_x86_ops.cancel_hv_timer = NULL;
7866 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7869 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7871 kvm_mce_cap_supported |= MCG_LMCE_P;
7873 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7875 if (!enable_ept || !cpu_has_vmx_intel_pt())
7876 pt_mode = PT_MODE_SYSTEM;
7878 setup_default_sgx_lepubkeyhash();
7881 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7882 vmx_capability.ept);
7884 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7891 r = alloc_kvm_area();
7893 nested_vmx_hardware_unsetup();
7897 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7898 .cpu_has_kvm_support = cpu_has_kvm_support,
7899 .disabled_by_bios = vmx_disabled_by_bios,
7900 .check_processor_compatibility = vmx_check_processor_compat,
7901 .hardware_setup = hardware_setup,
7903 .runtime_ops = &vmx_x86_ops,
7906 static void vmx_cleanup_l1d_flush(void)
7908 if (vmx_l1d_flush_pages) {
7909 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7910 vmx_l1d_flush_pages = NULL;
7912 /* Restore state so sysfs ignores VMX */
7913 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7916 static void vmx_exit(void)
7918 #ifdef CONFIG_KEXEC_CORE
7919 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7925 #if IS_ENABLED(CONFIG_HYPERV)
7926 if (static_branch_unlikely(&enable_evmcs)) {
7928 struct hv_vp_assist_page *vp_ap;
7930 * Reset everything to support using non-enlightened VMCS
7931 * access later (e.g. when we reload the module with
7932 * enlightened_vmcs=0)
7934 for_each_online_cpu(cpu) {
7935 vp_ap = hv_get_vp_assist_page(cpu);
7940 vp_ap->nested_control.features.directhypercall = 0;
7941 vp_ap->current_nested_vmcs = 0;
7942 vp_ap->enlighten_vmentry = 0;
7945 static_branch_disable(&enable_evmcs);
7948 vmx_cleanup_l1d_flush();
7950 allow_smaller_maxphyaddr = false;
7952 module_exit(vmx_exit);
7954 static int __init vmx_init(void)
7958 #if IS_ENABLED(CONFIG_HYPERV)
7960 * Enlightened VMCS usage should be recommended and the host needs
7961 * to support eVMCS v1 or above. We can also disable eVMCS support
7962 * with module parameter.
7964 if (enlightened_vmcs &&
7965 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7966 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7967 KVM_EVMCS_VERSION) {
7970 /* Check that we have assist pages on all online CPUs */
7971 for_each_online_cpu(cpu) {
7972 if (!hv_get_vp_assist_page(cpu)) {
7973 enlightened_vmcs = false;
7978 if (enlightened_vmcs) {
7979 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7980 static_branch_enable(&enable_evmcs);
7983 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7984 vmx_x86_ops.enable_direct_tlbflush
7985 = hv_enable_direct_tlbflush;
7988 enlightened_vmcs = false;
7992 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7993 __alignof__(struct vcpu_vmx), THIS_MODULE);
7998 * Must be called after kvm_init() so enable_ept is properly set
7999 * up. Hand the parameter mitigation value in which was stored in
8000 * the pre module init parser. If no parameter was given, it will
8001 * contain 'auto' which will be turned into the default 'cond'
8004 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8010 for_each_possible_cpu(cpu) {
8011 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8016 #ifdef CONFIG_KEXEC_CORE
8017 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8018 crash_vmclear_local_loaded_vmcss);
8020 vmx_check_vmcs12_offsets();
8023 * Shadow paging doesn't have a (further) performance penalty
8024 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8028 allow_smaller_maxphyaddr = true;
8032 module_init(vmx_init);