Merge tag 'wireless-drivers-next-2020-03-24' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 #ifdef MODULE
68 static const struct x86_cpu_id vmx_cpu_id[] = {
69         X86_FEATURE_MATCH(X86_FEATURE_VMX),
70         {}
71 };
72 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73 #endif
74
75 bool __read_mostly enable_vpid = 1;
76 module_param_named(vpid, enable_vpid, bool, 0444);
77
78 static bool __read_mostly enable_vnmi = 1;
79 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
80
81 bool __read_mostly flexpriority_enabled = 1;
82 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
83
84 bool __read_mostly enable_ept = 1;
85 module_param_named(ept, enable_ept, bool, S_IRUGO);
86
87 bool __read_mostly enable_unrestricted_guest = 1;
88 module_param_named(unrestricted_guest,
89                         enable_unrestricted_guest, bool, S_IRUGO);
90
91 bool __read_mostly enable_ept_ad_bits = 1;
92 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
93
94 static bool __read_mostly emulate_invalid_guest_state = true;
95 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
96
97 static bool __read_mostly fasteoi = 1;
98 module_param(fasteoi, bool, S_IRUGO);
99
100 bool __read_mostly enable_apicv = 1;
101 module_param(enable_apicv, bool, S_IRUGO);
102
103 /*
104  * If nested=1, nested virtualization is supported, i.e., guests may use
105  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
106  * use VMX instructions.
107  */
108 static bool __read_mostly nested = 1;
109 module_param(nested, bool, S_IRUGO);
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214                 return 0;
215         }
216
217         if (!enable_ept) {
218                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219                 return 0;
220         }
221
222         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223                 u64 msr;
224
225                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228                         return 0;
229                 }
230         }
231
232         /* If set to auto use the default l1tf mitigation method */
233         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234                 switch (l1tf_mitigation) {
235                 case L1TF_MITIGATION_OFF:
236                         l1tf = VMENTER_L1D_FLUSH_NEVER;
237                         break;
238                 case L1TF_MITIGATION_FLUSH_NOWARN:
239                 case L1TF_MITIGATION_FLUSH:
240                 case L1TF_MITIGATION_FLUSH_NOSMT:
241                         l1tf = VMENTER_L1D_FLUSH_COND;
242                         break;
243                 case L1TF_MITIGATION_FULL:
244                 case L1TF_MITIGATION_FULL_FORCE:
245                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246                         break;
247                 }
248         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250         }
251
252         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254                 /*
255                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
256                  * lifetime and so should not be charged to a memcg.
257                  */
258                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259                 if (!page)
260                         return -ENOMEM;
261                 vmx_l1d_flush_pages = page_address(page);
262
263                 /*
264                  * Initialize each page with a different pattern in
265                  * order to protect against KSM in the nested
266                  * virtualization case.
267                  */
268                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270                                PAGE_SIZE);
271                 }
272         }
273
274         l1tf_vmx_mitigation = l1tf;
275
276         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277                 static_branch_enable(&vmx_l1d_should_flush);
278         else
279                 static_branch_disable(&vmx_l1d_should_flush);
280
281         if (l1tf == VMENTER_L1D_FLUSH_COND)
282                 static_branch_enable(&vmx_l1d_flush_cond);
283         else
284                 static_branch_disable(&vmx_l1d_flush_cond);
285         return 0;
286 }
287
288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290         unsigned int i;
291
292         if (s) {
293                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294                         if (vmentry_l1d_param[i].for_parse &&
295                             sysfs_streq(s, vmentry_l1d_param[i].option))
296                                 return i;
297                 }
298         }
299         return -EINVAL;
300 }
301
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304         int l1tf, ret;
305
306         l1tf = vmentry_l1d_flush_parse(s);
307         if (l1tf < 0)
308                 return l1tf;
309
310         if (!boot_cpu_has(X86_BUG_L1TF))
311                 return 0;
312
313         /*
314          * Has vmx_init() run already? If not then this is the pre init
315          * parameter parsing. In that case just store the value and let
316          * vmx_init() do the proper setup after enable_ept has been
317          * established.
318          */
319         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320                 vmentry_l1d_flush_param = l1tf;
321                 return 0;
322         }
323
324         mutex_lock(&vmx_l1d_flush_mutex);
325         ret = vmx_setup_l1d_flush(l1tf);
326         mutex_unlock(&vmx_l1d_flush_mutex);
327         return ret;
328 }
329
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333                 return sprintf(s, "???\n");
334
335         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339         .set = vmentry_l1d_flush_set,
340         .get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347                                                           u32 msr, int type);
348
349 void vmx_vmexit(void);
350
351 #define vmx_insn_failed(fmt...)         \
352 do {                                    \
353         WARN_ONCE(1, fmt);              \
354         pr_warn_ratelimited(fmt);       \
355 } while (0)
356
357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359         if (fault)
360                 kvm_spurious_fault();
361         else
362                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384                         ext, vpid, gva);
385 }
386
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390                         ext, eptp, gpa);
391 }
392
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413
414 #define VMX_SEGMENT_FIELD(seg)                                  \
415         [VCPU_SREG_##seg] = {                                   \
416                 .selector = GUEST_##seg##_SELECTOR,             \
417                 .base = GUEST_##seg##_BASE,                     \
418                 .limit = GUEST_##seg##_LIMIT,                   \
419                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
420         }
421
422 static const struct kvm_vmx_segment_field {
423         unsigned selector;
424         unsigned base;
425         unsigned limit;
426         unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428         VMX_SEGMENT_FIELD(CS),
429         VMX_SEGMENT_FIELD(DS),
430         VMX_SEGMENT_FIELD(ES),
431         VMX_SEGMENT_FIELD(FS),
432         VMX_SEGMENT_FIELD(GS),
433         VMX_SEGMENT_FIELD(SS),
434         VMX_SEGMENT_FIELD(TR),
435         VMX_SEGMENT_FIELD(LDTR),
436 };
437
438 u64 host_efer;
439 static unsigned long host_idt_base;
440
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453         MSR_IA32_TSX_CTRL,
454 };
455
456 #if IS_ENABLED(CONFIG_HYPERV)
457 static bool __read_mostly enlightened_vmcs = true;
458 module_param(enlightened_vmcs, bool, 0444);
459
460 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
461 static void check_ept_pointer_match(struct kvm *kvm)
462 {
463         struct kvm_vcpu *vcpu;
464         u64 tmp_eptp = INVALID_PAGE;
465         int i;
466
467         kvm_for_each_vcpu(i, vcpu, kvm) {
468                 if (!VALID_PAGE(tmp_eptp)) {
469                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
470                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
471                         to_kvm_vmx(kvm)->ept_pointers_match
472                                 = EPT_POINTERS_MISMATCH;
473                         return;
474                 }
475         }
476
477         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
478 }
479
480 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
481                 void *data)
482 {
483         struct kvm_tlb_range *range = data;
484
485         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
486                         range->pages);
487 }
488
489 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
490                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 {
492         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
493
494         /*
495          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
496          * of the base of EPT PML4 table, strip off EPT configuration
497          * information.
498          */
499         if (range)
500                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
501                                 kvm_fill_hv_flush_list_func, (void *)range);
502         else
503                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
504 }
505
506 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
507                 struct kvm_tlb_range *range)
508 {
509         struct kvm_vcpu *vcpu;
510         int ret = 0, i;
511
512         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513
514         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
515                 check_ept_pointer_match(kvm);
516
517         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
518                 kvm_for_each_vcpu(i, vcpu, kvm) {
519                         /* If ept_pointer is invalid pointer, bypass flush request. */
520                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
521                                 ret |= __hv_remote_flush_tlb_with_range(
522                                         kvm, vcpu, range);
523                 }
524         } else {
525                 ret = __hv_remote_flush_tlb_with_range(kvm,
526                                 kvm_get_vcpu(kvm, 0), range);
527         }
528
529         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
530         return ret;
531 }
532 static int hv_remote_flush_tlb(struct kvm *kvm)
533 {
534         return hv_remote_flush_tlb_with_range(kvm, NULL);
535 }
536
537 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 {
539         struct hv_enlightened_vmcs *evmcs;
540         struct hv_partition_assist_pg **p_hv_pa_pg =
541                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
542         /*
543          * Synthetic VM-Exit is not enabled in current code and so All
544          * evmcs in singe VM shares same assist page.
545          */
546         if (!*p_hv_pa_pg)
547                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
548
549         if (!*p_hv_pa_pg)
550                 return -ENOMEM;
551
552         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553
554         evmcs->partition_assist_page =
555                 __pa(*p_hv_pa_pg);
556         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
557         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
558
559         return 0;
560 }
561
562 #endif /* IS_ENABLED(CONFIG_HYPERV) */
563
564 /*
565  * Comment's format: document - errata name - stepping - processor name.
566  * Refer from
567  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568  */
569 static u32 vmx_preemption_cpu_tfms[] = {
570 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
571 0x000206E6,
572 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
573 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
574 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 0x00020652,
576 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 0x00020655,
578 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
579 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
580 /*
581  * 320767.pdf - AAP86  - B1 -
582  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
583  */
584 0x000106E5,
585 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 0x000106A0,
587 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 0x000106A1,
589 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 0x000106A4,
591  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
592  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
593  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 0x000106A5,
595  /* Xeon E3-1220 V2 */
596 0x000306A8,
597 };
598
599 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 {
601         u32 eax = cpuid_eax(0x00000001), i;
602
603         /* Clear the reserved bits */
604         eax &= ~(0x3U << 14 | 0xfU << 28);
605         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
606                 if (eax == vmx_preemption_cpu_tfms[i])
607                         return true;
608
609         return false;
610 }
611
612 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 {
614         return flexpriority_enabled && lapic_in_kernel(vcpu);
615 }
616
617 static inline bool report_flexpriority(void)
618 {
619         return flexpriority_enabled;
620 }
621
622 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
623 {
624         int i;
625
626         for (i = 0; i < vmx->nmsrs; ++i)
627                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
628                         return i;
629         return -1;
630 }
631
632 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
633 {
634         int i;
635
636         i = __find_msr_index(vmx, msr);
637         if (i >= 0)
638                 return &vmx->guest_msrs[i];
639         return NULL;
640 }
641
642 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
643 {
644         int ret = 0;
645
646         u64 old_msr_data = msr->data;
647         msr->data = data;
648         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
649                 preempt_disable();
650                 ret = kvm_set_shared_msr(msr->index, msr->data,
651                                          msr->mask);
652                 preempt_enable();
653                 if (ret)
654                         msr->data = old_msr_data;
655         }
656         return ret;
657 }
658
659 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
660 {
661         vmcs_clear(loaded_vmcs->vmcs);
662         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
663                 vmcs_clear(loaded_vmcs->shadow_vmcs);
664         loaded_vmcs->cpu = -1;
665         loaded_vmcs->launched = 0;
666 }
667
668 #ifdef CONFIG_KEXEC_CORE
669 /*
670  * This bitmap is used to indicate whether the vmclear
671  * operation is enabled on all cpus. All disabled by
672  * default.
673  */
674 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
675
676 static inline void crash_enable_local_vmclear(int cpu)
677 {
678         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
679 }
680
681 static inline void crash_disable_local_vmclear(int cpu)
682 {
683         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
684 }
685
686 static inline int crash_local_vmclear_enabled(int cpu)
687 {
688         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
689 }
690
691 static void crash_vmclear_local_loaded_vmcss(void)
692 {
693         int cpu = raw_smp_processor_id();
694         struct loaded_vmcs *v;
695
696         if (!crash_local_vmclear_enabled(cpu))
697                 return;
698
699         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
700                             loaded_vmcss_on_cpu_link)
701                 vmcs_clear(v->vmcs);
702 }
703 #else
704 static inline void crash_enable_local_vmclear(int cpu) { }
705 static inline void crash_disable_local_vmclear(int cpu) { }
706 #endif /* CONFIG_KEXEC_CORE */
707
708 static void __loaded_vmcs_clear(void *arg)
709 {
710         struct loaded_vmcs *loaded_vmcs = arg;
711         int cpu = raw_smp_processor_id();
712
713         if (loaded_vmcs->cpu != cpu)
714                 return; /* vcpu migration can race with cpu offline */
715         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
716                 per_cpu(current_vmcs, cpu) = NULL;
717         crash_disable_local_vmclear(cpu);
718         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
719
720         /*
721          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
722          * is before setting loaded_vmcs->vcpu to -1 which is done in
723          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
724          * then adds the vmcs into percpu list before it is deleted.
725          */
726         smp_wmb();
727
728         loaded_vmcs_init(loaded_vmcs);
729         crash_enable_local_vmclear(cpu);
730 }
731
732 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
733 {
734         int cpu = loaded_vmcs->cpu;
735
736         if (cpu != -1)
737                 smp_call_function_single(cpu,
738                          __loaded_vmcs_clear, loaded_vmcs, 1);
739 }
740
741 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
742                                        unsigned field)
743 {
744         bool ret;
745         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
746
747         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
748                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
749                 vmx->segment_cache.bitmask = 0;
750         }
751         ret = vmx->segment_cache.bitmask & mask;
752         vmx->segment_cache.bitmask |= mask;
753         return ret;
754 }
755
756 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
757 {
758         u16 *p = &vmx->segment_cache.seg[seg].selector;
759
760         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
761                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
762         return *p;
763 }
764
765 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
766 {
767         ulong *p = &vmx->segment_cache.seg[seg].base;
768
769         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
770                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
771         return *p;
772 }
773
774 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
775 {
776         u32 *p = &vmx->segment_cache.seg[seg].limit;
777
778         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
779                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
780         return *p;
781 }
782
783 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
784 {
785         u32 *p = &vmx->segment_cache.seg[seg].ar;
786
787         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
788                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
789         return *p;
790 }
791
792 void update_exception_bitmap(struct kvm_vcpu *vcpu)
793 {
794         u32 eb;
795
796         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
797              (1u << DB_VECTOR) | (1u << AC_VECTOR);
798         /*
799          * Guest access to VMware backdoor ports could legitimately
800          * trigger #GP because of TSS I/O permission bitmap.
801          * We intercept those #GP and allow access to them anyway
802          * as VMware does.
803          */
804         if (enable_vmware_backdoor)
805                 eb |= (1u << GP_VECTOR);
806         if ((vcpu->guest_debug &
807              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
808             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
809                 eb |= 1u << BP_VECTOR;
810         if (to_vmx(vcpu)->rmode.vm86_active)
811                 eb = ~0;
812         if (enable_ept)
813                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
814
815         /* When we are running a nested L2 guest and L1 specified for it a
816          * certain exception bitmap, we must trap the same exceptions and pass
817          * them to L1. When running L2, we will only handle the exceptions
818          * specified above if L1 did not want them.
819          */
820         if (is_guest_mode(vcpu))
821                 eb |= get_vmcs12(vcpu)->exception_bitmap;
822
823         vmcs_write32(EXCEPTION_BITMAP, eb);
824 }
825
826 /*
827  * Check if MSR is intercepted for currently loaded MSR bitmap.
828  */
829 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
830 {
831         unsigned long *msr_bitmap;
832         int f = sizeof(unsigned long);
833
834         if (!cpu_has_vmx_msr_bitmap())
835                 return true;
836
837         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
838
839         if (msr <= 0x1fff) {
840                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
841         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
842                 msr &= 0x1fff;
843                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
844         }
845
846         return true;
847 }
848
849 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
850                 unsigned long entry, unsigned long exit)
851 {
852         vm_entry_controls_clearbit(vmx, entry);
853         vm_exit_controls_clearbit(vmx, exit);
854 }
855
856 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
857 {
858         unsigned int i;
859
860         for (i = 0; i < m->nr; ++i) {
861                 if (m->val[i].index == msr)
862                         return i;
863         }
864         return -ENOENT;
865 }
866
867 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
868 {
869         int i;
870         struct msr_autoload *m = &vmx->msr_autoload;
871
872         switch (msr) {
873         case MSR_EFER:
874                 if (cpu_has_load_ia32_efer()) {
875                         clear_atomic_switch_msr_special(vmx,
876                                         VM_ENTRY_LOAD_IA32_EFER,
877                                         VM_EXIT_LOAD_IA32_EFER);
878                         return;
879                 }
880                 break;
881         case MSR_CORE_PERF_GLOBAL_CTRL:
882                 if (cpu_has_load_perf_global_ctrl()) {
883                         clear_atomic_switch_msr_special(vmx,
884                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
886                         return;
887                 }
888                 break;
889         }
890         i = vmx_find_msr_index(&m->guest, msr);
891         if (i < 0)
892                 goto skip_guest;
893         --m->guest.nr;
894         m->guest.val[i] = m->guest.val[m->guest.nr];
895         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
896
897 skip_guest:
898         i = vmx_find_msr_index(&m->host, msr);
899         if (i < 0)
900                 return;
901
902         --m->host.nr;
903         m->host.val[i] = m->host.val[m->host.nr];
904         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
905 }
906
907 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
908                 unsigned long entry, unsigned long exit,
909                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
910                 u64 guest_val, u64 host_val)
911 {
912         vmcs_write64(guest_val_vmcs, guest_val);
913         if (host_val_vmcs != HOST_IA32_EFER)
914                 vmcs_write64(host_val_vmcs, host_val);
915         vm_entry_controls_setbit(vmx, entry);
916         vm_exit_controls_setbit(vmx, exit);
917 }
918
919 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
920                                   u64 guest_val, u64 host_val, bool entry_only)
921 {
922         int i, j = 0;
923         struct msr_autoload *m = &vmx->msr_autoload;
924
925         switch (msr) {
926         case MSR_EFER:
927                 if (cpu_has_load_ia32_efer()) {
928                         add_atomic_switch_msr_special(vmx,
929                                         VM_ENTRY_LOAD_IA32_EFER,
930                                         VM_EXIT_LOAD_IA32_EFER,
931                                         GUEST_IA32_EFER,
932                                         HOST_IA32_EFER,
933                                         guest_val, host_val);
934                         return;
935                 }
936                 break;
937         case MSR_CORE_PERF_GLOBAL_CTRL:
938                 if (cpu_has_load_perf_global_ctrl()) {
939                         add_atomic_switch_msr_special(vmx,
940                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
941                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
942                                         GUEST_IA32_PERF_GLOBAL_CTRL,
943                                         HOST_IA32_PERF_GLOBAL_CTRL,
944                                         guest_val, host_val);
945                         return;
946                 }
947                 break;
948         case MSR_IA32_PEBS_ENABLE:
949                 /* PEBS needs a quiescent period after being disabled (to write
950                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
951                  * provide that period, so a CPU could write host's record into
952                  * guest's memory.
953                  */
954                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
955         }
956
957         i = vmx_find_msr_index(&m->guest, msr);
958         if (!entry_only)
959                 j = vmx_find_msr_index(&m->host, msr);
960
961         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
962                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
963                 printk_once(KERN_WARNING "Not enough msr switch entries. "
964                                 "Can't add msr %x\n", msr);
965                 return;
966         }
967         if (i < 0) {
968                 i = m->guest.nr++;
969                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
970         }
971         m->guest.val[i].index = msr;
972         m->guest.val[i].value = guest_val;
973
974         if (entry_only)
975                 return;
976
977         if (j < 0) {
978                 j = m->host.nr++;
979                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
980         }
981         m->host.val[j].index = msr;
982         m->host.val[j].value = host_val;
983 }
984
985 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
986 {
987         u64 guest_efer = vmx->vcpu.arch.efer;
988         u64 ignore_bits = 0;
989
990         /* Shadow paging assumes NX to be available.  */
991         if (!enable_ept)
992                 guest_efer |= EFER_NX;
993
994         /*
995          * LMA and LME handled by hardware; SCE meaningless outside long mode.
996          */
997         ignore_bits |= EFER_SCE;
998 #ifdef CONFIG_X86_64
999         ignore_bits |= EFER_LMA | EFER_LME;
1000         /* SCE is meaningful only in long mode on Intel */
1001         if (guest_efer & EFER_LMA)
1002                 ignore_bits &= ~(u64)EFER_SCE;
1003 #endif
1004
1005         /*
1006          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1007          * On CPUs that support "load IA32_EFER", always switch EFER
1008          * atomically, since it's faster than switching it manually.
1009          */
1010         if (cpu_has_load_ia32_efer() ||
1011             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1012                 if (!(guest_efer & EFER_LMA))
1013                         guest_efer &= ~EFER_LME;
1014                 if (guest_efer != host_efer)
1015                         add_atomic_switch_msr(vmx, MSR_EFER,
1016                                               guest_efer, host_efer, false);
1017                 else
1018                         clear_atomic_switch_msr(vmx, MSR_EFER);
1019                 return false;
1020         } else {
1021                 clear_atomic_switch_msr(vmx, MSR_EFER);
1022
1023                 guest_efer &= ~ignore_bits;
1024                 guest_efer |= host_efer & ignore_bits;
1025
1026                 vmx->guest_msrs[efer_offset].data = guest_efer;
1027                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1028
1029                 return true;
1030         }
1031 }
1032
1033 #ifdef CONFIG_X86_32
1034 /*
1035  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1036  * VMCS rather than the segment table.  KVM uses this helper to figure
1037  * out the current bases to poke them into the VMCS before entry.
1038  */
1039 static unsigned long segment_base(u16 selector)
1040 {
1041         struct desc_struct *table;
1042         unsigned long v;
1043
1044         if (!(selector & ~SEGMENT_RPL_MASK))
1045                 return 0;
1046
1047         table = get_current_gdt_ro();
1048
1049         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1050                 u16 ldt_selector = kvm_read_ldt();
1051
1052                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1053                         return 0;
1054
1055                 table = (struct desc_struct *)segment_base(ldt_selector);
1056         }
1057         v = get_desc_base(&table[selector >> 3]);
1058         return v;
1059 }
1060 #endif
1061
1062 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1063 {
1064         return (pt_mode == PT_MODE_HOST_GUEST) &&
1065                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1066 }
1067
1068 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1069 {
1070         u32 i;
1071
1072         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1073         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1074         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1075         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1076         for (i = 0; i < addr_range; i++) {
1077                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1078                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1079         }
1080 }
1081
1082 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1083 {
1084         u32 i;
1085
1086         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1087         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1088         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1089         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1090         for (i = 0; i < addr_range; i++) {
1091                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1092                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1093         }
1094 }
1095
1096 static void pt_guest_enter(struct vcpu_vmx *vmx)
1097 {
1098         if (pt_mode == PT_MODE_SYSTEM)
1099                 return;
1100
1101         /*
1102          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1103          * Save host state before VM entry.
1104          */
1105         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1106         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1107                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1108                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1109                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1110         }
1111 }
1112
1113 static void pt_guest_exit(struct vcpu_vmx *vmx)
1114 {
1115         if (pt_mode == PT_MODE_SYSTEM)
1116                 return;
1117
1118         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1119                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1120                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1121         }
1122
1123         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1124         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1125 }
1126
1127 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1128                         unsigned long fs_base, unsigned long gs_base)
1129 {
1130         if (unlikely(fs_sel != host->fs_sel)) {
1131                 if (!(fs_sel & 7))
1132                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1133                 else
1134                         vmcs_write16(HOST_FS_SELECTOR, 0);
1135                 host->fs_sel = fs_sel;
1136         }
1137         if (unlikely(gs_sel != host->gs_sel)) {
1138                 if (!(gs_sel & 7))
1139                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1140                 else
1141                         vmcs_write16(HOST_GS_SELECTOR, 0);
1142                 host->gs_sel = gs_sel;
1143         }
1144         if (unlikely(fs_base != host->fs_base)) {
1145                 vmcs_writel(HOST_FS_BASE, fs_base);
1146                 host->fs_base = fs_base;
1147         }
1148         if (unlikely(gs_base != host->gs_base)) {
1149                 vmcs_writel(HOST_GS_BASE, gs_base);
1150                 host->gs_base = gs_base;
1151         }
1152 }
1153
1154 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1155 {
1156         struct vcpu_vmx *vmx = to_vmx(vcpu);
1157         struct vmcs_host_state *host_state;
1158 #ifdef CONFIG_X86_64
1159         int cpu = raw_smp_processor_id();
1160 #endif
1161         unsigned long fs_base, gs_base;
1162         u16 fs_sel, gs_sel;
1163         int i;
1164
1165         vmx->req_immediate_exit = false;
1166
1167         /*
1168          * Note that guest MSRs to be saved/restored can also be changed
1169          * when guest state is loaded. This happens when guest transitions
1170          * to/from long-mode by setting MSR_EFER.LMA.
1171          */
1172         if (!vmx->guest_msrs_ready) {
1173                 vmx->guest_msrs_ready = true;
1174                 for (i = 0; i < vmx->save_nmsrs; ++i)
1175                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1176                                            vmx->guest_msrs[i].data,
1177                                            vmx->guest_msrs[i].mask);
1178
1179         }
1180
1181         if (vmx->nested.need_vmcs12_to_shadow_sync)
1182                 nested_sync_vmcs12_to_shadow(vcpu);
1183
1184         if (vmx->guest_state_loaded)
1185                 return;
1186
1187         host_state = &vmx->loaded_vmcs->host_state;
1188
1189         /*
1190          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1191          * allow segment selectors with cpl > 0 or ti == 1.
1192          */
1193         host_state->ldt_sel = kvm_read_ldt();
1194
1195 #ifdef CONFIG_X86_64
1196         savesegment(ds, host_state->ds_sel);
1197         savesegment(es, host_state->es_sel);
1198
1199         gs_base = cpu_kernelmode_gs_base(cpu);
1200         if (likely(is_64bit_mm(current->mm))) {
1201                 save_fsgs_for_kvm();
1202                 fs_sel = current->thread.fsindex;
1203                 gs_sel = current->thread.gsindex;
1204                 fs_base = current->thread.fsbase;
1205                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1206         } else {
1207                 savesegment(fs, fs_sel);
1208                 savesegment(gs, gs_sel);
1209                 fs_base = read_msr(MSR_FS_BASE);
1210                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1211         }
1212
1213         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1214 #else
1215         savesegment(fs, fs_sel);
1216         savesegment(gs, gs_sel);
1217         fs_base = segment_base(fs_sel);
1218         gs_base = segment_base(gs_sel);
1219 #endif
1220
1221         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1222         vmx->guest_state_loaded = true;
1223 }
1224
1225 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1226 {
1227         struct vmcs_host_state *host_state;
1228
1229         if (!vmx->guest_state_loaded)
1230                 return;
1231
1232         host_state = &vmx->loaded_vmcs->host_state;
1233
1234         ++vmx->vcpu.stat.host_state_reload;
1235
1236 #ifdef CONFIG_X86_64
1237         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1238 #endif
1239         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1240                 kvm_load_ldt(host_state->ldt_sel);
1241 #ifdef CONFIG_X86_64
1242                 load_gs_index(host_state->gs_sel);
1243 #else
1244                 loadsegment(gs, host_state->gs_sel);
1245 #endif
1246         }
1247         if (host_state->fs_sel & 7)
1248                 loadsegment(fs, host_state->fs_sel);
1249 #ifdef CONFIG_X86_64
1250         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1251                 loadsegment(ds, host_state->ds_sel);
1252                 loadsegment(es, host_state->es_sel);
1253         }
1254 #endif
1255         invalidate_tss_limit();
1256 #ifdef CONFIG_X86_64
1257         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1258 #endif
1259         load_fixmap_gdt(raw_smp_processor_id());
1260         vmx->guest_state_loaded = false;
1261         vmx->guest_msrs_ready = false;
1262 }
1263
1264 #ifdef CONFIG_X86_64
1265 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1266 {
1267         preempt_disable();
1268         if (vmx->guest_state_loaded)
1269                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1270         preempt_enable();
1271         return vmx->msr_guest_kernel_gs_base;
1272 }
1273
1274 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1275 {
1276         preempt_disable();
1277         if (vmx->guest_state_loaded)
1278                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1279         preempt_enable();
1280         vmx->msr_guest_kernel_gs_base = data;
1281 }
1282 #endif
1283
1284 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1285 {
1286         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1287         struct pi_desc old, new;
1288         unsigned int dest;
1289
1290         /*
1291          * In case of hot-plug or hot-unplug, we may have to undo
1292          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1293          * always keep PI.NDST up to date for simplicity: it makes the
1294          * code easier, and CPU migration is not a fast path.
1295          */
1296         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1297                 return;
1298
1299         /*
1300          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1301          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1302          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1303          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1304          * correctly.
1305          */
1306         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1307                 pi_clear_sn(pi_desc);
1308                 goto after_clear_sn;
1309         }
1310
1311         /* The full case.  */
1312         do {
1313                 old.control = new.control = pi_desc->control;
1314
1315                 dest = cpu_physical_id(cpu);
1316
1317                 if (x2apic_enabled())
1318                         new.ndst = dest;
1319                 else
1320                         new.ndst = (dest << 8) & 0xFF00;
1321
1322                 new.sn = 0;
1323         } while (cmpxchg64(&pi_desc->control, old.control,
1324                            new.control) != old.control);
1325
1326 after_clear_sn:
1327
1328         /*
1329          * Clear SN before reading the bitmap.  The VT-d firmware
1330          * writes the bitmap and reads SN atomically (5.2.3 in the
1331          * spec), so it doesn't really have a memory barrier that
1332          * pairs with this, but we cannot do that and we need one.
1333          */
1334         smp_mb__after_atomic();
1335
1336         if (!pi_is_pir_empty(pi_desc))
1337                 pi_set_on(pi_desc);
1338 }
1339
1340 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1341 {
1342         struct vcpu_vmx *vmx = to_vmx(vcpu);
1343         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1344
1345         if (!already_loaded) {
1346                 loaded_vmcs_clear(vmx->loaded_vmcs);
1347                 local_irq_disable();
1348                 crash_disable_local_vmclear(cpu);
1349
1350                 /*
1351                  * Read loaded_vmcs->cpu should be before fetching
1352                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1353                  * See the comments in __loaded_vmcs_clear().
1354                  */
1355                 smp_rmb();
1356
1357                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1358                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1359                 crash_enable_local_vmclear(cpu);
1360                 local_irq_enable();
1361         }
1362
1363         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1364                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1365                 vmcs_load(vmx->loaded_vmcs->vmcs);
1366                 indirect_branch_prediction_barrier();
1367         }
1368
1369         if (!already_loaded) {
1370                 void *gdt = get_current_gdt_ro();
1371                 unsigned long sysenter_esp;
1372
1373                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1374
1375                 /*
1376                  * Linux uses per-cpu TSS and GDT, so set these when switching
1377                  * processors.  See 22.2.4.
1378                  */
1379                 vmcs_writel(HOST_TR_BASE,
1380                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1381                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1382
1383                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1384                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1385
1386                 vmx->loaded_vmcs->cpu = cpu;
1387         }
1388
1389         /* Setup TSC multiplier */
1390         if (kvm_has_tsc_control &&
1391             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1392                 decache_tsc_multiplier(vmx);
1393 }
1394
1395 /*
1396  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1397  * vcpu mutex is already taken.
1398  */
1399 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 {
1401         struct vcpu_vmx *vmx = to_vmx(vcpu);
1402
1403         vmx_vcpu_load_vmcs(vcpu, cpu);
1404
1405         vmx_vcpu_pi_load(vcpu, cpu);
1406
1407         vmx->host_pkru = read_pkru();
1408         vmx->host_debugctlmsr = get_debugctlmsr();
1409 }
1410
1411 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1412 {
1413         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1414
1415         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1416                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1417                 !kvm_vcpu_apicv_active(vcpu))
1418                 return;
1419
1420         /* Set SN when the vCPU is preempted */
1421         if (vcpu->preempted)
1422                 pi_set_sn(pi_desc);
1423 }
1424
1425 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1426 {
1427         vmx_vcpu_pi_put(vcpu);
1428
1429         vmx_prepare_switch_to_host(to_vmx(vcpu));
1430 }
1431
1432 static bool emulation_required(struct kvm_vcpu *vcpu)
1433 {
1434         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1435 }
1436
1437 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1438 {
1439         struct vcpu_vmx *vmx = to_vmx(vcpu);
1440         unsigned long rflags, save_rflags;
1441
1442         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1443                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1444                 rflags = vmcs_readl(GUEST_RFLAGS);
1445                 if (vmx->rmode.vm86_active) {
1446                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1447                         save_rflags = vmx->rmode.save_rflags;
1448                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1449                 }
1450                 vmx->rflags = rflags;
1451         }
1452         return vmx->rflags;
1453 }
1454
1455 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1456 {
1457         struct vcpu_vmx *vmx = to_vmx(vcpu);
1458         unsigned long old_rflags;
1459
1460         if (enable_unrestricted_guest) {
1461                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1462                 vmx->rflags = rflags;
1463                 vmcs_writel(GUEST_RFLAGS, rflags);
1464                 return;
1465         }
1466
1467         old_rflags = vmx_get_rflags(vcpu);
1468         vmx->rflags = rflags;
1469         if (vmx->rmode.vm86_active) {
1470                 vmx->rmode.save_rflags = rflags;
1471                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1472         }
1473         vmcs_writel(GUEST_RFLAGS, rflags);
1474
1475         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1476                 vmx->emulation_required = emulation_required(vcpu);
1477 }
1478
1479 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1480 {
1481         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1482         int ret = 0;
1483
1484         if (interruptibility & GUEST_INTR_STATE_STI)
1485                 ret |= KVM_X86_SHADOW_INT_STI;
1486         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1487                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1488
1489         return ret;
1490 }
1491
1492 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1493 {
1494         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1495         u32 interruptibility = interruptibility_old;
1496
1497         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1498
1499         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1500                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1501         else if (mask & KVM_X86_SHADOW_INT_STI)
1502                 interruptibility |= GUEST_INTR_STATE_STI;
1503
1504         if ((interruptibility != interruptibility_old))
1505                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1506 }
1507
1508 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1509 {
1510         struct vcpu_vmx *vmx = to_vmx(vcpu);
1511         unsigned long value;
1512
1513         /*
1514          * Any MSR write that attempts to change bits marked reserved will
1515          * case a #GP fault.
1516          */
1517         if (data & vmx->pt_desc.ctl_bitmask)
1518                 return 1;
1519
1520         /*
1521          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1522          * result in a #GP unless the same write also clears TraceEn.
1523          */
1524         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1525                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1526                 return 1;
1527
1528         /*
1529          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1530          * and FabricEn would cause #GP, if
1531          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1532          */
1533         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1534                 !(data & RTIT_CTL_FABRIC_EN) &&
1535                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1536                                         PT_CAP_single_range_output))
1537                 return 1;
1538
1539         /*
1540          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1541          * utilize encodings marked reserved will casue a #GP fault.
1542          */
1543         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1544         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1545                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1546                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1547                 return 1;
1548         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1549                                                 PT_CAP_cycle_thresholds);
1550         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1551                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1552                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1553                 return 1;
1554         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1555         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1556                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1557                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1558                 return 1;
1559
1560         /*
1561          * If ADDRx_CFG is reserved or the encodings is >2 will
1562          * cause a #GP fault.
1563          */
1564         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1565         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1566                 return 1;
1567         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1568         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1569                 return 1;
1570         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1571         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1572                 return 1;
1573         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1574         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1575                 return 1;
1576
1577         return 0;
1578 }
1579
1580 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1581 {
1582         unsigned long rip;
1583
1584         /*
1585          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1586          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1587          * set when EPT misconfig occurs.  In practice, real hardware updates
1588          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1589          * (namely Hyper-V) don't set it due to it being undefined behavior,
1590          * i.e. we end up advancing IP with some random value.
1591          */
1592         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1593             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1594                 rip = kvm_rip_read(vcpu);
1595                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1596                 kvm_rip_write(vcpu, rip);
1597         } else {
1598                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1599                         return 0;
1600         }
1601
1602         /* skipping an emulated instruction also counts */
1603         vmx_set_interrupt_shadow(vcpu, 0);
1604
1605         return 1;
1606 }
1607
1608
1609 /*
1610  * Recognizes a pending MTF VM-exit and records the nested state for later
1611  * delivery.
1612  */
1613 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1614 {
1615         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1616         struct vcpu_vmx *vmx = to_vmx(vcpu);
1617
1618         if (!is_guest_mode(vcpu))
1619                 return;
1620
1621         /*
1622          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1623          * T-bit traps. As instruction emulation is completed (i.e. at the
1624          * instruction boundary), any #DB exception pending delivery must be a
1625          * debug-trap. Record the pending MTF state to be delivered in
1626          * vmx_check_nested_events().
1627          */
1628         if (nested_cpu_has_mtf(vmcs12) &&
1629             (!vcpu->arch.exception.pending ||
1630              vcpu->arch.exception.nr == DB_VECTOR))
1631                 vmx->nested.mtf_pending = true;
1632         else
1633                 vmx->nested.mtf_pending = false;
1634 }
1635
1636 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1637 {
1638         vmx_update_emulated_instruction(vcpu);
1639         return skip_emulated_instruction(vcpu);
1640 }
1641
1642 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1643 {
1644         /*
1645          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1646          * explicitly skip the instruction because if the HLT state is set,
1647          * then the instruction is already executing and RIP has already been
1648          * advanced.
1649          */
1650         if (kvm_hlt_in_guest(vcpu->kvm) &&
1651                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1652                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1653 }
1654
1655 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1656 {
1657         struct vcpu_vmx *vmx = to_vmx(vcpu);
1658         unsigned nr = vcpu->arch.exception.nr;
1659         bool has_error_code = vcpu->arch.exception.has_error_code;
1660         u32 error_code = vcpu->arch.exception.error_code;
1661         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1662
1663         kvm_deliver_exception_payload(vcpu);
1664
1665         if (has_error_code) {
1666                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1667                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1668         }
1669
1670         if (vmx->rmode.vm86_active) {
1671                 int inc_eip = 0;
1672                 if (kvm_exception_is_soft(nr))
1673                         inc_eip = vcpu->arch.event_exit_inst_len;
1674                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1675                 return;
1676         }
1677
1678         WARN_ON_ONCE(vmx->emulation_required);
1679
1680         if (kvm_exception_is_soft(nr)) {
1681                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1682                              vmx->vcpu.arch.event_exit_inst_len);
1683                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1684         } else
1685                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1686
1687         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1688
1689         vmx_clear_hlt(vcpu);
1690 }
1691
1692 static bool vmx_rdtscp_supported(void)
1693 {
1694         return cpu_has_vmx_rdtscp();
1695 }
1696
1697 static bool vmx_invpcid_supported(void)
1698 {
1699         return cpu_has_vmx_invpcid();
1700 }
1701
1702 /*
1703  * Swap MSR entry in host/guest MSR entry array.
1704  */
1705 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1706 {
1707         struct shared_msr_entry tmp;
1708
1709         tmp = vmx->guest_msrs[to];
1710         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1711         vmx->guest_msrs[from] = tmp;
1712 }
1713
1714 /*
1715  * Set up the vmcs to automatically save and restore system
1716  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1717  * mode, as fiddling with msrs is very expensive.
1718  */
1719 static void setup_msrs(struct vcpu_vmx *vmx)
1720 {
1721         int save_nmsrs, index;
1722
1723         save_nmsrs = 0;
1724 #ifdef CONFIG_X86_64
1725         /*
1726          * The SYSCALL MSRs are only needed on long mode guests, and only
1727          * when EFER.SCE is set.
1728          */
1729         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1730                 index = __find_msr_index(vmx, MSR_STAR);
1731                 if (index >= 0)
1732                         move_msr_up(vmx, index, save_nmsrs++);
1733                 index = __find_msr_index(vmx, MSR_LSTAR);
1734                 if (index >= 0)
1735                         move_msr_up(vmx, index, save_nmsrs++);
1736                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1737                 if (index >= 0)
1738                         move_msr_up(vmx, index, save_nmsrs++);
1739         }
1740 #endif
1741         index = __find_msr_index(vmx, MSR_EFER);
1742         if (index >= 0 && update_transition_efer(vmx, index))
1743                 move_msr_up(vmx, index, save_nmsrs++);
1744         index = __find_msr_index(vmx, MSR_TSC_AUX);
1745         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1746                 move_msr_up(vmx, index, save_nmsrs++);
1747         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1748         if (index >= 0)
1749                 move_msr_up(vmx, index, save_nmsrs++);
1750
1751         vmx->save_nmsrs = save_nmsrs;
1752         vmx->guest_msrs_ready = false;
1753
1754         if (cpu_has_vmx_msr_bitmap())
1755                 vmx_update_msr_bitmap(&vmx->vcpu);
1756 }
1757
1758 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1759 {
1760         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1761
1762         if (is_guest_mode(vcpu) &&
1763             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1764                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1765
1766         return vcpu->arch.tsc_offset;
1767 }
1768
1769 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1770 {
1771         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1772         u64 g_tsc_offset = 0;
1773
1774         /*
1775          * We're here if L1 chose not to trap WRMSR to TSC. According
1776          * to the spec, this should set L1's TSC; The offset that L1
1777          * set for L2 remains unchanged, and still needs to be added
1778          * to the newly set TSC to get L2's TSC.
1779          */
1780         if (is_guest_mode(vcpu) &&
1781             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1782                 g_tsc_offset = vmcs12->tsc_offset;
1783
1784         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1785                                    vcpu->arch.tsc_offset - g_tsc_offset,
1786                                    offset);
1787         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1788         return offset + g_tsc_offset;
1789 }
1790
1791 /*
1792  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1793  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1794  * all guests if the "nested" module option is off, and can also be disabled
1795  * for a single guest by disabling its VMX cpuid bit.
1796  */
1797 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1798 {
1799         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1800 }
1801
1802 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1803                                                  uint64_t val)
1804 {
1805         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1806
1807         return !(val & ~valid_bits);
1808 }
1809
1810 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1811 {
1812         switch (msr->index) {
1813         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1814                 if (!nested)
1815                         return 1;
1816                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1817         default:
1818                 return 1;
1819         }
1820 }
1821
1822 /*
1823  * Reads an msr value (of 'msr_index') into 'pdata'.
1824  * Returns 0 on success, non-0 otherwise.
1825  * Assumes vcpu_load() was already called.
1826  */
1827 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1828 {
1829         struct vcpu_vmx *vmx = to_vmx(vcpu);
1830         struct shared_msr_entry *msr;
1831         u32 index;
1832
1833         switch (msr_info->index) {
1834 #ifdef CONFIG_X86_64
1835         case MSR_FS_BASE:
1836                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1837                 break;
1838         case MSR_GS_BASE:
1839                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1840                 break;
1841         case MSR_KERNEL_GS_BASE:
1842                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1843                 break;
1844 #endif
1845         case MSR_EFER:
1846                 return kvm_get_msr_common(vcpu, msr_info);
1847         case MSR_IA32_TSX_CTRL:
1848                 if (!msr_info->host_initiated &&
1849                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1850                         return 1;
1851                 goto find_shared_msr;
1852         case MSR_IA32_UMWAIT_CONTROL:
1853                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1854                         return 1;
1855
1856                 msr_info->data = vmx->msr_ia32_umwait_control;
1857                 break;
1858         case MSR_IA32_SPEC_CTRL:
1859                 if (!msr_info->host_initiated &&
1860                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1861                         return 1;
1862
1863                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1864                 break;
1865         case MSR_IA32_SYSENTER_CS:
1866                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1867                 break;
1868         case MSR_IA32_SYSENTER_EIP:
1869                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1870                 break;
1871         case MSR_IA32_SYSENTER_ESP:
1872                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1873                 break;
1874         case MSR_IA32_BNDCFGS:
1875                 if (!kvm_mpx_supported() ||
1876                     (!msr_info->host_initiated &&
1877                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1878                         return 1;
1879                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1880                 break;
1881         case MSR_IA32_MCG_EXT_CTL:
1882                 if (!msr_info->host_initiated &&
1883                     !(vmx->msr_ia32_feature_control &
1884                       FEAT_CTL_LMCE_ENABLED))
1885                         return 1;
1886                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1887                 break;
1888         case MSR_IA32_FEAT_CTL:
1889                 msr_info->data = vmx->msr_ia32_feature_control;
1890                 break;
1891         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1892                 if (!nested_vmx_allowed(vcpu))
1893                         return 1;
1894                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1895                                     &msr_info->data))
1896                         return 1;
1897                 /*
1898                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1899                  * Hyper-V versions are still trying to use corresponding
1900                  * features when they are exposed. Filter out the essential
1901                  * minimum.
1902                  */
1903                 if (!msr_info->host_initiated &&
1904                     vmx->nested.enlightened_vmcs_enabled)
1905                         nested_evmcs_filter_control_msr(msr_info->index,
1906                                                         &msr_info->data);
1907                 break;
1908         case MSR_IA32_RTIT_CTL:
1909                 if (pt_mode != PT_MODE_HOST_GUEST)
1910                         return 1;
1911                 msr_info->data = vmx->pt_desc.guest.ctl;
1912                 break;
1913         case MSR_IA32_RTIT_STATUS:
1914                 if (pt_mode != PT_MODE_HOST_GUEST)
1915                         return 1;
1916                 msr_info->data = vmx->pt_desc.guest.status;
1917                 break;
1918         case MSR_IA32_RTIT_CR3_MATCH:
1919                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1920                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1921                                                 PT_CAP_cr3_filtering))
1922                         return 1;
1923                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1924                 break;
1925         case MSR_IA32_RTIT_OUTPUT_BASE:
1926                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1927                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1928                                         PT_CAP_topa_output) &&
1929                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1930                                         PT_CAP_single_range_output)))
1931                         return 1;
1932                 msr_info->data = vmx->pt_desc.guest.output_base;
1933                 break;
1934         case MSR_IA32_RTIT_OUTPUT_MASK:
1935                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1936                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1937                                         PT_CAP_topa_output) &&
1938                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1939                                         PT_CAP_single_range_output)))
1940                         return 1;
1941                 msr_info->data = vmx->pt_desc.guest.output_mask;
1942                 break;
1943         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1944                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1945                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1947                                         PT_CAP_num_address_ranges)))
1948                         return 1;
1949                 if (index % 2)
1950                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1951                 else
1952                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1953                 break;
1954         case MSR_TSC_AUX:
1955                 if (!msr_info->host_initiated &&
1956                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1957                         return 1;
1958                 goto find_shared_msr;
1959         default:
1960         find_shared_msr:
1961                 msr = find_msr_entry(vmx, msr_info->index);
1962                 if (msr) {
1963                         msr_info->data = msr->data;
1964                         break;
1965                 }
1966                 return kvm_get_msr_common(vcpu, msr_info);
1967         }
1968
1969         return 0;
1970 }
1971
1972 /*
1973  * Writes msr value into the appropriate "register".
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979         struct vcpu_vmx *vmx = to_vmx(vcpu);
1980         struct shared_msr_entry *msr;
1981         int ret = 0;
1982         u32 msr_index = msr_info->index;
1983         u64 data = msr_info->data;
1984         u32 index;
1985
1986         switch (msr_index) {
1987         case MSR_EFER:
1988                 ret = kvm_set_msr_common(vcpu, msr_info);
1989                 break;
1990 #ifdef CONFIG_X86_64
1991         case MSR_FS_BASE:
1992                 vmx_segment_cache_clear(vmx);
1993                 vmcs_writel(GUEST_FS_BASE, data);
1994                 break;
1995         case MSR_GS_BASE:
1996                 vmx_segment_cache_clear(vmx);
1997                 vmcs_writel(GUEST_GS_BASE, data);
1998                 break;
1999         case MSR_KERNEL_GS_BASE:
2000                 vmx_write_guest_kernel_gs_base(vmx, data);
2001                 break;
2002 #endif
2003         case MSR_IA32_SYSENTER_CS:
2004                 if (is_guest_mode(vcpu))
2005                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006                 vmcs_write32(GUEST_SYSENTER_CS, data);
2007                 break;
2008         case MSR_IA32_SYSENTER_EIP:
2009                 if (is_guest_mode(vcpu))
2010                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2011                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2012                 break;
2013         case MSR_IA32_SYSENTER_ESP:
2014                 if (is_guest_mode(vcpu))
2015                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2016                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2017                 break;
2018         case MSR_IA32_DEBUGCTLMSR:
2019                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2020                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2021                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2022
2023                 ret = kvm_set_msr_common(vcpu, msr_info);
2024                 break;
2025
2026         case MSR_IA32_BNDCFGS:
2027                 if (!kvm_mpx_supported() ||
2028                     (!msr_info->host_initiated &&
2029                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2030                         return 1;
2031                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2032                     (data & MSR_IA32_BNDCFGS_RSVD))
2033                         return 1;
2034                 vmcs_write64(GUEST_BNDCFGS, data);
2035                 break;
2036         case MSR_IA32_UMWAIT_CONTROL:
2037                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2038                         return 1;
2039
2040                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2041                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2042                         return 1;
2043
2044                 vmx->msr_ia32_umwait_control = data;
2045                 break;
2046         case MSR_IA32_SPEC_CTRL:
2047                 if (!msr_info->host_initiated &&
2048                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2049                         return 1;
2050
2051                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2052                         return 1;
2053
2054                 vmx->spec_ctrl = data;
2055                 if (!data)
2056                         break;
2057
2058                 /*
2059                  * For non-nested:
2060                  * When it's written (to non-zero) for the first time, pass
2061                  * it through.
2062                  *
2063                  * For nested:
2064                  * The handling of the MSR bitmap for L2 guests is done in
2065                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2066                  * vmcs02.msr_bitmap here since it gets completely overwritten
2067                  * in the merging. We update the vmcs01 here for L1 as well
2068                  * since it will end up touching the MSR anyway now.
2069                  */
2070                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2071                                               MSR_IA32_SPEC_CTRL,
2072                                               MSR_TYPE_RW);
2073                 break;
2074         case MSR_IA32_TSX_CTRL:
2075                 if (!msr_info->host_initiated &&
2076                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2077                         return 1;
2078                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2079                         return 1;
2080                 goto find_shared_msr;
2081         case MSR_IA32_PRED_CMD:
2082                 if (!msr_info->host_initiated &&
2083                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2084                         return 1;
2085
2086                 if (data & ~PRED_CMD_IBPB)
2087                         return 1;
2088                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2089                         return 1;
2090                 if (!data)
2091                         break;
2092
2093                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2094
2095                 /*
2096                  * For non-nested:
2097                  * When it's written (to non-zero) for the first time, pass
2098                  * it through.
2099                  *
2100                  * For nested:
2101                  * The handling of the MSR bitmap for L2 guests is done in
2102                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2103                  * vmcs02.msr_bitmap here since it gets completely overwritten
2104                  * in the merging.
2105                  */
2106                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2107                                               MSR_TYPE_W);
2108                 break;
2109         case MSR_IA32_CR_PAT:
2110                 if (!kvm_pat_valid(data))
2111                         return 1;
2112
2113                 if (is_guest_mode(vcpu) &&
2114                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2115                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2116
2117                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2118                         vmcs_write64(GUEST_IA32_PAT, data);
2119                         vcpu->arch.pat = data;
2120                         break;
2121                 }
2122                 ret = kvm_set_msr_common(vcpu, msr_info);
2123                 break;
2124         case MSR_IA32_TSC_ADJUST:
2125                 ret = kvm_set_msr_common(vcpu, msr_info);
2126                 break;
2127         case MSR_IA32_MCG_EXT_CTL:
2128                 if ((!msr_info->host_initiated &&
2129                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2130                        FEAT_CTL_LMCE_ENABLED)) ||
2131                     (data & ~MCG_EXT_CTL_LMCE_EN))
2132                         return 1;
2133                 vcpu->arch.mcg_ext_ctl = data;
2134                 break;
2135         case MSR_IA32_FEAT_CTL:
2136                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2137                     (to_vmx(vcpu)->msr_ia32_feature_control &
2138                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2139                         return 1;
2140                 vmx->msr_ia32_feature_control = data;
2141                 if (msr_info->host_initiated && data == 0)
2142                         vmx_leave_nested(vcpu);
2143                 break;
2144         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2145                 if (!msr_info->host_initiated)
2146                         return 1; /* they are read-only */
2147                 if (!nested_vmx_allowed(vcpu))
2148                         return 1;
2149                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2150         case MSR_IA32_RTIT_CTL:
2151                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2152                         vmx_rtit_ctl_check(vcpu, data) ||
2153                         vmx->nested.vmxon)
2154                         return 1;
2155                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2156                 vmx->pt_desc.guest.ctl = data;
2157                 pt_update_intercept_for_msr(vmx);
2158                 break;
2159         case MSR_IA32_RTIT_STATUS:
2160                 if (!pt_can_write_msr(vmx))
2161                         return 1;
2162                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2163                         return 1;
2164                 vmx->pt_desc.guest.status = data;
2165                 break;
2166         case MSR_IA32_RTIT_CR3_MATCH:
2167                 if (!pt_can_write_msr(vmx))
2168                         return 1;
2169                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2170                                            PT_CAP_cr3_filtering))
2171                         return 1;
2172                 vmx->pt_desc.guest.cr3_match = data;
2173                 break;
2174         case MSR_IA32_RTIT_OUTPUT_BASE:
2175                 if (!pt_can_write_msr(vmx))
2176                         return 1;
2177                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2178                                            PT_CAP_topa_output) &&
2179                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2180                                            PT_CAP_single_range_output))
2181                         return 1;
2182                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2183                         return 1;
2184                 vmx->pt_desc.guest.output_base = data;
2185                 break;
2186         case MSR_IA32_RTIT_OUTPUT_MASK:
2187                 if (!pt_can_write_msr(vmx))
2188                         return 1;
2189                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2190                                            PT_CAP_topa_output) &&
2191                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2192                                            PT_CAP_single_range_output))
2193                         return 1;
2194                 vmx->pt_desc.guest.output_mask = data;
2195                 break;
2196         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2197                 if (!pt_can_write_msr(vmx))
2198                         return 1;
2199                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2200                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2201                                                        PT_CAP_num_address_ranges))
2202                         return 1;
2203                 if (is_noncanonical_address(data, vcpu))
2204                         return 1;
2205                 if (index % 2)
2206                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2207                 else
2208                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2209                 break;
2210         case MSR_TSC_AUX:
2211                 if (!msr_info->host_initiated &&
2212                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2213                         return 1;
2214                 /* Check reserved bit, higher 32 bits should be zero */
2215                 if ((data >> 32) != 0)
2216                         return 1;
2217                 goto find_shared_msr;
2218
2219         default:
2220         find_shared_msr:
2221                 msr = find_msr_entry(vmx, msr_index);
2222                 if (msr)
2223                         ret = vmx_set_guest_msr(vmx, msr, data);
2224                 else
2225                         ret = kvm_set_msr_common(vcpu, msr_info);
2226         }
2227
2228         return ret;
2229 }
2230
2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 {
2233         kvm_register_mark_available(vcpu, reg);
2234
2235         switch (reg) {
2236         case VCPU_REGS_RSP:
2237                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2238                 break;
2239         case VCPU_REGS_RIP:
2240                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2241                 break;
2242         case VCPU_EXREG_PDPTR:
2243                 if (enable_ept)
2244                         ept_save_pdptrs(vcpu);
2245                 break;
2246         case VCPU_EXREG_CR3:
2247                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2248                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2249                 break;
2250         default:
2251                 WARN_ON_ONCE(1);
2252                 break;
2253         }
2254 }
2255
2256 static __init int cpu_has_kvm_support(void)
2257 {
2258         return cpu_has_vmx();
2259 }
2260
2261 static __init int vmx_disabled_by_bios(void)
2262 {
2263         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2264                !boot_cpu_has(X86_FEATURE_VMX);
2265 }
2266
2267 static void kvm_cpu_vmxon(u64 addr)
2268 {
2269         cr4_set_bits(X86_CR4_VMXE);
2270         intel_pt_handle_vmx(1);
2271
2272         asm volatile ("vmxon %0" : : "m"(addr));
2273 }
2274
2275 static int hardware_enable(void)
2276 {
2277         int cpu = raw_smp_processor_id();
2278         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2279
2280         if (cr4_read_shadow() & X86_CR4_VMXE)
2281                 return -EBUSY;
2282
2283         /*
2284          * This can happen if we hot-added a CPU but failed to allocate
2285          * VP assist page for it.
2286          */
2287         if (static_branch_unlikely(&enable_evmcs) &&
2288             !hv_get_vp_assist_page(cpu))
2289                 return -EFAULT;
2290
2291         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2292         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2293         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2294
2295         /*
2296          * Now we can enable the vmclear operation in kdump
2297          * since the loaded_vmcss_on_cpu list on this cpu
2298          * has been initialized.
2299          *
2300          * Though the cpu is not in VMX operation now, there
2301          * is no problem to enable the vmclear operation
2302          * for the loaded_vmcss_on_cpu list is empty!
2303          */
2304         crash_enable_local_vmclear(cpu);
2305
2306         kvm_cpu_vmxon(phys_addr);
2307         if (enable_ept)
2308                 ept_sync_global();
2309
2310         return 0;
2311 }
2312
2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315         int cpu = raw_smp_processor_id();
2316         struct loaded_vmcs *v, *n;
2317
2318         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319                                  loaded_vmcss_on_cpu_link)
2320                 __loaded_vmcs_clear(v);
2321 }
2322
2323
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325  * tricks.
2326  */
2327 static void kvm_cpu_vmxoff(void)
2328 {
2329         asm volatile (__ex("vmxoff"));
2330
2331         intel_pt_handle_vmx(0);
2332         cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334
2335 static void hardware_disable(void)
2336 {
2337         vmclear_local_loaded_vmcss();
2338         kvm_cpu_vmxoff();
2339 }
2340
2341 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2342                                       u32 msr, u32 *result)
2343 {
2344         u32 vmx_msr_low, vmx_msr_high;
2345         u32 ctl = ctl_min | ctl_opt;
2346
2347         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2348
2349         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2350         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2351
2352         /* Ensure minimum (required) set of control bits are supported. */
2353         if (ctl_min & ~ctl)
2354                 return -EIO;
2355
2356         *result = ctl;
2357         return 0;
2358 }
2359
2360 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2361                                     struct vmx_capability *vmx_cap)
2362 {
2363         u32 vmx_msr_low, vmx_msr_high;
2364         u32 min, opt, min2, opt2;
2365         u32 _pin_based_exec_control = 0;
2366         u32 _cpu_based_exec_control = 0;
2367         u32 _cpu_based_2nd_exec_control = 0;
2368         u32 _vmexit_control = 0;
2369         u32 _vmentry_control = 0;
2370
2371         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2372         min = CPU_BASED_HLT_EXITING |
2373 #ifdef CONFIG_X86_64
2374               CPU_BASED_CR8_LOAD_EXITING |
2375               CPU_BASED_CR8_STORE_EXITING |
2376 #endif
2377               CPU_BASED_CR3_LOAD_EXITING |
2378               CPU_BASED_CR3_STORE_EXITING |
2379               CPU_BASED_UNCOND_IO_EXITING |
2380               CPU_BASED_MOV_DR_EXITING |
2381               CPU_BASED_USE_TSC_OFFSETTING |
2382               CPU_BASED_MWAIT_EXITING |
2383               CPU_BASED_MONITOR_EXITING |
2384               CPU_BASED_INVLPG_EXITING |
2385               CPU_BASED_RDPMC_EXITING;
2386
2387         opt = CPU_BASED_TPR_SHADOW |
2388               CPU_BASED_USE_MSR_BITMAPS |
2389               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2390         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2391                                 &_cpu_based_exec_control) < 0)
2392                 return -EIO;
2393 #ifdef CONFIG_X86_64
2394         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2395                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2396                                            ~CPU_BASED_CR8_STORE_EXITING;
2397 #endif
2398         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2399                 min2 = 0;
2400                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2401                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2402                         SECONDARY_EXEC_WBINVD_EXITING |
2403                         SECONDARY_EXEC_ENABLE_VPID |
2404                         SECONDARY_EXEC_ENABLE_EPT |
2405                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2406                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2407                         SECONDARY_EXEC_DESC |
2408                         SECONDARY_EXEC_RDTSCP |
2409                         SECONDARY_EXEC_ENABLE_INVPCID |
2410                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2411                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2412                         SECONDARY_EXEC_SHADOW_VMCS |
2413                         SECONDARY_EXEC_XSAVES |
2414                         SECONDARY_EXEC_RDSEED_EXITING |
2415                         SECONDARY_EXEC_RDRAND_EXITING |
2416                         SECONDARY_EXEC_ENABLE_PML |
2417                         SECONDARY_EXEC_TSC_SCALING |
2418                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2419                         SECONDARY_EXEC_PT_USE_GPA |
2420                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2421                         SECONDARY_EXEC_ENABLE_VMFUNC |
2422                         SECONDARY_EXEC_ENCLS_EXITING;
2423                 if (adjust_vmx_controls(min2, opt2,
2424                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2425                                         &_cpu_based_2nd_exec_control) < 0)
2426                         return -EIO;
2427         }
2428 #ifndef CONFIG_X86_64
2429         if (!(_cpu_based_2nd_exec_control &
2430                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2431                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2432 #endif
2433
2434         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2435                 _cpu_based_2nd_exec_control &= ~(
2436                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2437                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2438                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2439
2440         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2441                 &vmx_cap->ept, &vmx_cap->vpid);
2442
2443         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2444                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2445                    enabled */
2446                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2447                                              CPU_BASED_CR3_STORE_EXITING |
2448                                              CPU_BASED_INVLPG_EXITING);
2449         } else if (vmx_cap->ept) {
2450                 vmx_cap->ept = 0;
2451                 pr_warn_once("EPT CAP should not exist if not support "
2452                                 "1-setting enable EPT VM-execution control\n");
2453         }
2454         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2455                 vmx_cap->vpid) {
2456                 vmx_cap->vpid = 0;
2457                 pr_warn_once("VPID CAP should not exist if not support "
2458                                 "1-setting enable VPID VM-execution control\n");
2459         }
2460
2461         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2462 #ifdef CONFIG_X86_64
2463         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2464 #endif
2465         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2466               VM_EXIT_LOAD_IA32_PAT |
2467               VM_EXIT_LOAD_IA32_EFER |
2468               VM_EXIT_CLEAR_BNDCFGS |
2469               VM_EXIT_PT_CONCEAL_PIP |
2470               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2471         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2472                                 &_vmexit_control) < 0)
2473                 return -EIO;
2474
2475         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2476         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2477                  PIN_BASED_VMX_PREEMPTION_TIMER;
2478         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2479                                 &_pin_based_exec_control) < 0)
2480                 return -EIO;
2481
2482         if (cpu_has_broken_vmx_preemption_timer())
2483                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2484         if (!(_cpu_based_2nd_exec_control &
2485                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2486                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2487
2488         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2489         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2490               VM_ENTRY_LOAD_IA32_PAT |
2491               VM_ENTRY_LOAD_IA32_EFER |
2492               VM_ENTRY_LOAD_BNDCFGS |
2493               VM_ENTRY_PT_CONCEAL_PIP |
2494               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2495         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2496                                 &_vmentry_control) < 0)
2497                 return -EIO;
2498
2499         /*
2500          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2501          * can't be used due to an errata where VM Exit may incorrectly clear
2502          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2503          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2504          */
2505         if (boot_cpu_data.x86 == 0x6) {
2506                 switch (boot_cpu_data.x86_model) {
2507                 case 26: /* AAK155 */
2508                 case 30: /* AAP115 */
2509                 case 37: /* AAT100 */
2510                 case 44: /* BC86,AAY89,BD102 */
2511                 case 46: /* BA97 */
2512                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2513                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2514                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2515                                         "does not work properly. Using workaround\n");
2516                         break;
2517                 default:
2518                         break;
2519                 }
2520         }
2521
2522
2523         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2524
2525         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2526         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2527                 return -EIO;
2528
2529 #ifdef CONFIG_X86_64
2530         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2531         if (vmx_msr_high & (1u<<16))
2532                 return -EIO;
2533 #endif
2534
2535         /* Require Write-Back (WB) memory type for VMCS accesses. */
2536         if (((vmx_msr_high >> 18) & 15) != 6)
2537                 return -EIO;
2538
2539         vmcs_conf->size = vmx_msr_high & 0x1fff;
2540         vmcs_conf->order = get_order(vmcs_conf->size);
2541         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2542
2543         vmcs_conf->revision_id = vmx_msr_low;
2544
2545         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2546         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2547         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2548         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2549         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2550
2551         if (static_branch_unlikely(&enable_evmcs))
2552                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2553
2554         return 0;
2555 }
2556
2557 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2558 {
2559         int node = cpu_to_node(cpu);
2560         struct page *pages;
2561         struct vmcs *vmcs;
2562
2563         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2564         if (!pages)
2565                 return NULL;
2566         vmcs = page_address(pages);
2567         memset(vmcs, 0, vmcs_config.size);
2568
2569         /* KVM supports Enlightened VMCS v1 only */
2570         if (static_branch_unlikely(&enable_evmcs))
2571                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2572         else
2573                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2574
2575         if (shadow)
2576                 vmcs->hdr.shadow_vmcs = 1;
2577         return vmcs;
2578 }
2579
2580 void free_vmcs(struct vmcs *vmcs)
2581 {
2582         free_pages((unsigned long)vmcs, vmcs_config.order);
2583 }
2584
2585 /*
2586  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2587  */
2588 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2589 {
2590         if (!loaded_vmcs->vmcs)
2591                 return;
2592         loaded_vmcs_clear(loaded_vmcs);
2593         free_vmcs(loaded_vmcs->vmcs);
2594         loaded_vmcs->vmcs = NULL;
2595         if (loaded_vmcs->msr_bitmap)
2596                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2597         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2598 }
2599
2600 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2601 {
2602         loaded_vmcs->vmcs = alloc_vmcs(false);
2603         if (!loaded_vmcs->vmcs)
2604                 return -ENOMEM;
2605
2606         loaded_vmcs->shadow_vmcs = NULL;
2607         loaded_vmcs->hv_timer_soft_disabled = false;
2608         loaded_vmcs_init(loaded_vmcs);
2609
2610         if (cpu_has_vmx_msr_bitmap()) {
2611                 loaded_vmcs->msr_bitmap = (unsigned long *)
2612                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2613                 if (!loaded_vmcs->msr_bitmap)
2614                         goto out_vmcs;
2615                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2616
2617                 if (IS_ENABLED(CONFIG_HYPERV) &&
2618                     static_branch_unlikely(&enable_evmcs) &&
2619                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2620                         struct hv_enlightened_vmcs *evmcs =
2621                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2622
2623                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2624                 }
2625         }
2626
2627         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2628         memset(&loaded_vmcs->controls_shadow, 0,
2629                 sizeof(struct vmcs_controls_shadow));
2630
2631         return 0;
2632
2633 out_vmcs:
2634         free_loaded_vmcs(loaded_vmcs);
2635         return -ENOMEM;
2636 }
2637
2638 static void free_kvm_area(void)
2639 {
2640         int cpu;
2641
2642         for_each_possible_cpu(cpu) {
2643                 free_vmcs(per_cpu(vmxarea, cpu));
2644                 per_cpu(vmxarea, cpu) = NULL;
2645         }
2646 }
2647
2648 static __init int alloc_kvm_area(void)
2649 {
2650         int cpu;
2651
2652         for_each_possible_cpu(cpu) {
2653                 struct vmcs *vmcs;
2654
2655                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2656                 if (!vmcs) {
2657                         free_kvm_area();
2658                         return -ENOMEM;
2659                 }
2660
2661                 /*
2662                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2663                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2664                  * revision_id reported by MSR_IA32_VMX_BASIC.
2665                  *
2666                  * However, even though not explicitly documented by
2667                  * TLFS, VMXArea passed as VMXON argument should
2668                  * still be marked with revision_id reported by
2669                  * physical CPU.
2670                  */
2671                 if (static_branch_unlikely(&enable_evmcs))
2672                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2673
2674                 per_cpu(vmxarea, cpu) = vmcs;
2675         }
2676         return 0;
2677 }
2678
2679 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2680                 struct kvm_segment *save)
2681 {
2682         if (!emulate_invalid_guest_state) {
2683                 /*
2684                  * CS and SS RPL should be equal during guest entry according
2685                  * to VMX spec, but in reality it is not always so. Since vcpu
2686                  * is in the middle of the transition from real mode to
2687                  * protected mode it is safe to assume that RPL 0 is a good
2688                  * default value.
2689                  */
2690                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2691                         save->selector &= ~SEGMENT_RPL_MASK;
2692                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2693                 save->s = 1;
2694         }
2695         vmx_set_segment(vcpu, save, seg);
2696 }
2697
2698 static void enter_pmode(struct kvm_vcpu *vcpu)
2699 {
2700         unsigned long flags;
2701         struct vcpu_vmx *vmx = to_vmx(vcpu);
2702
2703         /*
2704          * Update real mode segment cache. It may be not up-to-date if sement
2705          * register was written while vcpu was in a guest mode.
2706          */
2707         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2708         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2709         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2710         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2711         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2712         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2713
2714         vmx->rmode.vm86_active = 0;
2715
2716         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2717
2718         flags = vmcs_readl(GUEST_RFLAGS);
2719         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2720         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2721         vmcs_writel(GUEST_RFLAGS, flags);
2722
2723         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2724                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2725
2726         update_exception_bitmap(vcpu);
2727
2728         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2729         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2730         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2731         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2732         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2733         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2734 }
2735
2736 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2737 {
2738         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2739         struct kvm_segment var = *save;
2740
2741         var.dpl = 0x3;
2742         if (seg == VCPU_SREG_CS)
2743                 var.type = 0x3;
2744
2745         if (!emulate_invalid_guest_state) {
2746                 var.selector = var.base >> 4;
2747                 var.base = var.base & 0xffff0;
2748                 var.limit = 0xffff;
2749                 var.g = 0;
2750                 var.db = 0;
2751                 var.present = 1;
2752                 var.s = 1;
2753                 var.l = 0;
2754                 var.unusable = 0;
2755                 var.type = 0x3;
2756                 var.avl = 0;
2757                 if (save->base & 0xf)
2758                         printk_once(KERN_WARNING "kvm: segment base is not "
2759                                         "paragraph aligned when entering "
2760                                         "protected mode (seg=%d)", seg);
2761         }
2762
2763         vmcs_write16(sf->selector, var.selector);
2764         vmcs_writel(sf->base, var.base);
2765         vmcs_write32(sf->limit, var.limit);
2766         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2767 }
2768
2769 static void enter_rmode(struct kvm_vcpu *vcpu)
2770 {
2771         unsigned long flags;
2772         struct vcpu_vmx *vmx = to_vmx(vcpu);
2773         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2774
2775         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2776         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2777         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2778         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2779         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2780         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2781         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2782
2783         vmx->rmode.vm86_active = 1;
2784
2785         /*
2786          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2787          * vcpu. Warn the user that an update is overdue.
2788          */
2789         if (!kvm_vmx->tss_addr)
2790                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2791                              "called before entering vcpu\n");
2792
2793         vmx_segment_cache_clear(vmx);
2794
2795         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2796         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2797         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2798
2799         flags = vmcs_readl(GUEST_RFLAGS);
2800         vmx->rmode.save_rflags = flags;
2801
2802         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2803
2804         vmcs_writel(GUEST_RFLAGS, flags);
2805         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2806         update_exception_bitmap(vcpu);
2807
2808         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2809         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2810         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2811         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2812         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2813         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2814
2815         kvm_mmu_reset_context(vcpu);
2816 }
2817
2818 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2819 {
2820         struct vcpu_vmx *vmx = to_vmx(vcpu);
2821         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2822
2823         if (!msr)
2824                 return;
2825
2826         vcpu->arch.efer = efer;
2827         if (efer & EFER_LMA) {
2828                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2829                 msr->data = efer;
2830         } else {
2831                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2832
2833                 msr->data = efer & ~EFER_LME;
2834         }
2835         setup_msrs(vmx);
2836 }
2837
2838 #ifdef CONFIG_X86_64
2839
2840 static void enter_lmode(struct kvm_vcpu *vcpu)
2841 {
2842         u32 guest_tr_ar;
2843
2844         vmx_segment_cache_clear(to_vmx(vcpu));
2845
2846         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2847         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2848                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2849                                      __func__);
2850                 vmcs_write32(GUEST_TR_AR_BYTES,
2851                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2852                              | VMX_AR_TYPE_BUSY_64_TSS);
2853         }
2854         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2855 }
2856
2857 static void exit_lmode(struct kvm_vcpu *vcpu)
2858 {
2859         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2860         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2861 }
2862
2863 #endif
2864
2865 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2866 {
2867         int vpid = to_vmx(vcpu)->vpid;
2868
2869         if (!vpid_sync_vcpu_addr(vpid, addr))
2870                 vpid_sync_context(vpid);
2871
2872         /*
2873          * If VPIDs are not supported or enabled, then the above is a no-op.
2874          * But we don't really need a TLB flush in that case anyway, because
2875          * each VM entry/exit includes an implicit flush when VPID is 0.
2876          */
2877 }
2878
2879 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2880 {
2881         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2882
2883         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2884         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2885 }
2886
2887 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2888 {
2889         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2890
2891         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2892         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2893 }
2894
2895 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2896 {
2897         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2898
2899         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2900                 return;
2901
2902         if (is_pae_paging(vcpu)) {
2903                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2904                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2905                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2906                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2907         }
2908 }
2909
2910 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2911 {
2912         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2913
2914         if (is_pae_paging(vcpu)) {
2915                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2916                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2917                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2918                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2919         }
2920
2921         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2922 }
2923
2924 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2925                                         unsigned long cr0,
2926                                         struct kvm_vcpu *vcpu)
2927 {
2928         struct vcpu_vmx *vmx = to_vmx(vcpu);
2929
2930         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2931                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2932         if (!(cr0 & X86_CR0_PG)) {
2933                 /* From paging/starting to nonpaging */
2934                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2935                                           CPU_BASED_CR3_STORE_EXITING);
2936                 vcpu->arch.cr0 = cr0;
2937                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2938         } else if (!is_paging(vcpu)) {
2939                 /* From nonpaging to paging */
2940                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2941                                             CPU_BASED_CR3_STORE_EXITING);
2942                 vcpu->arch.cr0 = cr0;
2943                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2944         }
2945
2946         if (!(cr0 & X86_CR0_WP))
2947                 *hw_cr0 &= ~X86_CR0_WP;
2948 }
2949
2950 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2951 {
2952         struct vcpu_vmx *vmx = to_vmx(vcpu);
2953         unsigned long hw_cr0;
2954
2955         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2956         if (enable_unrestricted_guest)
2957                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2958         else {
2959                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2960
2961                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2962                         enter_pmode(vcpu);
2963
2964                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2965                         enter_rmode(vcpu);
2966         }
2967
2968 #ifdef CONFIG_X86_64
2969         if (vcpu->arch.efer & EFER_LME) {
2970                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2971                         enter_lmode(vcpu);
2972                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2973                         exit_lmode(vcpu);
2974         }
2975 #endif
2976
2977         if (enable_ept && !enable_unrestricted_guest)
2978                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2979
2980         vmcs_writel(CR0_READ_SHADOW, cr0);
2981         vmcs_writel(GUEST_CR0, hw_cr0);
2982         vcpu->arch.cr0 = cr0;
2983
2984         /* depends on vcpu->arch.cr0 to be set to a new value */
2985         vmx->emulation_required = emulation_required(vcpu);
2986 }
2987
2988 static int get_ept_level(struct kvm_vcpu *vcpu)
2989 {
2990         /* Nested EPT currently only supports 4-level walks. */
2991         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2992                 return 4;
2993         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2994                 return 5;
2995         return 4;
2996 }
2997
2998 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2999 {
3000         u64 eptp = VMX_EPTP_MT_WB;
3001
3002         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3003
3004         if (enable_ept_ad_bits &&
3005             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3006                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3007         eptp |= (root_hpa & PAGE_MASK);
3008
3009         return eptp;
3010 }
3011
3012 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3013 {
3014         struct kvm *kvm = vcpu->kvm;
3015         bool update_guest_cr3 = true;
3016         unsigned long guest_cr3;
3017         u64 eptp;
3018
3019         guest_cr3 = cr3;
3020         if (enable_ept) {
3021                 eptp = construct_eptp(vcpu, cr3);
3022                 vmcs_write64(EPT_POINTER, eptp);
3023
3024                 if (kvm_x86_ops->tlb_remote_flush) {
3025                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3026                         to_vmx(vcpu)->ept_pointer = eptp;
3027                         to_kvm_vmx(kvm)->ept_pointers_match
3028                                 = EPT_POINTERS_CHECK;
3029                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3030                 }
3031
3032                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3033                 if (is_guest_mode(vcpu))
3034                         update_guest_cr3 = false;
3035                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3036                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3037                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3038                         guest_cr3 = vcpu->arch.cr3;
3039                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3040                         update_guest_cr3 = false;
3041                 ept_load_pdptrs(vcpu);
3042         }
3043
3044         if (update_guest_cr3)
3045                 vmcs_writel(GUEST_CR3, guest_cr3);
3046 }
3047
3048 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3049 {
3050         struct vcpu_vmx *vmx = to_vmx(vcpu);
3051         /*
3052          * Pass through host's Machine Check Enable value to hw_cr4, which
3053          * is in force while we are in guest mode.  Do not let guests control
3054          * this bit, even if host CR4.MCE == 0.
3055          */
3056         unsigned long hw_cr4;
3057
3058         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3059         if (enable_unrestricted_guest)
3060                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3061         else if (vmx->rmode.vm86_active)
3062                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3063         else
3064                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3065
3066         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3067                 if (cr4 & X86_CR4_UMIP) {
3068                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3069                         hw_cr4 &= ~X86_CR4_UMIP;
3070                 } else if (!is_guest_mode(vcpu) ||
3071                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3072                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3073                 }
3074         }
3075
3076         if (cr4 & X86_CR4_VMXE) {
3077                 /*
3078                  * To use VMXON (and later other VMX instructions), a guest
3079                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3080                  * So basically the check on whether to allow nested VMX
3081                  * is here.  We operate under the default treatment of SMM,
3082                  * so VMX cannot be enabled under SMM.
3083                  */
3084                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3085                         return 1;
3086         }
3087
3088         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3089                 return 1;
3090
3091         vcpu->arch.cr4 = cr4;
3092
3093         if (!enable_unrestricted_guest) {
3094                 if (enable_ept) {
3095                         if (!is_paging(vcpu)) {
3096                                 hw_cr4 &= ~X86_CR4_PAE;
3097                                 hw_cr4 |= X86_CR4_PSE;
3098                         } else if (!(cr4 & X86_CR4_PAE)) {
3099                                 hw_cr4 &= ~X86_CR4_PAE;
3100                         }
3101                 }
3102
3103                 /*
3104                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3105                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3106                  * to be manually disabled when guest switches to non-paging
3107                  * mode.
3108                  *
3109                  * If !enable_unrestricted_guest, the CPU is always running
3110                  * with CR0.PG=1 and CR4 needs to be modified.
3111                  * If enable_unrestricted_guest, the CPU automatically
3112                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3113                  */
3114                 if (!is_paging(vcpu))
3115                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3116         }
3117
3118         vmcs_writel(CR4_READ_SHADOW, cr4);
3119         vmcs_writel(GUEST_CR4, hw_cr4);
3120         return 0;
3121 }
3122
3123 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3124 {
3125         struct vcpu_vmx *vmx = to_vmx(vcpu);
3126         u32 ar;
3127
3128         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3129                 *var = vmx->rmode.segs[seg];
3130                 if (seg == VCPU_SREG_TR
3131                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3132                         return;
3133                 var->base = vmx_read_guest_seg_base(vmx, seg);
3134                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3135                 return;
3136         }
3137         var->base = vmx_read_guest_seg_base(vmx, seg);
3138         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3139         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3140         ar = vmx_read_guest_seg_ar(vmx, seg);
3141         var->unusable = (ar >> 16) & 1;
3142         var->type = ar & 15;
3143         var->s = (ar >> 4) & 1;
3144         var->dpl = (ar >> 5) & 3;
3145         /*
3146          * Some userspaces do not preserve unusable property. Since usable
3147          * segment has to be present according to VMX spec we can use present
3148          * property to amend userspace bug by making unusable segment always
3149          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3150          * segment as unusable.
3151          */
3152         var->present = !var->unusable;
3153         var->avl = (ar >> 12) & 1;
3154         var->l = (ar >> 13) & 1;
3155         var->db = (ar >> 14) & 1;
3156         var->g = (ar >> 15) & 1;
3157 }
3158
3159 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3160 {
3161         struct kvm_segment s;
3162
3163         if (to_vmx(vcpu)->rmode.vm86_active) {
3164                 vmx_get_segment(vcpu, &s, seg);
3165                 return s.base;
3166         }
3167         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3168 }
3169
3170 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3171 {
3172         struct vcpu_vmx *vmx = to_vmx(vcpu);
3173
3174         if (unlikely(vmx->rmode.vm86_active))
3175                 return 0;
3176         else {
3177                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3178                 return VMX_AR_DPL(ar);
3179         }
3180 }
3181
3182 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3183 {
3184         u32 ar;
3185
3186         if (var->unusable || !var->present)
3187                 ar = 1 << 16;
3188         else {
3189                 ar = var->type & 15;
3190                 ar |= (var->s & 1) << 4;
3191                 ar |= (var->dpl & 3) << 5;
3192                 ar |= (var->present & 1) << 7;
3193                 ar |= (var->avl & 1) << 12;
3194                 ar |= (var->l & 1) << 13;
3195                 ar |= (var->db & 1) << 14;
3196                 ar |= (var->g & 1) << 15;
3197         }
3198
3199         return ar;
3200 }
3201
3202 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3203 {
3204         struct vcpu_vmx *vmx = to_vmx(vcpu);
3205         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3206
3207         vmx_segment_cache_clear(vmx);
3208
3209         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3210                 vmx->rmode.segs[seg] = *var;
3211                 if (seg == VCPU_SREG_TR)
3212                         vmcs_write16(sf->selector, var->selector);
3213                 else if (var->s)
3214                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3215                 goto out;
3216         }
3217
3218         vmcs_writel(sf->base, var->base);
3219         vmcs_write32(sf->limit, var->limit);
3220         vmcs_write16(sf->selector, var->selector);
3221
3222         /*
3223          *   Fix the "Accessed" bit in AR field of segment registers for older
3224          * qemu binaries.
3225          *   IA32 arch specifies that at the time of processor reset the
3226          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3227          * is setting it to 0 in the userland code. This causes invalid guest
3228          * state vmexit when "unrestricted guest" mode is turned on.
3229          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3230          * tree. Newer qemu binaries with that qemu fix would not need this
3231          * kvm hack.
3232          */
3233         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3234                 var->type |= 0x1; /* Accessed */
3235
3236         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3237
3238 out:
3239         vmx->emulation_required = emulation_required(vcpu);
3240 }
3241
3242 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3243 {
3244         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3245
3246         *db = (ar >> 14) & 1;
3247         *l = (ar >> 13) & 1;
3248 }
3249
3250 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3251 {
3252         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3253         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3254 }
3255
3256 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3257 {
3258         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3259         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3260 }
3261
3262 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3263 {
3264         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3265         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3266 }
3267
3268 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3269 {
3270         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3271         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3272 }
3273
3274 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3275 {
3276         struct kvm_segment var;
3277         u32 ar;
3278
3279         vmx_get_segment(vcpu, &var, seg);
3280         var.dpl = 0x3;
3281         if (seg == VCPU_SREG_CS)
3282                 var.type = 0x3;
3283         ar = vmx_segment_access_rights(&var);
3284
3285         if (var.base != (var.selector << 4))
3286                 return false;
3287         if (var.limit != 0xffff)
3288                 return false;
3289         if (ar != 0xf3)
3290                 return false;
3291
3292         return true;
3293 }
3294
3295 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3296 {
3297         struct kvm_segment cs;
3298         unsigned int cs_rpl;
3299
3300         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3301         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3302
3303         if (cs.unusable)
3304                 return false;
3305         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3306                 return false;
3307         if (!cs.s)
3308                 return false;
3309         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3310                 if (cs.dpl > cs_rpl)
3311                         return false;
3312         } else {
3313                 if (cs.dpl != cs_rpl)
3314                         return false;
3315         }
3316         if (!cs.present)
3317                 return false;
3318
3319         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3320         return true;
3321 }
3322
3323 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3324 {
3325         struct kvm_segment ss;
3326         unsigned int ss_rpl;
3327
3328         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3329         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3330
3331         if (ss.unusable)
3332                 return true;
3333         if (ss.type != 3 && ss.type != 7)
3334                 return false;
3335         if (!ss.s)
3336                 return false;
3337         if (ss.dpl != ss_rpl) /* DPL != RPL */
3338                 return false;
3339         if (!ss.present)
3340                 return false;
3341
3342         return true;
3343 }
3344
3345 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3346 {
3347         struct kvm_segment var;
3348         unsigned int rpl;
3349
3350         vmx_get_segment(vcpu, &var, seg);
3351         rpl = var.selector & SEGMENT_RPL_MASK;
3352
3353         if (var.unusable)
3354                 return true;
3355         if (!var.s)
3356                 return false;
3357         if (!var.present)
3358                 return false;
3359         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3360                 if (var.dpl < rpl) /* DPL < RPL */
3361                         return false;
3362         }
3363
3364         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3365          * rights flags
3366          */
3367         return true;
3368 }
3369
3370 static bool tr_valid(struct kvm_vcpu *vcpu)
3371 {
3372         struct kvm_segment tr;
3373
3374         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3375
3376         if (tr.unusable)
3377                 return false;
3378         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3379                 return false;
3380         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3381                 return false;
3382         if (!tr.present)
3383                 return false;
3384
3385         return true;
3386 }
3387
3388 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3389 {
3390         struct kvm_segment ldtr;
3391
3392         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3393
3394         if (ldtr.unusable)
3395                 return true;
3396         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3397                 return false;
3398         if (ldtr.type != 2)
3399                 return false;
3400         if (!ldtr.present)
3401                 return false;
3402
3403         return true;
3404 }
3405
3406 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3407 {
3408         struct kvm_segment cs, ss;
3409
3410         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3411         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3412
3413         return ((cs.selector & SEGMENT_RPL_MASK) ==
3414                  (ss.selector & SEGMENT_RPL_MASK));
3415 }
3416
3417 /*
3418  * Check if guest state is valid. Returns true if valid, false if
3419  * not.
3420  * We assume that registers are always usable
3421  */
3422 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3423 {
3424         if (enable_unrestricted_guest)
3425                 return true;
3426
3427         /* real mode guest state checks */
3428         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3429                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3430                         return false;
3431                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3432                         return false;
3433                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3434                         return false;
3435                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3436                         return false;
3437                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3438                         return false;
3439                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3440                         return false;
3441         } else {
3442         /* protected mode guest state checks */
3443                 if (!cs_ss_rpl_check(vcpu))
3444                         return false;
3445                 if (!code_segment_valid(vcpu))
3446                         return false;
3447                 if (!stack_segment_valid(vcpu))
3448                         return false;
3449                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3450                         return false;
3451                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3452                         return false;
3453                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3454                         return false;
3455                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3456                         return false;
3457                 if (!tr_valid(vcpu))
3458                         return false;
3459                 if (!ldtr_valid(vcpu))
3460                         return false;
3461         }
3462         /* TODO:
3463          * - Add checks on RIP
3464          * - Add checks on RFLAGS
3465          */
3466
3467         return true;
3468 }
3469
3470 static int init_rmode_tss(struct kvm *kvm)
3471 {
3472         gfn_t fn;
3473         u16 data = 0;
3474         int idx, r;
3475
3476         idx = srcu_read_lock(&kvm->srcu);
3477         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3478         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3479         if (r < 0)
3480                 goto out;
3481         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3482         r = kvm_write_guest_page(kvm, fn++, &data,
3483                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3484         if (r < 0)
3485                 goto out;
3486         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3487         if (r < 0)
3488                 goto out;
3489         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3490         if (r < 0)
3491                 goto out;
3492         data = ~0;
3493         r = kvm_write_guest_page(kvm, fn, &data,
3494                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3495                                  sizeof(u8));
3496 out:
3497         srcu_read_unlock(&kvm->srcu, idx);
3498         return r;
3499 }
3500
3501 static int init_rmode_identity_map(struct kvm *kvm)
3502 {
3503         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3504         int i, r = 0;
3505         kvm_pfn_t identity_map_pfn;
3506         u32 tmp;
3507
3508         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3509         mutex_lock(&kvm->slots_lock);
3510
3511         if (likely(kvm_vmx->ept_identity_pagetable_done))
3512                 goto out;
3513
3514         if (!kvm_vmx->ept_identity_map_addr)
3515                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3516         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3517
3518         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3519                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3520         if (r < 0)
3521                 goto out;
3522
3523         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3524         if (r < 0)
3525                 goto out;
3526         /* Set up identity-mapping pagetable for EPT in real mode */
3527         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3528                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3529                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3530                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3531                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3532                 if (r < 0)
3533                         goto out;
3534         }
3535         kvm_vmx->ept_identity_pagetable_done = true;
3536
3537 out:
3538         mutex_unlock(&kvm->slots_lock);
3539         return r;
3540 }
3541
3542 static void seg_setup(int seg)
3543 {
3544         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3545         unsigned int ar;
3546
3547         vmcs_write16(sf->selector, 0);
3548         vmcs_writel(sf->base, 0);
3549         vmcs_write32(sf->limit, 0xffff);
3550         ar = 0x93;
3551         if (seg == VCPU_SREG_CS)
3552                 ar |= 0x08; /* code segment */
3553
3554         vmcs_write32(sf->ar_bytes, ar);
3555 }
3556
3557 static int alloc_apic_access_page(struct kvm *kvm)
3558 {
3559         struct page *page;
3560         int r = 0;
3561
3562         mutex_lock(&kvm->slots_lock);
3563         if (kvm->arch.apic_access_page_done)
3564                 goto out;
3565         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3566                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3567         if (r)
3568                 goto out;
3569
3570         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3571         if (is_error_page(page)) {
3572                 r = -EFAULT;
3573                 goto out;
3574         }
3575
3576         /*
3577          * Do not pin the page in memory, so that memory hot-unplug
3578          * is able to migrate it.
3579          */
3580         put_page(page);
3581         kvm->arch.apic_access_page_done = true;
3582 out:
3583         mutex_unlock(&kvm->slots_lock);
3584         return r;
3585 }
3586
3587 int allocate_vpid(void)
3588 {
3589         int vpid;
3590
3591         if (!enable_vpid)
3592                 return 0;
3593         spin_lock(&vmx_vpid_lock);
3594         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3595         if (vpid < VMX_NR_VPIDS)
3596                 __set_bit(vpid, vmx_vpid_bitmap);
3597         else
3598                 vpid = 0;
3599         spin_unlock(&vmx_vpid_lock);
3600         return vpid;
3601 }
3602
3603 void free_vpid(int vpid)
3604 {
3605         if (!enable_vpid || vpid == 0)
3606                 return;
3607         spin_lock(&vmx_vpid_lock);
3608         __clear_bit(vpid, vmx_vpid_bitmap);
3609         spin_unlock(&vmx_vpid_lock);
3610 }
3611
3612 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3613                                                           u32 msr, int type)
3614 {
3615         int f = sizeof(unsigned long);
3616
3617         if (!cpu_has_vmx_msr_bitmap())
3618                 return;
3619
3620         if (static_branch_unlikely(&enable_evmcs))
3621                 evmcs_touch_msr_bitmap();
3622
3623         /*
3624          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3625          * have the write-low and read-high bitmap offsets the wrong way round.
3626          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3627          */
3628         if (msr <= 0x1fff) {
3629                 if (type & MSR_TYPE_R)
3630                         /* read-low */
3631                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3632
3633                 if (type & MSR_TYPE_W)
3634                         /* write-low */
3635                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3636
3637         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3638                 msr &= 0x1fff;
3639                 if (type & MSR_TYPE_R)
3640                         /* read-high */
3641                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3642
3643                 if (type & MSR_TYPE_W)
3644                         /* write-high */
3645                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3646
3647         }
3648 }
3649
3650 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3651                                                          u32 msr, int type)
3652 {
3653         int f = sizeof(unsigned long);
3654
3655         if (!cpu_has_vmx_msr_bitmap())
3656                 return;
3657
3658         if (static_branch_unlikely(&enable_evmcs))
3659                 evmcs_touch_msr_bitmap();
3660
3661         /*
3662          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3663          * have the write-low and read-high bitmap offsets the wrong way round.
3664          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3665          */
3666         if (msr <= 0x1fff) {
3667                 if (type & MSR_TYPE_R)
3668                         /* read-low */
3669                         __set_bit(msr, msr_bitmap + 0x000 / f);
3670
3671                 if (type & MSR_TYPE_W)
3672                         /* write-low */
3673                         __set_bit(msr, msr_bitmap + 0x800 / f);
3674
3675         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3676                 msr &= 0x1fff;
3677                 if (type & MSR_TYPE_R)
3678                         /* read-high */
3679                         __set_bit(msr, msr_bitmap + 0x400 / f);
3680
3681                 if (type & MSR_TYPE_W)
3682                         /* write-high */
3683                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3684
3685         }
3686 }
3687
3688 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3689                                                       u32 msr, int type, bool value)
3690 {
3691         if (value)
3692                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3693         else
3694                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3695 }
3696
3697 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3698 {
3699         u8 mode = 0;
3700
3701         if (cpu_has_secondary_exec_ctrls() &&
3702             (secondary_exec_controls_get(to_vmx(vcpu)) &
3703              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3704                 mode |= MSR_BITMAP_MODE_X2APIC;
3705                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3706                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3707         }
3708
3709         return mode;
3710 }
3711
3712 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3713                                          u8 mode)
3714 {
3715         int msr;
3716
3717         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3718                 unsigned word = msr / BITS_PER_LONG;
3719                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3720                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3721         }
3722
3723         if (mode & MSR_BITMAP_MODE_X2APIC) {
3724                 /*
3725                  * TPR reads and writes can be virtualized even if virtual interrupt
3726                  * delivery is not in use.
3727                  */
3728                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3729                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3730                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3731                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3732                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3733                 }
3734         }
3735 }
3736
3737 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3738 {
3739         struct vcpu_vmx *vmx = to_vmx(vcpu);
3740         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3741         u8 mode = vmx_msr_bitmap_mode(vcpu);
3742         u8 changed = mode ^ vmx->msr_bitmap_mode;
3743
3744         if (!changed)
3745                 return;
3746
3747         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3748                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3749
3750         vmx->msr_bitmap_mode = mode;
3751 }
3752
3753 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3754 {
3755         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3756         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3757         u32 i;
3758
3759         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3760                                                         MSR_TYPE_RW, flag);
3761         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3762                                                         MSR_TYPE_RW, flag);
3763         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3764                                                         MSR_TYPE_RW, flag);
3765         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3766                                                         MSR_TYPE_RW, flag);
3767         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3768                 vmx_set_intercept_for_msr(msr_bitmap,
3769                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3770                 vmx_set_intercept_for_msr(msr_bitmap,
3771                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3772         }
3773 }
3774
3775 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3776 {
3777         struct vcpu_vmx *vmx = to_vmx(vcpu);
3778         void *vapic_page;
3779         u32 vppr;
3780         int rvi;
3781
3782         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3783                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3784                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3785                 return false;
3786
3787         rvi = vmx_get_rvi();
3788
3789         vapic_page = vmx->nested.virtual_apic_map.hva;
3790         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3791
3792         return ((rvi & 0xf0) > (vppr & 0xf0));
3793 }
3794
3795 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3796                                                      bool nested)
3797 {
3798 #ifdef CONFIG_SMP
3799         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3800
3801         if (vcpu->mode == IN_GUEST_MODE) {
3802                 /*
3803                  * The vector of interrupt to be delivered to vcpu had
3804                  * been set in PIR before this function.
3805                  *
3806                  * Following cases will be reached in this block, and
3807                  * we always send a notification event in all cases as
3808                  * explained below.
3809                  *
3810                  * Case 1: vcpu keeps in non-root mode. Sending a
3811                  * notification event posts the interrupt to vcpu.
3812                  *
3813                  * Case 2: vcpu exits to root mode and is still
3814                  * runnable. PIR will be synced to vIRR before the
3815                  * next vcpu entry. Sending a notification event in
3816                  * this case has no effect, as vcpu is not in root
3817                  * mode.
3818                  *
3819                  * Case 3: vcpu exits to root mode and is blocked.
3820                  * vcpu_block() has already synced PIR to vIRR and
3821                  * never blocks vcpu if vIRR is not cleared. Therefore,
3822                  * a blocked vcpu here does not wait for any requested
3823                  * interrupts in PIR, and sending a notification event
3824                  * which has no effect is safe here.
3825                  */
3826
3827                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3828                 return true;
3829         }
3830 #endif
3831         return false;
3832 }
3833
3834 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3835                                                 int vector)
3836 {
3837         struct vcpu_vmx *vmx = to_vmx(vcpu);
3838
3839         if (is_guest_mode(vcpu) &&
3840             vector == vmx->nested.posted_intr_nv) {
3841                 /*
3842                  * If a posted intr is not recognized by hardware,
3843                  * we will accomplish it in the next vmentry.
3844                  */
3845                 vmx->nested.pi_pending = true;
3846                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3847                 /* the PIR and ON have been set by L1. */
3848                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3849                         kvm_vcpu_kick(vcpu);
3850                 return 0;
3851         }
3852         return -1;
3853 }
3854 /*
3855  * Send interrupt to vcpu via posted interrupt way.
3856  * 1. If target vcpu is running(non-root mode), send posted interrupt
3857  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3858  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3859  * interrupt from PIR in next vmentry.
3860  */
3861 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3862 {
3863         struct vcpu_vmx *vmx = to_vmx(vcpu);
3864         int r;
3865
3866         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3867         if (!r)
3868                 return 0;
3869
3870         if (!vcpu->arch.apicv_active)
3871                 return -1;
3872
3873         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3874                 return 0;
3875
3876         /* If a previous notification has sent the IPI, nothing to do.  */
3877         if (pi_test_and_set_on(&vmx->pi_desc))
3878                 return 0;
3879
3880         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3881                 kvm_vcpu_kick(vcpu);
3882
3883         return 0;
3884 }
3885
3886 /*
3887  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3888  * will not change in the lifetime of the guest.
3889  * Note that host-state that does change is set elsewhere. E.g., host-state
3890  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3891  */
3892 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3893 {
3894         u32 low32, high32;
3895         unsigned long tmpl;
3896         unsigned long cr0, cr3, cr4;
3897
3898         cr0 = read_cr0();
3899         WARN_ON(cr0 & X86_CR0_TS);
3900         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3901
3902         /*
3903          * Save the most likely value for this task's CR3 in the VMCS.
3904          * We can't use __get_current_cr3_fast() because we're not atomic.
3905          */
3906         cr3 = __read_cr3();
3907         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3908         vmx->loaded_vmcs->host_state.cr3 = cr3;
3909
3910         /* Save the most likely value for this task's CR4 in the VMCS. */
3911         cr4 = cr4_read_shadow();
3912         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3913         vmx->loaded_vmcs->host_state.cr4 = cr4;
3914
3915         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3916 #ifdef CONFIG_X86_64
3917         /*
3918          * Load null selectors, so we can avoid reloading them in
3919          * vmx_prepare_switch_to_host(), in case userspace uses
3920          * the null selectors too (the expected case).
3921          */
3922         vmcs_write16(HOST_DS_SELECTOR, 0);
3923         vmcs_write16(HOST_ES_SELECTOR, 0);
3924 #else
3925         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3926         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3927 #endif
3928         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3929         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3930
3931         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3932
3933         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3934
3935         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3936         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3937         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3938         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3939
3940         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3941                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3942                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3943         }
3944
3945         if (cpu_has_load_ia32_efer())
3946                 vmcs_write64(HOST_IA32_EFER, host_efer);
3947 }
3948
3949 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3950 {
3951         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3952         if (enable_ept)
3953                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3954         if (is_guest_mode(&vmx->vcpu))
3955                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3956                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3957         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3958 }
3959
3960 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3961 {
3962         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3963
3964         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3965                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3966
3967         if (!enable_vnmi)
3968                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3969
3970         if (!enable_preemption_timer)
3971                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3972
3973         return pin_based_exec_ctrl;
3974 }
3975
3976 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3977 {
3978         struct vcpu_vmx *vmx = to_vmx(vcpu);
3979
3980         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3981         if (cpu_has_secondary_exec_ctrls()) {
3982                 if (kvm_vcpu_apicv_active(vcpu))
3983                         secondary_exec_controls_setbit(vmx,
3984                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3985                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3986                 else
3987                         secondary_exec_controls_clearbit(vmx,
3988                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3989                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3990         }
3991
3992         if (cpu_has_vmx_msr_bitmap())
3993                 vmx_update_msr_bitmap(vcpu);
3994 }
3995
3996 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3997 {
3998         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3999
4000         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4001                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4002
4003         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4004                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4005 #ifdef CONFIG_X86_64
4006                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4007                                 CPU_BASED_CR8_LOAD_EXITING;
4008 #endif
4009         }
4010         if (!enable_ept)
4011                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4012                                 CPU_BASED_CR3_LOAD_EXITING  |
4013                                 CPU_BASED_INVLPG_EXITING;
4014         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4015                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4016                                 CPU_BASED_MONITOR_EXITING);
4017         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4018                 exec_control &= ~CPU_BASED_HLT_EXITING;
4019         return exec_control;
4020 }
4021
4022
4023 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4024 {
4025         struct kvm_vcpu *vcpu = &vmx->vcpu;
4026
4027         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4028
4029         if (pt_mode == PT_MODE_SYSTEM)
4030                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4031         if (!cpu_need_virtualize_apic_accesses(vcpu))
4032                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4033         if (vmx->vpid == 0)
4034                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4035         if (!enable_ept) {
4036                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4037                 enable_unrestricted_guest = 0;
4038         }
4039         if (!enable_unrestricted_guest)
4040                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4041         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4042                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4043         if (!kvm_vcpu_apicv_active(vcpu))
4044                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4045                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4046         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4047
4048         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4049          * in vmx_set_cr4.  */
4050         exec_control &= ~SECONDARY_EXEC_DESC;
4051
4052         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4053            (handle_vmptrld).
4054            We can NOT enable shadow_vmcs here because we don't have yet
4055            a current VMCS12
4056         */
4057         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4058
4059         if (!enable_pml)
4060                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4061
4062         if (vmx_xsaves_supported()) {
4063                 /* Exposing XSAVES only when XSAVE is exposed */
4064                 bool xsaves_enabled =
4065                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4066                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4067                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4068
4069                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4070
4071                 if (!xsaves_enabled)
4072                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4073
4074                 if (nested) {
4075                         if (xsaves_enabled)
4076                                 vmx->nested.msrs.secondary_ctls_high |=
4077                                         SECONDARY_EXEC_XSAVES;
4078                         else
4079                                 vmx->nested.msrs.secondary_ctls_high &=
4080                                         ~SECONDARY_EXEC_XSAVES;
4081                 }
4082         }
4083
4084         if (vmx_rdtscp_supported()) {
4085                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4086                 if (!rdtscp_enabled)
4087                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4088
4089                 if (nested) {
4090                         if (rdtscp_enabled)
4091                                 vmx->nested.msrs.secondary_ctls_high |=
4092                                         SECONDARY_EXEC_RDTSCP;
4093                         else
4094                                 vmx->nested.msrs.secondary_ctls_high &=
4095                                         ~SECONDARY_EXEC_RDTSCP;
4096                 }
4097         }
4098
4099         if (vmx_invpcid_supported()) {
4100                 /* Exposing INVPCID only when PCID is exposed */
4101                 bool invpcid_enabled =
4102                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4103                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4104
4105                 if (!invpcid_enabled) {
4106                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4107                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4108                 }
4109
4110                 if (nested) {
4111                         if (invpcid_enabled)
4112                                 vmx->nested.msrs.secondary_ctls_high |=
4113                                         SECONDARY_EXEC_ENABLE_INVPCID;
4114                         else
4115                                 vmx->nested.msrs.secondary_ctls_high &=
4116                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4117                 }
4118         }
4119
4120         if (vmx_rdrand_supported()) {
4121                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4122                 if (rdrand_enabled)
4123                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4124
4125                 if (nested) {
4126                         if (rdrand_enabled)
4127                                 vmx->nested.msrs.secondary_ctls_high |=
4128                                         SECONDARY_EXEC_RDRAND_EXITING;
4129                         else
4130                                 vmx->nested.msrs.secondary_ctls_high &=
4131                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4132                 }
4133         }
4134
4135         if (vmx_rdseed_supported()) {
4136                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4137                 if (rdseed_enabled)
4138                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4139
4140                 if (nested) {
4141                         if (rdseed_enabled)
4142                                 vmx->nested.msrs.secondary_ctls_high |=
4143                                         SECONDARY_EXEC_RDSEED_EXITING;
4144                         else
4145                                 vmx->nested.msrs.secondary_ctls_high &=
4146                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4147                 }
4148         }
4149
4150         if (vmx_waitpkg_supported()) {
4151                 bool waitpkg_enabled =
4152                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4153
4154                 if (!waitpkg_enabled)
4155                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4156
4157                 if (nested) {
4158                         if (waitpkg_enabled)
4159                                 vmx->nested.msrs.secondary_ctls_high |=
4160                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4161                         else
4162                                 vmx->nested.msrs.secondary_ctls_high &=
4163                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4164                 }
4165         }
4166
4167         vmx->secondary_exec_control = exec_control;
4168 }
4169
4170 static void ept_set_mmio_spte_mask(void)
4171 {
4172         /*
4173          * EPT Misconfigurations can be generated if the value of bits 2:0
4174          * of an EPT paging-structure entry is 110b (write/execute).
4175          */
4176         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4177                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4178 }
4179
4180 #define VMX_XSS_EXIT_BITMAP 0
4181
4182 /*
4183  * Noting that the initialization of Guest-state Area of VMCS is in
4184  * vmx_vcpu_reset().
4185  */
4186 static void init_vmcs(struct vcpu_vmx *vmx)
4187 {
4188         if (nested)
4189                 nested_vmx_set_vmcs_shadowing_bitmap();
4190
4191         if (cpu_has_vmx_msr_bitmap())
4192                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4193
4194         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4195
4196         /* Control */
4197         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4198
4199         exec_controls_set(vmx, vmx_exec_control(vmx));
4200
4201         if (cpu_has_secondary_exec_ctrls()) {
4202                 vmx_compute_secondary_exec_control(vmx);
4203                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4204         }
4205
4206         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4207                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4208                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4209                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4210                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4211
4212                 vmcs_write16(GUEST_INTR_STATUS, 0);
4213
4214                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4215                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4216         }
4217
4218         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4219                 vmcs_write32(PLE_GAP, ple_gap);
4220                 vmx->ple_window = ple_window;
4221                 vmx->ple_window_dirty = true;
4222         }
4223
4224         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4225         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4226         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4227
4228         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4229         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4230         vmx_set_constant_host_state(vmx);
4231         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4232         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4233
4234         if (cpu_has_vmx_vmfunc())
4235                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4236
4237         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4238         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4239         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4240         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4241         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4242
4243         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4244                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4245
4246         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4247
4248         /* 22.2.1, 20.8.1 */
4249         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4250
4251         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4252         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4253
4254         set_cr4_guest_host_mask(vmx);
4255
4256         if (vmx->vpid != 0)
4257                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4258
4259         if (vmx_xsaves_supported())
4260                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4261
4262         if (enable_pml) {
4263                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4264                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4265         }
4266
4267         if (cpu_has_vmx_encls_vmexit())
4268                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4269
4270         if (pt_mode == PT_MODE_HOST_GUEST) {
4271                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4272                 /* Bit[6~0] are forced to 1, writes are ignored. */
4273                 vmx->pt_desc.guest.output_mask = 0x7F;
4274                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4275         }
4276 }
4277
4278 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4279 {
4280         struct vcpu_vmx *vmx = to_vmx(vcpu);
4281         struct msr_data apic_base_msr;
4282         u64 cr0;
4283
4284         vmx->rmode.vm86_active = 0;
4285         vmx->spec_ctrl = 0;
4286
4287         vmx->msr_ia32_umwait_control = 0;
4288
4289         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4290         vmx->hv_deadline_tsc = -1;
4291         kvm_set_cr8(vcpu, 0);
4292
4293         if (!init_event) {
4294                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4295                                      MSR_IA32_APICBASE_ENABLE;
4296                 if (kvm_vcpu_is_reset_bsp(vcpu))
4297                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4298                 apic_base_msr.host_initiated = true;
4299                 kvm_set_apic_base(vcpu, &apic_base_msr);
4300         }
4301
4302         vmx_segment_cache_clear(vmx);
4303
4304         seg_setup(VCPU_SREG_CS);
4305         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4306         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4307
4308         seg_setup(VCPU_SREG_DS);
4309         seg_setup(VCPU_SREG_ES);
4310         seg_setup(VCPU_SREG_FS);
4311         seg_setup(VCPU_SREG_GS);
4312         seg_setup(VCPU_SREG_SS);
4313
4314         vmcs_write16(GUEST_TR_SELECTOR, 0);
4315         vmcs_writel(GUEST_TR_BASE, 0);
4316         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4317         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4318
4319         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4320         vmcs_writel(GUEST_LDTR_BASE, 0);
4321         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4322         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4323
4324         if (!init_event) {
4325                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4326                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4327                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4328                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4329         }
4330
4331         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4332         kvm_rip_write(vcpu, 0xfff0);
4333
4334         vmcs_writel(GUEST_GDTR_BASE, 0);
4335         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4336
4337         vmcs_writel(GUEST_IDTR_BASE, 0);
4338         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4339
4340         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4341         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4342         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4343         if (kvm_mpx_supported())
4344                 vmcs_write64(GUEST_BNDCFGS, 0);
4345
4346         setup_msrs(vmx);
4347
4348         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4349
4350         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4351                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4352                 if (cpu_need_tpr_shadow(vcpu))
4353                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4354                                      __pa(vcpu->arch.apic->regs));
4355                 vmcs_write32(TPR_THRESHOLD, 0);
4356         }
4357
4358         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4359
4360         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4361         vmx->vcpu.arch.cr0 = cr0;
4362         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4363         vmx_set_cr4(vcpu, 0);
4364         vmx_set_efer(vcpu, 0);
4365
4366         update_exception_bitmap(vcpu);
4367
4368         vpid_sync_context(vmx->vpid);
4369         if (init_event)
4370                 vmx_clear_hlt(vcpu);
4371 }
4372
4373 static void enable_irq_window(struct kvm_vcpu *vcpu)
4374 {
4375         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4376 }
4377
4378 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4379 {
4380         if (!enable_vnmi ||
4381             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4382                 enable_irq_window(vcpu);
4383                 return;
4384         }
4385
4386         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4387 }
4388
4389 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4390 {
4391         struct vcpu_vmx *vmx = to_vmx(vcpu);
4392         uint32_t intr;
4393         int irq = vcpu->arch.interrupt.nr;
4394
4395         trace_kvm_inj_virq(irq);
4396
4397         ++vcpu->stat.irq_injections;
4398         if (vmx->rmode.vm86_active) {
4399                 int inc_eip = 0;
4400                 if (vcpu->arch.interrupt.soft)
4401                         inc_eip = vcpu->arch.event_exit_inst_len;
4402                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4403                 return;
4404         }
4405         intr = irq | INTR_INFO_VALID_MASK;
4406         if (vcpu->arch.interrupt.soft) {
4407                 intr |= INTR_TYPE_SOFT_INTR;
4408                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4409                              vmx->vcpu.arch.event_exit_inst_len);
4410         } else
4411                 intr |= INTR_TYPE_EXT_INTR;
4412         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4413
4414         vmx_clear_hlt(vcpu);
4415 }
4416
4417 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4418 {
4419         struct vcpu_vmx *vmx = to_vmx(vcpu);
4420
4421         if (!enable_vnmi) {
4422                 /*
4423                  * Tracking the NMI-blocked state in software is built upon
4424                  * finding the next open IRQ window. This, in turn, depends on
4425                  * well-behaving guests: They have to keep IRQs disabled at
4426                  * least as long as the NMI handler runs. Otherwise we may
4427                  * cause NMI nesting, maybe breaking the guest. But as this is
4428                  * highly unlikely, we can live with the residual risk.
4429                  */
4430                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4431                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4432         }
4433
4434         ++vcpu->stat.nmi_injections;
4435         vmx->loaded_vmcs->nmi_known_unmasked = false;
4436
4437         if (vmx->rmode.vm86_active) {
4438                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4439                 return;
4440         }
4441
4442         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4443                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4444
4445         vmx_clear_hlt(vcpu);
4446 }
4447
4448 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4449 {
4450         struct vcpu_vmx *vmx = to_vmx(vcpu);
4451         bool masked;
4452
4453         if (!enable_vnmi)
4454                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4455         if (vmx->loaded_vmcs->nmi_known_unmasked)
4456                 return false;
4457         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4458         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4459         return masked;
4460 }
4461
4462 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4463 {
4464         struct vcpu_vmx *vmx = to_vmx(vcpu);
4465
4466         if (!enable_vnmi) {
4467                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4468                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4469                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4470                 }
4471         } else {
4472                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4473                 if (masked)
4474                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4475                                       GUEST_INTR_STATE_NMI);
4476                 else
4477                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4478                                         GUEST_INTR_STATE_NMI);
4479         }
4480 }
4481
4482 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4483 {
4484         if (to_vmx(vcpu)->nested.nested_run_pending)
4485                 return 0;
4486
4487         if (!enable_vnmi &&
4488             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4489                 return 0;
4490
4491         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4492                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4493                    | GUEST_INTR_STATE_NMI));
4494 }
4495
4496 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4497 {
4498         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4499                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4500                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4501                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4502 }
4503
4504 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4505 {
4506         int ret;
4507
4508         if (enable_unrestricted_guest)
4509                 return 0;
4510
4511         mutex_lock(&kvm->slots_lock);
4512         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4513                                       PAGE_SIZE * 3);
4514         mutex_unlock(&kvm->slots_lock);
4515
4516         if (ret)
4517                 return ret;
4518         to_kvm_vmx(kvm)->tss_addr = addr;
4519         return init_rmode_tss(kvm);
4520 }
4521
4522 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4523 {
4524         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4525         return 0;
4526 }
4527
4528 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4529 {
4530         switch (vec) {
4531         case BP_VECTOR:
4532                 /*
4533                  * Update instruction length as we may reinject the exception
4534                  * from user space while in guest debugging mode.
4535                  */
4536                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4537                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4538                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4539                         return false;
4540                 /* fall through */
4541         case DB_VECTOR:
4542                 if (vcpu->guest_debug &
4543                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4544                         return false;
4545                 /* fall through */
4546         case DE_VECTOR:
4547         case OF_VECTOR:
4548         case BR_VECTOR:
4549         case UD_VECTOR:
4550         case DF_VECTOR:
4551         case SS_VECTOR:
4552         case GP_VECTOR:
4553         case MF_VECTOR:
4554                 return true;
4555         break;
4556         }
4557         return false;
4558 }
4559
4560 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4561                                   int vec, u32 err_code)
4562 {
4563         /*
4564          * Instruction with address size override prefix opcode 0x67
4565          * Cause the #SS fault with 0 error code in VM86 mode.
4566          */
4567         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4568                 if (kvm_emulate_instruction(vcpu, 0)) {
4569                         if (vcpu->arch.halt_request) {
4570                                 vcpu->arch.halt_request = 0;
4571                                 return kvm_vcpu_halt(vcpu);
4572                         }
4573                         return 1;
4574                 }
4575                 return 0;
4576         }
4577
4578         /*
4579          * Forward all other exceptions that are valid in real mode.
4580          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4581          *        the required debugging infrastructure rework.
4582          */
4583         kvm_queue_exception(vcpu, vec);
4584         return 1;
4585 }
4586
4587 /*
4588  * Trigger machine check on the host. We assume all the MSRs are already set up
4589  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4590  * We pass a fake environment to the machine check handler because we want
4591  * the guest to be always treated like user space, no matter what context
4592  * it used internally.
4593  */
4594 static void kvm_machine_check(void)
4595 {
4596 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4597         struct pt_regs regs = {
4598                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4599                 .flags = X86_EFLAGS_IF,
4600         };
4601
4602         do_machine_check(&regs, 0);
4603 #endif
4604 }
4605
4606 static int handle_machine_check(struct kvm_vcpu *vcpu)
4607 {
4608         /* handled by vmx_vcpu_run() */
4609         return 1;
4610 }
4611
4612 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4613 {
4614         struct vcpu_vmx *vmx = to_vmx(vcpu);
4615         struct kvm_run *kvm_run = vcpu->run;
4616         u32 intr_info, ex_no, error_code;
4617         unsigned long cr2, rip, dr6;
4618         u32 vect_info;
4619
4620         vect_info = vmx->idt_vectoring_info;
4621         intr_info = vmx->exit_intr_info;
4622
4623         if (is_machine_check(intr_info) || is_nmi(intr_info))
4624                 return 1; /* handled by handle_exception_nmi_irqoff() */
4625
4626         if (is_invalid_opcode(intr_info))
4627                 return handle_ud(vcpu);
4628
4629         error_code = 0;
4630         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4631                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4632
4633         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4634                 WARN_ON_ONCE(!enable_vmware_backdoor);
4635
4636                 /*
4637                  * VMware backdoor emulation on #GP interception only handles
4638                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4639                  * error code on #GP.
4640                  */
4641                 if (error_code) {
4642                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4643                         return 1;
4644                 }
4645                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4646         }
4647
4648         /*
4649          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4650          * MMIO, it is better to report an internal error.
4651          * See the comments in vmx_handle_exit.
4652          */
4653         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4654             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4655                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4656                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4657                 vcpu->run->internal.ndata = 3;
4658                 vcpu->run->internal.data[0] = vect_info;
4659                 vcpu->run->internal.data[1] = intr_info;
4660                 vcpu->run->internal.data[2] = error_code;
4661                 return 0;
4662         }
4663
4664         if (is_page_fault(intr_info)) {
4665                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4666                 /* EPT won't cause page fault directly */
4667                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4668                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4669         }
4670
4671         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4672
4673         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4674                 return handle_rmode_exception(vcpu, ex_no, error_code);
4675
4676         switch (ex_no) {
4677         case AC_VECTOR:
4678                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4679                 return 1;
4680         case DB_VECTOR:
4681                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4682                 if (!(vcpu->guest_debug &
4683                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4684                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4685                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4686                         if (is_icebp(intr_info))
4687                                 WARN_ON(!skip_emulated_instruction(vcpu));
4688
4689                         kvm_queue_exception(vcpu, DB_VECTOR);
4690                         return 1;
4691                 }
4692                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4693                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4694                 /* fall through */
4695         case BP_VECTOR:
4696                 /*
4697                  * Update instruction length as we may reinject #BP from
4698                  * user space while in guest debugging mode. Reading it for
4699                  * #DB as well causes no harm, it is not used in that case.
4700                  */
4701                 vmx->vcpu.arch.event_exit_inst_len =
4702                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4703                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4704                 rip = kvm_rip_read(vcpu);
4705                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4706                 kvm_run->debug.arch.exception = ex_no;
4707                 break;
4708         default:
4709                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4710                 kvm_run->ex.exception = ex_no;
4711                 kvm_run->ex.error_code = error_code;
4712                 break;
4713         }
4714         return 0;
4715 }
4716
4717 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4718 {
4719         ++vcpu->stat.irq_exits;
4720         return 1;
4721 }
4722
4723 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4724 {
4725         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4726         vcpu->mmio_needed = 0;
4727         return 0;
4728 }
4729
4730 static int handle_io(struct kvm_vcpu *vcpu)
4731 {
4732         unsigned long exit_qualification;
4733         int size, in, string;
4734         unsigned port;
4735
4736         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4737         string = (exit_qualification & 16) != 0;
4738
4739         ++vcpu->stat.io_exits;
4740
4741         if (string)
4742                 return kvm_emulate_instruction(vcpu, 0);
4743
4744         port = exit_qualification >> 16;
4745         size = (exit_qualification & 7) + 1;
4746         in = (exit_qualification & 8) != 0;
4747
4748         return kvm_fast_pio(vcpu, size, port, in);
4749 }
4750
4751 static void
4752 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4753 {
4754         /*
4755          * Patch in the VMCALL instruction:
4756          */
4757         hypercall[0] = 0x0f;
4758         hypercall[1] = 0x01;
4759         hypercall[2] = 0xc1;
4760 }
4761
4762 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4763 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4764 {
4765         if (is_guest_mode(vcpu)) {
4766                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4767                 unsigned long orig_val = val;
4768
4769                 /*
4770                  * We get here when L2 changed cr0 in a way that did not change
4771                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4772                  * but did change L0 shadowed bits. So we first calculate the
4773                  * effective cr0 value that L1 would like to write into the
4774                  * hardware. It consists of the L2-owned bits from the new
4775                  * value combined with the L1-owned bits from L1's guest_cr0.
4776                  */
4777                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4778                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4779
4780                 if (!nested_guest_cr0_valid(vcpu, val))
4781                         return 1;
4782
4783                 if (kvm_set_cr0(vcpu, val))
4784                         return 1;
4785                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4786                 return 0;
4787         } else {
4788                 if (to_vmx(vcpu)->nested.vmxon &&
4789                     !nested_host_cr0_valid(vcpu, val))
4790                         return 1;
4791
4792                 return kvm_set_cr0(vcpu, val);
4793         }
4794 }
4795
4796 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4797 {
4798         if (is_guest_mode(vcpu)) {
4799                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4800                 unsigned long orig_val = val;
4801
4802                 /* analogously to handle_set_cr0 */
4803                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4804                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4805                 if (kvm_set_cr4(vcpu, val))
4806                         return 1;
4807                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4808                 return 0;
4809         } else
4810                 return kvm_set_cr4(vcpu, val);
4811 }
4812
4813 static int handle_desc(struct kvm_vcpu *vcpu)
4814 {
4815         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4816         return kvm_emulate_instruction(vcpu, 0);
4817 }
4818
4819 static int handle_cr(struct kvm_vcpu *vcpu)
4820 {
4821         unsigned long exit_qualification, val;
4822         int cr;
4823         int reg;
4824         int err;
4825         int ret;
4826
4827         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4828         cr = exit_qualification & 15;
4829         reg = (exit_qualification >> 8) & 15;
4830         switch ((exit_qualification >> 4) & 3) {
4831         case 0: /* mov to cr */
4832                 val = kvm_register_readl(vcpu, reg);
4833                 trace_kvm_cr_write(cr, val);
4834                 switch (cr) {
4835                 case 0:
4836                         err = handle_set_cr0(vcpu, val);
4837                         return kvm_complete_insn_gp(vcpu, err);
4838                 case 3:
4839                         WARN_ON_ONCE(enable_unrestricted_guest);
4840                         err = kvm_set_cr3(vcpu, val);
4841                         return kvm_complete_insn_gp(vcpu, err);
4842                 case 4:
4843                         err = handle_set_cr4(vcpu, val);
4844                         return kvm_complete_insn_gp(vcpu, err);
4845                 case 8: {
4846                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4847                                 u8 cr8 = (u8)val;
4848                                 err = kvm_set_cr8(vcpu, cr8);
4849                                 ret = kvm_complete_insn_gp(vcpu, err);
4850                                 if (lapic_in_kernel(vcpu))
4851                                         return ret;
4852                                 if (cr8_prev <= cr8)
4853                                         return ret;
4854                                 /*
4855                                  * TODO: we might be squashing a
4856                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4857                                  * KVM_EXIT_DEBUG here.
4858                                  */
4859                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4860                                 return 0;
4861                         }
4862                 }
4863                 break;
4864         case 2: /* clts */
4865                 WARN_ONCE(1, "Guest should always own CR0.TS");
4866                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4867                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4868                 return kvm_skip_emulated_instruction(vcpu);
4869         case 1: /*mov from cr*/
4870                 switch (cr) {
4871                 case 3:
4872                         WARN_ON_ONCE(enable_unrestricted_guest);
4873                         val = kvm_read_cr3(vcpu);
4874                         kvm_register_write(vcpu, reg, val);
4875                         trace_kvm_cr_read(cr, val);
4876                         return kvm_skip_emulated_instruction(vcpu);
4877                 case 8:
4878                         val = kvm_get_cr8(vcpu);
4879                         kvm_register_write(vcpu, reg, val);
4880                         trace_kvm_cr_read(cr, val);
4881                         return kvm_skip_emulated_instruction(vcpu);
4882                 }
4883                 break;
4884         case 3: /* lmsw */
4885                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4886                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4887                 kvm_lmsw(vcpu, val);
4888
4889                 return kvm_skip_emulated_instruction(vcpu);
4890         default:
4891                 break;
4892         }
4893         vcpu->run->exit_reason = 0;
4894         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4895                (int)(exit_qualification >> 4) & 3, cr);
4896         return 0;
4897 }
4898
4899 static int handle_dr(struct kvm_vcpu *vcpu)
4900 {
4901         unsigned long exit_qualification;
4902         int dr, dr7, reg;
4903
4904         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4905         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4906
4907         /* First, if DR does not exist, trigger UD */
4908         if (!kvm_require_dr(vcpu, dr))
4909                 return 1;
4910
4911         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4912         if (!kvm_require_cpl(vcpu, 0))
4913                 return 1;
4914         dr7 = vmcs_readl(GUEST_DR7);
4915         if (dr7 & DR7_GD) {
4916                 /*
4917                  * As the vm-exit takes precedence over the debug trap, we
4918                  * need to emulate the latter, either for the host or the
4919                  * guest debugging itself.
4920                  */
4921                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4922                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4923                         vcpu->run->debug.arch.dr7 = dr7;
4924                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4925                         vcpu->run->debug.arch.exception = DB_VECTOR;
4926                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4927                         return 0;
4928                 } else {
4929                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4930                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4931                         kvm_queue_exception(vcpu, DB_VECTOR);
4932                         return 1;
4933                 }
4934         }
4935
4936         if (vcpu->guest_debug == 0) {
4937                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4938
4939                 /*
4940                  * No more DR vmexits; force a reload of the debug registers
4941                  * and reenter on this instruction.  The next vmexit will
4942                  * retrieve the full state of the debug registers.
4943                  */
4944                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4945                 return 1;
4946         }
4947
4948         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4949         if (exit_qualification & TYPE_MOV_FROM_DR) {
4950                 unsigned long val;
4951
4952                 if (kvm_get_dr(vcpu, dr, &val))
4953                         return 1;
4954                 kvm_register_write(vcpu, reg, val);
4955         } else
4956                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4957                         return 1;
4958
4959         return kvm_skip_emulated_instruction(vcpu);
4960 }
4961
4962 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4963 {
4964         return vcpu->arch.dr6;
4965 }
4966
4967 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4968 {
4969 }
4970
4971 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4972 {
4973         get_debugreg(vcpu->arch.db[0], 0);
4974         get_debugreg(vcpu->arch.db[1], 1);
4975         get_debugreg(vcpu->arch.db[2], 2);
4976         get_debugreg(vcpu->arch.db[3], 3);
4977         get_debugreg(vcpu->arch.dr6, 6);
4978         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4979
4980         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4981         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4982 }
4983
4984 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4985 {
4986         vmcs_writel(GUEST_DR7, val);
4987 }
4988
4989 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4990 {
4991         kvm_apic_update_ppr(vcpu);
4992         return 1;
4993 }
4994
4995 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4996 {
4997         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4998
4999         kvm_make_request(KVM_REQ_EVENT, vcpu);
5000
5001         ++vcpu->stat.irq_window_exits;
5002         return 1;
5003 }
5004
5005 static int handle_vmcall(struct kvm_vcpu *vcpu)
5006 {
5007         return kvm_emulate_hypercall(vcpu);
5008 }
5009
5010 static int handle_invd(struct kvm_vcpu *vcpu)
5011 {
5012         return kvm_emulate_instruction(vcpu, 0);
5013 }
5014
5015 static int handle_invlpg(struct kvm_vcpu *vcpu)
5016 {
5017         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5018
5019         kvm_mmu_invlpg(vcpu, exit_qualification);
5020         return kvm_skip_emulated_instruction(vcpu);
5021 }
5022
5023 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5024 {
5025         int err;
5026
5027         err = kvm_rdpmc(vcpu);
5028         return kvm_complete_insn_gp(vcpu, err);
5029 }
5030
5031 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5032 {
5033         return kvm_emulate_wbinvd(vcpu);
5034 }
5035
5036 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5037 {
5038         u64 new_bv = kvm_read_edx_eax(vcpu);
5039         u32 index = kvm_rcx_read(vcpu);
5040
5041         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5042                 return kvm_skip_emulated_instruction(vcpu);
5043         return 1;
5044 }
5045
5046 static int handle_apic_access(struct kvm_vcpu *vcpu)
5047 {
5048         if (likely(fasteoi)) {
5049                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5050                 int access_type, offset;
5051
5052                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5053                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5054                 /*
5055                  * Sane guest uses MOV to write EOI, with written value
5056                  * not cared. So make a short-circuit here by avoiding
5057                  * heavy instruction emulation.
5058                  */
5059                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5060                     (offset == APIC_EOI)) {
5061                         kvm_lapic_set_eoi(vcpu);
5062                         return kvm_skip_emulated_instruction(vcpu);
5063                 }
5064         }
5065         return kvm_emulate_instruction(vcpu, 0);
5066 }
5067
5068 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5069 {
5070         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5071         int vector = exit_qualification & 0xff;
5072
5073         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5074         kvm_apic_set_eoi_accelerated(vcpu, vector);
5075         return 1;
5076 }
5077
5078 static int handle_apic_write(struct kvm_vcpu *vcpu)
5079 {
5080         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5081         u32 offset = exit_qualification & 0xfff;
5082
5083         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5084         kvm_apic_write_nodecode(vcpu, offset);
5085         return 1;
5086 }
5087
5088 static int handle_task_switch(struct kvm_vcpu *vcpu)
5089 {
5090         struct vcpu_vmx *vmx = to_vmx(vcpu);
5091         unsigned long exit_qualification;
5092         bool has_error_code = false;
5093         u32 error_code = 0;
5094         u16 tss_selector;
5095         int reason, type, idt_v, idt_index;
5096
5097         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5098         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5099         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5100
5101         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5102
5103         reason = (u32)exit_qualification >> 30;
5104         if (reason == TASK_SWITCH_GATE && idt_v) {
5105                 switch (type) {
5106                 case INTR_TYPE_NMI_INTR:
5107                         vcpu->arch.nmi_injected = false;
5108                         vmx_set_nmi_mask(vcpu, true);
5109                         break;
5110                 case INTR_TYPE_EXT_INTR:
5111                 case INTR_TYPE_SOFT_INTR:
5112                         kvm_clear_interrupt_queue(vcpu);
5113                         break;
5114                 case INTR_TYPE_HARD_EXCEPTION:
5115                         if (vmx->idt_vectoring_info &
5116                             VECTORING_INFO_DELIVER_CODE_MASK) {
5117                                 has_error_code = true;
5118                                 error_code =
5119                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5120                         }
5121                         /* fall through */
5122                 case INTR_TYPE_SOFT_EXCEPTION:
5123                         kvm_clear_exception_queue(vcpu);
5124                         break;
5125                 default:
5126                         break;
5127                 }
5128         }
5129         tss_selector = exit_qualification;
5130
5131         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5132                        type != INTR_TYPE_EXT_INTR &&
5133                        type != INTR_TYPE_NMI_INTR))
5134                 WARN_ON(!skip_emulated_instruction(vcpu));
5135
5136         /*
5137          * TODO: What about debug traps on tss switch?
5138          *       Are we supposed to inject them and update dr6?
5139          */
5140         return kvm_task_switch(vcpu, tss_selector,
5141                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5142                                reason, has_error_code, error_code);
5143 }
5144
5145 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5146 {
5147         unsigned long exit_qualification;
5148         gpa_t gpa;
5149         u64 error_code;
5150
5151         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5152
5153         /*
5154          * EPT violation happened while executing iret from NMI,
5155          * "blocked by NMI" bit has to be set before next VM entry.
5156          * There are errata that may cause this bit to not be set:
5157          * AAK134, BY25.
5158          */
5159         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5160                         enable_vnmi &&
5161                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5162                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5163
5164         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5165         trace_kvm_page_fault(gpa, exit_qualification);
5166
5167         /* Is it a read fault? */
5168         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5169                      ? PFERR_USER_MASK : 0;
5170         /* Is it a write fault? */
5171         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5172                       ? PFERR_WRITE_MASK : 0;
5173         /* Is it a fetch fault? */
5174         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5175                       ? PFERR_FETCH_MASK : 0;
5176         /* ept page table entry is present? */
5177         error_code |= (exit_qualification &
5178                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5179                         EPT_VIOLATION_EXECUTABLE))
5180                       ? PFERR_PRESENT_MASK : 0;
5181
5182         error_code |= (exit_qualification & 0x100) != 0 ?
5183                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5184
5185         vcpu->arch.exit_qualification = exit_qualification;
5186         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5187 }
5188
5189 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5190 {
5191         gpa_t gpa;
5192
5193         /*
5194          * A nested guest cannot optimize MMIO vmexits, because we have an
5195          * nGPA here instead of the required GPA.
5196          */
5197         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5198         if (!is_guest_mode(vcpu) &&
5199             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5200                 trace_kvm_fast_mmio(gpa);
5201                 return kvm_skip_emulated_instruction(vcpu);
5202         }
5203
5204         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5205 }
5206
5207 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5208 {
5209         WARN_ON_ONCE(!enable_vnmi);
5210         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5211         ++vcpu->stat.nmi_window_exits;
5212         kvm_make_request(KVM_REQ_EVENT, vcpu);
5213
5214         return 1;
5215 }
5216
5217 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5218 {
5219         struct vcpu_vmx *vmx = to_vmx(vcpu);
5220         bool intr_window_requested;
5221         unsigned count = 130;
5222
5223         /*
5224          * We should never reach the point where we are emulating L2
5225          * due to invalid guest state as that means we incorrectly
5226          * allowed a nested VMEntry with an invalid vmcs12.
5227          */
5228         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5229
5230         intr_window_requested = exec_controls_get(vmx) &
5231                                 CPU_BASED_INTR_WINDOW_EXITING;
5232
5233         while (vmx->emulation_required && count-- != 0) {
5234                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5235                         return handle_interrupt_window(&vmx->vcpu);
5236
5237                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5238                         return 1;
5239
5240                 if (!kvm_emulate_instruction(vcpu, 0))
5241                         return 0;
5242
5243                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5244                     vcpu->arch.exception.pending) {
5245                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5246                         vcpu->run->internal.suberror =
5247                                                 KVM_INTERNAL_ERROR_EMULATION;
5248                         vcpu->run->internal.ndata = 0;
5249                         return 0;
5250                 }
5251
5252                 if (vcpu->arch.halt_request) {
5253                         vcpu->arch.halt_request = 0;
5254                         return kvm_vcpu_halt(vcpu);
5255                 }
5256
5257                 /*
5258                  * Note, return 1 and not 0, vcpu_run() is responsible for
5259                  * morphing the pending signal into the proper return code.
5260                  */
5261                 if (signal_pending(current))
5262                         return 1;
5263
5264                 if (need_resched())
5265                         schedule();
5266         }
5267
5268         return 1;
5269 }
5270
5271 static void grow_ple_window(struct kvm_vcpu *vcpu)
5272 {
5273         struct vcpu_vmx *vmx = to_vmx(vcpu);
5274         unsigned int old = vmx->ple_window;
5275
5276         vmx->ple_window = __grow_ple_window(old, ple_window,
5277                                             ple_window_grow,
5278                                             ple_window_max);
5279
5280         if (vmx->ple_window != old) {
5281                 vmx->ple_window_dirty = true;
5282                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5283                                             vmx->ple_window, old);
5284         }
5285 }
5286
5287 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5288 {
5289         struct vcpu_vmx *vmx = to_vmx(vcpu);
5290         unsigned int old = vmx->ple_window;
5291
5292         vmx->ple_window = __shrink_ple_window(old, ple_window,
5293                                               ple_window_shrink,
5294                                               ple_window);
5295
5296         if (vmx->ple_window != old) {
5297                 vmx->ple_window_dirty = true;
5298                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5299                                             vmx->ple_window, old);
5300         }
5301 }
5302
5303 /*
5304  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5305  */
5306 static void wakeup_handler(void)
5307 {
5308         struct kvm_vcpu *vcpu;
5309         int cpu = smp_processor_id();
5310
5311         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5312         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5313                         blocked_vcpu_list) {
5314                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5315
5316                 if (pi_test_on(pi_desc) == 1)
5317                         kvm_vcpu_kick(vcpu);
5318         }
5319         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5320 }
5321
5322 static void vmx_enable_tdp(void)
5323 {
5324         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5325                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5326                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5327                 0ull, VMX_EPT_EXECUTABLE_MASK,
5328                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5329                 VMX_EPT_RWX_MASK, 0ull);
5330
5331         ept_set_mmio_spte_mask();
5332         kvm_enable_tdp();
5333 }
5334
5335 /*
5336  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5337  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5338  */
5339 static int handle_pause(struct kvm_vcpu *vcpu)
5340 {
5341         if (!kvm_pause_in_guest(vcpu->kvm))
5342                 grow_ple_window(vcpu);
5343
5344         /*
5345          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5346          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5347          * never set PAUSE_EXITING and just set PLE if supported,
5348          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5349          */
5350         kvm_vcpu_on_spin(vcpu, true);
5351         return kvm_skip_emulated_instruction(vcpu);
5352 }
5353
5354 static int handle_nop(struct kvm_vcpu *vcpu)
5355 {
5356         return kvm_skip_emulated_instruction(vcpu);
5357 }
5358
5359 static int handle_mwait(struct kvm_vcpu *vcpu)
5360 {
5361         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5362         return handle_nop(vcpu);
5363 }
5364
5365 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5366 {
5367         kvm_queue_exception(vcpu, UD_VECTOR);
5368         return 1;
5369 }
5370
5371 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5372 {
5373         return 1;
5374 }
5375
5376 static int handle_monitor(struct kvm_vcpu *vcpu)
5377 {
5378         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5379         return handle_nop(vcpu);
5380 }
5381
5382 static int handle_invpcid(struct kvm_vcpu *vcpu)
5383 {
5384         u32 vmx_instruction_info;
5385         unsigned long type;
5386         bool pcid_enabled;
5387         gva_t gva;
5388         struct x86_exception e;
5389         unsigned i;
5390         unsigned long roots_to_free = 0;
5391         struct {
5392                 u64 pcid;
5393                 u64 gla;
5394         } operand;
5395
5396         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5397                 kvm_queue_exception(vcpu, UD_VECTOR);
5398                 return 1;
5399         }
5400
5401         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5402         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5403
5404         if (type > 3) {
5405                 kvm_inject_gp(vcpu, 0);
5406                 return 1;
5407         }
5408
5409         /* According to the Intel instruction reference, the memory operand
5410          * is read even if it isn't needed (e.g., for type==all)
5411          */
5412         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5413                                 vmx_instruction_info, false,
5414                                 sizeof(operand), &gva))
5415                 return 1;
5416
5417         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5418                 kvm_inject_page_fault(vcpu, &e);
5419                 return 1;
5420         }
5421
5422         if (operand.pcid >> 12 != 0) {
5423                 kvm_inject_gp(vcpu, 0);
5424                 return 1;
5425         }
5426
5427         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5428
5429         switch (type) {
5430         case INVPCID_TYPE_INDIV_ADDR:
5431                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5432                     is_noncanonical_address(operand.gla, vcpu)) {
5433                         kvm_inject_gp(vcpu, 0);
5434                         return 1;
5435                 }
5436                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5437                 return kvm_skip_emulated_instruction(vcpu);
5438
5439         case INVPCID_TYPE_SINGLE_CTXT:
5440                 if (!pcid_enabled && (operand.pcid != 0)) {
5441                         kvm_inject_gp(vcpu, 0);
5442                         return 1;
5443                 }
5444
5445                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5446                         kvm_mmu_sync_roots(vcpu);
5447                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5448                 }
5449
5450                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5451                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5452                             == operand.pcid)
5453                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5454
5455                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5456                 /*
5457                  * If neither the current cr3 nor any of the prev_roots use the
5458                  * given PCID, then nothing needs to be done here because a
5459                  * resync will happen anyway before switching to any other CR3.
5460                  */
5461
5462                 return kvm_skip_emulated_instruction(vcpu);
5463
5464         case INVPCID_TYPE_ALL_NON_GLOBAL:
5465                 /*
5466                  * Currently, KVM doesn't mark global entries in the shadow
5467                  * page tables, so a non-global flush just degenerates to a
5468                  * global flush. If needed, we could optimize this later by
5469                  * keeping track of global entries in shadow page tables.
5470                  */
5471
5472                 /* fall-through */
5473         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5474                 kvm_mmu_unload(vcpu);
5475                 return kvm_skip_emulated_instruction(vcpu);
5476
5477         default:
5478                 BUG(); /* We have already checked above that type <= 3 */
5479         }
5480 }
5481
5482 static int handle_pml_full(struct kvm_vcpu *vcpu)
5483 {
5484         unsigned long exit_qualification;
5485
5486         trace_kvm_pml_full(vcpu->vcpu_id);
5487
5488         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5489
5490         /*
5491          * PML buffer FULL happened while executing iret from NMI,
5492          * "blocked by NMI" bit has to be set before next VM entry.
5493          */
5494         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5495                         enable_vnmi &&
5496                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5497                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5498                                 GUEST_INTR_STATE_NMI);
5499
5500         /*
5501          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5502          * here.., and there's no userspace involvement needed for PML.
5503          */
5504         return 1;
5505 }
5506
5507 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5508 {
5509         struct vcpu_vmx *vmx = to_vmx(vcpu);
5510
5511         if (!vmx->req_immediate_exit &&
5512             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5513                 kvm_lapic_expired_hv_timer(vcpu);
5514
5515         return 1;
5516 }
5517
5518 /*
5519  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5520  * are overwritten by nested_vmx_setup() when nested=1.
5521  */
5522 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5523 {
5524         kvm_queue_exception(vcpu, UD_VECTOR);
5525         return 1;
5526 }
5527
5528 static int handle_encls(struct kvm_vcpu *vcpu)
5529 {
5530         /*
5531          * SGX virtualization is not yet supported.  There is no software
5532          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5533          * to prevent the guest from executing ENCLS.
5534          */
5535         kvm_queue_exception(vcpu, UD_VECTOR);
5536         return 1;
5537 }
5538
5539 /*
5540  * The exit handlers return 1 if the exit was handled fully and guest execution
5541  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5542  * to be done to userspace and return 0.
5543  */
5544 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5545         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5546         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5547         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5548         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5549         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5550         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5551         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5552         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5553         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5554         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5555         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5556         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5557         [EXIT_REASON_INVD]                    = handle_invd,
5558         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5559         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5560         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5561         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5562         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5563         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5564         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5565         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5566         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5567         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5568         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5569         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5570         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5571         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5572         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5573         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5574         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5575         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5576         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5577         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5578         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5579         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5580         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5581         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5582         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5583         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5584         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5585         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5586         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5587         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5588         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5589         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5590         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5591         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5592         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5593         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5594         [EXIT_REASON_ENCLS]                   = handle_encls,
5595 };
5596
5597 static const int kvm_vmx_max_exit_handlers =
5598         ARRAY_SIZE(kvm_vmx_exit_handlers);
5599
5600 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5601 {
5602         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5603         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5604 }
5605
5606 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5607 {
5608         if (vmx->pml_pg) {
5609                 __free_page(vmx->pml_pg);
5610                 vmx->pml_pg = NULL;
5611         }
5612 }
5613
5614 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5615 {
5616         struct vcpu_vmx *vmx = to_vmx(vcpu);
5617         u64 *pml_buf;
5618         u16 pml_idx;
5619
5620         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5621
5622         /* Do nothing if PML buffer is empty */
5623         if (pml_idx == (PML_ENTITY_NUM - 1))
5624                 return;
5625
5626         /* PML index always points to next available PML buffer entity */
5627         if (pml_idx >= PML_ENTITY_NUM)
5628                 pml_idx = 0;
5629         else
5630                 pml_idx++;
5631
5632         pml_buf = page_address(vmx->pml_pg);
5633         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5634                 u64 gpa;
5635
5636                 gpa = pml_buf[pml_idx];
5637                 WARN_ON(gpa & (PAGE_SIZE - 1));
5638                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5639         }
5640
5641         /* reset PML index */
5642         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5643 }
5644
5645 /*
5646  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5647  * Called before reporting dirty_bitmap to userspace.
5648  */
5649 static void kvm_flush_pml_buffers(struct kvm *kvm)
5650 {
5651         int i;
5652         struct kvm_vcpu *vcpu;
5653         /*
5654          * We only need to kick vcpu out of guest mode here, as PML buffer
5655          * is flushed at beginning of all VMEXITs, and it's obvious that only
5656          * vcpus running in guest are possible to have unflushed GPAs in PML
5657          * buffer.
5658          */
5659         kvm_for_each_vcpu(i, vcpu, kvm)
5660                 kvm_vcpu_kick(vcpu);
5661 }
5662
5663 static void vmx_dump_sel(char *name, uint32_t sel)
5664 {
5665         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5666                name, vmcs_read16(sel),
5667                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5668                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5669                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5670 }
5671
5672 static void vmx_dump_dtsel(char *name, uint32_t limit)
5673 {
5674         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5675                name, vmcs_read32(limit),
5676                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5677 }
5678
5679 void dump_vmcs(void)
5680 {
5681         u32 vmentry_ctl, vmexit_ctl;
5682         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5683         unsigned long cr4;
5684         u64 efer;
5685         int i, n;
5686
5687         if (!dump_invalid_vmcs) {
5688                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5689                 return;
5690         }
5691
5692         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5693         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5694         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5695         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5696         cr4 = vmcs_readl(GUEST_CR4);
5697         efer = vmcs_read64(GUEST_IA32_EFER);
5698         secondary_exec_control = 0;
5699         if (cpu_has_secondary_exec_ctrls())
5700                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5701
5702         pr_err("*** Guest State ***\n");
5703         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5704                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5705                vmcs_readl(CR0_GUEST_HOST_MASK));
5706         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5707                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5708         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5709         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5710             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5711         {
5712                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5713                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5714                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5715                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5716         }
5717         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5718                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5719         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5720                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5721         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5722                vmcs_readl(GUEST_SYSENTER_ESP),
5723                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5724         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5725         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5726         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5727         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5728         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5729         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5730         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5731         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5732         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5733         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5734         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5735             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5736                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5737                        efer, vmcs_read64(GUEST_IA32_PAT));
5738         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5739                vmcs_read64(GUEST_IA32_DEBUGCTL),
5740                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5741         if (cpu_has_load_perf_global_ctrl() &&
5742             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5743                 pr_err("PerfGlobCtl = 0x%016llx\n",
5744                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5745         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5746                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5747         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5748                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5749                vmcs_read32(GUEST_ACTIVITY_STATE));
5750         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5751                 pr_err("InterruptStatus = %04x\n",
5752                        vmcs_read16(GUEST_INTR_STATUS));
5753
5754         pr_err("*** Host State ***\n");
5755         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5756                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5757         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5758                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5759                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5760                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5761                vmcs_read16(HOST_TR_SELECTOR));
5762         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5763                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5764                vmcs_readl(HOST_TR_BASE));
5765         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5766                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5767         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5768                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5769                vmcs_readl(HOST_CR4));
5770         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5771                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5772                vmcs_read32(HOST_IA32_SYSENTER_CS),
5773                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5774         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5775                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5776                        vmcs_read64(HOST_IA32_EFER),
5777                        vmcs_read64(HOST_IA32_PAT));
5778         if (cpu_has_load_perf_global_ctrl() &&
5779             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5780                 pr_err("PerfGlobCtl = 0x%016llx\n",
5781                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5782
5783         pr_err("*** Control State ***\n");
5784         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5785                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5786         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5787         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5788                vmcs_read32(EXCEPTION_BITMAP),
5789                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5790                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5791         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5792                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5793                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5794                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5795         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5796                vmcs_read32(VM_EXIT_INTR_INFO),
5797                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5798                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5799         pr_err("        reason=%08x qualification=%016lx\n",
5800                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5801         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5802                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5803                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5804         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5805         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5806                 pr_err("TSC Multiplier = 0x%016llx\n",
5807                        vmcs_read64(TSC_MULTIPLIER));
5808         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5809                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5810                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5811                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5812                 }
5813                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5814                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5815                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5816                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5817         }
5818         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5819                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5820         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5821                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5822         n = vmcs_read32(CR3_TARGET_COUNT);
5823         for (i = 0; i + 1 < n; i += 4)
5824                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5825                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5826                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5827         if (i < n)
5828                 pr_err("CR3 target%u=%016lx\n",
5829                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5830         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5831                 pr_err("PLE Gap=%08x Window=%08x\n",
5832                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5833         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5834                 pr_err("Virtual processor ID = 0x%04x\n",
5835                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5836 }
5837
5838 /*
5839  * The guest has exited.  See if we can fix it or if we need userspace
5840  * assistance.
5841  */
5842 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5843         enum exit_fastpath_completion exit_fastpath)
5844 {
5845         struct vcpu_vmx *vmx = to_vmx(vcpu);
5846         u32 exit_reason = vmx->exit_reason;
5847         u32 vectoring_info = vmx->idt_vectoring_info;
5848
5849         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5850
5851         /*
5852          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5853          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5854          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5855          * mode as if vcpus is in root mode, the PML buffer must has been
5856          * flushed already.
5857          */
5858         if (enable_pml)
5859                 vmx_flush_pml_buffer(vcpu);
5860
5861         /* If guest state is invalid, start emulating */
5862         if (vmx->emulation_required)
5863                 return handle_invalid_guest_state(vcpu);
5864
5865         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5866                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5867
5868         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5869                 dump_vmcs();
5870                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5871                 vcpu->run->fail_entry.hardware_entry_failure_reason
5872                         = exit_reason;
5873                 return 0;
5874         }
5875
5876         if (unlikely(vmx->fail)) {
5877                 dump_vmcs();
5878                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5879                 vcpu->run->fail_entry.hardware_entry_failure_reason
5880                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5881                 return 0;
5882         }
5883
5884         /*
5885          * Note:
5886          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5887          * delivery event since it indicates guest is accessing MMIO.
5888          * The vm-exit can be triggered again after return to guest that
5889          * will cause infinite loop.
5890          */
5891         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5892                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5893                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5894                         exit_reason != EXIT_REASON_PML_FULL &&
5895                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5896                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5897                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5898                 vcpu->run->internal.ndata = 3;
5899                 vcpu->run->internal.data[0] = vectoring_info;
5900                 vcpu->run->internal.data[1] = exit_reason;
5901                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5902                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5903                         vcpu->run->internal.ndata++;
5904                         vcpu->run->internal.data[3] =
5905                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5906                 }
5907                 return 0;
5908         }
5909
5910         if (unlikely(!enable_vnmi &&
5911                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5912                 if (vmx_interrupt_allowed(vcpu)) {
5913                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5914                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5915                            vcpu->arch.nmi_pending) {
5916                         /*
5917                          * This CPU don't support us in finding the end of an
5918                          * NMI-blocked window if the guest runs with IRQs
5919                          * disabled. So we pull the trigger after 1 s of
5920                          * futile waiting, but inform the user about this.
5921                          */
5922                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5923                                "state on VCPU %d after 1 s timeout\n",
5924                                __func__, vcpu->vcpu_id);
5925                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926                 }
5927         }
5928
5929         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5930                 kvm_skip_emulated_instruction(vcpu);
5931                 return 1;
5932         }
5933
5934         if (exit_reason >= kvm_vmx_max_exit_handlers)
5935                 goto unexpected_vmexit;
5936 #ifdef CONFIG_RETPOLINE
5937         if (exit_reason == EXIT_REASON_MSR_WRITE)
5938                 return kvm_emulate_wrmsr(vcpu);
5939         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5940                 return handle_preemption_timer(vcpu);
5941         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5942                 return handle_interrupt_window(vcpu);
5943         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5944                 return handle_external_interrupt(vcpu);
5945         else if (exit_reason == EXIT_REASON_HLT)
5946                 return kvm_emulate_halt(vcpu);
5947         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5948                 return handle_ept_misconfig(vcpu);
5949 #endif
5950
5951         exit_reason = array_index_nospec(exit_reason,
5952                                          kvm_vmx_max_exit_handlers);
5953         if (!kvm_vmx_exit_handlers[exit_reason])
5954                 goto unexpected_vmexit;
5955
5956         return kvm_vmx_exit_handlers[exit_reason](vcpu);
5957
5958 unexpected_vmexit:
5959         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5960         dump_vmcs();
5961         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5962         vcpu->run->internal.suberror =
5963                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5964         vcpu->run->internal.ndata = 1;
5965         vcpu->run->internal.data[0] = exit_reason;
5966         return 0;
5967 }
5968
5969 /*
5970  * Software based L1D cache flush which is used when microcode providing
5971  * the cache control MSR is not loaded.
5972  *
5973  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5974  * flush it is required to read in 64 KiB because the replacement algorithm
5975  * is not exactly LRU. This could be sized at runtime via topology
5976  * information but as all relevant affected CPUs have 32KiB L1D cache size
5977  * there is no point in doing so.
5978  */
5979 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5980 {
5981         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5982
5983         /*
5984          * This code is only executed when the the flush mode is 'cond' or
5985          * 'always'
5986          */
5987         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5988                 bool flush_l1d;
5989
5990                 /*
5991                  * Clear the per-vcpu flush bit, it gets set again
5992                  * either from vcpu_run() or from one of the unsafe
5993                  * VMEXIT handlers.
5994                  */
5995                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5996                 vcpu->arch.l1tf_flush_l1d = false;
5997
5998                 /*
5999                  * Clear the per-cpu flush bit, it gets set again from
6000                  * the interrupt handlers.
6001                  */
6002                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6003                 kvm_clear_cpu_l1tf_flush_l1d();
6004
6005                 if (!flush_l1d)
6006                         return;
6007         }
6008
6009         vcpu->stat.l1d_flush++;
6010
6011         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6012                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6013                 return;
6014         }
6015
6016         asm volatile(
6017                 /* First ensure the pages are in the TLB */
6018                 "xorl   %%eax, %%eax\n"
6019                 ".Lpopulate_tlb:\n\t"
6020                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6021                 "addl   $4096, %%eax\n\t"
6022                 "cmpl   %%eax, %[size]\n\t"
6023                 "jne    .Lpopulate_tlb\n\t"
6024                 "xorl   %%eax, %%eax\n\t"
6025                 "cpuid\n\t"
6026                 /* Now fill the cache */
6027                 "xorl   %%eax, %%eax\n"
6028                 ".Lfill_cache:\n"
6029                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6030                 "addl   $64, %%eax\n\t"
6031                 "cmpl   %%eax, %[size]\n\t"
6032                 "jne    .Lfill_cache\n\t"
6033                 "lfence\n"
6034                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6035                     [size] "r" (size)
6036                 : "eax", "ebx", "ecx", "edx");
6037 }
6038
6039 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6040 {
6041         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6042         int tpr_threshold;
6043
6044         if (is_guest_mode(vcpu) &&
6045                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6046                 return;
6047
6048         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6049         if (is_guest_mode(vcpu))
6050                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6051         else
6052                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6053 }
6054
6055 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6056 {
6057         struct vcpu_vmx *vmx = to_vmx(vcpu);
6058         u32 sec_exec_control;
6059
6060         if (!lapic_in_kernel(vcpu))
6061                 return;
6062
6063         if (!flexpriority_enabled &&
6064             !cpu_has_vmx_virtualize_x2apic_mode())
6065                 return;
6066
6067         /* Postpone execution until vmcs01 is the current VMCS. */
6068         if (is_guest_mode(vcpu)) {
6069                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6070                 return;
6071         }
6072
6073         sec_exec_control = secondary_exec_controls_get(vmx);
6074         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6075                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6076
6077         switch (kvm_get_apic_mode(vcpu)) {
6078         case LAPIC_MODE_INVALID:
6079                 WARN_ONCE(true, "Invalid local APIC state");
6080         case LAPIC_MODE_DISABLED:
6081                 break;
6082         case LAPIC_MODE_XAPIC:
6083                 if (flexpriority_enabled) {
6084                         sec_exec_control |=
6085                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6086                         vmx_flush_tlb(vcpu, true);
6087                 }
6088                 break;
6089         case LAPIC_MODE_X2APIC:
6090                 if (cpu_has_vmx_virtualize_x2apic_mode())
6091                         sec_exec_control |=
6092                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6093                 break;
6094         }
6095         secondary_exec_controls_set(vmx, sec_exec_control);
6096
6097         vmx_update_msr_bitmap(vcpu);
6098 }
6099
6100 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6101 {
6102         if (!is_guest_mode(vcpu)) {
6103                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6104                 vmx_flush_tlb(vcpu, true);
6105         }
6106 }
6107
6108 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6109 {
6110         u16 status;
6111         u8 old;
6112
6113         if (max_isr == -1)
6114                 max_isr = 0;
6115
6116         status = vmcs_read16(GUEST_INTR_STATUS);
6117         old = status >> 8;
6118         if (max_isr != old) {
6119                 status &= 0xff;
6120                 status |= max_isr << 8;
6121                 vmcs_write16(GUEST_INTR_STATUS, status);
6122         }
6123 }
6124
6125 static void vmx_set_rvi(int vector)
6126 {
6127         u16 status;
6128         u8 old;
6129
6130         if (vector == -1)
6131                 vector = 0;
6132
6133         status = vmcs_read16(GUEST_INTR_STATUS);
6134         old = (u8)status & 0xff;
6135         if ((u8)vector != old) {
6136                 status &= ~0xff;
6137                 status |= (u8)vector;
6138                 vmcs_write16(GUEST_INTR_STATUS, status);
6139         }
6140 }
6141
6142 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6143 {
6144         /*
6145          * When running L2, updating RVI is only relevant when
6146          * vmcs12 virtual-interrupt-delivery enabled.
6147          * However, it can be enabled only when L1 also
6148          * intercepts external-interrupts and in that case
6149          * we should not update vmcs02 RVI but instead intercept
6150          * interrupt. Therefore, do nothing when running L2.
6151          */
6152         if (!is_guest_mode(vcpu))
6153                 vmx_set_rvi(max_irr);
6154 }
6155
6156 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6157 {
6158         struct vcpu_vmx *vmx = to_vmx(vcpu);
6159         int max_irr;
6160         bool max_irr_updated;
6161
6162         WARN_ON(!vcpu->arch.apicv_active);
6163         if (pi_test_on(&vmx->pi_desc)) {
6164                 pi_clear_on(&vmx->pi_desc);
6165                 /*
6166                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6167                  * But on x86 this is just a compiler barrier anyway.
6168                  */
6169                 smp_mb__after_atomic();
6170                 max_irr_updated =
6171                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6172
6173                 /*
6174                  * If we are running L2 and L1 has a new pending interrupt
6175                  * which can be injected, we should re-evaluate
6176                  * what should be done with this new L1 interrupt.
6177                  * If L1 intercepts external-interrupts, we should
6178                  * exit from L2 to L1. Otherwise, interrupt should be
6179                  * delivered directly to L2.
6180                  */
6181                 if (is_guest_mode(vcpu) && max_irr_updated) {
6182                         if (nested_exit_on_intr(vcpu))
6183                                 kvm_vcpu_exiting_guest_mode(vcpu);
6184                         else
6185                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6186                 }
6187         } else {
6188                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6189         }
6190         vmx_hwapic_irr_update(vcpu, max_irr);
6191         return max_irr;
6192 }
6193
6194 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6195 {
6196         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6197
6198         return pi_test_on(pi_desc) ||
6199                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6200 }
6201
6202 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6203 {
6204         if (!kvm_vcpu_apicv_active(vcpu))
6205                 return;
6206
6207         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6208         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6209         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6210         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6211 }
6212
6213 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6214 {
6215         struct vcpu_vmx *vmx = to_vmx(vcpu);
6216
6217         pi_clear_on(&vmx->pi_desc);
6218         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6219 }
6220
6221 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6222 {
6223         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6224
6225         /* if exit due to PF check for async PF */
6226         if (is_page_fault(vmx->exit_intr_info))
6227                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6228
6229         /* Handle machine checks before interrupts are enabled */
6230         if (is_machine_check(vmx->exit_intr_info))
6231                 kvm_machine_check();
6232
6233         /* We need to handle NMIs before interrupts are enabled */
6234         if (is_nmi(vmx->exit_intr_info)) {
6235                 kvm_before_interrupt(&vmx->vcpu);
6236                 asm("int $2");
6237                 kvm_after_interrupt(&vmx->vcpu);
6238         }
6239 }
6240
6241 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6242 {
6243         unsigned int vector;
6244         unsigned long entry;
6245 #ifdef CONFIG_X86_64
6246         unsigned long tmp;
6247 #endif
6248         gate_desc *desc;
6249         u32 intr_info;
6250
6251         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6252         if (WARN_ONCE(!is_external_intr(intr_info),
6253             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6254                 return;
6255
6256         vector = intr_info & INTR_INFO_VECTOR_MASK;
6257         desc = (gate_desc *)host_idt_base + vector;
6258         entry = gate_offset(desc);
6259
6260         kvm_before_interrupt(vcpu);
6261
6262         asm volatile(
6263 #ifdef CONFIG_X86_64
6264                 "mov %%" _ASM_SP ", %[sp]\n\t"
6265                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6266                 "push $%c[ss]\n\t"
6267                 "push %[sp]\n\t"
6268 #endif
6269                 "pushf\n\t"
6270                 __ASM_SIZE(push) " $%c[cs]\n\t"
6271                 CALL_NOSPEC
6272                 :
6273 #ifdef CONFIG_X86_64
6274                 [sp]"=&r"(tmp),
6275 #endif
6276                 ASM_CALL_CONSTRAINT
6277                 :
6278                 THUNK_TARGET(entry),
6279                 [ss]"i"(__KERNEL_DS),
6280                 [cs]"i"(__KERNEL_CS)
6281         );
6282
6283         kvm_after_interrupt(vcpu);
6284 }
6285 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6286
6287 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6288         enum exit_fastpath_completion *exit_fastpath)
6289 {
6290         struct vcpu_vmx *vmx = to_vmx(vcpu);
6291
6292         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6293                 handle_external_interrupt_irqoff(vcpu);
6294         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6295                 handle_exception_nmi_irqoff(vmx);
6296         else if (!is_guest_mode(vcpu) &&
6297                 vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6298                 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6299 }
6300
6301 static bool vmx_has_emulated_msr(int index)
6302 {
6303         switch (index) {
6304         case MSR_IA32_SMBASE:
6305                 /*
6306                  * We cannot do SMM unless we can run the guest in big
6307                  * real mode.
6308                  */
6309                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6310         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6311                 return nested;
6312         case MSR_AMD64_VIRT_SPEC_CTRL:
6313                 /* This is AMD only.  */
6314                 return false;
6315         default:
6316                 return true;
6317         }
6318 }
6319
6320 static bool vmx_pt_supported(void)
6321 {
6322         return pt_mode == PT_MODE_HOST_GUEST;
6323 }
6324
6325 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6326 {
6327         u32 exit_intr_info;
6328         bool unblock_nmi;
6329         u8 vector;
6330         bool idtv_info_valid;
6331
6332         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6333
6334         if (enable_vnmi) {
6335                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6336                         return;
6337                 /*
6338                  * Can't use vmx->exit_intr_info since we're not sure what
6339                  * the exit reason is.
6340                  */
6341                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6342                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6343                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6344                 /*
6345                  * SDM 3: 27.7.1.2 (September 2008)
6346                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6347                  * a guest IRET fault.
6348                  * SDM 3: 23.2.2 (September 2008)
6349                  * Bit 12 is undefined in any of the following cases:
6350                  *  If the VM exit sets the valid bit in the IDT-vectoring
6351                  *   information field.
6352                  *  If the VM exit is due to a double fault.
6353                  */
6354                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6355                     vector != DF_VECTOR && !idtv_info_valid)
6356                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6357                                       GUEST_INTR_STATE_NMI);
6358                 else
6359                         vmx->loaded_vmcs->nmi_known_unmasked =
6360                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6361                                   & GUEST_INTR_STATE_NMI);
6362         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6363                 vmx->loaded_vmcs->vnmi_blocked_time +=
6364                         ktime_to_ns(ktime_sub(ktime_get(),
6365                                               vmx->loaded_vmcs->entry_time));
6366 }
6367
6368 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6369                                       u32 idt_vectoring_info,
6370                                       int instr_len_field,
6371                                       int error_code_field)
6372 {
6373         u8 vector;
6374         int type;
6375         bool idtv_info_valid;
6376
6377         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6378
6379         vcpu->arch.nmi_injected = false;
6380         kvm_clear_exception_queue(vcpu);
6381         kvm_clear_interrupt_queue(vcpu);
6382
6383         if (!idtv_info_valid)
6384                 return;
6385
6386         kvm_make_request(KVM_REQ_EVENT, vcpu);
6387
6388         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6389         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6390
6391         switch (type) {
6392         case INTR_TYPE_NMI_INTR:
6393                 vcpu->arch.nmi_injected = true;
6394                 /*
6395                  * SDM 3: 27.7.1.2 (September 2008)
6396                  * Clear bit "block by NMI" before VM entry if a NMI
6397                  * delivery faulted.
6398                  */
6399                 vmx_set_nmi_mask(vcpu, false);
6400                 break;
6401         case INTR_TYPE_SOFT_EXCEPTION:
6402                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6403                 /* fall through */
6404         case INTR_TYPE_HARD_EXCEPTION:
6405                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6406                         u32 err = vmcs_read32(error_code_field);
6407                         kvm_requeue_exception_e(vcpu, vector, err);
6408                 } else
6409                         kvm_requeue_exception(vcpu, vector);
6410                 break;
6411         case INTR_TYPE_SOFT_INTR:
6412                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6413                 /* fall through */
6414         case INTR_TYPE_EXT_INTR:
6415                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6416                 break;
6417         default:
6418                 break;
6419         }
6420 }
6421
6422 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6423 {
6424         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6425                                   VM_EXIT_INSTRUCTION_LEN,
6426                                   IDT_VECTORING_ERROR_CODE);
6427 }
6428
6429 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6430 {
6431         __vmx_complete_interrupts(vcpu,
6432                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6433                                   VM_ENTRY_INSTRUCTION_LEN,
6434                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6435
6436         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6437 }
6438
6439 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6440 {
6441         int i, nr_msrs;
6442         struct perf_guest_switch_msr *msrs;
6443
6444         msrs = perf_guest_get_msrs(&nr_msrs);
6445
6446         if (!msrs)
6447                 return;
6448
6449         for (i = 0; i < nr_msrs; i++)
6450                 if (msrs[i].host == msrs[i].guest)
6451                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6452                 else
6453                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6454                                         msrs[i].host, false);
6455 }
6456
6457 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6458 {
6459         u32 host_umwait_control;
6460
6461         if (!vmx_has_waitpkg(vmx))
6462                 return;
6463
6464         host_umwait_control = get_umwait_control_msr();
6465
6466         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6467                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6468                         vmx->msr_ia32_umwait_control,
6469                         host_umwait_control, false);
6470         else
6471                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6472 }
6473
6474 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6475 {
6476         struct vcpu_vmx *vmx = to_vmx(vcpu);
6477         u64 tscl;
6478         u32 delta_tsc;
6479
6480         if (vmx->req_immediate_exit) {
6481                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6482                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6483         } else if (vmx->hv_deadline_tsc != -1) {
6484                 tscl = rdtsc();
6485                 if (vmx->hv_deadline_tsc > tscl)
6486                         /* set_hv_timer ensures the delta fits in 32-bits */
6487                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6488                                 cpu_preemption_timer_multi);
6489                 else
6490                         delta_tsc = 0;
6491
6492                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6493                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6494         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6495                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6496                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6497         }
6498 }
6499
6500 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6501 {
6502         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6503                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6504                 vmcs_writel(HOST_RSP, host_rsp);
6505         }
6506 }
6507
6508 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6509
6510 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6511 {
6512         struct vcpu_vmx *vmx = to_vmx(vcpu);
6513         unsigned long cr3, cr4;
6514
6515         /* Record the guest's net vcpu time for enforced NMI injections. */
6516         if (unlikely(!enable_vnmi &&
6517                      vmx->loaded_vmcs->soft_vnmi_blocked))
6518                 vmx->loaded_vmcs->entry_time = ktime_get();
6519
6520         /* Don't enter VMX if guest state is invalid, let the exit handler
6521            start emulation until we arrive back to a valid state */
6522         if (vmx->emulation_required)
6523                 return;
6524
6525         if (vmx->ple_window_dirty) {
6526                 vmx->ple_window_dirty = false;
6527                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6528         }
6529
6530         /*
6531          * We did this in prepare_switch_to_guest, because it needs to
6532          * be within srcu_read_lock.
6533          */
6534         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6535
6536         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6537                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6538         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6539                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6540
6541         cr3 = __get_current_cr3_fast();
6542         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6543                 vmcs_writel(HOST_CR3, cr3);
6544                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6545         }
6546
6547         cr4 = cr4_read_shadow();
6548         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6549                 vmcs_writel(HOST_CR4, cr4);
6550                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6551         }
6552
6553         /* When single-stepping over STI and MOV SS, we must clear the
6554          * corresponding interruptibility bits in the guest state. Otherwise
6555          * vmentry fails as it then expects bit 14 (BS) in pending debug
6556          * exceptions being set, but that's not correct for the guest debugging
6557          * case. */
6558         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6559                 vmx_set_interrupt_shadow(vcpu, 0);
6560
6561         kvm_load_guest_xsave_state(vcpu);
6562
6563         if (static_cpu_has(X86_FEATURE_PKU) &&
6564             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6565             vcpu->arch.pkru != vmx->host_pkru)
6566                 __write_pkru(vcpu->arch.pkru);
6567
6568         pt_guest_enter(vmx);
6569
6570         atomic_switch_perf_msrs(vmx);
6571         atomic_switch_umwait_control_msr(vmx);
6572
6573         if (enable_preemption_timer)
6574                 vmx_update_hv_timer(vcpu);
6575
6576         if (lapic_in_kernel(vcpu) &&
6577                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6578                 kvm_wait_lapic_expire(vcpu);
6579
6580         /*
6581          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6582          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6583          * is no need to worry about the conditional branch over the wrmsr
6584          * being speculatively taken.
6585          */
6586         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6587
6588         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6589         if (static_branch_unlikely(&vmx_l1d_should_flush))
6590                 vmx_l1d_flush(vcpu);
6591         else if (static_branch_unlikely(&mds_user_clear))
6592                 mds_clear_cpu_buffers();
6593
6594         if (vcpu->arch.cr2 != read_cr2())
6595                 write_cr2(vcpu->arch.cr2);
6596
6597         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6598                                    vmx->loaded_vmcs->launched);
6599
6600         vcpu->arch.cr2 = read_cr2();
6601
6602         /*
6603          * We do not use IBRS in the kernel. If this vCPU has used the
6604          * SPEC_CTRL MSR it may have left it on; save the value and
6605          * turn it off. This is much more efficient than blindly adding
6606          * it to the atomic save/restore list. Especially as the former
6607          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6608          *
6609          * For non-nested case:
6610          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6611          * save it.
6612          *
6613          * For nested case:
6614          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6615          * save it.
6616          */
6617         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6618                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6619
6620         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6621
6622         /* All fields are clean at this point */
6623         if (static_branch_unlikely(&enable_evmcs))
6624                 current_evmcs->hv_clean_fields |=
6625                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6626
6627         if (static_branch_unlikely(&enable_evmcs))
6628                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6629
6630         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6631         if (vmx->host_debugctlmsr)
6632                 update_debugctlmsr(vmx->host_debugctlmsr);
6633
6634 #ifndef CONFIG_X86_64
6635         /*
6636          * The sysexit path does not restore ds/es, so we must set them to
6637          * a reasonable value ourselves.
6638          *
6639          * We can't defer this to vmx_prepare_switch_to_host() since that
6640          * function may be executed in interrupt context, which saves and
6641          * restore segments around it, nullifying its effect.
6642          */
6643         loadsegment(ds, __USER_DS);
6644         loadsegment(es, __USER_DS);
6645 #endif
6646
6647         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6648                                   | (1 << VCPU_EXREG_RFLAGS)
6649                                   | (1 << VCPU_EXREG_PDPTR)
6650                                   | (1 << VCPU_EXREG_SEGMENTS)
6651                                   | (1 << VCPU_EXREG_CR3));
6652         vcpu->arch.regs_dirty = 0;
6653
6654         pt_guest_exit(vmx);
6655
6656         /*
6657          * eager fpu is enabled if PKEY is supported and CR4 is switched
6658          * back on host, so it is safe to read guest PKRU from current
6659          * XSAVE.
6660          */
6661         if (static_cpu_has(X86_FEATURE_PKU) &&
6662             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6663                 vcpu->arch.pkru = rdpkru();
6664                 if (vcpu->arch.pkru != vmx->host_pkru)
6665                         __write_pkru(vmx->host_pkru);
6666         }
6667
6668         kvm_load_host_xsave_state(vcpu);
6669
6670         vmx->nested.nested_run_pending = 0;
6671         vmx->idt_vectoring_info = 0;
6672
6673         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6674         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6675                 kvm_machine_check();
6676
6677         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6678                 return;
6679
6680         vmx->loaded_vmcs->launched = 1;
6681         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6682
6683         vmx_recover_nmi_blocking(vmx);
6684         vmx_complete_interrupts(vmx);
6685 }
6686
6687 static struct kvm *vmx_vm_alloc(void)
6688 {
6689         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6690                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6691                                             PAGE_KERNEL);
6692         return &kvm_vmx->kvm;
6693 }
6694
6695 static void vmx_vm_free(struct kvm *kvm)
6696 {
6697         kfree(kvm->arch.hyperv.hv_pa_pg);
6698         vfree(to_kvm_vmx(kvm));
6699 }
6700
6701 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6702 {
6703         struct vcpu_vmx *vmx = to_vmx(vcpu);
6704
6705         if (enable_pml)
6706                 vmx_destroy_pml_buffer(vmx);
6707         free_vpid(vmx->vpid);
6708         nested_vmx_free_vcpu(vcpu);
6709         free_loaded_vmcs(vmx->loaded_vmcs);
6710 }
6711
6712 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6713 {
6714         struct vcpu_vmx *vmx;
6715         unsigned long *msr_bitmap;
6716         int i, cpu, err;
6717
6718         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6719         vmx = to_vmx(vcpu);
6720
6721         err = -ENOMEM;
6722
6723         vmx->vpid = allocate_vpid();
6724
6725         /*
6726          * If PML is turned on, failure on enabling PML just results in failure
6727          * of creating the vcpu, therefore we can simplify PML logic (by
6728          * avoiding dealing with cases, such as enabling PML partially on vcpus
6729          * for the guest), etc.
6730          */
6731         if (enable_pml) {
6732                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6733                 if (!vmx->pml_pg)
6734                         goto free_vpid;
6735         }
6736
6737         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6738
6739         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6740                 u32 index = vmx_msr_index[i];
6741                 u32 data_low, data_high;
6742                 int j = vmx->nmsrs;
6743
6744                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6745                         continue;
6746                 if (wrmsr_safe(index, data_low, data_high) < 0)
6747                         continue;
6748
6749                 vmx->guest_msrs[j].index = i;
6750                 vmx->guest_msrs[j].data = 0;
6751                 switch (index) {
6752                 case MSR_IA32_TSX_CTRL:
6753                         /*
6754                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6755                          * let's avoid changing CPUID bits under the host
6756                          * kernel's feet.
6757                          */
6758                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6759                         break;
6760                 default:
6761                         vmx->guest_msrs[j].mask = -1ull;
6762                         break;
6763                 }
6764                 ++vmx->nmsrs;
6765         }
6766
6767         err = alloc_loaded_vmcs(&vmx->vmcs01);
6768         if (err < 0)
6769                 goto free_pml;
6770
6771         msr_bitmap = vmx->vmcs01.msr_bitmap;
6772         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6773         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6774         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6775         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6776         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6777         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6778         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6779         if (kvm_cstate_in_guest(vcpu->kvm)) {
6780                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6781                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6782                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6783                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6784         }
6785         vmx->msr_bitmap_mode = 0;
6786
6787         vmx->loaded_vmcs = &vmx->vmcs01;
6788         cpu = get_cpu();
6789         vmx_vcpu_load(vcpu, cpu);
6790         vcpu->cpu = cpu;
6791         init_vmcs(vmx);
6792         vmx_vcpu_put(vcpu);
6793         put_cpu();
6794         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6795                 err = alloc_apic_access_page(vcpu->kvm);
6796                 if (err)
6797                         goto free_vmcs;
6798         }
6799
6800         if (enable_ept && !enable_unrestricted_guest) {
6801                 err = init_rmode_identity_map(vcpu->kvm);
6802                 if (err)
6803                         goto free_vmcs;
6804         }
6805
6806         if (nested)
6807                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6808                                            vmx_capability.ept);
6809         else
6810                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6811
6812         vmx->nested.posted_intr_nv = -1;
6813         vmx->nested.current_vmptr = -1ull;
6814
6815         vcpu->arch.microcode_version = 0x100000000ULL;
6816         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6817
6818         /*
6819          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6820          * or POSTED_INTR_WAKEUP_VECTOR.
6821          */
6822         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6823         vmx->pi_desc.sn = 1;
6824
6825         vmx->ept_pointer = INVALID_PAGE;
6826
6827         return 0;
6828
6829 free_vmcs:
6830         free_loaded_vmcs(vmx->loaded_vmcs);
6831 free_pml:
6832         vmx_destroy_pml_buffer(vmx);
6833 free_vpid:
6834         free_vpid(vmx->vpid);
6835         return err;
6836 }
6837
6838 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6839 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6840
6841 static int vmx_vm_init(struct kvm *kvm)
6842 {
6843         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6844
6845         if (!ple_gap)
6846                 kvm->arch.pause_in_guest = true;
6847
6848         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6849                 switch (l1tf_mitigation) {
6850                 case L1TF_MITIGATION_OFF:
6851                 case L1TF_MITIGATION_FLUSH_NOWARN:
6852                         /* 'I explicitly don't care' is set */
6853                         break;
6854                 case L1TF_MITIGATION_FLUSH:
6855                 case L1TF_MITIGATION_FLUSH_NOSMT:
6856                 case L1TF_MITIGATION_FULL:
6857                         /*
6858                          * Warn upon starting the first VM in a potentially
6859                          * insecure environment.
6860                          */
6861                         if (sched_smt_active())
6862                                 pr_warn_once(L1TF_MSG_SMT);
6863                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6864                                 pr_warn_once(L1TF_MSG_L1D);
6865                         break;
6866                 case L1TF_MITIGATION_FULL_FORCE:
6867                         /* Flush is enforced */
6868                         break;
6869                 }
6870         }
6871         kvm_apicv_init(kvm, enable_apicv);
6872         return 0;
6873 }
6874
6875 static int __init vmx_check_processor_compat(void)
6876 {
6877         struct vmcs_config vmcs_conf;
6878         struct vmx_capability vmx_cap;
6879
6880         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6881             !this_cpu_has(X86_FEATURE_VMX)) {
6882                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6883                 return -EIO;
6884         }
6885
6886         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6887                 return -EIO;
6888         if (nested)
6889                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6890         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6891                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6892                                 smp_processor_id());
6893                 return -EIO;
6894         }
6895         return 0;
6896 }
6897
6898 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6899 {
6900         u8 cache;
6901         u64 ipat = 0;
6902
6903         /* For VT-d and EPT combination
6904          * 1. MMIO: always map as UC
6905          * 2. EPT with VT-d:
6906          *   a. VT-d without snooping control feature: can't guarantee the
6907          *      result, try to trust guest.
6908          *   b. VT-d with snooping control feature: snooping control feature of
6909          *      VT-d engine can guarantee the cache correctness. Just set it
6910          *      to WB to keep consistent with host. So the same as item 3.
6911          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6912          *    consistent with host MTRR
6913          */
6914         if (is_mmio) {
6915                 cache = MTRR_TYPE_UNCACHABLE;
6916                 goto exit;
6917         }
6918
6919         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6920                 ipat = VMX_EPT_IPAT_BIT;
6921                 cache = MTRR_TYPE_WRBACK;
6922                 goto exit;
6923         }
6924
6925         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6926                 ipat = VMX_EPT_IPAT_BIT;
6927                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6928                         cache = MTRR_TYPE_WRBACK;
6929                 else
6930                         cache = MTRR_TYPE_UNCACHABLE;
6931                 goto exit;
6932         }
6933
6934         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6935
6936 exit:
6937         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6938 }
6939
6940 static int vmx_get_lpage_level(void)
6941 {
6942         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6943                 return PT_DIRECTORY_LEVEL;
6944         else
6945                 /* For shadow and EPT supported 1GB page */
6946                 return PT_PDPE_LEVEL;
6947 }
6948
6949 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6950 {
6951         /*
6952          * These bits in the secondary execution controls field
6953          * are dynamic, the others are mostly based on the hypervisor
6954          * architecture and the guest's CPUID.  Do not touch the
6955          * dynamic bits.
6956          */
6957         u32 mask =
6958                 SECONDARY_EXEC_SHADOW_VMCS |
6959                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6960                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6961                 SECONDARY_EXEC_DESC;
6962
6963         u32 new_ctl = vmx->secondary_exec_control;
6964         u32 cur_ctl = secondary_exec_controls_get(vmx);
6965
6966         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6967 }
6968
6969 /*
6970  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6971  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6972  */
6973 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6974 {
6975         struct vcpu_vmx *vmx = to_vmx(vcpu);
6976         struct kvm_cpuid_entry2 *entry;
6977
6978         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6979         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6980
6981 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6982         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6983                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6984 } while (0)
6985
6986         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6987         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
6988         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
6989         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
6990         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
6991         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
6992         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
6993         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
6994         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
6995         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
6996         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
6997         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
6998         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
6999         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7000         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7001
7002         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7003         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7004         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7005         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7006         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7007         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7008         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7009
7010 #undef cr4_fixed1_update
7011 }
7012
7013 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7014 {
7015         struct vcpu_vmx *vmx = to_vmx(vcpu);
7016
7017         if (kvm_mpx_supported()) {
7018                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7019
7020                 if (mpx_enabled) {
7021                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7022                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7023                 } else {
7024                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7025                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7026                 }
7027         }
7028 }
7029
7030 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7031 {
7032         struct vcpu_vmx *vmx = to_vmx(vcpu);
7033         struct kvm_cpuid_entry2 *best = NULL;
7034         int i;
7035
7036         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7037                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7038                 if (!best)
7039                         return;
7040                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7041                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7042                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7043                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7044         }
7045
7046         /* Get the number of configurable Address Ranges for filtering */
7047         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7048                                                 PT_CAP_num_address_ranges);
7049
7050         /* Initialize and clear the no dependency bits */
7051         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7052                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7053
7054         /*
7055          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7056          * will inject an #GP
7057          */
7058         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7059                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7060
7061         /*
7062          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7063          * PSBFreq can be set
7064          */
7065         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7066                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7067                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7068
7069         /*
7070          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7071          * MTCFreq can be set
7072          */
7073         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7074                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7075                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7076
7077         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7078         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7079                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7080                                                         RTIT_CTL_PTW_EN);
7081
7082         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7083         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7084                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7085
7086         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7087         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7088                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7089
7090         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7091         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7092                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7093
7094         /* unmask address range configure area */
7095         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7096                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7097 }
7098
7099 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7100 {
7101         struct vcpu_vmx *vmx = to_vmx(vcpu);
7102
7103         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7104         vcpu->arch.xsaves_enabled = false;
7105
7106         if (cpu_has_secondary_exec_ctrls()) {
7107                 vmx_compute_secondary_exec_control(vmx);
7108                 vmcs_set_secondary_exec_control(vmx);
7109         }
7110
7111         if (nested_vmx_allowed(vcpu))
7112                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7113                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7114                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7115         else
7116                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7117                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7118                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7119
7120         if (nested_vmx_allowed(vcpu)) {
7121                 nested_vmx_cr_fixed1_bits_update(vcpu);
7122                 nested_vmx_entry_exit_ctls_update(vcpu);
7123         }
7124
7125         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7126                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7127                 update_intel_pt_cfg(vcpu);
7128
7129         if (boot_cpu_has(X86_FEATURE_RTM)) {
7130                 struct shared_msr_entry *msr;
7131                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7132                 if (msr) {
7133                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7134                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7135                 }
7136         }
7137 }
7138
7139 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7140 {
7141         if (func == 1 && nested)
7142                 entry->ecx |= feature_bit(VMX);
7143 }
7144
7145 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7146 {
7147         to_vmx(vcpu)->req_immediate_exit = true;
7148 }
7149
7150 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7151                                   struct x86_instruction_info *info)
7152 {
7153         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7154         unsigned short port;
7155         bool intercept;
7156         int size;
7157
7158         if (info->intercept == x86_intercept_in ||
7159             info->intercept == x86_intercept_ins) {
7160                 port = info->src_val;
7161                 size = info->dst_bytes;
7162         } else {
7163                 port = info->dst_val;
7164                 size = info->src_bytes;
7165         }
7166
7167         /*
7168          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7169          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7170          * control.
7171          *
7172          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7173          */
7174         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7175                 intercept = nested_cpu_has(vmcs12,
7176                                            CPU_BASED_UNCOND_IO_EXITING);
7177         else
7178                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7179
7180         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7181         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7182 }
7183
7184 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7185                                struct x86_instruction_info *info,
7186                                enum x86_intercept_stage stage)
7187 {
7188         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7189         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7190
7191         switch (info->intercept) {
7192         /*
7193          * RDPID causes #UD if disabled through secondary execution controls.
7194          * Because it is marked as EmulateOnUD, we need to intercept it here.
7195          */
7196         case x86_intercept_rdtscp:
7197                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7198                         ctxt->exception.vector = UD_VECTOR;
7199                         ctxt->exception.error_code_valid = false;
7200                         return X86EMUL_PROPAGATE_FAULT;
7201                 }
7202                 break;
7203
7204         case x86_intercept_in:
7205         case x86_intercept_ins:
7206         case x86_intercept_out:
7207         case x86_intercept_outs:
7208                 return vmx_check_intercept_io(vcpu, info);
7209
7210         case x86_intercept_lgdt:
7211         case x86_intercept_lidt:
7212         case x86_intercept_lldt:
7213         case x86_intercept_ltr:
7214         case x86_intercept_sgdt:
7215         case x86_intercept_sidt:
7216         case x86_intercept_sldt:
7217         case x86_intercept_str:
7218                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7219                         return X86EMUL_CONTINUE;
7220
7221                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7222                 break;
7223
7224         /* TODO: check more intercepts... */
7225         default:
7226                 break;
7227         }
7228
7229         return X86EMUL_UNHANDLEABLE;
7230 }
7231
7232 #ifdef CONFIG_X86_64
7233 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7234 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7235                                   u64 divisor, u64 *result)
7236 {
7237         u64 low = a << shift, high = a >> (64 - shift);
7238
7239         /* To avoid the overflow on divq */
7240         if (high >= divisor)
7241                 return 1;
7242
7243         /* Low hold the result, high hold rem which is discarded */
7244         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7245             "rm" (divisor), "0" (low), "1" (high));
7246         *result = low;
7247
7248         return 0;
7249 }
7250
7251 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7252                             bool *expired)
7253 {
7254         struct vcpu_vmx *vmx;
7255         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7256         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7257
7258         if (kvm_mwait_in_guest(vcpu->kvm) ||
7259                 kvm_can_post_timer_interrupt(vcpu))
7260                 return -EOPNOTSUPP;
7261
7262         vmx = to_vmx(vcpu);
7263         tscl = rdtsc();
7264         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7265         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7266         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7267                                                     ktimer->timer_advance_ns);
7268
7269         if (delta_tsc > lapic_timer_advance_cycles)
7270                 delta_tsc -= lapic_timer_advance_cycles;
7271         else
7272                 delta_tsc = 0;
7273
7274         /* Convert to host delta tsc if tsc scaling is enabled */
7275         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7276             delta_tsc && u64_shl_div_u64(delta_tsc,
7277                                 kvm_tsc_scaling_ratio_frac_bits,
7278                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7279                 return -ERANGE;
7280
7281         /*
7282          * If the delta tsc can't fit in the 32 bit after the multi shift,
7283          * we can't use the preemption timer.
7284          * It's possible that it fits on later vmentries, but checking
7285          * on every vmentry is costly so we just use an hrtimer.
7286          */
7287         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7288                 return -ERANGE;
7289
7290         vmx->hv_deadline_tsc = tscl + delta_tsc;
7291         *expired = !delta_tsc;
7292         return 0;
7293 }
7294
7295 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7296 {
7297         to_vmx(vcpu)->hv_deadline_tsc = -1;
7298 }
7299 #endif
7300
7301 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7302 {
7303         if (!kvm_pause_in_guest(vcpu->kvm))
7304                 shrink_ple_window(vcpu);
7305 }
7306
7307 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7308                                      struct kvm_memory_slot *slot)
7309 {
7310         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7311         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7312 }
7313
7314 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7315                                        struct kvm_memory_slot *slot)
7316 {
7317         kvm_mmu_slot_set_dirty(kvm, slot);
7318 }
7319
7320 static void vmx_flush_log_dirty(struct kvm *kvm)
7321 {
7322         kvm_flush_pml_buffers(kvm);
7323 }
7324
7325 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7326 {
7327         struct vmcs12 *vmcs12;
7328         struct vcpu_vmx *vmx = to_vmx(vcpu);
7329         gpa_t gpa, dst;
7330
7331         if (is_guest_mode(vcpu)) {
7332                 WARN_ON_ONCE(vmx->nested.pml_full);
7333
7334                 /*
7335                  * Check if PML is enabled for the nested guest.
7336                  * Whether eptp bit 6 is set is already checked
7337                  * as part of A/D emulation.
7338                  */
7339                 vmcs12 = get_vmcs12(vcpu);
7340                 if (!nested_cpu_has_pml(vmcs12))
7341                         return 0;
7342
7343                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7344                         vmx->nested.pml_full = true;
7345                         return 1;
7346                 }
7347
7348                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7349                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7350
7351                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7352                                          offset_in_page(dst), sizeof(gpa)))
7353                         return 0;
7354
7355                 vmcs12->guest_pml_index--;
7356         }
7357
7358         return 0;
7359 }
7360
7361 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7362                                            struct kvm_memory_slot *memslot,
7363                                            gfn_t offset, unsigned long mask)
7364 {
7365         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7366 }
7367
7368 static void __pi_post_block(struct kvm_vcpu *vcpu)
7369 {
7370         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7371         struct pi_desc old, new;
7372         unsigned int dest;
7373
7374         do {
7375                 old.control = new.control = pi_desc->control;
7376                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7377                      "Wakeup handler not enabled while the VCPU is blocked\n");
7378
7379                 dest = cpu_physical_id(vcpu->cpu);
7380
7381                 if (x2apic_enabled())
7382                         new.ndst = dest;
7383                 else
7384                         new.ndst = (dest << 8) & 0xFF00;
7385
7386                 /* set 'NV' to 'notification vector' */
7387                 new.nv = POSTED_INTR_VECTOR;
7388         } while (cmpxchg64(&pi_desc->control, old.control,
7389                            new.control) != old.control);
7390
7391         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7392                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7393                 list_del(&vcpu->blocked_vcpu_list);
7394                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7395                 vcpu->pre_pcpu = -1;
7396         }
7397 }
7398
7399 /*
7400  * This routine does the following things for vCPU which is going
7401  * to be blocked if VT-d PI is enabled.
7402  * - Store the vCPU to the wakeup list, so when interrupts happen
7403  *   we can find the right vCPU to wake up.
7404  * - Change the Posted-interrupt descriptor as below:
7405  *      'NDST' <-- vcpu->pre_pcpu
7406  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7407  * - If 'ON' is set during this process, which means at least one
7408  *   interrupt is posted for this vCPU, we cannot block it, in
7409  *   this case, return 1, otherwise, return 0.
7410  *
7411  */
7412 static int pi_pre_block(struct kvm_vcpu *vcpu)
7413 {
7414         unsigned int dest;
7415         struct pi_desc old, new;
7416         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7417
7418         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7419                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7420                 !kvm_vcpu_apicv_active(vcpu))
7421                 return 0;
7422
7423         WARN_ON(irqs_disabled());
7424         local_irq_disable();
7425         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7426                 vcpu->pre_pcpu = vcpu->cpu;
7427                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7428                 list_add_tail(&vcpu->blocked_vcpu_list,
7429                               &per_cpu(blocked_vcpu_on_cpu,
7430                                        vcpu->pre_pcpu));
7431                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7432         }
7433
7434         do {
7435                 old.control = new.control = pi_desc->control;
7436
7437                 WARN((pi_desc->sn == 1),
7438                      "Warning: SN field of posted-interrupts "
7439                      "is set before blocking\n");
7440
7441                 /*
7442                  * Since vCPU can be preempted during this process,
7443                  * vcpu->cpu could be different with pre_pcpu, we
7444                  * need to set pre_pcpu as the destination of wakeup
7445                  * notification event, then we can find the right vCPU
7446                  * to wakeup in wakeup handler if interrupts happen
7447                  * when the vCPU is in blocked state.
7448                  */
7449                 dest = cpu_physical_id(vcpu->pre_pcpu);
7450
7451                 if (x2apic_enabled())
7452                         new.ndst = dest;
7453                 else
7454                         new.ndst = (dest << 8) & 0xFF00;
7455
7456                 /* set 'NV' to 'wakeup vector' */
7457                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7458         } while (cmpxchg64(&pi_desc->control, old.control,
7459                            new.control) != old.control);
7460
7461         /* We should not block the vCPU if an interrupt is posted for it.  */
7462         if (pi_test_on(pi_desc) == 1)
7463                 __pi_post_block(vcpu);
7464
7465         local_irq_enable();
7466         return (vcpu->pre_pcpu == -1);
7467 }
7468
7469 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7470 {
7471         if (pi_pre_block(vcpu))
7472                 return 1;
7473
7474         if (kvm_lapic_hv_timer_in_use(vcpu))
7475                 kvm_lapic_switch_to_sw_timer(vcpu);
7476
7477         return 0;
7478 }
7479
7480 static void pi_post_block(struct kvm_vcpu *vcpu)
7481 {
7482         if (vcpu->pre_pcpu == -1)
7483                 return;
7484
7485         WARN_ON(irqs_disabled());
7486         local_irq_disable();
7487         __pi_post_block(vcpu);
7488         local_irq_enable();
7489 }
7490
7491 static void vmx_post_block(struct kvm_vcpu *vcpu)
7492 {
7493         if (kvm_x86_ops->set_hv_timer)
7494                 kvm_lapic_switch_to_hv_timer(vcpu);
7495
7496         pi_post_block(vcpu);
7497 }
7498
7499 /*
7500  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7501  *
7502  * @kvm: kvm
7503  * @host_irq: host irq of the interrupt
7504  * @guest_irq: gsi of the interrupt
7505  * @set: set or unset PI
7506  * returns 0 on success, < 0 on failure
7507  */
7508 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7509                               uint32_t guest_irq, bool set)
7510 {
7511         struct kvm_kernel_irq_routing_entry *e;
7512         struct kvm_irq_routing_table *irq_rt;
7513         struct kvm_lapic_irq irq;
7514         struct kvm_vcpu *vcpu;
7515         struct vcpu_data vcpu_info;
7516         int idx, ret = 0;
7517
7518         if (!kvm_arch_has_assigned_device(kvm) ||
7519                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7520                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7521                 return 0;
7522
7523         idx = srcu_read_lock(&kvm->irq_srcu);
7524         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7525         if (guest_irq >= irq_rt->nr_rt_entries ||
7526             hlist_empty(&irq_rt->map[guest_irq])) {
7527                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7528                              guest_irq, irq_rt->nr_rt_entries);
7529                 goto out;
7530         }
7531
7532         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7533                 if (e->type != KVM_IRQ_ROUTING_MSI)
7534                         continue;
7535                 /*
7536                  * VT-d PI cannot support posting multicast/broadcast
7537                  * interrupts to a vCPU, we still use interrupt remapping
7538                  * for these kind of interrupts.
7539                  *
7540                  * For lowest-priority interrupts, we only support
7541                  * those with single CPU as the destination, e.g. user
7542                  * configures the interrupts via /proc/irq or uses
7543                  * irqbalance to make the interrupts single-CPU.
7544                  *
7545                  * We will support full lowest-priority interrupt later.
7546                  *
7547                  * In addition, we can only inject generic interrupts using
7548                  * the PI mechanism, refuse to route others through it.
7549                  */
7550
7551                 kvm_set_msi_irq(kvm, e, &irq);
7552                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7553                     !kvm_irq_is_postable(&irq)) {
7554                         /*
7555                          * Make sure the IRTE is in remapped mode if
7556                          * we don't handle it in posted mode.
7557                          */
7558                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7559                         if (ret < 0) {
7560                                 printk(KERN_INFO
7561                                    "failed to back to remapped mode, irq: %u\n",
7562                                    host_irq);
7563                                 goto out;
7564                         }
7565
7566                         continue;
7567                 }
7568
7569                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7570                 vcpu_info.vector = irq.vector;
7571
7572                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7573                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7574
7575                 if (set)
7576                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7577                 else
7578                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7579
7580                 if (ret < 0) {
7581                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7582                                         __func__);
7583                         goto out;
7584                 }
7585         }
7586
7587         ret = 0;
7588 out:
7589         srcu_read_unlock(&kvm->irq_srcu, idx);
7590         return ret;
7591 }
7592
7593 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7594 {
7595         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7596                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7597                         FEAT_CTL_LMCE_ENABLED;
7598         else
7599                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7600                         ~FEAT_CTL_LMCE_ENABLED;
7601 }
7602
7603 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7604 {
7605         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7606         if (to_vmx(vcpu)->nested.nested_run_pending)
7607                 return 0;
7608         return 1;
7609 }
7610
7611 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7612 {
7613         struct vcpu_vmx *vmx = to_vmx(vcpu);
7614
7615         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7616         if (vmx->nested.smm.guest_mode)
7617                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7618
7619         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7620         vmx->nested.vmxon = false;
7621         vmx_clear_hlt(vcpu);
7622         return 0;
7623 }
7624
7625 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7626 {
7627         struct vcpu_vmx *vmx = to_vmx(vcpu);
7628         int ret;
7629
7630         if (vmx->nested.smm.vmxon) {
7631                 vmx->nested.vmxon = true;
7632                 vmx->nested.smm.vmxon = false;
7633         }
7634
7635         if (vmx->nested.smm.guest_mode) {
7636                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7637                 if (ret)
7638                         return ret;
7639
7640                 vmx->nested.smm.guest_mode = false;
7641         }
7642         return 0;
7643 }
7644
7645 static int enable_smi_window(struct kvm_vcpu *vcpu)
7646 {
7647         return 0;
7648 }
7649
7650 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7651 {
7652         return false;
7653 }
7654
7655 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7656 {
7657         return to_vmx(vcpu)->nested.vmxon;
7658 }
7659
7660 static __init int hardware_setup(void)
7661 {
7662         unsigned long host_bndcfgs;
7663         struct desc_ptr dt;
7664         int r, i;
7665
7666         rdmsrl_safe(MSR_EFER, &host_efer);
7667
7668         store_idt(&dt);
7669         host_idt_base = dt.address;
7670
7671         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7672                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7673
7674         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7675                 return -EIO;
7676
7677         if (boot_cpu_has(X86_FEATURE_NX))
7678                 kvm_enable_efer_bits(EFER_NX);
7679
7680         if (boot_cpu_has(X86_FEATURE_MPX)) {
7681                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7682                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7683         }
7684
7685         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7686             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7687                 enable_vpid = 0;
7688
7689         if (!cpu_has_vmx_ept() ||
7690             !cpu_has_vmx_ept_4levels() ||
7691             !cpu_has_vmx_ept_mt_wb() ||
7692             !cpu_has_vmx_invept_global())
7693                 enable_ept = 0;
7694
7695         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7696                 enable_ept_ad_bits = 0;
7697
7698         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7699                 enable_unrestricted_guest = 0;
7700
7701         if (!cpu_has_vmx_flexpriority())
7702                 flexpriority_enabled = 0;
7703
7704         if (!cpu_has_virtual_nmis())
7705                 enable_vnmi = 0;
7706
7707         /*
7708          * set_apic_access_page_addr() is used to reload apic access
7709          * page upon invalidation.  No need to do anything if not
7710          * using the APIC_ACCESS_ADDR VMCS field.
7711          */
7712         if (!flexpriority_enabled)
7713                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7714
7715         if (!cpu_has_vmx_tpr_shadow())
7716                 kvm_x86_ops->update_cr8_intercept = NULL;
7717
7718         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7719                 kvm_disable_largepages();
7720
7721 #if IS_ENABLED(CONFIG_HYPERV)
7722         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7723             && enable_ept) {
7724                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7725                 kvm_x86_ops->tlb_remote_flush_with_range =
7726                                 hv_remote_flush_tlb_with_range;
7727         }
7728 #endif
7729
7730         if (!cpu_has_vmx_ple()) {
7731                 ple_gap = 0;
7732                 ple_window = 0;
7733                 ple_window_grow = 0;
7734                 ple_window_max = 0;
7735                 ple_window_shrink = 0;
7736         }
7737
7738         if (!cpu_has_vmx_apicv()) {
7739                 enable_apicv = 0;
7740                 kvm_x86_ops->sync_pir_to_irr = NULL;
7741         }
7742
7743         if (cpu_has_vmx_tsc_scaling()) {
7744                 kvm_has_tsc_control = true;
7745                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7746                 kvm_tsc_scaling_ratio_frac_bits = 48;
7747         }
7748
7749         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7750
7751         if (enable_ept)
7752                 vmx_enable_tdp();
7753         else
7754                 kvm_disable_tdp();
7755
7756         /*
7757          * Only enable PML when hardware supports PML feature, and both EPT
7758          * and EPT A/D bit features are enabled -- PML depends on them to work.
7759          */
7760         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7761                 enable_pml = 0;
7762
7763         if (!enable_pml) {
7764                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7765                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7766                 kvm_x86_ops->flush_log_dirty = NULL;
7767                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7768         }
7769
7770         if (!cpu_has_vmx_preemption_timer())
7771                 enable_preemption_timer = false;
7772
7773         if (enable_preemption_timer) {
7774                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7775                 u64 vmx_msr;
7776
7777                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7778                 cpu_preemption_timer_multi =
7779                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7780
7781                 if (tsc_khz)
7782                         use_timer_freq = (u64)tsc_khz * 1000;
7783                 use_timer_freq >>= cpu_preemption_timer_multi;
7784
7785                 /*
7786                  * KVM "disables" the preemption timer by setting it to its max
7787                  * value.  Don't use the timer if it might cause spurious exits
7788                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7789                  */
7790                 if (use_timer_freq > 0xffffffffu / 10)
7791                         enable_preemption_timer = false;
7792         }
7793
7794         if (!enable_preemption_timer) {
7795                 kvm_x86_ops->set_hv_timer = NULL;
7796                 kvm_x86_ops->cancel_hv_timer = NULL;
7797                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7798         }
7799
7800         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7801
7802         kvm_mce_cap_supported |= MCG_LMCE_P;
7803
7804         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7805                 return -EINVAL;
7806         if (!enable_ept || !cpu_has_vmx_intel_pt())
7807                 pt_mode = PT_MODE_SYSTEM;
7808
7809         if (nested) {
7810                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7811                                            vmx_capability.ept);
7812
7813                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7814                 if (r)
7815                         return r;
7816         }
7817
7818         r = alloc_kvm_area();
7819         if (r)
7820                 nested_vmx_hardware_unsetup();
7821         return r;
7822 }
7823
7824 static __exit void hardware_unsetup(void)
7825 {
7826         if (nested)
7827                 nested_vmx_hardware_unsetup();
7828
7829         free_kvm_area();
7830 }
7831
7832 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7833 {
7834         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7835                           BIT(APICV_INHIBIT_REASON_HYPERV);
7836
7837         return supported & BIT(bit);
7838 }
7839
7840 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7841         .cpu_has_kvm_support = cpu_has_kvm_support,
7842         .disabled_by_bios = vmx_disabled_by_bios,
7843         .hardware_setup = hardware_setup,
7844         .hardware_unsetup = hardware_unsetup,
7845         .check_processor_compatibility = vmx_check_processor_compat,
7846         .hardware_enable = hardware_enable,
7847         .hardware_disable = hardware_disable,
7848         .cpu_has_accelerated_tpr = report_flexpriority,
7849         .has_emulated_msr = vmx_has_emulated_msr,
7850
7851         .vm_init = vmx_vm_init,
7852         .vm_alloc = vmx_vm_alloc,
7853         .vm_free = vmx_vm_free,
7854
7855         .vcpu_create = vmx_create_vcpu,
7856         .vcpu_free = vmx_free_vcpu,
7857         .vcpu_reset = vmx_vcpu_reset,
7858
7859         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7860         .vcpu_load = vmx_vcpu_load,
7861         .vcpu_put = vmx_vcpu_put,
7862
7863         .update_bp_intercept = update_exception_bitmap,
7864         .get_msr_feature = vmx_get_msr_feature,
7865         .get_msr = vmx_get_msr,
7866         .set_msr = vmx_set_msr,
7867         .get_segment_base = vmx_get_segment_base,
7868         .get_segment = vmx_get_segment,
7869         .set_segment = vmx_set_segment,
7870         .get_cpl = vmx_get_cpl,
7871         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7872         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7873         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7874         .set_cr0 = vmx_set_cr0,
7875         .set_cr3 = vmx_set_cr3,
7876         .set_cr4 = vmx_set_cr4,
7877         .set_efer = vmx_set_efer,
7878         .get_idt = vmx_get_idt,
7879         .set_idt = vmx_set_idt,
7880         .get_gdt = vmx_get_gdt,
7881         .set_gdt = vmx_set_gdt,
7882         .get_dr6 = vmx_get_dr6,
7883         .set_dr6 = vmx_set_dr6,
7884         .set_dr7 = vmx_set_dr7,
7885         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7886         .cache_reg = vmx_cache_reg,
7887         .get_rflags = vmx_get_rflags,
7888         .set_rflags = vmx_set_rflags,
7889
7890         .tlb_flush = vmx_flush_tlb,
7891         .tlb_flush_gva = vmx_flush_tlb_gva,
7892
7893         .run = vmx_vcpu_run,
7894         .handle_exit = vmx_handle_exit,
7895         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7896         .update_emulated_instruction = vmx_update_emulated_instruction,
7897         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7898         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7899         .patch_hypercall = vmx_patch_hypercall,
7900         .set_irq = vmx_inject_irq,
7901         .set_nmi = vmx_inject_nmi,
7902         .queue_exception = vmx_queue_exception,
7903         .cancel_injection = vmx_cancel_injection,
7904         .interrupt_allowed = vmx_interrupt_allowed,
7905         .nmi_allowed = vmx_nmi_allowed,
7906         .get_nmi_mask = vmx_get_nmi_mask,
7907         .set_nmi_mask = vmx_set_nmi_mask,
7908         .enable_nmi_window = enable_nmi_window,
7909         .enable_irq_window = enable_irq_window,
7910         .update_cr8_intercept = update_cr8_intercept,
7911         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7912         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7913         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7914         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7915         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7916         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7917         .hwapic_irr_update = vmx_hwapic_irr_update,
7918         .hwapic_isr_update = vmx_hwapic_isr_update,
7919         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7920         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7921         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7922         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7923
7924         .set_tss_addr = vmx_set_tss_addr,
7925         .set_identity_map_addr = vmx_set_identity_map_addr,
7926         .get_tdp_level = get_ept_level,
7927         .get_mt_mask = vmx_get_mt_mask,
7928
7929         .get_exit_info = vmx_get_exit_info,
7930
7931         .get_lpage_level = vmx_get_lpage_level,
7932
7933         .cpuid_update = vmx_cpuid_update,
7934
7935         .rdtscp_supported = vmx_rdtscp_supported,
7936         .invpcid_supported = vmx_invpcid_supported,
7937
7938         .set_supported_cpuid = vmx_set_supported_cpuid,
7939
7940         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7941
7942         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7943         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7944
7945         .set_tdp_cr3 = vmx_set_cr3,
7946
7947         .check_intercept = vmx_check_intercept,
7948         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7949         .mpx_supported = vmx_mpx_supported,
7950         .xsaves_supported = vmx_xsaves_supported,
7951         .umip_emulated = vmx_umip_emulated,
7952         .pt_supported = vmx_pt_supported,
7953         .pku_supported = vmx_pku_supported,
7954
7955         .request_immediate_exit = vmx_request_immediate_exit,
7956
7957         .sched_in = vmx_sched_in,
7958
7959         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7960         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7961         .flush_log_dirty = vmx_flush_log_dirty,
7962         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7963         .write_log_dirty = vmx_write_pml_buffer,
7964
7965         .pre_block = vmx_pre_block,
7966         .post_block = vmx_post_block,
7967
7968         .pmu_ops = &intel_pmu_ops,
7969
7970         .update_pi_irte = vmx_update_pi_irte,
7971
7972 #ifdef CONFIG_X86_64
7973         .set_hv_timer = vmx_set_hv_timer,
7974         .cancel_hv_timer = vmx_cancel_hv_timer,
7975 #endif
7976
7977         .setup_mce = vmx_setup_mce,
7978
7979         .smi_allowed = vmx_smi_allowed,
7980         .pre_enter_smm = vmx_pre_enter_smm,
7981         .pre_leave_smm = vmx_pre_leave_smm,
7982         .enable_smi_window = enable_smi_window,
7983
7984         .check_nested_events = NULL,
7985         .get_nested_state = NULL,
7986         .set_nested_state = NULL,
7987         .get_vmcs12_pages = NULL,
7988         .nested_enable_evmcs = NULL,
7989         .nested_get_evmcs_version = NULL,
7990         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7991         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7992 };
7993
7994 static void vmx_cleanup_l1d_flush(void)
7995 {
7996         if (vmx_l1d_flush_pages) {
7997                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7998                 vmx_l1d_flush_pages = NULL;
7999         }
8000         /* Restore state so sysfs ignores VMX */
8001         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8002 }
8003
8004 static void vmx_exit(void)
8005 {
8006 #ifdef CONFIG_KEXEC_CORE
8007         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8008         synchronize_rcu();
8009 #endif
8010
8011         kvm_exit();
8012
8013 #if IS_ENABLED(CONFIG_HYPERV)
8014         if (static_branch_unlikely(&enable_evmcs)) {
8015                 int cpu;
8016                 struct hv_vp_assist_page *vp_ap;
8017                 /*
8018                  * Reset everything to support using non-enlightened VMCS
8019                  * access later (e.g. when we reload the module with
8020                  * enlightened_vmcs=0)
8021                  */
8022                 for_each_online_cpu(cpu) {
8023                         vp_ap = hv_get_vp_assist_page(cpu);
8024
8025                         if (!vp_ap)
8026                                 continue;
8027
8028                         vp_ap->nested_control.features.directhypercall = 0;
8029                         vp_ap->current_nested_vmcs = 0;
8030                         vp_ap->enlighten_vmentry = 0;
8031                 }
8032
8033                 static_branch_disable(&enable_evmcs);
8034         }
8035 #endif
8036         vmx_cleanup_l1d_flush();
8037 }
8038 module_exit(vmx_exit);
8039
8040 static int __init vmx_init(void)
8041 {
8042         int r;
8043
8044 #if IS_ENABLED(CONFIG_HYPERV)
8045         /*
8046          * Enlightened VMCS usage should be recommended and the host needs
8047          * to support eVMCS v1 or above. We can also disable eVMCS support
8048          * with module parameter.
8049          */
8050         if (enlightened_vmcs &&
8051             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8052             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8053             KVM_EVMCS_VERSION) {
8054                 int cpu;
8055
8056                 /* Check that we have assist pages on all online CPUs */
8057                 for_each_online_cpu(cpu) {
8058                         if (!hv_get_vp_assist_page(cpu)) {
8059                                 enlightened_vmcs = false;
8060                                 break;
8061                         }
8062                 }
8063
8064                 if (enlightened_vmcs) {
8065                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8066                         static_branch_enable(&enable_evmcs);
8067                 }
8068
8069                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8070                         vmx_x86_ops.enable_direct_tlbflush
8071                                 = hv_enable_direct_tlbflush;
8072
8073         } else {
8074                 enlightened_vmcs = false;
8075         }
8076 #endif
8077
8078         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8079                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8080         if (r)
8081                 return r;
8082
8083         /*
8084          * Must be called after kvm_init() so enable_ept is properly set
8085          * up. Hand the parameter mitigation value in which was stored in
8086          * the pre module init parser. If no parameter was given, it will
8087          * contain 'auto' which will be turned into the default 'cond'
8088          * mitigation mode.
8089          */
8090         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8091         if (r) {
8092                 vmx_exit();
8093                 return r;
8094         }
8095
8096 #ifdef CONFIG_KEXEC_CORE
8097         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8098                            crash_vmclear_local_loaded_vmcss);
8099 #endif
8100         vmx_check_vmcs12_offsets();
8101
8102         return 0;
8103 }
8104 module_init(vmx_init);